if_vge.c revision 200972
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 200972 2009-12-25 00:23:47Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147		"VIA Networking Velocity Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int	vge_attach(device_t);
152static int	vge_detach(device_t);
153static int	vge_probe(device_t);
154static int	vge_resume(device_t);
155static int	vge_shutdown(device_t);
156static int	vge_suspend(device_t);
157
158static void	vge_cam_clear(struct vge_softc *);
159static int	vge_cam_set(struct vge_softc *, uint8_t *);
160static void	vge_clrwol(struct vge_softc *);
161static void	vge_discard_rxbuf(struct vge_softc *, int);
162static int	vge_dma_alloc(struct vge_softc *);
163static void	vge_dma_free(struct vge_softc *);
164static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int	vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171		vge_fixup_rx(struct mbuf *);
172#endif
173static void	vge_freebufs(struct vge_softc *);
174static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int	vge_ifmedia_upd(struct ifnet *);
176static void	vge_init(void *);
177static void	vge_init_locked(struct vge_softc *);
178static void	vge_intr(void *);
179static void	vge_intr_holdoff(struct vge_softc *);
180static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
181static void	vge_link_statchg(void *);
182static int	vge_miibus_readreg(device_t, int, int);
183static void	vge_miibus_statchg(device_t);
184static int	vge_miibus_writereg(device_t, int, int, int);
185static void	vge_miipoll_start(struct vge_softc *);
186static void	vge_miipoll_stop(struct vge_softc *);
187static int	vge_newbuf(struct vge_softc *, int);
188static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void	vge_reset(struct vge_softc *);
190static int	vge_rx_list_init(struct vge_softc *);
191static int	vge_rxeof(struct vge_softc *, int);
192static void	vge_rxfilter(struct vge_softc *);
193static void	vge_setvlan(struct vge_softc *);
194static void	vge_setwol(struct vge_softc *);
195static void	vge_start(struct ifnet *);
196static void	vge_start_locked(struct ifnet *);
197static void	vge_stats_clear(struct vge_softc *);
198static void	vge_stats_update(struct vge_softc *);
199static void	vge_stop(struct vge_softc *);
200static void	vge_sysctl_node(struct vge_softc *);
201static int	vge_tx_list_init(struct vge_softc *);
202static void	vge_txeof(struct vge_softc *);
203static void	vge_watchdog(void *);
204
205static device_method_t vge_methods[] = {
206	/* Device interface */
207	DEVMETHOD(device_probe,		vge_probe),
208	DEVMETHOD(device_attach,	vge_attach),
209	DEVMETHOD(device_detach,	vge_detach),
210	DEVMETHOD(device_suspend,	vge_suspend),
211	DEVMETHOD(device_resume,	vge_resume),
212	DEVMETHOD(device_shutdown,	vge_shutdown),
213
214	/* bus interface */
215	DEVMETHOD(bus_print_child,	bus_generic_print_child),
216	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
217
218	/* MII interface */
219	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
220	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
221	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
222
223	{ 0, 0 }
224};
225
226static driver_t vge_driver = {
227	"vge",
228	vge_methods,
229	sizeof(struct vge_softc)
230};
231
232static devclass_t vge_devclass;
233
234DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
235DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
236
237#ifdef VGE_EEPROM
238/*
239 * Read a word of data stored in the EEPROM at address 'addr.'
240 */
241static void
242vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
243{
244	int i;
245	uint16_t word = 0;
246
247	/*
248	 * Enter EEPROM embedded programming mode. In order to
249	 * access the EEPROM at all, we first have to set the
250	 * EELOAD bit in the CHIPCFG2 register.
251	 */
252	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
253	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
254
255	/* Select the address of the word we want to read */
256	CSR_WRITE_1(sc, VGE_EEADDR, addr);
257
258	/* Issue read command */
259	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
260
261	/* Wait for the done bit to be set. */
262	for (i = 0; i < VGE_TIMEOUT; i++) {
263		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
264			break;
265	}
266
267	if (i == VGE_TIMEOUT) {
268		device_printf(sc->vge_dev, "EEPROM read timed out\n");
269		*dest = 0;
270		return;
271	}
272
273	/* Read the result */
274	word = CSR_READ_2(sc, VGE_EERDDAT);
275
276	/* Turn off EEPROM access mode. */
277	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
278	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
279
280	*dest = word;
281}
282#endif
283
284/*
285 * Read a sequence of words from the EEPROM.
286 */
287static void
288vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
289{
290	int i;
291#ifdef VGE_EEPROM
292	uint16_t word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (uint16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(struct vge_softc *sc)
310{
311	int i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323}
324
325static void
326vge_miipoll_start(struct vge_softc *sc)
327{
328	int i;
329
330	/* First, make sure we're idle. */
331
332	CSR_WRITE_1(sc, VGE_MIICMD, 0);
333	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
334
335	for (i = 0; i < VGE_TIMEOUT; i++) {
336		DELAY(1);
337		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
338			break;
339	}
340
341	if (i == VGE_TIMEOUT) {
342		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
343		return;
344	}
345
346	/* Now enable auto poll mode. */
347
348	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
349
350	/* And make sure it started. */
351
352	for (i = 0; i < VGE_TIMEOUT; i++) {
353		DELAY(1);
354		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
355			break;
356	}
357
358	if (i == VGE_TIMEOUT)
359		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
360}
361
362static int
363vge_miibus_readreg(device_t dev, int phy, int reg)
364{
365	struct vge_softc *sc;
366	int i;
367	uint16_t rval = 0;
368
369	sc = device_get_softc(dev);
370
371	if (phy != sc->vge_phyaddr)
372		return (0);
373
374	vge_miipoll_stop(sc);
375
376	/* Specify the register we want to read. */
377	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
378
379	/* Issue read command. */
380	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
381
382	/* Wait for the read command bit to self-clear. */
383	for (i = 0; i < VGE_TIMEOUT; i++) {
384		DELAY(1);
385		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
386			break;
387	}
388
389	if (i == VGE_TIMEOUT)
390		device_printf(sc->vge_dev, "MII read timed out\n");
391	else
392		rval = CSR_READ_2(sc, VGE_MIIDATA);
393
394	vge_miipoll_start(sc);
395
396	return (rval);
397}
398
399static int
400vge_miibus_writereg(device_t dev, int phy, int reg, int data)
401{
402	struct vge_softc *sc;
403	int i, rval = 0;
404
405	sc = device_get_softc(dev);
406
407	if (phy != sc->vge_phyaddr)
408		return (0);
409
410	vge_miipoll_stop(sc);
411
412	/* Specify the register we want to write. */
413	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
414
415	/* Specify the data we want to write. */
416	CSR_WRITE_2(sc, VGE_MIIDATA, data);
417
418	/* Issue write command. */
419	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
420
421	/* Wait for the write command bit to self-clear. */
422	for (i = 0; i < VGE_TIMEOUT; i++) {
423		DELAY(1);
424		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
425			break;
426	}
427
428	if (i == VGE_TIMEOUT) {
429		device_printf(sc->vge_dev, "MII write timed out\n");
430		rval = EIO;
431	}
432
433	vge_miipoll_start(sc);
434
435	return (rval);
436}
437
438static void
439vge_cam_clear(struct vge_softc *sc)
440{
441	int i;
442
443	/*
444	 * Turn off all the mask bits. This tells the chip
445	 * that none of the entries in the CAM filter are valid.
446	 * desired entries will be enabled as we fill the filter in.
447	 */
448
449	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
450	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
451	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
452	for (i = 0; i < 8; i++)
453		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
454
455	/* Clear the VLAN filter too. */
456
457	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
458	for (i = 0; i < 8; i++)
459		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
460
461	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
462	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
463	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
464
465	sc->vge_camidx = 0;
466}
467
468static int
469vge_cam_set(struct vge_softc *sc, uint8_t *addr)
470{
471	int i, error = 0;
472
473	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
474		return (ENOSPC);
475
476	/* Select the CAM data page. */
477	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
479
480	/* Set the filter entry we want to update and enable writing. */
481	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
482
483	/* Write the address to the CAM registers */
484	for (i = 0; i < ETHER_ADDR_LEN; i++)
485		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
486
487	/* Issue a write command. */
488	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
489
490	/* Wake for it to clear. */
491	for (i = 0; i < VGE_TIMEOUT; i++) {
492		DELAY(1);
493		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
494			break;
495	}
496
497	if (i == VGE_TIMEOUT) {
498		device_printf(sc->vge_dev, "setting CAM filter failed\n");
499		error = EIO;
500		goto fail;
501	}
502
503	/* Select the CAM mask page. */
504	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
505	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
506
507	/* Set the mask bit that enables this filter. */
508	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
509	    1<<(sc->vge_camidx & 7));
510
511	sc->vge_camidx++;
512
513fail:
514	/* Turn off access to CAM. */
515	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
516	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
517	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
518
519	return (error);
520}
521
522static void
523vge_setvlan(struct vge_softc *sc)
524{
525	struct ifnet *ifp;
526	uint8_t cfg;
527
528	VGE_LOCK_ASSERT(sc);
529
530	ifp = sc->vge_ifp;
531	cfg = CSR_READ_1(sc, VGE_RXCFG);
532	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
533		cfg |= VGE_VTAG_OPT2;
534	else
535		cfg &= ~VGE_VTAG_OPT2;
536	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
537}
538
539/*
540 * Program the multicast filter. We use the 64-entry CAM filter
541 * for perfect filtering. If there's more than 64 multicast addresses,
542 * we use the hash filter instead.
543 */
544static void
545vge_rxfilter(struct vge_softc *sc)
546{
547	struct ifnet *ifp;
548	struct ifmultiaddr *ifma;
549	uint32_t h, hashes[2];
550	uint8_t rxcfg;
551	int error = 0;
552
553	VGE_LOCK_ASSERT(sc);
554
555	/* First, zot all the multicast entries. */
556	hashes[0] = 0;
557	hashes[1] = 0;
558
559	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
560	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
561	    VGE_RXCTL_RX_PROMISC);
562	/*
563	 * Always allow VLAN oversized frames and frames for
564	 * this host.
565	 */
566	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
567
568	ifp = sc->vge_ifp;
569	if ((ifp->if_flags & IFF_BROADCAST) != 0)
570		rxcfg |= VGE_RXCTL_RX_BCAST;
571	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
572		if ((ifp->if_flags & IFF_PROMISC) != 0)
573			rxcfg |= VGE_RXCTL_RX_PROMISC;
574		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
575			hashes[0] = 0xFFFFFFFF;
576			hashes[1] = 0xFFFFFFFF;
577		}
578		goto done;
579	}
580
581	vge_cam_clear(sc);
582	/* Now program new ones */
583	if_maddr_rlock(ifp);
584	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
585		if (ifma->ifma_addr->sa_family != AF_LINK)
586			continue;
587		error = vge_cam_set(sc,
588		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
589		if (error)
590			break;
591	}
592
593	/* If there were too many addresses, use the hash filter. */
594	if (error) {
595		vge_cam_clear(sc);
596
597		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
598			if (ifma->ifma_addr->sa_family != AF_LINK)
599				continue;
600			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
601			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
602			if (h < 32)
603				hashes[0] |= (1 << h);
604			else
605				hashes[1] |= (1 << (h - 32));
606		}
607	}
608	if_maddr_runlock(ifp);
609
610done:
611	if (hashes[0] != 0 || hashes[1] != 0)
612		rxcfg |= VGE_RXCTL_RX_MCAST;
613	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
614	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
615	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
616}
617
618static void
619vge_reset(struct vge_softc *sc)
620{
621	int i;
622
623	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
624
625	for (i = 0; i < VGE_TIMEOUT; i++) {
626		DELAY(5);
627		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
628			break;
629	}
630
631	if (i == VGE_TIMEOUT) {
632		device_printf(sc->vge_dev, "soft reset timed out\n");
633		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
634		DELAY(2000);
635	}
636
637	DELAY(5000);
638}
639
640/*
641 * Probe for a VIA gigabit chip. Check the PCI vendor and device
642 * IDs against our list and return a device name if we find a match.
643 */
644static int
645vge_probe(device_t dev)
646{
647	struct vge_type	*t;
648
649	t = vge_devs;
650
651	while (t->vge_name != NULL) {
652		if ((pci_get_vendor(dev) == t->vge_vid) &&
653		    (pci_get_device(dev) == t->vge_did)) {
654			device_set_desc(dev, t->vge_name);
655			return (BUS_PROBE_DEFAULT);
656		}
657		t++;
658	}
659
660	return (ENXIO);
661}
662
663/*
664 * Map a single buffer address.
665 */
666
667struct vge_dmamap_arg {
668	bus_addr_t	vge_busaddr;
669};
670
671static void
672vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
673{
674	struct vge_dmamap_arg *ctx;
675
676	if (error != 0)
677		return;
678
679	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
680
681	ctx = (struct vge_dmamap_arg *)arg;
682	ctx->vge_busaddr = segs[0].ds_addr;
683}
684
685static int
686vge_dma_alloc(struct vge_softc *sc)
687{
688	struct vge_dmamap_arg ctx;
689	struct vge_txdesc *txd;
690	struct vge_rxdesc *rxd;
691	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
692	int error, i;
693
694	lowaddr = BUS_SPACE_MAXADDR;
695
696again:
697	/* Create parent ring tag. */
698	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
699	    1, 0,			/* algnmnt, boundary */
700	    lowaddr,			/* lowaddr */
701	    BUS_SPACE_MAXADDR,		/* highaddr */
702	    NULL, NULL,			/* filter, filterarg */
703	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
704	    0,				/* nsegments */
705	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
706	    0,				/* flags */
707	    NULL, NULL,			/* lockfunc, lockarg */
708	    &sc->vge_cdata.vge_ring_tag);
709	if (error != 0) {
710		device_printf(sc->vge_dev,
711		    "could not create parent DMA tag.\n");
712		goto fail;
713	}
714
715	/* Create tag for Tx ring. */
716	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
717	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
718	    BUS_SPACE_MAXADDR,		/* lowaddr */
719	    BUS_SPACE_MAXADDR,		/* highaddr */
720	    NULL, NULL,			/* filter, filterarg */
721	    VGE_TX_LIST_SZ,		/* maxsize */
722	    1,				/* nsegments */
723	    VGE_TX_LIST_SZ,		/* maxsegsize */
724	    0,				/* flags */
725	    NULL, NULL,			/* lockfunc, lockarg */
726	    &sc->vge_cdata.vge_tx_ring_tag);
727	if (error != 0) {
728		device_printf(sc->vge_dev,
729		    "could not allocate Tx ring DMA tag.\n");
730		goto fail;
731	}
732
733	/* Create tag for Rx ring. */
734	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
735	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
736	    BUS_SPACE_MAXADDR,		/* lowaddr */
737	    BUS_SPACE_MAXADDR,		/* highaddr */
738	    NULL, NULL,			/* filter, filterarg */
739	    VGE_RX_LIST_SZ,		/* maxsize */
740	    1,				/* nsegments */
741	    VGE_RX_LIST_SZ,		/* maxsegsize */
742	    0,				/* flags */
743	    NULL, NULL,			/* lockfunc, lockarg */
744	    &sc->vge_cdata.vge_rx_ring_tag);
745	if (error != 0) {
746		device_printf(sc->vge_dev,
747		    "could not allocate Rx ring DMA tag.\n");
748		goto fail;
749	}
750
751	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
752	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
753	    (void **)&sc->vge_rdata.vge_tx_ring,
754	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
755	    &sc->vge_cdata.vge_tx_ring_map);
756	if (error != 0) {
757		device_printf(sc->vge_dev,
758		    "could not allocate DMA'able memory for Tx ring.\n");
759		goto fail;
760	}
761
762	ctx.vge_busaddr = 0;
763	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
764	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
765	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
766	if (error != 0 || ctx.vge_busaddr == 0) {
767		device_printf(sc->vge_dev,
768		    "could not load DMA'able memory for Tx ring.\n");
769		goto fail;
770	}
771	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
772
773	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
774	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
775	    (void **)&sc->vge_rdata.vge_rx_ring,
776	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
777	    &sc->vge_cdata.vge_rx_ring_map);
778	if (error != 0) {
779		device_printf(sc->vge_dev,
780		    "could not allocate DMA'able memory for Rx ring.\n");
781		goto fail;
782	}
783
784	ctx.vge_busaddr = 0;
785	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
786	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
787	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
788	if (error != 0 || ctx.vge_busaddr == 0) {
789		device_printf(sc->vge_dev,
790		    "could not load DMA'able memory for Rx ring.\n");
791		goto fail;
792	}
793	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
794
795	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
796	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
797	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
798	if ((VGE_ADDR_HI(tx_ring_end) !=
799	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
800	    (VGE_ADDR_HI(rx_ring_end) !=
801	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
802	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
803		device_printf(sc->vge_dev, "4GB boundary crossed, "
804		    "switching to 32bit DMA address mode.\n");
805		vge_dma_free(sc);
806		/* Limit DMA address space to 32bit and try again. */
807		lowaddr = BUS_SPACE_MAXADDR_32BIT;
808		goto again;
809	}
810
811	/* Create parent buffer tag. */
812	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
813	    1, 0,			/* algnmnt, boundary */
814	    VGE_BUF_DMA_MAXADDR,	/* lowaddr */
815	    BUS_SPACE_MAXADDR,		/* highaddr */
816	    NULL, NULL,			/* filter, filterarg */
817	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
818	    0,				/* nsegments */
819	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
820	    0,				/* flags */
821	    NULL, NULL,			/* lockfunc, lockarg */
822	    &sc->vge_cdata.vge_buffer_tag);
823	if (error != 0) {
824		device_printf(sc->vge_dev,
825		    "could not create parent buffer DMA tag.\n");
826		goto fail;
827	}
828
829	/* Create tag for Tx buffers. */
830	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
831	    1, 0,			/* algnmnt, boundary */
832	    BUS_SPACE_MAXADDR,		/* lowaddr */
833	    BUS_SPACE_MAXADDR,		/* highaddr */
834	    NULL, NULL,			/* filter, filterarg */
835	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
836	    VGE_MAXTXSEGS,		/* nsegments */
837	    MCLBYTES,			/* maxsegsize */
838	    0,				/* flags */
839	    NULL, NULL,			/* lockfunc, lockarg */
840	    &sc->vge_cdata.vge_tx_tag);
841	if (error != 0) {
842		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
843		goto fail;
844	}
845
846	/* Create tag for Rx buffers. */
847	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
848	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
849	    BUS_SPACE_MAXADDR,		/* lowaddr */
850	    BUS_SPACE_MAXADDR,		/* highaddr */
851	    NULL, NULL,			/* filter, filterarg */
852	    MCLBYTES,			/* maxsize */
853	    1,				/* nsegments */
854	    MCLBYTES,			/* maxsegsize */
855	    0,				/* flags */
856	    NULL, NULL,			/* lockfunc, lockarg */
857	    &sc->vge_cdata.vge_rx_tag);
858	if (error != 0) {
859		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
860		goto fail;
861	}
862
863	/* Create DMA maps for Tx buffers. */
864	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
865		txd = &sc->vge_cdata.vge_txdesc[i];
866		txd->tx_m = NULL;
867		txd->tx_dmamap = NULL;
868		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
869		    &txd->tx_dmamap);
870		if (error != 0) {
871			device_printf(sc->vge_dev,
872			    "could not create Tx dmamap.\n");
873			goto fail;
874		}
875	}
876	/* Create DMA maps for Rx buffers. */
877	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
878	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
879		device_printf(sc->vge_dev,
880		    "could not create spare Rx dmamap.\n");
881		goto fail;
882	}
883	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
884		rxd = &sc->vge_cdata.vge_rxdesc[i];
885		rxd->rx_m = NULL;
886		rxd->rx_dmamap = NULL;
887		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
888		    &rxd->rx_dmamap);
889		if (error != 0) {
890			device_printf(sc->vge_dev,
891			    "could not create Rx dmamap.\n");
892			goto fail;
893		}
894	}
895
896fail:
897	return (error);
898}
899
900static void
901vge_dma_free(struct vge_softc *sc)
902{
903	struct vge_txdesc *txd;
904	struct vge_rxdesc *rxd;
905	int i;
906
907	/* Tx ring. */
908	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
909		if (sc->vge_cdata.vge_tx_ring_map)
910			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
911			    sc->vge_cdata.vge_tx_ring_map);
912		if (sc->vge_cdata.vge_tx_ring_map &&
913		    sc->vge_rdata.vge_tx_ring)
914			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
915			    sc->vge_rdata.vge_tx_ring,
916			    sc->vge_cdata.vge_tx_ring_map);
917		sc->vge_rdata.vge_tx_ring = NULL;
918		sc->vge_cdata.vge_tx_ring_map = NULL;
919		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
920		sc->vge_cdata.vge_tx_ring_tag = NULL;
921	}
922	/* Rx ring. */
923	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
924		if (sc->vge_cdata.vge_rx_ring_map)
925			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
926			    sc->vge_cdata.vge_rx_ring_map);
927		if (sc->vge_cdata.vge_rx_ring_map &&
928		    sc->vge_rdata.vge_rx_ring)
929			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
930			    sc->vge_rdata.vge_rx_ring,
931			    sc->vge_cdata.vge_rx_ring_map);
932		sc->vge_rdata.vge_rx_ring = NULL;
933		sc->vge_cdata.vge_rx_ring_map = NULL;
934		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
935		sc->vge_cdata.vge_rx_ring_tag = NULL;
936	}
937	/* Tx buffers. */
938	if (sc->vge_cdata.vge_tx_tag != NULL) {
939		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
940			txd = &sc->vge_cdata.vge_txdesc[i];
941			if (txd->tx_dmamap != NULL) {
942				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
943				    txd->tx_dmamap);
944				txd->tx_dmamap = NULL;
945			}
946		}
947		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
948		sc->vge_cdata.vge_tx_tag = NULL;
949	}
950	/* Rx buffers. */
951	if (sc->vge_cdata.vge_rx_tag != NULL) {
952		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
953			rxd = &sc->vge_cdata.vge_rxdesc[i];
954			if (rxd->rx_dmamap != NULL) {
955				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
956				    rxd->rx_dmamap);
957				rxd->rx_dmamap = NULL;
958			}
959		}
960		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
961			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
962			    sc->vge_cdata.vge_rx_sparemap);
963			sc->vge_cdata.vge_rx_sparemap = NULL;
964		}
965		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
966		sc->vge_cdata.vge_rx_tag = NULL;
967	}
968
969	if (sc->vge_cdata.vge_buffer_tag != NULL) {
970		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
971		sc->vge_cdata.vge_buffer_tag = NULL;
972	}
973	if (sc->vge_cdata.vge_ring_tag != NULL) {
974		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
975		sc->vge_cdata.vge_ring_tag = NULL;
976	}
977}
978
979/*
980 * Attach the interface. Allocate softc structures, do ifmedia
981 * setup and ethernet/BPF attach.
982 */
983static int
984vge_attach(device_t dev)
985{
986	u_char eaddr[ETHER_ADDR_LEN];
987	struct vge_softc *sc;
988	struct ifnet *ifp;
989	int error = 0, cap, i, msic, rid;
990
991	sc = device_get_softc(dev);
992	sc->vge_dev = dev;
993
994	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
995	    MTX_DEF);
996	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
997
998	/*
999	 * Map control/status registers.
1000	 */
1001	pci_enable_busmaster(dev);
1002
1003	rid = PCIR_BAR(1);
1004	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1005	    RF_ACTIVE);
1006
1007	if (sc->vge_res == NULL) {
1008		device_printf(dev, "couldn't map ports/memory\n");
1009		error = ENXIO;
1010		goto fail;
1011	}
1012
1013	if (pci_find_extcap(dev, PCIY_EXPRESS, &cap) == 0) {
1014		sc->vge_flags |= VGE_FLAG_PCIE;
1015		sc->vge_expcap = cap;
1016	} else
1017		sc->vge_flags |= VGE_FLAG_JUMBO;
1018	if (pci_find_extcap(dev, PCIY_PMG, &cap) == 0) {
1019		sc->vge_flags |= VGE_FLAG_PMCAP;
1020		sc->vge_pmcap = cap;
1021	}
1022	rid = 0;
1023	msic = pci_msi_count(dev);
1024	if (msi_disable == 0 && msic > 0) {
1025		msic = 1;
1026		if (pci_alloc_msi(dev, &msic) == 0) {
1027			if (msic == 1) {
1028				sc->vge_flags |= VGE_FLAG_MSI;
1029				device_printf(dev, "Using %d MSI message\n",
1030				    msic);
1031				rid = 1;
1032			} else
1033				pci_release_msi(dev);
1034		}
1035	}
1036
1037	/* Allocate interrupt */
1038	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1039	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1040	if (sc->vge_irq == NULL) {
1041		device_printf(dev, "couldn't map interrupt\n");
1042		error = ENXIO;
1043		goto fail;
1044	}
1045
1046	/* Reset the adapter. */
1047	vge_reset(sc);
1048	/* Reload EEPROM. */
1049	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1050	for (i = 0; i < VGE_TIMEOUT; i++) {
1051		DELAY(5);
1052		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1053			break;
1054	}
1055	if (i == VGE_TIMEOUT)
1056		device_printf(dev, "EEPROM reload timed out\n");
1057	/*
1058	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1059	 * MAC will receive magic packet which in turn confuses
1060	 * controller.
1061	 */
1062	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1063
1064	/*
1065	 * Get station address from the EEPROM.
1066	 */
1067	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1068	/*
1069	 * Save configured PHY address.
1070	 * It seems the PHY address of PCIe controllers just
1071	 * reflects media jump strapping status so we assume the
1072	 * internal PHY address of PCIe controller is at 1.
1073	 */
1074	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1075		sc->vge_phyaddr = 1;
1076	else
1077		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1078		    VGE_MIICFG_PHYADDR;
1079	/* Clear WOL and take hardware from powerdown. */
1080	vge_clrwol(sc);
1081	vge_sysctl_node(sc);
1082	error = vge_dma_alloc(sc);
1083	if (error)
1084		goto fail;
1085
1086	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1087	if (ifp == NULL) {
1088		device_printf(dev, "can not if_alloc()\n");
1089		error = ENOSPC;
1090		goto fail;
1091	}
1092
1093	/* Do MII setup */
1094	if (mii_phy_probe(dev, &sc->vge_miibus,
1095	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1096		device_printf(dev, "MII without any phy!\n");
1097		error = ENXIO;
1098		goto fail;
1099	}
1100
1101	ifp->if_softc = sc;
1102	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1103	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1104	ifp->if_ioctl = vge_ioctl;
1105	ifp->if_capabilities = IFCAP_VLAN_MTU;
1106	ifp->if_start = vge_start;
1107	ifp->if_hwassist = VGE_CSUM_FEATURES;
1108	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1109	    IFCAP_VLAN_HWTAGGING;
1110	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1111		ifp->if_capabilities |= IFCAP_WOL;
1112	ifp->if_capenable = ifp->if_capabilities;
1113#ifdef DEVICE_POLLING
1114	ifp->if_capabilities |= IFCAP_POLLING;
1115#endif
1116	ifp->if_init = vge_init;
1117	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1118	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1119	IFQ_SET_READY(&ifp->if_snd);
1120
1121	/*
1122	 * Call MI attach routine.
1123	 */
1124	ether_ifattach(ifp, eaddr);
1125
1126	/* Tell the upper layer(s) we support long frames. */
1127	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1128
1129	/* Hook interrupt last to avoid having to lock softc */
1130	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1131	    NULL, vge_intr, sc, &sc->vge_intrhand);
1132
1133	if (error) {
1134		device_printf(dev, "couldn't set up irq\n");
1135		ether_ifdetach(ifp);
1136		goto fail;
1137	}
1138
1139fail:
1140	if (error)
1141		vge_detach(dev);
1142
1143	return (error);
1144}
1145
1146/*
1147 * Shutdown hardware and free up resources. This can be called any
1148 * time after the mutex has been initialized. It is called in both
1149 * the error case in attach and the normal detach case so it needs
1150 * to be careful about only freeing resources that have actually been
1151 * allocated.
1152 */
1153static int
1154vge_detach(device_t dev)
1155{
1156	struct vge_softc *sc;
1157	struct ifnet *ifp;
1158
1159	sc = device_get_softc(dev);
1160	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1161	ifp = sc->vge_ifp;
1162
1163#ifdef DEVICE_POLLING
1164	if (ifp->if_capenable & IFCAP_POLLING)
1165		ether_poll_deregister(ifp);
1166#endif
1167
1168	/* These should only be active if attach succeeded */
1169	if (device_is_attached(dev)) {
1170		ether_ifdetach(ifp);
1171		VGE_LOCK(sc);
1172		vge_stop(sc);
1173		VGE_UNLOCK(sc);
1174		callout_drain(&sc->vge_watchdog);
1175	}
1176	if (sc->vge_miibus)
1177		device_delete_child(dev, sc->vge_miibus);
1178	bus_generic_detach(dev);
1179
1180	if (sc->vge_intrhand)
1181		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1182	if (sc->vge_irq)
1183		bus_release_resource(dev, SYS_RES_IRQ,
1184		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1185	if (sc->vge_flags & VGE_FLAG_MSI)
1186		pci_release_msi(dev);
1187	if (sc->vge_res)
1188		bus_release_resource(dev, SYS_RES_MEMORY,
1189		    PCIR_BAR(1), sc->vge_res);
1190	if (ifp)
1191		if_free(ifp);
1192
1193	vge_dma_free(sc);
1194	mtx_destroy(&sc->vge_mtx);
1195
1196	return (0);
1197}
1198
1199static void
1200vge_discard_rxbuf(struct vge_softc *sc, int prod)
1201{
1202	struct vge_rxdesc *rxd;
1203	int i;
1204
1205	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1206	rxd->rx_desc->vge_sts = 0;
1207	rxd->rx_desc->vge_ctl = 0;
1208
1209	/*
1210	 * Note: the manual fails to document the fact that for
1211	 * proper opration, the driver needs to replentish the RX
1212	 * DMA ring 4 descriptors at a time (rather than one at a
1213	 * time, like most chips). We can allocate the new buffers
1214	 * but we should not set the OWN bits until we're ready
1215	 * to hand back 4 of them in one shot.
1216	 */
1217	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1218		for (i = VGE_RXCHUNK; i > 0; i--) {
1219			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1220			rxd = rxd->rxd_prev;
1221		}
1222		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1223	}
1224}
1225
1226static int
1227vge_newbuf(struct vge_softc *sc, int prod)
1228{
1229	struct vge_rxdesc *rxd;
1230	struct mbuf *m;
1231	bus_dma_segment_t segs[1];
1232	bus_dmamap_t map;
1233	int i, nsegs;
1234
1235	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1236	if (m == NULL)
1237		return (ENOBUFS);
1238	/*
1239	 * This is part of an evil trick to deal with strict-alignment
1240	 * architectures. The VIA chip requires RX buffers to be aligned
1241	 * on 32-bit boundaries, but that will hose strict-alignment
1242	 * architectures. To get around this, we leave some empty space
1243	 * at the start of each buffer and for non-strict-alignment hosts,
1244	 * we copy the buffer back two bytes to achieve word alignment.
1245	 * This is slightly more efficient than allocating a new buffer,
1246	 * copying the contents, and discarding the old buffer.
1247	 */
1248	m->m_len = m->m_pkthdr.len = MCLBYTES;
1249	m_adj(m, VGE_RX_BUF_ALIGN);
1250
1251	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1252	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1253		m_freem(m);
1254		return (ENOBUFS);
1255	}
1256	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1257
1258	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1259	if (rxd->rx_m != NULL) {
1260		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1261		    BUS_DMASYNC_POSTREAD);
1262		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1263	}
1264	map = rxd->rx_dmamap;
1265	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1266	sc->vge_cdata.vge_rx_sparemap = map;
1267	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268	    BUS_DMASYNC_PREREAD);
1269	rxd->rx_m = m;
1270
1271	rxd->rx_desc->vge_sts = 0;
1272	rxd->rx_desc->vge_ctl = 0;
1273	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1274	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1275	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1276
1277	/*
1278	 * Note: the manual fails to document the fact that for
1279	 * proper operation, the driver needs to replenish the RX
1280	 * DMA ring 4 descriptors at a time (rather than one at a
1281	 * time, like most chips). We can allocate the new buffers
1282	 * but we should not set the OWN bits until we're ready
1283	 * to hand back 4 of them in one shot.
1284	 */
1285	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1286		for (i = VGE_RXCHUNK; i > 0; i--) {
1287			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1288			rxd = rxd->rxd_prev;
1289		}
1290		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1291	}
1292
1293	return (0);
1294}
1295
1296static int
1297vge_tx_list_init(struct vge_softc *sc)
1298{
1299	struct vge_ring_data *rd;
1300	struct vge_txdesc *txd;
1301	int i;
1302
1303	VGE_LOCK_ASSERT(sc);
1304
1305	sc->vge_cdata.vge_tx_prodidx = 0;
1306	sc->vge_cdata.vge_tx_considx = 0;
1307	sc->vge_cdata.vge_tx_cnt = 0;
1308
1309	rd = &sc->vge_rdata;
1310	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1311	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1312		txd = &sc->vge_cdata.vge_txdesc[i];
1313		txd->tx_m = NULL;
1314		txd->tx_desc = &rd->vge_tx_ring[i];
1315	}
1316
1317	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1318	    sc->vge_cdata.vge_tx_ring_map,
1319	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1320
1321	return (0);
1322}
1323
1324static int
1325vge_rx_list_init(struct vge_softc *sc)
1326{
1327	struct vge_ring_data *rd;
1328	struct vge_rxdesc *rxd;
1329	int i;
1330
1331	VGE_LOCK_ASSERT(sc);
1332
1333	sc->vge_cdata.vge_rx_prodidx = 0;
1334	sc->vge_cdata.vge_head = NULL;
1335	sc->vge_cdata.vge_tail = NULL;
1336	sc->vge_cdata.vge_rx_commit = 0;
1337
1338	rd = &sc->vge_rdata;
1339	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1340	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1341		rxd = &sc->vge_cdata.vge_rxdesc[i];
1342		rxd->rx_m = NULL;
1343		rxd->rx_desc = &rd->vge_rx_ring[i];
1344		if (i == 0)
1345			rxd->rxd_prev =
1346			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1347		else
1348			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1349		if (vge_newbuf(sc, i) != 0)
1350			return (ENOBUFS);
1351	}
1352
1353	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1354	    sc->vge_cdata.vge_rx_ring_map,
1355	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1356
1357	sc->vge_cdata.vge_rx_commit = 0;
1358
1359	return (0);
1360}
1361
1362static void
1363vge_freebufs(struct vge_softc *sc)
1364{
1365	struct vge_txdesc *txd;
1366	struct vge_rxdesc *rxd;
1367	struct ifnet *ifp;
1368	int i;
1369
1370	VGE_LOCK_ASSERT(sc);
1371
1372	ifp = sc->vge_ifp;
1373	/*
1374	 * Free RX and TX mbufs still in the queues.
1375	 */
1376	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1377		rxd = &sc->vge_cdata.vge_rxdesc[i];
1378		if (rxd->rx_m != NULL) {
1379			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1380			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1381			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1382			    rxd->rx_dmamap);
1383			m_freem(rxd->rx_m);
1384			rxd->rx_m = NULL;
1385		}
1386	}
1387
1388	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1389		txd = &sc->vge_cdata.vge_txdesc[i];
1390		if (txd->tx_m != NULL) {
1391			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1392			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1393			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1394			    txd->tx_dmamap);
1395			m_freem(txd->tx_m);
1396			txd->tx_m = NULL;
1397			ifp->if_oerrors++;
1398		}
1399	}
1400}
1401
1402#ifndef	__NO_STRICT_ALIGNMENT
1403static __inline void
1404vge_fixup_rx(struct mbuf *m)
1405{
1406	int i;
1407	uint16_t *src, *dst;
1408
1409	src = mtod(m, uint16_t *);
1410	dst = src - 1;
1411
1412	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1413		*dst++ = *src++;
1414
1415	m->m_data -= ETHER_ALIGN;
1416}
1417#endif
1418
1419/*
1420 * RX handler. We support the reception of jumbo frames that have
1421 * been fragmented across multiple 2K mbuf cluster buffers.
1422 */
1423static int
1424vge_rxeof(struct vge_softc *sc, int count)
1425{
1426	struct mbuf *m;
1427	struct ifnet *ifp;
1428	int prod, prog, total_len;
1429	struct vge_rxdesc *rxd;
1430	struct vge_rx_desc *cur_rx;
1431	uint32_t rxstat, rxctl;
1432
1433	VGE_LOCK_ASSERT(sc);
1434
1435	ifp = sc->vge_ifp;
1436
1437	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1438	    sc->vge_cdata.vge_rx_ring_map,
1439	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1440
1441	prod = sc->vge_cdata.vge_rx_prodidx;
1442	for (prog = 0; count > 0 &&
1443	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1444	    VGE_RX_DESC_INC(prod)) {
1445		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1446		rxstat = le32toh(cur_rx->vge_sts);
1447		if ((rxstat & VGE_RDSTS_OWN) != 0)
1448			break;
1449		count--;
1450		prog++;
1451		rxctl = le32toh(cur_rx->vge_ctl);
1452		total_len = VGE_RXBYTES(rxstat);
1453		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1454		m = rxd->rx_m;
1455
1456		/*
1457		 * If the 'start of frame' bit is set, this indicates
1458		 * either the first fragment in a multi-fragment receive,
1459		 * or an intermediate fragment. Either way, we want to
1460		 * accumulate the buffers.
1461		 */
1462		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1463			if (vge_newbuf(sc, prod) != 0) {
1464				ifp->if_iqdrops++;
1465				VGE_CHAIN_RESET(sc);
1466				vge_discard_rxbuf(sc, prod);
1467				continue;
1468			}
1469			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1470			if (sc->vge_cdata.vge_head == NULL) {
1471				sc->vge_cdata.vge_head = m;
1472				sc->vge_cdata.vge_tail = m;
1473			} else {
1474				m->m_flags &= ~M_PKTHDR;
1475				sc->vge_cdata.vge_tail->m_next = m;
1476				sc->vge_cdata.vge_tail = m;
1477			}
1478			continue;
1479		}
1480
1481		/*
1482		 * Bad/error frames will have the RXOK bit cleared.
1483		 * However, there's one error case we want to allow:
1484		 * if a VLAN tagged frame arrives and the chip can't
1485		 * match it against the CAM filter, it considers this
1486		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1487		 * We don't want to drop the frame though: our VLAN
1488		 * filtering is done in software.
1489		 * We also want to receive bad-checksummed frames and
1490		 * and frames with bad-length.
1491		 */
1492		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1493		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1494		    VGE_RDSTS_CSUMERR)) == 0) {
1495			ifp->if_ierrors++;
1496			/*
1497			 * If this is part of a multi-fragment packet,
1498			 * discard all the pieces.
1499			 */
1500			VGE_CHAIN_RESET(sc);
1501			vge_discard_rxbuf(sc, prod);
1502			continue;
1503		}
1504
1505		if (vge_newbuf(sc, prod) != 0) {
1506			ifp->if_iqdrops++;
1507			VGE_CHAIN_RESET(sc);
1508			vge_discard_rxbuf(sc, prod);
1509			continue;
1510		}
1511
1512		/* Chain received mbufs. */
1513		if (sc->vge_cdata.vge_head != NULL) {
1514			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1515			/*
1516			 * Special case: if there's 4 bytes or less
1517			 * in this buffer, the mbuf can be discarded:
1518			 * the last 4 bytes is the CRC, which we don't
1519			 * care about anyway.
1520			 */
1521			if (m->m_len <= ETHER_CRC_LEN) {
1522				sc->vge_cdata.vge_tail->m_len -=
1523				    (ETHER_CRC_LEN - m->m_len);
1524				m_freem(m);
1525			} else {
1526				m->m_len -= ETHER_CRC_LEN;
1527				m->m_flags &= ~M_PKTHDR;
1528				sc->vge_cdata.vge_tail->m_next = m;
1529			}
1530			m = sc->vge_cdata.vge_head;
1531			m->m_flags |= M_PKTHDR;
1532			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1533		} else {
1534			m->m_flags |= M_PKTHDR;
1535			m->m_pkthdr.len = m->m_len =
1536			    (total_len - ETHER_CRC_LEN);
1537		}
1538
1539#ifndef	__NO_STRICT_ALIGNMENT
1540		vge_fixup_rx(m);
1541#endif
1542		m->m_pkthdr.rcvif = ifp;
1543
1544		/* Do RX checksumming if enabled */
1545		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1546		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1547			/* Check IP header checksum */
1548			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1549				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1550			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1551				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1552
1553			/* Check TCP/UDP checksum */
1554			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1555			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1556				m->m_pkthdr.csum_flags |=
1557				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1558				m->m_pkthdr.csum_data = 0xffff;
1559			}
1560		}
1561
1562		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1563			/*
1564			 * The 32-bit rxctl register is stored in little-endian.
1565			 * However, the 16-bit vlan tag is stored in big-endian,
1566			 * so we have to byte swap it.
1567			 */
1568			m->m_pkthdr.ether_vtag =
1569			    bswap16(rxctl & VGE_RDCTL_VLANID);
1570			m->m_flags |= M_VLANTAG;
1571		}
1572
1573		VGE_UNLOCK(sc);
1574		(*ifp->if_input)(ifp, m);
1575		VGE_LOCK(sc);
1576		sc->vge_cdata.vge_head = NULL;
1577		sc->vge_cdata.vge_tail = NULL;
1578	}
1579
1580	if (prog > 0) {
1581		sc->vge_cdata.vge_rx_prodidx = prod;
1582		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1583		    sc->vge_cdata.vge_rx_ring_map,
1584		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1585		/* Update residue counter. */
1586		if (sc->vge_cdata.vge_rx_commit != 0) {
1587			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1588			    sc->vge_cdata.vge_rx_commit);
1589			sc->vge_cdata.vge_rx_commit = 0;
1590		}
1591	}
1592	return (prog);
1593}
1594
1595static void
1596vge_txeof(struct vge_softc *sc)
1597{
1598	struct ifnet *ifp;
1599	struct vge_tx_desc *cur_tx;
1600	struct vge_txdesc *txd;
1601	uint32_t txstat;
1602	int cons, prod;
1603
1604	VGE_LOCK_ASSERT(sc);
1605
1606	ifp = sc->vge_ifp;
1607
1608	if (sc->vge_cdata.vge_tx_cnt == 0)
1609		return;
1610
1611	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1612	    sc->vge_cdata.vge_tx_ring_map,
1613	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1614
1615	/*
1616	 * Go through our tx list and free mbufs for those
1617	 * frames that have been transmitted.
1618	 */
1619	cons = sc->vge_cdata.vge_tx_considx;
1620	prod = sc->vge_cdata.vge_tx_prodidx;
1621	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1622		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1623		txstat = le32toh(cur_tx->vge_sts);
1624		if ((txstat & VGE_TDSTS_OWN) != 0)
1625			break;
1626		sc->vge_cdata.vge_tx_cnt--;
1627		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1628
1629		txd = &sc->vge_cdata.vge_txdesc[cons];
1630		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1631		    BUS_DMASYNC_POSTWRITE);
1632		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1633
1634		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1635		    __func__));
1636		m_freem(txd->tx_m);
1637		txd->tx_m = NULL;
1638		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1639	}
1640	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1641	    sc->vge_cdata.vge_tx_ring_map,
1642	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1643	sc->vge_cdata.vge_tx_considx = cons;
1644	if (sc->vge_cdata.vge_tx_cnt == 0)
1645		sc->vge_timer = 0;
1646}
1647
1648static void
1649vge_link_statchg(void *xsc)
1650{
1651	struct vge_softc *sc;
1652	struct ifnet *ifp;
1653	struct mii_data *mii;
1654
1655	sc = xsc;
1656	ifp = sc->vge_ifp;
1657	VGE_LOCK_ASSERT(sc);
1658	mii = device_get_softc(sc->vge_miibus);
1659
1660	mii_pollstat(mii);
1661	if ((sc->vge_flags & VGE_FLAG_LINK) != 0) {
1662		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1663			sc->vge_flags &= ~VGE_FLAG_LINK;
1664			if_link_state_change(sc->vge_ifp,
1665			    LINK_STATE_DOWN);
1666		}
1667	} else {
1668		if (mii->mii_media_status & IFM_ACTIVE &&
1669		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1670			sc->vge_flags |= VGE_FLAG_LINK;
1671			if_link_state_change(sc->vge_ifp,
1672			    LINK_STATE_UP);
1673			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1674				vge_start_locked(ifp);
1675		}
1676	}
1677}
1678
1679#ifdef DEVICE_POLLING
1680static int
1681vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1682{
1683	struct vge_softc *sc = ifp->if_softc;
1684	int rx_npkts = 0;
1685
1686	VGE_LOCK(sc);
1687	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1688		goto done;
1689
1690	rx_npkts = vge_rxeof(sc, count);
1691	vge_txeof(sc);
1692
1693	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1694		vge_start_locked(ifp);
1695
1696	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1697		uint32_t       status;
1698		status = CSR_READ_4(sc, VGE_ISR);
1699		if (status == 0xFFFFFFFF)
1700			goto done;
1701		if (status)
1702			CSR_WRITE_4(sc, VGE_ISR, status);
1703
1704		/*
1705		 * XXX check behaviour on receiver stalls.
1706		 */
1707
1708		if (status & VGE_ISR_TXDMA_STALL ||
1709		    status & VGE_ISR_RXDMA_STALL) {
1710			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1711			vge_init_locked(sc);
1712		}
1713
1714		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1715			vge_rxeof(sc, count);
1716			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1717			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1718		}
1719	}
1720done:
1721	VGE_UNLOCK(sc);
1722	return (rx_npkts);
1723}
1724#endif /* DEVICE_POLLING */
1725
1726static void
1727vge_intr(void *arg)
1728{
1729	struct vge_softc *sc;
1730	struct ifnet *ifp;
1731	uint32_t status;
1732
1733	sc = arg;
1734	VGE_LOCK(sc);
1735
1736	ifp = sc->vge_ifp;
1737	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1738	    (ifp->if_flags & IFF_UP) == 0) {
1739		VGE_UNLOCK(sc);
1740		return;
1741	}
1742
1743#ifdef DEVICE_POLLING
1744	if  (ifp->if_capenable & IFCAP_POLLING) {
1745		VGE_UNLOCK(sc);
1746		return;
1747	}
1748#endif
1749
1750	/* Disable interrupts */
1751	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1752	status = CSR_READ_4(sc, VGE_ISR);
1753	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1754	/* If the card has gone away the read returns 0xffff. */
1755	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1756		goto done;
1757	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1758		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1759			vge_rxeof(sc, VGE_RX_DESC_CNT);
1760		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1761			vge_rxeof(sc, VGE_RX_DESC_CNT);
1762			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1763			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1764		}
1765
1766		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1767			vge_txeof(sc);
1768
1769		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1770			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1771			vge_init_locked(sc);
1772		}
1773
1774		if (status & VGE_ISR_LINKSTS)
1775			vge_link_statchg(sc);
1776	}
1777done:
1778	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1779		/* Re-enable interrupts */
1780		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1781
1782		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1783			vge_start_locked(ifp);
1784	}
1785	VGE_UNLOCK(sc);
1786}
1787
1788static int
1789vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1790{
1791	struct vge_txdesc *txd;
1792	struct vge_tx_frag *frag;
1793	struct mbuf *m;
1794	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1795	int error, i, nsegs, padlen;
1796	uint32_t cflags;
1797
1798	VGE_LOCK_ASSERT(sc);
1799
1800	M_ASSERTPKTHDR((*m_head));
1801
1802	/* Argh. This chip does not autopad short frames. */
1803	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1804		m = *m_head;
1805		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1806		if (M_WRITABLE(m) == 0) {
1807			/* Get a writable copy. */
1808			m = m_dup(*m_head, M_DONTWAIT);
1809			m_freem(*m_head);
1810			if (m == NULL) {
1811				*m_head = NULL;
1812				return (ENOBUFS);
1813			}
1814			*m_head = m;
1815		}
1816		if (M_TRAILINGSPACE(m) < padlen) {
1817			m = m_defrag(m, M_DONTWAIT);
1818			if (m == NULL) {
1819				m_freem(*m_head);
1820				*m_head = NULL;
1821				return (ENOBUFS);
1822			}
1823		}
1824		/*
1825		 * Manually pad short frames, and zero the pad space
1826		 * to avoid leaking data.
1827		 */
1828		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1829		m->m_pkthdr.len += padlen;
1830		m->m_len = m->m_pkthdr.len;
1831		*m_head = m;
1832	}
1833
1834	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1835
1836	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1837	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1838	if (error == EFBIG) {
1839		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1840		if (m == NULL) {
1841			m_freem(*m_head);
1842			*m_head = NULL;
1843			return (ENOMEM);
1844		}
1845		*m_head = m;
1846		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1847		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1848		if (error != 0) {
1849			m_freem(*m_head);
1850			*m_head = NULL;
1851			return (error);
1852		}
1853	} else if (error != 0)
1854		return (error);
1855	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1856	    BUS_DMASYNC_PREWRITE);
1857
1858	m = *m_head;
1859	cflags = 0;
1860
1861	/* Configure checksum offload. */
1862	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1863		cflags |= VGE_TDCTL_IPCSUM;
1864	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1865		cflags |= VGE_TDCTL_TCPCSUM;
1866	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1867		cflags |= VGE_TDCTL_UDPCSUM;
1868
1869	/* Configure VLAN. */
1870	if ((m->m_flags & M_VLANTAG) != 0)
1871		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1872	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1873	/*
1874	 * XXX
1875	 * Velocity family seems to support TSO but no information
1876	 * for MSS configuration is available. Also the number of
1877	 * fragments supported by a descriptor is too small to hold
1878	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1879	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1880	 * longer chain of buffers but no additional information is
1881	 * available.
1882	 *
1883	 * When telling the chip how many segments there are, we
1884	 * must use nsegs + 1 instead of just nsegs. Darned if I
1885	 * know why. This also means we can't use the last fragment
1886	 * field of Tx descriptor.
1887	 */
1888	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1889	    VGE_TD_LS_NORM);
1890	for (i = 0; i < nsegs; i++) {
1891		frag = &txd->tx_desc->vge_frag[i];
1892		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1893		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1894		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1895	}
1896
1897	sc->vge_cdata.vge_tx_cnt++;
1898	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1899
1900	/*
1901	 * Finally request interrupt and give the first descriptor
1902	 * ownership to hardware.
1903	 */
1904	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1905	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1906	txd->tx_m = m;
1907
1908	return (0);
1909}
1910
1911/*
1912 * Main transmit routine.
1913 */
1914
1915static void
1916vge_start(struct ifnet *ifp)
1917{
1918	struct vge_softc *sc;
1919
1920	sc = ifp->if_softc;
1921	VGE_LOCK(sc);
1922	vge_start_locked(ifp);
1923	VGE_UNLOCK(sc);
1924}
1925
1926
1927static void
1928vge_start_locked(struct ifnet *ifp)
1929{
1930	struct vge_softc *sc;
1931	struct vge_txdesc *txd;
1932	struct mbuf *m_head;
1933	int enq, idx;
1934
1935	sc = ifp->if_softc;
1936
1937	VGE_LOCK_ASSERT(sc);
1938
1939	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1940	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1941	    IFF_DRV_RUNNING)
1942		return;
1943
1944	idx = sc->vge_cdata.vge_tx_prodidx;
1945	VGE_TX_DESC_DEC(idx);
1946	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1947	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1948		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1949		if (m_head == NULL)
1950			break;
1951		/*
1952		 * Pack the data into the transmit ring. If we
1953		 * don't have room, set the OACTIVE flag and wait
1954		 * for the NIC to drain the ring.
1955		 */
1956		if (vge_encap(sc, &m_head)) {
1957			if (m_head == NULL)
1958				break;
1959			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1960			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1961			break;
1962		}
1963
1964		txd = &sc->vge_cdata.vge_txdesc[idx];
1965		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1966		VGE_TX_DESC_INC(idx);
1967
1968		enq++;
1969		/*
1970		 * If there's a BPF listener, bounce a copy of this frame
1971		 * to him.
1972		 */
1973		ETHER_BPF_MTAP(ifp, m_head);
1974	}
1975
1976	if (enq > 0) {
1977		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1978		    sc->vge_cdata.vge_tx_ring_map,
1979		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1980		/* Issue a transmit command. */
1981		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1982		/*
1983		 * Set a timeout in case the chip goes out to lunch.
1984		 */
1985		sc->vge_timer = 5;
1986	}
1987}
1988
1989static void
1990vge_init(void *xsc)
1991{
1992	struct vge_softc *sc = xsc;
1993
1994	VGE_LOCK(sc);
1995	vge_init_locked(sc);
1996	VGE_UNLOCK(sc);
1997}
1998
1999static void
2000vge_init_locked(struct vge_softc *sc)
2001{
2002	struct ifnet *ifp = sc->vge_ifp;
2003	struct mii_data *mii;
2004	int error, i;
2005
2006	VGE_LOCK_ASSERT(sc);
2007	mii = device_get_softc(sc->vge_miibus);
2008
2009	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2010		return;
2011
2012	/*
2013	 * Cancel pending I/O and free all RX/TX buffers.
2014	 */
2015	vge_stop(sc);
2016	vge_reset(sc);
2017
2018	/*
2019	 * Initialize the RX and TX descriptors and mbufs.
2020	 */
2021
2022	error = vge_rx_list_init(sc);
2023	if (error != 0) {
2024                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2025                return;
2026	}
2027	vge_tx_list_init(sc);
2028	/* Clear MAC statistics. */
2029	vge_stats_clear(sc);
2030	/* Set our station address */
2031	for (i = 0; i < ETHER_ADDR_LEN; i++)
2032		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2033
2034	/*
2035	 * Set receive FIFO threshold. Also allow transmission and
2036	 * reception of VLAN tagged frames.
2037	 */
2038	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2039	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2040
2041	/* Set DMA burst length */
2042	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2043	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2044
2045	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2046
2047	/* Set collision backoff algorithm */
2048	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2049	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2050	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2051
2052	/* Disable LPSEL field in priority resolution */
2053	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2054
2055	/*
2056	 * Load the addresses of the DMA queues into the chip.
2057	 * Note that we only use one transmit queue.
2058	 */
2059
2060	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2061	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2062	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2063	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2064	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2065
2066	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2067	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2068	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2069	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2070
2071	/* Configure interrupt moderation. */
2072	vge_intr_holdoff(sc);
2073
2074	/* Enable and wake up the RX descriptor queue */
2075	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2076	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2077
2078	/* Enable the TX descriptor queue */
2079	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2080
2081	/* Init the cam filter. */
2082	vge_cam_clear(sc);
2083
2084	/* Set up receiver filter. */
2085	vge_rxfilter(sc);
2086	vge_setvlan(sc);
2087
2088	/* Enable flow control */
2089
2090	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2091
2092	/* Enable jumbo frame reception (if desired) */
2093
2094	/* Start the MAC. */
2095	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2096	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2097	CSR_WRITE_1(sc, VGE_CRS0,
2098	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2099
2100#ifdef DEVICE_POLLING
2101	/*
2102	 * Disable interrupts if we are polling.
2103	 */
2104	if (ifp->if_capenable & IFCAP_POLLING) {
2105		CSR_WRITE_4(sc, VGE_IMR, 0);
2106		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2107	} else	/* otherwise ... */
2108#endif
2109	{
2110	/*
2111	 * Enable interrupts.
2112	 */
2113		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2114		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2115		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2116	}
2117
2118	sc->vge_flags &= ~VGE_FLAG_LINK;
2119	mii_mediachg(mii);
2120
2121	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2122	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2123	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2124}
2125
2126/*
2127 * Set media options.
2128 */
2129static int
2130vge_ifmedia_upd(struct ifnet *ifp)
2131{
2132	struct vge_softc *sc;
2133	struct mii_data *mii;
2134	int error;
2135
2136	sc = ifp->if_softc;
2137	VGE_LOCK(sc);
2138	mii = device_get_softc(sc->vge_miibus);
2139	error = mii_mediachg(mii);
2140	VGE_UNLOCK(sc);
2141
2142	return (error);
2143}
2144
2145/*
2146 * Report current media status.
2147 */
2148static void
2149vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2150{
2151	struct vge_softc *sc;
2152	struct mii_data *mii;
2153
2154	sc = ifp->if_softc;
2155	mii = device_get_softc(sc->vge_miibus);
2156
2157	VGE_LOCK(sc);
2158	if ((ifp->if_flags & IFF_UP) == 0) {
2159		VGE_UNLOCK(sc);
2160		return;
2161	}
2162	mii_pollstat(mii);
2163	VGE_UNLOCK(sc);
2164	ifmr->ifm_active = mii->mii_media_active;
2165	ifmr->ifm_status = mii->mii_media_status;
2166}
2167
2168static void
2169vge_miibus_statchg(device_t dev)
2170{
2171	struct vge_softc *sc;
2172	struct mii_data *mii;
2173	struct ifmedia_entry *ife;
2174
2175	sc = device_get_softc(dev);
2176	mii = device_get_softc(sc->vge_miibus);
2177	ife = mii->mii_media.ifm_cur;
2178
2179	/*
2180	 * If the user manually selects a media mode, we need to turn
2181	 * on the forced MAC mode bit in the DIAGCTL register. If the
2182	 * user happens to choose a full duplex mode, we also need to
2183	 * set the 'force full duplex' bit. This applies only to
2184	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2185	 * mode is disabled, and in 1000baseT mode, full duplex is
2186	 * always implied, so we turn on the forced mode bit but leave
2187	 * the FDX bit cleared.
2188	 */
2189
2190	switch (IFM_SUBTYPE(ife->ifm_media)) {
2191	case IFM_AUTO:
2192		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2193		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2194		break;
2195	case IFM_1000_T:
2196		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2197		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2198		break;
2199	case IFM_100_TX:
2200	case IFM_10_T:
2201		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2202		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2203			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2204		} else {
2205			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2206		}
2207		break;
2208	default:
2209		device_printf(dev, "unknown media type: %x\n",
2210		    IFM_SUBTYPE(ife->ifm_media));
2211		break;
2212	}
2213}
2214
2215static int
2216vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2217{
2218	struct vge_softc *sc = ifp->if_softc;
2219	struct ifreq *ifr = (struct ifreq *) data;
2220	struct mii_data *mii;
2221	int error = 0, mask;
2222
2223	switch (command) {
2224	case SIOCSIFMTU:
2225		VGE_LOCK(sc);
2226		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2227			error = EINVAL;
2228		else if (ifp->if_mtu != ifr->ifr_mtu) {
2229			if (ifr->ifr_mtu > ETHERMTU &&
2230			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2231				error = EINVAL;
2232			else
2233				ifp->if_mtu = ifr->ifr_mtu;
2234		}
2235		VGE_UNLOCK(sc);
2236		break;
2237	case SIOCSIFFLAGS:
2238		VGE_LOCK(sc);
2239		if ((ifp->if_flags & IFF_UP) != 0) {
2240			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2241			    ((ifp->if_flags ^ sc->vge_if_flags) &
2242			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2243				vge_rxfilter(sc);
2244			else
2245				vge_init_locked(sc);
2246		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2247			vge_stop(sc);
2248		sc->vge_if_flags = ifp->if_flags;
2249		VGE_UNLOCK(sc);
2250		break;
2251	case SIOCADDMULTI:
2252	case SIOCDELMULTI:
2253		VGE_LOCK(sc);
2254		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2255			vge_rxfilter(sc);
2256		VGE_UNLOCK(sc);
2257		break;
2258	case SIOCGIFMEDIA:
2259	case SIOCSIFMEDIA:
2260		mii = device_get_softc(sc->vge_miibus);
2261		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2262		break;
2263	case SIOCSIFCAP:
2264		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2265#ifdef DEVICE_POLLING
2266		if (mask & IFCAP_POLLING) {
2267			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2268				error = ether_poll_register(vge_poll, ifp);
2269				if (error)
2270					return (error);
2271				VGE_LOCK(sc);
2272					/* Disable interrupts */
2273				CSR_WRITE_4(sc, VGE_IMR, 0);
2274				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2275				ifp->if_capenable |= IFCAP_POLLING;
2276				VGE_UNLOCK(sc);
2277			} else {
2278				error = ether_poll_deregister(ifp);
2279				/* Enable interrupts. */
2280				VGE_LOCK(sc);
2281				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2282				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2283				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2284				ifp->if_capenable &= ~IFCAP_POLLING;
2285				VGE_UNLOCK(sc);
2286			}
2287		}
2288#endif /* DEVICE_POLLING */
2289		VGE_LOCK(sc);
2290		if ((mask & IFCAP_TXCSUM) != 0 &&
2291		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2292			ifp->if_capenable ^= IFCAP_TXCSUM;
2293			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2294				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2295			else
2296				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2297		}
2298		if ((mask & IFCAP_RXCSUM) != 0 &&
2299		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2300			ifp->if_capenable ^= IFCAP_RXCSUM;
2301		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2302		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2303			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2304		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2305		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2306			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2307		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2308		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2309			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2310		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2311		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2312			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2313		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2314		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2315			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2316			vge_setvlan(sc);
2317		}
2318		VGE_UNLOCK(sc);
2319		VLAN_CAPABILITIES(ifp);
2320		break;
2321	default:
2322		error = ether_ioctl(ifp, command, data);
2323		break;
2324	}
2325
2326	return (error);
2327}
2328
2329static void
2330vge_watchdog(void *arg)
2331{
2332	struct vge_softc *sc;
2333	struct ifnet *ifp;
2334
2335	sc = arg;
2336	VGE_LOCK_ASSERT(sc);
2337	vge_stats_update(sc);
2338	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2339	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2340		return;
2341
2342	ifp = sc->vge_ifp;
2343	if_printf(ifp, "watchdog timeout\n");
2344	ifp->if_oerrors++;
2345
2346	vge_txeof(sc);
2347	vge_rxeof(sc, VGE_RX_DESC_CNT);
2348
2349	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2350	vge_init_locked(sc);
2351}
2352
2353/*
2354 * Stop the adapter and free any mbufs allocated to the
2355 * RX and TX lists.
2356 */
2357static void
2358vge_stop(struct vge_softc *sc)
2359{
2360	struct ifnet *ifp;
2361
2362	VGE_LOCK_ASSERT(sc);
2363	ifp = sc->vge_ifp;
2364	sc->vge_timer = 0;
2365	callout_stop(&sc->vge_watchdog);
2366
2367	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2368
2369	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2370	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2371	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2372	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2373	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2374	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2375
2376	vge_stats_update(sc);
2377	VGE_CHAIN_RESET(sc);
2378	vge_txeof(sc);
2379	vge_freebufs(sc);
2380}
2381
2382/*
2383 * Device suspend routine.  Stop the interface and save some PCI
2384 * settings in case the BIOS doesn't restore them properly on
2385 * resume.
2386 */
2387static int
2388vge_suspend(device_t dev)
2389{
2390	struct vge_softc *sc;
2391
2392	sc = device_get_softc(dev);
2393
2394	VGE_LOCK(sc);
2395	vge_stop(sc);
2396	vge_setwol(sc);
2397	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2398	VGE_UNLOCK(sc);
2399
2400	return (0);
2401}
2402
2403/*
2404 * Device resume routine.  Restore some PCI settings in case the BIOS
2405 * doesn't, re-enable busmastering, and restart the interface if
2406 * appropriate.
2407 */
2408static int
2409vge_resume(device_t dev)
2410{
2411	struct vge_softc *sc;
2412	struct ifnet *ifp;
2413	uint16_t pmstat;
2414
2415	sc = device_get_softc(dev);
2416	VGE_LOCK(sc);
2417	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2418		/* Disable PME and clear PME status. */
2419		pmstat = pci_read_config(sc->vge_dev,
2420		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2421		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2422			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2423			pci_write_config(sc->vge_dev,
2424			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2425		}
2426	}
2427	vge_clrwol(sc);
2428	/* Restart MII auto-polling. */
2429	vge_miipoll_start(sc);
2430	ifp = sc->vge_ifp;
2431	/* Reinitialize interface if necessary. */
2432	if ((ifp->if_flags & IFF_UP) != 0) {
2433		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2434		vge_init_locked(sc);
2435	}
2436	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2437	VGE_UNLOCK(sc);
2438
2439	return (0);
2440}
2441
2442/*
2443 * Stop all chip I/O so that the kernel's probe routines don't
2444 * get confused by errant DMAs when rebooting.
2445 */
2446static int
2447vge_shutdown(device_t dev)
2448{
2449
2450	return (vge_suspend(dev));
2451}
2452
2453#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2454	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2455
2456static void
2457vge_sysctl_node(struct vge_softc *sc)
2458{
2459	struct sysctl_ctx_list *ctx;
2460	struct sysctl_oid_list *child, *parent;
2461	struct sysctl_oid *tree;
2462	struct vge_hw_stats *stats;
2463
2464	stats = &sc->vge_stats;
2465	ctx = device_get_sysctl_ctx(sc->vge_dev);
2466	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2467
2468	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2469	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2470	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2471	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2472	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2473	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2474
2475	/* Pull in device tunables. */
2476	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2477	resource_int_value(device_get_name(sc->vge_dev),
2478	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2479	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2480	resource_int_value(device_get_name(sc->vge_dev),
2481	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2482	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2483	resource_int_value(device_get_name(sc->vge_dev),
2484	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2485
2486	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2487	    NULL, "VGE statistics");
2488	parent = SYSCTL_CHILDREN(tree);
2489
2490	/* Rx statistics. */
2491	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2492	    NULL, "RX MAC statistics");
2493	child = SYSCTL_CHILDREN(tree);
2494	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2495	    &stats->rx_frames, "frames");
2496	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2497	    &stats->rx_good_frames, "Good frames");
2498	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2499	    &stats->rx_fifo_oflows, "FIFO overflows");
2500	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2501	    &stats->rx_runts, "Too short frames");
2502	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2503	    &stats->rx_runts_errs, "Too short frames with errors");
2504	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2505	    &stats->rx_pkts_64, "64 bytes frames");
2506	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2507	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2508	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2509	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2510	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2511	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2512	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2513	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2514	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2515	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2516	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2517	    &stats->rx_pkts_1519_max, "1519 to max frames");
2518	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2519	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2520	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2521	    &stats->rx_jumbos, "Jumbo frames");
2522	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2523	    &stats->rx_crcerrs, "CRC errors");
2524	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2525	    &stats->rx_pause_frames, "CRC errors");
2526	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2527	    &stats->rx_alignerrs, "Alignment errors");
2528	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2529	    &stats->rx_nobufs, "Frames with no buffer event");
2530	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2531	    &stats->rx_symerrs, "Frames with symbol errors");
2532	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2533	    &stats->rx_lenerrs, "Frames with length mismatched");
2534
2535	/* Tx statistics. */
2536	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2537	    NULL, "TX MAC statistics");
2538	child = SYSCTL_CHILDREN(tree);
2539	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2540	    &stats->tx_good_frames, "Good frames");
2541	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2542	    &stats->tx_pkts_64, "64 bytes frames");
2543	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2544	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2545	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2546	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2547	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2548	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2549	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2550	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2551	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2552	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2553	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2554	    &stats->tx_jumbos, "Jumbo frames");
2555	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2556	    &stats->tx_colls, "Collisions");
2557	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2558	    &stats->tx_latecolls, "Late collisions");
2559	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2560	    &stats->tx_pause, "Pause frames");
2561#ifdef VGE_ENABLE_SQEERR
2562	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2563	    &stats->tx_sqeerrs, "SQE errors");
2564#endif
2565	/* Clear MAC statistics. */
2566	vge_stats_clear(sc);
2567}
2568
2569#undef	VGE_SYSCTL_STAT_ADD32
2570
2571static void
2572vge_stats_clear(struct vge_softc *sc)
2573{
2574	int i;
2575
2576	CSR_WRITE_1(sc, VGE_MIBCSR,
2577	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2578	CSR_WRITE_1(sc, VGE_MIBCSR,
2579	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2580	for (i = VGE_TIMEOUT; i > 0; i--) {
2581		DELAY(1);
2582		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2583			break;
2584	}
2585	if (i == 0)
2586		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2587	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2588	    ~VGE_MIBCSR_FREEZE);
2589}
2590
2591static void
2592vge_stats_update(struct vge_softc *sc)
2593{
2594	struct vge_hw_stats *stats;
2595	struct ifnet *ifp;
2596	uint32_t mib[VGE_MIB_CNT], val;
2597	int i;
2598
2599	VGE_LOCK_ASSERT(sc);
2600
2601	stats = &sc->vge_stats;
2602	ifp = sc->vge_ifp;
2603
2604	CSR_WRITE_1(sc, VGE_MIBCSR,
2605	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2606	for (i = VGE_TIMEOUT; i > 0; i--) {
2607		DELAY(1);
2608		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2609			break;
2610	}
2611	if (i == 0) {
2612		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2613		vge_stats_clear(sc);
2614		return;
2615	}
2616
2617	bzero(mib, sizeof(mib));
2618reset_idx:
2619	/* Set MIB read index to 0. */
2620	CSR_WRITE_1(sc, VGE_MIBCSR,
2621	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2622	for (i = 0; i < VGE_MIB_CNT; i++) {
2623		val = CSR_READ_4(sc, VGE_MIBDATA);
2624		if (i != VGE_MIB_DATA_IDX(val)) {
2625			/* Reading interrupted. */
2626			goto reset_idx;
2627		}
2628		mib[i] = val & VGE_MIB_DATA_MASK;
2629	}
2630
2631	/* Rx stats. */
2632	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2633	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2634	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2635	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2636	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2637	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2638	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2639	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2640	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2641	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2642	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2643	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2644	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2645	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2646	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2647	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2648	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2649	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2650	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2651	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2652
2653	/* Tx stats. */
2654	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2655	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2656	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2657	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2658	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2659	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2660	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2661	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2662	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2663	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2664#ifdef VGE_ENABLE_SQEERR
2665	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2666#endif
2667	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2668
2669	/* Update counters in ifnet. */
2670	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2671
2672	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2673	    mib[VGE_MIB_TX_LATECOLLS];
2674
2675	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2676	    mib[VGE_MIB_TX_LATECOLLS];
2677
2678	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2679
2680	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2681	    mib[VGE_MIB_RX_RUNTS] +
2682	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2683	    mib[VGE_MIB_RX_CRCERRS] +
2684	    mib[VGE_MIB_RX_ALIGNERRS] +
2685	    mib[VGE_MIB_RX_NOBUFS] +
2686	    mib[VGE_MIB_RX_SYMERRS] +
2687	    mib[VGE_MIB_RX_LENERRS];
2688}
2689
2690static void
2691vge_intr_holdoff(struct vge_softc *sc)
2692{
2693	uint8_t intctl;
2694
2695	VGE_LOCK_ASSERT(sc);
2696
2697	/*
2698	 * Set Tx interrupt supression threshold.
2699	 * It's possible to use single-shot timer in VGE_CRS1 register
2700	 * in Tx path such that driver can remove most of Tx completion
2701	 * interrupts. However this requires additional access to
2702	 * VGE_CRS1 register to reload the timer in addintion to
2703	 * activating Tx kick command. Another downside is we don't know
2704	 * what single-shot timer value should be used in advance so
2705	 * reclaiming transmitted mbufs could be delayed a lot which in
2706	 * turn slows down Tx operation.
2707	 */
2708	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2709	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2710
2711	/* Set Rx interrupt suppresion threshold. */
2712	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2713	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2714
2715	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2716	intctl &= ~VGE_INTCTL_SC_RELOAD;
2717	intctl |= VGE_INTCTL_HC_RELOAD;
2718	if (sc->vge_tx_coal_pkt <= 0)
2719		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2720	else
2721		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2722	if (sc->vge_rx_coal_pkt <= 0)
2723		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2724	else
2725		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2726	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2727	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2728	if (sc->vge_int_holdoff > 0) {
2729		/* Set interrupt holdoff timer. */
2730		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2731		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2732		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2733		/* Enable holdoff timer. */
2734		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2735	}
2736}
2737
2738static void
2739vge_setlinkspeed(struct vge_softc *sc)
2740{
2741	struct mii_data *mii;
2742	int aneg, i;
2743
2744	VGE_LOCK_ASSERT(sc);
2745
2746	mii = device_get_softc(sc->vge_miibus);
2747	mii_pollstat(mii);
2748	aneg = 0;
2749	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2750	    (IFM_ACTIVE | IFM_AVALID)) {
2751		switch IFM_SUBTYPE(mii->mii_media_active) {
2752		case IFM_10_T:
2753		case IFM_100_TX:
2754			return;
2755		case IFM_1000_T:
2756			aneg++;
2757		default:
2758			break;
2759		}
2760	}
2761	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2762	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2763	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2764	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2765	    BMCR_AUTOEN | BMCR_STARTNEG);
2766	DELAY(1000);
2767	if (aneg != 0) {
2768		/* Poll link state until vge(4) get a 10/100 link. */
2769		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2770			mii_pollstat(mii);
2771			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2772			    == (IFM_ACTIVE | IFM_AVALID)) {
2773				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2774				case IFM_10_T:
2775				case IFM_100_TX:
2776					return;
2777				default:
2778					break;
2779				}
2780			}
2781			VGE_UNLOCK(sc);
2782			pause("vgelnk", hz);
2783			VGE_LOCK(sc);
2784		}
2785		if (i == MII_ANEGTICKS_GIGE)
2786			device_printf(sc->vge_dev, "establishing link failed, "
2787			    "WOL may not work!");
2788	}
2789	/*
2790	 * No link, force MAC to have 100Mbps, full-duplex link.
2791	 * This is the last resort and may/may not work.
2792	 */
2793	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2794	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2795}
2796
2797static void
2798vge_setwol(struct vge_softc *sc)
2799{
2800	struct ifnet *ifp;
2801	uint16_t pmstat;
2802	uint8_t val;
2803
2804	VGE_LOCK_ASSERT(sc);
2805
2806	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2807		/* No PME capability, PHY power down. */
2808		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2809		    BMCR_PDOWN);
2810		vge_miipoll_stop(sc);
2811		return;
2812	}
2813
2814	ifp = sc->vge_ifp;
2815
2816	/* Clear WOL on pattern match. */
2817	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2818	/* Disable WOL on magic/unicast packet. */
2819	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2820	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2821	    VGE_WOLCFG_PMEOVR);
2822	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2823		vge_setlinkspeed(sc);
2824		val = 0;
2825		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2826			val |= VGE_WOLCR1_UCAST;
2827		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2828			val |= VGE_WOLCR1_MAGIC;
2829		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2830		val = 0;
2831		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2832			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2833		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2834		/* Disable MII auto-polling. */
2835		vge_miipoll_stop(sc);
2836	}
2837	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2838	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2839	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2840
2841	/* Clear WOL status on pattern match. */
2842	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2843	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2844
2845	val = CSR_READ_1(sc, VGE_PWRSTAT);
2846	val |= VGE_STICKHW_SWPTAG;
2847	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2848	/* Put hardware into sleep. */
2849	val = CSR_READ_1(sc, VGE_PWRSTAT);
2850	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2851	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2852	/* Request PME if WOL is requested. */
2853	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2854	    PCIR_POWER_STATUS, 2);
2855	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2856	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2857		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2858	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2859	    pmstat, 2);
2860}
2861
2862static void
2863vge_clrwol(struct vge_softc *sc)
2864{
2865	uint8_t val;
2866
2867	val = CSR_READ_1(sc, VGE_PWRSTAT);
2868	val &= ~VGE_STICKHW_SWPTAG;
2869	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2870	/* Disable WOL and clear power state indicator. */
2871	val = CSR_READ_1(sc, VGE_PWRSTAT);
2872	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2873	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2874
2875	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2876	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2877
2878	/* Clear WOL on pattern match. */
2879	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2880	/* Disable WOL on magic/unicast packet. */
2881	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2882	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2883	    VGE_WOLCFG_PMEOVR);
2884	/* Clear WOL status on pattern match. */
2885	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2886	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2887}
2888