1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/sysctl.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/* Tunables */
132static int msi_disable = 0;
133TUNABLE_INT("hw.vge.msi_disable", &msi_disable);
134
135/*
136 * The SQE error counter of MIB seems to report bogus value.
137 * Vendor's workaround does not seem to work on PCIe based
138 * controllers. Disable it until we find better workaround.
139 */
140#undef VGE_ENABLE_SQEERR
141
142/*
143 * Various supported device vendors/types and their names.
144 */
145static struct vge_type vge_devs[] = {
146	{ VIA_VENDORID, VIA_DEVICEID_61XX,
147		"VIA Networking Velocity Gigabit Ethernet" },
148	{ 0, 0, NULL }
149};
150
151static int	vge_attach(device_t);
152static int	vge_detach(device_t);
153static int	vge_probe(device_t);
154static int	vge_resume(device_t);
155static int	vge_shutdown(device_t);
156static int	vge_suspend(device_t);
157
158static void	vge_cam_clear(struct vge_softc *);
159static int	vge_cam_set(struct vge_softc *, uint8_t *);
160static void	vge_clrwol(struct vge_softc *);
161static void	vge_discard_rxbuf(struct vge_softc *, int);
162static int	vge_dma_alloc(struct vge_softc *);
163static void	vge_dma_free(struct vge_softc *);
164static void	vge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
165#ifdef VGE_EEPROM
166static void	vge_eeprom_getword(struct vge_softc *, int, uint16_t *);
167#endif
168static int	vge_encap(struct vge_softc *, struct mbuf **);
169#ifndef __NO_STRICT_ALIGNMENT
170static __inline void
171		vge_fixup_rx(struct mbuf *);
172#endif
173static void	vge_freebufs(struct vge_softc *);
174static void	vge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
175static int	vge_ifmedia_upd(struct ifnet *);
176static int	vge_ifmedia_upd_locked(struct vge_softc *);
177static void	vge_init(void *);
178static void	vge_init_locked(struct vge_softc *);
179static void	vge_intr(void *);
180static void	vge_intr_holdoff(struct vge_softc *);
181static int	vge_ioctl(struct ifnet *, u_long, caddr_t);
182static void	vge_link_statchg(void *);
183static int	vge_miibus_readreg(device_t, int, int);
184static int	vge_miibus_writereg(device_t, int, int, int);
185static void	vge_miipoll_start(struct vge_softc *);
186static void	vge_miipoll_stop(struct vge_softc *);
187static int	vge_newbuf(struct vge_softc *, int);
188static void	vge_read_eeprom(struct vge_softc *, caddr_t, int, int, int);
189static void	vge_reset(struct vge_softc *);
190static int	vge_rx_list_init(struct vge_softc *);
191static int	vge_rxeof(struct vge_softc *, int);
192static void	vge_rxfilter(struct vge_softc *);
193static void	vge_setmedia(struct vge_softc *);
194static void	vge_setvlan(struct vge_softc *);
195static void	vge_setwol(struct vge_softc *);
196static void	vge_start(struct ifnet *);
197static void	vge_start_locked(struct ifnet *);
198static void	vge_stats_clear(struct vge_softc *);
199static void	vge_stats_update(struct vge_softc *);
200static void	vge_stop(struct vge_softc *);
201static void	vge_sysctl_node(struct vge_softc *);
202static int	vge_tx_list_init(struct vge_softc *);
203static void	vge_txeof(struct vge_softc *);
204static void	vge_watchdog(void *);
205
206static device_method_t vge_methods[] = {
207	/* Device interface */
208	DEVMETHOD(device_probe,		vge_probe),
209	DEVMETHOD(device_attach,	vge_attach),
210	DEVMETHOD(device_detach,	vge_detach),
211	DEVMETHOD(device_suspend,	vge_suspend),
212	DEVMETHOD(device_resume,	vge_resume),
213	DEVMETHOD(device_shutdown,	vge_shutdown),
214
215	/* MII interface */
216	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
217	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
218
219	DEVMETHOD_END
220};
221
222static driver_t vge_driver = {
223	"vge",
224	vge_methods,
225	sizeof(struct vge_softc)
226};
227
228static devclass_t vge_devclass;
229
230DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
231DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
232
233#ifdef VGE_EEPROM
234/*
235 * Read a word of data stored in the EEPROM at address 'addr.'
236 */
237static void
238vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t *dest)
239{
240	int i;
241	uint16_t word = 0;
242
243	/*
244	 * Enter EEPROM embedded programming mode. In order to
245	 * access the EEPROM at all, we first have to set the
246	 * EELOAD bit in the CHIPCFG2 register.
247	 */
248	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251	/* Select the address of the word we want to read */
252	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254	/* Issue read command */
255	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257	/* Wait for the done bit to be set. */
258	for (i = 0; i < VGE_TIMEOUT; i++) {
259		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260			break;
261	}
262
263	if (i == VGE_TIMEOUT) {
264		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265		*dest = 0;
266		return;
267	}
268
269	/* Read the result */
270	word = CSR_READ_2(sc, VGE_EERDDAT);
271
272	/* Turn off EEPROM access mode. */
273	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276	*dest = word;
277}
278#endif
279
280/*
281 * Read a sequence of words from the EEPROM.
282 */
283static void
284vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
285{
286	int i;
287#ifdef VGE_EEPROM
288	uint16_t word = 0, *ptr;
289
290	for (i = 0; i < cnt; i++) {
291		vge_eeprom_getword(sc, off + i, &word);
292		ptr = (uint16_t *)(dest + (i * 2));
293		if (swap)
294			*ptr = ntohs(word);
295		else
296			*ptr = word;
297	}
298#else
299	for (i = 0; i < ETHER_ADDR_LEN; i++)
300		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
301#endif
302}
303
304static void
305vge_miipoll_stop(struct vge_softc *sc)
306{
307	int i;
308
309	CSR_WRITE_1(sc, VGE_MIICMD, 0);
310
311	for (i = 0; i < VGE_TIMEOUT; i++) {
312		DELAY(1);
313		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
314			break;
315	}
316
317	if (i == VGE_TIMEOUT)
318		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
319}
320
321static void
322vge_miipoll_start(struct vge_softc *sc)
323{
324	int i;
325
326	/* First, make sure we're idle. */
327
328	CSR_WRITE_1(sc, VGE_MIICMD, 0);
329	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
330
331	for (i = 0; i < VGE_TIMEOUT; i++) {
332		DELAY(1);
333		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
334			break;
335	}
336
337	if (i == VGE_TIMEOUT) {
338		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
339		return;
340	}
341
342	/* Now enable auto poll mode. */
343
344	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
345
346	/* And make sure it started. */
347
348	for (i = 0; i < VGE_TIMEOUT; i++) {
349		DELAY(1);
350		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
351			break;
352	}
353
354	if (i == VGE_TIMEOUT)
355		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
356}
357
358static int
359vge_miibus_readreg(device_t dev, int phy, int reg)
360{
361	struct vge_softc *sc;
362	int i;
363	uint16_t rval = 0;
364
365	sc = device_get_softc(dev);
366
367	vge_miipoll_stop(sc);
368
369	/* Specify the register we want to read. */
370	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
371
372	/* Issue read command. */
373	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
374
375	/* Wait for the read command bit to self-clear. */
376	for (i = 0; i < VGE_TIMEOUT; i++) {
377		DELAY(1);
378		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
379			break;
380	}
381
382	if (i == VGE_TIMEOUT)
383		device_printf(sc->vge_dev, "MII read timed out\n");
384	else
385		rval = CSR_READ_2(sc, VGE_MIIDATA);
386
387	vge_miipoll_start(sc);
388
389	return (rval);
390}
391
392static int
393vge_miibus_writereg(device_t dev, int phy, int reg, int data)
394{
395	struct vge_softc *sc;
396	int i, rval = 0;
397
398	sc = device_get_softc(dev);
399
400	vge_miipoll_stop(sc);
401
402	/* Specify the register we want to write. */
403	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
404
405	/* Specify the data we want to write. */
406	CSR_WRITE_2(sc, VGE_MIIDATA, data);
407
408	/* Issue write command. */
409	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
410
411	/* Wait for the write command bit to self-clear. */
412	for (i = 0; i < VGE_TIMEOUT; i++) {
413		DELAY(1);
414		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
415			break;
416	}
417
418	if (i == VGE_TIMEOUT) {
419		device_printf(sc->vge_dev, "MII write timed out\n");
420		rval = EIO;
421	}
422
423	vge_miipoll_start(sc);
424
425	return (rval);
426}
427
428static void
429vge_cam_clear(struct vge_softc *sc)
430{
431	int i;
432
433	/*
434	 * Turn off all the mask bits. This tells the chip
435	 * that none of the entries in the CAM filter are valid.
436	 * desired entries will be enabled as we fill the filter in.
437	 */
438
439	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
440	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
441	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
442	for (i = 0; i < 8; i++)
443		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
444
445	/* Clear the VLAN filter too. */
446
447	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
448	for (i = 0; i < 8; i++)
449		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
450
451	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
452	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
453	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
454
455	sc->vge_camidx = 0;
456}
457
458static int
459vge_cam_set(struct vge_softc *sc, uint8_t *addr)
460{
461	int i, error = 0;
462
463	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
464		return (ENOSPC);
465
466	/* Select the CAM data page. */
467	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
469
470	/* Set the filter entry we want to update and enable writing. */
471	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
472
473	/* Write the address to the CAM registers */
474	for (i = 0; i < ETHER_ADDR_LEN; i++)
475		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
476
477	/* Issue a write command. */
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
479
480	/* Wake for it to clear. */
481	for (i = 0; i < VGE_TIMEOUT; i++) {
482		DELAY(1);
483		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
484			break;
485	}
486
487	if (i == VGE_TIMEOUT) {
488		device_printf(sc->vge_dev, "setting CAM filter failed\n");
489		error = EIO;
490		goto fail;
491	}
492
493	/* Select the CAM mask page. */
494	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
495	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
496
497	/* Set the mask bit that enables this filter. */
498	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
499	    1<<(sc->vge_camidx & 7));
500
501	sc->vge_camidx++;
502
503fail:
504	/* Turn off access to CAM. */
505	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
506	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
507	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
508
509	return (error);
510}
511
512static void
513vge_setvlan(struct vge_softc *sc)
514{
515	struct ifnet *ifp;
516	uint8_t cfg;
517
518	VGE_LOCK_ASSERT(sc);
519
520	ifp = sc->vge_ifp;
521	cfg = CSR_READ_1(sc, VGE_RXCFG);
522	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
523		cfg |= VGE_VTAG_OPT2;
524	else
525		cfg &= ~VGE_VTAG_OPT2;
526	CSR_WRITE_1(sc, VGE_RXCFG, cfg);
527}
528
529/*
530 * Program the multicast filter. We use the 64-entry CAM filter
531 * for perfect filtering. If there's more than 64 multicast addresses,
532 * we use the hash filter instead.
533 */
534static void
535vge_rxfilter(struct vge_softc *sc)
536{
537	struct ifnet *ifp;
538	struct ifmultiaddr *ifma;
539	uint32_t h, hashes[2];
540	uint8_t rxcfg;
541	int error = 0;
542
543	VGE_LOCK_ASSERT(sc);
544
545	/* First, zot all the multicast entries. */
546	hashes[0] = 0;
547	hashes[1] = 0;
548
549	rxcfg = CSR_READ_1(sc, VGE_RXCTL);
550	rxcfg &= ~(VGE_RXCTL_RX_MCAST | VGE_RXCTL_RX_BCAST |
551	    VGE_RXCTL_RX_PROMISC);
552	/*
553	 * Always allow VLAN oversized frames and frames for
554	 * this host.
555	 */
556	rxcfg |= VGE_RXCTL_RX_GIANT | VGE_RXCTL_RX_UCAST;
557
558	ifp = sc->vge_ifp;
559	if ((ifp->if_flags & IFF_BROADCAST) != 0)
560		rxcfg |= VGE_RXCTL_RX_BCAST;
561	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
562		if ((ifp->if_flags & IFF_PROMISC) != 0)
563			rxcfg |= VGE_RXCTL_RX_PROMISC;
564		if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
565			hashes[0] = 0xFFFFFFFF;
566			hashes[1] = 0xFFFFFFFF;
567		}
568		goto done;
569	}
570
571	vge_cam_clear(sc);
572	/* Now program new ones */
573	if_maddr_rlock(ifp);
574	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
575		if (ifma->ifma_addr->sa_family != AF_LINK)
576			continue;
577		error = vge_cam_set(sc,
578		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
579		if (error)
580			break;
581	}
582
583	/* If there were too many addresses, use the hash filter. */
584	if (error) {
585		vge_cam_clear(sc);
586
587		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
588			if (ifma->ifma_addr->sa_family != AF_LINK)
589				continue;
590			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
591			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
592			if (h < 32)
593				hashes[0] |= (1 << h);
594			else
595				hashes[1] |= (1 << (h - 32));
596		}
597	}
598	if_maddr_runlock(ifp);
599
600done:
601	if (hashes[0] != 0 || hashes[1] != 0)
602		rxcfg |= VGE_RXCTL_RX_MCAST;
603	CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
604	CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
605	CSR_WRITE_1(sc, VGE_RXCTL, rxcfg);
606}
607
608static void
609vge_reset(struct vge_softc *sc)
610{
611	int i;
612
613	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
614
615	for (i = 0; i < VGE_TIMEOUT; i++) {
616		DELAY(5);
617		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
618			break;
619	}
620
621	if (i == VGE_TIMEOUT) {
622		device_printf(sc->vge_dev, "soft reset timed out\n");
623		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
624		DELAY(2000);
625	}
626
627	DELAY(5000);
628}
629
630/*
631 * Probe for a VIA gigabit chip. Check the PCI vendor and device
632 * IDs against our list and return a device name if we find a match.
633 */
634static int
635vge_probe(device_t dev)
636{
637	struct vge_type	*t;
638
639	t = vge_devs;
640
641	while (t->vge_name != NULL) {
642		if ((pci_get_vendor(dev) == t->vge_vid) &&
643		    (pci_get_device(dev) == t->vge_did)) {
644			device_set_desc(dev, t->vge_name);
645			return (BUS_PROBE_DEFAULT);
646		}
647		t++;
648	}
649
650	return (ENXIO);
651}
652
653/*
654 * Map a single buffer address.
655 */
656
657struct vge_dmamap_arg {
658	bus_addr_t	vge_busaddr;
659};
660
661static void
662vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
663{
664	struct vge_dmamap_arg *ctx;
665
666	if (error != 0)
667		return;
668
669	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
670
671	ctx = (struct vge_dmamap_arg *)arg;
672	ctx->vge_busaddr = segs[0].ds_addr;
673}
674
675static int
676vge_dma_alloc(struct vge_softc *sc)
677{
678	struct vge_dmamap_arg ctx;
679	struct vge_txdesc *txd;
680	struct vge_rxdesc *rxd;
681	bus_addr_t lowaddr, tx_ring_end, rx_ring_end;
682	int error, i;
683
684	/*
685	 * It seems old PCI controllers do not support DAC.  DAC
686	 * configuration can be enabled by accessing VGE_CHIPCFG3
687	 * register but honor EEPROM configuration instead of
688	 * blindly overriding DAC configuration.  PCIe based
689	 * controllers are supposed to support 64bit DMA so enable
690	 * 64bit DMA on these controllers.
691	 */
692	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
693		lowaddr = BUS_SPACE_MAXADDR;
694	else
695		lowaddr = BUS_SPACE_MAXADDR_32BIT;
696
697again:
698	/* Create parent ring tag. */
699	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
700	    1, 0,			/* algnmnt, boundary */
701	    lowaddr,			/* lowaddr */
702	    BUS_SPACE_MAXADDR,		/* highaddr */
703	    NULL, NULL,			/* filter, filterarg */
704	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
705	    0,				/* nsegments */
706	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
707	    0,				/* flags */
708	    NULL, NULL,			/* lockfunc, lockarg */
709	    &sc->vge_cdata.vge_ring_tag);
710	if (error != 0) {
711		device_printf(sc->vge_dev,
712		    "could not create parent DMA tag.\n");
713		goto fail;
714	}
715
716	/* Create tag for Tx ring. */
717	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
718	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
719	    BUS_SPACE_MAXADDR,		/* lowaddr */
720	    BUS_SPACE_MAXADDR,		/* highaddr */
721	    NULL, NULL,			/* filter, filterarg */
722	    VGE_TX_LIST_SZ,		/* maxsize */
723	    1,				/* nsegments */
724	    VGE_TX_LIST_SZ,		/* maxsegsize */
725	    0,				/* flags */
726	    NULL, NULL,			/* lockfunc, lockarg */
727	    &sc->vge_cdata.vge_tx_ring_tag);
728	if (error != 0) {
729		device_printf(sc->vge_dev,
730		    "could not allocate Tx ring DMA tag.\n");
731		goto fail;
732	}
733
734	/* Create tag for Rx ring. */
735	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
736	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
737	    BUS_SPACE_MAXADDR,		/* lowaddr */
738	    BUS_SPACE_MAXADDR,		/* highaddr */
739	    NULL, NULL,			/* filter, filterarg */
740	    VGE_RX_LIST_SZ,		/* maxsize */
741	    1,				/* nsegments */
742	    VGE_RX_LIST_SZ,		/* maxsegsize */
743	    0,				/* flags */
744	    NULL, NULL,			/* lockfunc, lockarg */
745	    &sc->vge_cdata.vge_rx_ring_tag);
746	if (error != 0) {
747		device_printf(sc->vge_dev,
748		    "could not allocate Rx ring DMA tag.\n");
749		goto fail;
750	}
751
752	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
753	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
754	    (void **)&sc->vge_rdata.vge_tx_ring,
755	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
756	    &sc->vge_cdata.vge_tx_ring_map);
757	if (error != 0) {
758		device_printf(sc->vge_dev,
759		    "could not allocate DMA'able memory for Tx ring.\n");
760		goto fail;
761	}
762
763	ctx.vge_busaddr = 0;
764	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
765	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
766	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
767	if (error != 0 || ctx.vge_busaddr == 0) {
768		device_printf(sc->vge_dev,
769		    "could not load DMA'able memory for Tx ring.\n");
770		goto fail;
771	}
772	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
773
774	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
775	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
776	    (void **)&sc->vge_rdata.vge_rx_ring,
777	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
778	    &sc->vge_cdata.vge_rx_ring_map);
779	if (error != 0) {
780		device_printf(sc->vge_dev,
781		    "could not allocate DMA'able memory for Rx ring.\n");
782		goto fail;
783	}
784
785	ctx.vge_busaddr = 0;
786	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
787	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
788	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
789	if (error != 0 || ctx.vge_busaddr == 0) {
790		device_printf(sc->vge_dev,
791		    "could not load DMA'able memory for Rx ring.\n");
792		goto fail;
793	}
794	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
795
796	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
797	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
798	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
799	if ((VGE_ADDR_HI(tx_ring_end) !=
800	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
801	    (VGE_ADDR_HI(rx_ring_end) !=
802	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
803	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
804		device_printf(sc->vge_dev, "4GB boundary crossed, "
805		    "switching to 32bit DMA address mode.\n");
806		vge_dma_free(sc);
807		/* Limit DMA address space to 32bit and try again. */
808		lowaddr = BUS_SPACE_MAXADDR_32BIT;
809		goto again;
810	}
811
812	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
813		lowaddr = VGE_BUF_DMA_MAXADDR;
814	else
815		lowaddr = BUS_SPACE_MAXADDR_32BIT;
816	/* Create parent buffer tag. */
817	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
818	    1, 0,			/* algnmnt, boundary */
819	    lowaddr,			/* lowaddr */
820	    BUS_SPACE_MAXADDR,		/* highaddr */
821	    NULL, NULL,			/* filter, filterarg */
822	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
823	    0,				/* nsegments */
824	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
825	    0,				/* flags */
826	    NULL, NULL,			/* lockfunc, lockarg */
827	    &sc->vge_cdata.vge_buffer_tag);
828	if (error != 0) {
829		device_printf(sc->vge_dev,
830		    "could not create parent buffer DMA tag.\n");
831		goto fail;
832	}
833
834	/* Create tag for Tx buffers. */
835	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
836	    1, 0,			/* algnmnt, boundary */
837	    BUS_SPACE_MAXADDR,		/* lowaddr */
838	    BUS_SPACE_MAXADDR,		/* highaddr */
839	    NULL, NULL,			/* filter, filterarg */
840	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
841	    VGE_MAXTXSEGS,		/* nsegments */
842	    MCLBYTES,			/* maxsegsize */
843	    0,				/* flags */
844	    NULL, NULL,			/* lockfunc, lockarg */
845	    &sc->vge_cdata.vge_tx_tag);
846	if (error != 0) {
847		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
848		goto fail;
849	}
850
851	/* Create tag for Rx buffers. */
852	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
853	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
854	    BUS_SPACE_MAXADDR,		/* lowaddr */
855	    BUS_SPACE_MAXADDR,		/* highaddr */
856	    NULL, NULL,			/* filter, filterarg */
857	    MCLBYTES,			/* maxsize */
858	    1,				/* nsegments */
859	    MCLBYTES,			/* maxsegsize */
860	    0,				/* flags */
861	    NULL, NULL,			/* lockfunc, lockarg */
862	    &sc->vge_cdata.vge_rx_tag);
863	if (error != 0) {
864		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
865		goto fail;
866	}
867
868	/* Create DMA maps for Tx buffers. */
869	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
870		txd = &sc->vge_cdata.vge_txdesc[i];
871		txd->tx_m = NULL;
872		txd->tx_dmamap = NULL;
873		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
874		    &txd->tx_dmamap);
875		if (error != 0) {
876			device_printf(sc->vge_dev,
877			    "could not create Tx dmamap.\n");
878			goto fail;
879		}
880	}
881	/* Create DMA maps for Rx buffers. */
882	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
883	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
884		device_printf(sc->vge_dev,
885		    "could not create spare Rx dmamap.\n");
886		goto fail;
887	}
888	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
889		rxd = &sc->vge_cdata.vge_rxdesc[i];
890		rxd->rx_m = NULL;
891		rxd->rx_dmamap = NULL;
892		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
893		    &rxd->rx_dmamap);
894		if (error != 0) {
895			device_printf(sc->vge_dev,
896			    "could not create Rx dmamap.\n");
897			goto fail;
898		}
899	}
900
901fail:
902	return (error);
903}
904
905static void
906vge_dma_free(struct vge_softc *sc)
907{
908	struct vge_txdesc *txd;
909	struct vge_rxdesc *rxd;
910	int i;
911
912	/* Tx ring. */
913	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
914		if (sc->vge_cdata.vge_tx_ring_map)
915			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
916			    sc->vge_cdata.vge_tx_ring_map);
917		if (sc->vge_cdata.vge_tx_ring_map &&
918		    sc->vge_rdata.vge_tx_ring)
919			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
920			    sc->vge_rdata.vge_tx_ring,
921			    sc->vge_cdata.vge_tx_ring_map);
922		sc->vge_rdata.vge_tx_ring = NULL;
923		sc->vge_cdata.vge_tx_ring_map = NULL;
924		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
925		sc->vge_cdata.vge_tx_ring_tag = NULL;
926	}
927	/* Rx ring. */
928	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
929		if (sc->vge_cdata.vge_rx_ring_map)
930			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
931			    sc->vge_cdata.vge_rx_ring_map);
932		if (sc->vge_cdata.vge_rx_ring_map &&
933		    sc->vge_rdata.vge_rx_ring)
934			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
935			    sc->vge_rdata.vge_rx_ring,
936			    sc->vge_cdata.vge_rx_ring_map);
937		sc->vge_rdata.vge_rx_ring = NULL;
938		sc->vge_cdata.vge_rx_ring_map = NULL;
939		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
940		sc->vge_cdata.vge_rx_ring_tag = NULL;
941	}
942	/* Tx buffers. */
943	if (sc->vge_cdata.vge_tx_tag != NULL) {
944		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
945			txd = &sc->vge_cdata.vge_txdesc[i];
946			if (txd->tx_dmamap != NULL) {
947				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
948				    txd->tx_dmamap);
949				txd->tx_dmamap = NULL;
950			}
951		}
952		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
953		sc->vge_cdata.vge_tx_tag = NULL;
954	}
955	/* Rx buffers. */
956	if (sc->vge_cdata.vge_rx_tag != NULL) {
957		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
958			rxd = &sc->vge_cdata.vge_rxdesc[i];
959			if (rxd->rx_dmamap != NULL) {
960				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
961				    rxd->rx_dmamap);
962				rxd->rx_dmamap = NULL;
963			}
964		}
965		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
966			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
967			    sc->vge_cdata.vge_rx_sparemap);
968			sc->vge_cdata.vge_rx_sparemap = NULL;
969		}
970		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
971		sc->vge_cdata.vge_rx_tag = NULL;
972	}
973
974	if (sc->vge_cdata.vge_buffer_tag != NULL) {
975		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
976		sc->vge_cdata.vge_buffer_tag = NULL;
977	}
978	if (sc->vge_cdata.vge_ring_tag != NULL) {
979		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
980		sc->vge_cdata.vge_ring_tag = NULL;
981	}
982}
983
984/*
985 * Attach the interface. Allocate softc structures, do ifmedia
986 * setup and ethernet/BPF attach.
987 */
988static int
989vge_attach(device_t dev)
990{
991	u_char eaddr[ETHER_ADDR_LEN];
992	struct vge_softc *sc;
993	struct ifnet *ifp;
994	int error = 0, cap, i, msic, rid;
995
996	sc = device_get_softc(dev);
997	sc->vge_dev = dev;
998
999	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1000	    MTX_DEF);
1001	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
1002
1003	/*
1004	 * Map control/status registers.
1005	 */
1006	pci_enable_busmaster(dev);
1007
1008	rid = PCIR_BAR(1);
1009	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1010	    RF_ACTIVE);
1011
1012	if (sc->vge_res == NULL) {
1013		device_printf(dev, "couldn't map ports/memory\n");
1014		error = ENXIO;
1015		goto fail;
1016	}
1017
1018	if (pci_find_cap(dev, PCIY_EXPRESS, &cap) == 0) {
1019		sc->vge_flags |= VGE_FLAG_PCIE;
1020		sc->vge_expcap = cap;
1021	} else
1022		sc->vge_flags |= VGE_FLAG_JUMBO;
1023	if (pci_find_cap(dev, PCIY_PMG, &cap) == 0) {
1024		sc->vge_flags |= VGE_FLAG_PMCAP;
1025		sc->vge_pmcap = cap;
1026	}
1027	rid = 0;
1028	msic = pci_msi_count(dev);
1029	if (msi_disable == 0 && msic > 0) {
1030		msic = 1;
1031		if (pci_alloc_msi(dev, &msic) == 0) {
1032			if (msic == 1) {
1033				sc->vge_flags |= VGE_FLAG_MSI;
1034				device_printf(dev, "Using %d MSI message\n",
1035				    msic);
1036				rid = 1;
1037			} else
1038				pci_release_msi(dev);
1039		}
1040	}
1041
1042	/* Allocate interrupt */
1043	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1044	    ((sc->vge_flags & VGE_FLAG_MSI) ? 0 : RF_SHAREABLE) | RF_ACTIVE);
1045	if (sc->vge_irq == NULL) {
1046		device_printf(dev, "couldn't map interrupt\n");
1047		error = ENXIO;
1048		goto fail;
1049	}
1050
1051	/* Reset the adapter. */
1052	vge_reset(sc);
1053	/* Reload EEPROM. */
1054	CSR_WRITE_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
1055	for (i = 0; i < VGE_TIMEOUT; i++) {
1056		DELAY(5);
1057		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
1058			break;
1059	}
1060	if (i == VGE_TIMEOUT)
1061		device_printf(dev, "EEPROM reload timed out\n");
1062	/*
1063	 * Clear PACPI as EEPROM reload will set the bit. Otherwise
1064	 * MAC will receive magic packet which in turn confuses
1065	 * controller.
1066	 */
1067	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
1068
1069	/*
1070	 * Get station address from the EEPROM.
1071	 */
1072	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1073	/*
1074	 * Save configured PHY address.
1075	 * It seems the PHY address of PCIe controllers just
1076	 * reflects media jump strapping status so we assume the
1077	 * internal PHY address of PCIe controller is at 1.
1078	 */
1079	if ((sc->vge_flags & VGE_FLAG_PCIE) != 0)
1080		sc->vge_phyaddr = 1;
1081	else
1082		sc->vge_phyaddr = CSR_READ_1(sc, VGE_MIICFG) &
1083		    VGE_MIICFG_PHYADDR;
1084	/* Clear WOL and take hardware from powerdown. */
1085	vge_clrwol(sc);
1086	vge_sysctl_node(sc);
1087	error = vge_dma_alloc(sc);
1088	if (error)
1089		goto fail;
1090
1091	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1092	if (ifp == NULL) {
1093		device_printf(dev, "can not if_alloc()\n");
1094		error = ENOSPC;
1095		goto fail;
1096	}
1097
1098	vge_miipoll_start(sc);
1099	/* Do MII setup */
1100	error = mii_attach(dev, &sc->vge_miibus, ifp, vge_ifmedia_upd,
1101	    vge_ifmedia_sts, BMSR_DEFCAPMASK, sc->vge_phyaddr, MII_OFFSET_ANY,
1102	    MIIF_DOPAUSE);
1103	if (error != 0) {
1104		device_printf(dev, "attaching PHYs failed\n");
1105		goto fail;
1106	}
1107
1108	ifp->if_softc = sc;
1109	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1110	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1111	ifp->if_ioctl = vge_ioctl;
1112	ifp->if_capabilities = IFCAP_VLAN_MTU;
1113	ifp->if_start = vge_start;
1114	ifp->if_hwassist = VGE_CSUM_FEATURES;
1115	ifp->if_capabilities |= IFCAP_HWCSUM | IFCAP_VLAN_HWCSUM |
1116	    IFCAP_VLAN_HWTAGGING;
1117	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0)
1118		ifp->if_capabilities |= IFCAP_WOL;
1119	ifp->if_capenable = ifp->if_capabilities;
1120#ifdef DEVICE_POLLING
1121	ifp->if_capabilities |= IFCAP_POLLING;
1122#endif
1123	ifp->if_init = vge_init;
1124	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_TX_DESC_CNT - 1);
1125	ifp->if_snd.ifq_drv_maxlen = VGE_TX_DESC_CNT - 1;
1126	IFQ_SET_READY(&ifp->if_snd);
1127
1128	/*
1129	 * Call MI attach routine.
1130	 */
1131	ether_ifattach(ifp, eaddr);
1132
1133	/* Tell the upper layer(s) we support long frames. */
1134	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1135
1136	/* Hook interrupt last to avoid having to lock softc */
1137	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1138	    NULL, vge_intr, sc, &sc->vge_intrhand);
1139
1140	if (error) {
1141		device_printf(dev, "couldn't set up irq\n");
1142		ether_ifdetach(ifp);
1143		goto fail;
1144	}
1145
1146fail:
1147	if (error)
1148		vge_detach(dev);
1149
1150	return (error);
1151}
1152
1153/*
1154 * Shutdown hardware and free up resources. This can be called any
1155 * time after the mutex has been initialized. It is called in both
1156 * the error case in attach and the normal detach case so it needs
1157 * to be careful about only freeing resources that have actually been
1158 * allocated.
1159 */
1160static int
1161vge_detach(device_t dev)
1162{
1163	struct vge_softc *sc;
1164	struct ifnet *ifp;
1165
1166	sc = device_get_softc(dev);
1167	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1168	ifp = sc->vge_ifp;
1169
1170#ifdef DEVICE_POLLING
1171	if (ifp->if_capenable & IFCAP_POLLING)
1172		ether_poll_deregister(ifp);
1173#endif
1174
1175	/* These should only be active if attach succeeded */
1176	if (device_is_attached(dev)) {
1177		ether_ifdetach(ifp);
1178		VGE_LOCK(sc);
1179		vge_stop(sc);
1180		VGE_UNLOCK(sc);
1181		callout_drain(&sc->vge_watchdog);
1182	}
1183	if (sc->vge_miibus)
1184		device_delete_child(dev, sc->vge_miibus);
1185	bus_generic_detach(dev);
1186
1187	if (sc->vge_intrhand)
1188		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1189	if (sc->vge_irq)
1190		bus_release_resource(dev, SYS_RES_IRQ,
1191		    sc->vge_flags & VGE_FLAG_MSI ? 1 : 0, sc->vge_irq);
1192	if (sc->vge_flags & VGE_FLAG_MSI)
1193		pci_release_msi(dev);
1194	if (sc->vge_res)
1195		bus_release_resource(dev, SYS_RES_MEMORY,
1196		    PCIR_BAR(1), sc->vge_res);
1197	if (ifp)
1198		if_free(ifp);
1199
1200	vge_dma_free(sc);
1201	mtx_destroy(&sc->vge_mtx);
1202
1203	return (0);
1204}
1205
1206static void
1207vge_discard_rxbuf(struct vge_softc *sc, int prod)
1208{
1209	struct vge_rxdesc *rxd;
1210	int i;
1211
1212	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1213	rxd->rx_desc->vge_sts = 0;
1214	rxd->rx_desc->vge_ctl = 0;
1215
1216	/*
1217	 * Note: the manual fails to document the fact that for
1218	 * proper opration, the driver needs to replentish the RX
1219	 * DMA ring 4 descriptors at a time (rather than one at a
1220	 * time, like most chips). We can allocate the new buffers
1221	 * but we should not set the OWN bits until we're ready
1222	 * to hand back 4 of them in one shot.
1223	 */
1224	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1225		for (i = VGE_RXCHUNK; i > 0; i--) {
1226			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1227			rxd = rxd->rxd_prev;
1228		}
1229		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1230	}
1231}
1232
1233static int
1234vge_newbuf(struct vge_softc *sc, int prod)
1235{
1236	struct vge_rxdesc *rxd;
1237	struct mbuf *m;
1238	bus_dma_segment_t segs[1];
1239	bus_dmamap_t map;
1240	int i, nsegs;
1241
1242	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1243	if (m == NULL)
1244		return (ENOBUFS);
1245	/*
1246	 * This is part of an evil trick to deal with strict-alignment
1247	 * architectures. The VIA chip requires RX buffers to be aligned
1248	 * on 32-bit boundaries, but that will hose strict-alignment
1249	 * architectures. To get around this, we leave some empty space
1250	 * at the start of each buffer and for non-strict-alignment hosts,
1251	 * we copy the buffer back two bytes to achieve word alignment.
1252	 * This is slightly more efficient than allocating a new buffer,
1253	 * copying the contents, and discarding the old buffer.
1254	 */
1255	m->m_len = m->m_pkthdr.len = MCLBYTES;
1256	m_adj(m, VGE_RX_BUF_ALIGN);
1257
1258	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1259	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1260		m_freem(m);
1261		return (ENOBUFS);
1262	}
1263	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1264
1265	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1266	if (rxd->rx_m != NULL) {
1267		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1268		    BUS_DMASYNC_POSTREAD);
1269		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1270	}
1271	map = rxd->rx_dmamap;
1272	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1273	sc->vge_cdata.vge_rx_sparemap = map;
1274	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1275	    BUS_DMASYNC_PREREAD);
1276	rxd->rx_m = m;
1277
1278	rxd->rx_desc->vge_sts = 0;
1279	rxd->rx_desc->vge_ctl = 0;
1280	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1281	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1282	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1283
1284	/*
1285	 * Note: the manual fails to document the fact that for
1286	 * proper operation, the driver needs to replenish the RX
1287	 * DMA ring 4 descriptors at a time (rather than one at a
1288	 * time, like most chips). We can allocate the new buffers
1289	 * but we should not set the OWN bits until we're ready
1290	 * to hand back 4 of them in one shot.
1291	 */
1292	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1293		for (i = VGE_RXCHUNK; i > 0; i--) {
1294			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1295			rxd = rxd->rxd_prev;
1296		}
1297		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1298	}
1299
1300	return (0);
1301}
1302
1303static int
1304vge_tx_list_init(struct vge_softc *sc)
1305{
1306	struct vge_ring_data *rd;
1307	struct vge_txdesc *txd;
1308	int i;
1309
1310	VGE_LOCK_ASSERT(sc);
1311
1312	sc->vge_cdata.vge_tx_prodidx = 0;
1313	sc->vge_cdata.vge_tx_considx = 0;
1314	sc->vge_cdata.vge_tx_cnt = 0;
1315
1316	rd = &sc->vge_rdata;
1317	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1318	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1319		txd = &sc->vge_cdata.vge_txdesc[i];
1320		txd->tx_m = NULL;
1321		txd->tx_desc = &rd->vge_tx_ring[i];
1322	}
1323
1324	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1325	    sc->vge_cdata.vge_tx_ring_map,
1326	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1327
1328	return (0);
1329}
1330
1331static int
1332vge_rx_list_init(struct vge_softc *sc)
1333{
1334	struct vge_ring_data *rd;
1335	struct vge_rxdesc *rxd;
1336	int i;
1337
1338	VGE_LOCK_ASSERT(sc);
1339
1340	sc->vge_cdata.vge_rx_prodidx = 0;
1341	sc->vge_cdata.vge_head = NULL;
1342	sc->vge_cdata.vge_tail = NULL;
1343	sc->vge_cdata.vge_rx_commit = 0;
1344
1345	rd = &sc->vge_rdata;
1346	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1347	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1348		rxd = &sc->vge_cdata.vge_rxdesc[i];
1349		rxd->rx_m = NULL;
1350		rxd->rx_desc = &rd->vge_rx_ring[i];
1351		if (i == 0)
1352			rxd->rxd_prev =
1353			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1354		else
1355			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1356		if (vge_newbuf(sc, i) != 0)
1357			return (ENOBUFS);
1358	}
1359
1360	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1361	    sc->vge_cdata.vge_rx_ring_map,
1362	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1363
1364	sc->vge_cdata.vge_rx_commit = 0;
1365
1366	return (0);
1367}
1368
1369static void
1370vge_freebufs(struct vge_softc *sc)
1371{
1372	struct vge_txdesc *txd;
1373	struct vge_rxdesc *rxd;
1374	struct ifnet *ifp;
1375	int i;
1376
1377	VGE_LOCK_ASSERT(sc);
1378
1379	ifp = sc->vge_ifp;
1380	/*
1381	 * Free RX and TX mbufs still in the queues.
1382	 */
1383	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1384		rxd = &sc->vge_cdata.vge_rxdesc[i];
1385		if (rxd->rx_m != NULL) {
1386			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1387			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1388			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1389			    rxd->rx_dmamap);
1390			m_freem(rxd->rx_m);
1391			rxd->rx_m = NULL;
1392		}
1393	}
1394
1395	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1396		txd = &sc->vge_cdata.vge_txdesc[i];
1397		if (txd->tx_m != NULL) {
1398			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1399			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1400			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1401			    txd->tx_dmamap);
1402			m_freem(txd->tx_m);
1403			txd->tx_m = NULL;
1404			ifp->if_oerrors++;
1405		}
1406	}
1407}
1408
1409#ifndef	__NO_STRICT_ALIGNMENT
1410static __inline void
1411vge_fixup_rx(struct mbuf *m)
1412{
1413	int i;
1414	uint16_t *src, *dst;
1415
1416	src = mtod(m, uint16_t *);
1417	dst = src - 1;
1418
1419	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1420		*dst++ = *src++;
1421
1422	m->m_data -= ETHER_ALIGN;
1423}
1424#endif
1425
1426/*
1427 * RX handler. We support the reception of jumbo frames that have
1428 * been fragmented across multiple 2K mbuf cluster buffers.
1429 */
1430static int
1431vge_rxeof(struct vge_softc *sc, int count)
1432{
1433	struct mbuf *m;
1434	struct ifnet *ifp;
1435	int prod, prog, total_len;
1436	struct vge_rxdesc *rxd;
1437	struct vge_rx_desc *cur_rx;
1438	uint32_t rxstat, rxctl;
1439
1440	VGE_LOCK_ASSERT(sc);
1441
1442	ifp = sc->vge_ifp;
1443
1444	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1445	    sc->vge_cdata.vge_rx_ring_map,
1446	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1447
1448	prod = sc->vge_cdata.vge_rx_prodidx;
1449	for (prog = 0; count > 0 &&
1450	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1451	    VGE_RX_DESC_INC(prod)) {
1452		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1453		rxstat = le32toh(cur_rx->vge_sts);
1454		if ((rxstat & VGE_RDSTS_OWN) != 0)
1455			break;
1456		count--;
1457		prog++;
1458		rxctl = le32toh(cur_rx->vge_ctl);
1459		total_len = VGE_RXBYTES(rxstat);
1460		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1461		m = rxd->rx_m;
1462
1463		/*
1464		 * If the 'start of frame' bit is set, this indicates
1465		 * either the first fragment in a multi-fragment receive,
1466		 * or an intermediate fragment. Either way, we want to
1467		 * accumulate the buffers.
1468		 */
1469		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1470			if (vge_newbuf(sc, prod) != 0) {
1471				ifp->if_iqdrops++;
1472				VGE_CHAIN_RESET(sc);
1473				vge_discard_rxbuf(sc, prod);
1474				continue;
1475			}
1476			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1477			if (sc->vge_cdata.vge_head == NULL) {
1478				sc->vge_cdata.vge_head = m;
1479				sc->vge_cdata.vge_tail = m;
1480			} else {
1481				m->m_flags &= ~M_PKTHDR;
1482				sc->vge_cdata.vge_tail->m_next = m;
1483				sc->vge_cdata.vge_tail = m;
1484			}
1485			continue;
1486		}
1487
1488		/*
1489		 * Bad/error frames will have the RXOK bit cleared.
1490		 * However, there's one error case we want to allow:
1491		 * if a VLAN tagged frame arrives and the chip can't
1492		 * match it against the CAM filter, it considers this
1493		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1494		 * We don't want to drop the frame though: our VLAN
1495		 * filtering is done in software.
1496		 * We also want to receive bad-checksummed frames and
1497		 * and frames with bad-length.
1498		 */
1499		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1500		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1501		    VGE_RDSTS_CSUMERR)) == 0) {
1502			ifp->if_ierrors++;
1503			/*
1504			 * If this is part of a multi-fragment packet,
1505			 * discard all the pieces.
1506			 */
1507			VGE_CHAIN_RESET(sc);
1508			vge_discard_rxbuf(sc, prod);
1509			continue;
1510		}
1511
1512		if (vge_newbuf(sc, prod) != 0) {
1513			ifp->if_iqdrops++;
1514			VGE_CHAIN_RESET(sc);
1515			vge_discard_rxbuf(sc, prod);
1516			continue;
1517		}
1518
1519		/* Chain received mbufs. */
1520		if (sc->vge_cdata.vge_head != NULL) {
1521			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1522			/*
1523			 * Special case: if there's 4 bytes or less
1524			 * in this buffer, the mbuf can be discarded:
1525			 * the last 4 bytes is the CRC, which we don't
1526			 * care about anyway.
1527			 */
1528			if (m->m_len <= ETHER_CRC_LEN) {
1529				sc->vge_cdata.vge_tail->m_len -=
1530				    (ETHER_CRC_LEN - m->m_len);
1531				m_freem(m);
1532			} else {
1533				m->m_len -= ETHER_CRC_LEN;
1534				m->m_flags &= ~M_PKTHDR;
1535				sc->vge_cdata.vge_tail->m_next = m;
1536			}
1537			m = sc->vge_cdata.vge_head;
1538			m->m_flags |= M_PKTHDR;
1539			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1540		} else {
1541			m->m_flags |= M_PKTHDR;
1542			m->m_pkthdr.len = m->m_len =
1543			    (total_len - ETHER_CRC_LEN);
1544		}
1545
1546#ifndef	__NO_STRICT_ALIGNMENT
1547		vge_fixup_rx(m);
1548#endif
1549		m->m_pkthdr.rcvif = ifp;
1550
1551		/* Do RX checksumming if enabled */
1552		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1553		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1554			/* Check IP header checksum */
1555			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1556				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1557			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1558				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1559
1560			/* Check TCP/UDP checksum */
1561			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1562			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1563				m->m_pkthdr.csum_flags |=
1564				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1565				m->m_pkthdr.csum_data = 0xffff;
1566			}
1567		}
1568
1569		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1570			/*
1571			 * The 32-bit rxctl register is stored in little-endian.
1572			 * However, the 16-bit vlan tag is stored in big-endian,
1573			 * so we have to byte swap it.
1574			 */
1575			m->m_pkthdr.ether_vtag =
1576			    bswap16(rxctl & VGE_RDCTL_VLANID);
1577			m->m_flags |= M_VLANTAG;
1578		}
1579
1580		VGE_UNLOCK(sc);
1581		(*ifp->if_input)(ifp, m);
1582		VGE_LOCK(sc);
1583		sc->vge_cdata.vge_head = NULL;
1584		sc->vge_cdata.vge_tail = NULL;
1585	}
1586
1587	if (prog > 0) {
1588		sc->vge_cdata.vge_rx_prodidx = prod;
1589		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1590		    sc->vge_cdata.vge_rx_ring_map,
1591		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1592		/* Update residue counter. */
1593		if (sc->vge_cdata.vge_rx_commit != 0) {
1594			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1595			    sc->vge_cdata.vge_rx_commit);
1596			sc->vge_cdata.vge_rx_commit = 0;
1597		}
1598	}
1599	return (prog);
1600}
1601
1602static void
1603vge_txeof(struct vge_softc *sc)
1604{
1605	struct ifnet *ifp;
1606	struct vge_tx_desc *cur_tx;
1607	struct vge_txdesc *txd;
1608	uint32_t txstat;
1609	int cons, prod;
1610
1611	VGE_LOCK_ASSERT(sc);
1612
1613	ifp = sc->vge_ifp;
1614
1615	if (sc->vge_cdata.vge_tx_cnt == 0)
1616		return;
1617
1618	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1619	    sc->vge_cdata.vge_tx_ring_map,
1620	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1621
1622	/*
1623	 * Go through our tx list and free mbufs for those
1624	 * frames that have been transmitted.
1625	 */
1626	cons = sc->vge_cdata.vge_tx_considx;
1627	prod = sc->vge_cdata.vge_tx_prodidx;
1628	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1629		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1630		txstat = le32toh(cur_tx->vge_sts);
1631		if ((txstat & VGE_TDSTS_OWN) != 0)
1632			break;
1633		sc->vge_cdata.vge_tx_cnt--;
1634		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1635
1636		txd = &sc->vge_cdata.vge_txdesc[cons];
1637		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1638		    BUS_DMASYNC_POSTWRITE);
1639		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1640
1641		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1642		    __func__));
1643		m_freem(txd->tx_m);
1644		txd->tx_m = NULL;
1645		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1646	}
1647	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1648	    sc->vge_cdata.vge_tx_ring_map,
1649	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1650	sc->vge_cdata.vge_tx_considx = cons;
1651	if (sc->vge_cdata.vge_tx_cnt == 0)
1652		sc->vge_timer = 0;
1653}
1654
1655static void
1656vge_link_statchg(void *xsc)
1657{
1658	struct vge_softc *sc;
1659	struct ifnet *ifp;
1660	uint8_t physts;
1661
1662	sc = xsc;
1663	ifp = sc->vge_ifp;
1664	VGE_LOCK_ASSERT(sc);
1665
1666	physts = CSR_READ_1(sc, VGE_PHYSTS0);
1667	if ((physts & VGE_PHYSTS_RESETSTS) == 0) {
1668		if ((physts & VGE_PHYSTS_LINK) == 0) {
1669			sc->vge_flags &= ~VGE_FLAG_LINK;
1670			if_link_state_change(sc->vge_ifp,
1671			    LINK_STATE_DOWN);
1672		} else {
1673			sc->vge_flags |= VGE_FLAG_LINK;
1674			if_link_state_change(sc->vge_ifp,
1675			    LINK_STATE_UP);
1676			CSR_WRITE_1(sc, VGE_CRC2, VGE_CR2_FDX_TXFLOWCTL_ENABLE |
1677			    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1678			if ((physts & VGE_PHYSTS_FDX) != 0) {
1679				if ((physts & VGE_PHYSTS_TXFLOWCAP) != 0)
1680					CSR_WRITE_1(sc, VGE_CRS2,
1681					    VGE_CR2_FDX_TXFLOWCTL_ENABLE);
1682				if ((physts & VGE_PHYSTS_RXFLOWCAP) != 0)
1683					CSR_WRITE_1(sc, VGE_CRS2,
1684					    VGE_CR2_FDX_RXFLOWCTL_ENABLE);
1685			}
1686			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1687				vge_start_locked(ifp);
1688		}
1689	}
1690	/*
1691	 * Restart MII auto-polling because link state change interrupt
1692	 * will disable it.
1693	 */
1694	vge_miipoll_start(sc);
1695}
1696
1697#ifdef DEVICE_POLLING
1698static int
1699vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1700{
1701	struct vge_softc *sc = ifp->if_softc;
1702	int rx_npkts = 0;
1703
1704	VGE_LOCK(sc);
1705	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1706		goto done;
1707
1708	rx_npkts = vge_rxeof(sc, count);
1709	vge_txeof(sc);
1710
1711	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1712		vge_start_locked(ifp);
1713
1714	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1715		uint32_t       status;
1716		status = CSR_READ_4(sc, VGE_ISR);
1717		if (status == 0xFFFFFFFF)
1718			goto done;
1719		if (status)
1720			CSR_WRITE_4(sc, VGE_ISR, status);
1721
1722		/*
1723		 * XXX check behaviour on receiver stalls.
1724		 */
1725
1726		if (status & VGE_ISR_TXDMA_STALL ||
1727		    status & VGE_ISR_RXDMA_STALL) {
1728			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1729			vge_init_locked(sc);
1730		}
1731
1732		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1733			vge_rxeof(sc, count);
1734			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1735			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1736		}
1737	}
1738done:
1739	VGE_UNLOCK(sc);
1740	return (rx_npkts);
1741}
1742#endif /* DEVICE_POLLING */
1743
1744static void
1745vge_intr(void *arg)
1746{
1747	struct vge_softc *sc;
1748	struct ifnet *ifp;
1749	uint32_t status;
1750
1751	sc = arg;
1752	VGE_LOCK(sc);
1753
1754	ifp = sc->vge_ifp;
1755	if ((sc->vge_flags & VGE_FLAG_SUSPENDED) != 0 ||
1756	    (ifp->if_flags & IFF_UP) == 0) {
1757		VGE_UNLOCK(sc);
1758		return;
1759	}
1760
1761#ifdef DEVICE_POLLING
1762	if  (ifp->if_capenable & IFCAP_POLLING) {
1763		status = CSR_READ_4(sc, VGE_ISR);
1764		CSR_WRITE_4(sc, VGE_ISR, status);
1765		if (status != 0xFFFFFFFF && (status & VGE_ISR_LINKSTS) != 0)
1766			vge_link_statchg(sc);
1767		VGE_UNLOCK(sc);
1768		return;
1769	}
1770#endif
1771
1772	/* Disable interrupts */
1773	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1774	status = CSR_READ_4(sc, VGE_ISR);
1775	CSR_WRITE_4(sc, VGE_ISR, status | VGE_ISR_HOLDOFF_RELOAD);
1776	/* If the card has gone away the read returns 0xffff. */
1777	if (status == 0xFFFFFFFF || (status & VGE_INTRS) == 0)
1778		goto done;
1779	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1780		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1781			vge_rxeof(sc, VGE_RX_DESC_CNT);
1782		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1783			vge_rxeof(sc, VGE_RX_DESC_CNT);
1784			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1785			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1786		}
1787
1788		if (status & (VGE_ISR_TXOK0|VGE_ISR_TXOK_HIPRIO))
1789			vge_txeof(sc);
1790
1791		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1792			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1793			vge_init_locked(sc);
1794		}
1795
1796		if (status & VGE_ISR_LINKSTS)
1797			vge_link_statchg(sc);
1798	}
1799done:
1800	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1801		/* Re-enable interrupts */
1802		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1803
1804		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805			vge_start_locked(ifp);
1806	}
1807	VGE_UNLOCK(sc);
1808}
1809
1810static int
1811vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1812{
1813	struct vge_txdesc *txd;
1814	struct vge_tx_frag *frag;
1815	struct mbuf *m;
1816	bus_dma_segment_t txsegs[VGE_MAXTXSEGS];
1817	int error, i, nsegs, padlen;
1818	uint32_t cflags;
1819
1820	VGE_LOCK_ASSERT(sc);
1821
1822	M_ASSERTPKTHDR((*m_head));
1823
1824	/* Argh. This chip does not autopad short frames. */
1825	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1826		m = *m_head;
1827		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1828		if (M_WRITABLE(m) == 0) {
1829			/* Get a writable copy. */
1830			m = m_dup(*m_head, M_NOWAIT);
1831			m_freem(*m_head);
1832			if (m == NULL) {
1833				*m_head = NULL;
1834				return (ENOBUFS);
1835			}
1836			*m_head = m;
1837		}
1838		if (M_TRAILINGSPACE(m) < padlen) {
1839			m = m_defrag(m, M_NOWAIT);
1840			if (m == NULL) {
1841				m_freem(*m_head);
1842				*m_head = NULL;
1843				return (ENOBUFS);
1844			}
1845		}
1846		/*
1847		 * Manually pad short frames, and zero the pad space
1848		 * to avoid leaking data.
1849		 */
1850		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1851		m->m_pkthdr.len += padlen;
1852		m->m_len = m->m_pkthdr.len;
1853		*m_head = m;
1854	}
1855
1856	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1857
1858	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1859	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1860	if (error == EFBIG) {
1861		m = m_collapse(*m_head, M_NOWAIT, VGE_MAXTXSEGS);
1862		if (m == NULL) {
1863			m_freem(*m_head);
1864			*m_head = NULL;
1865			return (ENOMEM);
1866		}
1867		*m_head = m;
1868		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1869		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1870		if (error != 0) {
1871			m_freem(*m_head);
1872			*m_head = NULL;
1873			return (error);
1874		}
1875	} else if (error != 0)
1876		return (error);
1877	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1878	    BUS_DMASYNC_PREWRITE);
1879
1880	m = *m_head;
1881	cflags = 0;
1882
1883	/* Configure checksum offload. */
1884	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1885		cflags |= VGE_TDCTL_IPCSUM;
1886	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1887		cflags |= VGE_TDCTL_TCPCSUM;
1888	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1889		cflags |= VGE_TDCTL_UDPCSUM;
1890
1891	/* Configure VLAN. */
1892	if ((m->m_flags & M_VLANTAG) != 0)
1893		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1894	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1895	/*
1896	 * XXX
1897	 * Velocity family seems to support TSO but no information
1898	 * for MSS configuration is available. Also the number of
1899	 * fragments supported by a descriptor is too small to hold
1900	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1901	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1902	 * longer chain of buffers but no additional information is
1903	 * available.
1904	 *
1905	 * When telling the chip how many segments there are, we
1906	 * must use nsegs + 1 instead of just nsegs. Darned if I
1907	 * know why. This also means we can't use the last fragment
1908	 * field of Tx descriptor.
1909	 */
1910	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1911	    VGE_TD_LS_NORM);
1912	for (i = 0; i < nsegs; i++) {
1913		frag = &txd->tx_desc->vge_frag[i];
1914		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1915		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1916		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1917	}
1918
1919	sc->vge_cdata.vge_tx_cnt++;
1920	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1921
1922	/*
1923	 * Finally request interrupt and give the first descriptor
1924	 * ownership to hardware.
1925	 */
1926	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1927	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1928	txd->tx_m = m;
1929
1930	return (0);
1931}
1932
1933/*
1934 * Main transmit routine.
1935 */
1936
1937static void
1938vge_start(struct ifnet *ifp)
1939{
1940	struct vge_softc *sc;
1941
1942	sc = ifp->if_softc;
1943	VGE_LOCK(sc);
1944	vge_start_locked(ifp);
1945	VGE_UNLOCK(sc);
1946}
1947
1948
1949static void
1950vge_start_locked(struct ifnet *ifp)
1951{
1952	struct vge_softc *sc;
1953	struct vge_txdesc *txd;
1954	struct mbuf *m_head;
1955	int enq, idx;
1956
1957	sc = ifp->if_softc;
1958
1959	VGE_LOCK_ASSERT(sc);
1960
1961	if ((sc->vge_flags & VGE_FLAG_LINK) == 0 ||
1962	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1963	    IFF_DRV_RUNNING)
1964		return;
1965
1966	idx = sc->vge_cdata.vge_tx_prodidx;
1967	VGE_TX_DESC_DEC(idx);
1968	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1969	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1970		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1971		if (m_head == NULL)
1972			break;
1973		/*
1974		 * Pack the data into the transmit ring. If we
1975		 * don't have room, set the OACTIVE flag and wait
1976		 * for the NIC to drain the ring.
1977		 */
1978		if (vge_encap(sc, &m_head)) {
1979			if (m_head == NULL)
1980				break;
1981			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1982			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1983			break;
1984		}
1985
1986		txd = &sc->vge_cdata.vge_txdesc[idx];
1987		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1988		VGE_TX_DESC_INC(idx);
1989
1990		enq++;
1991		/*
1992		 * If there's a BPF listener, bounce a copy of this frame
1993		 * to him.
1994		 */
1995		ETHER_BPF_MTAP(ifp, m_head);
1996	}
1997
1998	if (enq > 0) {
1999		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
2000		    sc->vge_cdata.vge_tx_ring_map,
2001		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2002		/* Issue a transmit command. */
2003		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
2004		/*
2005		 * Set a timeout in case the chip goes out to lunch.
2006		 */
2007		sc->vge_timer = 5;
2008	}
2009}
2010
2011static void
2012vge_init(void *xsc)
2013{
2014	struct vge_softc *sc = xsc;
2015
2016	VGE_LOCK(sc);
2017	vge_init_locked(sc);
2018	VGE_UNLOCK(sc);
2019}
2020
2021static void
2022vge_init_locked(struct vge_softc *sc)
2023{
2024	struct ifnet *ifp = sc->vge_ifp;
2025	struct mii_data *mii;
2026	int error, i;
2027
2028	VGE_LOCK_ASSERT(sc);
2029	mii = device_get_softc(sc->vge_miibus);
2030
2031	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2032		return;
2033
2034	/*
2035	 * Cancel pending I/O and free all RX/TX buffers.
2036	 */
2037	vge_stop(sc);
2038	vge_reset(sc);
2039	vge_miipoll_start(sc);
2040
2041	/*
2042	 * Initialize the RX and TX descriptors and mbufs.
2043	 */
2044
2045	error = vge_rx_list_init(sc);
2046	if (error != 0) {
2047                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
2048                return;
2049	}
2050	vge_tx_list_init(sc);
2051	/* Clear MAC statistics. */
2052	vge_stats_clear(sc);
2053	/* Set our station address */
2054	for (i = 0; i < ETHER_ADDR_LEN; i++)
2055		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
2056
2057	/*
2058	 * Set receive FIFO threshold. Also allow transmission and
2059	 * reception of VLAN tagged frames.
2060	 */
2061	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
2062	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES);
2063
2064	/* Set DMA burst length */
2065	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2066	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2067
2068	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2069
2070	/* Set collision backoff algorithm */
2071	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2072	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2073	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2074
2075	/* Disable LPSEL field in priority resolution */
2076	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2077
2078	/*
2079	 * Load the addresses of the DMA queues into the chip.
2080	 * Note that we only use one transmit queue.
2081	 */
2082
2083	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2084	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2085	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2086	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2087	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2088
2089	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2090	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2091	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2092	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2093
2094	/* Configure interrupt moderation. */
2095	vge_intr_holdoff(sc);
2096
2097	/* Enable and wake up the RX descriptor queue */
2098	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2099	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2100
2101	/* Enable the TX descriptor queue */
2102	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2103
2104	/* Init the cam filter. */
2105	vge_cam_clear(sc);
2106
2107	/* Set up receiver filter. */
2108	vge_rxfilter(sc);
2109	vge_setvlan(sc);
2110
2111	/* Initialize pause timer. */
2112	CSR_WRITE_2(sc, VGE_TX_PAUSE_TIMER, 0xFFFF);
2113	/*
2114	 * Initialize flow control parameters.
2115	 *  TX XON high threshold : 48
2116	 *  TX pause low threshold : 24
2117	 *  Disable hald-duplex flow control
2118	 */
2119	CSR_WRITE_1(sc, VGE_CRC2, 0xFF);
2120	CSR_WRITE_1(sc, VGE_CRS2, VGE_CR2_XON_ENABLE | 0x0B);
2121
2122	/* Enable jumbo frame reception (if desired) */
2123
2124	/* Start the MAC. */
2125	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2126	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2127	CSR_WRITE_1(sc, VGE_CRS0,
2128	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2129
2130#ifdef DEVICE_POLLING
2131	/*
2132	 * Disable interrupts except link state change if we are polling.
2133	 */
2134	if (ifp->if_capenable & IFCAP_POLLING) {
2135		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2136	} else	/* otherwise ... */
2137#endif
2138	{
2139	/*
2140	 * Enable interrupts.
2141	 */
2142		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2143	}
2144	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2145	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2146
2147	sc->vge_flags &= ~VGE_FLAG_LINK;
2148	vge_ifmedia_upd_locked(sc);
2149
2150	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2151	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2152	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2153}
2154
2155/*
2156 * Set media options.
2157 */
2158static int
2159vge_ifmedia_upd(struct ifnet *ifp)
2160{
2161	struct vge_softc *sc;
2162	int error;
2163
2164	sc = ifp->if_softc;
2165	VGE_LOCK(sc);
2166	error = vge_ifmedia_upd_locked(sc);
2167	VGE_UNLOCK(sc);
2168
2169	return (error);
2170}
2171
2172static int
2173vge_ifmedia_upd_locked(struct vge_softc *sc)
2174{
2175	struct mii_data *mii;
2176	struct mii_softc *miisc;
2177	int error;
2178
2179	mii = device_get_softc(sc->vge_miibus);
2180	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
2181		PHY_RESET(miisc);
2182	vge_setmedia(sc);
2183	error = mii_mediachg(mii);
2184
2185	return (error);
2186}
2187
2188/*
2189 * Report current media status.
2190 */
2191static void
2192vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2193{
2194	struct vge_softc *sc;
2195	struct mii_data *mii;
2196
2197	sc = ifp->if_softc;
2198	mii = device_get_softc(sc->vge_miibus);
2199
2200	VGE_LOCK(sc);
2201	if ((ifp->if_flags & IFF_UP) == 0) {
2202		VGE_UNLOCK(sc);
2203		return;
2204	}
2205	mii_pollstat(mii);
2206	ifmr->ifm_active = mii->mii_media_active;
2207	ifmr->ifm_status = mii->mii_media_status;
2208	VGE_UNLOCK(sc);
2209}
2210
2211static void
2212vge_setmedia(struct vge_softc *sc)
2213{
2214	struct mii_data *mii;
2215	struct ifmedia_entry *ife;
2216
2217	mii = device_get_softc(sc->vge_miibus);
2218	ife = mii->mii_media.ifm_cur;
2219
2220	/*
2221	 * If the user manually selects a media mode, we need to turn
2222	 * on the forced MAC mode bit in the DIAGCTL register. If the
2223	 * user happens to choose a full duplex mode, we also need to
2224	 * set the 'force full duplex' bit. This applies only to
2225	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2226	 * mode is disabled, and in 1000baseT mode, full duplex is
2227	 * always implied, so we turn on the forced mode bit but leave
2228	 * the FDX bit cleared.
2229	 */
2230
2231	switch (IFM_SUBTYPE(ife->ifm_media)) {
2232	case IFM_AUTO:
2233		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2234		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2235		break;
2236	case IFM_1000_T:
2237		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2238		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2239		break;
2240	case IFM_100_TX:
2241	case IFM_10_T:
2242		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2243		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2244			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2245		} else {
2246			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2247		}
2248		break;
2249	default:
2250		device_printf(sc->vge_dev, "unknown media type: %x\n",
2251		    IFM_SUBTYPE(ife->ifm_media));
2252		break;
2253	}
2254}
2255
2256static int
2257vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2258{
2259	struct vge_softc *sc = ifp->if_softc;
2260	struct ifreq *ifr = (struct ifreq *) data;
2261	struct mii_data *mii;
2262	int error = 0, mask;
2263
2264	switch (command) {
2265	case SIOCSIFMTU:
2266		VGE_LOCK(sc);
2267		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > VGE_JUMBO_MTU)
2268			error = EINVAL;
2269		else if (ifp->if_mtu != ifr->ifr_mtu) {
2270			if (ifr->ifr_mtu > ETHERMTU &&
2271			    (sc->vge_flags & VGE_FLAG_JUMBO) == 0)
2272				error = EINVAL;
2273			else
2274				ifp->if_mtu = ifr->ifr_mtu;
2275		}
2276		VGE_UNLOCK(sc);
2277		break;
2278	case SIOCSIFFLAGS:
2279		VGE_LOCK(sc);
2280		if ((ifp->if_flags & IFF_UP) != 0) {
2281			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
2282			    ((ifp->if_flags ^ sc->vge_if_flags) &
2283			    (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2284				vge_rxfilter(sc);
2285			else
2286				vge_init_locked(sc);
2287		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2288			vge_stop(sc);
2289		sc->vge_if_flags = ifp->if_flags;
2290		VGE_UNLOCK(sc);
2291		break;
2292	case SIOCADDMULTI:
2293	case SIOCDELMULTI:
2294		VGE_LOCK(sc);
2295		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2296			vge_rxfilter(sc);
2297		VGE_UNLOCK(sc);
2298		break;
2299	case SIOCGIFMEDIA:
2300	case SIOCSIFMEDIA:
2301		mii = device_get_softc(sc->vge_miibus);
2302		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2303		break;
2304	case SIOCSIFCAP:
2305		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2306#ifdef DEVICE_POLLING
2307		if (mask & IFCAP_POLLING) {
2308			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2309				error = ether_poll_register(vge_poll, ifp);
2310				if (error)
2311					return (error);
2312				VGE_LOCK(sc);
2313					/* Disable interrupts */
2314				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS_POLLING);
2315				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2316				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2317				ifp->if_capenable |= IFCAP_POLLING;
2318				VGE_UNLOCK(sc);
2319			} else {
2320				error = ether_poll_deregister(ifp);
2321				/* Enable interrupts. */
2322				VGE_LOCK(sc);
2323				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2324				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2325				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2326				ifp->if_capenable &= ~IFCAP_POLLING;
2327				VGE_UNLOCK(sc);
2328			}
2329		}
2330#endif /* DEVICE_POLLING */
2331		VGE_LOCK(sc);
2332		if ((mask & IFCAP_TXCSUM) != 0 &&
2333		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2334			ifp->if_capenable ^= IFCAP_TXCSUM;
2335			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2336				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2337			else
2338				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2339		}
2340		if ((mask & IFCAP_RXCSUM) != 0 &&
2341		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2342			ifp->if_capenable ^= IFCAP_RXCSUM;
2343		if ((mask & IFCAP_WOL_UCAST) != 0 &&
2344		    (ifp->if_capabilities & IFCAP_WOL_UCAST) != 0)
2345			ifp->if_capenable ^= IFCAP_WOL_UCAST;
2346		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2347		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2348			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2349		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2350		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2351			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2352		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2353		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2354			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2355		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2356		    (IFCAP_VLAN_HWTAGGING & ifp->if_capabilities) != 0) {
2357			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2358			vge_setvlan(sc);
2359		}
2360		VGE_UNLOCK(sc);
2361		VLAN_CAPABILITIES(ifp);
2362		break;
2363	default:
2364		error = ether_ioctl(ifp, command, data);
2365		break;
2366	}
2367
2368	return (error);
2369}
2370
2371static void
2372vge_watchdog(void *arg)
2373{
2374	struct vge_softc *sc;
2375	struct ifnet *ifp;
2376
2377	sc = arg;
2378	VGE_LOCK_ASSERT(sc);
2379	vge_stats_update(sc);
2380	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2381	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2382		return;
2383
2384	ifp = sc->vge_ifp;
2385	if_printf(ifp, "watchdog timeout\n");
2386	ifp->if_oerrors++;
2387
2388	vge_txeof(sc);
2389	vge_rxeof(sc, VGE_RX_DESC_CNT);
2390
2391	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2392	vge_init_locked(sc);
2393}
2394
2395/*
2396 * Stop the adapter and free any mbufs allocated to the
2397 * RX and TX lists.
2398 */
2399static void
2400vge_stop(struct vge_softc *sc)
2401{
2402	struct ifnet *ifp;
2403
2404	VGE_LOCK_ASSERT(sc);
2405	ifp = sc->vge_ifp;
2406	sc->vge_timer = 0;
2407	callout_stop(&sc->vge_watchdog);
2408
2409	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2410
2411	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2412	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2413	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2414	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2415	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2416	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2417
2418	vge_stats_update(sc);
2419	VGE_CHAIN_RESET(sc);
2420	vge_txeof(sc);
2421	vge_freebufs(sc);
2422}
2423
2424/*
2425 * Device suspend routine.  Stop the interface and save some PCI
2426 * settings in case the BIOS doesn't restore them properly on
2427 * resume.
2428 */
2429static int
2430vge_suspend(device_t dev)
2431{
2432	struct vge_softc *sc;
2433
2434	sc = device_get_softc(dev);
2435
2436	VGE_LOCK(sc);
2437	vge_stop(sc);
2438	vge_setwol(sc);
2439	sc->vge_flags |= VGE_FLAG_SUSPENDED;
2440	VGE_UNLOCK(sc);
2441
2442	return (0);
2443}
2444
2445/*
2446 * Device resume routine.  Restore some PCI settings in case the BIOS
2447 * doesn't, re-enable busmastering, and restart the interface if
2448 * appropriate.
2449 */
2450static int
2451vge_resume(device_t dev)
2452{
2453	struct vge_softc *sc;
2454	struct ifnet *ifp;
2455	uint16_t pmstat;
2456
2457	sc = device_get_softc(dev);
2458	VGE_LOCK(sc);
2459	if ((sc->vge_flags & VGE_FLAG_PMCAP) != 0) {
2460		/* Disable PME and clear PME status. */
2461		pmstat = pci_read_config(sc->vge_dev,
2462		    sc->vge_pmcap + PCIR_POWER_STATUS, 2);
2463		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2464			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2465			pci_write_config(sc->vge_dev,
2466			    sc->vge_pmcap + PCIR_POWER_STATUS, pmstat, 2);
2467		}
2468	}
2469	vge_clrwol(sc);
2470	/* Restart MII auto-polling. */
2471	vge_miipoll_start(sc);
2472	ifp = sc->vge_ifp;
2473	/* Reinitialize interface if necessary. */
2474	if ((ifp->if_flags & IFF_UP) != 0) {
2475		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2476		vge_init_locked(sc);
2477	}
2478	sc->vge_flags &= ~VGE_FLAG_SUSPENDED;
2479	VGE_UNLOCK(sc);
2480
2481	return (0);
2482}
2483
2484/*
2485 * Stop all chip I/O so that the kernel's probe routines don't
2486 * get confused by errant DMAs when rebooting.
2487 */
2488static int
2489vge_shutdown(device_t dev)
2490{
2491
2492	return (vge_suspend(dev));
2493}
2494
2495#define	VGE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2496	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2497
2498static void
2499vge_sysctl_node(struct vge_softc *sc)
2500{
2501	struct sysctl_ctx_list *ctx;
2502	struct sysctl_oid_list *child, *parent;
2503	struct sysctl_oid *tree;
2504	struct vge_hw_stats *stats;
2505
2506	stats = &sc->vge_stats;
2507	ctx = device_get_sysctl_ctx(sc->vge_dev);
2508	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->vge_dev));
2509
2510	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_holdoff",
2511	    CTLFLAG_RW, &sc->vge_int_holdoff, 0, "interrupt holdoff");
2512	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "rx_coal_pkt",
2513	    CTLFLAG_RW, &sc->vge_rx_coal_pkt, 0, "rx coalescing packet");
2514	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "tx_coal_pkt",
2515	    CTLFLAG_RW, &sc->vge_tx_coal_pkt, 0, "tx coalescing packet");
2516
2517	/* Pull in device tunables. */
2518	sc->vge_int_holdoff = VGE_INT_HOLDOFF_DEFAULT;
2519	resource_int_value(device_get_name(sc->vge_dev),
2520	    device_get_unit(sc->vge_dev), "int_holdoff", &sc->vge_int_holdoff);
2521	sc->vge_rx_coal_pkt = VGE_RX_COAL_PKT_DEFAULT;
2522	resource_int_value(device_get_name(sc->vge_dev),
2523	    device_get_unit(sc->vge_dev), "rx_coal_pkt", &sc->vge_rx_coal_pkt);
2524	sc->vge_tx_coal_pkt = VGE_TX_COAL_PKT_DEFAULT;
2525	resource_int_value(device_get_name(sc->vge_dev),
2526	    device_get_unit(sc->vge_dev), "tx_coal_pkt", &sc->vge_tx_coal_pkt);
2527
2528	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2529	    NULL, "VGE statistics");
2530	parent = SYSCTL_CHILDREN(tree);
2531
2532	/* Rx statistics. */
2533	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2534	    NULL, "RX MAC statistics");
2535	child = SYSCTL_CHILDREN(tree);
2536	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames",
2537	    &stats->rx_frames, "frames");
2538	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2539	    &stats->rx_good_frames, "Good frames");
2540	VGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
2541	    &stats->rx_fifo_oflows, "FIFO overflows");
2542	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts",
2543	    &stats->rx_runts, "Too short frames");
2544	VGE_SYSCTL_STAT_ADD32(ctx, child, "runts_errs",
2545	    &stats->rx_runts_errs, "Too short frames with errors");
2546	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2547	    &stats->rx_pkts_64, "64 bytes frames");
2548	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2549	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
2550	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2551	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
2552	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2553	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
2554	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2555	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
2556	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2557	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
2558	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
2559	    &stats->rx_pkts_1519_max, "1519 to max frames");
2560	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max_errs",
2561	    &stats->rx_pkts_1519_max_errs, "1519 to max frames with error");
2562	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2563	    &stats->rx_jumbos, "Jumbo frames");
2564	VGE_SYSCTL_STAT_ADD32(ctx, child, "crcerrs",
2565	    &stats->rx_crcerrs, "CRC errors");
2566	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2567	    &stats->rx_pause_frames, "CRC errors");
2568	VGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
2569	    &stats->rx_alignerrs, "Alignment errors");
2570	VGE_SYSCTL_STAT_ADD32(ctx, child, "nobufs",
2571	    &stats->rx_nobufs, "Frames with no buffer event");
2572	VGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
2573	    &stats->rx_symerrs, "Frames with symbol errors");
2574	VGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
2575	    &stats->rx_lenerrs, "Frames with length mismatched");
2576
2577	/* Tx statistics. */
2578	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2579	    NULL, "TX MAC statistics");
2580	child = SYSCTL_CHILDREN(tree);
2581	VGE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2582	    &stats->tx_good_frames, "Good frames");
2583	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
2584	    &stats->tx_pkts_64, "64 bytes frames");
2585	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
2586	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
2587	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
2588	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
2589	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
2590	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
2591	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
2592	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
2593	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
2594	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
2595	VGE_SYSCTL_STAT_ADD32(ctx, child, "frames_jumbo",
2596	    &stats->tx_jumbos, "Jumbo frames");
2597	VGE_SYSCTL_STAT_ADD32(ctx, child, "colls",
2598	    &stats->tx_colls, "Collisions");
2599	VGE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2600	    &stats->tx_latecolls, "Late collisions");
2601	VGE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
2602	    &stats->tx_pause, "Pause frames");
2603#ifdef VGE_ENABLE_SQEERR
2604	VGE_SYSCTL_STAT_ADD32(ctx, child, "sqeerrs",
2605	    &stats->tx_sqeerrs, "SQE errors");
2606#endif
2607	/* Clear MAC statistics. */
2608	vge_stats_clear(sc);
2609}
2610
2611#undef	VGE_SYSCTL_STAT_ADD32
2612
2613static void
2614vge_stats_clear(struct vge_softc *sc)
2615{
2616	int i;
2617
2618	CSR_WRITE_1(sc, VGE_MIBCSR,
2619	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FREEZE);
2620	CSR_WRITE_1(sc, VGE_MIBCSR,
2621	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_CLR);
2622	for (i = VGE_TIMEOUT; i > 0; i--) {
2623		DELAY(1);
2624		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_CLR) == 0)
2625			break;
2626	}
2627	if (i == 0)
2628		device_printf(sc->vge_dev, "MIB clear timed out!\n");
2629	CSR_WRITE_1(sc, VGE_MIBCSR, CSR_READ_1(sc, VGE_MIBCSR) &
2630	    ~VGE_MIBCSR_FREEZE);
2631}
2632
2633static void
2634vge_stats_update(struct vge_softc *sc)
2635{
2636	struct vge_hw_stats *stats;
2637	struct ifnet *ifp;
2638	uint32_t mib[VGE_MIB_CNT], val;
2639	int i;
2640
2641	VGE_LOCK_ASSERT(sc);
2642
2643	stats = &sc->vge_stats;
2644	ifp = sc->vge_ifp;
2645
2646	CSR_WRITE_1(sc, VGE_MIBCSR,
2647	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_FLUSH);
2648	for (i = VGE_TIMEOUT; i > 0; i--) {
2649		DELAY(1);
2650		if ((CSR_READ_1(sc, VGE_MIBCSR) & VGE_MIBCSR_FLUSH) == 0)
2651			break;
2652	}
2653	if (i == 0) {
2654		device_printf(sc->vge_dev, "MIB counter dump timed out!\n");
2655		vge_stats_clear(sc);
2656		return;
2657	}
2658
2659	bzero(mib, sizeof(mib));
2660reset_idx:
2661	/* Set MIB read index to 0. */
2662	CSR_WRITE_1(sc, VGE_MIBCSR,
2663	    CSR_READ_1(sc, VGE_MIBCSR) | VGE_MIBCSR_RINI);
2664	for (i = 0; i < VGE_MIB_CNT; i++) {
2665		val = CSR_READ_4(sc, VGE_MIBDATA);
2666		if (i != VGE_MIB_DATA_IDX(val)) {
2667			/* Reading interrupted. */
2668			goto reset_idx;
2669		}
2670		mib[i] = val & VGE_MIB_DATA_MASK;
2671	}
2672
2673	/* Rx stats. */
2674	stats->rx_frames += mib[VGE_MIB_RX_FRAMES];
2675	stats->rx_good_frames += mib[VGE_MIB_RX_GOOD_FRAMES];
2676	stats->rx_fifo_oflows += mib[VGE_MIB_RX_FIFO_OVERRUNS];
2677	stats->rx_runts += mib[VGE_MIB_RX_RUNTS];
2678	stats->rx_runts_errs += mib[VGE_MIB_RX_RUNTS_ERRS];
2679	stats->rx_pkts_64 += mib[VGE_MIB_RX_PKTS_64];
2680	stats->rx_pkts_65_127 += mib[VGE_MIB_RX_PKTS_65_127];
2681	stats->rx_pkts_128_255 += mib[VGE_MIB_RX_PKTS_128_255];
2682	stats->rx_pkts_256_511 += mib[VGE_MIB_RX_PKTS_256_511];
2683	stats->rx_pkts_512_1023 += mib[VGE_MIB_RX_PKTS_512_1023];
2684	stats->rx_pkts_1024_1518 += mib[VGE_MIB_RX_PKTS_1024_1518];
2685	stats->rx_pkts_1519_max += mib[VGE_MIB_RX_PKTS_1519_MAX];
2686	stats->rx_pkts_1519_max_errs += mib[VGE_MIB_RX_PKTS_1519_MAX_ERRS];
2687	stats->rx_jumbos += mib[VGE_MIB_RX_JUMBOS];
2688	stats->rx_crcerrs += mib[VGE_MIB_RX_CRCERRS];
2689	stats->rx_pause_frames += mib[VGE_MIB_RX_PAUSE];
2690	stats->rx_alignerrs += mib[VGE_MIB_RX_ALIGNERRS];
2691	stats->rx_nobufs += mib[VGE_MIB_RX_NOBUFS];
2692	stats->rx_symerrs += mib[VGE_MIB_RX_SYMERRS];
2693	stats->rx_lenerrs += mib[VGE_MIB_RX_LENERRS];
2694
2695	/* Tx stats. */
2696	stats->tx_good_frames += mib[VGE_MIB_TX_GOOD_FRAMES];
2697	stats->tx_pkts_64 += mib[VGE_MIB_TX_PKTS_64];
2698	stats->tx_pkts_65_127 += mib[VGE_MIB_TX_PKTS_65_127];
2699	stats->tx_pkts_128_255 += mib[VGE_MIB_TX_PKTS_128_255];
2700	stats->tx_pkts_256_511 += mib[VGE_MIB_TX_PKTS_256_511];
2701	stats->tx_pkts_512_1023 += mib[VGE_MIB_TX_PKTS_512_1023];
2702	stats->tx_pkts_1024_1518 += mib[VGE_MIB_TX_PKTS_1024_1518];
2703	stats->tx_jumbos += mib[VGE_MIB_TX_JUMBOS];
2704	stats->tx_colls += mib[VGE_MIB_TX_COLLS];
2705	stats->tx_pause += mib[VGE_MIB_TX_PAUSE];
2706#ifdef VGE_ENABLE_SQEERR
2707	stats->tx_sqeerrs += mib[VGE_MIB_TX_SQEERRS];
2708#endif
2709	stats->tx_latecolls += mib[VGE_MIB_TX_LATECOLLS];
2710
2711	/* Update counters in ifnet. */
2712	ifp->if_opackets += mib[VGE_MIB_TX_GOOD_FRAMES];
2713
2714	ifp->if_collisions += mib[VGE_MIB_TX_COLLS] +
2715	    mib[VGE_MIB_TX_LATECOLLS];
2716
2717	ifp->if_oerrors += mib[VGE_MIB_TX_COLLS] +
2718	    mib[VGE_MIB_TX_LATECOLLS];
2719
2720	ifp->if_ipackets += mib[VGE_MIB_RX_GOOD_FRAMES];
2721
2722	ifp->if_ierrors += mib[VGE_MIB_RX_FIFO_OVERRUNS] +
2723	    mib[VGE_MIB_RX_RUNTS] +
2724	    mib[VGE_MIB_RX_RUNTS_ERRS] +
2725	    mib[VGE_MIB_RX_CRCERRS] +
2726	    mib[VGE_MIB_RX_ALIGNERRS] +
2727	    mib[VGE_MIB_RX_NOBUFS] +
2728	    mib[VGE_MIB_RX_SYMERRS] +
2729	    mib[VGE_MIB_RX_LENERRS];
2730}
2731
2732static void
2733vge_intr_holdoff(struct vge_softc *sc)
2734{
2735	uint8_t intctl;
2736
2737	VGE_LOCK_ASSERT(sc);
2738
2739	/*
2740	 * Set Tx interrupt supression threshold.
2741	 * It's possible to use single-shot timer in VGE_CRS1 register
2742	 * in Tx path such that driver can remove most of Tx completion
2743	 * interrupts. However this requires additional access to
2744	 * VGE_CRS1 register to reload the timer in addintion to
2745	 * activating Tx kick command. Another downside is we don't know
2746	 * what single-shot timer value should be used in advance so
2747	 * reclaiming transmitted mbufs could be delayed a lot which in
2748	 * turn slows down Tx operation.
2749	 */
2750	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_TXSUPPTHR);
2751	CSR_WRITE_1(sc, VGE_TXSUPPTHR, sc->vge_tx_coal_pkt);
2752
2753	/* Set Rx interrupt suppresion threshold. */
2754	CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2755	CSR_WRITE_1(sc, VGE_RXSUPPTHR, sc->vge_rx_coal_pkt);
2756
2757	intctl = CSR_READ_1(sc, VGE_INTCTL1);
2758	intctl &= ~VGE_INTCTL_SC_RELOAD;
2759	intctl |= VGE_INTCTL_HC_RELOAD;
2760	if (sc->vge_tx_coal_pkt <= 0)
2761		intctl |= VGE_INTCTL_TXINTSUP_DISABLE;
2762	else
2763		intctl &= ~VGE_INTCTL_TXINTSUP_DISABLE;
2764	if (sc->vge_rx_coal_pkt <= 0)
2765		intctl |= VGE_INTCTL_RXINTSUP_DISABLE;
2766	else
2767		intctl &= ~VGE_INTCTL_RXINTSUP_DISABLE;
2768	CSR_WRITE_1(sc, VGE_INTCTL1, intctl);
2769	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_HOLDOFF);
2770	if (sc->vge_int_holdoff > 0) {
2771		/* Set interrupt holdoff timer. */
2772		CSR_WRITE_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2773		CSR_WRITE_1(sc, VGE_INTHOLDOFF,
2774		    VGE_INT_HOLDOFF_USEC(sc->vge_int_holdoff));
2775		/* Enable holdoff timer. */
2776		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2777	}
2778}
2779
2780static void
2781vge_setlinkspeed(struct vge_softc *sc)
2782{
2783	struct mii_data *mii;
2784	int aneg, i;
2785
2786	VGE_LOCK_ASSERT(sc);
2787
2788	mii = device_get_softc(sc->vge_miibus);
2789	mii_pollstat(mii);
2790	aneg = 0;
2791	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2792	    (IFM_ACTIVE | IFM_AVALID)) {
2793		switch IFM_SUBTYPE(mii->mii_media_active) {
2794		case IFM_10_T:
2795		case IFM_100_TX:
2796			return;
2797		case IFM_1000_T:
2798			aneg++;
2799		default:
2800			break;
2801		}
2802	}
2803	/* Clear forced MAC speed/duplex configuration. */
2804	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2805	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2806	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_100T2CR, 0);
2807	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_ANAR,
2808	    ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
2809	vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2810	    BMCR_AUTOEN | BMCR_STARTNEG);
2811	DELAY(1000);
2812	if (aneg != 0) {
2813		/* Poll link state until vge(4) get a 10/100 link. */
2814		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
2815			mii_pollstat(mii);
2816			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
2817			    == (IFM_ACTIVE | IFM_AVALID)) {
2818				switch (IFM_SUBTYPE(mii->mii_media_active)) {
2819				case IFM_10_T:
2820				case IFM_100_TX:
2821					return;
2822				default:
2823					break;
2824				}
2825			}
2826			VGE_UNLOCK(sc);
2827			pause("vgelnk", hz);
2828			VGE_LOCK(sc);
2829		}
2830		if (i == MII_ANEGTICKS_GIGE)
2831			device_printf(sc->vge_dev, "establishing link failed, "
2832			    "WOL may not work!");
2833	}
2834	/*
2835	 * No link, force MAC to have 100Mbps, full-duplex link.
2836	 * This is the last resort and may/may not work.
2837	 */
2838	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
2839	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
2840}
2841
2842static void
2843vge_setwol(struct vge_softc *sc)
2844{
2845	struct ifnet *ifp;
2846	uint16_t pmstat;
2847	uint8_t val;
2848
2849	VGE_LOCK_ASSERT(sc);
2850
2851	if ((sc->vge_flags & VGE_FLAG_PMCAP) == 0) {
2852		/* No PME capability, PHY power down. */
2853		vge_miibus_writereg(sc->vge_dev, sc->vge_phyaddr, MII_BMCR,
2854		    BMCR_PDOWN);
2855		vge_miipoll_stop(sc);
2856		return;
2857	}
2858
2859	ifp = sc->vge_ifp;
2860
2861	/* Clear WOL on pattern match. */
2862	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2863	/* Disable WOL on magic/unicast packet. */
2864	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2865	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2866	    VGE_WOLCFG_PMEOVR);
2867	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
2868		vge_setlinkspeed(sc);
2869		val = 0;
2870		if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2871			val |= VGE_WOLCR1_UCAST;
2872		if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2873			val |= VGE_WOLCR1_MAGIC;
2874		CSR_WRITE_1(sc, VGE_WOLCR1S, val);
2875		val = 0;
2876		if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2877			val |= VGE_WOLCFG_SAM | VGE_WOLCFG_SAB;
2878		CSR_WRITE_1(sc, VGE_WOLCFGS, val | VGE_WOLCFG_PMEOVR);
2879		/* Disable MII auto-polling. */
2880		vge_miipoll_stop(sc);
2881	}
2882	CSR_SETBIT_1(sc, VGE_DIAGCTL,
2883	    VGE_DIAGCTL_MACFORCE | VGE_DIAGCTL_FDXFORCE);
2884	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2885
2886	/* Clear WOL status on pattern match. */
2887	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2888	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2889
2890	val = CSR_READ_1(sc, VGE_PWRSTAT);
2891	val |= VGE_STICKHW_SWPTAG;
2892	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2893	/* Put hardware into sleep. */
2894	val = CSR_READ_1(sc, VGE_PWRSTAT);
2895	val |= VGE_STICKHW_DS0 | VGE_STICKHW_DS1;
2896	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2897	/* Request PME if WOL is requested. */
2898	pmstat = pci_read_config(sc->vge_dev, sc->vge_pmcap +
2899	    PCIR_POWER_STATUS, 2);
2900	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2901	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2902		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2903	pci_write_config(sc->vge_dev, sc->vge_pmcap + PCIR_POWER_STATUS,
2904	    pmstat, 2);
2905}
2906
2907static void
2908vge_clrwol(struct vge_softc *sc)
2909{
2910	uint8_t val;
2911
2912	val = CSR_READ_1(sc, VGE_PWRSTAT);
2913	val &= ~VGE_STICKHW_SWPTAG;
2914	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2915	/* Disable WOL and clear power state indicator. */
2916	val = CSR_READ_1(sc, VGE_PWRSTAT);
2917	val &= ~(VGE_STICKHW_DS0 | VGE_STICKHW_DS1);
2918	CSR_WRITE_1(sc, VGE_PWRSTAT, val);
2919
2920	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_GMII);
2921	CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2922
2923	/* Clear WOL on pattern match. */
2924	CSR_WRITE_1(sc, VGE_WOLCR0C, VGE_WOLCR0_PATTERN_ALL);
2925	/* Disable WOL on magic/unicast packet. */
2926	CSR_WRITE_1(sc, VGE_WOLCR1C, 0x0F);
2927	CSR_WRITE_1(sc, VGE_WOLCFGC, VGE_WOLCFG_SAB | VGE_WOLCFG_SAM |
2928	    VGE_WOLCFG_PMEOVR);
2929	/* Clear WOL status on pattern match. */
2930	CSR_WRITE_1(sc, VGE_WOLSR0C, 0xFF);
2931	CSR_WRITE_1(sc, VGE_WOLSR1C, 0xFF);
2932}
2933