1/*-
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Rick Macklem at The University of Guelph.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	@(#)nfs_bio.c	8.9 (Berkeley) 3/30/95
33 */
34
35#include <sys/cdefs.h>
36__FBSDID("$FreeBSD$");
37
38#include "opt_kdtrace.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bio.h>
43#include <sys/buf.h>
44#include <sys/kernel.h>
45#include <sys/mount.h>
46#include <sys/vmmeter.h>
47#include <sys/vnode.h>
48
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_extern.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_pager.h>
55#include <vm/vnode_pager.h>
56
57#include <fs/nfs/nfsport.h>
58#include <fs/nfsclient/nfsmount.h>
59#include <fs/nfsclient/nfs.h>
60#include <fs/nfsclient/nfsnode.h>
61#include <fs/nfsclient/nfs_kdtrace.h>
62
63extern int newnfs_directio_allow_mmap;
64extern struct nfsstats newnfsstats;
65extern struct mtx ncl_iod_mutex;
66extern int ncl_numasync;
67extern enum nfsiod_state ncl_iodwant[NFS_MAXASYNCDAEMON];
68extern struct nfsmount *ncl_iodmount[NFS_MAXASYNCDAEMON];
69extern int newnfs_directio_enable;
70extern int nfs_keep_dirty_on_error;
71
72int ncl_pbuf_freecnt = -1;	/* start out unlimited */
73
74static struct buf *nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size,
75    struct thread *td);
76static int nfs_directio_write(struct vnode *vp, struct uio *uiop,
77    struct ucred *cred, int ioflag);
78
79/*
80 * Vnode op for VM getpages.
81 */
82int
83ncl_getpages(struct vop_getpages_args *ap)
84{
85	int i, error, nextoff, size, toff, count, npages;
86	struct uio uio;
87	struct iovec iov;
88	vm_offset_t kva;
89	struct buf *bp;
90	struct vnode *vp;
91	struct thread *td;
92	struct ucred *cred;
93	struct nfsmount *nmp;
94	vm_object_t object;
95	vm_page_t *pages;
96	struct nfsnode *np;
97
98	vp = ap->a_vp;
99	np = VTONFS(vp);
100	td = curthread;				/* XXX */
101	cred = curthread->td_ucred;		/* XXX */
102	nmp = VFSTONFS(vp->v_mount);
103	pages = ap->a_m;
104	count = ap->a_count;
105
106	if ((object = vp->v_object) == NULL) {
107		ncl_printf("nfs_getpages: called with non-merged cache vnode??\n");
108		return (VM_PAGER_ERROR);
109	}
110
111	if (newnfs_directio_enable && !newnfs_directio_allow_mmap) {
112		mtx_lock(&np->n_mtx);
113		if ((np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
114			mtx_unlock(&np->n_mtx);
115			ncl_printf("nfs_getpages: called on non-cacheable vnode??\n");
116			return (VM_PAGER_ERROR);
117		} else
118			mtx_unlock(&np->n_mtx);
119	}
120
121	mtx_lock(&nmp->nm_mtx);
122	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
123	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
124		mtx_unlock(&nmp->nm_mtx);
125		/* We'll never get here for v4, because we always have fsinfo */
126		(void)ncl_fsinfo(nmp, vp, cred, td);
127	} else
128		mtx_unlock(&nmp->nm_mtx);
129
130	npages = btoc(count);
131
132	/*
133	 * If the requested page is partially valid, just return it and
134	 * allow the pager to zero-out the blanks.  Partially valid pages
135	 * can only occur at the file EOF.
136	 */
137	VM_OBJECT_LOCK(object);
138	if (pages[ap->a_reqpage]->valid != 0) {
139		for (i = 0; i < npages; ++i) {
140			if (i != ap->a_reqpage) {
141				vm_page_lock(pages[i]);
142				vm_page_free(pages[i]);
143				vm_page_unlock(pages[i]);
144			}
145		}
146		VM_OBJECT_UNLOCK(object);
147		return (0);
148	}
149	VM_OBJECT_UNLOCK(object);
150
151	/*
152	 * We use only the kva address for the buffer, but this is extremely
153	 * convienient and fast.
154	 */
155	bp = getpbuf(&ncl_pbuf_freecnt);
156
157	kva = (vm_offset_t) bp->b_data;
158	pmap_qenter(kva, pages, npages);
159	PCPU_INC(cnt.v_vnodein);
160	PCPU_ADD(cnt.v_vnodepgsin, npages);
161
162	iov.iov_base = (caddr_t) kva;
163	iov.iov_len = count;
164	uio.uio_iov = &iov;
165	uio.uio_iovcnt = 1;
166	uio.uio_offset = IDX_TO_OFF(pages[0]->pindex);
167	uio.uio_resid = count;
168	uio.uio_segflg = UIO_SYSSPACE;
169	uio.uio_rw = UIO_READ;
170	uio.uio_td = td;
171
172	error = ncl_readrpc(vp, &uio, cred);
173	pmap_qremove(kva, npages);
174
175	relpbuf(bp, &ncl_pbuf_freecnt);
176
177	if (error && (uio.uio_resid == count)) {
178		ncl_printf("nfs_getpages: error %d\n", error);
179		VM_OBJECT_LOCK(object);
180		for (i = 0; i < npages; ++i) {
181			if (i != ap->a_reqpage) {
182				vm_page_lock(pages[i]);
183				vm_page_free(pages[i]);
184				vm_page_unlock(pages[i]);
185			}
186		}
187		VM_OBJECT_UNLOCK(object);
188		return (VM_PAGER_ERROR);
189	}
190
191	/*
192	 * Calculate the number of bytes read and validate only that number
193	 * of bytes.  Note that due to pending writes, size may be 0.  This
194	 * does not mean that the remaining data is invalid!
195	 */
196
197	size = count - uio.uio_resid;
198	VM_OBJECT_LOCK(object);
199	for (i = 0, toff = 0; i < npages; i++, toff = nextoff) {
200		vm_page_t m;
201		nextoff = toff + PAGE_SIZE;
202		m = pages[i];
203
204		if (nextoff <= size) {
205			/*
206			 * Read operation filled an entire page
207			 */
208			m->valid = VM_PAGE_BITS_ALL;
209			KASSERT(m->dirty == 0,
210			    ("nfs_getpages: page %p is dirty", m));
211		} else if (size > toff) {
212			/*
213			 * Read operation filled a partial page.
214			 */
215			m->valid = 0;
216			vm_page_set_valid(m, 0, size - toff);
217			KASSERT(m->dirty == 0,
218			    ("nfs_getpages: page %p is dirty", m));
219		} else {
220			/*
221			 * Read operation was short.  If no error
222			 * occured we may have hit a zero-fill
223			 * section.  We leave valid set to 0, and page
224			 * is freed by vm_page_readahead_finish() if
225			 * its index is not equal to requested, or
226			 * page is zeroed and set valid by
227			 * vm_pager_get_pages() for requested page.
228			 */
229			;
230		}
231		if (i != ap->a_reqpage)
232			vm_page_readahead_finish(m);
233	}
234	VM_OBJECT_UNLOCK(object);
235	return (0);
236}
237
238/*
239 * Vnode op for VM putpages.
240 */
241int
242ncl_putpages(struct vop_putpages_args *ap)
243{
244	struct uio uio;
245	struct iovec iov;
246	vm_offset_t kva;
247	struct buf *bp;
248	int iomode, must_commit, i, error, npages, count;
249	off_t offset;
250	int *rtvals;
251	struct vnode *vp;
252	struct thread *td;
253	struct ucred *cred;
254	struct nfsmount *nmp;
255	struct nfsnode *np;
256	vm_page_t *pages;
257
258	vp = ap->a_vp;
259	np = VTONFS(vp);
260	td = curthread;				/* XXX */
261	/* Set the cred to n_writecred for the write rpcs. */
262	if (np->n_writecred != NULL)
263		cred = crhold(np->n_writecred);
264	else
265		cred = crhold(curthread->td_ucred);	/* XXX */
266	nmp = VFSTONFS(vp->v_mount);
267	pages = ap->a_m;
268	count = ap->a_count;
269	rtvals = ap->a_rtvals;
270	npages = btoc(count);
271	offset = IDX_TO_OFF(pages[0]->pindex);
272
273	mtx_lock(&nmp->nm_mtx);
274	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
275	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
276		mtx_unlock(&nmp->nm_mtx);
277		(void)ncl_fsinfo(nmp, vp, cred, td);
278	} else
279		mtx_unlock(&nmp->nm_mtx);
280
281	mtx_lock(&np->n_mtx);
282	if (newnfs_directio_enable && !newnfs_directio_allow_mmap &&
283	    (np->n_flag & NNONCACHE) && (vp->v_type == VREG)) {
284		mtx_unlock(&np->n_mtx);
285		ncl_printf("ncl_putpages: called on noncache-able vnode??\n");
286		mtx_lock(&np->n_mtx);
287	}
288
289	for (i = 0; i < npages; i++)
290		rtvals[i] = VM_PAGER_ERROR;
291
292	/*
293	 * When putting pages, do not extend file past EOF.
294	 */
295	if (offset + count > np->n_size) {
296		count = np->n_size - offset;
297		if (count < 0)
298			count = 0;
299	}
300	mtx_unlock(&np->n_mtx);
301
302	/*
303	 * We use only the kva address for the buffer, but this is extremely
304	 * convienient and fast.
305	 */
306	bp = getpbuf(&ncl_pbuf_freecnt);
307
308	kva = (vm_offset_t) bp->b_data;
309	pmap_qenter(kva, pages, npages);
310	PCPU_INC(cnt.v_vnodeout);
311	PCPU_ADD(cnt.v_vnodepgsout, count);
312
313	iov.iov_base = (caddr_t) kva;
314	iov.iov_len = count;
315	uio.uio_iov = &iov;
316	uio.uio_iovcnt = 1;
317	uio.uio_offset = offset;
318	uio.uio_resid = count;
319	uio.uio_segflg = UIO_SYSSPACE;
320	uio.uio_rw = UIO_WRITE;
321	uio.uio_td = td;
322
323	if ((ap->a_sync & VM_PAGER_PUT_SYNC) == 0)
324	    iomode = NFSWRITE_UNSTABLE;
325	else
326	    iomode = NFSWRITE_FILESYNC;
327
328	error = ncl_writerpc(vp, &uio, cred, &iomode, &must_commit, 0);
329	crfree(cred);
330
331	pmap_qremove(kva, npages);
332	relpbuf(bp, &ncl_pbuf_freecnt);
333
334	if (error == 0 || !nfs_keep_dirty_on_error) {
335		vnode_pager_undirty_pages(pages, rtvals, count - uio.uio_resid);
336		if (must_commit)
337			ncl_clearcommit(vp->v_mount);
338	}
339	return rtvals[0];
340}
341
342/*
343 * For nfs, cache consistency can only be maintained approximately.
344 * Although RFC1094 does not specify the criteria, the following is
345 * believed to be compatible with the reference port.
346 * For nfs:
347 * If the file's modify time on the server has changed since the
348 * last read rpc or you have written to the file,
349 * you may have lost data cache consistency with the
350 * server, so flush all of the file's data out of the cache.
351 * Then force a getattr rpc to ensure that you have up to date
352 * attributes.
353 * NB: This implies that cache data can be read when up to
354 * NFS_ATTRTIMEO seconds out of date. If you find that you need current
355 * attributes this could be forced by setting n_attrstamp to 0 before
356 * the VOP_GETATTR() call.
357 */
358static inline int
359nfs_bioread_check_cons(struct vnode *vp, struct thread *td, struct ucred *cred)
360{
361	int error = 0;
362	struct vattr vattr;
363	struct nfsnode *np = VTONFS(vp);
364	int old_lock;
365
366	/*
367	 * Grab the exclusive lock before checking whether the cache is
368	 * consistent.
369	 * XXX - We can make this cheaper later (by acquiring cheaper locks).
370	 * But for now, this suffices.
371	 */
372	old_lock = ncl_upgrade_vnlock(vp);
373	if (vp->v_iflag & VI_DOOMED) {
374		ncl_downgrade_vnlock(vp, old_lock);
375		return (EBADF);
376	}
377
378	mtx_lock(&np->n_mtx);
379	if (np->n_flag & NMODIFIED) {
380		mtx_unlock(&np->n_mtx);
381		if (vp->v_type != VREG) {
382			if (vp->v_type != VDIR)
383				panic("nfs: bioread, not dir");
384			ncl_invaldir(vp);
385			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
386			if (error)
387				goto out;
388		}
389		np->n_attrstamp = 0;
390		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
391		error = VOP_GETATTR(vp, &vattr, cred);
392		if (error)
393			goto out;
394		mtx_lock(&np->n_mtx);
395		np->n_mtime = vattr.va_mtime;
396		mtx_unlock(&np->n_mtx);
397	} else {
398		mtx_unlock(&np->n_mtx);
399		error = VOP_GETATTR(vp, &vattr, cred);
400		if (error)
401			return (error);
402		mtx_lock(&np->n_mtx);
403		if ((np->n_flag & NSIZECHANGED)
404		    || (NFS_TIMESPEC_COMPARE(&np->n_mtime, &vattr.va_mtime))) {
405			mtx_unlock(&np->n_mtx);
406			if (vp->v_type == VDIR)
407				ncl_invaldir(vp);
408			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
409			if (error)
410				goto out;
411			mtx_lock(&np->n_mtx);
412			np->n_mtime = vattr.va_mtime;
413			np->n_flag &= ~NSIZECHANGED;
414		}
415		mtx_unlock(&np->n_mtx);
416	}
417out:
418	ncl_downgrade_vnlock(vp, old_lock);
419	return error;
420}
421
422/*
423 * Vnode op for read using bio
424 */
425int
426ncl_bioread(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *cred)
427{
428	struct nfsnode *np = VTONFS(vp);
429	int biosize, i;
430	struct buf *bp, *rabp;
431	struct thread *td;
432	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
433	daddr_t lbn, rabn;
434	int bcount;
435	int seqcount;
436	int nra, error = 0, n = 0, on = 0;
437	off_t tmp_off;
438
439	KASSERT(uio->uio_rw == UIO_READ, ("ncl_read mode"));
440	if (uio->uio_resid == 0)
441		return (0);
442	if (uio->uio_offset < 0)	/* XXX VDIR cookies can be negative */
443		return (EINVAL);
444	td = uio->uio_td;
445
446	mtx_lock(&nmp->nm_mtx);
447	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
448	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
449		mtx_unlock(&nmp->nm_mtx);
450		(void)ncl_fsinfo(nmp, vp, cred, td);
451		mtx_lock(&nmp->nm_mtx);
452	}
453	if (nmp->nm_rsize == 0 || nmp->nm_readdirsize == 0)
454		(void) newnfs_iosize(nmp);
455
456	tmp_off = uio->uio_offset + uio->uio_resid;
457	if (vp->v_type != VDIR &&
458	    (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)) {
459		mtx_unlock(&nmp->nm_mtx);
460		return (EFBIG);
461	}
462	mtx_unlock(&nmp->nm_mtx);
463
464	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && (vp->v_type == VREG))
465		/* No caching/ no readaheads. Just read data into the user buffer */
466		return ncl_readrpc(vp, uio, cred);
467
468	biosize = vp->v_bufobj.bo_bsize;
469	seqcount = (int)((off_t)(ioflag >> IO_SEQSHIFT) * biosize / BKVASIZE);
470
471	error = nfs_bioread_check_cons(vp, td, cred);
472	if (error)
473		return error;
474
475	do {
476	    u_quad_t nsize;
477
478	    mtx_lock(&np->n_mtx);
479	    nsize = np->n_size;
480	    mtx_unlock(&np->n_mtx);
481
482	    switch (vp->v_type) {
483	    case VREG:
484		NFSINCRGLOBAL(newnfsstats.biocache_reads);
485		lbn = uio->uio_offset / biosize;
486		on = uio->uio_offset & (biosize - 1);
487
488		/*
489		 * Start the read ahead(s), as required.
490		 */
491		if (nmp->nm_readahead > 0) {
492		    for (nra = 0; nra < nmp->nm_readahead && nra < seqcount &&
493			(off_t)(lbn + 1 + nra) * biosize < nsize; nra++) {
494			rabn = lbn + 1 + nra;
495			if (incore(&vp->v_bufobj, rabn) == NULL) {
496			    rabp = nfs_getcacheblk(vp, rabn, biosize, td);
497			    if (!rabp) {
498				error = newnfs_sigintr(nmp, td);
499				return (error ? error : EINTR);
500			    }
501			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
502				rabp->b_flags |= B_ASYNC;
503				rabp->b_iocmd = BIO_READ;
504				vfs_busy_pages(rabp, 0);
505				if (ncl_asyncio(nmp, rabp, cred, td)) {
506				    rabp->b_flags |= B_INVAL;
507				    rabp->b_ioflags |= BIO_ERROR;
508				    vfs_unbusy_pages(rabp);
509				    brelse(rabp);
510				    break;
511				}
512			    } else {
513				brelse(rabp);
514			    }
515			}
516		    }
517		}
518
519		/* Note that bcount is *not* DEV_BSIZE aligned. */
520		bcount = biosize;
521		if ((off_t)lbn * biosize >= nsize) {
522			bcount = 0;
523		} else if ((off_t)(lbn + 1) * biosize > nsize) {
524			bcount = nsize - (off_t)lbn * biosize;
525		}
526		bp = nfs_getcacheblk(vp, lbn, bcount, td);
527
528		if (!bp) {
529			error = newnfs_sigintr(nmp, td);
530			return (error ? error : EINTR);
531		}
532
533		/*
534		 * If B_CACHE is not set, we must issue the read.  If this
535		 * fails, we return an error.
536		 */
537
538		if ((bp->b_flags & B_CACHE) == 0) {
539		    bp->b_iocmd = BIO_READ;
540		    vfs_busy_pages(bp, 0);
541		    error = ncl_doio(vp, bp, cred, td, 0);
542		    if (error) {
543			brelse(bp);
544			return (error);
545		    }
546		}
547
548		/*
549		 * on is the offset into the current bp.  Figure out how many
550		 * bytes we can copy out of the bp.  Note that bcount is
551		 * NOT DEV_BSIZE aligned.
552		 *
553		 * Then figure out how many bytes we can copy into the uio.
554		 */
555
556		n = 0;
557		if (on < bcount)
558			n = MIN((unsigned)(bcount - on), uio->uio_resid);
559		break;
560	    case VLNK:
561		NFSINCRGLOBAL(newnfsstats.biocache_readlinks);
562		bp = nfs_getcacheblk(vp, (daddr_t)0, NFS_MAXPATHLEN, td);
563		if (!bp) {
564			error = newnfs_sigintr(nmp, td);
565			return (error ? error : EINTR);
566		}
567		if ((bp->b_flags & B_CACHE) == 0) {
568		    bp->b_iocmd = BIO_READ;
569		    vfs_busy_pages(bp, 0);
570		    error = ncl_doio(vp, bp, cred, td, 0);
571		    if (error) {
572			bp->b_ioflags |= BIO_ERROR;
573			brelse(bp);
574			return (error);
575		    }
576		}
577		n = MIN(uio->uio_resid, NFS_MAXPATHLEN - bp->b_resid);
578		on = 0;
579		break;
580	    case VDIR:
581		NFSINCRGLOBAL(newnfsstats.biocache_readdirs);
582		if (np->n_direofoffset
583		    && uio->uio_offset >= np->n_direofoffset) {
584		    return (0);
585		}
586		lbn = (uoff_t)uio->uio_offset / NFS_DIRBLKSIZ;
587		on = uio->uio_offset & (NFS_DIRBLKSIZ - 1);
588		bp = nfs_getcacheblk(vp, lbn, NFS_DIRBLKSIZ, td);
589		if (!bp) {
590		    error = newnfs_sigintr(nmp, td);
591		    return (error ? error : EINTR);
592		}
593		if ((bp->b_flags & B_CACHE) == 0) {
594		    bp->b_iocmd = BIO_READ;
595		    vfs_busy_pages(bp, 0);
596		    error = ncl_doio(vp, bp, cred, td, 0);
597		    if (error) {
598			    brelse(bp);
599		    }
600		    while (error == NFSERR_BAD_COOKIE) {
601			ncl_invaldir(vp);
602			error = ncl_vinvalbuf(vp, 0, td, 1);
603			/*
604			 * Yuck! The directory has been modified on the
605			 * server. The only way to get the block is by
606			 * reading from the beginning to get all the
607			 * offset cookies.
608			 *
609			 * Leave the last bp intact unless there is an error.
610			 * Loop back up to the while if the error is another
611			 * NFSERR_BAD_COOKIE (double yuch!).
612			 */
613			for (i = 0; i <= lbn && !error; i++) {
614			    if (np->n_direofoffset
615				&& (i * NFS_DIRBLKSIZ) >= np->n_direofoffset)
616				    return (0);
617			    bp = nfs_getcacheblk(vp, i, NFS_DIRBLKSIZ, td);
618			    if (!bp) {
619				error = newnfs_sigintr(nmp, td);
620				return (error ? error : EINTR);
621			    }
622			    if ((bp->b_flags & B_CACHE) == 0) {
623				    bp->b_iocmd = BIO_READ;
624				    vfs_busy_pages(bp, 0);
625				    error = ncl_doio(vp, bp, cred, td, 0);
626				    /*
627				     * no error + B_INVAL == directory EOF,
628				     * use the block.
629				     */
630				    if (error == 0 && (bp->b_flags & B_INVAL))
631					    break;
632			    }
633			    /*
634			     * An error will throw away the block and the
635			     * for loop will break out.  If no error and this
636			     * is not the block we want, we throw away the
637			     * block and go for the next one via the for loop.
638			     */
639			    if (error || i < lbn)
640				    brelse(bp);
641			}
642		    }
643		    /*
644		     * The above while is repeated if we hit another cookie
645		     * error.  If we hit an error and it wasn't a cookie error,
646		     * we give up.
647		     */
648		    if (error)
649			    return (error);
650		}
651
652		/*
653		 * If not eof and read aheads are enabled, start one.
654		 * (You need the current block first, so that you have the
655		 *  directory offset cookie of the next block.)
656		 */
657		if (nmp->nm_readahead > 0 &&
658		    (bp->b_flags & B_INVAL) == 0 &&
659		    (np->n_direofoffset == 0 ||
660		    (lbn + 1) * NFS_DIRBLKSIZ < np->n_direofoffset) &&
661		    incore(&vp->v_bufobj, lbn + 1) == NULL) {
662			rabp = nfs_getcacheblk(vp, lbn + 1, NFS_DIRBLKSIZ, td);
663			if (rabp) {
664			    if ((rabp->b_flags & (B_CACHE|B_DELWRI)) == 0) {
665				rabp->b_flags |= B_ASYNC;
666				rabp->b_iocmd = BIO_READ;
667				vfs_busy_pages(rabp, 0);
668				if (ncl_asyncio(nmp, rabp, cred, td)) {
669				    rabp->b_flags |= B_INVAL;
670				    rabp->b_ioflags |= BIO_ERROR;
671				    vfs_unbusy_pages(rabp);
672				    brelse(rabp);
673				}
674			    } else {
675				brelse(rabp);
676			    }
677			}
678		}
679		/*
680		 * Unlike VREG files, whos buffer size ( bp->b_bcount ) is
681		 * chopped for the EOF condition, we cannot tell how large
682		 * NFS directories are going to be until we hit EOF.  So
683		 * an NFS directory buffer is *not* chopped to its EOF.  Now,
684		 * it just so happens that b_resid will effectively chop it
685		 * to EOF.  *BUT* this information is lost if the buffer goes
686		 * away and is reconstituted into a B_CACHE state ( due to
687		 * being VMIO ) later.  So we keep track of the directory eof
688		 * in np->n_direofoffset and chop it off as an extra step
689		 * right here.
690		 */
691		n = lmin(uio->uio_resid, NFS_DIRBLKSIZ - bp->b_resid - on);
692		if (np->n_direofoffset && n > np->n_direofoffset - uio->uio_offset)
693			n = np->n_direofoffset - uio->uio_offset;
694		break;
695	    default:
696		ncl_printf(" ncl_bioread: type %x unexpected\n", vp->v_type);
697		bp = NULL;
698		break;
699	    };
700
701	    if (n > 0) {
702		    error = vn_io_fault_uiomove(bp->b_data + on, (int)n, uio);
703	    }
704	    if (vp->v_type == VLNK)
705		n = 0;
706	    if (bp != NULL)
707		brelse(bp);
708	} while (error == 0 && uio->uio_resid > 0 && n > 0);
709	return (error);
710}
711
712/*
713 * The NFS write path cannot handle iovecs with len > 1. So we need to
714 * break up iovecs accordingly (restricting them to wsize).
715 * For the SYNC case, we can do this with 1 copy (user buffer -> mbuf).
716 * For the ASYNC case, 2 copies are needed. The first a copy from the
717 * user buffer to a staging buffer and then a second copy from the staging
718 * buffer to mbufs. This can be optimized by copying from the user buffer
719 * directly into mbufs and passing the chain down, but that requires a
720 * fair amount of re-working of the relevant codepaths (and can be done
721 * later).
722 */
723static int
724nfs_directio_write(vp, uiop, cred, ioflag)
725	struct vnode *vp;
726	struct uio *uiop;
727	struct ucred *cred;
728	int ioflag;
729{
730	int error;
731	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
732	struct thread *td = uiop->uio_td;
733	int size;
734	int wsize;
735
736	mtx_lock(&nmp->nm_mtx);
737	wsize = nmp->nm_wsize;
738	mtx_unlock(&nmp->nm_mtx);
739	if (ioflag & IO_SYNC) {
740		int iomode, must_commit;
741		struct uio uio;
742		struct iovec iov;
743do_sync:
744		while (uiop->uio_resid > 0) {
745			size = MIN(uiop->uio_resid, wsize);
746			size = MIN(uiop->uio_iov->iov_len, size);
747			iov.iov_base = uiop->uio_iov->iov_base;
748			iov.iov_len = size;
749			uio.uio_iov = &iov;
750			uio.uio_iovcnt = 1;
751			uio.uio_offset = uiop->uio_offset;
752			uio.uio_resid = size;
753			uio.uio_segflg = UIO_USERSPACE;
754			uio.uio_rw = UIO_WRITE;
755			uio.uio_td = td;
756			iomode = NFSWRITE_FILESYNC;
757			error = ncl_writerpc(vp, &uio, cred, &iomode,
758			    &must_commit, 0);
759			KASSERT((must_commit == 0),
760				("ncl_directio_write: Did not commit write"));
761			if (error)
762				return (error);
763			uiop->uio_offset += size;
764			uiop->uio_resid -= size;
765			if (uiop->uio_iov->iov_len <= size) {
766				uiop->uio_iovcnt--;
767				uiop->uio_iov++;
768			} else {
769				uiop->uio_iov->iov_base =
770					(char *)uiop->uio_iov->iov_base + size;
771				uiop->uio_iov->iov_len -= size;
772			}
773		}
774	} else {
775		struct uio *t_uio;
776		struct iovec *t_iov;
777		struct buf *bp;
778
779		/*
780		 * Break up the write into blocksize chunks and hand these
781		 * over to nfsiod's for write back.
782		 * Unfortunately, this incurs a copy of the data. Since
783		 * the user could modify the buffer before the write is
784		 * initiated.
785		 *
786		 * The obvious optimization here is that one of the 2 copies
787		 * in the async write path can be eliminated by copying the
788		 * data here directly into mbufs and passing the mbuf chain
789		 * down. But that will require a fair amount of re-working
790		 * of the code and can be done if there's enough interest
791		 * in NFS directio access.
792		 */
793		while (uiop->uio_resid > 0) {
794			size = MIN(uiop->uio_resid, wsize);
795			size = MIN(uiop->uio_iov->iov_len, size);
796			bp = getpbuf(&ncl_pbuf_freecnt);
797			t_uio = malloc(sizeof(struct uio), M_NFSDIRECTIO, M_WAITOK);
798			t_iov = malloc(sizeof(struct iovec), M_NFSDIRECTIO, M_WAITOK);
799			t_iov->iov_base = malloc(size, M_NFSDIRECTIO, M_WAITOK);
800			t_iov->iov_len = size;
801			t_uio->uio_iov = t_iov;
802			t_uio->uio_iovcnt = 1;
803			t_uio->uio_offset = uiop->uio_offset;
804			t_uio->uio_resid = size;
805			t_uio->uio_segflg = UIO_SYSSPACE;
806			t_uio->uio_rw = UIO_WRITE;
807			t_uio->uio_td = td;
808			KASSERT(uiop->uio_segflg == UIO_USERSPACE ||
809			    uiop->uio_segflg == UIO_SYSSPACE,
810			    ("nfs_directio_write: Bad uio_segflg"));
811			if (uiop->uio_segflg == UIO_USERSPACE) {
812				error = copyin(uiop->uio_iov->iov_base,
813				    t_iov->iov_base, size);
814				if (error != 0)
815					goto err_free;
816			} else
817				/*
818				 * UIO_SYSSPACE may never happen, but handle
819				 * it just in case it does.
820				 */
821				bcopy(uiop->uio_iov->iov_base, t_iov->iov_base,
822				    size);
823			bp->b_flags |= B_DIRECT;
824			bp->b_iocmd = BIO_WRITE;
825			if (cred != NOCRED) {
826				crhold(cred);
827				bp->b_wcred = cred;
828			} else
829				bp->b_wcred = NOCRED;
830			bp->b_caller1 = (void *)t_uio;
831			bp->b_vp = vp;
832			error = ncl_asyncio(nmp, bp, NOCRED, td);
833err_free:
834			if (error) {
835				free(t_iov->iov_base, M_NFSDIRECTIO);
836				free(t_iov, M_NFSDIRECTIO);
837				free(t_uio, M_NFSDIRECTIO);
838				bp->b_vp = NULL;
839				relpbuf(bp, &ncl_pbuf_freecnt);
840				if (error == EINTR)
841					return (error);
842				goto do_sync;
843			}
844			uiop->uio_offset += size;
845			uiop->uio_resid -= size;
846			if (uiop->uio_iov->iov_len <= size) {
847				uiop->uio_iovcnt--;
848				uiop->uio_iov++;
849			} else {
850				uiop->uio_iov->iov_base =
851					(char *)uiop->uio_iov->iov_base + size;
852				uiop->uio_iov->iov_len -= size;
853			}
854		}
855	}
856	return (0);
857}
858
859/*
860 * Vnode op for write using bio
861 */
862int
863ncl_write(struct vop_write_args *ap)
864{
865	int biosize;
866	struct uio *uio = ap->a_uio;
867	struct thread *td = uio->uio_td;
868	struct vnode *vp = ap->a_vp;
869	struct nfsnode *np = VTONFS(vp);
870	struct ucred *cred = ap->a_cred;
871	int ioflag = ap->a_ioflag;
872	struct buf *bp;
873	struct vattr vattr;
874	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
875	daddr_t lbn;
876	int bcount, noncontig_write, obcount;
877	int bp_cached, n, on, error = 0, error1;
878	size_t orig_resid, local_resid;
879	off_t orig_size, tmp_off;
880
881	KASSERT(uio->uio_rw == UIO_WRITE, ("ncl_write mode"));
882	KASSERT(uio->uio_segflg != UIO_USERSPACE || uio->uio_td == curthread,
883	    ("ncl_write proc"));
884	if (vp->v_type != VREG)
885		return (EIO);
886	mtx_lock(&np->n_mtx);
887	if (np->n_flag & NWRITEERR) {
888		np->n_flag &= ~NWRITEERR;
889		mtx_unlock(&np->n_mtx);
890		return (np->n_error);
891	} else
892		mtx_unlock(&np->n_mtx);
893	mtx_lock(&nmp->nm_mtx);
894	if ((nmp->nm_flag & NFSMNT_NFSV3) != 0 &&
895	    (nmp->nm_state & NFSSTA_GOTFSINFO) == 0) {
896		mtx_unlock(&nmp->nm_mtx);
897		(void)ncl_fsinfo(nmp, vp, cred, td);
898		mtx_lock(&nmp->nm_mtx);
899	}
900	if (nmp->nm_wsize == 0)
901		(void) newnfs_iosize(nmp);
902	mtx_unlock(&nmp->nm_mtx);
903
904	/*
905	 * Synchronously flush pending buffers if we are in synchronous
906	 * mode or if we are appending.
907	 */
908	if (ioflag & (IO_APPEND | IO_SYNC)) {
909		mtx_lock(&np->n_mtx);
910		if (np->n_flag & NMODIFIED) {
911			mtx_unlock(&np->n_mtx);
912#ifdef notyet /* Needs matching nonblock semantics elsewhere, too. */
913			/*
914			 * Require non-blocking, synchronous writes to
915			 * dirty files to inform the program it needs
916			 * to fsync(2) explicitly.
917			 */
918			if (ioflag & IO_NDELAY)
919				return (EAGAIN);
920#endif
921flush_and_restart:
922			np->n_attrstamp = 0;
923			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
924			error = ncl_vinvalbuf(vp, V_SAVE, td, 1);
925			if (error)
926				return (error);
927		} else
928			mtx_unlock(&np->n_mtx);
929	}
930
931	orig_resid = uio->uio_resid;
932	mtx_lock(&np->n_mtx);
933	orig_size = np->n_size;
934	mtx_unlock(&np->n_mtx);
935
936	/*
937	 * If IO_APPEND then load uio_offset.  We restart here if we cannot
938	 * get the append lock.
939	 */
940	if (ioflag & IO_APPEND) {
941		np->n_attrstamp = 0;
942		KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
943		error = VOP_GETATTR(vp, &vattr, cred);
944		if (error)
945			return (error);
946		mtx_lock(&np->n_mtx);
947		uio->uio_offset = np->n_size;
948		mtx_unlock(&np->n_mtx);
949	}
950
951	if (uio->uio_offset < 0)
952		return (EINVAL);
953	tmp_off = uio->uio_offset + uio->uio_resid;
954	if (tmp_off > nmp->nm_maxfilesize || tmp_off < uio->uio_offset)
955		return (EFBIG);
956	if (uio->uio_resid == 0)
957		return (0);
958
959	if (newnfs_directio_enable && (ioflag & IO_DIRECT) && vp->v_type == VREG)
960		return nfs_directio_write(vp, uio, cred, ioflag);
961
962	/*
963	 * Maybe this should be above the vnode op call, but so long as
964	 * file servers have no limits, i don't think it matters
965	 */
966	if (vn_rlimit_fsize(vp, uio, td))
967		return (EFBIG);
968
969	biosize = vp->v_bufobj.bo_bsize;
970	/*
971	 * Find all of this file's B_NEEDCOMMIT buffers.  If our writes
972	 * would exceed the local maximum per-file write commit size when
973	 * combined with those, we must decide whether to flush,
974	 * go synchronous, or return error.  We don't bother checking
975	 * IO_UNIT -- we just make all writes atomic anyway, as there's
976	 * no point optimizing for something that really won't ever happen.
977	 */
978	if (!(ioflag & IO_SYNC)) {
979		int nflag;
980
981		mtx_lock(&np->n_mtx);
982		nflag = np->n_flag;
983		mtx_unlock(&np->n_mtx);
984		int needrestart = 0;
985		if (nmp->nm_wcommitsize < uio->uio_resid) {
986			/*
987			 * If this request could not possibly be completed
988			 * without exceeding the maximum outstanding write
989			 * commit size, see if we can convert it into a
990			 * synchronous write operation.
991			 */
992			if (ioflag & IO_NDELAY)
993				return (EAGAIN);
994			ioflag |= IO_SYNC;
995			if (nflag & NMODIFIED)
996				needrestart = 1;
997		} else if (nflag & NMODIFIED) {
998			int wouldcommit = 0;
999			BO_LOCK(&vp->v_bufobj);
1000			if (vp->v_bufobj.bo_dirty.bv_cnt != 0) {
1001				TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd,
1002				    b_bobufs) {
1003					if (bp->b_flags & B_NEEDCOMMIT)
1004						wouldcommit += bp->b_bcount;
1005				}
1006			}
1007			BO_UNLOCK(&vp->v_bufobj);
1008			/*
1009			 * Since we're not operating synchronously and
1010			 * bypassing the buffer cache, we are in a commit
1011			 * and holding all of these buffers whether
1012			 * transmitted or not.  If not limited, this
1013			 * will lead to the buffer cache deadlocking,
1014			 * as no one else can flush our uncommitted buffers.
1015			 */
1016			wouldcommit += uio->uio_resid;
1017			/*
1018			 * If we would initially exceed the maximum
1019			 * outstanding write commit size, flush and restart.
1020			 */
1021			if (wouldcommit > nmp->nm_wcommitsize)
1022				needrestart = 1;
1023		}
1024		if (needrestart)
1025			goto flush_and_restart;
1026	}
1027
1028	do {
1029		NFSINCRGLOBAL(newnfsstats.biocache_writes);
1030		lbn = uio->uio_offset / biosize;
1031		on = uio->uio_offset & (biosize-1);
1032		n = MIN((unsigned)(biosize - on), uio->uio_resid);
1033again:
1034		/*
1035		 * Handle direct append and file extension cases, calculate
1036		 * unaligned buffer size.
1037		 */
1038		mtx_lock(&np->n_mtx);
1039		if ((np->n_flag & NHASBEENLOCKED) == 0 &&
1040		    (nmp->nm_flag & NFSMNT_NONCONTIGWR) != 0)
1041			noncontig_write = 1;
1042		else
1043			noncontig_write = 0;
1044		if ((uio->uio_offset == np->n_size ||
1045		    (noncontig_write != 0 &&
1046		    lbn == (np->n_size / biosize) &&
1047		    uio->uio_offset + n > np->n_size)) && n) {
1048			mtx_unlock(&np->n_mtx);
1049			/*
1050			 * Get the buffer (in its pre-append state to maintain
1051			 * B_CACHE if it was previously set).  Resize the
1052			 * nfsnode after we have locked the buffer to prevent
1053			 * readers from reading garbage.
1054			 */
1055			obcount = np->n_size - (lbn * biosize);
1056			bp = nfs_getcacheblk(vp, lbn, obcount, td);
1057
1058			if (bp != NULL) {
1059				long save;
1060
1061				mtx_lock(&np->n_mtx);
1062				np->n_size = uio->uio_offset + n;
1063				np->n_flag |= NMODIFIED;
1064				vnode_pager_setsize(vp, np->n_size);
1065				mtx_unlock(&np->n_mtx);
1066
1067				save = bp->b_flags & B_CACHE;
1068				bcount = on + n;
1069				allocbuf(bp, bcount);
1070				bp->b_flags |= save;
1071				if (noncontig_write != 0 && on > obcount)
1072					vfs_bio_bzero_buf(bp, obcount, on -
1073					    obcount);
1074			}
1075		} else {
1076			/*
1077			 * Obtain the locked cache block first, and then
1078			 * adjust the file's size as appropriate.
1079			 */
1080			bcount = on + n;
1081			if ((off_t)lbn * biosize + bcount < np->n_size) {
1082				if ((off_t)(lbn + 1) * biosize < np->n_size)
1083					bcount = biosize;
1084				else
1085					bcount = np->n_size - (off_t)lbn * biosize;
1086			}
1087			mtx_unlock(&np->n_mtx);
1088			bp = nfs_getcacheblk(vp, lbn, bcount, td);
1089			mtx_lock(&np->n_mtx);
1090			if (uio->uio_offset + n > np->n_size) {
1091				np->n_size = uio->uio_offset + n;
1092				np->n_flag |= NMODIFIED;
1093				vnode_pager_setsize(vp, np->n_size);
1094			}
1095			mtx_unlock(&np->n_mtx);
1096		}
1097
1098		if (!bp) {
1099			error = newnfs_sigintr(nmp, td);
1100			if (!error)
1101				error = EINTR;
1102			break;
1103		}
1104
1105		/*
1106		 * Issue a READ if B_CACHE is not set.  In special-append
1107		 * mode, B_CACHE is based on the buffer prior to the write
1108		 * op and is typically set, avoiding the read.  If a read
1109		 * is required in special append mode, the server will
1110		 * probably send us a short-read since we extended the file
1111		 * on our end, resulting in b_resid == 0 and, thusly,
1112		 * B_CACHE getting set.
1113		 *
1114		 * We can also avoid issuing the read if the write covers
1115		 * the entire buffer.  We have to make sure the buffer state
1116		 * is reasonable in this case since we will not be initiating
1117		 * I/O.  See the comments in kern/vfs_bio.c's getblk() for
1118		 * more information.
1119		 *
1120		 * B_CACHE may also be set due to the buffer being cached
1121		 * normally.
1122		 */
1123
1124		bp_cached = 1;
1125		if (on == 0 && n == bcount) {
1126			if ((bp->b_flags & B_CACHE) == 0)
1127				bp_cached = 0;
1128			bp->b_flags |= B_CACHE;
1129			bp->b_flags &= ~B_INVAL;
1130			bp->b_ioflags &= ~BIO_ERROR;
1131		}
1132
1133		if ((bp->b_flags & B_CACHE) == 0) {
1134			bp->b_iocmd = BIO_READ;
1135			vfs_busy_pages(bp, 0);
1136			error = ncl_doio(vp, bp, cred, td, 0);
1137			if (error) {
1138				brelse(bp);
1139				break;
1140			}
1141		}
1142		if (bp->b_wcred == NOCRED)
1143			bp->b_wcred = crhold(cred);
1144		mtx_lock(&np->n_mtx);
1145		np->n_flag |= NMODIFIED;
1146		mtx_unlock(&np->n_mtx);
1147
1148		/*
1149		 * If dirtyend exceeds file size, chop it down.  This should
1150		 * not normally occur but there is an append race where it
1151		 * might occur XXX, so we log it.
1152		 *
1153		 * If the chopping creates a reverse-indexed or degenerate
1154		 * situation with dirtyoff/end, we 0 both of them.
1155		 */
1156
1157		if (bp->b_dirtyend > bcount) {
1158			ncl_printf("NFS append race @%lx:%d\n",
1159			    (long)bp->b_blkno * DEV_BSIZE,
1160			    bp->b_dirtyend - bcount);
1161			bp->b_dirtyend = bcount;
1162		}
1163
1164		if (bp->b_dirtyoff >= bp->b_dirtyend)
1165			bp->b_dirtyoff = bp->b_dirtyend = 0;
1166
1167		/*
1168		 * If the new write will leave a contiguous dirty
1169		 * area, just update the b_dirtyoff and b_dirtyend,
1170		 * otherwise force a write rpc of the old dirty area.
1171		 *
1172		 * If there has been a file lock applied to this file
1173		 * or vfs.nfs.old_noncontig_writing is set, do the following:
1174		 * While it is possible to merge discontiguous writes due to
1175		 * our having a B_CACHE buffer ( and thus valid read data
1176		 * for the hole), we don't because it could lead to
1177		 * significant cache coherency problems with multiple clients,
1178		 * especially if locking is implemented later on.
1179		 *
1180		 * If vfs.nfs.old_noncontig_writing is not set and there has
1181		 * not been file locking done on this file:
1182		 * Relax coherency a bit for the sake of performance and
1183		 * expand the current dirty region to contain the new
1184		 * write even if it means we mark some non-dirty data as
1185		 * dirty.
1186		 */
1187
1188		if (noncontig_write == 0 && bp->b_dirtyend > 0 &&
1189		    (on > bp->b_dirtyend || (on + n) < bp->b_dirtyoff)) {
1190			if (bwrite(bp) == EINTR) {
1191				error = EINTR;
1192				break;
1193			}
1194			goto again;
1195		}
1196
1197		local_resid = uio->uio_resid;
1198		error = vn_io_fault_uiomove((char *)bp->b_data + on, n, uio);
1199
1200		if (error != 0 && !bp_cached) {
1201			/*
1202			 * This block has no other content then what
1203			 * possibly was written by the faulty uiomove.
1204			 * Release it, forgetting the data pages, to
1205			 * prevent the leak of uninitialized data to
1206			 * usermode.
1207			 */
1208			bp->b_ioflags |= BIO_ERROR;
1209			brelse(bp);
1210			uio->uio_offset -= local_resid - uio->uio_resid;
1211			uio->uio_resid = local_resid;
1212			break;
1213		}
1214
1215		/*
1216		 * Since this block is being modified, it must be written
1217		 * again and not just committed.  Since write clustering does
1218		 * not work for the stage 1 data write, only the stage 2
1219		 * commit rpc, we have to clear B_CLUSTEROK as well.
1220		 */
1221		bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1222
1223		/*
1224		 * Get the partial update on the progress made from
1225		 * uiomove, if an error occured.
1226		 */
1227		if (error != 0)
1228			n = local_resid - uio->uio_resid;
1229
1230		/*
1231		 * Only update dirtyoff/dirtyend if not a degenerate
1232		 * condition.
1233		 */
1234		if (n > 0) {
1235			if (bp->b_dirtyend > 0) {
1236				bp->b_dirtyoff = min(on, bp->b_dirtyoff);
1237				bp->b_dirtyend = max((on + n), bp->b_dirtyend);
1238			} else {
1239				bp->b_dirtyoff = on;
1240				bp->b_dirtyend = on + n;
1241			}
1242			vfs_bio_set_valid(bp, on, n);
1243		}
1244
1245		/*
1246		 * If IO_SYNC do bwrite().
1247		 *
1248		 * IO_INVAL appears to be unused.  The idea appears to be
1249		 * to turn off caching in this case.  Very odd.  XXX
1250		 */
1251		if ((ioflag & IO_SYNC)) {
1252			if (ioflag & IO_INVAL)
1253				bp->b_flags |= B_NOCACHE;
1254			error1 = bwrite(bp);
1255			if (error1 != 0) {
1256				if (error == 0)
1257					error = error1;
1258				break;
1259			}
1260		} else if ((n + on) == biosize) {
1261			bp->b_flags |= B_ASYNC;
1262			(void) ncl_writebp(bp, 0, NULL);
1263		} else {
1264			bdwrite(bp);
1265		}
1266
1267		if (error != 0)
1268			break;
1269	} while (uio->uio_resid > 0 && n > 0);
1270
1271	if (error != 0) {
1272		if (ioflag & IO_UNIT) {
1273			VATTR_NULL(&vattr);
1274			vattr.va_size = orig_size;
1275			/* IO_SYNC is handled implicitely */
1276			(void)VOP_SETATTR(vp, &vattr, cred);
1277			uio->uio_offset -= orig_resid - uio->uio_resid;
1278			uio->uio_resid = orig_resid;
1279		}
1280	}
1281
1282	return (error);
1283}
1284
1285/*
1286 * Get an nfs cache block.
1287 *
1288 * Allocate a new one if the block isn't currently in the cache
1289 * and return the block marked busy. If the calling process is
1290 * interrupted by a signal for an interruptible mount point, return
1291 * NULL.
1292 *
1293 * The caller must carefully deal with the possible B_INVAL state of
1294 * the buffer.  ncl_doio() clears B_INVAL (and ncl_asyncio() clears it
1295 * indirectly), so synchronous reads can be issued without worrying about
1296 * the B_INVAL state.  We have to be a little more careful when dealing
1297 * with writes (see comments in nfs_write()) when extending a file past
1298 * its EOF.
1299 */
1300static struct buf *
1301nfs_getcacheblk(struct vnode *vp, daddr_t bn, int size, struct thread *td)
1302{
1303	struct buf *bp;
1304	struct mount *mp;
1305	struct nfsmount *nmp;
1306
1307	mp = vp->v_mount;
1308	nmp = VFSTONFS(mp);
1309
1310	if (nmp->nm_flag & NFSMNT_INT) {
1311		sigset_t oldset;
1312
1313		newnfs_set_sigmask(td, &oldset);
1314		bp = getblk(vp, bn, size, NFS_PCATCH, 0, 0);
1315		newnfs_restore_sigmask(td, &oldset);
1316		while (bp == NULL) {
1317			if (newnfs_sigintr(nmp, td))
1318				return (NULL);
1319			bp = getblk(vp, bn, size, 0, 2 * hz, 0);
1320		}
1321	} else {
1322		bp = getblk(vp, bn, size, 0, 0, 0);
1323	}
1324
1325	if (vp->v_type == VREG)
1326		bp->b_blkno = bn * (vp->v_bufobj.bo_bsize / DEV_BSIZE);
1327	return (bp);
1328}
1329
1330/*
1331 * Flush and invalidate all dirty buffers. If another process is already
1332 * doing the flush, just wait for completion.
1333 */
1334int
1335ncl_vinvalbuf(struct vnode *vp, int flags, struct thread *td, int intrflg)
1336{
1337	struct nfsnode *np = VTONFS(vp);
1338	struct nfsmount *nmp = VFSTONFS(vp->v_mount);
1339	int error = 0, slpflag, slptimeo;
1340	int old_lock = 0;
1341
1342	ASSERT_VOP_LOCKED(vp, "ncl_vinvalbuf");
1343
1344	if ((nmp->nm_flag & NFSMNT_INT) == 0)
1345		intrflg = 0;
1346	if ((nmp->nm_mountp->mnt_kern_flag & MNTK_UNMOUNTF))
1347		intrflg = 1;
1348	if (intrflg) {
1349		slpflag = NFS_PCATCH;
1350		slptimeo = 2 * hz;
1351	} else {
1352		slpflag = 0;
1353		slptimeo = 0;
1354	}
1355
1356	old_lock = ncl_upgrade_vnlock(vp);
1357	if (vp->v_iflag & VI_DOOMED) {
1358		/*
1359		 * Since vgonel() uses the generic vinvalbuf() to flush
1360		 * dirty buffers and it does not call this function, it
1361		 * is safe to just return OK when VI_DOOMED is set.
1362		 */
1363		ncl_downgrade_vnlock(vp, old_lock);
1364		return (0);
1365	}
1366
1367	/*
1368	 * Now, flush as required.
1369	 */
1370	if ((flags & V_SAVE) && (vp->v_bufobj.bo_object != NULL)) {
1371		VM_OBJECT_LOCK(vp->v_bufobj.bo_object);
1372		vm_object_page_clean(vp->v_bufobj.bo_object, 0, 0, OBJPC_SYNC);
1373		VM_OBJECT_UNLOCK(vp->v_bufobj.bo_object);
1374		/*
1375		 * If the page clean was interrupted, fail the invalidation.
1376		 * Not doing so, we run the risk of losing dirty pages in the
1377		 * vinvalbuf() call below.
1378		 */
1379		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1380			goto out;
1381	}
1382
1383	error = vinvalbuf(vp, flags, slpflag, 0);
1384	while (error) {
1385		if (intrflg && (error = newnfs_sigintr(nmp, td)))
1386			goto out;
1387		error = vinvalbuf(vp, flags, 0, slptimeo);
1388	}
1389	mtx_lock(&np->n_mtx);
1390	if (np->n_directio_asyncwr == 0)
1391		np->n_flag &= ~NMODIFIED;
1392	mtx_unlock(&np->n_mtx);
1393out:
1394	ncl_downgrade_vnlock(vp, old_lock);
1395	return error;
1396}
1397
1398/*
1399 * Initiate asynchronous I/O. Return an error if no nfsiods are available.
1400 * This is mainly to avoid queueing async I/O requests when the nfsiods
1401 * are all hung on a dead server.
1402 *
1403 * Note: ncl_asyncio() does not clear (BIO_ERROR|B_INVAL) but when the bp
1404 * is eventually dequeued by the async daemon, ncl_doio() *will*.
1405 */
1406int
1407ncl_asyncio(struct nfsmount *nmp, struct buf *bp, struct ucred *cred, struct thread *td)
1408{
1409	int iod;
1410	int gotiod;
1411	int slpflag = 0;
1412	int slptimeo = 0;
1413	int error, error2;
1414
1415	/*
1416	 * Commits are usually short and sweet so lets save some cpu and
1417	 * leave the async daemons for more important rpc's (such as reads
1418	 * and writes).
1419	 *
1420	 * Readdirplus RPCs do vget()s to acquire the vnodes for entries
1421	 * in the directory in order to update attributes. This can deadlock
1422	 * with another thread that is waiting for async I/O to be done by
1423	 * an nfsiod thread while holding a lock on one of these vnodes.
1424	 * To avoid this deadlock, don't allow the async nfsiod threads to
1425	 * perform Readdirplus RPCs.
1426	 */
1427	mtx_lock(&ncl_iod_mutex);
1428	if ((bp->b_iocmd == BIO_WRITE && (bp->b_flags & B_NEEDCOMMIT) &&
1429	     (nmp->nm_bufqiods > ncl_numasync / 2)) ||
1430	    (bp->b_vp->v_type == VDIR && (nmp->nm_flag & NFSMNT_RDIRPLUS))) {
1431		mtx_unlock(&ncl_iod_mutex);
1432		return(EIO);
1433	}
1434again:
1435	if (nmp->nm_flag & NFSMNT_INT)
1436		slpflag = NFS_PCATCH;
1437	gotiod = FALSE;
1438
1439	/*
1440	 * Find a free iod to process this request.
1441	 */
1442	for (iod = 0; iod < ncl_numasync; iod++)
1443		if (ncl_iodwant[iod] == NFSIOD_AVAILABLE) {
1444			gotiod = TRUE;
1445			break;
1446		}
1447
1448	/*
1449	 * Try to create one if none are free.
1450	 */
1451	if (!gotiod)
1452		ncl_nfsiodnew();
1453	else {
1454		/*
1455		 * Found one, so wake it up and tell it which
1456		 * mount to process.
1457		 */
1458		NFS_DPF(ASYNCIO, ("ncl_asyncio: waking iod %d for mount %p\n",
1459		    iod, nmp));
1460		ncl_iodwant[iod] = NFSIOD_NOT_AVAILABLE;
1461		ncl_iodmount[iod] = nmp;
1462		nmp->nm_bufqiods++;
1463		wakeup(&ncl_iodwant[iod]);
1464	}
1465
1466	/*
1467	 * If none are free, we may already have an iod working on this mount
1468	 * point.  If so, it will process our request.
1469	 */
1470	if (!gotiod) {
1471		if (nmp->nm_bufqiods > 0) {
1472			NFS_DPF(ASYNCIO,
1473				("ncl_asyncio: %d iods are already processing mount %p\n",
1474				 nmp->nm_bufqiods, nmp));
1475			gotiod = TRUE;
1476		}
1477	}
1478
1479	/*
1480	 * If we have an iod which can process the request, then queue
1481	 * the buffer.
1482	 */
1483	if (gotiod) {
1484		/*
1485		 * Ensure that the queue never grows too large.  We still want
1486		 * to asynchronize so we block rather then return EIO.
1487		 */
1488		while (nmp->nm_bufqlen >= 2*ncl_numasync) {
1489			NFS_DPF(ASYNCIO,
1490				("ncl_asyncio: waiting for mount %p queue to drain\n", nmp));
1491			nmp->nm_bufqwant = TRUE;
1492			error = newnfs_msleep(td, &nmp->nm_bufq,
1493			    &ncl_iod_mutex, slpflag | PRIBIO, "nfsaio",
1494			   slptimeo);
1495			if (error) {
1496				error2 = newnfs_sigintr(nmp, td);
1497				if (error2) {
1498					mtx_unlock(&ncl_iod_mutex);
1499					return (error2);
1500				}
1501				if (slpflag == NFS_PCATCH) {
1502					slpflag = 0;
1503					slptimeo = 2 * hz;
1504				}
1505			}
1506			/*
1507			 * We might have lost our iod while sleeping,
1508			 * so check and loop if nescessary.
1509			 */
1510			goto again;
1511		}
1512
1513		/* We might have lost our nfsiod */
1514		if (nmp->nm_bufqiods == 0) {
1515			NFS_DPF(ASYNCIO,
1516				("ncl_asyncio: no iods after mount %p queue was drained, looping\n", nmp));
1517			goto again;
1518		}
1519
1520		if (bp->b_iocmd == BIO_READ) {
1521			if (bp->b_rcred == NOCRED && cred != NOCRED)
1522				bp->b_rcred = crhold(cred);
1523		} else {
1524			if (bp->b_wcred == NOCRED && cred != NOCRED)
1525				bp->b_wcred = crhold(cred);
1526		}
1527
1528		if (bp->b_flags & B_REMFREE)
1529			bremfreef(bp);
1530		BUF_KERNPROC(bp);
1531		TAILQ_INSERT_TAIL(&nmp->nm_bufq, bp, b_freelist);
1532		nmp->nm_bufqlen++;
1533		if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1534			mtx_lock(&(VTONFS(bp->b_vp))->n_mtx);
1535			VTONFS(bp->b_vp)->n_flag |= NMODIFIED;
1536			VTONFS(bp->b_vp)->n_directio_asyncwr++;
1537			mtx_unlock(&(VTONFS(bp->b_vp))->n_mtx);
1538		}
1539		mtx_unlock(&ncl_iod_mutex);
1540		return (0);
1541	}
1542
1543	mtx_unlock(&ncl_iod_mutex);
1544
1545	/*
1546	 * All the iods are busy on other mounts, so return EIO to
1547	 * force the caller to process the i/o synchronously.
1548	 */
1549	NFS_DPF(ASYNCIO, ("ncl_asyncio: no iods available, i/o is synchronous\n"));
1550	return (EIO);
1551}
1552
1553void
1554ncl_doio_directwrite(struct buf *bp)
1555{
1556	int iomode, must_commit;
1557	struct uio *uiop = (struct uio *)bp->b_caller1;
1558	char *iov_base = uiop->uio_iov->iov_base;
1559
1560	iomode = NFSWRITE_FILESYNC;
1561	uiop->uio_td = NULL; /* NULL since we're in nfsiod */
1562	ncl_writerpc(bp->b_vp, uiop, bp->b_wcred, &iomode, &must_commit, 0);
1563	KASSERT((must_commit == 0), ("ncl_doio_directwrite: Did not commit write"));
1564	free(iov_base, M_NFSDIRECTIO);
1565	free(uiop->uio_iov, M_NFSDIRECTIO);
1566	free(uiop, M_NFSDIRECTIO);
1567	if ((bp->b_flags & B_DIRECT) && bp->b_iocmd == BIO_WRITE) {
1568		struct nfsnode *np = VTONFS(bp->b_vp);
1569		mtx_lock(&np->n_mtx);
1570		np->n_directio_asyncwr--;
1571		if (np->n_directio_asyncwr == 0) {
1572			np->n_flag &= ~NMODIFIED;
1573			if ((np->n_flag & NFSYNCWAIT)) {
1574				np->n_flag &= ~NFSYNCWAIT;
1575				wakeup((caddr_t)&np->n_directio_asyncwr);
1576			}
1577		}
1578		mtx_unlock(&np->n_mtx);
1579	}
1580	bp->b_vp = NULL;
1581	relpbuf(bp, &ncl_pbuf_freecnt);
1582}
1583
1584/*
1585 * Do an I/O operation to/from a cache block. This may be called
1586 * synchronously or from an nfsiod.
1587 */
1588int
1589ncl_doio(struct vnode *vp, struct buf *bp, struct ucred *cr, struct thread *td,
1590    int called_from_strategy)
1591{
1592	struct uio *uiop;
1593	struct nfsnode *np;
1594	struct nfsmount *nmp;
1595	int error = 0, iomode, must_commit = 0;
1596	struct uio uio;
1597	struct iovec io;
1598	struct proc *p = td ? td->td_proc : NULL;
1599	uint8_t	iocmd;
1600
1601	np = VTONFS(vp);
1602	nmp = VFSTONFS(vp->v_mount);
1603	uiop = &uio;
1604	uiop->uio_iov = &io;
1605	uiop->uio_iovcnt = 1;
1606	uiop->uio_segflg = UIO_SYSSPACE;
1607	uiop->uio_td = td;
1608
1609	/*
1610	 * clear BIO_ERROR and B_INVAL state prior to initiating the I/O.  We
1611	 * do this here so we do not have to do it in all the code that
1612	 * calls us.
1613	 */
1614	bp->b_flags &= ~B_INVAL;
1615	bp->b_ioflags &= ~BIO_ERROR;
1616
1617	KASSERT(!(bp->b_flags & B_DONE), ("ncl_doio: bp %p already marked done", bp));
1618	iocmd = bp->b_iocmd;
1619	if (iocmd == BIO_READ) {
1620	    io.iov_len = uiop->uio_resid = bp->b_bcount;
1621	    io.iov_base = bp->b_data;
1622	    uiop->uio_rw = UIO_READ;
1623
1624	    switch (vp->v_type) {
1625	    case VREG:
1626		uiop->uio_offset = ((off_t)bp->b_blkno) * DEV_BSIZE;
1627		NFSINCRGLOBAL(newnfsstats.read_bios);
1628		error = ncl_readrpc(vp, uiop, cr);
1629
1630		if (!error) {
1631		    if (uiop->uio_resid) {
1632			/*
1633			 * If we had a short read with no error, we must have
1634			 * hit a file hole.  We should zero-fill the remainder.
1635			 * This can also occur if the server hits the file EOF.
1636			 *
1637			 * Holes used to be able to occur due to pending
1638			 * writes, but that is not possible any longer.
1639			 */
1640			int nread = bp->b_bcount - uiop->uio_resid;
1641			ssize_t left = uiop->uio_resid;
1642
1643			if (left > 0)
1644				bzero((char *)bp->b_data + nread, left);
1645			uiop->uio_resid = 0;
1646		    }
1647		}
1648		/* ASSERT_VOP_LOCKED(vp, "ncl_doio"); */
1649		if (p && (vp->v_vflag & VV_TEXT)) {
1650			mtx_lock(&np->n_mtx);
1651			if (NFS_TIMESPEC_COMPARE(&np->n_mtime, &np->n_vattr.na_mtime)) {
1652				mtx_unlock(&np->n_mtx);
1653				PROC_LOCK(p);
1654				killproc(p, "text file modification");
1655				PROC_UNLOCK(p);
1656			} else
1657				mtx_unlock(&np->n_mtx);
1658		}
1659		break;
1660	    case VLNK:
1661		uiop->uio_offset = (off_t)0;
1662		NFSINCRGLOBAL(newnfsstats.readlink_bios);
1663		error = ncl_readlinkrpc(vp, uiop, cr);
1664		break;
1665	    case VDIR:
1666		NFSINCRGLOBAL(newnfsstats.readdir_bios);
1667		uiop->uio_offset = ((u_quad_t)bp->b_lblkno) * NFS_DIRBLKSIZ;
1668		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) != 0) {
1669			error = ncl_readdirplusrpc(vp, uiop, cr, td);
1670			if (error == NFSERR_NOTSUPP)
1671				nmp->nm_flag &= ~NFSMNT_RDIRPLUS;
1672		}
1673		if ((nmp->nm_flag & NFSMNT_RDIRPLUS) == 0)
1674			error = ncl_readdirrpc(vp, uiop, cr, td);
1675		/*
1676		 * end-of-directory sets B_INVAL but does not generate an
1677		 * error.
1678		 */
1679		if (error == 0 && uiop->uio_resid == bp->b_bcount)
1680			bp->b_flags |= B_INVAL;
1681		break;
1682	    default:
1683		ncl_printf("ncl_doio:  type %x unexpected\n", vp->v_type);
1684		break;
1685	    };
1686	    if (error) {
1687		bp->b_ioflags |= BIO_ERROR;
1688		bp->b_error = error;
1689	    }
1690	} else {
1691	    /*
1692	     * If we only need to commit, try to commit
1693	     */
1694	    if (bp->b_flags & B_NEEDCOMMIT) {
1695		    int retv;
1696		    off_t off;
1697
1698		    off = ((u_quad_t)bp->b_blkno) * DEV_BSIZE + bp->b_dirtyoff;
1699		    retv = ncl_commit(vp, off, bp->b_dirtyend-bp->b_dirtyoff,
1700			bp->b_wcred, td);
1701		    if (retv == 0) {
1702			    bp->b_dirtyoff = bp->b_dirtyend = 0;
1703			    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1704			    bp->b_resid = 0;
1705			    bufdone(bp);
1706			    return (0);
1707		    }
1708		    if (retv == NFSERR_STALEWRITEVERF) {
1709			    ncl_clearcommit(vp->v_mount);
1710		    }
1711	    }
1712
1713	    /*
1714	     * Setup for actual write
1715	     */
1716	    mtx_lock(&np->n_mtx);
1717	    if ((off_t)bp->b_blkno * DEV_BSIZE + bp->b_dirtyend > np->n_size)
1718		bp->b_dirtyend = np->n_size - (off_t)bp->b_blkno * DEV_BSIZE;
1719	    mtx_unlock(&np->n_mtx);
1720
1721	    if (bp->b_dirtyend > bp->b_dirtyoff) {
1722		io.iov_len = uiop->uio_resid = bp->b_dirtyend
1723		    - bp->b_dirtyoff;
1724		uiop->uio_offset = (off_t)bp->b_blkno * DEV_BSIZE
1725		    + bp->b_dirtyoff;
1726		io.iov_base = (char *)bp->b_data + bp->b_dirtyoff;
1727		uiop->uio_rw = UIO_WRITE;
1728		NFSINCRGLOBAL(newnfsstats.write_bios);
1729
1730		if ((bp->b_flags & (B_ASYNC | B_NEEDCOMMIT | B_NOCACHE | B_CLUSTER)) == B_ASYNC)
1731		    iomode = NFSWRITE_UNSTABLE;
1732		else
1733		    iomode = NFSWRITE_FILESYNC;
1734
1735		error = ncl_writerpc(vp, uiop, cr, &iomode, &must_commit,
1736		    called_from_strategy);
1737
1738		/*
1739		 * When setting B_NEEDCOMMIT also set B_CLUSTEROK to try
1740		 * to cluster the buffers needing commit.  This will allow
1741		 * the system to submit a single commit rpc for the whole
1742		 * cluster.  We can do this even if the buffer is not 100%
1743		 * dirty (relative to the NFS blocksize), so we optimize the
1744		 * append-to-file-case.
1745		 *
1746		 * (when clearing B_NEEDCOMMIT, B_CLUSTEROK must also be
1747		 * cleared because write clustering only works for commit
1748		 * rpc's, not for the data portion of the write).
1749		 */
1750
1751		if (!error && iomode == NFSWRITE_UNSTABLE) {
1752		    bp->b_flags |= B_NEEDCOMMIT;
1753		    if (bp->b_dirtyoff == 0
1754			&& bp->b_dirtyend == bp->b_bcount)
1755			bp->b_flags |= B_CLUSTEROK;
1756		} else {
1757		    bp->b_flags &= ~(B_NEEDCOMMIT | B_CLUSTEROK);
1758		}
1759
1760		/*
1761		 * For an interrupted write, the buffer is still valid
1762		 * and the write hasn't been pushed to the server yet,
1763		 * so we can't set BIO_ERROR and report the interruption
1764		 * by setting B_EINTR. For the B_ASYNC case, B_EINTR
1765		 * is not relevant, so the rpc attempt is essentially
1766		 * a noop.  For the case of a V3 write rpc not being
1767		 * committed to stable storage, the block is still
1768		 * dirty and requires either a commit rpc or another
1769		 * write rpc with iomode == NFSV3WRITE_FILESYNC before
1770		 * the block is reused. This is indicated by setting
1771		 * the B_DELWRI and B_NEEDCOMMIT flags.
1772		 *
1773		 * EIO is returned by ncl_writerpc() to indicate a recoverable
1774		 * write error and is handled as above, except that
1775		 * B_EINTR isn't set. One cause of this is a stale stateid
1776		 * error for the RPC that indicates recovery is required,
1777		 * when called with called_from_strategy != 0.
1778		 *
1779		 * If the buffer is marked B_PAGING, it does not reside on
1780		 * the vp's paging queues so we cannot call bdirty().  The
1781		 * bp in this case is not an NFS cache block so we should
1782		 * be safe. XXX
1783		 *
1784		 * The logic below breaks up errors into recoverable and
1785		 * unrecoverable. For the former, we clear B_INVAL|B_NOCACHE
1786		 * and keep the buffer around for potential write retries.
1787		 * For the latter (eg ESTALE), we toss the buffer away (B_INVAL)
1788		 * and save the error in the nfsnode. This is less than ideal
1789		 * but necessary. Keeping such buffers around could potentially
1790		 * cause buffer exhaustion eventually (they can never be written
1791		 * out, so will get constantly be re-dirtied). It also causes
1792		 * all sorts of vfs panics. For non-recoverable write errors,
1793		 * also invalidate the attrcache, so we'll be forced to go over
1794		 * the wire for this object, returning an error to user on next
1795		 * call (most of the time).
1796		 */
1797		if (error == EINTR || error == EIO || error == ETIMEDOUT
1798		    || (!error && (bp->b_flags & B_NEEDCOMMIT))) {
1799			int s;
1800
1801			s = splbio();
1802			bp->b_flags &= ~(B_INVAL|B_NOCACHE);
1803			if ((bp->b_flags & B_PAGING) == 0) {
1804			    bdirty(bp);
1805			    bp->b_flags &= ~B_DONE;
1806			}
1807			if ((error == EINTR || error == ETIMEDOUT) &&
1808			    (bp->b_flags & B_ASYNC) == 0)
1809			    bp->b_flags |= B_EINTR;
1810			splx(s);
1811		} else {
1812		    if (error) {
1813			bp->b_ioflags |= BIO_ERROR;
1814			bp->b_flags |= B_INVAL;
1815			bp->b_error = np->n_error = error;
1816			mtx_lock(&np->n_mtx);
1817			np->n_flag |= NWRITEERR;
1818			np->n_attrstamp = 0;
1819			KDTRACE_NFS_ATTRCACHE_FLUSH_DONE(vp);
1820			mtx_unlock(&np->n_mtx);
1821		    }
1822		    bp->b_dirtyoff = bp->b_dirtyend = 0;
1823		}
1824	    } else {
1825		bp->b_resid = 0;
1826		bufdone(bp);
1827		return (0);
1828	    }
1829	}
1830	bp->b_resid = uiop->uio_resid;
1831	if (must_commit)
1832	    ncl_clearcommit(vp->v_mount);
1833	bufdone(bp);
1834	return (error);
1835}
1836
1837/*
1838 * Used to aid in handling ftruncate() operations on the NFS client side.
1839 * Truncation creates a number of special problems for NFS.  We have to
1840 * throw away VM pages and buffer cache buffers that are beyond EOF, and
1841 * we have to properly handle VM pages or (potentially dirty) buffers
1842 * that straddle the truncation point.
1843 */
1844
1845int
1846ncl_meta_setsize(struct vnode *vp, struct ucred *cred, struct thread *td, u_quad_t nsize)
1847{
1848	struct nfsnode *np = VTONFS(vp);
1849	u_quad_t tsize;
1850	int biosize = vp->v_bufobj.bo_bsize;
1851	int error = 0;
1852
1853	mtx_lock(&np->n_mtx);
1854	tsize = np->n_size;
1855	np->n_size = nsize;
1856	mtx_unlock(&np->n_mtx);
1857
1858	if (nsize < tsize) {
1859		struct buf *bp;
1860		daddr_t lbn;
1861		int bufsize;
1862
1863		/*
1864		 * vtruncbuf() doesn't get the buffer overlapping the
1865		 * truncation point.  We may have a B_DELWRI and/or B_CACHE
1866		 * buffer that now needs to be truncated.
1867		 */
1868		error = vtruncbuf(vp, cred, td, nsize, biosize);
1869		lbn = nsize / biosize;
1870		bufsize = nsize & (biosize - 1);
1871		bp = nfs_getcacheblk(vp, lbn, bufsize, td);
1872		if (!bp)
1873			return EINTR;
1874		if (bp->b_dirtyoff > bp->b_bcount)
1875			bp->b_dirtyoff = bp->b_bcount;
1876		if (bp->b_dirtyend > bp->b_bcount)
1877			bp->b_dirtyend = bp->b_bcount;
1878		bp->b_flags |= B_RELBUF;  /* don't leave garbage around */
1879		brelse(bp);
1880	} else {
1881		vnode_pager_setsize(vp, nsize);
1882	}
1883	return(error);
1884}
1885
1886