nfs_clbio.c revision 236446
1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD: stable/9/sys/fs/nfsclient/nfs_clbio.c 236446 2012-06-02 11:44:50Z kib $");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mount.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48
49#include <vm/vm.h>
50#include <vm/vm_extern.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_pager.h>
54#include <vm/vnode_pager.h>
55
56#include <fs/nfs/nfsport.h>
57#include <fs/nfsclient/nfsmount.h>
58#include <fs/nfsclient/nfs.h>
59#include <fs/nfsclient/nfsnode.h>
60#include <fs/nfsclient/nfs_kdtrace.h>
61
62extern int newnfs_directio_allow_mmap;
63extern struct nfsstats newnfsstats;
64extern struct mtx ncl_iod_mutex;
65extern int ncl_numasync;
66extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
67extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
68extern int newnfs_directio_enable;
69extern int nfs_keep_dirty_on_error;
70
71int ncl_pbuf_freecnt = -1;	/* start out unlimited */
72
73static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
74    struct thread *td);
75static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
76    struct ucred *cred, int ioflag);
77
78/*
79 * Vnode op for VM getpages.
80 */
81int
82ncl_getpages(struct vop_getpages_args *ap)
83{
84	int i, error, nextoff, size, toff, count, npages;
85	struct uio uio;
86	struct iovec iov;
87	vm_offset_t kva;
88	struct buf *bp;
89	struct vnode *vp;
90	struct thread *td;
91	struct ucred *cred;
92	struct nfsmount *nmp;
93	vm_object_t object;
94	vm_page_t *pages;
95	struct nfsnode *np;
96
97	vp = ap->a_vp;
98	np = VTONFS(vp);
99	td = curthread;				/* XXX */
100	cred = curthread->td_ucred;		/* XXX */
101	nmp = VFSTONFS(vp->v_mount);
102	pages = ap->a_m;
103	count = ap->a_count;
104
105	if ((object = vp->v_object) == NULL) {
106		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
107		return (VM_PAGER_ERROR);
108	}
109
110	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
111		mtx_lock(&np->n_mtx);
112		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
113			mtx_unlock(&np->n_mtx);
114			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
115			return (VM_PAGER_ERROR);
116		} else
117			mtx_unlock(&np->n_mtx);
118	}
119
120	mtx_lock(&nmp->nm_mtx);
121	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
122	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
123		mtx_unlock(&nmp->nm_mtx);
124		/* We'll never get here for v4, because we always have fsinfo */
125		(void)ncl_fsinfo(nmp, vp, cred, td);
126	} else
127		mtx_unlock(&nmp->nm_mtx);
128
129	npages = btoc(count);
130
131	/*
132	 * If the requested page is partially valid, just return it and
133	 * allow the pager to zero-out the blanks.  Partially valid pages
134	 * can only occur at the file EOF.
135	 */
136	VM_OBJECT_LOCK(object);
137	if (pages[ap->a_reqpage]->valid != 0) {
138		for (i = 0; i < npages; ++i) {
139			if (i != ap->a_reqpage) {
140				vm_page_lock(pages[i]);
141				vm_page_free(pages[i]);
142				vm_page_unlock(pages[i]);
143			}
144		}
145		VM_OBJECT_UNLOCK(object);
146		return (0);
147	}
148	VM_OBJECT_UNLOCK(object);
149
150	/*
151	 * We use only the kva address for the buffer, but this is extremely
152	 * convienient and fast.
153	 */
154	bp = getpbuf(&ncl_pbuf_freecnt);
155
156	kva = (vm_offset_t) bp->b_data;
157	pmap_qenter(kva, pages, npages);
158	PCPU_INC(cnt.v_vnodein);
159	PCPU_ADD(cnt.v_vnodepgsin, npages);
160
161	iov.iov_base = (caddr_t) kva;
162	iov.iov_len = count;
163	uio.uio_iov = &iov;
164	uio.uio_iovcnt = 1;
165	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
166	uio.uio_resid = count;
167	uio.uio_segflg = UIO_SYSSPACE;
168	uio.uio_rw = UIO_READ;
169	uio.uio_td = td;
170
171	error = ncl_readrpc(vp, &uio, cred);
172	pmap_qremove(kva, npages);
173
174	relpbuf(bp, &ncl_pbuf_freecnt);
175
176	if (error && (uio.uio_resid == count)) {
177		ncl_printf("nfs_getpages: error %d\n", error);
178		VM_OBJECT_LOCK(object);
179		for (i = 0; i < npages; ++i) {
180			if (i != ap->a_reqpage) {
181				vm_page_lock(pages[i]);
182				vm_page_free(pages[i]);
183				vm_page_unlock(pages[i]);
184			}
185		}
186		VM_OBJECT_UNLOCK(object);
187		return (VM_PAGER_ERROR);
188	}
189
190	/*
191	 * Calculate the number of bytes read and validate only that number
192	 * of bytes.  Note that due to pending writes, size may be 0.  This
193	 * does not mean that the remaining data is invalid!
194	 */
195
196	size = count - uio.uio_resid;
197	VM_OBJECT_LOCK(object);
198	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
199		vm_page_t m;
200		nextoff = toff + PAGE_SIZE;
201		m = pages[i];
202
203		if (nextoff <= size) {
204			/*
205			 * Read operation filled an entire page
206			 */
207			m->valid = VM_PAGE_BITS_ALL;
208			KASSERT(m->dirty == 0,
209			    ("nfs_getpages: page %p is dirty", m));
210		} else if (size > toff) {
211			/*
212			 * Read operation filled a partial page.
213			 */
214			m->valid = 0;
215			vm_page_set_valid(m, 0, size - toff);
216			KASSERT(m->dirty == 0,
217			    ("nfs_getpages: page %p is dirty", m));
218		} else {
219			/*
220			 * Read operation was short.  If no error occured
221			 * we may have hit a zero-fill section.   We simply
222			 * leave valid set to 0.
223			 */
224			;
225		}
226		if (i != ap->a_reqpage) {
227			/*
228			 * Whether or not to leave the page activated is up in
229			 * the air, but we should put the page on a page queue
230			 * somewhere (it already is in the object).  Result:
231			 * It appears that emperical results show that
232			 * deactivating pages is best.
233			 */
234
235			/*
236			 * Just in case someone was asking for this page we
237			 * now tell them that it is ok to use.
238			 */
239			if (!error) {
240				if (m->oflags & VPO_WANTED) {
241					vm_page_lock(m);
242					vm_page_activate(m);
243					vm_page_unlock(m);
244				} else {
245					vm_page_lock(m);
246					vm_page_deactivate(m);
247					vm_page_unlock(m);
248				}
249				vm_page_wakeup(m);
250			} else {
251				vm_page_lock(m);
252				vm_page_free(m);
253				vm_page_unlock(m);
254			}
255		}
256	}
257	VM_OBJECT_UNLOCK(object);
258	return (0);
259}
260
261/*
262 * Vnode op for VM putpages.
263 */
264int
265ncl_putpages(struct vop_putpages_args *ap)
266{
267	struct uio uio;
268	struct iovec iov;
269	vm_offset_t kva;
270	struct buf *bp;
271	int iomode, must_commit, i, error, npages, count;
272	off_t offset;
273	int *rtvals;
274	struct vnode *vp;
275	struct thread *td;
276	struct ucred *cred;
277	struct nfsmount *nmp;
278	struct nfsnode *np;
279	vm_page_t *pages;
280
281	vp = ap->a_vp;
282	np = VTONFS(vp);
283	td = curthread;				/* XXX */
284	/* Set the cred to n_writecred for the write rpcs. */
285	if (np->n_writecred != NULL)
286		cred = crhold(np->n_writecred);
287	else
288		cred = crhold(curthread->td_ucred);	/* XXX */
289	nmp = VFSTONFS(vp->v_mount);
290	pages = ap->a_m;
291	count = ap->a_count;
292	rtvals = ap->a_rtvals;
293	npages = btoc(count);
294	offset = IDX_TO_OFF(pages[0]->pindex);
295
296	mtx_lock(&nmp->nm_mtx);
297	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
298	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
299		mtx_unlock(&nmp->nm_mtx);
300		(void)ncl_fsinfo(nmp, vp, cred, td);
301	} else
302		mtx_unlock(&nmp->nm_mtx);
303
304	mtx_lock(&np->n_mtx);
305	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
306	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
307		mtx_unlock(&np->n_mtx);
308		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
309		mtx_lock(&np->n_mtx);
310	}
311
312	for (i = 0; i < npages; i++)
313		rtvals[i] = VM_PAGER_ERROR;
314
315	/*
316	 * When putting pages, do not extend file past EOF.
317	 */
318	if (offset + count > np->n_size) {
319		count = np->n_size - offset;
320		if (count < 0)
321			count = 0;
322	}
323	mtx_unlock(&np->n_mtx);
324
325	/*
326	 * We use only the kva address for the buffer, but this is extremely
327	 * convienient and fast.
328	 */
329	bp = getpbuf(&ncl_pbuf_freecnt);
330
331	kva = (vm_offset_t) bp->b_data;
332	pmap_qenter(kva, pages, npages);
333	PCPU_INC(cnt.v_vnodeout);
334	PCPU_ADD(cnt.v_vnodepgsout, count);
335
336	iov.iov_base = (caddr_t) kva;
337	iov.iov_len = count;
338	uio.uio_iov = &iov;
339	uio.uio_iovcnt = 1;
340	uio.uio_offset = offset;
341	uio.uio_resid = count;
342	uio.uio_segflg = UIO_SYSSPACE;
343	uio.uio_rw = UIO_WRITE;
344	uio.uio_td = td;
345
346	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
347	    iomode = NFSWRITE_UNSTABLE;
348	else
349	    iomode = NFSWRITE_FILESYNC;
350
351	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
352	crfree(cred);
353
354	pmap_qremove(kva, npages);
355	relpbuf(bp, &ncl_pbuf_freecnt);
356
357	if (error == 0 || !nfs_keep_dirty_on_error) {
358		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
359		if (must_commit)
360			ncl_clearcommit(vp->v_mount);
361	}
362	return rtvals[0];
363}
364
365/*
366 * For nfs, cache consistency can only be maintained approximately.
367 * Although RFC1094 does not specify the criteria, the following is
368 * believed to be compatible with the reference port.
369 * For nfs:
370 * If the file's modify time on the server has changed since the
371 * last read rpc or you have written to the file,
372 * you may have lost data cache consistency with the
373 * server, so flush all of the file's data out of the cache.
374 * Then force a getattr rpc to ensure that you have up to date
375 * attributes.
376 * NB: This implies that cache data can be read when up to
377 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
378 * attributes this could be forced by setting n_attrstamp to 0 before
379 * the VOP_GETATTR() call.
380 */
381static inline int
382nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
383{
384	int error = 0;
385	struct vattr vattr;
386	struct nfsnode *np = VTONFS(vp);
387	int old_lock;
388
389	/*
390	 * Grab the exclusive lock before checking whether the cache is
391	 * consistent.
392	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
393	 * But for now, this suffices.
394	 */
395	old_lock = ncl_upgrade_vnlock(vp);
396	if (vp->v_iflag & VI_DOOMED) {
397		ncl_downgrade_vnlock(vp, old_lock);
398		return (EBADF);
399	}
400
401	mtx_lock(&np->n_mtx);
402	if (np->n_flag & NMODIFIED) {
403		mtx_unlock(&np->n_mtx);
404		if (vp->v_type != VREG) {
405			if (vp->v_type != VDIR)
406				panic("nfs: bioread, not dir");
407			ncl_invaldir(vp);
408			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
409			if (error)
410				goto out;
411		}
412		np->n_attrstamp = 0;
413		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
414		error = VOP_GETATTR(vp, &vattr, cred);
415		if (error)
416			goto out;
417		mtx_lock(&np->n_mtx);
418		np->n_mtime = vattr.va_mtime;
419		mtx_unlock(&np->n_mtx);
420	} else {
421		mtx_unlock(&np->n_mtx);
422		error = VOP_GETATTR(vp, &vattr, cred);
423		if (error)
424			return (error);
425		mtx_lock(&np->n_mtx);
426		if ((np->n_flag & NSIZECHANGED)
427		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
428			mtx_unlock(&np->n_mtx);
429			if (vp->v_type == VDIR)
430				ncl_invaldir(vp);
431			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
432			if (error)
433				goto out;
434			mtx_lock(&np->n_mtx);
435			np->n_mtime = vattr.va_mtime;
436			np->n_flag &= ~NSIZECHANGED;
437		}
438		mtx_unlock(&np->n_mtx);
439	}
440out:
441	ncl_downgrade_vnlock(vp, old_lock);
442	return error;
443}
444
445/*
446 * Vnode op for read using bio
447 */
448int
449ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
450{
451	struct nfsnode *np = VTONFS(vp);
452	int biosize, i;
453	struct buf *bp, *rabp;
454	struct thread *td;
455	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
456	daddr_t lbn, rabn;
457	int bcount;
458	int seqcount;
459	int nra, error = 0, n = 0, on = 0;
460	off_t tmp_off;
461
462	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
463	if (uio->uio_resid == 0)
464		return (0);
465	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
466		return (EINVAL);
467	td = uio->uio_td;
468
469	mtx_lock(&nmp->nm_mtx);
470	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
471	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
472		mtx_unlock(&nmp->nm_mtx);
473		(void)ncl_fsinfo(nmp, vp, cred, td);
474		mtx_lock(&nmp->nm_mtx);
475	}
476	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
477		(void) newnfs_iosize(nmp);
478
479	tmp_off = uio->uio_offset + uio->uio_resid;
480	if (vp->v_type != VDIR &&
481	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
482		mtx_unlock(&nmp->nm_mtx);
483		return (EFBIG);
484	}
485	mtx_unlock(&nmp->nm_mtx);
486
487	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
488		/* No caching/ no readaheads. Just read data into the user buffer */
489		return ncl_readrpc(vp, uio, cred);
490
491	biosize = vp->v_bufobj.bo_bsize;
492	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
493
494	error = nfs_bioread_check_cons(vp, td, cred);
495	if (error)
496		return error;
497
498	do {
499	    u_quad_t nsize;
500
501	    mtx_lock(&np->n_mtx);
502	    nsize = np->n_size;
503	    mtx_unlock(&np->n_mtx);
504
505	    switch (vp->v_type) {
506	    case VREG:
507		NFSINCRGLOBAL(newnfsstats.biocache_reads);
508		lbn = uio->uio_offset / biosize;
509		on = uio->uio_offset & (biosize - 1);
510
511		/*
512		 * Start the read ahead(s), as required.
513		 */
514		if (nmp->nm_readahead > 0) {
515		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
516			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
517			rabn = lbn + 1 + nra;
518			if (incore(&vp->v_bufobj, rabn) == NULL) {
519			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
520			    if (!rabp) {
521				error = newnfs_sigintr(nmp, td);
522				return (error ? error : EINTR);
523			    }
524			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
525				rabp->b_flags |= B_ASYNC;
526				rabp->b_iocmd = BIO_READ;
527				vfs_busy_pages(rabp, 0);
528				if (ncl_asyncio(nmp, rabp, cred, td)) {
529				    rabp->b_flags |= B_INVAL;
530				    rabp->b_ioflags |= BIO_ERROR;
531				    vfs_unbusy_pages(rabp);
532				    brelse(rabp);
533				    break;
534				}
535			    } else {
536				brelse(rabp);
537			    }
538			}
539		    }
540		}
541
542		/* Note that bcount is *not* DEV_BSIZE aligned. */
543		bcount = biosize;
544		if ((off_t)lbn * biosize >= nsize) {
545			bcount = 0;
546		} else if ((off_t)(lbn + 1) * biosize > nsize) {
547			bcount = nsize - (off_t)lbn * biosize;
548		}
549		bp = nfs_getcacheblk(vp, lbn, bcount, td);
550
551		if (!bp) {
552			error = newnfs_sigintr(nmp, td);
553			return (error ? error : EINTR);
554		}
555
556		/*
557		 * If B_CACHE is not set, we must issue the read.  If this
558		 * fails, we return an error.
559		 */
560
561		if ((bp->b_flags & B_CACHE) == 0) {
562		    bp->b_iocmd = BIO_READ;
563		    vfs_busy_pages(bp, 0);
564		    error = ncl_doio(vp, bp, cred, td, 0);
565		    if (error) {
566			brelse(bp);
567			return (error);
568		    }
569		}
570
571		/*
572		 * on is the offset into the current bp.  Figure out how many
573		 * bytes we can copy out of the bp.  Note that bcount is
574		 * NOT DEV_BSIZE aligned.
575		 *
576		 * Then figure out how many bytes we can copy into the uio.
577		 */
578
579		n = 0;
580		if (on < bcount)
581			n = MIN((unsigned)(bcount - on), uio->uio_resid);
582		break;
583	    case VLNK:
584		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
585		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
586		if (!bp) {
587			error = newnfs_sigintr(nmp, td);
588			return (error ? error : EINTR);
589		}
590		if ((bp->b_flags & B_CACHE) == 0) {
591		    bp->b_iocmd = BIO_READ;
592		    vfs_busy_pages(bp, 0);
593		    error = ncl_doio(vp, bp, cred, td, 0);
594		    if (error) {
595			bp->b_ioflags |= BIO_ERROR;
596			brelse(bp);
597			return (error);
598		    }
599		}
600		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
601		on = 0;
602		break;
603	    case VDIR:
604		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
605		if (np->n_direofoffset
606		    && uio->uio_offset >= np->n_direofoffset) {
607		    return (0);
608		}
609		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
610		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
611		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
612		if (!bp) {
613		    error = newnfs_sigintr(nmp, td);
614		    return (error ? error : EINTR);
615		}
616		if ((bp->b_flags & B_CACHE) == 0) {
617		    bp->b_iocmd = BIO_READ;
618		    vfs_busy_pages(bp, 0);
619		    error = ncl_doio(vp, bp, cred, td, 0);
620		    if (error) {
621			    brelse(bp);
622		    }
623		    while (error == NFSERR_BAD_COOKIE) {
624			ncl_invaldir(vp);
625			error = ncl_vinvalbuf(vp, 0, td, 1);
626			/*
627			 * Yuck! The directory has been modified on the
628			 * server. The only way to get the block is by
629			 * reading from the beginning to get all the
630			 * offset cookies.
631			 *
632			 * Leave the last bp intact unless there is an error.
633			 * Loop back up to the while if the error is another
634			 * NFSERR_BAD_COOKIE (double yuch!).
635			 */
636			for (i = 0; i <= lbn && !error; i++) {
637			    if (np->n_direofoffset
638				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
639				    return (0);
640			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
641			    if (!bp) {
642				error = newnfs_sigintr(nmp, td);
643				return (error ? error : EINTR);
644			    }
645			    if ((bp->b_flags & B_CACHE) == 0) {
646				    bp->b_iocmd = BIO_READ;
647				    vfs_busy_pages(bp, 0);
648				    error = ncl_doio(vp, bp, cred, td, 0);
649				    /*
650				     * no error + B_INVAL == directory EOF,
651				     * use the block.
652				     */
653				    if (error == 0 && (bp->b_flags & B_INVAL))
654					    break;
655			    }
656			    /*
657			     * An error will throw away the block and the
658			     * for loop will break out.  If no error and this
659			     * is not the block we want, we throw away the
660			     * block and go for the next one via the for loop.
661			     */
662			    if (error || i < lbn)
663				    brelse(bp);
664			}
665		    }
666		    /*
667		     * The above while is repeated if we hit another cookie
668		     * error.  If we hit an error and it wasn't a cookie error,
669		     * we give up.
670		     */
671		    if (error)
672			    return (error);
673		}
674
675		/*
676		 * If not eof and read aheads are enabled, start one.
677		 * (You need the current block first, so that you have the
678		 *  directory offset cookie of the next block.)
679		 */
680		if (nmp->nm_readahead > 0 &&
681		    (bp->b_flags & B_INVAL) == 0 &&
682		    (np->n_direofoffset == 0 ||
683		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
684		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
685			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
686			if (rabp) {
687			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
688				rabp->b_flags |= B_ASYNC;
689				rabp->b_iocmd = BIO_READ;
690				vfs_busy_pages(rabp, 0);
691				if (ncl_asyncio(nmp, rabp, cred, td)) {
692				    rabp->b_flags |= B_INVAL;
693				    rabp->b_ioflags |= BIO_ERROR;
694				    vfs_unbusy_pages(rabp);
695				    brelse(rabp);
696				}
697			    } else {
698				brelse(rabp);
699			    }
700			}
701		}
702		/*
703		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
704		 * chopped for the EOF condition, we cannot tell how large
705		 * NFS directories are going to be until we hit EOF.  So
706		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
707		 * it just so happens that b_resid will effectively chop it
708		 * to EOF.  *BUT* this information is lost if the buffer goes
709		 * away and is reconstituted into a B_CACHE state ( due to
710		 * being VMIO ) later.  So we keep track of the directory eof
711		 * in np->n_direofoffset and chop it off as an extra step
712		 * right here.
713		 */
714		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
715		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
716			n = np->n_direofoffset - uio->uio_offset;
717		break;
718	    default:
719		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
720		bp = NULL;
721		break;
722	    };
723
724	    if (n > 0) {
725		    error = uiomove(bp->b_data + on, (int)n, uio);
726	    }
727	    if (vp->v_type == VLNK)
728		n = 0;
729	    if (bp != NULL)
730		brelse(bp);
731	} while (error == 0 && uio->uio_resid > 0 && n > 0);
732	return (error);
733}
734
735/*
736 * The NFS write path cannot handle iovecs with len > 1. So we need to
737 * break up iovecs accordingly (restricting them to wsize).
738 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
739 * For the ASYNC case, 2 copies are needed. The first a copy from the
740 * user buffer to a staging buffer and then a second copy from the staging
741 * buffer to mbufs. This can be optimized by copying from the user buffer
742 * directly into mbufs and passing the chain down, but that requires a
743 * fair amount of re-working of the relevant codepaths (and can be done
744 * later).
745 */
746static int
747nfs_directio_write(vp, uiop, cred, ioflag)
748	struct vnode *vp;
749	struct uio *uiop;
750	struct ucred *cred;
751	int ioflag;
752{
753	int error;
754	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
755	struct thread *td = uiop->uio_td;
756	int size;
757	int wsize;
758
759	mtx_lock(&nmp->nm_mtx);
760	wsize = nmp->nm_wsize;
761	mtx_unlock(&nmp->nm_mtx);
762	if (ioflag & IO_SYNC) {
763		int iomode, must_commit;
764		struct uio uio;
765		struct iovec iov;
766do_sync:
767		while (uiop->uio_resid > 0) {
768			size = MIN(uiop->uio_resid, wsize);
769			size = MIN(uiop->uio_iov->iov_len, size);
770			iov.iov_base = uiop->uio_iov->iov_base;
771			iov.iov_len = size;
772			uio.uio_iov = &iov;
773			uio.uio_iovcnt = 1;
774			uio.uio_offset = uiop->uio_offset;
775			uio.uio_resid = size;
776			uio.uio_segflg = UIO_USERSPACE;
777			uio.uio_rw = UIO_WRITE;
778			uio.uio_td = td;
779			iomode = NFSWRITE_FILESYNC;
780			error = ncl_writerpc(vp, &uio, cred, &iomode,
781			    &must_commit, 0);
782			KASSERT((must_commit == 0),
783				("ncl_directio_write: Did not commit write"));
784			if (error)
785				return (error);
786			uiop->uio_offset += size;
787			uiop->uio_resid -= size;
788			if (uiop->uio_iov->iov_len <= size) {
789				uiop->uio_iovcnt--;
790				uiop->uio_iov++;
791			} else {
792				uiop->uio_iov->iov_base =
793					(char *)uiop->uio_iov->iov_base + size;
794				uiop->uio_iov->iov_len -= size;
795			}
796		}
797	} else {
798		struct uio *t_uio;
799		struct iovec *t_iov;
800		struct buf *bp;
801
802		/*
803		 * Break up the write into blocksize chunks and hand these
804		 * over to nfsiod's for write back.
805		 * Unfortunately, this incurs a copy of the data. Since
806		 * the user could modify the buffer before the write is
807		 * initiated.
808		 *
809		 * The obvious optimization here is that one of the 2 copies
810		 * in the async write path can be eliminated by copying the
811		 * data here directly into mbufs and passing the mbuf chain
812		 * down. But that will require a fair amount of re-working
813		 * of the code and can be done if there's enough interest
814		 * in NFS directio access.
815		 */
816		while (uiop->uio_resid > 0) {
817			size = MIN(uiop->uio_resid, wsize);
818			size = MIN(uiop->uio_iov->iov_len, size);
819			bp = getpbuf(&ncl_pbuf_freecnt);
820			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
821			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
822			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
823			t_iov->iov_len = size;
824			t_uio->uio_iov = t_iov;
825			t_uio->uio_iovcnt = 1;
826			t_uio->uio_offset = uiop->uio_offset;
827			t_uio->uio_resid = size;
828			t_uio->uio_segflg = UIO_SYSSPACE;
829			t_uio->uio_rw = UIO_WRITE;
830			t_uio->uio_td = td;
831			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
832			    uiop->uio_segflg == UIO_SYSSPACE,
833			    ("nfs_directio_write: Bad uio_segflg"));
834			if (uiop->uio_segflg == UIO_USERSPACE) {
835				error = copyin(uiop->uio_iov->iov_base,
836				    t_iov->iov_base, size);
837				if (error != 0)
838					goto err_free;
839			} else
840				/*
841				 * UIO_SYSSPACE may never happen, but handle
842				 * it just in case it does.
843				 */
844				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
845				    size);
846			bp->b_flags |= B_DIRECT;
847			bp->b_iocmd = BIO_WRITE;
848			if (cred != NOCRED) {
849				crhold(cred);
850				bp->b_wcred = cred;
851			} else
852				bp->b_wcred = NOCRED;
853			bp->b_caller1 = (void *)t_uio;
854			bp->b_vp = vp;
855			error = ncl_asyncio(nmp, bp, NOCRED, td);
856err_free:
857			if (error) {
858				free(t_iov->iov_base, M_NFSDIRECTIO);
859				free(t_iov, M_NFSDIRECTIO);
860				free(t_uio, M_NFSDIRECTIO);
861				bp->b_vp = NULL;
862				relpbuf(bp, &ncl_pbuf_freecnt);
863				if (error == EINTR)
864					return (error);
865				goto do_sync;
866			}
867			uiop->uio_offset += size;
868			uiop->uio_resid -= size;
869			if (uiop->uio_iov->iov_len <= size) {
870				uiop->uio_iovcnt--;
871				uiop->uio_iov++;
872			} else {
873				uiop->uio_iov->iov_base =
874					(char *)uiop->uio_iov->iov_base + size;
875				uiop->uio_iov->iov_len -= size;
876			}
877		}
878	}
879	return (0);
880}
881
882/*
883 * Vnode op for write using bio
884 */
885int
886ncl_write(struct vop_write_args *ap)
887{
888	int biosize;
889	struct uio *uio = ap->a_uio;
890	struct thread *td = uio->uio_td;
891	struct vnode *vp = ap->a_vp;
892	struct nfsnode *np = VTONFS(vp);
893	struct ucred *cred = ap->a_cred;
894	int ioflag = ap->a_ioflag;
895	struct buf *bp;
896	struct vattr vattr;
897	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
898	daddr_t lbn;
899	int bcount;
900	int n, on, error = 0;
901	off_t tmp_off;
902
903	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
904	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
905	    ("ncl_write proc"));
906	if (vp->v_type != VREG)
907		return (EIO);
908	mtx_lock(&np->n_mtx);
909	if (np->n_flag & NWRITEERR) {
910		np->n_flag &= ~NWRITEERR;
911		mtx_unlock(&np->n_mtx);
912		return (np->n_error);
913	} else
914		mtx_unlock(&np->n_mtx);
915	mtx_lock(&nmp->nm_mtx);
916	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
917	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
918		mtx_unlock(&nmp->nm_mtx);
919		(void)ncl_fsinfo(nmp, vp, cred, td);
920		mtx_lock(&nmp->nm_mtx);
921	}
922	if (nmp->nm_wsize == 0)
923		(void) newnfs_iosize(nmp);
924	mtx_unlock(&nmp->nm_mtx);
925
926	/*
927	 * Synchronously flush pending buffers if we are in synchronous
928	 * mode or if we are appending.
929	 */
930	if (ioflag & (IO_APPEND | IO_SYNC)) {
931		mtx_lock(&np->n_mtx);
932		if (np->n_flag & NMODIFIED) {
933			mtx_unlock(&np->n_mtx);
934#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
935			/*
936			 * Require non-blocking, synchronous writes to
937			 * dirty files to inform the program it needs
938			 * to fsync(2) explicitly.
939			 */
940			if (ioflag & IO_NDELAY)
941				return (EAGAIN);
942#endif
943flush_and_restart:
944			np->n_attrstamp = 0;
945			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
946			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
947			if (error)
948				return (error);
949		} else
950			mtx_unlock(&np->n_mtx);
951	}
952
953	/*
954	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
955	 * get the append lock.
956	 */
957	if (ioflag & IO_APPEND) {
958		np->n_attrstamp = 0;
959		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
960		error = VOP_GETATTR(vp, &vattr, cred);
961		if (error)
962			return (error);
963		mtx_lock(&np->n_mtx);
964		uio->uio_offset = np->n_size;
965		mtx_unlock(&np->n_mtx);
966	}
967
968	if (uio->uio_offset < 0)
969		return (EINVAL);
970	tmp_off = uio->uio_offset + uio->uio_resid;
971	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
972		return (EFBIG);
973	if (uio->uio_resid == 0)
974		return (0);
975
976	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
977		return nfs_directio_write(vp, uio, cred, ioflag);
978
979	/*
980	 * Maybe this should be above the vnode op call, but so long as
981	 * file servers have no limits, i don't think it matters
982	 */
983	if (vn_rlimit_fsize(vp, uio, td))
984		return (EFBIG);
985
986	biosize = vp->v_bufobj.bo_bsize;
987	/*
988	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
989	 * would exceed the local maximum per-file write commit size when
990	 * combined with those, we must decide whether to flush,
991	 * go synchronous, or return error.  We don't bother checking
992	 * IO_UNIT -- we just make all writes atomic anyway, as there's
993	 * no point optimizing for something that really won't ever happen.
994	 */
995	if (!(ioflag & IO_SYNC)) {
996		int nflag;
997
998		mtx_lock(&np->n_mtx);
999		nflag = np->n_flag;
1000		mtx_unlock(&np->n_mtx);
1001		int needrestart = 0;
1002		if (nmp->nm_wcommitsize < uio->uio_resid) {
1003			/*
1004			 * If this request could not possibly be completed
1005			 * without exceeding the maximum outstanding write
1006			 * commit size, see if we can convert it into a
1007			 * synchronous write operation.
1008			 */
1009			if (ioflag & IO_NDELAY)
1010				return (EAGAIN);
1011			ioflag |= IO_SYNC;
1012			if (nflag & NMODIFIED)
1013				needrestart = 1;
1014		} else if (nflag & NMODIFIED) {
1015			int wouldcommit = 0;
1016			BO_LOCK(&vp->v_bufobj);
1017			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1018				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1019				    b_bobufs) {
1020					if (bp->b_flags & B_NEEDCOMMIT)
1021						wouldcommit += bp->b_bcount;
1022				}
1023			}
1024			BO_UNLOCK(&vp->v_bufobj);
1025			/*
1026			 * Since we're not operating synchronously and
1027			 * bypassing the buffer cache, we are in a commit
1028			 * and holding all of these buffers whether
1029			 * transmitted or not.  If not limited, this
1030			 * will lead to the buffer cache deadlocking,
1031			 * as no one else can flush our uncommitted buffers.
1032			 */
1033			wouldcommit += uio->uio_resid;
1034			/*
1035			 * If we would initially exceed the maximum
1036			 * outstanding write commit size, flush and restart.
1037			 */
1038			if (wouldcommit > nmp->nm_wcommitsize)
1039				needrestart = 1;
1040		}
1041		if (needrestart)
1042			goto flush_and_restart;
1043	}
1044
1045	do {
1046		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1047		lbn = uio->uio_offset / biosize;
1048		on = uio->uio_offset & (biosize-1);
1049		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1050again:
1051		/*
1052		 * Handle direct append and file extension cases, calculate
1053		 * unaligned buffer size.
1054		 */
1055		mtx_lock(&np->n_mtx);
1056		if (uio->uio_offset == np->n_size && n) {
1057			mtx_unlock(&np->n_mtx);
1058			/*
1059			 * Get the buffer (in its pre-append state to maintain
1060			 * B_CACHE if it was previously set).  Resize the
1061			 * nfsnode after we have locked the buffer to prevent
1062			 * readers from reading garbage.
1063			 */
1064			bcount = on;
1065			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1066
1067			if (bp != NULL) {
1068				long save;
1069
1070				mtx_lock(&np->n_mtx);
1071				np->n_size = uio->uio_offset + n;
1072				np->n_flag |= NMODIFIED;
1073				vnode_pager_setsize(vp, np->n_size);
1074				mtx_unlock(&np->n_mtx);
1075
1076				save = bp->b_flags & B_CACHE;
1077				bcount += n;
1078				allocbuf(bp, bcount);
1079				bp->b_flags |= save;
1080			}
1081		} else {
1082			/*
1083			 * Obtain the locked cache block first, and then
1084			 * adjust the file's size as appropriate.
1085			 */
1086			bcount = on + n;
1087			if ((off_t)lbn * biosize + bcount < np->n_size) {
1088				if ((off_t)(lbn + 1) * biosize < np->n_size)
1089					bcount = biosize;
1090				else
1091					bcount = np->n_size - (off_t)lbn * biosize;
1092			}
1093			mtx_unlock(&np->n_mtx);
1094			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1095			mtx_lock(&np->n_mtx);
1096			if (uio->uio_offset + n > np->n_size) {
1097				np->n_size = uio->uio_offset + n;
1098				np->n_flag |= NMODIFIED;
1099				vnode_pager_setsize(vp, np->n_size);
1100			}
1101			mtx_unlock(&np->n_mtx);
1102		}
1103
1104		if (!bp) {
1105			error = newnfs_sigintr(nmp, td);
1106			if (!error)
1107				error = EINTR;
1108			break;
1109		}
1110
1111		/*
1112		 * Issue a READ if B_CACHE is not set.  In special-append
1113		 * mode, B_CACHE is based on the buffer prior to the write
1114		 * op and is typically set, avoiding the read.  If a read
1115		 * is required in special append mode, the server will
1116		 * probably send us a short-read since we extended the file
1117		 * on our end, resulting in b_resid == 0 and, thusly,
1118		 * B_CACHE getting set.
1119		 *
1120		 * We can also avoid issuing the read if the write covers
1121		 * the entire buffer.  We have to make sure the buffer state
1122		 * is reasonable in this case since we will not be initiating
1123		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1124		 * more information.
1125		 *
1126		 * B_CACHE may also be set due to the buffer being cached
1127		 * normally.
1128		 */
1129
1130		if (on == 0 && n == bcount) {
1131			bp->b_flags |= B_CACHE;
1132			bp->b_flags &= ~B_INVAL;
1133			bp->b_ioflags &= ~BIO_ERROR;
1134		}
1135
1136		if ((bp->b_flags & B_CACHE) == 0) {
1137			bp->b_iocmd = BIO_READ;
1138			vfs_busy_pages(bp, 0);
1139			error = ncl_doio(vp, bp, cred, td, 0);
1140			if (error) {
1141				brelse(bp);
1142				break;
1143			}
1144		}
1145		if (bp->b_wcred == NOCRED)
1146			bp->b_wcred = crhold(cred);
1147		mtx_lock(&np->n_mtx);
1148		np->n_flag |= NMODIFIED;
1149		mtx_unlock(&np->n_mtx);
1150
1151		/*
1152		 * If dirtyend exceeds file size, chop it down.  This should
1153		 * not normally occur but there is an append race where it
1154		 * might occur XXX, so we log it.
1155		 *
1156		 * If the chopping creates a reverse-indexed or degenerate
1157		 * situation with dirtyoff/end, we 0 both of them.
1158		 */
1159
1160		if (bp->b_dirtyend > bcount) {
1161			ncl_printf("NFS append race @%lx:%d\n",
1162			    (long)bp->b_blkno * DEV_BSIZE,
1163			    bp->b_dirtyend - bcount);
1164			bp->b_dirtyend = bcount;
1165		}
1166
1167		if (bp->b_dirtyoff >= bp->b_dirtyend)
1168			bp->b_dirtyoff = bp->b_dirtyend = 0;
1169
1170		/*
1171		 * If the new write will leave a contiguous dirty
1172		 * area, just update the b_dirtyoff and b_dirtyend,
1173		 * otherwise force a write rpc of the old dirty area.
1174		 *
1175		 * While it is possible to merge discontiguous writes due to
1176		 * our having a B_CACHE buffer ( and thus valid read data
1177		 * for the hole), we don't because it could lead to
1178		 * significant cache coherency problems with multiple clients,
1179		 * especially if locking is implemented later on.
1180		 *
1181		 * As an optimization we could theoretically maintain
1182		 * a linked list of discontinuous areas, but we would still
1183		 * have to commit them separately so there isn't much
1184		 * advantage to it except perhaps a bit of asynchronization.
1185		 */
1186
1187		if (bp->b_dirtyend > 0 &&
1188		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1189			if (bwrite(bp) == EINTR) {
1190				error = EINTR;
1191				break;
1192			}
1193			goto again;
1194		}
1195
1196		error = uiomove((char *)bp->b_data + on, n, uio);
1197
1198		/*
1199		 * Since this block is being modified, it must be written
1200		 * again and not just committed.  Since write clustering does
1201		 * not work for the stage 1 data write, only the stage 2
1202		 * commit rpc, we have to clear B_CLUSTEROK as well.
1203		 */
1204		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1205
1206		if (error) {
1207			bp->b_ioflags |= BIO_ERROR;
1208			brelse(bp);
1209			break;
1210		}
1211
1212		/*
1213		 * Only update dirtyoff/dirtyend if not a degenerate
1214		 * condition.
1215		 */
1216		if (n) {
1217			if (bp->b_dirtyend > 0) {
1218				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1219				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1220			} else {
1221				bp->b_dirtyoff = on;
1222				bp->b_dirtyend = on + n;
1223			}
1224			vfs_bio_set_valid(bp, on, n);
1225		}
1226
1227		/*
1228		 * If IO_SYNC do bwrite().
1229		 *
1230		 * IO_INVAL appears to be unused.  The idea appears to be
1231		 * to turn off caching in this case.  Very odd.  XXX
1232		 */
1233		if ((ioflag & IO_SYNC)) {
1234			if (ioflag & IO_INVAL)
1235				bp->b_flags |= B_NOCACHE;
1236			error = bwrite(bp);
1237			if (error)
1238				break;
1239		} else if ((n + on) == biosize) {
1240			bp->b_flags |= B_ASYNC;
1241			(void) ncl_writebp(bp, 0, NULL);
1242		} else {
1243			bdwrite(bp);
1244		}
1245	} while (uio->uio_resid > 0 && n > 0);
1246
1247	return (error);
1248}
1249
1250/*
1251 * Get an nfs cache block.
1252 *
1253 * Allocate a new one if the block isn't currently in the cache
1254 * and return the block marked busy. If the calling process is
1255 * interrupted by a signal for an interruptible mount point, return
1256 * NULL.
1257 *
1258 * The caller must carefully deal with the possible B_INVAL state of
1259 * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1260 * indirectly), so synchronous reads can be issued without worrying about
1261 * the B_INVAL state.  We have to be a little more careful when dealing
1262 * with writes (see comments in nfs_write()) when extending a file past
1263 * its EOF.
1264 */
1265static struct buf *
1266nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1267{
1268	struct buf *bp;
1269	struct mount *mp;
1270	struct nfsmount *nmp;
1271
1272	mp = vp->v_mount;
1273	nmp = VFSTONFS(mp);
1274
1275	if (nmp->nm_flag & NFSMNT_INT) {
1276 		sigset_t oldset;
1277
1278 		newnfs_set_sigmask(td, &oldset);
1279		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1280 		newnfs_restore_sigmask(td, &oldset);
1281		while (bp == NULL) {
1282			if (newnfs_sigintr(nmp, td))
1283				return (NULL);
1284			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1285		}
1286	} else {
1287		bp = getblk(vp, bn, size, 0, 0, 0);
1288	}
1289
1290	if (vp->v_type == VREG)
1291		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1292	return (bp);
1293}
1294
1295/*
1296 * Flush and invalidate all dirty buffers. If another process is already
1297 * doing the flush, just wait for completion.
1298 */
1299int
1300ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1301{
1302	struct nfsnode *np = VTONFS(vp);
1303	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1304	int error = 0, slpflag, slptimeo;
1305 	int old_lock = 0;
1306
1307	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1308
1309	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1310		intrflg = 0;
1311	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1312		intrflg = 1;
1313	if (intrflg) {
1314		slpflag = NFS_PCATCH;
1315		slptimeo = 2 * hz;
1316	} else {
1317		slpflag = 0;
1318		slptimeo = 0;
1319	}
1320
1321	old_lock = ncl_upgrade_vnlock(vp);
1322	if (vp->v_iflag & VI_DOOMED) {
1323		/*
1324		 * Since vgonel() uses the generic vinvalbuf() to flush
1325		 * dirty buffers and it does not call this function, it
1326		 * is safe to just return OK when VI_DOOMED is set.
1327		 */
1328		ncl_downgrade_vnlock(vp, old_lock);
1329		return (0);
1330	}
1331
1332	/*
1333	 * Now, flush as required.
1334	 */
1335	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1336		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1337		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1338		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1339		/*
1340		 * If the page clean was interrupted, fail the invalidation.
1341		 * Not doing so, we run the risk of losing dirty pages in the
1342		 * vinvalbuf() call below.
1343		 */
1344		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1345			goto out;
1346	}
1347
1348	error = vinvalbuf(vp, flags, slpflag, 0);
1349	while (error) {
1350		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1351			goto out;
1352		error = vinvalbuf(vp, flags, 0, slptimeo);
1353	}
1354	mtx_lock(&np->n_mtx);
1355	if (np->n_directio_asyncwr == 0)
1356		np->n_flag &= ~NMODIFIED;
1357	mtx_unlock(&np->n_mtx);
1358out:
1359	ncl_downgrade_vnlock(vp, old_lock);
1360	return error;
1361}
1362
1363/*
1364 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1365 * This is mainly to avoid queueing async I/O requests when the nfsiods
1366 * are all hung on a dead server.
1367 *
1368 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1369 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1370 */
1371int
1372ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1373{
1374	int iod;
1375	int gotiod;
1376	int slpflag = 0;
1377	int slptimeo = 0;
1378	int error, error2;
1379
1380	/*
1381	 * Commits are usually short and sweet so lets save some cpu and
1382	 * leave the async daemons for more important rpc's (such as reads
1383	 * and writes).
1384	 */
1385	mtx_lock(&ncl_iod_mutex);
1386	if (bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1387	    (nmp->nm_bufqiods > ncl_numasync / 2)) {
1388		mtx_unlock(&ncl_iod_mutex);
1389		return(EIO);
1390	}
1391again:
1392	if (nmp->nm_flag & NFSMNT_INT)
1393		slpflag = NFS_PCATCH;
1394	gotiod = FALSE;
1395
1396	/*
1397	 * Find a free iod to process this request.
1398	 */
1399	for (iod = 0; iod < ncl_numasync; iod++)
1400		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1401			gotiod = TRUE;
1402			break;
1403		}
1404
1405	/*
1406	 * Try to create one if none are free.
1407	 */
1408	if (!gotiod)
1409		ncl_nfsiodnew();
1410	else {
1411		/*
1412		 * Found one, so wake it up and tell it which
1413		 * mount to process.
1414		 */
1415		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1416		    iod, nmp));
1417		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1418		ncl_iodmount[iod] = nmp;
1419		nmp->nm_bufqiods++;
1420		wakeup(&ncl_iodwant[iod]);
1421	}
1422
1423	/*
1424	 * If none are free, we may already have an iod working on this mount
1425	 * point.  If so, it will process our request.
1426	 */
1427	if (!gotiod) {
1428		if (nmp->nm_bufqiods > 0) {
1429			NFS_DPF(ASYNCIO,
1430				("ncl_asyncio: %d iods are already processing mount %p\n",
1431				 nmp->nm_bufqiods, nmp));
1432			gotiod = TRUE;
1433		}
1434	}
1435
1436	/*
1437	 * If we have an iod which can process the request, then queue
1438	 * the buffer.
1439	 */
1440	if (gotiod) {
1441		/*
1442		 * Ensure that the queue never grows too large.  We still want
1443		 * to asynchronize so we block rather then return EIO.
1444		 */
1445		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1446			NFS_DPF(ASYNCIO,
1447				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1448			nmp->nm_bufqwant = TRUE;
1449 			error = newnfs_msleep(td, &nmp->nm_bufq,
1450			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1451  			   slptimeo);
1452			if (error) {
1453				error2 = newnfs_sigintr(nmp, td);
1454				if (error2) {
1455					mtx_unlock(&ncl_iod_mutex);
1456					return (error2);
1457				}
1458				if (slpflag == NFS_PCATCH) {
1459					slpflag = 0;
1460					slptimeo = 2 * hz;
1461				}
1462			}
1463			/*
1464			 * We might have lost our iod while sleeping,
1465			 * so check and loop if nescessary.
1466			 */
1467			goto again;
1468		}
1469
1470		/* We might have lost our nfsiod */
1471		if (nmp->nm_bufqiods == 0) {
1472			NFS_DPF(ASYNCIO,
1473				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1474			goto again;
1475		}
1476
1477		if (bp->b_iocmd == BIO_READ) {
1478			if (bp->b_rcred == NOCRED && cred != NOCRED)
1479				bp->b_rcred = crhold(cred);
1480		} else {
1481			if (bp->b_wcred == NOCRED && cred != NOCRED)
1482				bp->b_wcred = crhold(cred);
1483		}
1484
1485		if (bp->b_flags & B_REMFREE)
1486			bremfreef(bp);
1487		BUF_KERNPROC(bp);
1488		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1489		nmp->nm_bufqlen++;
1490		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1491			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1492			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1493			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1494			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1495		}
1496		mtx_unlock(&ncl_iod_mutex);
1497		return (0);
1498	}
1499
1500	mtx_unlock(&ncl_iod_mutex);
1501
1502	/*
1503	 * All the iods are busy on other mounts, so return EIO to
1504	 * force the caller to process the i/o synchronously.
1505	 */
1506	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1507	return (EIO);
1508}
1509
1510void
1511ncl_doio_directwrite(struct buf *bp)
1512{
1513	int iomode, must_commit;
1514	struct uio *uiop = (struct uio *)bp->b_caller1;
1515	char *iov_base = uiop->uio_iov->iov_base;
1516
1517	iomode = NFSWRITE_FILESYNC;
1518	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1519	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1520	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1521	free(iov_base, M_NFSDIRECTIO);
1522	free(uiop->uio_iov, M_NFSDIRECTIO);
1523	free(uiop, M_NFSDIRECTIO);
1524	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1525		struct nfsnode *np = VTONFS(bp->b_vp);
1526		mtx_lock(&np->n_mtx);
1527		np->n_directio_asyncwr--;
1528		if (np->n_directio_asyncwr == 0) {
1529			np->n_flag &= ~NMODIFIED;
1530			if ((np->n_flag & NFSYNCWAIT)) {
1531				np->n_flag &= ~NFSYNCWAIT;
1532				wakeup((caddr_t)&np->n_directio_asyncwr);
1533			}
1534		}
1535		mtx_unlock(&np->n_mtx);
1536	}
1537	bp->b_vp = NULL;
1538	relpbuf(bp, &ncl_pbuf_freecnt);
1539}
1540
1541/*
1542 * Do an I/O operation to/from a cache block. This may be called
1543 * synchronously or from an nfsiod.
1544 */
1545int
1546ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1547    int called_from_strategy)
1548{
1549	struct uio *uiop;
1550	struct nfsnode *np;
1551	struct nfsmount *nmp;
1552	int error = 0, iomode, must_commit = 0;
1553	struct uio uio;
1554	struct iovec io;
1555	struct proc *p = td ? td->td_proc : NULL;
1556	uint8_t	iocmd;
1557
1558	np = VTONFS(vp);
1559	nmp = VFSTONFS(vp->v_mount);
1560	uiop = &uio;
1561	uiop->uio_iov = &io;
1562	uiop->uio_iovcnt = 1;
1563	uiop->uio_segflg = UIO_SYSSPACE;
1564	uiop->uio_td = td;
1565
1566	/*
1567	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1568	 * do this here so we do not have to do it in all the code that
1569	 * calls us.
1570	 */
1571	bp->b_flags &= ~B_INVAL;
1572	bp->b_ioflags &= ~BIO_ERROR;
1573
1574	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1575	iocmd = bp->b_iocmd;
1576	if (iocmd == BIO_READ) {
1577	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1578	    io.iov_base = bp->b_data;
1579	    uiop->uio_rw = UIO_READ;
1580
1581	    switch (vp->v_type) {
1582	    case VREG:
1583		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1584		NFSINCRGLOBAL(newnfsstats.read_bios);
1585		error = ncl_readrpc(vp, uiop, cr);
1586
1587		if (!error) {
1588		    if (uiop->uio_resid) {
1589			/*
1590			 * If we had a short read with no error, we must have
1591			 * hit a file hole.  We should zero-fill the remainder.
1592			 * This can also occur if the server hits the file EOF.
1593			 *
1594			 * Holes used to be able to occur due to pending
1595			 * writes, but that is not possible any longer.
1596			 */
1597			int nread = bp->b_bcount - uiop->uio_resid;
1598			ssize_t left = uiop->uio_resid;
1599
1600			if (left > 0)
1601				bzero((char *)bp->b_data + nread, left);
1602			uiop->uio_resid = 0;
1603		    }
1604		}
1605		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1606		if (p && (vp->v_vflag & VV_TEXT)) {
1607			mtx_lock(&np->n_mtx);
1608			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1609				mtx_unlock(&np->n_mtx);
1610				PROC_LOCK(p);
1611				killproc(p, "text file modification");
1612				PROC_UNLOCK(p);
1613			} else
1614				mtx_unlock(&np->n_mtx);
1615		}
1616		break;
1617	    case VLNK:
1618		uiop->uio_offset = (off_t)0;
1619		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1620		error = ncl_readlinkrpc(vp, uiop, cr);
1621		break;
1622	    case VDIR:
1623		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1624		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1625		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1626			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1627			if (error == NFSERR_NOTSUPP)
1628				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1629		}
1630		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1631			error = ncl_readdirrpc(vp, uiop, cr, td);
1632		/*
1633		 * end-of-directory sets B_INVAL but does not generate an
1634		 * error.
1635		 */
1636		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1637			bp->b_flags |= B_INVAL;
1638		break;
1639	    default:
1640		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1641		break;
1642	    };
1643	    if (error) {
1644		bp->b_ioflags |= BIO_ERROR;
1645		bp->b_error = error;
1646	    }
1647	} else {
1648	    /*
1649	     * If we only need to commit, try to commit
1650	     */
1651	    if (bp->b_flags & B_NEEDCOMMIT) {
1652		    int retv;
1653		    off_t off;
1654
1655		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1656		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1657			bp->b_wcred, td);
1658		    if (retv == 0) {
1659			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1660			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1661			    bp->b_resid = 0;
1662			    bufdone(bp);
1663			    return (0);
1664		    }
1665		    if (retv == NFSERR_STALEWRITEVERF) {
1666			    ncl_clearcommit(vp->v_mount);
1667		    }
1668	    }
1669
1670	    /*
1671	     * Setup for actual write
1672	     */
1673	    mtx_lock(&np->n_mtx);
1674	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1675		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1676	    mtx_unlock(&np->n_mtx);
1677
1678	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1679		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1680		    - bp->b_dirtyoff;
1681		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1682		    + bp->b_dirtyoff;
1683		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1684		uiop->uio_rw = UIO_WRITE;
1685		NFSINCRGLOBAL(newnfsstats.write_bios);
1686
1687		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1688		    iomode = NFSWRITE_UNSTABLE;
1689		else
1690		    iomode = NFSWRITE_FILESYNC;
1691
1692		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1693		    called_from_strategy);
1694
1695		/*
1696		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1697		 * to cluster the buffers needing commit.  This will allow
1698		 * the system to submit a single commit rpc for the whole
1699		 * cluster.  We can do this even if the buffer is not 100%
1700		 * dirty (relative to the NFS blocksize), so we optimize the
1701		 * append-to-file-case.
1702		 *
1703		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1704		 * cleared because write clustering only works for commit
1705		 * rpc's, not for the data portion of the write).
1706		 */
1707
1708		if (!error && iomode == NFSWRITE_UNSTABLE) {
1709		    bp->b_flags |= B_NEEDCOMMIT;
1710		    if (bp->b_dirtyoff == 0
1711			&& bp->b_dirtyend == bp->b_bcount)
1712			bp->b_flags |= B_CLUSTEROK;
1713		} else {
1714		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1715		}
1716
1717		/*
1718		 * For an interrupted write, the buffer is still valid
1719		 * and the write hasn't been pushed to the server yet,
1720		 * so we can't set BIO_ERROR and report the interruption
1721		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1722		 * is not relevant, so the rpc attempt is essentially
1723		 * a noop.  For the case of a V3 write rpc not being
1724		 * committed to stable storage, the block is still
1725		 * dirty and requires either a commit rpc or another
1726		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1727		 * the block is reused. This is indicated by setting
1728		 * the B_DELWRI and B_NEEDCOMMIT flags.
1729		 *
1730		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1731		 * write error and is handled as above, except that
1732		 * B_EINTR isn't set. One cause of this is a stale stateid
1733		 * error for the RPC that indicates recovery is required,
1734		 * when called with called_from_strategy != 0.
1735		 *
1736		 * If the buffer is marked B_PAGING, it does not reside on
1737		 * the vp's paging queues so we cannot call bdirty().  The
1738		 * bp in this case is not an NFS cache block so we should
1739		 * be safe. XXX
1740		 *
1741		 * The logic below breaks up errors into recoverable and
1742		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1743		 * and keep the buffer around for potential write retries.
1744		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1745		 * and save the error in the nfsnode. This is less than ideal
1746		 * but necessary. Keeping such buffers around could potentially
1747		 * cause buffer exhaustion eventually (they can never be written
1748		 * out, so will get constantly be re-dirtied). It also causes
1749		 * all sorts of vfs panics. For non-recoverable write errors,
1750		 * also invalidate the attrcache, so we'll be forced to go over
1751		 * the wire for this object, returning an error to user on next
1752		 * call (most of the time).
1753		 */
1754    		if (error == EINTR || error == EIO || error == ETIMEDOUT
1755		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1756			int s;
1757
1758			s = splbio();
1759			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1760			if ((bp->b_flags & B_PAGING) == 0) {
1761			    bdirty(bp);
1762			    bp->b_flags &= ~B_DONE;
1763			}
1764			if ((error == EINTR || error == ETIMEDOUT) &&
1765			    (bp->b_flags & B_ASYNC) == 0)
1766			    bp->b_flags |= B_EINTR;
1767			splx(s);
1768	    	} else {
1769		    if (error) {
1770			bp->b_ioflags |= BIO_ERROR;
1771			bp->b_flags |= B_INVAL;
1772			bp->b_error = np->n_error = error;
1773			mtx_lock(&np->n_mtx);
1774			np->n_flag |= NWRITEERR;
1775			np->n_attrstamp = 0;
1776			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1777			mtx_unlock(&np->n_mtx);
1778		    }
1779		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1780		}
1781	    } else {
1782		bp->b_resid = 0;
1783		bufdone(bp);
1784		return (0);
1785	    }
1786	}
1787	bp->b_resid = uiop->uio_resid;
1788	if (must_commit)
1789	    ncl_clearcommit(vp->v_mount);
1790	bufdone(bp);
1791	return (error);
1792}
1793
1794/*
1795 * Used to aid in handling ftruncate() operations on the NFS client side.
1796 * Truncation creates a number of special problems for NFS.  We have to
1797 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1798 * we have to properly handle VM pages or (potentially dirty) buffers
1799 * that straddle the truncation point.
1800 */
1801
1802int
1803ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1804{
1805	struct nfsnode *np = VTONFS(vp);
1806	u_quad_t tsize;
1807	int biosize = vp->v_bufobj.bo_bsize;
1808	int error = 0;
1809
1810	mtx_lock(&np->n_mtx);
1811	tsize = np->n_size;
1812	np->n_size = nsize;
1813	mtx_unlock(&np->n_mtx);
1814
1815	if (nsize < tsize) {
1816		struct buf *bp;
1817		daddr_t lbn;
1818		int bufsize;
1819
1820		/*
1821		 * vtruncbuf() doesn't get the buffer overlapping the
1822		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1823		 * buffer that now needs to be truncated.
1824		 */
1825		error = vtruncbuf(vp, cred, td, nsize, biosize);
1826		lbn = nsize / biosize;
1827		bufsize = nsize & (biosize - 1);
1828		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1829 		if (!bp)
1830 			return EINTR;
1831		if (bp->b_dirtyoff > bp->b_bcount)
1832			bp->b_dirtyoff = bp->b_bcount;
1833		if (bp->b_dirtyend > bp->b_bcount)
1834			bp->b_dirtyend = bp->b_bcount;
1835		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1836		brelse(bp);
1837	} else {
1838		vnode_pager_setsize(vp, nsize);
1839	}
1840	return(error);
1841}
1842
1843