1/*-
2 * Copyright (c) 2006,2007
3 *	Damien Bergamini <damien.bergamini@free.fr>
4 *	Benjamin Close <Benjamin.Close@clearchain.com>
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 */
18
19#define VERSION "20071127"
20
21#include <sys/cdefs.h>
22__FBSDID("$FreeBSD$");
23
24/*
25 * Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
26 *
27 * The 3945ABG network adapter doesn't use traditional hardware as
28 * many other adaptors do. Instead at run time the eeprom is set into a known
29 * state and told to load boot firmware. The boot firmware loads an init and a
30 * main  binary firmware image into SRAM on the card via DMA.
31 * Once the firmware is loaded, the driver/hw then
32 * communicate by way of circular dma rings via the SRAM to the firmware.
33 *
34 * There is 6 memory rings. 1 command ring, 1 rx data ring & 4 tx data rings.
35 * The 4 tx data rings allow for prioritization QoS.
36 *
37 * The rx data ring consists of 32 dma buffers. Two registers are used to
38 * indicate where in the ring the driver and the firmware are up to. The
39 * driver sets the initial read index (reg1) and the initial write index (reg2),
40 * the firmware updates the read index (reg1) on rx of a packet and fires an
41 * interrupt. The driver then processes the buffers starting at reg1 indicating
42 * to the firmware which buffers have been accessed by updating reg2. At the
43 * same time allocating new memory for the processed buffer.
44 *
45 * A similar thing happens with the tx rings. The difference is the firmware
46 * stop processing buffers once the queue is full and until confirmation
47 * of a successful transmition (tx_intr) has occurred.
48 *
49 * The command ring operates in the same manner as the tx queues.
50 *
51 * All communication direct to the card (ie eeprom) is classed as Stage1
52 * communication
53 *
54 * All communication via the firmware to the card is classed as State2.
55 * The firmware consists of 2 parts. A bootstrap firmware and a runtime
56 * firmware. The bootstrap firmware and runtime firmware are loaded
57 * from host memory via dma to the card then told to execute. From this point
58 * on the majority of communications between the driver and the card goes
59 * via the firmware.
60 */
61
62#include <sys/param.h>
63#include <sys/sysctl.h>
64#include <sys/sockio.h>
65#include <sys/mbuf.h>
66#include <sys/kernel.h>
67#include <sys/socket.h>
68#include <sys/systm.h>
69#include <sys/malloc.h>
70#include <sys/queue.h>
71#include <sys/taskqueue.h>
72#include <sys/module.h>
73#include <sys/bus.h>
74#include <sys/endian.h>
75#include <sys/linker.h>
76#include <sys/firmware.h>
77
78#include <machine/bus.h>
79#include <machine/resource.h>
80#include <sys/rman.h>
81
82#include <dev/pci/pcireg.h>
83#include <dev/pci/pcivar.h>
84
85#include <net/bpf.h>
86#include <net/if.h>
87#include <net/if_arp.h>
88#include <net/ethernet.h>
89#include <net/if_dl.h>
90#include <net/if_media.h>
91#include <net/if_types.h>
92
93#include <net80211/ieee80211_var.h>
94#include <net80211/ieee80211_radiotap.h>
95#include <net80211/ieee80211_regdomain.h>
96#include <net80211/ieee80211_ratectl.h>
97
98#include <netinet/in.h>
99#include <netinet/in_systm.h>
100#include <netinet/in_var.h>
101#include <netinet/ip.h>
102#include <netinet/if_ether.h>
103
104#include <dev/wpi/if_wpireg.h>
105#include <dev/wpi/if_wpivar.h>
106
107#define WPI_DEBUG
108
109#ifdef WPI_DEBUG
110#define DPRINTF(x)	do { if (wpi_debug != 0) printf x; } while (0)
111#define DPRINTFN(n, x)	do { if (wpi_debug & n) printf x; } while (0)
112#define	WPI_DEBUG_SET	(wpi_debug != 0)
113
114enum {
115	WPI_DEBUG_UNUSED	= 0x00000001,   /* Unused */
116	WPI_DEBUG_HW		= 0x00000002,   /* Stage 1 (eeprom) debugging */
117	WPI_DEBUG_TX		= 0x00000004,   /* Stage 2 TX intrp debugging*/
118	WPI_DEBUG_RX		= 0x00000008,   /* Stage 2 RX intrp debugging */
119	WPI_DEBUG_CMD		= 0x00000010,   /* Stage 2 CMD intrp debugging*/
120	WPI_DEBUG_FIRMWARE	= 0x00000020,   /* firmware(9) loading debug  */
121	WPI_DEBUG_DMA		= 0x00000040,   /* DMA (de)allocations/syncs  */
122	WPI_DEBUG_SCANNING	= 0x00000080,   /* Stage 2 Scanning debugging */
123	WPI_DEBUG_NOTIFY	= 0x00000100,   /* State 2 Noftif intr debug */
124	WPI_DEBUG_TEMP		= 0x00000200,   /* TXPower/Temp Calibration */
125	WPI_DEBUG_OPS		= 0x00000400,   /* wpi_ops taskq debug */
126	WPI_DEBUG_WATCHDOG	= 0x00000800,   /* Watch dog debug */
127	WPI_DEBUG_ANY		= 0xffffffff
128};
129
130static int wpi_debug = 0;
131SYSCTL_INT(_debug, OID_AUTO, wpi, CTLFLAG_RW, &wpi_debug, 0, "wpi debug level");
132TUNABLE_INT("debug.wpi", &wpi_debug);
133
134#else
135#define DPRINTF(x)
136#define DPRINTFN(n, x)
137#define WPI_DEBUG_SET	0
138#endif
139
140struct wpi_ident {
141	uint16_t	vendor;
142	uint16_t	device;
143	uint16_t	subdevice;
144	const char	*name;
145};
146
147static const struct wpi_ident wpi_ident_table[] = {
148	/* The below entries support ABG regardless of the subid */
149	{ 0x8086, 0x4222,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
150	{ 0x8086, 0x4227,    0x0, "Intel(R) PRO/Wireless 3945ABG" },
151	/* The below entries only support BG */
152	{ 0x8086, 0x4222, 0x1005, "Intel(R) PRO/Wireless 3945BG"  },
153	{ 0x8086, 0x4222, 0x1034, "Intel(R) PRO/Wireless 3945BG"  },
154	{ 0x8086, 0x4227, 0x1014, "Intel(R) PRO/Wireless 3945BG"  },
155	{ 0x8086, 0x4222, 0x1044, "Intel(R) PRO/Wireless 3945BG"  },
156	{ 0, 0, 0, NULL }
157};
158
159static struct ieee80211vap *wpi_vap_create(struct ieee80211com *,
160		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
161		    const uint8_t [IEEE80211_ADDR_LEN],
162		    const uint8_t [IEEE80211_ADDR_LEN]);
163static void	wpi_vap_delete(struct ieee80211vap *);
164static int	wpi_dma_contig_alloc(struct wpi_softc *, struct wpi_dma_info *,
165		    void **, bus_size_t, bus_size_t, int);
166static void	wpi_dma_contig_free(struct wpi_dma_info *);
167static void	wpi_dma_map_addr(void *, bus_dma_segment_t *, int, int);
168static int	wpi_alloc_shared(struct wpi_softc *);
169static void	wpi_free_shared(struct wpi_softc *);
170static int	wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
171static void	wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
172static void	wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
173static int	wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *,
174		    int, int);
175static void	wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
176static void	wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
177static int	wpi_newstate(struct ieee80211vap *, enum ieee80211_state, int);
178static void	wpi_mem_lock(struct wpi_softc *);
179static void	wpi_mem_unlock(struct wpi_softc *);
180static uint32_t	wpi_mem_read(struct wpi_softc *, uint16_t);
181static void	wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
182static void	wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
183		    const uint32_t *, int);
184static uint16_t	wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
185static int	wpi_alloc_fwmem(struct wpi_softc *);
186static void	wpi_free_fwmem(struct wpi_softc *);
187static int	wpi_load_firmware(struct wpi_softc *);
188static void	wpi_unload_firmware(struct wpi_softc *);
189static int	wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
190static void	wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
191		    struct wpi_rx_data *);
192static void	wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
193static void	wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
194static void	wpi_notif_intr(struct wpi_softc *);
195static void	wpi_intr(void *);
196static uint8_t	wpi_plcp_signal(int);
197static void	wpi_watchdog(void *);
198static int	wpi_tx_data(struct wpi_softc *, struct mbuf *,
199		    struct ieee80211_node *, int);
200static void	wpi_start(struct ifnet *);
201static void	wpi_start_locked(struct ifnet *);
202static int	wpi_raw_xmit(struct ieee80211_node *, struct mbuf *,
203		    const struct ieee80211_bpf_params *);
204static void	wpi_scan_start(struct ieee80211com *);
205static void	wpi_scan_end(struct ieee80211com *);
206static void	wpi_set_channel(struct ieee80211com *);
207static void	wpi_scan_curchan(struct ieee80211_scan_state *, unsigned long);
208static void	wpi_scan_mindwell(struct ieee80211_scan_state *);
209static int	wpi_ioctl(struct ifnet *, u_long, caddr_t);
210static void	wpi_read_eeprom(struct wpi_softc *,
211		    uint8_t macaddr[IEEE80211_ADDR_LEN]);
212static void	wpi_read_eeprom_channels(struct wpi_softc *, int);
213static void	wpi_read_eeprom_group(struct wpi_softc *, int);
214static int	wpi_cmd(struct wpi_softc *, int, const void *, int, int);
215static int	wpi_wme_update(struct ieee80211com *);
216static int	wpi_mrr_setup(struct wpi_softc *);
217static void	wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
218static void	wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
219#if 0
220static int	wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
221#endif
222static int	wpi_auth(struct wpi_softc *, struct ieee80211vap *);
223static int	wpi_run(struct wpi_softc *, struct ieee80211vap *);
224static int	wpi_scan(struct wpi_softc *);
225static int	wpi_config(struct wpi_softc *);
226static void	wpi_stop_master(struct wpi_softc *);
227static int	wpi_power_up(struct wpi_softc *);
228static int	wpi_reset(struct wpi_softc *);
229static void	wpi_hwreset(void *, int);
230static void	wpi_rfreset(void *, int);
231static void	wpi_hw_config(struct wpi_softc *);
232static void	wpi_init(void *);
233static void	wpi_init_locked(struct wpi_softc *, int);
234static void	wpi_stop(struct wpi_softc *);
235static void	wpi_stop_locked(struct wpi_softc *);
236
237static int	wpi_set_txpower(struct wpi_softc *, struct ieee80211_channel *,
238		    int);
239static void	wpi_calib_timeout(void *);
240static void	wpi_power_calibration(struct wpi_softc *, int);
241static int	wpi_get_power_index(struct wpi_softc *,
242		    struct wpi_power_group *, struct ieee80211_channel *, int);
243#ifdef WPI_DEBUG
244static const char *wpi_cmd_str(int);
245#endif
246static int wpi_probe(device_t);
247static int wpi_attach(device_t);
248static int wpi_detach(device_t);
249static int wpi_shutdown(device_t);
250static int wpi_suspend(device_t);
251static int wpi_resume(device_t);
252
253static device_method_t wpi_methods[] = {
254	/* Device interface */
255	DEVMETHOD(device_probe,		wpi_probe),
256	DEVMETHOD(device_attach,	wpi_attach),
257	DEVMETHOD(device_detach,	wpi_detach),
258	DEVMETHOD(device_shutdown,	wpi_shutdown),
259	DEVMETHOD(device_suspend,	wpi_suspend),
260	DEVMETHOD(device_resume,	wpi_resume),
261
262	DEVMETHOD_END
263};
264
265static driver_t wpi_driver = {
266	"wpi",
267	wpi_methods,
268	sizeof (struct wpi_softc)
269};
270
271static devclass_t wpi_devclass;
272
273DRIVER_MODULE(wpi, pci, wpi_driver, wpi_devclass, NULL, NULL);
274
275MODULE_VERSION(wpi, 1);
276
277static const uint8_t wpi_ridx_to_plcp[] = {
278	/* OFDM: IEEE Std 802.11a-1999, pp. 14 Table 80 */
279	/* R1-R4 (ral/ural is R4-R1) */
280	0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3,
281	/* CCK: device-dependent */
282	10, 20, 55, 110
283};
284
285static const uint8_t wpi_ridx_to_rate[] = {
286	12, 18, 24, 36, 48, 72, 96, 108, /* OFDM */
287	2, 4, 11, 22 /*CCK */
288};
289
290static int
291wpi_probe(device_t dev)
292{
293	const struct wpi_ident *ident;
294
295	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
296		if (pci_get_vendor(dev) == ident->vendor &&
297		    pci_get_device(dev) == ident->device) {
298			device_set_desc(dev, ident->name);
299			return (BUS_PROBE_DEFAULT);
300		}
301	}
302	return ENXIO;
303}
304
305/**
306 * Load the firmare image from disk to the allocated dma buffer.
307 * we also maintain the reference to the firmware pointer as there
308 * is times where we may need to reload the firmware but we are not
309 * in a context that can access the filesystem (ie taskq cause by restart)
310 *
311 * @return 0 on success, an errno on failure
312 */
313static int
314wpi_load_firmware(struct wpi_softc *sc)
315{
316	const struct firmware *fp;
317	struct wpi_dma_info *dma = &sc->fw_dma;
318	const struct wpi_firmware_hdr *hdr;
319	const uint8_t *itext, *idata, *rtext, *rdata, *btext;
320	uint32_t itextsz, idatasz, rtextsz, rdatasz, btextsz;
321	int error;
322
323	DPRINTFN(WPI_DEBUG_FIRMWARE,
324	    ("Attempting Loading Firmware from wpi_fw module\n"));
325
326	WPI_UNLOCK(sc);
327
328	if (sc->fw_fp == NULL && (sc->fw_fp = firmware_get("wpifw")) == NULL) {
329		device_printf(sc->sc_dev,
330		    "could not load firmware image 'wpifw'\n");
331		error = ENOENT;
332		WPI_LOCK(sc);
333		goto fail;
334	}
335
336	fp = sc->fw_fp;
337
338	WPI_LOCK(sc);
339
340	/* Validate the firmware is minimum a particular version */
341	if (fp->version < WPI_FW_MINVERSION) {
342	    device_printf(sc->sc_dev,
343			   "firmware version is too old. Need %d, got %d\n",
344			   WPI_FW_MINVERSION,
345			   fp->version);
346	    error = ENXIO;
347	    goto fail;
348	}
349
350	if (fp->datasize < sizeof (struct wpi_firmware_hdr)) {
351		device_printf(sc->sc_dev,
352		    "firmware file too short: %zu bytes\n", fp->datasize);
353		error = ENXIO;
354		goto fail;
355	}
356
357	hdr = (const struct wpi_firmware_hdr *)fp->data;
358
359	/*     |  RUNTIME FIRMWARE   |    INIT FIRMWARE    | BOOT FW  |
360	   |HDR|<--TEXT-->|<--DATA-->|<--TEXT-->|<--DATA-->|<--TEXT-->| */
361
362	rtextsz = le32toh(hdr->rtextsz);
363	rdatasz = le32toh(hdr->rdatasz);
364	itextsz = le32toh(hdr->itextsz);
365	idatasz = le32toh(hdr->idatasz);
366	btextsz = le32toh(hdr->btextsz);
367
368	/* check that all firmware segments are present */
369	if (fp->datasize < sizeof (struct wpi_firmware_hdr) +
370		rtextsz + rdatasz + itextsz + idatasz + btextsz) {
371		device_printf(sc->sc_dev,
372		    "firmware file too short: %zu bytes\n", fp->datasize);
373		error = ENXIO; /* XXX appropriate error code? */
374		goto fail;
375	}
376
377	/* get pointers to firmware segments */
378	rtext = (const uint8_t *)(hdr + 1);
379	rdata = rtext + rtextsz;
380	itext = rdata + rdatasz;
381	idata = itext + itextsz;
382	btext = idata + idatasz;
383
384	DPRINTFN(WPI_DEBUG_FIRMWARE,
385	    ("Firmware Version: Major %d, Minor %d, Driver %d, \n"
386	     "runtime (text: %u, data: %u) init (text: %u, data %u) boot (text %u)\n",
387	     (le32toh(hdr->version) & 0xff000000) >> 24,
388	     (le32toh(hdr->version) & 0x00ff0000) >> 16,
389	     (le32toh(hdr->version) & 0x0000ffff),
390	     rtextsz, rdatasz,
391	     itextsz, idatasz, btextsz));
392
393	DPRINTFN(WPI_DEBUG_FIRMWARE,("rtext 0x%x\n", *(const uint32_t *)rtext));
394	DPRINTFN(WPI_DEBUG_FIRMWARE,("rdata 0x%x\n", *(const uint32_t *)rdata));
395	DPRINTFN(WPI_DEBUG_FIRMWARE,("itext 0x%x\n", *(const uint32_t *)itext));
396	DPRINTFN(WPI_DEBUG_FIRMWARE,("idata 0x%x\n", *(const uint32_t *)idata));
397	DPRINTFN(WPI_DEBUG_FIRMWARE,("btext 0x%x\n", *(const uint32_t *)btext));
398
399	/* sanity checks */
400	if (rtextsz > WPI_FW_MAIN_TEXT_MAXSZ ||
401	    rdatasz > WPI_FW_MAIN_DATA_MAXSZ ||
402	    itextsz > WPI_FW_INIT_TEXT_MAXSZ ||
403	    idatasz > WPI_FW_INIT_DATA_MAXSZ ||
404	    btextsz > WPI_FW_BOOT_TEXT_MAXSZ ||
405	    (btextsz & 3) != 0) {
406		device_printf(sc->sc_dev, "firmware invalid\n");
407		error = EINVAL;
408		goto fail;
409	}
410
411	/* copy initialization images into pre-allocated DMA-safe memory */
412	memcpy(dma->vaddr, idata, idatasz);
413	memcpy(dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, itext, itextsz);
414
415	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
416
417	/* tell adapter where to find initialization images */
418	wpi_mem_lock(sc);
419	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
420	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, idatasz);
421	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
422	    dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
423	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, itextsz);
424	wpi_mem_unlock(sc);
425
426	/* load firmware boot code */
427	if ((error = wpi_load_microcode(sc, btext, btextsz)) != 0) {
428	    device_printf(sc->sc_dev, "Failed to load microcode\n");
429	    goto fail;
430	}
431
432	/* now press "execute" */
433	WPI_WRITE(sc, WPI_RESET, 0);
434
435	/* wait at most one second for the first alive notification */
436	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
437		device_printf(sc->sc_dev,
438		    "timeout waiting for adapter to initialize\n");
439		goto fail;
440	}
441
442	/* copy runtime images into pre-allocated DMA-sage memory */
443	memcpy(dma->vaddr, rdata, rdatasz);
444	memcpy(dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, rtext, rtextsz);
445	bus_dmamap_sync(dma->tag, dma->map, BUS_DMASYNC_PREWRITE);
446
447	/* tell adapter where to find runtime images */
448	wpi_mem_lock(sc);
449	wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
450	wpi_mem_write(sc, WPI_MEM_DATA_SIZE, rdatasz);
451	wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
452	    dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
453	wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | rtextsz);
454	wpi_mem_unlock(sc);
455
456	/* wait at most one second for the first alive notification */
457	if ((error = msleep(sc, &sc->sc_mtx, PCATCH, "wpiinit", hz)) != 0) {
458		device_printf(sc->sc_dev,
459		    "timeout waiting for adapter to initialize2\n");
460		goto fail;
461	}
462
463	DPRINTFN(WPI_DEBUG_FIRMWARE,
464	    ("Firmware loaded to driver successfully\n"));
465	return error;
466fail:
467	wpi_unload_firmware(sc);
468	return error;
469}
470
471/**
472 * Free the referenced firmware image
473 */
474static void
475wpi_unload_firmware(struct wpi_softc *sc)
476{
477
478	if (sc->fw_fp) {
479		WPI_UNLOCK(sc);
480		firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
481		WPI_LOCK(sc);
482		sc->fw_fp = NULL;
483	}
484}
485
486static int
487wpi_attach(device_t dev)
488{
489	struct wpi_softc *sc = device_get_softc(dev);
490	struct ifnet *ifp;
491	struct ieee80211com *ic;
492	int ac, error, rid, supportsa = 1;
493	uint32_t tmp;
494	const struct wpi_ident *ident;
495	uint8_t macaddr[IEEE80211_ADDR_LEN];
496
497	sc->sc_dev = dev;
498
499	if (bootverbose || WPI_DEBUG_SET)
500	    device_printf(sc->sc_dev,"Driver Revision %s\n", VERSION);
501
502	/*
503	 * Some card's only support 802.11b/g not a, check to see if
504	 * this is one such card. A 0x0 in the subdevice table indicates
505	 * the entire subdevice range is to be ignored.
506	 */
507	for (ident = wpi_ident_table; ident->name != NULL; ident++) {
508		if (ident->subdevice &&
509		    pci_get_subdevice(dev) == ident->subdevice) {
510		    supportsa = 0;
511		    break;
512		}
513	}
514
515	/* Create the tasks that can be queued */
516	TASK_INIT(&sc->sc_restarttask, 0, wpi_hwreset, sc);
517	TASK_INIT(&sc->sc_radiotask, 0, wpi_rfreset, sc);
518
519	WPI_LOCK_INIT(sc);
520
521	callout_init_mtx(&sc->calib_to, &sc->sc_mtx, 0);
522	callout_init_mtx(&sc->watchdog_to, &sc->sc_mtx, 0);
523
524	/* disable the retry timeout register */
525	pci_write_config(dev, 0x41, 0, 1);
526
527	/* enable bus-mastering */
528	pci_enable_busmaster(dev);
529
530	rid = PCIR_BAR(0);
531	sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
532	    RF_ACTIVE);
533	if (sc->mem == NULL) {
534		device_printf(dev, "could not allocate memory resource\n");
535		error = ENOMEM;
536		goto fail;
537	}
538
539	sc->sc_st = rman_get_bustag(sc->mem);
540	sc->sc_sh = rman_get_bushandle(sc->mem);
541
542	rid = 0;
543	sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
544	    RF_ACTIVE | RF_SHAREABLE);
545	if (sc->irq == NULL) {
546		device_printf(dev, "could not allocate interrupt resource\n");
547		error = ENOMEM;
548		goto fail;
549	}
550
551	/*
552	 * Allocate DMA memory for firmware transfers.
553	 */
554	if ((error = wpi_alloc_fwmem(sc)) != 0) {
555		printf(": could not allocate firmware memory\n");
556		error = ENOMEM;
557		goto fail;
558	}
559
560	/*
561	 * Put adapter into a known state.
562	 */
563	if ((error = wpi_reset(sc)) != 0) {
564		device_printf(dev, "could not reset adapter\n");
565		goto fail;
566	}
567
568	wpi_mem_lock(sc);
569	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
570	if (bootverbose || WPI_DEBUG_SET)
571	    device_printf(sc->sc_dev, "Hardware Revision (0x%X)\n", tmp);
572
573	wpi_mem_unlock(sc);
574
575	/* Allocate shared page */
576	if ((error = wpi_alloc_shared(sc)) != 0) {
577		device_printf(dev, "could not allocate shared page\n");
578		goto fail;
579	}
580
581	/* tx data queues  - 4 for QoS purposes */
582	for (ac = 0; ac < WME_NUM_AC; ac++) {
583		error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
584		if (error != 0) {
585		    device_printf(dev, "could not allocate Tx ring %d\n",ac);
586		    goto fail;
587		}
588	}
589
590	/* command queue to talk to the card's firmware */
591	error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
592	if (error != 0) {
593		device_printf(dev, "could not allocate command ring\n");
594		goto fail;
595	}
596
597	/* receive data queue */
598	error = wpi_alloc_rx_ring(sc, &sc->rxq);
599	if (error != 0) {
600		device_printf(dev, "could not allocate Rx ring\n");
601		goto fail;
602	}
603
604	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
605	if (ifp == NULL) {
606		device_printf(dev, "can not if_alloc()\n");
607		error = ENOMEM;
608		goto fail;
609	}
610	ic = ifp->if_l2com;
611
612	ic->ic_ifp = ifp;
613	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
614	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
615
616	/* set device capabilities */
617	ic->ic_caps =
618		  IEEE80211_C_STA		/* station mode supported */
619		| IEEE80211_C_MONITOR		/* monitor mode supported */
620		| IEEE80211_C_TXPMGT		/* tx power management */
621		| IEEE80211_C_SHSLOT		/* short slot time supported */
622		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
623		| IEEE80211_C_WPA		/* 802.11i */
624/* XXX looks like WME is partly supported? */
625#if 0
626		| IEEE80211_C_IBSS		/* IBSS mode support */
627		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
628		| IEEE80211_C_WME		/* 802.11e */
629		| IEEE80211_C_HOSTAP		/* Host access point mode */
630#endif
631		;
632
633	/*
634	 * Read in the eeprom and also setup the channels for
635	 * net80211. We don't set the rates as net80211 does this for us
636	 */
637	wpi_read_eeprom(sc, macaddr);
638
639	if (bootverbose || WPI_DEBUG_SET) {
640	    device_printf(sc->sc_dev, "Regulatory Domain: %.4s\n", sc->domain);
641	    device_printf(sc->sc_dev, "Hardware Type: %c\n",
642			  sc->type > 1 ? 'B': '?');
643	    device_printf(sc->sc_dev, "Hardware Revision: %c\n",
644			  ((le16toh(sc->rev) & 0xf0) == 0xd0) ? 'D': '?');
645	    device_printf(sc->sc_dev, "SKU %s support 802.11a\n",
646			  supportsa ? "does" : "does not");
647
648	    /* XXX hw_config uses the PCIDEV for the Hardware rev. Must check
649	       what sc->rev really represents - benjsc 20070615 */
650	}
651
652	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
653	ifp->if_softc = sc;
654	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
655	ifp->if_init = wpi_init;
656	ifp->if_ioctl = wpi_ioctl;
657	ifp->if_start = wpi_start;
658	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
659	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
660	IFQ_SET_READY(&ifp->if_snd);
661
662	ieee80211_ifattach(ic, macaddr);
663	/* override default methods */
664	ic->ic_raw_xmit = wpi_raw_xmit;
665	ic->ic_wme.wme_update = wpi_wme_update;
666	ic->ic_scan_start = wpi_scan_start;
667	ic->ic_scan_end = wpi_scan_end;
668	ic->ic_set_channel = wpi_set_channel;
669	ic->ic_scan_curchan = wpi_scan_curchan;
670	ic->ic_scan_mindwell = wpi_scan_mindwell;
671
672	ic->ic_vap_create = wpi_vap_create;
673	ic->ic_vap_delete = wpi_vap_delete;
674
675	ieee80211_radiotap_attach(ic,
676	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
677		WPI_TX_RADIOTAP_PRESENT,
678	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
679		WPI_RX_RADIOTAP_PRESENT);
680
681	/*
682	 * Hook our interrupt after all initialization is complete.
683	 */
684	error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET |INTR_MPSAFE,
685	    NULL, wpi_intr, sc, &sc->sc_ih);
686	if (error != 0) {
687		device_printf(dev, "could not set up interrupt\n");
688		goto fail;
689	}
690
691	if (bootverbose)
692		ieee80211_announce(ic);
693#ifdef XXX_DEBUG
694	ieee80211_announce_channels(ic);
695#endif
696	return 0;
697
698fail:	wpi_detach(dev);
699	return ENXIO;
700}
701
702static int
703wpi_detach(device_t dev)
704{
705	struct wpi_softc *sc = device_get_softc(dev);
706	struct ifnet *ifp = sc->sc_ifp;
707	struct ieee80211com *ic;
708	int ac;
709
710	if (sc->irq != NULL)
711		bus_teardown_intr(dev, sc->irq, sc->sc_ih);
712
713	if (ifp != NULL) {
714		ic = ifp->if_l2com;
715
716		ieee80211_draintask(ic, &sc->sc_restarttask);
717		ieee80211_draintask(ic, &sc->sc_radiotask);
718		wpi_stop(sc);
719		callout_drain(&sc->watchdog_to);
720		callout_drain(&sc->calib_to);
721		ieee80211_ifdetach(ic);
722	}
723
724	WPI_LOCK(sc);
725	if (sc->txq[0].data_dmat) {
726		for (ac = 0; ac < WME_NUM_AC; ac++)
727			wpi_free_tx_ring(sc, &sc->txq[ac]);
728
729		wpi_free_tx_ring(sc, &sc->cmdq);
730		wpi_free_rx_ring(sc, &sc->rxq);
731		wpi_free_shared(sc);
732	}
733
734	if (sc->fw_fp != NULL) {
735		wpi_unload_firmware(sc);
736	}
737
738	if (sc->fw_dma.tag)
739		wpi_free_fwmem(sc);
740	WPI_UNLOCK(sc);
741
742	if (sc->irq != NULL)
743		bus_release_resource(dev, SYS_RES_IRQ, rman_get_rid(sc->irq),
744		    sc->irq);
745	if (sc->mem != NULL)
746		bus_release_resource(dev, SYS_RES_MEMORY,
747		    rman_get_rid(sc->mem), sc->mem);
748
749	if (ifp != NULL)
750		if_free(ifp);
751
752	WPI_LOCK_DESTROY(sc);
753
754	return 0;
755}
756
757static struct ieee80211vap *
758wpi_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
759    enum ieee80211_opmode opmode, int flags,
760    const uint8_t bssid[IEEE80211_ADDR_LEN],
761    const uint8_t mac[IEEE80211_ADDR_LEN])
762{
763	struct wpi_vap *wvp;
764	struct ieee80211vap *vap;
765
766	if (!TAILQ_EMPTY(&ic->ic_vaps))		/* only one at a time */
767		return NULL;
768	wvp = (struct wpi_vap *) malloc(sizeof(struct wpi_vap),
769	    M_80211_VAP, M_NOWAIT | M_ZERO);
770	if (wvp == NULL)
771		return NULL;
772	vap = &wvp->vap;
773	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
774	/* override with driver methods */
775	wvp->newstate = vap->iv_newstate;
776	vap->iv_newstate = wpi_newstate;
777
778	ieee80211_ratectl_init(vap);
779	/* complete setup */
780	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
781	ic->ic_opmode = opmode;
782	return vap;
783}
784
785static void
786wpi_vap_delete(struct ieee80211vap *vap)
787{
788	struct wpi_vap *wvp = WPI_VAP(vap);
789
790	ieee80211_ratectl_deinit(vap);
791	ieee80211_vap_detach(vap);
792	free(wvp, M_80211_VAP);
793}
794
795static void
796wpi_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797{
798	if (error != 0)
799		return;
800
801	KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
802
803	*(bus_addr_t *)arg = segs[0].ds_addr;
804}
805
806/*
807 * Allocates a contiguous block of dma memory of the requested size and
808 * alignment. Due to limitations of the FreeBSD dma subsystem as of 20071217,
809 * allocations greater than 4096 may fail. Hence if the requested alignment is
810 * greater we allocate 'alignment' size extra memory and shift the vaddr and
811 * paddr after the dma load. This bypasses the problem at the cost of a little
812 * more memory.
813 */
814static int
815wpi_dma_contig_alloc(struct wpi_softc *sc, struct wpi_dma_info *dma,
816    void **kvap, bus_size_t size, bus_size_t alignment, int flags)
817{
818	int error;
819	bus_size_t align;
820	bus_size_t reqsize;
821
822	DPRINTFN(WPI_DEBUG_DMA,
823	    ("Size: %zd - alignment %zd\n", size, alignment));
824
825	dma->size = size;
826	dma->tag = NULL;
827
828	if (alignment > 4096) {
829		align = PAGE_SIZE;
830		reqsize = size + alignment;
831	} else {
832		align = alignment;
833		reqsize = size;
834	}
835	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), align,
836	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
837	    NULL, NULL, reqsize,
838	    1, reqsize, flags,
839	    NULL, NULL, &dma->tag);
840	if (error != 0) {
841		device_printf(sc->sc_dev,
842		    "could not create shared page DMA tag\n");
843		goto fail;
844	}
845	error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr_start,
846	    flags | BUS_DMA_ZERO, &dma->map);
847	if (error != 0) {
848		device_printf(sc->sc_dev,
849		    "could not allocate shared page DMA memory\n");
850		goto fail;
851	}
852
853	error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr_start,
854	    reqsize,  wpi_dma_map_addr, &dma->paddr_start, flags);
855
856	/* Save the original pointers so we can free all the memory */
857	dma->paddr = dma->paddr_start;
858	dma->vaddr = dma->vaddr_start;
859
860	/*
861	 * Check the alignment and increment by 4096 until we get the
862	 * requested alignment. Fail if can't obtain the alignment
863	 * we requested.
864	 */
865	if ((dma->paddr & (alignment -1 )) != 0) {
866		int i;
867
868		for (i = 0; i < alignment / 4096; i++) {
869			if ((dma->paddr & (alignment - 1 )) == 0)
870				break;
871			dma->paddr += 4096;
872			dma->vaddr += 4096;
873		}
874		if (i == alignment / 4096) {
875			device_printf(sc->sc_dev,
876			    "alignment requirement was not satisfied\n");
877			goto fail;
878		}
879	}
880
881	if (error != 0) {
882		device_printf(sc->sc_dev,
883		    "could not load shared page DMA map\n");
884		goto fail;
885	}
886
887	if (kvap != NULL)
888		*kvap = dma->vaddr;
889
890	return 0;
891
892fail:
893	wpi_dma_contig_free(dma);
894	return error;
895}
896
897static void
898wpi_dma_contig_free(struct wpi_dma_info *dma)
899{
900	if (dma->tag) {
901		if (dma->map != NULL) {
902			if (dma->paddr_start != 0) {
903				bus_dmamap_sync(dma->tag, dma->map,
904				    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
905				bus_dmamap_unload(dma->tag, dma->map);
906			}
907			bus_dmamem_free(dma->tag, &dma->vaddr_start, dma->map);
908		}
909		bus_dma_tag_destroy(dma->tag);
910	}
911}
912
913/*
914 * Allocate a shared page between host and NIC.
915 */
916static int
917wpi_alloc_shared(struct wpi_softc *sc)
918{
919	int error;
920
921	error = wpi_dma_contig_alloc(sc, &sc->shared_dma,
922	    (void **)&sc->shared, sizeof (struct wpi_shared),
923	    PAGE_SIZE,
924	    BUS_DMA_NOWAIT);
925
926	if (error != 0) {
927		device_printf(sc->sc_dev,
928		    "could not allocate shared area DMA memory\n");
929	}
930
931	return error;
932}
933
934static void
935wpi_free_shared(struct wpi_softc *sc)
936{
937	wpi_dma_contig_free(&sc->shared_dma);
938}
939
940static int
941wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
942{
943
944	int i, error;
945
946	ring->cur = 0;
947
948	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
949	    (void **)&ring->desc, WPI_RX_RING_COUNT * sizeof (uint32_t),
950	    WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
951
952	if (error != 0) {
953		device_printf(sc->sc_dev,
954		    "%s: could not allocate rx ring DMA memory, error %d\n",
955		    __func__, error);
956		goto fail;
957	}
958
959        error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
960	    BUS_SPACE_MAXADDR_32BIT,
961            BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
962            MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
963        if (error != 0) {
964                device_printf(sc->sc_dev,
965		    "%s: bus_dma_tag_create_failed, error %d\n",
966		    __func__, error);
967                goto fail;
968        }
969
970	/*
971	 * Setup Rx buffers.
972	 */
973	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
974		struct wpi_rx_data *data = &ring->data[i];
975		struct mbuf *m;
976		bus_addr_t paddr;
977
978		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
979		if (error != 0) {
980			device_printf(sc->sc_dev,
981			    "%s: bus_dmamap_create failed, error %d\n",
982			    __func__, error);
983			goto fail;
984		}
985		m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
986		if (m == NULL) {
987			device_printf(sc->sc_dev,
988			   "%s: could not allocate rx mbuf\n", __func__);
989			error = ENOMEM;
990			goto fail;
991		}
992		/* map page */
993		error = bus_dmamap_load(ring->data_dmat, data->map,
994		    mtod(m, caddr_t), MJUMPAGESIZE,
995		    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
996		if (error != 0 && error != EFBIG) {
997			device_printf(sc->sc_dev,
998			    "%s: bus_dmamap_load failed, error %d\n",
999			    __func__, error);
1000			m_freem(m);
1001			error = ENOMEM;	/* XXX unique code */
1002			goto fail;
1003		}
1004		bus_dmamap_sync(ring->data_dmat, data->map,
1005		    BUS_DMASYNC_PREWRITE);
1006
1007		data->m = m;
1008		ring->desc[i] = htole32(paddr);
1009	}
1010	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
1011	    BUS_DMASYNC_PREWRITE);
1012	return 0;
1013fail:
1014	wpi_free_rx_ring(sc, ring);
1015	return error;
1016}
1017
1018static void
1019wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1020{
1021	int ntries;
1022
1023	wpi_mem_lock(sc);
1024
1025	WPI_WRITE(sc, WPI_RX_CONFIG, 0);
1026
1027	for (ntries = 0; ntries < 100; ntries++) {
1028		if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
1029			break;
1030		DELAY(10);
1031	}
1032
1033	wpi_mem_unlock(sc);
1034
1035#ifdef WPI_DEBUG
1036	if (ntries == 100 && wpi_debug > 0)
1037		device_printf(sc->sc_dev, "timeout resetting Rx ring\n");
1038#endif
1039
1040	ring->cur = 0;
1041}
1042
1043static void
1044wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
1045{
1046	int i;
1047
1048	wpi_dma_contig_free(&ring->desc_dma);
1049
1050	for (i = 0; i < WPI_RX_RING_COUNT; i++) {
1051		struct wpi_rx_data *data = &ring->data[i];
1052
1053		if (data->m != NULL) {
1054			bus_dmamap_sync(ring->data_dmat, data->map,
1055			    BUS_DMASYNC_POSTREAD);
1056			bus_dmamap_unload(ring->data_dmat, data->map);
1057			m_freem(data->m);
1058		}
1059		if (data->map != NULL)
1060			bus_dmamap_destroy(ring->data_dmat, data->map);
1061	}
1062}
1063
1064static int
1065wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
1066	int qid)
1067{
1068	struct wpi_tx_data *data;
1069	int i, error;
1070
1071	ring->qid = qid;
1072	ring->count = count;
1073	ring->queued = 0;
1074	ring->cur = 0;
1075	ring->data = NULL;
1076
1077	error = wpi_dma_contig_alloc(sc, &ring->desc_dma,
1078		(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
1079		WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
1080
1081	if (error != 0) {
1082	    device_printf(sc->sc_dev, "could not allocate tx dma memory\n");
1083	    goto fail;
1084	}
1085
1086	/* update shared page with ring's base address */
1087	sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
1088
1089	error = wpi_dma_contig_alloc(sc, &ring->cmd_dma, (void **)&ring->cmd,
1090		count * sizeof (struct wpi_tx_cmd), WPI_RING_DMA_ALIGN,
1091		BUS_DMA_NOWAIT);
1092
1093	if (error != 0) {
1094		device_printf(sc->sc_dev,
1095		    "could not allocate tx command DMA memory\n");
1096		goto fail;
1097	}
1098
1099	ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
1100	    M_NOWAIT | M_ZERO);
1101	if (ring->data == NULL) {
1102		device_printf(sc->sc_dev,
1103		    "could not allocate tx data slots\n");
1104		goto fail;
1105	}
1106
1107	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
1108	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1109	    WPI_MAX_SCATTER - 1, MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL,
1110	    &ring->data_dmat);
1111	if (error != 0) {
1112		device_printf(sc->sc_dev, "could not create data DMA tag\n");
1113		goto fail;
1114	}
1115
1116	for (i = 0; i < count; i++) {
1117		data = &ring->data[i];
1118
1119		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
1120		if (error != 0) {
1121			device_printf(sc->sc_dev,
1122			    "could not create tx buf DMA map\n");
1123			goto fail;
1124		}
1125		bus_dmamap_sync(ring->data_dmat, data->map,
1126		    BUS_DMASYNC_PREWRITE);
1127	}
1128
1129	return 0;
1130
1131fail:
1132	wpi_free_tx_ring(sc, ring);
1133	return error;
1134}
1135
1136static void
1137wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1138{
1139	struct wpi_tx_data *data;
1140	int i, ntries;
1141
1142	wpi_mem_lock(sc);
1143
1144	WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
1145	for (ntries = 0; ntries < 100; ntries++) {
1146		if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
1147			break;
1148		DELAY(10);
1149	}
1150#ifdef WPI_DEBUG
1151	if (ntries == 100 && wpi_debug > 0)
1152		device_printf(sc->sc_dev, "timeout resetting Tx ring %d\n",
1153		    ring->qid);
1154#endif
1155	wpi_mem_unlock(sc);
1156
1157	for (i = 0; i < ring->count; i++) {
1158		data = &ring->data[i];
1159
1160		if (data->m != NULL) {
1161			bus_dmamap_unload(ring->data_dmat, data->map);
1162			m_freem(data->m);
1163			data->m = NULL;
1164		}
1165	}
1166
1167	ring->queued = 0;
1168	ring->cur = 0;
1169}
1170
1171static void
1172wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
1173{
1174	struct wpi_tx_data *data;
1175	int i;
1176
1177	wpi_dma_contig_free(&ring->desc_dma);
1178	wpi_dma_contig_free(&ring->cmd_dma);
1179
1180	if (ring->data != NULL) {
1181		for (i = 0; i < ring->count; i++) {
1182			data = &ring->data[i];
1183
1184			if (data->m != NULL) {
1185				bus_dmamap_sync(ring->data_dmat, data->map,
1186				    BUS_DMASYNC_POSTWRITE);
1187				bus_dmamap_unload(ring->data_dmat, data->map);
1188				m_freem(data->m);
1189				data->m = NULL;
1190			}
1191		}
1192		free(ring->data, M_DEVBUF);
1193	}
1194
1195	if (ring->data_dmat != NULL)
1196		bus_dma_tag_destroy(ring->data_dmat);
1197}
1198
1199static int
1200wpi_shutdown(device_t dev)
1201{
1202	struct wpi_softc *sc = device_get_softc(dev);
1203
1204	WPI_LOCK(sc);
1205	wpi_stop_locked(sc);
1206	wpi_unload_firmware(sc);
1207	WPI_UNLOCK(sc);
1208
1209	return 0;
1210}
1211
1212static int
1213wpi_suspend(device_t dev)
1214{
1215	struct wpi_softc *sc = device_get_softc(dev);
1216	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1217
1218	ieee80211_suspend_all(ic);
1219	return 0;
1220}
1221
1222static int
1223wpi_resume(device_t dev)
1224{
1225	struct wpi_softc *sc = device_get_softc(dev);
1226	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1227
1228	pci_write_config(dev, 0x41, 0, 1);
1229
1230	ieee80211_resume_all(ic);
1231	return 0;
1232}
1233
1234/**
1235 * Called by net80211 when ever there is a change to 80211 state machine
1236 */
1237static int
1238wpi_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
1239{
1240	struct wpi_vap *wvp = WPI_VAP(vap);
1241	struct ieee80211com *ic = vap->iv_ic;
1242	struct ifnet *ifp = ic->ic_ifp;
1243	struct wpi_softc *sc = ifp->if_softc;
1244	int error;
1245
1246	DPRINTF(("%s: %s -> %s flags 0x%x\n", __func__,
1247		ieee80211_state_name[vap->iv_state],
1248		ieee80211_state_name[nstate], sc->flags));
1249
1250	IEEE80211_UNLOCK(ic);
1251	WPI_LOCK(sc);
1252	if (nstate == IEEE80211_S_SCAN && vap->iv_state != IEEE80211_S_INIT) {
1253		/*
1254		 * On !INIT -> SCAN transitions, we need to clear any possible
1255		 * knowledge about associations.
1256		 */
1257		error = wpi_config(sc);
1258		if (error != 0) {
1259			device_printf(sc->sc_dev,
1260			    "%s: device config failed, error %d\n",
1261			    __func__, error);
1262		}
1263	}
1264	if (nstate == IEEE80211_S_AUTH ||
1265	    (nstate == IEEE80211_S_ASSOC && vap->iv_state == IEEE80211_S_RUN)) {
1266		/*
1267		 * The node must be registered in the firmware before auth.
1268		 * Also the associd must be cleared on RUN -> ASSOC
1269		 * transitions.
1270		 */
1271		error = wpi_auth(sc, vap);
1272		if (error != 0) {
1273			device_printf(sc->sc_dev,
1274			    "%s: could not move to auth state, error %d\n",
1275			    __func__, error);
1276		}
1277	}
1278	if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
1279		error = wpi_run(sc, vap);
1280		if (error != 0) {
1281			device_printf(sc->sc_dev,
1282			    "%s: could not move to run state, error %d\n",
1283			    __func__, error);
1284		}
1285	}
1286	if (nstate == IEEE80211_S_RUN) {
1287		/* RUN -> RUN transition; just restart the timers */
1288		wpi_calib_timeout(sc);
1289		/* XXX split out rate control timer */
1290	}
1291	WPI_UNLOCK(sc);
1292	IEEE80211_LOCK(ic);
1293	return wvp->newstate(vap, nstate, arg);
1294}
1295
1296/*
1297 * Grab exclusive access to NIC memory.
1298 */
1299static void
1300wpi_mem_lock(struct wpi_softc *sc)
1301{
1302	int ntries;
1303	uint32_t tmp;
1304
1305	tmp = WPI_READ(sc, WPI_GPIO_CTL);
1306	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
1307
1308	/* spin until we actually get the lock */
1309	for (ntries = 0; ntries < 100; ntries++) {
1310		if ((WPI_READ(sc, WPI_GPIO_CTL) &
1311			(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
1312			break;
1313		DELAY(10);
1314	}
1315	if (ntries == 100)
1316		device_printf(sc->sc_dev, "could not lock memory\n");
1317}
1318
1319/*
1320 * Release lock on NIC memory.
1321 */
1322static void
1323wpi_mem_unlock(struct wpi_softc *sc)
1324{
1325	uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
1326	WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
1327}
1328
1329static uint32_t
1330wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
1331{
1332	WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
1333	return WPI_READ(sc, WPI_READ_MEM_DATA);
1334}
1335
1336static void
1337wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
1338{
1339	WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
1340	WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
1341}
1342
1343static void
1344wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
1345    const uint32_t *data, int wlen)
1346{
1347	for (; wlen > 0; wlen--, data++, addr+=4)
1348		wpi_mem_write(sc, addr, *data);
1349}
1350
1351/*
1352 * Read data from the EEPROM.  We access EEPROM through the MAC instead of
1353 * using the traditional bit-bang method. Data is read up until len bytes have
1354 * been obtained.
1355 */
1356static uint16_t
1357wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
1358{
1359	int ntries;
1360	uint32_t val;
1361	uint8_t *out = data;
1362
1363	wpi_mem_lock(sc);
1364
1365	for (; len > 0; len -= 2, addr++) {
1366		WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
1367
1368		for (ntries = 0; ntries < 10; ntries++) {
1369			if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) & WPI_EEPROM_READY)
1370				break;
1371			DELAY(5);
1372		}
1373
1374		if (ntries == 10) {
1375			device_printf(sc->sc_dev, "could not read EEPROM\n");
1376			return ETIMEDOUT;
1377		}
1378
1379		*out++= val >> 16;
1380		if (len > 1)
1381			*out ++= val >> 24;
1382	}
1383
1384	wpi_mem_unlock(sc);
1385
1386	return 0;
1387}
1388
1389/*
1390 * The firmware text and data segments are transferred to the NIC using DMA.
1391 * The driver just copies the firmware into DMA-safe memory and tells the NIC
1392 * where to find it.  Once the NIC has copied the firmware into its internal
1393 * memory, we can free our local copy in the driver.
1394 */
1395static int
1396wpi_load_microcode(struct wpi_softc *sc, const uint8_t *fw, int size)
1397{
1398	int error, ntries;
1399
1400	DPRINTFN(WPI_DEBUG_HW,("Loading microcode  size 0x%x\n", size));
1401
1402	size /= sizeof(uint32_t);
1403
1404	wpi_mem_lock(sc);
1405
1406	wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
1407	    (const uint32_t *)fw, size);
1408
1409	wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
1410	wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
1411	wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
1412
1413	/* run microcode */
1414	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
1415
1416	/* wait while the adapter is busy copying the firmware */
1417	for (error = 0, ntries = 0; ntries < 1000; ntries++) {
1418		uint32_t status = WPI_READ(sc, WPI_TX_STATUS);
1419		DPRINTFN(WPI_DEBUG_HW,
1420		    ("firmware status=0x%x, val=0x%x, result=0x%x\n", status,
1421		     WPI_TX_IDLE(6), status & WPI_TX_IDLE(6)));
1422		if (status & WPI_TX_IDLE(6)) {
1423			DPRINTFN(WPI_DEBUG_HW,
1424			    ("Status Match! - ntries = %d\n", ntries));
1425			break;
1426		}
1427		DELAY(10);
1428	}
1429	if (ntries == 1000) {
1430		device_printf(sc->sc_dev, "timeout transferring firmware\n");
1431		error = ETIMEDOUT;
1432	}
1433
1434	/* start the microcode executing */
1435	wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
1436
1437	wpi_mem_unlock(sc);
1438
1439	return (error);
1440}
1441
1442static void
1443wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
1444	struct wpi_rx_data *data)
1445{
1446	struct ifnet *ifp = sc->sc_ifp;
1447	struct ieee80211com *ic = ifp->if_l2com;
1448	struct wpi_rx_ring *ring = &sc->rxq;
1449	struct wpi_rx_stat *stat;
1450	struct wpi_rx_head *head;
1451	struct wpi_rx_tail *tail;
1452	struct ieee80211_node *ni;
1453	struct mbuf *m, *mnew;
1454	bus_addr_t paddr;
1455	int error;
1456
1457	stat = (struct wpi_rx_stat *)(desc + 1);
1458
1459	if (stat->len > WPI_STAT_MAXLEN) {
1460		device_printf(sc->sc_dev, "invalid rx statistic header\n");
1461		ifp->if_ierrors++;
1462		return;
1463	}
1464
1465	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
1466	head = (struct wpi_rx_head *)((caddr_t)(stat + 1) + stat->len);
1467	tail = (struct wpi_rx_tail *)((caddr_t)(head + 1) + le16toh(head->len));
1468
1469	DPRINTFN(WPI_DEBUG_RX, ("rx intr: idx=%d len=%d stat len=%d rssi=%d "
1470	    "rate=%x chan=%d tstamp=%ju\n", ring->cur, le32toh(desc->len),
1471	    le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
1472	    (uintmax_t)le64toh(tail->tstamp)));
1473
1474	/* discard Rx frames with bad CRC early */
1475	if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
1476		DPRINTFN(WPI_DEBUG_RX, ("%s: rx flags error %x\n", __func__,
1477		    le32toh(tail->flags)));
1478		ifp->if_ierrors++;
1479		return;
1480	}
1481	if (le16toh(head->len) < sizeof (struct ieee80211_frame)) {
1482		DPRINTFN(WPI_DEBUG_RX, ("%s: frame too short: %d\n", __func__,
1483		    le16toh(head->len)));
1484		ifp->if_ierrors++;
1485		return;
1486	}
1487
1488	/* XXX don't need mbuf, just dma buffer */
1489	mnew = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
1490	if (mnew == NULL) {
1491		DPRINTFN(WPI_DEBUG_RX, ("%s: no mbuf to restock ring\n",
1492		    __func__));
1493		ifp->if_ierrors++;
1494		return;
1495	}
1496	bus_dmamap_unload(ring->data_dmat, data->map);
1497
1498	error = bus_dmamap_load(ring->data_dmat, data->map,
1499	    mtod(mnew, caddr_t), MJUMPAGESIZE,
1500	    wpi_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
1501	if (error != 0 && error != EFBIG) {
1502		device_printf(sc->sc_dev,
1503		    "%s: bus_dmamap_load failed, error %d\n", __func__, error);
1504		m_freem(mnew);
1505		ifp->if_ierrors++;
1506		return;
1507	}
1508	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1509
1510	/* finalize mbuf and swap in new one */
1511	m = data->m;
1512	m->m_pkthdr.rcvif = ifp;
1513	m->m_data = (caddr_t)(head + 1);
1514	m->m_pkthdr.len = m->m_len = le16toh(head->len);
1515
1516	data->m = mnew;
1517	/* update Rx descriptor */
1518	ring->desc[ring->cur] = htole32(paddr);
1519
1520	if (ieee80211_radiotap_active(ic)) {
1521		struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
1522
1523		tap->wr_flags = 0;
1524		tap->wr_chan_freq =
1525			htole16(ic->ic_channels[head->chan].ic_freq);
1526		tap->wr_chan_flags =
1527			htole16(ic->ic_channels[head->chan].ic_flags);
1528		tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
1529		tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
1530		tap->wr_tsft = tail->tstamp;
1531		tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
1532		switch (head->rate) {
1533		/* CCK rates */
1534		case  10: tap->wr_rate =   2; break;
1535		case  20: tap->wr_rate =   4; break;
1536		case  55: tap->wr_rate =  11; break;
1537		case 110: tap->wr_rate =  22; break;
1538		/* OFDM rates */
1539		case 0xd: tap->wr_rate =  12; break;
1540		case 0xf: tap->wr_rate =  18; break;
1541		case 0x5: tap->wr_rate =  24; break;
1542		case 0x7: tap->wr_rate =  36; break;
1543		case 0x9: tap->wr_rate =  48; break;
1544		case 0xb: tap->wr_rate =  72; break;
1545		case 0x1: tap->wr_rate =  96; break;
1546		case 0x3: tap->wr_rate = 108; break;
1547		/* unknown rate: should not happen */
1548		default:  tap->wr_rate =   0;
1549		}
1550		if (le16toh(head->flags) & 0x4)
1551			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1552	}
1553
1554	WPI_UNLOCK(sc);
1555
1556	ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
1557	if (ni != NULL) {
1558		(void) ieee80211_input(ni, m, stat->rssi, 0);
1559		ieee80211_free_node(ni);
1560	} else
1561		(void) ieee80211_input_all(ic, m, stat->rssi, 0);
1562
1563	WPI_LOCK(sc);
1564}
1565
1566static void
1567wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1568{
1569	struct ifnet *ifp = sc->sc_ifp;
1570	struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
1571	struct wpi_tx_data *txdata = &ring->data[desc->idx];
1572	struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
1573	struct ieee80211_node *ni = txdata->ni;
1574	struct ieee80211vap *vap = ni->ni_vap;
1575	int retrycnt = 0;
1576
1577	DPRINTFN(WPI_DEBUG_TX, ("tx done: qid=%d idx=%d retries=%d nkill=%d "
1578	    "rate=%x duration=%d status=%x\n", desc->qid, desc->idx,
1579	    stat->ntries, stat->nkill, stat->rate, le32toh(stat->duration),
1580	    le32toh(stat->status)));
1581
1582	/*
1583	 * Update rate control statistics for the node.
1584	 * XXX we should not count mgmt frames since they're always sent at
1585	 * the lowest available bit-rate.
1586	 * XXX frames w/o ACK shouldn't be used either
1587	 */
1588	if (stat->ntries > 0) {
1589		DPRINTFN(WPI_DEBUG_TX, ("%d retries\n", stat->ntries));
1590		retrycnt = 1;
1591	}
1592	ieee80211_ratectl_tx_complete(vap, ni, IEEE80211_RATECTL_TX_SUCCESS,
1593	    &retrycnt, NULL);
1594
1595	/* XXX oerrors should only count errors !maxtries */
1596	if ((le32toh(stat->status) & 0xff) != 1)
1597		ifp->if_oerrors++;
1598	else
1599		ifp->if_opackets++;
1600
1601	bus_dmamap_sync(ring->data_dmat, txdata->map, BUS_DMASYNC_POSTWRITE);
1602	bus_dmamap_unload(ring->data_dmat, txdata->map);
1603	/* XXX handle M_TXCB? */
1604	m_freem(txdata->m);
1605	txdata->m = NULL;
1606	ieee80211_free_node(txdata->ni);
1607	txdata->ni = NULL;
1608
1609	ring->queued--;
1610
1611	sc->sc_tx_timer = 0;
1612	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1613	wpi_start_locked(ifp);
1614}
1615
1616static void
1617wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
1618{
1619	struct wpi_tx_ring *ring = &sc->cmdq;
1620	struct wpi_tx_data *data;
1621
1622	DPRINTFN(WPI_DEBUG_CMD, ("cmd notification qid=%x idx=%d flags=%x "
1623				 "type=%s len=%d\n", desc->qid, desc->idx,
1624				 desc->flags, wpi_cmd_str(desc->type),
1625				 le32toh(desc->len)));
1626
1627	if ((desc->qid & 7) != 4)
1628		return;	/* not a command ack */
1629
1630	data = &ring->data[desc->idx];
1631
1632	/* if the command was mapped in a mbuf, free it */
1633	if (data->m != NULL) {
1634		bus_dmamap_unload(ring->data_dmat, data->map);
1635		m_freem(data->m);
1636		data->m = NULL;
1637	}
1638
1639	sc->flags &= ~WPI_FLAG_BUSY;
1640	wakeup(&ring->cmd[desc->idx]);
1641}
1642
1643static void
1644wpi_notif_intr(struct wpi_softc *sc)
1645{
1646	struct ifnet *ifp = sc->sc_ifp;
1647	struct ieee80211com *ic = ifp->if_l2com;
1648	struct wpi_rx_desc *desc;
1649	struct wpi_rx_data *data;
1650	uint32_t hw;
1651
1652	bus_dmamap_sync(sc->shared_dma.tag, sc->shared_dma.map,
1653	    BUS_DMASYNC_POSTREAD);
1654
1655	hw = le32toh(sc->shared->next);
1656	while (sc->rxq.cur != hw) {
1657		data = &sc->rxq.data[sc->rxq.cur];
1658
1659		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1660		    BUS_DMASYNC_POSTREAD);
1661		desc = (void *)data->m->m_ext.ext_buf;
1662
1663		DPRINTFN(WPI_DEBUG_NOTIFY,
1664			 ("notify qid=%x idx=%d flags=%x type=%d len=%d\n",
1665			  desc->qid,
1666			  desc->idx,
1667			  desc->flags,
1668			  desc->type,
1669			  le32toh(desc->len)));
1670
1671		if (!(desc->qid & 0x80))	/* reply to a command */
1672			wpi_cmd_intr(sc, desc);
1673
1674		switch (desc->type) {
1675		case WPI_RX_DONE:
1676			/* a 802.11 frame was received */
1677			wpi_rx_intr(sc, desc, data);
1678			break;
1679
1680		case WPI_TX_DONE:
1681			/* a 802.11 frame has been transmitted */
1682			wpi_tx_intr(sc, desc);
1683			break;
1684
1685		case WPI_UC_READY:
1686		{
1687			struct wpi_ucode_info *uc =
1688				(struct wpi_ucode_info *)(desc + 1);
1689
1690			/* the microcontroller is ready */
1691			DPRINTF(("microcode alive notification version %x "
1692				"alive %x\n", le32toh(uc->version),
1693				le32toh(uc->valid)));
1694
1695			if (le32toh(uc->valid) != 1) {
1696				device_printf(sc->sc_dev,
1697				    "microcontroller initialization failed\n");
1698				wpi_stop_locked(sc);
1699			}
1700			break;
1701		}
1702		case WPI_STATE_CHANGED:
1703		{
1704			uint32_t *status = (uint32_t *)(desc + 1);
1705
1706			/* enabled/disabled notification */
1707			DPRINTF(("state changed to %x\n", le32toh(*status)));
1708
1709			if (le32toh(*status) & 1) {
1710				device_printf(sc->sc_dev,
1711				    "Radio transmitter is switched off\n");
1712				sc->flags |= WPI_FLAG_HW_RADIO_OFF;
1713				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1714				/* Disable firmware commands */
1715				WPI_WRITE(sc, WPI_UCODE_SET, WPI_DISABLE_CMD);
1716			}
1717			break;
1718		}
1719		case WPI_START_SCAN:
1720		{
1721#ifdef WPI_DEBUG
1722			struct wpi_start_scan *scan =
1723				(struct wpi_start_scan *)(desc + 1);
1724#endif
1725
1726			DPRINTFN(WPI_DEBUG_SCANNING,
1727				 ("scanning channel %d status %x\n",
1728			    scan->chan, le32toh(scan->status)));
1729			break;
1730		}
1731		case WPI_STOP_SCAN:
1732		{
1733#ifdef WPI_DEBUG
1734			struct wpi_stop_scan *scan =
1735				(struct wpi_stop_scan *)(desc + 1);
1736#endif
1737			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1738
1739			DPRINTFN(WPI_DEBUG_SCANNING,
1740			    ("scan finished nchan=%d status=%d chan=%d\n",
1741			     scan->nchan, scan->status, scan->chan));
1742
1743			sc->sc_scan_timer = 0;
1744			ieee80211_scan_next(vap);
1745			break;
1746		}
1747		case WPI_MISSED_BEACON:
1748		{
1749			struct wpi_missed_beacon *beacon =
1750				(struct wpi_missed_beacon *)(desc + 1);
1751			struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1752
1753			if (le32toh(beacon->consecutive) >=
1754			    vap->iv_bmissthreshold) {
1755				DPRINTF(("Beacon miss: %u >= %u\n",
1756					 le32toh(beacon->consecutive),
1757					 vap->iv_bmissthreshold));
1758				ieee80211_beacon_miss(ic);
1759			}
1760			break;
1761		}
1762		}
1763
1764		sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
1765	}
1766
1767	/* tell the firmware what we have processed */
1768	hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
1769	WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
1770}
1771
1772static void
1773wpi_intr(void *arg)
1774{
1775	struct wpi_softc *sc = arg;
1776	uint32_t r;
1777
1778	WPI_LOCK(sc);
1779
1780	r = WPI_READ(sc, WPI_INTR);
1781	if (r == 0 || r == 0xffffffff) {
1782		WPI_UNLOCK(sc);
1783		return;
1784	}
1785
1786	/* disable interrupts */
1787	WPI_WRITE(sc, WPI_MASK, 0);
1788	/* ack interrupts */
1789	WPI_WRITE(sc, WPI_INTR, r);
1790
1791	if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
1792		struct ifnet *ifp = sc->sc_ifp;
1793		struct ieee80211com *ic = ifp->if_l2com;
1794		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1795
1796		device_printf(sc->sc_dev, "fatal firmware error\n");
1797		DPRINTFN(6,("(%s)\n", (r & WPI_SW_ERROR) ? "(Software Error)" :
1798				"(Hardware Error)"));
1799		if (vap != NULL)
1800			ieee80211_cancel_scan(vap);
1801		ieee80211_runtask(ic, &sc->sc_restarttask);
1802		sc->flags &= ~WPI_FLAG_BUSY;
1803		WPI_UNLOCK(sc);
1804		return;
1805	}
1806
1807	if (r & WPI_RX_INTR)
1808		wpi_notif_intr(sc);
1809
1810	if (r & WPI_ALIVE_INTR)	/* firmware initialized */
1811		wakeup(sc);
1812
1813	/* re-enable interrupts */
1814	if (sc->sc_ifp->if_flags & IFF_UP)
1815		WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
1816
1817	WPI_UNLOCK(sc);
1818}
1819
1820static uint8_t
1821wpi_plcp_signal(int rate)
1822{
1823	switch (rate) {
1824	/* CCK rates (returned values are device-dependent) */
1825	case 2:		return 10;
1826	case 4:		return 20;
1827	case 11:	return 55;
1828	case 22:	return 110;
1829
1830	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1831	/* R1-R4 (ral/ural is R4-R1) */
1832	case 12:	return 0xd;
1833	case 18:	return 0xf;
1834	case 24:	return 0x5;
1835	case 36:	return 0x7;
1836	case 48:	return 0x9;
1837	case 72:	return 0xb;
1838	case 96:	return 0x1;
1839	case 108:	return 0x3;
1840
1841	/* unsupported rates (should not get there) */
1842	default:	return 0;
1843	}
1844}
1845
1846/* quickly determine if a given rate is CCK or OFDM */
1847#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1848
1849/*
1850 * Construct the data packet for a transmit buffer and acutally put
1851 * the buffer onto the transmit ring, kicking the card to process the
1852 * the buffer.
1853 */
1854static int
1855wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
1856	int ac)
1857{
1858	struct ieee80211vap *vap = ni->ni_vap;
1859	struct ifnet *ifp = sc->sc_ifp;
1860	struct ieee80211com *ic = ifp->if_l2com;
1861	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
1862	struct wpi_tx_ring *ring = &sc->txq[ac];
1863	struct wpi_tx_desc *desc;
1864	struct wpi_tx_data *data;
1865	struct wpi_tx_cmd *cmd;
1866	struct wpi_cmd_data *tx;
1867	struct ieee80211_frame *wh;
1868	const struct ieee80211_txparam *tp;
1869	struct ieee80211_key *k;
1870	struct mbuf *mnew;
1871	int i, error, nsegs, rate, hdrlen, ismcast;
1872	bus_dma_segment_t segs[WPI_MAX_SCATTER];
1873
1874	desc = &ring->desc[ring->cur];
1875	data = &ring->data[ring->cur];
1876
1877	wh = mtod(m0, struct ieee80211_frame *);
1878
1879	hdrlen = ieee80211_hdrsize(wh);
1880	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
1881
1882	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1883		k = ieee80211_crypto_encap(ni, m0);
1884		if (k == NULL) {
1885			m_freem(m0);
1886			return ENOBUFS;
1887		}
1888		/* packet header may have moved, reset our local pointer */
1889		wh = mtod(m0, struct ieee80211_frame *);
1890	}
1891
1892	cmd = &ring->cmd[ring->cur];
1893	cmd->code = WPI_CMD_TX_DATA;
1894	cmd->flags = 0;
1895	cmd->qid = ring->qid;
1896	cmd->idx = ring->cur;
1897
1898	tx = (struct wpi_cmd_data *)cmd->data;
1899	tx->flags = htole32(WPI_TX_AUTO_SEQ);
1900	tx->timeout = htole16(0);
1901	tx->ofdm_mask = 0xff;
1902	tx->cck_mask = 0x0f;
1903	tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
1904	tx->id = ismcast ? WPI_ID_BROADCAST : WPI_ID_BSS;
1905	tx->len = htole16(m0->m_pkthdr.len);
1906
1907	if (!ismcast) {
1908		if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0 ||
1909		    !cap->cap_wmeParams[ac].wmep_noackPolicy)
1910			tx->flags |= htole32(WPI_TX_NEED_ACK);
1911		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
1912			tx->flags |= htole32(WPI_TX_NEED_RTS|WPI_TX_FULL_TXOP);
1913			tx->rts_ntries = 7;
1914		}
1915	}
1916	/* pick a rate */
1917	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1918	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_MGT) {
1919		uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1920		/* tell h/w to set timestamp in probe responses */
1921		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1922			tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
1923		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
1924		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
1925			tx->timeout = htole16(3);
1926		else
1927			tx->timeout = htole16(2);
1928		rate = tp->mgmtrate;
1929	} else if (ismcast) {
1930		rate = tp->mcastrate;
1931	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1932		rate = tp->ucastrate;
1933	} else {
1934		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1935		rate = ni->ni_txrate;
1936	}
1937	tx->rate = wpi_plcp_signal(rate);
1938
1939	/* be very persistant at sending frames out */
1940#if 0
1941	tx->data_ntries = tp->maxretry;
1942#else
1943	tx->data_ntries = 15;		/* XXX way too high */
1944#endif
1945
1946	if (ieee80211_radiotap_active_vap(vap)) {
1947		struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
1948		tap->wt_flags = 0;
1949		tap->wt_rate = rate;
1950		tap->wt_hwqueue = ac;
1951		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
1952			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
1953
1954		ieee80211_radiotap_tx(vap, m0);
1955	}
1956
1957	/* save and trim IEEE802.11 header */
1958	m_copydata(m0, 0, hdrlen, (caddr_t)&tx->wh);
1959	m_adj(m0, hdrlen);
1960
1961	error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map, m0, segs,
1962	    &nsegs, BUS_DMA_NOWAIT);
1963	if (error != 0 && error != EFBIG) {
1964		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1965		    error);
1966		m_freem(m0);
1967		return error;
1968	}
1969	if (error != 0) {
1970		/* XXX use m_collapse */
1971		mnew = m_defrag(m0, M_NOWAIT);
1972		if (mnew == NULL) {
1973			device_printf(sc->sc_dev,
1974			    "could not defragment mbuf\n");
1975			m_freem(m0);
1976			return ENOBUFS;
1977		}
1978		m0 = mnew;
1979
1980		error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
1981		    m0, segs, &nsegs, BUS_DMA_NOWAIT);
1982		if (error != 0) {
1983			device_printf(sc->sc_dev,
1984			    "could not map mbuf (error %d)\n", error);
1985			m_freem(m0);
1986			return error;
1987		}
1988	}
1989
1990	data->m = m0;
1991	data->ni = ni;
1992
1993	DPRINTFN(WPI_DEBUG_TX, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
1994	    ring->qid, ring->cur, m0->m_pkthdr.len, nsegs));
1995
1996	/* first scatter/gather segment is used by the tx data command */
1997	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
1998	    (1 + nsegs) << 24);
1999	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2000	    ring->cur * sizeof (struct wpi_tx_cmd));
2001	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_data));
2002	for (i = 1; i <= nsegs; i++) {
2003		desc->segs[i].addr = htole32(segs[i - 1].ds_addr);
2004		desc->segs[i].len  = htole32(segs[i - 1].ds_len);
2005	}
2006
2007	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2008	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2009	    BUS_DMASYNC_PREWRITE);
2010
2011	ring->queued++;
2012
2013	/* kick ring */
2014	ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
2015	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2016
2017	return 0;
2018}
2019
2020/**
2021 * Process data waiting to be sent on the IFNET output queue
2022 */
2023static void
2024wpi_start(struct ifnet *ifp)
2025{
2026	struct wpi_softc *sc = ifp->if_softc;
2027
2028	WPI_LOCK(sc);
2029	wpi_start_locked(ifp);
2030	WPI_UNLOCK(sc);
2031}
2032
2033static void
2034wpi_start_locked(struct ifnet *ifp)
2035{
2036	struct wpi_softc *sc = ifp->if_softc;
2037	struct ieee80211_node *ni;
2038	struct mbuf *m;
2039	int ac;
2040
2041	WPI_LOCK_ASSERT(sc);
2042
2043	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2044		return;
2045
2046	for (;;) {
2047		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
2048		if (m == NULL)
2049			break;
2050		ac = M_WME_GETAC(m);
2051		if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
2052			/* there is no place left in this ring */
2053			IFQ_DRV_PREPEND(&ifp->if_snd, m);
2054			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2055			break;
2056		}
2057		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2058		if (wpi_tx_data(sc, m, ni, ac) != 0) {
2059			ieee80211_free_node(ni);
2060			ifp->if_oerrors++;
2061			break;
2062		}
2063		sc->sc_tx_timer = 5;
2064	}
2065}
2066
2067static int
2068wpi_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2069	const struct ieee80211_bpf_params *params)
2070{
2071	struct ieee80211com *ic = ni->ni_ic;
2072	struct ifnet *ifp = ic->ic_ifp;
2073	struct wpi_softc *sc = ifp->if_softc;
2074
2075	/* prevent management frames from being sent if we're not ready */
2076	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2077		m_freem(m);
2078		ieee80211_free_node(ni);
2079		return ENETDOWN;
2080	}
2081	WPI_LOCK(sc);
2082
2083	/* management frames go into ring 0 */
2084	if (sc->txq[0].queued > sc->txq[0].count - 8) {
2085		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2086		m_freem(m);
2087		WPI_UNLOCK(sc);
2088		ieee80211_free_node(ni);
2089		return ENOBUFS;		/* XXX */
2090	}
2091
2092	ifp->if_opackets++;
2093	if (wpi_tx_data(sc, m, ni, 0) != 0)
2094		goto bad;
2095	sc->sc_tx_timer = 5;
2096	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
2097
2098	WPI_UNLOCK(sc);
2099	return 0;
2100bad:
2101	ifp->if_oerrors++;
2102	WPI_UNLOCK(sc);
2103	ieee80211_free_node(ni);
2104	return EIO;		/* XXX */
2105}
2106
2107static int
2108wpi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2109{
2110	struct wpi_softc *sc = ifp->if_softc;
2111	struct ieee80211com *ic = ifp->if_l2com;
2112	struct ifreq *ifr = (struct ifreq *) data;
2113	int error = 0, startall = 0;
2114
2115	switch (cmd) {
2116	case SIOCSIFFLAGS:
2117		WPI_LOCK(sc);
2118		if ((ifp->if_flags & IFF_UP)) {
2119			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2120				wpi_init_locked(sc, 0);
2121				startall = 1;
2122			}
2123		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) ||
2124			   (sc->flags & WPI_FLAG_HW_RADIO_OFF))
2125			wpi_stop_locked(sc);
2126		WPI_UNLOCK(sc);
2127		if (startall)
2128			ieee80211_start_all(ic);
2129		break;
2130	case SIOCGIFMEDIA:
2131		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2132		break;
2133	case SIOCGIFADDR:
2134		error = ether_ioctl(ifp, cmd, data);
2135		break;
2136	default:
2137		error = EINVAL;
2138		break;
2139	}
2140	return error;
2141}
2142
2143/*
2144 * Extract various information from EEPROM.
2145 */
2146static void
2147wpi_read_eeprom(struct wpi_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
2148{
2149	int i;
2150
2151	/* read the hardware capabilities, revision and SKU type */
2152	wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap,1);
2153	wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev,2);
2154	wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
2155
2156	/* read the regulatory domain */
2157	wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, sc->domain, 4);
2158
2159	/* read in the hw MAC address */
2160	wpi_read_prom_data(sc, WPI_EEPROM_MAC, macaddr, 6);
2161
2162	/* read the list of authorized channels */
2163	for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
2164		wpi_read_eeprom_channels(sc,i);
2165
2166	/* read the power level calibration info for each group */
2167	for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
2168		wpi_read_eeprom_group(sc,i);
2169}
2170
2171/*
2172 * Send a command to the firmware.
2173 */
2174static int
2175wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
2176{
2177	struct wpi_tx_ring *ring = &sc->cmdq;
2178	struct wpi_tx_desc *desc;
2179	struct wpi_tx_cmd *cmd;
2180
2181#ifdef WPI_DEBUG
2182	if (!async) {
2183		WPI_LOCK_ASSERT(sc);
2184	}
2185#endif
2186
2187	DPRINTFN(WPI_DEBUG_CMD,("wpi_cmd %d size %d async %d\n", code, size,
2188		    async));
2189
2190	if (sc->flags & WPI_FLAG_BUSY) {
2191		device_printf(sc->sc_dev, "%s: cmd %d not sent, busy\n",
2192		    __func__, code);
2193		return EAGAIN;
2194	}
2195	sc->flags|= WPI_FLAG_BUSY;
2196
2197	KASSERT(size <= sizeof cmd->data, ("command %d too large: %d bytes",
2198	    code, size));
2199
2200	desc = &ring->desc[ring->cur];
2201	cmd = &ring->cmd[ring->cur];
2202
2203	cmd->code = code;
2204	cmd->flags = 0;
2205	cmd->qid = ring->qid;
2206	cmd->idx = ring->cur;
2207	memcpy(cmd->data, buf, size);
2208
2209	desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
2210	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2211		ring->cur * sizeof (struct wpi_tx_cmd));
2212	desc->segs[0].len  = htole32(4 + size);
2213
2214	/* kick cmd ring */
2215	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2216	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2217
2218	if (async) {
2219		sc->flags &= ~ WPI_FLAG_BUSY;
2220		return 0;
2221	}
2222
2223	return msleep(cmd, &sc->sc_mtx, PCATCH, "wpicmd", hz);
2224}
2225
2226static int
2227wpi_wme_update(struct ieee80211com *ic)
2228{
2229#define WPI_EXP2(v)	htole16((1 << (v)) - 1)
2230#define WPI_USEC(v)	htole16(IEEE80211_TXOP_TO_US(v))
2231	struct wpi_softc *sc = ic->ic_ifp->if_softc;
2232	const struct wmeParams *wmep;
2233	struct wpi_wme_setup wme;
2234	int ac;
2235
2236	/* don't override default WME values if WME is not actually enabled */
2237	if (!(ic->ic_flags & IEEE80211_F_WME))
2238		return 0;
2239
2240	wme.flags = 0;
2241	for (ac = 0; ac < WME_NUM_AC; ac++) {
2242		wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2243		wme.ac[ac].aifsn = wmep->wmep_aifsn;
2244		wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
2245		wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
2246		wme.ac[ac].txop  = WPI_USEC(wmep->wmep_txopLimit);
2247
2248		DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
2249		    "txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
2250		    wme.ac[ac].cwmax, wme.ac[ac].txop));
2251	}
2252	return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
2253#undef WPI_USEC
2254#undef WPI_EXP2
2255}
2256
2257/*
2258 * Configure h/w multi-rate retries.
2259 */
2260static int
2261wpi_mrr_setup(struct wpi_softc *sc)
2262{
2263	struct ifnet *ifp = sc->sc_ifp;
2264	struct ieee80211com *ic = ifp->if_l2com;
2265	struct wpi_mrr_setup mrr;
2266	int i, error;
2267
2268	memset(&mrr, 0, sizeof (struct wpi_mrr_setup));
2269
2270	/* CCK rates (not used with 802.11a) */
2271	for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
2272		mrr.rates[i].flags = 0;
2273		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2274		/* fallback to the immediate lower CCK rate (if any) */
2275		mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
2276		/* try one time at this rate before falling back to "next" */
2277		mrr.rates[i].ntries = 1;
2278	}
2279
2280	/* OFDM rates (not used with 802.11b) */
2281	for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
2282		mrr.rates[i].flags = 0;
2283		mrr.rates[i].signal = wpi_ridx_to_plcp[i];
2284		/* fallback to the immediate lower OFDM rate (if any) */
2285		/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
2286		mrr.rates[i].next = (i == WPI_OFDM6) ?
2287		    ((ic->ic_curmode == IEEE80211_MODE_11A) ?
2288			WPI_OFDM6 : WPI_CCK2) :
2289		    i - 1;
2290		/* try one time at this rate before falling back to "next" */
2291		mrr.rates[i].ntries = 1;
2292	}
2293
2294	/* setup MRR for control frames */
2295	mrr.which = WPI_MRR_CTL;
2296	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2297	if (error != 0) {
2298		device_printf(sc->sc_dev,
2299		    "could not setup MRR for control frames\n");
2300		return error;
2301	}
2302
2303	/* setup MRR for data frames */
2304	mrr.which = WPI_MRR_DATA;
2305	error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
2306	if (error != 0) {
2307		device_printf(sc->sc_dev,
2308		    "could not setup MRR for data frames\n");
2309		return error;
2310	}
2311
2312	return 0;
2313}
2314
2315static void
2316wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
2317{
2318	struct wpi_cmd_led led;
2319
2320	led.which = which;
2321	led.unit = htole32(100000);	/* on/off in unit of 100ms */
2322	led.off = off;
2323	led.on = on;
2324
2325	(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
2326}
2327
2328static void
2329wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
2330{
2331	struct wpi_cmd_tsf tsf;
2332	uint64_t val, mod;
2333
2334	memset(&tsf, 0, sizeof tsf);
2335	memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
2336	tsf.bintval = htole16(ni->ni_intval);
2337	tsf.lintval = htole16(10);
2338
2339	/* compute remaining time until next beacon */
2340	val = (uint64_t)ni->ni_intval  * 1024;	/* msec -> usec */
2341	mod = le64toh(tsf.tstamp) % val;
2342	tsf.binitval = htole32((uint32_t)(val - mod));
2343
2344	if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
2345		device_printf(sc->sc_dev, "could not enable TSF\n");
2346}
2347
2348#if 0
2349/*
2350 * Build a beacon frame that the firmware will broadcast periodically in
2351 * IBSS or HostAP modes.
2352 */
2353static int
2354wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
2355{
2356	struct ifnet *ifp = sc->sc_ifp;
2357	struct ieee80211com *ic = ifp->if_l2com;
2358	struct wpi_tx_ring *ring = &sc->cmdq;
2359	struct wpi_tx_desc *desc;
2360	struct wpi_tx_data *data;
2361	struct wpi_tx_cmd *cmd;
2362	struct wpi_cmd_beacon *bcn;
2363	struct ieee80211_beacon_offsets bo;
2364	struct mbuf *m0;
2365	bus_addr_t physaddr;
2366	int error;
2367
2368	desc = &ring->desc[ring->cur];
2369	data = &ring->data[ring->cur];
2370
2371	m0 = ieee80211_beacon_alloc(ic, ni, &bo);
2372	if (m0 == NULL) {
2373		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2374		return ENOMEM;
2375	}
2376
2377	cmd = &ring->cmd[ring->cur];
2378	cmd->code = WPI_CMD_SET_BEACON;
2379	cmd->flags = 0;
2380	cmd->qid = ring->qid;
2381	cmd->idx = ring->cur;
2382
2383	bcn = (struct wpi_cmd_beacon *)cmd->data;
2384	memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
2385	bcn->id = WPI_ID_BROADCAST;
2386	bcn->ofdm_mask = 0xff;
2387	bcn->cck_mask = 0x0f;
2388	bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
2389	bcn->len = htole16(m0->m_pkthdr.len);
2390	bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2391		wpi_plcp_signal(12) : wpi_plcp_signal(2);
2392	bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
2393
2394	/* save and trim IEEE802.11 header */
2395	m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&bcn->wh);
2396	m_adj(m0, sizeof (struct ieee80211_frame));
2397
2398	/* assume beacon frame is contiguous */
2399	error = bus_dmamap_load(ring->data_dmat, data->map, mtod(m0, void *),
2400	    m0->m_pkthdr.len, wpi_dma_map_addr, &physaddr, 0);
2401	if (error != 0) {
2402		device_printf(sc->sc_dev, "could not map beacon\n");
2403		m_freem(m0);
2404		return error;
2405	}
2406
2407	data->m = m0;
2408
2409	/* first scatter/gather segment is used by the beacon command */
2410	desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
2411	desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
2412		ring->cur * sizeof (struct wpi_tx_cmd));
2413	desc->segs[0].len  = htole32(4 + sizeof (struct wpi_cmd_beacon));
2414	desc->segs[1].addr = htole32(physaddr);
2415	desc->segs[1].len  = htole32(m0->m_pkthdr.len);
2416
2417	/* kick cmd ring */
2418	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2419	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2420
2421	return 0;
2422}
2423#endif
2424
2425static int
2426wpi_auth(struct wpi_softc *sc, struct ieee80211vap *vap)
2427{
2428	struct ieee80211com *ic = vap->iv_ic;
2429	struct ieee80211_node *ni = vap->iv_bss;
2430	struct wpi_node_info node;
2431	int error;
2432
2433
2434	/* update adapter's configuration */
2435	sc->config.associd = 0;
2436	sc->config.filter &= ~htole32(WPI_FILTER_BSS);
2437	IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
2438	sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
2439	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
2440		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2441		    WPI_CONFIG_24GHZ);
2442	} else {
2443		sc->config.flags &= ~htole32(WPI_CONFIG_AUTO |
2444		    WPI_CONFIG_24GHZ);
2445	}
2446	if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
2447		sc->config.cck_mask  = 0;
2448		sc->config.ofdm_mask = 0x15;
2449	} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
2450		sc->config.cck_mask  = 0x03;
2451		sc->config.ofdm_mask = 0;
2452	} else {
2453		/* XXX assume 802.11b/g */
2454		sc->config.cck_mask  = 0x0f;
2455		sc->config.ofdm_mask = 0x15;
2456	}
2457
2458	DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
2459		sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
2460	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2461		sizeof (struct wpi_config), 1);
2462	if (error != 0) {
2463		device_printf(sc->sc_dev, "could not configure\n");
2464		return error;
2465	}
2466
2467	/* configuration has changed, set Tx power accordingly */
2468	if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
2469		device_printf(sc->sc_dev, "could not set Tx power\n");
2470		return error;
2471	}
2472
2473	/* add default node */
2474	memset(&node, 0, sizeof node);
2475	IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
2476	node.id = WPI_ID_BSS;
2477	node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
2478	    wpi_plcp_signal(12) : wpi_plcp_signal(2);
2479	node.action = htole32(WPI_ACTION_SET_RATE);
2480	node.antenna = WPI_ANTENNA_BOTH;
2481	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
2482	if (error != 0)
2483		device_printf(sc->sc_dev, "could not add BSS node\n");
2484
2485	return (error);
2486}
2487
2488static int
2489wpi_run(struct wpi_softc *sc, struct ieee80211vap *vap)
2490{
2491	struct ieee80211com *ic = vap->iv_ic;
2492	struct ieee80211_node *ni = vap->iv_bss;
2493	int error;
2494
2495	if (vap->iv_opmode == IEEE80211_M_MONITOR) {
2496		/* link LED blinks while monitoring */
2497		wpi_set_led(sc, WPI_LED_LINK, 5, 5);
2498		return 0;
2499	}
2500
2501	wpi_enable_tsf(sc, ni);
2502
2503	/* update adapter's configuration */
2504	sc->config.associd = htole16(ni->ni_associd & ~0xc000);
2505	/* short preamble/slot time are negotiated when associating */
2506	sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
2507	    WPI_CONFIG_SHSLOT);
2508	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2509		sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
2510	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
2511		sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
2512	sc->config.filter |= htole32(WPI_FILTER_BSS);
2513
2514	/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
2515
2516	DPRINTF(("config chan %d flags %x\n", sc->config.chan,
2517		    sc->config.flags));
2518	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config, sizeof (struct
2519		    wpi_config), 1);
2520	if (error != 0) {
2521		device_printf(sc->sc_dev, "could not update configuration\n");
2522		return error;
2523	}
2524
2525	error = wpi_set_txpower(sc, ni->ni_chan, 1);
2526	if (error != 0) {
2527		device_printf(sc->sc_dev, "could set txpower\n");
2528		return error;
2529	}
2530
2531	/* link LED always on while associated */
2532	wpi_set_led(sc, WPI_LED_LINK, 0, 1);
2533
2534	/* start automatic rate control timer */
2535	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
2536
2537	return (error);
2538}
2539
2540/*
2541 * Send a scan request to the firmware.  Since this command is huge, we map it
2542 * into a mbufcluster instead of using the pre-allocated set of commands. Note,
2543 * much of this code is similar to that in wpi_cmd but because we must manually
2544 * construct the probe & channels, we duplicate what's needed here. XXX In the
2545 * future, this function should be modified to use wpi_cmd to help cleanup the
2546 * code base.
2547 */
2548static int
2549wpi_scan(struct wpi_softc *sc)
2550{
2551	struct ifnet *ifp = sc->sc_ifp;
2552	struct ieee80211com *ic = ifp->if_l2com;
2553	struct ieee80211_scan_state *ss = ic->ic_scan;
2554	struct wpi_tx_ring *ring = &sc->cmdq;
2555	struct wpi_tx_desc *desc;
2556	struct wpi_tx_data *data;
2557	struct wpi_tx_cmd *cmd;
2558	struct wpi_scan_hdr *hdr;
2559	struct wpi_scan_chan *chan;
2560	struct ieee80211_frame *wh;
2561	struct ieee80211_rateset *rs;
2562	struct ieee80211_channel *c;
2563	enum ieee80211_phymode mode;
2564	uint8_t *frm;
2565	int nrates, pktlen, error, i, nssid;
2566	bus_addr_t physaddr;
2567
2568	desc = &ring->desc[ring->cur];
2569	data = &ring->data[ring->cur];
2570
2571	data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
2572	if (data->m == NULL) {
2573		device_printf(sc->sc_dev,
2574		    "could not allocate mbuf for scan command\n");
2575		return ENOMEM;
2576	}
2577
2578	cmd = mtod(data->m, struct wpi_tx_cmd *);
2579	cmd->code = WPI_CMD_SCAN;
2580	cmd->flags = 0;
2581	cmd->qid = ring->qid;
2582	cmd->idx = ring->cur;
2583
2584	hdr = (struct wpi_scan_hdr *)cmd->data;
2585	memset(hdr, 0, sizeof(struct wpi_scan_hdr));
2586
2587	/*
2588	 * Move to the next channel if no packets are received within 5 msecs
2589	 * after sending the probe request (this helps to reduce the duration
2590	 * of active scans).
2591	 */
2592	hdr->quiet = htole16(5);
2593	hdr->threshold = htole16(1);
2594
2595	if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
2596		/* send probe requests at 6Mbps */
2597		hdr->tx.rate = wpi_ridx_to_plcp[WPI_OFDM6];
2598
2599		/* Enable crc checking */
2600		hdr->promotion = htole16(1);
2601	} else {
2602		hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
2603		/* send probe requests at 1Mbps */
2604		hdr->tx.rate = wpi_ridx_to_plcp[WPI_CCK1];
2605	}
2606	hdr->tx.id = WPI_ID_BROADCAST;
2607	hdr->tx.lifetime = htole32(WPI_LIFETIME_INFINITE);
2608	hdr->tx.flags = htole32(WPI_TX_AUTO_SEQ);
2609
2610	memset(hdr->scan_essids, 0, sizeof(hdr->scan_essids));
2611	nssid = MIN(ss->ss_nssid, WPI_SCAN_MAX_ESSIDS);
2612	for (i = 0; i < nssid; i++) {
2613		hdr->scan_essids[i].id = IEEE80211_ELEMID_SSID;
2614		hdr->scan_essids[i].esslen = MIN(ss->ss_ssid[i].len, 32);
2615		memcpy(hdr->scan_essids[i].essid, ss->ss_ssid[i].ssid,
2616		    hdr->scan_essids[i].esslen);
2617#ifdef WPI_DEBUG
2618		if (wpi_debug & WPI_DEBUG_SCANNING) {
2619			printf("Scanning Essid: ");
2620			ieee80211_print_essid(hdr->scan_essids[i].essid,
2621			    hdr->scan_essids[i].esslen);
2622			printf("\n");
2623		}
2624#endif
2625	}
2626
2627	/*
2628	 * Build a probe request frame.  Most of the following code is a
2629	 * copy & paste of what is done in net80211.
2630	 */
2631	wh = (struct ieee80211_frame *)&hdr->scan_essids[4];
2632	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2633		IEEE80211_FC0_SUBTYPE_PROBE_REQ;
2634	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2635	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2636	IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
2637	IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
2638	*(u_int16_t *)&wh->i_dur[0] = 0;	/* filled by h/w */
2639	*(u_int16_t *)&wh->i_seq[0] = 0;	/* filled by h/w */
2640
2641	frm = (uint8_t *)(wh + 1);
2642
2643	/* add essid IE, the hardware will fill this in for us */
2644	*frm++ = IEEE80211_ELEMID_SSID;
2645	*frm++ = 0;
2646
2647	mode = ieee80211_chan2mode(ic->ic_curchan);
2648	rs = &ic->ic_sup_rates[mode];
2649
2650	/* add supported rates IE */
2651	*frm++ = IEEE80211_ELEMID_RATES;
2652	nrates = rs->rs_nrates;
2653	if (nrates > IEEE80211_RATE_SIZE)
2654		nrates = IEEE80211_RATE_SIZE;
2655	*frm++ = nrates;
2656	memcpy(frm, rs->rs_rates, nrates);
2657	frm += nrates;
2658
2659	/* add supported xrates IE */
2660	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2661		nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2662		*frm++ = IEEE80211_ELEMID_XRATES;
2663		*frm++ = nrates;
2664		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2665		frm += nrates;
2666	}
2667
2668	/* setup length of probe request */
2669	hdr->tx.len = htole16(frm - (uint8_t *)wh);
2670
2671	/*
2672	 * Construct information about the channel that we
2673	 * want to scan. The firmware expects this to be directly
2674	 * after the scan probe request
2675	 */
2676	c = ic->ic_curchan;
2677	chan = (struct wpi_scan_chan *)frm;
2678	chan->chan = ieee80211_chan2ieee(ic, c);
2679	chan->flags = 0;
2680	if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2681		chan->flags |= WPI_CHAN_ACTIVE;
2682		if (nssid != 0)
2683			chan->flags |= WPI_CHAN_DIRECT;
2684	}
2685	chan->gain_dsp = 0x6e; /* Default level */
2686	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2687		chan->active = htole16(10);
2688		chan->passive = htole16(ss->ss_maxdwell);
2689		chan->gain_radio = 0x3b;
2690	} else {
2691		chan->active = htole16(20);
2692		chan->passive = htole16(ss->ss_maxdwell);
2693		chan->gain_radio = 0x28;
2694	}
2695
2696	DPRINTFN(WPI_DEBUG_SCANNING,
2697	    ("Scanning %u Passive: %d\n",
2698	     chan->chan,
2699	     c->ic_flags & IEEE80211_CHAN_PASSIVE));
2700
2701	hdr->nchan++;
2702	chan++;
2703
2704	frm += sizeof (struct wpi_scan_chan);
2705#if 0
2706	// XXX All Channels....
2707	for (c  = &ic->ic_channels[1];
2708	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
2709		if ((c->ic_flags & ic->ic_curchan->ic_flags) != ic->ic_curchan->ic_flags)
2710			continue;
2711
2712		chan->chan = ieee80211_chan2ieee(ic, c);
2713		chan->flags = 0;
2714		if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
2715		    chan->flags |= WPI_CHAN_ACTIVE;
2716		    if (ic->ic_des_ssid[0].len != 0)
2717			chan->flags |= WPI_CHAN_DIRECT;
2718		}
2719		chan->gain_dsp = 0x6e; /* Default level */
2720		if (IEEE80211_IS_CHAN_5GHZ(c)) {
2721			chan->active = htole16(10);
2722			chan->passive = htole16(110);
2723			chan->gain_radio = 0x3b;
2724		} else {
2725			chan->active = htole16(20);
2726			chan->passive = htole16(120);
2727			chan->gain_radio = 0x28;
2728		}
2729
2730		DPRINTFN(WPI_DEBUG_SCANNING,
2731			 ("Scanning %u Passive: %d\n",
2732			  chan->chan,
2733			  c->ic_flags & IEEE80211_CHAN_PASSIVE));
2734
2735		hdr->nchan++;
2736		chan++;
2737
2738		frm += sizeof (struct wpi_scan_chan);
2739	}
2740#endif
2741
2742	hdr->len = htole16(frm - (uint8_t *)hdr);
2743	pktlen = frm - (uint8_t *)cmd;
2744
2745	error = bus_dmamap_load(ring->data_dmat, data->map, cmd, pktlen,
2746	    wpi_dma_map_addr, &physaddr, BUS_DMA_NOWAIT);
2747	if (error != 0) {
2748		device_printf(sc->sc_dev, "could not map scan command\n");
2749		m_freem(data->m);
2750		data->m = NULL;
2751		return error;
2752	}
2753
2754	desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
2755	desc->segs[0].addr = htole32(physaddr);
2756	desc->segs[0].len  = htole32(pktlen);
2757
2758	bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
2759	    BUS_DMASYNC_PREWRITE);
2760	bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
2761
2762	/* kick cmd ring */
2763	ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
2764	WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
2765
2766	sc->sc_scan_timer = 5;
2767	return 0;	/* will be notified async. of failure/success */
2768}
2769
2770/**
2771 * Configure the card to listen to a particular channel, this transisions the
2772 * card in to being able to receive frames from remote devices.
2773 */
2774static int
2775wpi_config(struct wpi_softc *sc)
2776{
2777	struct ifnet *ifp = sc->sc_ifp;
2778	struct ieee80211com *ic = ifp->if_l2com;
2779	struct wpi_power power;
2780	struct wpi_bluetooth bluetooth;
2781	struct wpi_node_info node;
2782	int error;
2783
2784	/* set power mode */
2785	memset(&power, 0, sizeof power);
2786	power.flags = htole32(WPI_POWER_CAM|0x8);
2787	error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
2788	if (error != 0) {
2789		device_printf(sc->sc_dev, "could not set power mode\n");
2790		return error;
2791	}
2792
2793	/* configure bluetooth coexistence */
2794	memset(&bluetooth, 0, sizeof bluetooth);
2795	bluetooth.flags = 3;
2796	bluetooth.lead = 0xaa;
2797	bluetooth.kill = 1;
2798	error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
2799	    0);
2800	if (error != 0) {
2801		device_printf(sc->sc_dev,
2802		    "could not configure bluetooth coexistence\n");
2803		return error;
2804	}
2805
2806	/* configure adapter */
2807	memset(&sc->config, 0, sizeof (struct wpi_config));
2808	IEEE80211_ADDR_COPY(sc->config.myaddr, IF_LLADDR(ifp));
2809	/*set default channel*/
2810	sc->config.chan = htole16(ieee80211_chan2ieee(ic, ic->ic_curchan));
2811	sc->config.flags = htole32(WPI_CONFIG_TSF);
2812	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) {
2813		sc->config.flags |= htole32(WPI_CONFIG_AUTO |
2814		    WPI_CONFIG_24GHZ);
2815	}
2816	sc->config.filter = 0;
2817	switch (ic->ic_opmode) {
2818	case IEEE80211_M_STA:
2819	case IEEE80211_M_WDS:	/* No know setup, use STA for now */
2820		sc->config.mode = WPI_MODE_STA;
2821		sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
2822		break;
2823	case IEEE80211_M_IBSS:
2824	case IEEE80211_M_AHDEMO:
2825		sc->config.mode = WPI_MODE_IBSS;
2826		sc->config.filter |= htole32(WPI_FILTER_BEACON |
2827					     WPI_FILTER_MULTICAST);
2828		break;
2829	case IEEE80211_M_HOSTAP:
2830		sc->config.mode = WPI_MODE_HOSTAP;
2831		break;
2832	case IEEE80211_M_MONITOR:
2833		sc->config.mode = WPI_MODE_MONITOR;
2834		sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
2835			WPI_FILTER_CTL | WPI_FILTER_PROMISC);
2836		break;
2837	default:
2838		device_printf(sc->sc_dev, "unknown opmode %d\n", ic->ic_opmode);
2839		return EINVAL;
2840	}
2841	sc->config.cck_mask  = 0x0f;	/* not yet negotiated */
2842	sc->config.ofdm_mask = 0xff;	/* not yet negotiated */
2843	error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
2844		sizeof (struct wpi_config), 0);
2845	if (error != 0) {
2846		device_printf(sc->sc_dev, "configure command failed\n");
2847		return error;
2848	}
2849
2850	/* configuration has changed, set Tx power accordingly */
2851	if ((error = wpi_set_txpower(sc, ic->ic_curchan, 0)) != 0) {
2852	    device_printf(sc->sc_dev, "could not set Tx power\n");
2853	    return error;
2854	}
2855
2856	/* add broadcast node */
2857	memset(&node, 0, sizeof node);
2858	IEEE80211_ADDR_COPY(node.bssid, ifp->if_broadcastaddr);
2859	node.id = WPI_ID_BROADCAST;
2860	node.rate = wpi_plcp_signal(2);
2861	error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
2862	if (error != 0) {
2863		device_printf(sc->sc_dev, "could not add broadcast node\n");
2864		return error;
2865	}
2866
2867	/* Setup rate scalling */
2868	error = wpi_mrr_setup(sc);
2869	if (error != 0) {
2870		device_printf(sc->sc_dev, "could not setup MRR\n");
2871		return error;
2872	}
2873
2874	return 0;
2875}
2876
2877static void
2878wpi_stop_master(struct wpi_softc *sc)
2879{
2880	uint32_t tmp;
2881	int ntries;
2882
2883	DPRINTFN(WPI_DEBUG_HW,("Disabling Firmware execution\n"));
2884
2885	tmp = WPI_READ(sc, WPI_RESET);
2886	WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER | WPI_NEVO_RESET);
2887
2888	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2889	if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
2890		return;	/* already asleep */
2891
2892	for (ntries = 0; ntries < 100; ntries++) {
2893		if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
2894			break;
2895		DELAY(10);
2896	}
2897	if (ntries == 100) {
2898		device_printf(sc->sc_dev, "timeout waiting for master\n");
2899	}
2900}
2901
2902static int
2903wpi_power_up(struct wpi_softc *sc)
2904{
2905	uint32_t tmp;
2906	int ntries;
2907
2908	wpi_mem_lock(sc);
2909	tmp = wpi_mem_read(sc, WPI_MEM_POWER);
2910	wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
2911	wpi_mem_unlock(sc);
2912
2913	for (ntries = 0; ntries < 5000; ntries++) {
2914		if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
2915			break;
2916		DELAY(10);
2917	}
2918	if (ntries == 5000) {
2919		device_printf(sc->sc_dev,
2920		    "timeout waiting for NIC to power up\n");
2921		return ETIMEDOUT;
2922	}
2923	return 0;
2924}
2925
2926static int
2927wpi_reset(struct wpi_softc *sc)
2928{
2929	uint32_t tmp;
2930	int ntries;
2931
2932	DPRINTFN(WPI_DEBUG_HW,
2933	    ("Resetting the card - clearing any uploaded firmware\n"));
2934
2935	/* clear any pending interrupts */
2936	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
2937
2938	tmp = WPI_READ(sc, WPI_PLL_CTL);
2939	WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
2940
2941	tmp = WPI_READ(sc, WPI_CHICKEN);
2942	WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
2943
2944	tmp = WPI_READ(sc, WPI_GPIO_CTL);
2945	WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
2946
2947	/* wait for clock stabilization */
2948	for (ntries = 0; ntries < 25000; ntries++) {
2949		if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
2950			break;
2951		DELAY(10);
2952	}
2953	if (ntries == 25000) {
2954		device_printf(sc->sc_dev,
2955		    "timeout waiting for clock stabilization\n");
2956		return ETIMEDOUT;
2957	}
2958
2959	/* initialize EEPROM */
2960	tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
2961
2962	if ((tmp & WPI_EEPROM_VERSION) == 0) {
2963		device_printf(sc->sc_dev, "EEPROM not found\n");
2964		return EIO;
2965	}
2966	WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
2967
2968	return 0;
2969}
2970
2971static void
2972wpi_hw_config(struct wpi_softc *sc)
2973{
2974	uint32_t rev, hw;
2975
2976	/* voodoo from the Linux "driver".. */
2977	hw = WPI_READ(sc, WPI_HWCONFIG);
2978
2979	rev = pci_read_config(sc->sc_dev, PCIR_REVID, 1);
2980	if ((rev & 0xc0) == 0x40)
2981		hw |= WPI_HW_ALM_MB;
2982	else if (!(rev & 0x80))
2983		hw |= WPI_HW_ALM_MM;
2984
2985	if (sc->cap == 0x80)
2986		hw |= WPI_HW_SKU_MRC;
2987
2988	hw &= ~WPI_HW_REV_D;
2989	if ((le16toh(sc->rev) & 0xf0) == 0xd0)
2990		hw |= WPI_HW_REV_D;
2991
2992	if (sc->type > 1)
2993		hw |= WPI_HW_TYPE_B;
2994
2995	WPI_WRITE(sc, WPI_HWCONFIG, hw);
2996}
2997
2998static void
2999wpi_rfkill_resume(struct wpi_softc *sc)
3000{
3001	struct ifnet *ifp = sc->sc_ifp;
3002	struct ieee80211com *ic = ifp->if_l2com;
3003	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3004	int ntries;
3005
3006	/* enable firmware again */
3007	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3008	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3009
3010	/* wait for thermal sensors to calibrate */
3011	for (ntries = 0; ntries < 1000; ntries++) {
3012		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3013			break;
3014		DELAY(10);
3015	}
3016
3017	if (ntries == 1000) {
3018		device_printf(sc->sc_dev,
3019		    "timeout waiting for thermal calibration\n");
3020		return;
3021	}
3022	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3023
3024	if (wpi_config(sc) != 0) {
3025		device_printf(sc->sc_dev, "device config failed\n");
3026		return;
3027	}
3028
3029	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3030	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3031	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3032
3033	if (vap != NULL) {
3034		if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3035			if (vap->iv_opmode != IEEE80211_M_MONITOR) {
3036				ieee80211_beacon_miss(ic);
3037				wpi_set_led(sc, WPI_LED_LINK, 0, 1);
3038			} else
3039				wpi_set_led(sc, WPI_LED_LINK, 5, 5);
3040		} else {
3041			ieee80211_scan_next(vap);
3042			wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3043		}
3044	}
3045
3046	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3047}
3048
3049static void
3050wpi_init_locked(struct wpi_softc *sc, int force)
3051{
3052	struct ifnet *ifp = sc->sc_ifp;
3053	uint32_t tmp;
3054	int ntries, qid;
3055
3056	wpi_stop_locked(sc);
3057	(void)wpi_reset(sc);
3058
3059	wpi_mem_lock(sc);
3060	wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
3061	DELAY(20);
3062	tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
3063	wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
3064	wpi_mem_unlock(sc);
3065
3066	(void)wpi_power_up(sc);
3067	wpi_hw_config(sc);
3068
3069	/* init Rx ring */
3070	wpi_mem_lock(sc);
3071	WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
3072	WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
3073	    offsetof(struct wpi_shared, next));
3074	WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
3075	WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
3076	wpi_mem_unlock(sc);
3077
3078	/* init Tx rings */
3079	wpi_mem_lock(sc);
3080	wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
3081	wpi_mem_write(sc, WPI_MEM_RA, 1);   /* enable RA0 */
3082	wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
3083	wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
3084	wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
3085	wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
3086	wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
3087
3088	WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
3089	WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
3090
3091	for (qid = 0; qid < 6; qid++) {
3092		WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
3093		WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
3094		WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
3095	}
3096	wpi_mem_unlock(sc);
3097
3098	/* clear "radio off" and "disable command" bits (reversed logic) */
3099	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3100	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
3101	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3102
3103	/* clear any pending interrupts */
3104	WPI_WRITE(sc, WPI_INTR, 0xffffffff);
3105
3106	/* enable interrupts */
3107	WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
3108
3109	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3110	WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
3111
3112	if ((wpi_load_firmware(sc)) != 0) {
3113	    device_printf(sc->sc_dev,
3114		"A problem occurred loading the firmware to the driver\n");
3115	    return;
3116	}
3117
3118	/* At this point the firmware is up and running. If the hardware
3119	 * RF switch is turned off thermal calibration will fail, though
3120	 * the card is still happy to continue to accept commands, catch
3121	 * this case and schedule a task to watch for it to be turned on.
3122	 */
3123	wpi_mem_lock(sc);
3124	tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3125	wpi_mem_unlock(sc);
3126
3127	if (!(tmp & 0x1)) {
3128		sc->flags |= WPI_FLAG_HW_RADIO_OFF;
3129		device_printf(sc->sc_dev,"Radio Transmitter is switched off\n");
3130		goto out;
3131	}
3132
3133	/* wait for thermal sensors to calibrate */
3134	for (ntries = 0; ntries < 1000; ntries++) {
3135		if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
3136			break;
3137		DELAY(10);
3138	}
3139
3140	if (ntries == 1000) {
3141		device_printf(sc->sc_dev,
3142		    "timeout waiting for thermal sensors calibration\n");
3143		return;
3144	}
3145	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d\n", sc->temp));
3146
3147	if (wpi_config(sc) != 0) {
3148		device_printf(sc->sc_dev, "device config failed\n");
3149		return;
3150	}
3151
3152	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3153	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3154out:
3155	callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3156}
3157
3158static void
3159wpi_init(void *arg)
3160{
3161	struct wpi_softc *sc = arg;
3162	struct ifnet *ifp = sc->sc_ifp;
3163	struct ieee80211com *ic = ifp->if_l2com;
3164
3165	WPI_LOCK(sc);
3166	wpi_init_locked(sc, 0);
3167	WPI_UNLOCK(sc);
3168
3169	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3170		ieee80211_start_all(ic);		/* start all vaps */
3171}
3172
3173static void
3174wpi_stop_locked(struct wpi_softc *sc)
3175{
3176	struct ifnet *ifp = sc->sc_ifp;
3177	uint32_t tmp;
3178	int ac;
3179
3180	sc->sc_tx_timer = 0;
3181	sc->sc_scan_timer = 0;
3182	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3183	sc->flags &= ~WPI_FLAG_HW_RADIO_OFF;
3184	callout_stop(&sc->watchdog_to);
3185	callout_stop(&sc->calib_to);
3186
3187	/* disable interrupts */
3188	WPI_WRITE(sc, WPI_MASK, 0);
3189	WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
3190	WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
3191	WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
3192
3193	wpi_mem_lock(sc);
3194	wpi_mem_write(sc, WPI_MEM_MODE, 0);
3195	wpi_mem_unlock(sc);
3196
3197	/* reset all Tx rings */
3198	for (ac = 0; ac < 4; ac++)
3199		wpi_reset_tx_ring(sc, &sc->txq[ac]);
3200	wpi_reset_tx_ring(sc, &sc->cmdq);
3201
3202	/* reset Rx ring */
3203	wpi_reset_rx_ring(sc, &sc->rxq);
3204
3205	wpi_mem_lock(sc);
3206	wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
3207	wpi_mem_unlock(sc);
3208
3209	DELAY(5);
3210
3211	wpi_stop_master(sc);
3212
3213	tmp = WPI_READ(sc, WPI_RESET);
3214	WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
3215	sc->flags &= ~WPI_FLAG_BUSY;
3216}
3217
3218static void
3219wpi_stop(struct wpi_softc *sc)
3220{
3221	WPI_LOCK(sc);
3222	wpi_stop_locked(sc);
3223	WPI_UNLOCK(sc);
3224}
3225
3226static void
3227wpi_calib_timeout(void *arg)
3228{
3229	struct wpi_softc *sc = arg;
3230	struct ifnet *ifp = sc->sc_ifp;
3231	struct ieee80211com *ic = ifp->if_l2com;
3232	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3233	int temp;
3234
3235	if (vap->iv_state != IEEE80211_S_RUN)
3236		return;
3237
3238	/* update sensor data */
3239	temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
3240	DPRINTFN(WPI_DEBUG_TEMP,("Temp in calibration is: %d\n", temp));
3241
3242	wpi_power_calibration(sc, temp);
3243
3244	callout_reset(&sc->calib_to, 60*hz, wpi_calib_timeout, sc);
3245}
3246
3247/*
3248 * This function is called periodically (every 60 seconds) to adjust output
3249 * power to temperature changes.
3250 */
3251static void
3252wpi_power_calibration(struct wpi_softc *sc, int temp)
3253{
3254	struct ifnet *ifp = sc->sc_ifp;
3255	struct ieee80211com *ic = ifp->if_l2com;
3256	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3257
3258	/* sanity-check read value */
3259	if (temp < -260 || temp > 25) {
3260		/* this can't be correct, ignore */
3261		DPRINTFN(WPI_DEBUG_TEMP,
3262		    ("out-of-range temperature reported: %d\n", temp));
3263		return;
3264	}
3265
3266	DPRINTFN(WPI_DEBUG_TEMP,("temperature %d->%d\n", sc->temp, temp));
3267
3268	/* adjust Tx power if need be */
3269	if (abs(temp - sc->temp) <= 6)
3270		return;
3271
3272	sc->temp = temp;
3273
3274	if (wpi_set_txpower(sc, vap->iv_bss->ni_chan, 1) != 0) {
3275		/* just warn, too bad for the automatic calibration... */
3276		device_printf(sc->sc_dev,"could not adjust Tx power\n");
3277	}
3278}
3279
3280/**
3281 * Read the eeprom to find out what channels are valid for the given
3282 * band and update net80211 with what we find.
3283 */
3284static void
3285wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
3286{
3287	struct ifnet *ifp = sc->sc_ifp;
3288	struct ieee80211com *ic = ifp->if_l2com;
3289	const struct wpi_chan_band *band = &wpi_bands[n];
3290	struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
3291	struct ieee80211_channel *c;
3292	int chan, i, passive;
3293
3294	wpi_read_prom_data(sc, band->addr, channels,
3295	    band->nchan * sizeof (struct wpi_eeprom_chan));
3296
3297	for (i = 0; i < band->nchan; i++) {
3298		if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID)) {
3299			DPRINTFN(WPI_DEBUG_HW,
3300			    ("Channel Not Valid: %d, band %d\n",
3301			     band->chan[i],n));
3302			continue;
3303		}
3304
3305		passive = 0;
3306		chan = band->chan[i];
3307		c = &ic->ic_channels[ic->ic_nchans++];
3308
3309		/* is active scan allowed on this channel? */
3310		if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
3311			passive = IEEE80211_CHAN_PASSIVE;
3312		}
3313
3314		if (n == 0) {	/* 2GHz band */
3315			c->ic_ieee = chan;
3316			c->ic_freq = ieee80211_ieee2mhz(chan,
3317			    IEEE80211_CHAN_2GHZ);
3318			c->ic_flags = IEEE80211_CHAN_B | passive;
3319
3320			c = &ic->ic_channels[ic->ic_nchans++];
3321			c->ic_ieee = chan;
3322			c->ic_freq = ieee80211_ieee2mhz(chan,
3323			    IEEE80211_CHAN_2GHZ);
3324			c->ic_flags = IEEE80211_CHAN_G | passive;
3325
3326		} else {	/* 5GHz band */
3327			/*
3328			 * Some 3945ABG adapters support channels 7, 8, 11
3329			 * and 12 in the 2GHz *and* 5GHz bands.
3330			 * Because of limitations in our net80211(9) stack,
3331			 * we can't support these channels in 5GHz band.
3332			 * XXX not true; just need to map to proper frequency
3333			 */
3334			if (chan <= 14)
3335				continue;
3336
3337			c->ic_ieee = chan;
3338			c->ic_freq = ieee80211_ieee2mhz(chan,
3339			    IEEE80211_CHAN_5GHZ);
3340			c->ic_flags = IEEE80211_CHAN_A | passive;
3341		}
3342
3343		/* save maximum allowed power for this channel */
3344		sc->maxpwr[chan] = channels[i].maxpwr;
3345
3346#if 0
3347		// XXX We can probably use this an get rid of maxpwr - ben 20070617
3348		ic->ic_channels[chan].ic_maxpower = channels[i].maxpwr;
3349		//ic->ic_channels[chan].ic_minpower...
3350		//ic->ic_channels[chan].ic_maxregtxpower...
3351#endif
3352
3353		DPRINTF(("adding chan %d (%dMHz) flags=0x%x maxpwr=%d"
3354		    " passive=%d, offset %d\n", chan, c->ic_freq,
3355		    channels[i].flags, sc->maxpwr[chan],
3356		    (c->ic_flags & IEEE80211_CHAN_PASSIVE) != 0,
3357		    ic->ic_nchans));
3358	}
3359}
3360
3361static void
3362wpi_read_eeprom_group(struct wpi_softc *sc, int n)
3363{
3364	struct wpi_power_group *group = &sc->groups[n];
3365	struct wpi_eeprom_group rgroup;
3366	int i;
3367
3368	wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
3369	    sizeof rgroup);
3370
3371	/* save power group information */
3372	group->chan   = rgroup.chan;
3373	group->maxpwr = rgroup.maxpwr;
3374	/* temperature at which the samples were taken */
3375	group->temp   = (int16_t)le16toh(rgroup.temp);
3376
3377	DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
3378		    group->chan, group->maxpwr, group->temp));
3379
3380	for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
3381		group->samples[i].index = rgroup.samples[i].index;
3382		group->samples[i].power = rgroup.samples[i].power;
3383
3384		DPRINTF(("\tsample %d: index=%d power=%d\n", i,
3385			    group->samples[i].index, group->samples[i].power));
3386	}
3387}
3388
3389/*
3390 * Update Tx power to match what is defined for channel `c'.
3391 */
3392static int
3393wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
3394{
3395	struct ifnet *ifp = sc->sc_ifp;
3396	struct ieee80211com *ic = ifp->if_l2com;
3397	struct wpi_power_group *group;
3398	struct wpi_cmd_txpower txpower;
3399	u_int chan;
3400	int i;
3401
3402	/* get channel number */
3403	chan = ieee80211_chan2ieee(ic, c);
3404
3405	/* find the power group to which this channel belongs */
3406	if (IEEE80211_IS_CHAN_5GHZ(c)) {
3407		for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
3408			if (chan <= group->chan)
3409				break;
3410	} else
3411		group = &sc->groups[0];
3412
3413	memset(&txpower, 0, sizeof txpower);
3414	txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
3415	txpower.channel = htole16(chan);
3416
3417	/* set Tx power for all OFDM and CCK rates */
3418	for (i = 0; i <= 11 ; i++) {
3419		/* retrieve Tx power for this channel/rate combination */
3420		int idx = wpi_get_power_index(sc, group, c,
3421		    wpi_ridx_to_rate[i]);
3422
3423		txpower.rates[i].rate = wpi_ridx_to_plcp[i];
3424
3425		if (IEEE80211_IS_CHAN_5GHZ(c)) {
3426			txpower.rates[i].gain_radio = wpi_rf_gain_5ghz[idx];
3427			txpower.rates[i].gain_dsp = wpi_dsp_gain_5ghz[idx];
3428		} else {
3429			txpower.rates[i].gain_radio = wpi_rf_gain_2ghz[idx];
3430			txpower.rates[i].gain_dsp = wpi_dsp_gain_2ghz[idx];
3431		}
3432		DPRINTFN(WPI_DEBUG_TEMP,("chan %d/rate %d: power index %d\n",
3433			    chan, wpi_ridx_to_rate[i], idx));
3434	}
3435
3436	return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
3437}
3438
3439/*
3440 * Determine Tx power index for a given channel/rate combination.
3441 * This takes into account the regulatory information from EEPROM and the
3442 * current temperature.
3443 */
3444static int
3445wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
3446    struct ieee80211_channel *c, int rate)
3447{
3448/* fixed-point arithmetic division using a n-bit fractional part */
3449#define fdivround(a, b, n)      \
3450	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
3451
3452/* linear interpolation */
3453#define interpolate(x, x1, y1, x2, y2, n)       \
3454	((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
3455
3456	struct ifnet *ifp = sc->sc_ifp;
3457	struct ieee80211com *ic = ifp->if_l2com;
3458	struct wpi_power_sample *sample;
3459	int pwr, idx;
3460	u_int chan;
3461
3462	/* get channel number */
3463	chan = ieee80211_chan2ieee(ic, c);
3464
3465	/* default power is group's maximum power - 3dB */
3466	pwr = group->maxpwr / 2;
3467
3468	/* decrease power for highest OFDM rates to reduce distortion */
3469	switch (rate) {
3470		case 72:	/* 36Mb/s */
3471			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 :  5;
3472			break;
3473		case 96:	/* 48Mb/s */
3474			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
3475			break;
3476		case 108:	/* 54Mb/s */
3477			pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
3478			break;
3479	}
3480
3481	/* never exceed channel's maximum allowed Tx power */
3482	pwr = min(pwr, sc->maxpwr[chan]);
3483
3484	/* retrieve power index into gain tables from samples */
3485	for (sample = group->samples; sample < &group->samples[3]; sample++)
3486		if (pwr > sample[1].power)
3487			break;
3488	/* fixed-point linear interpolation using a 19-bit fractional part */
3489	idx = interpolate(pwr, sample[0].power, sample[0].index,
3490	    sample[1].power, sample[1].index, 19);
3491
3492	/*
3493	 *  Adjust power index based on current temperature
3494	 *	- if colder than factory-calibrated: decreate output power
3495	 *	- if warmer than factory-calibrated: increase output power
3496	 */
3497	idx -= (sc->temp - group->temp) * 11 / 100;
3498
3499	/* decrease power for CCK rates (-5dB) */
3500	if (!WPI_RATE_IS_OFDM(rate))
3501		idx += 10;
3502
3503	/* keep power index in a valid range */
3504	if (idx < 0)
3505		return 0;
3506	if (idx > WPI_MAX_PWR_INDEX)
3507		return WPI_MAX_PWR_INDEX;
3508	return idx;
3509
3510#undef interpolate
3511#undef fdivround
3512}
3513
3514/**
3515 * Called by net80211 framework to indicate that a scan
3516 * is starting. This function doesn't actually do the scan,
3517 * wpi_scan_curchan starts things off. This function is more
3518 * of an early warning from the framework we should get ready
3519 * for the scan.
3520 */
3521static void
3522wpi_scan_start(struct ieee80211com *ic)
3523{
3524	struct ifnet *ifp = ic->ic_ifp;
3525	struct wpi_softc *sc = ifp->if_softc;
3526
3527	WPI_LOCK(sc);
3528	wpi_set_led(sc, WPI_LED_LINK, 20, 2);
3529	WPI_UNLOCK(sc);
3530}
3531
3532/**
3533 * Called by the net80211 framework, indicates that the
3534 * scan has ended. If there is a scan in progress on the card
3535 * then it should be aborted.
3536 */
3537static void
3538wpi_scan_end(struct ieee80211com *ic)
3539{
3540	/* XXX ignore */
3541}
3542
3543/**
3544 * Called by the net80211 framework to indicate to the driver
3545 * that the channel should be changed
3546 */
3547static void
3548wpi_set_channel(struct ieee80211com *ic)
3549{
3550	struct ifnet *ifp = ic->ic_ifp;
3551	struct wpi_softc *sc = ifp->if_softc;
3552	int error;
3553
3554	/*
3555	 * Only need to set the channel in Monitor mode. AP scanning and auth
3556	 * are already taken care of by their respective firmware commands.
3557	 */
3558	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3559		WPI_LOCK(sc);
3560		error = wpi_config(sc);
3561		WPI_UNLOCK(sc);
3562		if (error != 0)
3563			device_printf(sc->sc_dev,
3564			    "error %d settting channel\n", error);
3565	}
3566}
3567
3568/**
3569 * Called by net80211 to indicate that we need to scan the current
3570 * channel. The channel is previously be set via the wpi_set_channel
3571 * callback.
3572 */
3573static void
3574wpi_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
3575{
3576	struct ieee80211vap *vap = ss->ss_vap;
3577	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3578	struct wpi_softc *sc = ifp->if_softc;
3579
3580	WPI_LOCK(sc);
3581	if (wpi_scan(sc))
3582		ieee80211_cancel_scan(vap);
3583	WPI_UNLOCK(sc);
3584}
3585
3586/**
3587 * Called by the net80211 framework to indicate
3588 * the minimum dwell time has been met, terminate the scan.
3589 * We don't actually terminate the scan as the firmware will notify
3590 * us when it's finished and we have no way to interrupt it.
3591 */
3592static void
3593wpi_scan_mindwell(struct ieee80211_scan_state *ss)
3594{
3595	/* NB: don't try to abort scan; wait for firmware to finish */
3596}
3597
3598static void
3599wpi_hwreset(void *arg, int pending)
3600{
3601	struct wpi_softc *sc = arg;
3602
3603	WPI_LOCK(sc);
3604	wpi_init_locked(sc, 0);
3605	WPI_UNLOCK(sc);
3606}
3607
3608static void
3609wpi_rfreset(void *arg, int pending)
3610{
3611	struct wpi_softc *sc = arg;
3612
3613	WPI_LOCK(sc);
3614	wpi_rfkill_resume(sc);
3615	WPI_UNLOCK(sc);
3616}
3617
3618/*
3619 * Allocate DMA-safe memory for firmware transfer.
3620 */
3621static int
3622wpi_alloc_fwmem(struct wpi_softc *sc)
3623{
3624	/* allocate enough contiguous space to store text and data */
3625	return wpi_dma_contig_alloc(sc, &sc->fw_dma, NULL,
3626	    WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 1,
3627	    BUS_DMA_NOWAIT);
3628}
3629
3630static void
3631wpi_free_fwmem(struct wpi_softc *sc)
3632{
3633	wpi_dma_contig_free(&sc->fw_dma);
3634}
3635
3636/**
3637 * Called every second, wpi_watchdog used by the watch dog timer
3638 * to check that the card is still alive
3639 */
3640static void
3641wpi_watchdog(void *arg)
3642{
3643	struct wpi_softc *sc = arg;
3644	struct ifnet *ifp = sc->sc_ifp;
3645	struct ieee80211com *ic = ifp->if_l2com;
3646	uint32_t tmp;
3647
3648	DPRINTFN(WPI_DEBUG_WATCHDOG,("Watchdog: tick\n"));
3649
3650	if (sc->flags & WPI_FLAG_HW_RADIO_OFF) {
3651		/* No need to lock firmware memory */
3652		tmp = wpi_mem_read(sc, WPI_MEM_HW_RADIO_OFF);
3653
3654		if ((tmp & 0x1) == 0) {
3655			/* Radio kill switch is still off */
3656			callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3657			return;
3658		}
3659
3660		device_printf(sc->sc_dev, "Hardware Switch Enabled\n");
3661		ieee80211_runtask(ic, &sc->sc_radiotask);
3662		return;
3663	}
3664
3665	if (sc->sc_tx_timer > 0) {
3666		if (--sc->sc_tx_timer == 0) {
3667			device_printf(sc->sc_dev,"device timeout\n");
3668			ifp->if_oerrors++;
3669			ieee80211_runtask(ic, &sc->sc_restarttask);
3670		}
3671	}
3672	if (sc->sc_scan_timer > 0) {
3673		struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
3674		if (--sc->sc_scan_timer == 0 && vap != NULL) {
3675			device_printf(sc->sc_dev,"scan timeout\n");
3676			ieee80211_cancel_scan(vap);
3677			ieee80211_runtask(ic, &sc->sc_restarttask);
3678		}
3679	}
3680
3681	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
3682		callout_reset(&sc->watchdog_to, hz, wpi_watchdog, sc);
3683}
3684
3685#ifdef WPI_DEBUG
3686static const char *wpi_cmd_str(int cmd)
3687{
3688	switch (cmd) {
3689	case WPI_DISABLE_CMD:	return "WPI_DISABLE_CMD";
3690	case WPI_CMD_CONFIGURE:	return "WPI_CMD_CONFIGURE";
3691	case WPI_CMD_ASSOCIATE:	return "WPI_CMD_ASSOCIATE";
3692	case WPI_CMD_SET_WME:	return "WPI_CMD_SET_WME";
3693	case WPI_CMD_TSF:	return "WPI_CMD_TSF";
3694	case WPI_CMD_ADD_NODE:	return "WPI_CMD_ADD_NODE";
3695	case WPI_CMD_TX_DATA:	return "WPI_CMD_TX_DATA";
3696	case WPI_CMD_MRR_SETUP:	return "WPI_CMD_MRR_SETUP";
3697	case WPI_CMD_SET_LED:	return "WPI_CMD_SET_LED";
3698	case WPI_CMD_SET_POWER_MODE: return "WPI_CMD_SET_POWER_MODE";
3699	case WPI_CMD_SCAN:	return "WPI_CMD_SCAN";
3700	case WPI_CMD_SET_BEACON:return "WPI_CMD_SET_BEACON";
3701	case WPI_CMD_TXPOWER:	return "WPI_CMD_TXPOWER";
3702	case WPI_CMD_BLUETOOTH:	return "WPI_CMD_BLUETOOTH";
3703
3704	default:
3705		KASSERT(1, ("Unknown Command: %d\n", cmd));
3706		return "UNKNOWN CMD";	/* Make the compiler happy */
3707	}
3708}
3709#endif
3710
3711MODULE_DEPEND(wpi, pci,  1, 1, 1);
3712MODULE_DEPEND(wpi, wlan, 1, 1, 1);
3713MODULE_DEPEND(wpi, firmware, 1, 1, 1);
3714