if_vge.c revision 200531
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 200531 2009-12-14 19:44:54Z yongari $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96
97#include <net/if.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_types.h>
103#include <net/if_vlan_var.h>
104
105#include <net/bpf.h>
106
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <dev/mii/mii.h>
113#include <dev/mii/miivar.h>
114
115#include <dev/pci/pcireg.h>
116#include <dev/pci/pcivar.h>
117
118MODULE_DEPEND(vge, pci, 1, 1, 1);
119MODULE_DEPEND(vge, ether, 1, 1, 1);
120MODULE_DEPEND(vge, miibus, 1, 1, 1);
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125#include <dev/vge/if_vgereg.h>
126#include <dev/vge/if_vgevar.h>
127
128#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
129
130/*
131 * Various supported device vendors/types and their names.
132 */
133static struct vge_type vge_devs[] = {
134	{ VIA_VENDORID, VIA_DEVICEID_61XX,
135		"VIA Networking Gigabit Ethernet" },
136	{ 0, 0, NULL }
137};
138
139static int vge_probe		(device_t);
140static int vge_attach		(device_t);
141static int vge_detach		(device_t);
142
143static int vge_encap		(struct vge_softc *, struct mbuf **);
144
145static void vge_dmamap_cb	(void *, bus_dma_segment_t *, int, int);
146static int vge_dma_alloc	(struct vge_softc *);
147static void vge_dma_free	(struct vge_softc *);
148static void vge_discard_rxbuf	(struct vge_softc *, int);
149static int vge_newbuf		(struct vge_softc *, int);
150static int vge_rx_list_init	(struct vge_softc *);
151static int vge_tx_list_init	(struct vge_softc *);
152static void vge_freebufs	(struct vge_softc *);
153#ifndef __NO_STRICT_ALIGNMENT
154static __inline void vge_fixup_rx
155				(struct mbuf *);
156#endif
157static int vge_rxeof		(struct vge_softc *, int);
158static void vge_txeof		(struct vge_softc *);
159static void vge_intr		(void *);
160static void vge_tick		(void *);
161static void vge_start		(struct ifnet *);
162static void vge_start_locked	(struct ifnet *);
163static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
164static void vge_init		(void *);
165static void vge_init_locked	(struct vge_softc *);
166static void vge_stop		(struct vge_softc *);
167static void vge_watchdog	(void *);
168static int vge_suspend		(device_t);
169static int vge_resume		(device_t);
170static int vge_shutdown		(device_t);
171static int vge_ifmedia_upd	(struct ifnet *);
172static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
173
174#ifdef VGE_EEPROM
175static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
176#endif
177static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
178
179static void vge_miipoll_start	(struct vge_softc *);
180static void vge_miipoll_stop	(struct vge_softc *);
181static int vge_miibus_readreg	(device_t, int, int);
182static int vge_miibus_writereg	(device_t, int, int, int);
183static void vge_miibus_statchg	(device_t);
184
185static void vge_cam_clear	(struct vge_softc *);
186static int vge_cam_set		(struct vge_softc *, uint8_t *);
187static void vge_setmulti	(struct vge_softc *);
188static void vge_reset		(struct vge_softc *);
189
190static device_method_t vge_methods[] = {
191	/* Device interface */
192	DEVMETHOD(device_probe,		vge_probe),
193	DEVMETHOD(device_attach,	vge_attach),
194	DEVMETHOD(device_detach,	vge_detach),
195	DEVMETHOD(device_suspend,	vge_suspend),
196	DEVMETHOD(device_resume,	vge_resume),
197	DEVMETHOD(device_shutdown,	vge_shutdown),
198
199	/* bus interface */
200	DEVMETHOD(bus_print_child,	bus_generic_print_child),
201	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
202
203	/* MII interface */
204	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
205	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
206	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
207
208	{ 0, 0 }
209};
210
211static driver_t vge_driver = {
212	"vge",
213	vge_methods,
214	sizeof(struct vge_softc)
215};
216
217static devclass_t vge_devclass;
218
219DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
220DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
221
222#ifdef VGE_EEPROM
223/*
224 * Read a word of data stored in the EEPROM at address 'addr.'
225 */
226static void
227vge_eeprom_getword(struct vge_softc *sc, int addr, u_int16_t *dest)
228{
229	int			i;
230	u_int16_t		word = 0;
231
232	/*
233	 * Enter EEPROM embedded programming mode. In order to
234	 * access the EEPROM at all, we first have to set the
235	 * EELOAD bit in the CHIPCFG2 register.
236	 */
237	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
238	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
239
240	/* Select the address of the word we want to read */
241	CSR_WRITE_1(sc, VGE_EEADDR, addr);
242
243	/* Issue read command */
244	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
245
246	/* Wait for the done bit to be set. */
247	for (i = 0; i < VGE_TIMEOUT; i++) {
248		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
249			break;
250	}
251
252	if (i == VGE_TIMEOUT) {
253		device_printf(sc->vge_dev, "EEPROM read timed out\n");
254		*dest = 0;
255		return;
256	}
257
258	/* Read the result */
259	word = CSR_READ_2(sc, VGE_EERDDAT);
260
261	/* Turn off EEPROM access mode. */
262	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
263	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
264
265	*dest = word;
266
267	return;
268}
269#endif
270
271/*
272 * Read a sequence of words from the EEPROM.
273 */
274static void
275vge_read_eeprom(struct vge_softc *sc, caddr_t dest, int off, int cnt, int swap)
276{
277	int			i;
278#ifdef VGE_EEPROM
279	u_int16_t		word = 0, *ptr;
280
281	for (i = 0; i < cnt; i++) {
282		vge_eeprom_getword(sc, off + i, &word);
283		ptr = (u_int16_t *)(dest + (i * 2));
284		if (swap)
285			*ptr = ntohs(word);
286		else
287			*ptr = word;
288	}
289#else
290	for (i = 0; i < ETHER_ADDR_LEN; i++)
291		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
292#endif
293}
294
295static void
296vge_miipoll_stop(struct vge_softc *sc)
297{
298	int			i;
299
300	CSR_WRITE_1(sc, VGE_MIICMD, 0);
301
302	for (i = 0; i < VGE_TIMEOUT; i++) {
303		DELAY(1);
304		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
305			break;
306	}
307
308	if (i == VGE_TIMEOUT)
309		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
310
311	return;
312}
313
314static void
315vge_miipoll_start(struct vge_softc *sc)
316{
317	int			i;
318
319	/* First, make sure we're idle. */
320
321	CSR_WRITE_1(sc, VGE_MIICMD, 0);
322	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
323
324	for (i = 0; i < VGE_TIMEOUT; i++) {
325		DELAY(1);
326		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
327			break;
328	}
329
330	if (i == VGE_TIMEOUT) {
331		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
332		return;
333	}
334
335	/* Now enable auto poll mode. */
336
337	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
338
339	/* And make sure it started. */
340
341	for (i = 0; i < VGE_TIMEOUT; i++) {
342		DELAY(1);
343		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
344			break;
345	}
346
347	if (i == VGE_TIMEOUT)
348		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
349
350	return;
351}
352
353static int
354vge_miibus_readreg(device_t dev, int phy, int reg)
355{
356	struct vge_softc	*sc;
357	int			i;
358	u_int16_t		rval = 0;
359
360	sc = device_get_softc(dev);
361
362	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
363		return(0);
364
365	vge_miipoll_stop(sc);
366
367	/* Specify the register we want to read. */
368	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
369
370	/* Issue read command. */
371	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
372
373	/* Wait for the read command bit to self-clear. */
374	for (i = 0; i < VGE_TIMEOUT; i++) {
375		DELAY(1);
376		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
377			break;
378	}
379
380	if (i == VGE_TIMEOUT)
381		device_printf(sc->vge_dev, "MII read timed out\n");
382	else
383		rval = CSR_READ_2(sc, VGE_MIIDATA);
384
385	vge_miipoll_start(sc);
386
387	return (rval);
388}
389
390static int
391vge_miibus_writereg(device_t dev, int phy, int reg, int data)
392{
393	struct vge_softc	*sc;
394	int			i, rval = 0;
395
396	sc = device_get_softc(dev);
397
398	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
399		return(0);
400
401	vge_miipoll_stop(sc);
402
403	/* Specify the register we want to write. */
404	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
405
406	/* Specify the data we want to write. */
407	CSR_WRITE_2(sc, VGE_MIIDATA, data);
408
409	/* Issue write command. */
410	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
411
412	/* Wait for the write command bit to self-clear. */
413	for (i = 0; i < VGE_TIMEOUT; i++) {
414		DELAY(1);
415		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
416			break;
417	}
418
419	if (i == VGE_TIMEOUT) {
420		device_printf(sc->vge_dev, "MII write timed out\n");
421		rval = EIO;
422	}
423
424	vge_miipoll_start(sc);
425
426	return (rval);
427}
428
429static void
430vge_cam_clear(struct vge_softc *sc)
431{
432	int			i;
433
434	/*
435	 * Turn off all the mask bits. This tells the chip
436	 * that none of the entries in the CAM filter are valid.
437	 * desired entries will be enabled as we fill the filter in.
438	 */
439
440	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
441	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
442	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
443	for (i = 0; i < 8; i++)
444		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
445
446	/* Clear the VLAN filter too. */
447
448	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
449	for (i = 0; i < 8; i++)
450		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
451
452	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
453	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
454	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
455
456	sc->vge_camidx = 0;
457
458	return;
459}
460
461static int
462vge_cam_set(struct vge_softc *sc, uint8_t *addr)
463{
464	int			i, error = 0;
465
466	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
467		return(ENOSPC);
468
469	/* Select the CAM data page. */
470	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
471	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
472
473	/* Set the filter entry we want to update and enable writing. */
474	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
475
476	/* Write the address to the CAM registers */
477	for (i = 0; i < ETHER_ADDR_LEN; i++)
478		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
479
480	/* Issue a write command. */
481	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
482
483	/* Wake for it to clear. */
484	for (i = 0; i < VGE_TIMEOUT; i++) {
485		DELAY(1);
486		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
487			break;
488	}
489
490	if (i == VGE_TIMEOUT) {
491		device_printf(sc->vge_dev, "setting CAM filter failed\n");
492		error = EIO;
493		goto fail;
494	}
495
496	/* Select the CAM mask page. */
497	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
498	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
499
500	/* Set the mask bit that enables this filter. */
501	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
502	    1<<(sc->vge_camidx & 7));
503
504	sc->vge_camidx++;
505
506fail:
507	/* Turn off access to CAM. */
508	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
509	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
510	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
511
512	return (error);
513}
514
515/*
516 * Program the multicast filter. We use the 64-entry CAM filter
517 * for perfect filtering. If there's more than 64 multicast addresses,
518 * we use the hash filter instead.
519 */
520static void
521vge_setmulti(struct vge_softc *sc)
522{
523	struct ifnet		*ifp;
524	int			error = 0/*, h = 0*/;
525	struct ifmultiaddr	*ifma;
526	u_int32_t		h, hashes[2] = { 0, 0 };
527
528	VGE_LOCK_ASSERT(sc);
529
530	ifp = sc->vge_ifp;
531
532	/* First, zot all the multicast entries. */
533	vge_cam_clear(sc);
534	CSR_WRITE_4(sc, VGE_MAR0, 0);
535	CSR_WRITE_4(sc, VGE_MAR1, 0);
536
537	/*
538	 * If the user wants allmulti or promisc mode, enable reception
539	 * of all multicast frames.
540	 */
541	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
542		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
543		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
544		return;
545	}
546
547	/* Now program new ones */
548	if_maddr_rlock(ifp);
549	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
550		if (ifma->ifma_addr->sa_family != AF_LINK)
551			continue;
552		error = vge_cam_set(sc,
553		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
554		if (error)
555			break;
556	}
557
558	/* If there were too many addresses, use the hash filter. */
559	if (error) {
560		vge_cam_clear(sc);
561
562		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
563			if (ifma->ifma_addr->sa_family != AF_LINK)
564				continue;
565			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
566			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
567			if (h < 32)
568				hashes[0] |= (1 << h);
569			else
570				hashes[1] |= (1 << (h - 32));
571		}
572
573		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
574		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
575	}
576	if_maddr_runlock(ifp);
577
578	return;
579}
580
581static void
582vge_reset(struct vge_softc *sc)
583{
584	int			i;
585
586	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
587
588	for (i = 0; i < VGE_TIMEOUT; i++) {
589		DELAY(5);
590		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
591			break;
592	}
593
594	if (i == VGE_TIMEOUT) {
595		device_printf(sc->vge_dev, "soft reset timed out");
596		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
597		DELAY(2000);
598	}
599
600	DELAY(5000);
601
602	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
603
604	for (i = 0; i < VGE_TIMEOUT; i++) {
605		DELAY(5);
606		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
607			break;
608	}
609
610	if (i == VGE_TIMEOUT) {
611		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
612		return;
613	}
614
615	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
616
617	return;
618}
619
620/*
621 * Probe for a VIA gigabit chip. Check the PCI vendor and device
622 * IDs against our list and return a device name if we find a match.
623 */
624static int
625vge_probe(device_t dev)
626{
627	struct vge_type		*t;
628
629	t = vge_devs;
630
631	while (t->vge_name != NULL) {
632		if ((pci_get_vendor(dev) == t->vge_vid) &&
633		    (pci_get_device(dev) == t->vge_did)) {
634			device_set_desc(dev, t->vge_name);
635			return (BUS_PROBE_DEFAULT);
636		}
637		t++;
638	}
639
640	return (ENXIO);
641}
642
643/*
644 * Map a single buffer address.
645 */
646
647struct vge_dmamap_arg {
648	bus_addr_t	vge_busaddr;
649};
650
651static void
652vge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
653{
654	struct vge_dmamap_arg	*ctx;
655
656	if (error != 0)
657		return;
658
659	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
660
661	ctx = (struct vge_dmamap_arg *)arg;
662	ctx->vge_busaddr = segs[0].ds_addr;
663}
664
665static int
666vge_dma_alloc(struct vge_softc *sc)
667{
668	struct vge_dmamap_arg	ctx;
669	struct vge_txdesc	*txd;
670	struct vge_rxdesc	*rxd;
671	bus_addr_t		lowaddr, tx_ring_end, rx_ring_end;
672	int			error, i;
673
674	lowaddr = BUS_SPACE_MAXADDR;
675
676again:
677	/* Create parent ring tag. */
678	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
679	    1, 0,			/* algnmnt, boundary */
680	    lowaddr,			/* lowaddr */
681	    BUS_SPACE_MAXADDR,		/* highaddr */
682	    NULL, NULL,			/* filter, filterarg */
683	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
684	    0,				/* nsegments */
685	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
686	    0,				/* flags */
687	    NULL, NULL,			/* lockfunc, lockarg */
688	    &sc->vge_cdata.vge_ring_tag);
689	if (error != 0) {
690		device_printf(sc->vge_dev,
691		    "could not create parent DMA tag.\n");
692		goto fail;
693	}
694
695	/* Create tag for Tx ring. */
696	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
697	    VGE_TX_RING_ALIGN, 0,	/* algnmnt, boundary */
698	    BUS_SPACE_MAXADDR,		/* lowaddr */
699	    BUS_SPACE_MAXADDR,		/* highaddr */
700	    NULL, NULL,			/* filter, filterarg */
701	    VGE_TX_LIST_SZ,		/* maxsize */
702	    1,				/* nsegments */
703	    VGE_TX_LIST_SZ,		/* maxsegsize */
704	    0,				/* flags */
705	    NULL, NULL,			/* lockfunc, lockarg */
706	    &sc->vge_cdata.vge_tx_ring_tag);
707	if (error != 0) {
708		device_printf(sc->vge_dev,
709		    "could not allocate Tx ring DMA tag.\n");
710		goto fail;
711	}
712
713	/* Create tag for Rx ring. */
714	error = bus_dma_tag_create(sc->vge_cdata.vge_ring_tag,/* parent */
715	    VGE_RX_RING_ALIGN, 0,	/* algnmnt, boundary */
716	    BUS_SPACE_MAXADDR,		/* lowaddr */
717	    BUS_SPACE_MAXADDR,		/* highaddr */
718	    NULL, NULL,			/* filter, filterarg */
719	    VGE_RX_LIST_SZ,		/* maxsize */
720	    1,				/* nsegments */
721	    VGE_RX_LIST_SZ,		/* maxsegsize */
722	    0,				/* flags */
723	    NULL, NULL,			/* lockfunc, lockarg */
724	    &sc->vge_cdata.vge_rx_ring_tag);
725	if (error != 0) {
726		device_printf(sc->vge_dev,
727		    "could not allocate Rx ring DMA tag.\n");
728		goto fail;
729	}
730
731	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
732	error = bus_dmamem_alloc(sc->vge_cdata.vge_tx_ring_tag,
733	    (void **)&sc->vge_rdata.vge_tx_ring,
734	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
735	    &sc->vge_cdata.vge_tx_ring_map);
736	if (error != 0) {
737		device_printf(sc->vge_dev,
738		    "could not allocate DMA'able memory for Tx ring.\n");
739		goto fail;
740	}
741
742	ctx.vge_busaddr = 0;
743	error = bus_dmamap_load(sc->vge_cdata.vge_tx_ring_tag,
744	    sc->vge_cdata.vge_tx_ring_map, sc->vge_rdata.vge_tx_ring,
745	    VGE_TX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
746	if (error != 0 || ctx.vge_busaddr == 0) {
747		device_printf(sc->vge_dev,
748		    "could not load DMA'able memory for Tx ring.\n");
749		goto fail;
750	}
751	sc->vge_rdata.vge_tx_ring_paddr = ctx.vge_busaddr;
752
753	/* Allocate DMA'able memory and load the DMA map for Rx ring. */
754	error = bus_dmamem_alloc(sc->vge_cdata.vge_rx_ring_tag,
755	    (void **)&sc->vge_rdata.vge_rx_ring,
756	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
757	    &sc->vge_cdata.vge_rx_ring_map);
758	if (error != 0) {
759		device_printf(sc->vge_dev,
760		    "could not allocate DMA'able memory for Rx ring.\n");
761		goto fail;
762	}
763
764	ctx.vge_busaddr = 0;
765	error = bus_dmamap_load(sc->vge_cdata.vge_rx_ring_tag,
766	    sc->vge_cdata.vge_rx_ring_map, sc->vge_rdata.vge_rx_ring,
767	    VGE_RX_LIST_SZ, vge_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
768	if (error != 0 || ctx.vge_busaddr == 0) {
769		device_printf(sc->vge_dev,
770		    "could not load DMA'able memory for Rx ring.\n");
771		goto fail;
772	}
773	sc->vge_rdata.vge_rx_ring_paddr = ctx.vge_busaddr;
774
775	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
776	tx_ring_end = sc->vge_rdata.vge_tx_ring_paddr + VGE_TX_LIST_SZ;
777	rx_ring_end = sc->vge_rdata.vge_rx_ring_paddr + VGE_RX_LIST_SZ;
778	if ((VGE_ADDR_HI(tx_ring_end) !=
779	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr)) ||
780	    (VGE_ADDR_HI(rx_ring_end) !=
781	    VGE_ADDR_HI(sc->vge_rdata.vge_rx_ring_paddr)) ||
782	    VGE_ADDR_HI(tx_ring_end) != VGE_ADDR_HI(rx_ring_end)) {
783		device_printf(sc->vge_dev, "4GB boundary crossed, "
784		    "switching to 32bit DMA address mode.\n");
785		vge_dma_free(sc);
786		/* Limit DMA address space to 32bit and try again. */
787		lowaddr = BUS_SPACE_MAXADDR_32BIT;
788		goto again;
789	}
790
791	/* Create parent buffer tag. */
792	error = bus_dma_tag_create(bus_get_dma_tag(sc->vge_dev),/* parent */
793	    1, 0,			/* algnmnt, boundary */
794	    VGE_BUF_DMA_MAXADDR,	/* lowaddr */
795	    BUS_SPACE_MAXADDR,		/* highaddr */
796	    NULL, NULL,			/* filter, filterarg */
797	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
798	    0,				/* nsegments */
799	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
800	    0,				/* flags */
801	    NULL, NULL,			/* lockfunc, lockarg */
802	    &sc->vge_cdata.vge_buffer_tag);
803	if (error != 0) {
804		device_printf(sc->vge_dev,
805		    "could not create parent buffer DMA tag.\n");
806		goto fail;
807	}
808
809	/* Create tag for Tx buffers. */
810	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
811	    1, 0,			/* algnmnt, boundary */
812	    BUS_SPACE_MAXADDR,		/* lowaddr */
813	    BUS_SPACE_MAXADDR,		/* highaddr */
814	    NULL, NULL,			/* filter, filterarg */
815	    MCLBYTES * VGE_MAXTXSEGS,	/* maxsize */
816	    VGE_MAXTXSEGS,		/* nsegments */
817	    MCLBYTES,			/* maxsegsize */
818	    0,				/* flags */
819	    NULL, NULL,			/* lockfunc, lockarg */
820	    &sc->vge_cdata.vge_tx_tag);
821	if (error != 0) {
822		device_printf(sc->vge_dev, "could not create Tx DMA tag.\n");
823		goto fail;
824	}
825
826	/* Create tag for Rx buffers. */
827	error = bus_dma_tag_create(sc->vge_cdata.vge_buffer_tag,/* parent */
828	    VGE_RX_BUF_ALIGN, 0,	/* algnmnt, boundary */
829	    BUS_SPACE_MAXADDR,		/* lowaddr */
830	    BUS_SPACE_MAXADDR,		/* highaddr */
831	    NULL, NULL,			/* filter, filterarg */
832	    MCLBYTES,			/* maxsize */
833	    1,				/* nsegments */
834	    MCLBYTES,			/* maxsegsize */
835	    0,				/* flags */
836	    NULL, NULL,			/* lockfunc, lockarg */
837	    &sc->vge_cdata.vge_rx_tag);
838	if (error != 0) {
839		device_printf(sc->vge_dev, "could not create Rx DMA tag.\n");
840		goto fail;
841	}
842
843	/* Create DMA maps for Tx buffers. */
844	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
845		txd = &sc->vge_cdata.vge_txdesc[i];
846		txd->tx_m = NULL;
847		txd->tx_dmamap = NULL;
848		error = bus_dmamap_create(sc->vge_cdata.vge_tx_tag, 0,
849		    &txd->tx_dmamap);
850		if (error != 0) {
851			device_printf(sc->vge_dev,
852			    "could not create Tx dmamap.\n");
853			goto fail;
854		}
855	}
856	/* Create DMA maps for Rx buffers. */
857	if ((error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
858	    &sc->vge_cdata.vge_rx_sparemap)) != 0) {
859		device_printf(sc->vge_dev,
860		    "could not create spare Rx dmamap.\n");
861		goto fail;
862	}
863	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
864		rxd = &sc->vge_cdata.vge_rxdesc[i];
865		rxd->rx_m = NULL;
866		rxd->rx_dmamap = NULL;
867		error = bus_dmamap_create(sc->vge_cdata.vge_rx_tag, 0,
868		    &rxd->rx_dmamap);
869		if (error != 0) {
870			device_printf(sc->vge_dev,
871			    "could not create Rx dmamap.\n");
872			goto fail;
873		}
874	}
875
876fail:
877	return (error);
878}
879
880static void
881vge_dma_free(struct vge_softc *sc)
882{
883	struct vge_txdesc	*txd;
884	struct vge_rxdesc	*rxd;
885	int			i;
886
887	/* Tx ring. */
888	if (sc->vge_cdata.vge_tx_ring_tag != NULL) {
889		if (sc->vge_cdata.vge_tx_ring_map)
890			bus_dmamap_unload(sc->vge_cdata.vge_tx_ring_tag,
891			    sc->vge_cdata.vge_tx_ring_map);
892		if (sc->vge_cdata.vge_tx_ring_map &&
893		    sc->vge_rdata.vge_tx_ring)
894			bus_dmamem_free(sc->vge_cdata.vge_tx_ring_tag,
895			    sc->vge_rdata.vge_tx_ring,
896			    sc->vge_cdata.vge_tx_ring_map);
897		sc->vge_rdata.vge_tx_ring = NULL;
898		sc->vge_cdata.vge_tx_ring_map = NULL;
899		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_ring_tag);
900		sc->vge_cdata.vge_tx_ring_tag = NULL;
901	}
902	/* Rx ring. */
903	if (sc->vge_cdata.vge_rx_ring_tag != NULL) {
904		if (sc->vge_cdata.vge_rx_ring_map)
905			bus_dmamap_unload(sc->vge_cdata.vge_rx_ring_tag,
906			    sc->vge_cdata.vge_rx_ring_map);
907		if (sc->vge_cdata.vge_rx_ring_map &&
908		    sc->vge_rdata.vge_rx_ring)
909			bus_dmamem_free(sc->vge_cdata.vge_rx_ring_tag,
910			    sc->vge_rdata.vge_rx_ring,
911			    sc->vge_cdata.vge_rx_ring_map);
912		sc->vge_rdata.vge_rx_ring = NULL;
913		sc->vge_cdata.vge_rx_ring_map = NULL;
914		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_ring_tag);
915		sc->vge_cdata.vge_rx_ring_tag = NULL;
916	}
917	/* Tx buffers. */
918	if (sc->vge_cdata.vge_tx_tag != NULL) {
919		for (i = 0; i < VGE_TX_DESC_CNT; i++) {
920			txd = &sc->vge_cdata.vge_txdesc[i];
921			if (txd->tx_dmamap != NULL) {
922				bus_dmamap_destroy(sc->vge_cdata.vge_tx_tag,
923				    txd->tx_dmamap);
924				txd->tx_dmamap = NULL;
925			}
926		}
927		bus_dma_tag_destroy(sc->vge_cdata.vge_tx_tag);
928		sc->vge_cdata.vge_tx_tag = NULL;
929	}
930	/* Rx buffers. */
931	if (sc->vge_cdata.vge_rx_tag != NULL) {
932		for (i = 0; i < VGE_RX_DESC_CNT; i++) {
933			rxd = &sc->vge_cdata.vge_rxdesc[i];
934			if (rxd->rx_dmamap != NULL) {
935				bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
936				    rxd->rx_dmamap);
937				rxd->rx_dmamap = NULL;
938			}
939		}
940		if (sc->vge_cdata.vge_rx_sparemap != NULL) {
941			bus_dmamap_destroy(sc->vge_cdata.vge_rx_tag,
942			    sc->vge_cdata.vge_rx_sparemap);
943			sc->vge_cdata.vge_rx_sparemap = NULL;
944		}
945		bus_dma_tag_destroy(sc->vge_cdata.vge_rx_tag);
946		sc->vge_cdata.vge_rx_tag = NULL;
947	}
948
949	if (sc->vge_cdata.vge_buffer_tag != NULL) {
950		bus_dma_tag_destroy(sc->vge_cdata.vge_buffer_tag);
951		sc->vge_cdata.vge_buffer_tag = NULL;
952	}
953	if (sc->vge_cdata.vge_ring_tag != NULL) {
954		bus_dma_tag_destroy(sc->vge_cdata.vge_ring_tag);
955		sc->vge_cdata.vge_ring_tag = NULL;
956	}
957}
958
959/*
960 * Attach the interface. Allocate softc structures, do ifmedia
961 * setup and ethernet/BPF attach.
962 */
963static int
964vge_attach(device_t dev)
965{
966	u_char			eaddr[ETHER_ADDR_LEN];
967	struct vge_softc	*sc;
968	struct ifnet		*ifp;
969	int			error = 0, rid;
970
971	sc = device_get_softc(dev);
972	sc->vge_dev = dev;
973
974	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
975	    MTX_DEF);
976	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
977
978	/*
979	 * Map control/status registers.
980	 */
981	pci_enable_busmaster(dev);
982
983	rid = PCIR_BAR(1);
984	sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
985	    RF_ACTIVE);
986
987	if (sc->vge_res == NULL) {
988		device_printf(dev, "couldn't map ports/memory\n");
989		error = ENXIO;
990		goto fail;
991	}
992
993	/* Allocate interrupt */
994	rid = 0;
995	sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
996	    RF_SHAREABLE | RF_ACTIVE);
997
998	if (sc->vge_irq == NULL) {
999		device_printf(dev, "couldn't map interrupt\n");
1000		error = ENXIO;
1001		goto fail;
1002	}
1003
1004	/* Reset the adapter. */
1005	vge_reset(sc);
1006
1007	/*
1008	 * Get station address from the EEPROM.
1009	 */
1010	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1011
1012	error = vge_dma_alloc(sc);
1013	if (error)
1014		goto fail;
1015
1016	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1017	if (ifp == NULL) {
1018		device_printf(dev, "can not if_alloc()\n");
1019		error = ENOSPC;
1020		goto fail;
1021	}
1022
1023	/* Do MII setup */
1024	if (mii_phy_probe(dev, &sc->vge_miibus,
1025	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1026		device_printf(dev, "MII without any phy!\n");
1027		error = ENXIO;
1028		goto fail;
1029	}
1030
1031	ifp->if_softc = sc;
1032	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1033	ifp->if_mtu = ETHERMTU;
1034	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1035	ifp->if_ioctl = vge_ioctl;
1036	ifp->if_capabilities = IFCAP_VLAN_MTU;
1037	ifp->if_start = vge_start;
1038	ifp->if_hwassist = VGE_CSUM_FEATURES;
1039	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1040	ifp->if_capenable = ifp->if_capabilities;
1041#ifdef DEVICE_POLLING
1042	ifp->if_capabilities |= IFCAP_POLLING;
1043#endif
1044	ifp->if_init = vge_init;
1045	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1046	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1047	IFQ_SET_READY(&ifp->if_snd);
1048
1049	/*
1050	 * Call MI attach routine.
1051	 */
1052	ether_ifattach(ifp, eaddr);
1053
1054	/* Hook interrupt last to avoid having to lock softc */
1055	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1056	    NULL, vge_intr, sc, &sc->vge_intrhand);
1057
1058	if (error) {
1059		device_printf(dev, "couldn't set up irq\n");
1060		ether_ifdetach(ifp);
1061		goto fail;
1062	}
1063
1064fail:
1065	if (error)
1066		vge_detach(dev);
1067
1068	return (error);
1069}
1070
1071/*
1072 * Shutdown hardware and free up resources. This can be called any
1073 * time after the mutex has been initialized. It is called in both
1074 * the error case in attach and the normal detach case so it needs
1075 * to be careful about only freeing resources that have actually been
1076 * allocated.
1077 */
1078static int
1079vge_detach(device_t dev)
1080{
1081	struct vge_softc		*sc;
1082	struct ifnet		*ifp;
1083
1084	sc = device_get_softc(dev);
1085	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1086	ifp = sc->vge_ifp;
1087
1088#ifdef DEVICE_POLLING
1089	if (ifp->if_capenable & IFCAP_POLLING)
1090		ether_poll_deregister(ifp);
1091#endif
1092
1093	/* These should only be active if attach succeeded */
1094	if (device_is_attached(dev)) {
1095		ether_ifdetach(ifp);
1096		VGE_LOCK(sc);
1097		vge_stop(sc);
1098		VGE_UNLOCK(sc);
1099		callout_drain(&sc->vge_watchdog);
1100	}
1101	if (sc->vge_miibus)
1102		device_delete_child(dev, sc->vge_miibus);
1103	bus_generic_detach(dev);
1104
1105	if (sc->vge_intrhand)
1106		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1107	if (sc->vge_irq)
1108		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1109	if (sc->vge_res)
1110		bus_release_resource(dev, SYS_RES_MEMORY,
1111		    PCIR_BAR(1), sc->vge_res);
1112	if (ifp)
1113		if_free(ifp);
1114
1115	vge_dma_free(sc);
1116	mtx_destroy(&sc->vge_mtx);
1117
1118	return (0);
1119}
1120
1121static void
1122vge_discard_rxbuf(struct vge_softc *sc, int prod)
1123{
1124	struct vge_rxdesc	*rxd;
1125	int			i;
1126
1127	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1128	rxd->rx_desc->vge_sts = 0;
1129	rxd->rx_desc->vge_ctl = 0;
1130
1131	/*
1132	 * Note: the manual fails to document the fact that for
1133	 * proper opration, the driver needs to replentish the RX
1134	 * DMA ring 4 descriptors at a time (rather than one at a
1135	 * time, like most chips). We can allocate the new buffers
1136	 * but we should not set the OWN bits until we're ready
1137	 * to hand back 4 of them in one shot.
1138	 */
1139	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1140		for (i = VGE_RXCHUNK; i > 0; i--) {
1141			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1142			rxd = rxd->rxd_prev;
1143		}
1144		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1145	}
1146}
1147
1148static int
1149vge_newbuf(struct vge_softc *sc, int prod)
1150{
1151	struct vge_rxdesc	*rxd;
1152	struct mbuf		*m;
1153	bus_dma_segment_t	segs[1];
1154	bus_dmamap_t		map;
1155	int			i, nsegs;
1156
1157	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1158	if (m == NULL)
1159		return (ENOBUFS);
1160	/*
1161	 * This is part of an evil trick to deal with strict-alignment
1162	 * architectures. The VIA chip requires RX buffers to be aligned
1163	 * on 32-bit boundaries, but that will hose strict-alignment
1164	 * architectures. To get around this, we leave some empty space
1165	 * at the start of each buffer and for non-strict-alignment hosts,
1166	 * we copy the buffer back two bytes to achieve word alignment.
1167	 * This is slightly more efficient than allocating a new buffer,
1168	 * copying the contents, and discarding the old buffer.
1169	 */
1170	m->m_len = m->m_pkthdr.len = MCLBYTES;
1171	m_adj(m, VGE_RX_BUF_ALIGN);
1172
1173	if (bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_rx_tag,
1174	    sc->vge_cdata.vge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
1175		m_freem(m);
1176		return (ENOBUFS);
1177	}
1178	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1179
1180	rxd = &sc->vge_cdata.vge_rxdesc[prod];
1181	if (rxd->rx_m != NULL) {
1182		bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1183		    BUS_DMASYNC_POSTREAD);
1184		bus_dmamap_unload(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap);
1185	}
1186	map = rxd->rx_dmamap;
1187	rxd->rx_dmamap = sc->vge_cdata.vge_rx_sparemap;
1188	sc->vge_cdata.vge_rx_sparemap = map;
1189	bus_dmamap_sync(sc->vge_cdata.vge_rx_tag, rxd->rx_dmamap,
1190	    BUS_DMASYNC_PREREAD);
1191	rxd->rx_m = m;
1192
1193	rxd->rx_desc->vge_sts = 0;
1194	rxd->rx_desc->vge_ctl = 0;
1195	rxd->rx_desc->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
1196	rxd->rx_desc->vge_addrhi = htole32(VGE_ADDR_HI(segs[0].ds_addr) |
1197	    (VGE_BUFLEN(segs[0].ds_len) << 16) | VGE_RXDESC_I);
1198
1199	/*
1200	 * Note: the manual fails to document the fact that for
1201	 * proper operation, the driver needs to replenish the RX
1202	 * DMA ring 4 descriptors at a time (rather than one at a
1203	 * time, like most chips). We can allocate the new buffers
1204	 * but we should not set the OWN bits until we're ready
1205	 * to hand back 4 of them in one shot.
1206	 */
1207	if ((prod % VGE_RXCHUNK) == (VGE_RXCHUNK - 1)) {
1208		for (i = VGE_RXCHUNK; i > 0; i--) {
1209			rxd->rx_desc->vge_sts = htole32(VGE_RDSTS_OWN);
1210			rxd = rxd->rxd_prev;
1211		}
1212		sc->vge_cdata.vge_rx_commit += VGE_RXCHUNK;
1213	}
1214
1215	return (0);
1216}
1217
1218static int
1219vge_tx_list_init(struct vge_softc *sc)
1220{
1221	struct vge_ring_data	*rd;
1222	struct vge_txdesc	*txd;
1223	int			i;
1224
1225	VGE_LOCK_ASSERT(sc);
1226
1227	sc->vge_cdata.vge_tx_prodidx = 0;
1228	sc->vge_cdata.vge_tx_considx = 0;
1229	sc->vge_cdata.vge_tx_cnt = 0;
1230
1231	rd = &sc->vge_rdata;
1232	bzero(rd->vge_tx_ring, VGE_TX_LIST_SZ);
1233	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1234		txd = &sc->vge_cdata.vge_txdesc[i];
1235		txd->tx_m = NULL;
1236		txd->tx_desc = &rd->vge_tx_ring[i];
1237	}
1238
1239	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1240	    sc->vge_cdata.vge_tx_ring_map,
1241	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1242
1243	return (0);
1244}
1245
1246static int
1247vge_rx_list_init(struct vge_softc *sc)
1248{
1249	struct vge_ring_data	*rd;
1250	struct vge_rxdesc	*rxd;
1251	int			i;
1252
1253	VGE_LOCK_ASSERT(sc);
1254
1255	sc->vge_cdata.vge_rx_prodidx = 0;
1256	sc->vge_cdata.vge_head = NULL;
1257	sc->vge_cdata.vge_tail = NULL;
1258	sc->vge_cdata.vge_rx_commit = 0;
1259
1260	rd = &sc->vge_rdata;
1261	bzero(rd->vge_rx_ring, VGE_RX_LIST_SZ);
1262	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1263		rxd = &sc->vge_cdata.vge_rxdesc[i];
1264		rxd->rx_m = NULL;
1265		rxd->rx_desc = &rd->vge_rx_ring[i];
1266		if (i == 0)
1267			rxd->rxd_prev =
1268			    &sc->vge_cdata.vge_rxdesc[VGE_RX_DESC_CNT - 1];
1269		else
1270			rxd->rxd_prev = &sc->vge_cdata.vge_rxdesc[i - 1];
1271		if (vge_newbuf(sc, i) != 0)
1272			return (ENOBUFS);
1273	}
1274
1275	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1276	    sc->vge_cdata.vge_rx_ring_map,
1277	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1278
1279	sc->vge_cdata.vge_rx_commit = 0;
1280
1281	return (0);
1282}
1283
1284static void
1285vge_freebufs(struct vge_softc *sc)
1286{
1287	struct vge_txdesc	*txd;
1288	struct vge_rxdesc	*rxd;
1289	struct ifnet		*ifp;
1290	int			i;
1291
1292	VGE_LOCK_ASSERT(sc);
1293
1294	ifp = sc->vge_ifp;
1295	/*
1296	 * Free RX and TX mbufs still in the queues.
1297	 */
1298	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1299		rxd = &sc->vge_cdata.vge_rxdesc[i];
1300		if (rxd->rx_m != NULL) {
1301			bus_dmamap_sync(sc->vge_cdata.vge_rx_tag,
1302			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
1303			bus_dmamap_unload(sc->vge_cdata.vge_rx_tag,
1304			    rxd->rx_dmamap);
1305			m_freem(rxd->rx_m);
1306			rxd->rx_m = NULL;
1307		}
1308	}
1309
1310	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
1311		txd = &sc->vge_cdata.vge_txdesc[i];
1312		if (txd->tx_m != NULL) {
1313			bus_dmamap_sync(sc->vge_cdata.vge_tx_tag,
1314			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1315			bus_dmamap_unload(sc->vge_cdata.vge_tx_tag,
1316			    txd->tx_dmamap);
1317			m_freem(txd->tx_m);
1318			txd->tx_m = NULL;
1319			ifp->if_oerrors++;
1320		}
1321	}
1322}
1323
1324#ifndef	__NO_STRICT_ALIGNMENT
1325static __inline void
1326vge_fixup_rx(struct mbuf *m)
1327{
1328	int			i;
1329	uint16_t		*src, *dst;
1330
1331	src = mtod(m, uint16_t *);
1332	dst = src - 1;
1333
1334	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1335		*dst++ = *src++;
1336
1337	m->m_data -= ETHER_ALIGN;
1338}
1339#endif
1340
1341/*
1342 * RX handler. We support the reception of jumbo frames that have
1343 * been fragmented across multiple 2K mbuf cluster buffers.
1344 */
1345static int
1346vge_rxeof(struct vge_softc *sc, int count)
1347{
1348	struct mbuf		*m;
1349	struct ifnet		*ifp;
1350	int			prod, prog, total_len;
1351	struct vge_rxdesc	*rxd;
1352	struct vge_rx_desc	*cur_rx;
1353	uint32_t		rxstat, rxctl;
1354
1355	VGE_LOCK_ASSERT(sc);
1356
1357	ifp = sc->vge_ifp;
1358
1359	bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1360	    sc->vge_cdata.vge_rx_ring_map,
1361	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1362
1363	prod = sc->vge_cdata.vge_rx_prodidx;
1364	for (prog = 0; count > 0 &&
1365	    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
1366	    VGE_RX_DESC_INC(prod)) {
1367		cur_rx = &sc->vge_rdata.vge_rx_ring[prod];
1368		rxstat = le32toh(cur_rx->vge_sts);
1369		if ((rxstat & VGE_RDSTS_OWN) != 0)
1370			break;
1371		count--;
1372		prog++;
1373		rxctl = le32toh(cur_rx->vge_ctl);
1374		total_len = VGE_RXBYTES(rxstat);
1375		rxd = &sc->vge_cdata.vge_rxdesc[prod];
1376		m = rxd->rx_m;
1377
1378		/*
1379		 * If the 'start of frame' bit is set, this indicates
1380		 * either the first fragment in a multi-fragment receive,
1381		 * or an intermediate fragment. Either way, we want to
1382		 * accumulate the buffers.
1383		 */
1384		if ((rxstat & VGE_RXPKT_SOF) != 0) {
1385			if (vge_newbuf(sc, prod) != 0) {
1386				ifp->if_iqdrops++;
1387				VGE_CHAIN_RESET(sc);
1388				vge_discard_rxbuf(sc, prod);
1389				continue;
1390			}
1391			m->m_len = MCLBYTES - VGE_RX_BUF_ALIGN;
1392			if (sc->vge_cdata.vge_head == NULL) {
1393				sc->vge_cdata.vge_head = m;
1394				sc->vge_cdata.vge_tail = m;
1395			} else {
1396				m->m_flags &= ~M_PKTHDR;
1397				sc->vge_cdata.vge_tail->m_next = m;
1398				sc->vge_cdata.vge_tail = m;
1399			}
1400			continue;
1401		}
1402
1403		/*
1404		 * Bad/error frames will have the RXOK bit cleared.
1405		 * However, there's one error case we want to allow:
1406		 * if a VLAN tagged frame arrives and the chip can't
1407		 * match it against the CAM filter, it considers this
1408		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1409		 * We don't want to drop the frame though: our VLAN
1410		 * filtering is done in software.
1411		 * We also want to receive bad-checksummed frames and
1412		 * and frames with bad-length.
1413		 */
1414		if ((rxstat & VGE_RDSTS_RXOK) == 0 &&
1415		    (rxstat & (VGE_RDSTS_VIDM | VGE_RDSTS_RLERR |
1416		    VGE_RDSTS_CSUMERR)) == 0) {
1417			ifp->if_ierrors++;
1418			/*
1419			 * If this is part of a multi-fragment packet,
1420			 * discard all the pieces.
1421			 */
1422			VGE_CHAIN_RESET(sc);
1423			vge_discard_rxbuf(sc, prod);
1424			continue;
1425		}
1426
1427		if (vge_newbuf(sc, prod) != 0) {
1428			ifp->if_iqdrops++;
1429			VGE_CHAIN_RESET(sc);
1430			vge_discard_rxbuf(sc, prod);
1431			continue;
1432		}
1433
1434		/* Chain received mbufs. */
1435		if (sc->vge_cdata.vge_head != NULL) {
1436			m->m_len = total_len % (MCLBYTES - VGE_RX_BUF_ALIGN);
1437			/*
1438			 * Special case: if there's 4 bytes or less
1439			 * in this buffer, the mbuf can be discarded:
1440			 * the last 4 bytes is the CRC, which we don't
1441			 * care about anyway.
1442			 */
1443			if (m->m_len <= ETHER_CRC_LEN) {
1444				sc->vge_cdata.vge_tail->m_len -=
1445				    (ETHER_CRC_LEN - m->m_len);
1446				m_freem(m);
1447			} else {
1448				m->m_len -= ETHER_CRC_LEN;
1449				m->m_flags &= ~M_PKTHDR;
1450				sc->vge_cdata.vge_tail->m_next = m;
1451			}
1452			m = sc->vge_cdata.vge_head;
1453			m->m_flags |= M_PKTHDR;
1454			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1455		} else {
1456			m->m_flags |= M_PKTHDR;
1457			m->m_pkthdr.len = m->m_len =
1458			    (total_len - ETHER_CRC_LEN);
1459		}
1460
1461#ifndef	__NO_STRICT_ALIGNMENT
1462		vge_fixup_rx(m);
1463#endif
1464		m->m_pkthdr.rcvif = ifp;
1465
1466		/* Do RX checksumming if enabled */
1467		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
1468		    (rxctl & VGE_RDCTL_FRAG) == 0) {
1469			/* Check IP header checksum */
1470			if ((rxctl & VGE_RDCTL_IPPKT) != 0)
1471				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1472			if ((rxctl & VGE_RDCTL_IPCSUMOK) != 0)
1473				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1474
1475			/* Check TCP/UDP checksum */
1476			if (rxctl & (VGE_RDCTL_TCPPKT | VGE_RDCTL_UDPPKT) &&
1477			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1478				m->m_pkthdr.csum_flags |=
1479				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1480				m->m_pkthdr.csum_data = 0xffff;
1481			}
1482		}
1483
1484		if ((rxstat & VGE_RDSTS_VTAG) != 0) {
1485			/*
1486			 * The 32-bit rxctl register is stored in little-endian.
1487			 * However, the 16-bit vlan tag is stored in big-endian,
1488			 * so we have to byte swap it.
1489			 */
1490			m->m_pkthdr.ether_vtag =
1491			    bswap16(rxctl & VGE_RDCTL_VLANID);
1492			m->m_flags |= M_VLANTAG;
1493		}
1494
1495		VGE_UNLOCK(sc);
1496		(*ifp->if_input)(ifp, m);
1497		VGE_LOCK(sc);
1498		sc->vge_cdata.vge_head = NULL;
1499		sc->vge_cdata.vge_tail = NULL;
1500	}
1501
1502	if (prog > 0) {
1503		sc->vge_cdata.vge_rx_prodidx = prod;
1504		bus_dmamap_sync(sc->vge_cdata.vge_rx_ring_tag,
1505		    sc->vge_cdata.vge_rx_ring_map,
1506		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1507		/* Update residue counter. */
1508		if (sc->vge_cdata.vge_rx_commit != 0) {
1509			CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT,
1510			    sc->vge_cdata.vge_rx_commit);
1511			sc->vge_cdata.vge_rx_commit = 0;
1512		}
1513	}
1514	return (prog);
1515}
1516
1517static void
1518vge_txeof(struct vge_softc *sc)
1519{
1520	struct ifnet		*ifp;
1521	struct vge_tx_desc	*cur_tx;
1522	struct vge_txdesc	*txd;
1523	uint32_t		txstat;
1524	int			cons, prod;
1525
1526	VGE_LOCK_ASSERT(sc);
1527
1528	ifp = sc->vge_ifp;
1529
1530	if (sc->vge_cdata.vge_tx_cnt == 0)
1531		return;
1532
1533	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1534	    sc->vge_cdata.vge_tx_ring_map,
1535	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1536
1537	/*
1538	 * Go through our tx list and free mbufs for those
1539	 * frames that have been transmitted.
1540	 */
1541	cons = sc->vge_cdata.vge_tx_considx;
1542	prod = sc->vge_cdata.vge_tx_prodidx;
1543	for (; cons != prod; VGE_TX_DESC_INC(cons)) {
1544		cur_tx = &sc->vge_rdata.vge_tx_ring[cons];
1545		txstat = le32toh(cur_tx->vge_sts);
1546		if ((txstat & VGE_TDSTS_OWN) != 0)
1547			break;
1548		sc->vge_cdata.vge_tx_cnt--;
1549		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1550
1551		txd = &sc->vge_cdata.vge_txdesc[cons];
1552		bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1553		    BUS_DMASYNC_POSTWRITE);
1554		bus_dmamap_unload(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap);
1555
1556		KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
1557		    __func__));
1558		m_freem(txd->tx_m);
1559		txd->tx_m = NULL;
1560		txd->tx_desc->vge_frag[0].vge_addrhi = 0;
1561	}
1562	bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1563	    sc->vge_cdata.vge_tx_ring_map,
1564	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1565	sc->vge_cdata.vge_tx_considx = cons;
1566	if (sc->vge_cdata.vge_tx_cnt == 0)
1567		sc->vge_timer = 0;
1568	else {
1569		/*
1570		 * If not all descriptors have been released reaped yet,
1571		 * reload the timer so that we will eventually get another
1572		 * interrupt that will cause us to re-enter this routine.
1573		 * This is done in case the transmitter has gone idle.
1574		 */
1575		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1576	}
1577}
1578
1579static void
1580vge_tick(void *xsc)
1581{
1582	struct vge_softc	*sc;
1583	struct ifnet		*ifp;
1584	struct mii_data		*mii;
1585
1586	sc = xsc;
1587	ifp = sc->vge_ifp;
1588	VGE_LOCK_ASSERT(sc);
1589	mii = device_get_softc(sc->vge_miibus);
1590
1591	mii_tick(mii);
1592	if (sc->vge_link) {
1593		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1594			sc->vge_link = 0;
1595			if_link_state_change(sc->vge_ifp,
1596			    LINK_STATE_DOWN);
1597		}
1598	} else {
1599		if (mii->mii_media_status & IFM_ACTIVE &&
1600		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1601			sc->vge_link = 1;
1602			if_link_state_change(sc->vge_ifp,
1603			    LINK_STATE_UP);
1604			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1605				vge_start_locked(ifp);
1606		}
1607	}
1608
1609	return;
1610}
1611
1612#ifdef DEVICE_POLLING
1613static int
1614vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1615{
1616	struct vge_softc *sc = ifp->if_softc;
1617	int rx_npkts = 0;
1618
1619	VGE_LOCK(sc);
1620	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1621		goto done;
1622
1623	rx_npkts = vge_rxeof(sc, count);
1624	vge_txeof(sc);
1625
1626	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1627		vge_start_locked(ifp);
1628
1629	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1630		u_int32_t       status;
1631		status = CSR_READ_4(sc, VGE_ISR);
1632		if (status == 0xFFFFFFFF)
1633			goto done;
1634		if (status)
1635			CSR_WRITE_4(sc, VGE_ISR, status);
1636
1637		/*
1638		 * XXX check behaviour on receiver stalls.
1639		 */
1640
1641		if (status & VGE_ISR_TXDMA_STALL ||
1642		    status & VGE_ISR_RXDMA_STALL) {
1643			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1644			vge_init_locked(sc);
1645		}
1646
1647		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1648			vge_rxeof(sc, count);
1649			ifp->if_ierrors++;
1650			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1651			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1652		}
1653	}
1654done:
1655	VGE_UNLOCK(sc);
1656	return (rx_npkts);
1657}
1658#endif /* DEVICE_POLLING */
1659
1660static void
1661vge_intr(void *arg)
1662{
1663	struct vge_softc	*sc;
1664	struct ifnet		*ifp;
1665	u_int32_t		status;
1666
1667	sc = arg;
1668
1669	if (sc->suspended) {
1670		return;
1671	}
1672
1673	VGE_LOCK(sc);
1674	ifp = sc->vge_ifp;
1675
1676	if (!(ifp->if_flags & IFF_UP)) {
1677		VGE_UNLOCK(sc);
1678		return;
1679	}
1680
1681#ifdef DEVICE_POLLING
1682	if  (ifp->if_capenable & IFCAP_POLLING) {
1683		VGE_UNLOCK(sc);
1684		return;
1685	}
1686#endif
1687
1688	/* Disable interrupts */
1689	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1690
1691	for (;;) {
1692
1693		status = CSR_READ_4(sc, VGE_ISR);
1694		/* If the card has gone away the read returns 0xffff. */
1695		if (status == 0xFFFFFFFF)
1696			break;
1697
1698		if (status)
1699			CSR_WRITE_4(sc, VGE_ISR, status);
1700
1701		if ((status & VGE_INTRS) == 0)
1702			break;
1703
1704		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1705			vge_rxeof(sc, VGE_RX_DESC_CNT);
1706
1707		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1708			vge_rxeof(sc, VGE_RX_DESC_CNT);
1709			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1710			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1711		}
1712
1713		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1714			vge_txeof(sc);
1715
1716		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL)) {
1717			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1718			vge_init_locked(sc);
1719		}
1720
1721		if (status & VGE_ISR_LINKSTS)
1722			vge_tick(sc);
1723	}
1724
1725	/* Re-enable interrupts */
1726	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1727
1728	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1729		vge_start_locked(ifp);
1730
1731	VGE_UNLOCK(sc);
1732
1733	return;
1734}
1735
1736static int
1737vge_encap(struct vge_softc *sc, struct mbuf **m_head)
1738{
1739	struct vge_txdesc	*txd;
1740	struct vge_tx_frag	*frag;
1741	struct mbuf		*m;
1742	bus_dma_segment_t	txsegs[VGE_MAXTXSEGS];
1743	int			error, i, nsegs, padlen;
1744	uint32_t		cflags;
1745
1746	VGE_LOCK_ASSERT(sc);
1747
1748	M_ASSERTPKTHDR((*m_head));
1749
1750	/* Argh. This chip does not autopad short frames. */
1751	if ((*m_head)->m_pkthdr.len < VGE_MIN_FRAMELEN) {
1752		m = *m_head;
1753		padlen = VGE_MIN_FRAMELEN - m->m_pkthdr.len;
1754		if (M_WRITABLE(m) == 0) {
1755			/* Get a writable copy. */
1756			m = m_dup(*m_head, M_DONTWAIT);
1757			m_freem(*m_head);
1758			if (m == NULL) {
1759				*m_head = NULL;
1760				return (ENOBUFS);
1761			}
1762			*m_head = m;
1763		}
1764		if (M_TRAILINGSPACE(m) < padlen) {
1765			m = m_defrag(m, M_DONTWAIT);
1766			if (m == NULL) {
1767				m_freem(*m_head);
1768				*m_head = NULL;
1769				return (ENOBUFS);
1770			}
1771		}
1772		/*
1773		 * Manually pad short frames, and zero the pad space
1774		 * to avoid leaking data.
1775		 */
1776		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1777		m->m_pkthdr.len += padlen;
1778		m->m_len = m->m_pkthdr.len;
1779		*m_head = m;
1780	}
1781
1782	txd = &sc->vge_cdata.vge_txdesc[sc->vge_cdata.vge_tx_prodidx];
1783
1784	error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1785	    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1786	if (error == EFBIG) {
1787		m = m_collapse(*m_head, M_DONTWAIT, VGE_MAXTXSEGS);
1788		if (m == NULL) {
1789			m_freem(*m_head);
1790			*m_head = NULL;
1791			return (ENOMEM);
1792		}
1793		*m_head = m;
1794		error = bus_dmamap_load_mbuf_sg(sc->vge_cdata.vge_tx_tag,
1795		    txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
1796		if (error != 0) {
1797			m_freem(*m_head);
1798			*m_head = NULL;
1799			return (error);
1800		}
1801	} else if (error != 0)
1802		return (error);
1803	bus_dmamap_sync(sc->vge_cdata.vge_tx_tag, txd->tx_dmamap,
1804	    BUS_DMASYNC_PREWRITE);
1805
1806	m = *m_head;
1807	cflags = 0;
1808
1809	/* Configure checksum offload. */
1810	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
1811		cflags |= VGE_TDCTL_IPCSUM;
1812	if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1813		cflags |= VGE_TDCTL_TCPCSUM;
1814	if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1815		cflags |= VGE_TDCTL_UDPCSUM;
1816
1817	/* Configure VLAN. */
1818	if ((m->m_flags & M_VLANTAG) != 0)
1819		cflags |= m->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG;
1820	txd->tx_desc->vge_sts = htole32(m->m_pkthdr.len << 16);
1821	/*
1822	 * XXX
1823	 * Velocity family seems to support TSO but no information
1824	 * for MSS configuration is available. Also the number of
1825	 * fragments supported by a descriptor is too small to hold
1826	 * entire 64KB TCP/IP segment. Maybe VGE_TD_LS_MOF,
1827	 * VGE_TD_LS_SOF and VGE_TD_LS_EOF could be used to build
1828	 * longer chain of buffers but no additional information is
1829	 * available.
1830	 *
1831	 * When telling the chip how many segments there are, we
1832	 * must use nsegs + 1 instead of just nsegs. Darned if I
1833	 * know why. This also means we can't use the last fragment
1834	 * field of Tx descriptor.
1835	 */
1836	txd->tx_desc->vge_ctl = htole32(cflags | ((nsegs + 1) << 28) |
1837	    VGE_TD_LS_NORM);
1838	for (i = 0; i < nsegs; i++) {
1839		frag = &txd->tx_desc->vge_frag[i];
1840		frag->vge_addrlo = htole32(VGE_ADDR_LO(txsegs[i].ds_addr));
1841		frag->vge_addrhi = htole32(VGE_ADDR_HI(txsegs[i].ds_addr) |
1842		    (VGE_BUFLEN(txsegs[i].ds_len) << 16));
1843	}
1844
1845	sc->vge_cdata.vge_tx_cnt++;
1846	VGE_TX_DESC_INC(sc->vge_cdata.vge_tx_prodidx);
1847
1848	/*
1849	 * Finally request interrupt and give the first descriptor
1850	 * ownership to hardware.
1851	 */
1852	txd->tx_desc->vge_ctl |= htole32(VGE_TDCTL_TIC);
1853	txd->tx_desc->vge_sts |= htole32(VGE_TDSTS_OWN);
1854	txd->tx_m = m;
1855
1856	return (0);
1857}
1858
1859/*
1860 * Main transmit routine.
1861 */
1862
1863static void
1864vge_start(struct ifnet *ifp)
1865{
1866	struct vge_softc	*sc;
1867
1868	sc = ifp->if_softc;
1869	VGE_LOCK(sc);
1870	vge_start_locked(ifp);
1871	VGE_UNLOCK(sc);
1872}
1873
1874
1875static void
1876vge_start_locked(struct ifnet *ifp)
1877{
1878	struct vge_softc	*sc;
1879	struct vge_txdesc	*txd;
1880	struct mbuf		*m_head;
1881	int			enq, idx;
1882
1883	sc = ifp->if_softc;
1884
1885	VGE_LOCK_ASSERT(sc);
1886
1887	if (sc->vge_link == 0 ||
1888	    (ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1889	    IFF_DRV_RUNNING)
1890		return;
1891
1892	idx = sc->vge_cdata.vge_tx_prodidx;
1893	VGE_TX_DESC_DEC(idx);
1894	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
1895	    sc->vge_cdata.vge_tx_cnt < VGE_TX_DESC_CNT - 1; ) {
1896		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1897		if (m_head == NULL)
1898			break;
1899		/*
1900		 * Pack the data into the transmit ring. If we
1901		 * don't have room, set the OACTIVE flag and wait
1902		 * for the NIC to drain the ring.
1903		 */
1904		if (vge_encap(sc, &m_head)) {
1905			if (m_head == NULL)
1906				break;
1907			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1908			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1909			break;
1910		}
1911
1912		txd = &sc->vge_cdata.vge_txdesc[idx];
1913		txd->tx_desc->vge_frag[0].vge_addrhi |= htole32(VGE_TXDESC_Q);
1914		VGE_TX_DESC_INC(idx);
1915
1916		enq++;
1917		/*
1918		 * If there's a BPF listener, bounce a copy of this frame
1919		 * to him.
1920		 */
1921		ETHER_BPF_MTAP(ifp, m_head);
1922	}
1923
1924	if (enq > 0) {
1925		bus_dmamap_sync(sc->vge_cdata.vge_tx_ring_tag,
1926		    sc->vge_cdata.vge_tx_ring_map,
1927		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1928		/* Issue a transmit command. */
1929		CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1930		/*
1931		 * Use the countdown timer for interrupt moderation.
1932		 * 'TX done' interrupts are disabled. Instead, we reset the
1933		 * countdown timer, which will begin counting until it hits
1934		 * the value in the SSTIMER register, and then trigger an
1935		 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1936		 * the timer count is reloaded. Only when the transmitter
1937		 * is idle will the timer hit 0 and an interrupt fire.
1938		 */
1939		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1940
1941		/*
1942		 * Set a timeout in case the chip goes out to lunch.
1943		 */
1944		sc->vge_timer = 5;
1945	}
1946}
1947
1948static void
1949vge_init(void *xsc)
1950{
1951	struct vge_softc	*sc = xsc;
1952
1953	VGE_LOCK(sc);
1954	vge_init_locked(sc);
1955	VGE_UNLOCK(sc);
1956}
1957
1958static void
1959vge_init_locked(struct vge_softc *sc)
1960{
1961	struct ifnet		*ifp = sc->vge_ifp;
1962	struct mii_data		*mii;
1963	int			error, i;
1964
1965	VGE_LOCK_ASSERT(sc);
1966	mii = device_get_softc(sc->vge_miibus);
1967
1968	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1969		return;
1970
1971	/*
1972	 * Cancel pending I/O and free all RX/TX buffers.
1973	 */
1974	vge_stop(sc);
1975	vge_reset(sc);
1976
1977	/*
1978	 * Initialize the RX and TX descriptors and mbufs.
1979	 */
1980
1981	error = vge_rx_list_init(sc);
1982	if (error != 0) {
1983                device_printf(sc->vge_dev, "no memory for Rx buffers.\n");
1984                return;
1985	}
1986	vge_tx_list_init(sc);
1987
1988	/* Set our station address */
1989	for (i = 0; i < ETHER_ADDR_LEN; i++)
1990		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1991
1992	/*
1993	 * Set receive FIFO threshold. Also allow transmission and
1994	 * reception of VLAN tagged frames.
1995	 */
1996	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1997	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1998
1999	/* Set DMA burst length */
2000	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
2001	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
2002
2003	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
2004
2005	/* Set collision backoff algorithm */
2006	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
2007	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
2008	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2009
2010	/* Disable LPSEL field in priority resolution */
2011	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2012
2013	/*
2014	 * Load the addresses of the DMA queues into the chip.
2015	 * Note that we only use one transmit queue.
2016	 */
2017
2018	CSR_WRITE_4(sc, VGE_TXDESC_HIADDR,
2019	    VGE_ADDR_HI(sc->vge_rdata.vge_tx_ring_paddr));
2020	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2021	    VGE_ADDR_LO(sc->vge_rdata.vge_tx_ring_paddr));
2022	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2023
2024	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2025	    VGE_ADDR_LO(sc->vge_rdata.vge_rx_ring_paddr));
2026	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2027	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2028
2029	/* Enable and wake up the RX descriptor queue */
2030	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2031	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2032
2033	/* Enable the TX descriptor queue */
2034	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2035
2036	/* Set up the receive filter -- allow large frames for VLANs. */
2037	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2038
2039	/* If we want promiscuous mode, set the allframes bit. */
2040	if (ifp->if_flags & IFF_PROMISC) {
2041		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2042	}
2043
2044	/* Set capture broadcast bit to capture broadcast frames. */
2045	if (ifp->if_flags & IFF_BROADCAST) {
2046		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2047	}
2048
2049	/* Set multicast bit to capture multicast frames. */
2050	if (ifp->if_flags & IFF_MULTICAST) {
2051		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2052	}
2053
2054	/* Init the cam filter. */
2055	vge_cam_clear(sc);
2056
2057	/* Init the multicast filter. */
2058	vge_setmulti(sc);
2059
2060	/* Enable flow control */
2061
2062	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2063
2064	/* Enable jumbo frame reception (if desired) */
2065
2066	/* Start the MAC. */
2067	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2068	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2069	CSR_WRITE_1(sc, VGE_CRS0,
2070	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2071
2072	/*
2073	 * Configure one-shot timer for microsecond
2074	 * resolution and load it for 500 usecs.
2075	 */
2076	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2077	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2078
2079	/*
2080	 * Configure interrupt moderation for receive. Enable
2081	 * the holdoff counter and load it, and set the RX
2082	 * suppression count to the number of descriptors we
2083	 * want to allow before triggering an interrupt.
2084	 * The holdoff timer is in units of 20 usecs.
2085	 */
2086
2087#ifdef notyet
2088	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2089	/* Select the interrupt holdoff timer page. */
2090	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2091	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2092	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2093
2094	/* Enable use of the holdoff timer. */
2095	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2096	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2097
2098	/* Select the RX suppression threshold page. */
2099	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2100	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2101	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2102
2103	/* Restore the page select bits. */
2104	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2105	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2106#endif
2107
2108#ifdef DEVICE_POLLING
2109	/*
2110	 * Disable interrupts if we are polling.
2111	 */
2112	if (ifp->if_capenable & IFCAP_POLLING) {
2113		CSR_WRITE_4(sc, VGE_IMR, 0);
2114		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2115	} else	/* otherwise ... */
2116#endif
2117	{
2118	/*
2119	 * Enable interrupts.
2120	 */
2121		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2122		CSR_WRITE_4(sc, VGE_ISR, 0);
2123		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2124	}
2125
2126	mii_mediachg(mii);
2127
2128	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2129	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2130	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2131
2132	sc->vge_link = 0;
2133}
2134
2135/*
2136 * Set media options.
2137 */
2138static int
2139vge_ifmedia_upd(struct ifnet *ifp)
2140{
2141	struct vge_softc	*sc;
2142	struct mii_data		*mii;
2143
2144	sc = ifp->if_softc;
2145	VGE_LOCK(sc);
2146	mii = device_get_softc(sc->vge_miibus);
2147	mii_mediachg(mii);
2148	VGE_UNLOCK(sc);
2149
2150	return (0);
2151}
2152
2153/*
2154 * Report current media status.
2155 */
2156static void
2157vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2158{
2159	struct vge_softc	*sc;
2160	struct mii_data		*mii;
2161
2162	sc = ifp->if_softc;
2163	mii = device_get_softc(sc->vge_miibus);
2164
2165	VGE_LOCK(sc);
2166	mii_pollstat(mii);
2167	VGE_UNLOCK(sc);
2168	ifmr->ifm_active = mii->mii_media_active;
2169	ifmr->ifm_status = mii->mii_media_status;
2170
2171	return;
2172}
2173
2174static void
2175vge_miibus_statchg(device_t dev)
2176{
2177	struct vge_softc	*sc;
2178	struct mii_data		*mii;
2179	struct ifmedia_entry	*ife;
2180
2181	sc = device_get_softc(dev);
2182	mii = device_get_softc(sc->vge_miibus);
2183	ife = mii->mii_media.ifm_cur;
2184
2185	/*
2186	 * If the user manually selects a media mode, we need to turn
2187	 * on the forced MAC mode bit in the DIAGCTL register. If the
2188	 * user happens to choose a full duplex mode, we also need to
2189	 * set the 'force full duplex' bit. This applies only to
2190	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2191	 * mode is disabled, and in 1000baseT mode, full duplex is
2192	 * always implied, so we turn on the forced mode bit but leave
2193	 * the FDX bit cleared.
2194	 */
2195
2196	switch (IFM_SUBTYPE(ife->ifm_media)) {
2197	case IFM_AUTO:
2198		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2199		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2200		break;
2201	case IFM_1000_T:
2202		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2203		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2204		break;
2205	case IFM_100_TX:
2206	case IFM_10_T:
2207		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2208		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2209			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2210		} else {
2211			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2212		}
2213		break;
2214	default:
2215		device_printf(dev, "unknown media type: %x\n",
2216		    IFM_SUBTYPE(ife->ifm_media));
2217		break;
2218	}
2219
2220	return;
2221}
2222
2223static int
2224vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2225{
2226	struct vge_softc	*sc = ifp->if_softc;
2227	struct ifreq		*ifr = (struct ifreq *) data;
2228	struct mii_data		*mii;
2229	int			error = 0;
2230
2231	switch (command) {
2232	case SIOCSIFMTU:
2233		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2234			error = EINVAL;
2235		ifp->if_mtu = ifr->ifr_mtu;
2236		break;
2237	case SIOCSIFFLAGS:
2238		VGE_LOCK(sc);
2239		if (ifp->if_flags & IFF_UP) {
2240			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2241			    ifp->if_flags & IFF_PROMISC &&
2242			    !(sc->vge_if_flags & IFF_PROMISC)) {
2243				CSR_SETBIT_1(sc, VGE_RXCTL,
2244				    VGE_RXCTL_RX_PROMISC);
2245				vge_setmulti(sc);
2246			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2247			    !(ifp->if_flags & IFF_PROMISC) &&
2248			    sc->vge_if_flags & IFF_PROMISC) {
2249				CSR_CLRBIT_1(sc, VGE_RXCTL,
2250				    VGE_RXCTL_RX_PROMISC);
2251				vge_setmulti(sc);
2252                        } else
2253				vge_init_locked(sc);
2254		} else {
2255			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2256				vge_stop(sc);
2257		}
2258		sc->vge_if_flags = ifp->if_flags;
2259		VGE_UNLOCK(sc);
2260		break;
2261	case SIOCADDMULTI:
2262	case SIOCDELMULTI:
2263		VGE_LOCK(sc);
2264		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2265			vge_setmulti(sc);
2266		VGE_UNLOCK(sc);
2267		break;
2268	case SIOCGIFMEDIA:
2269	case SIOCSIFMEDIA:
2270		mii = device_get_softc(sc->vge_miibus);
2271		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2272		break;
2273	case SIOCSIFCAP:
2274	    {
2275		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2276#ifdef DEVICE_POLLING
2277		if (mask & IFCAP_POLLING) {
2278			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2279				error = ether_poll_register(vge_poll, ifp);
2280				if (error)
2281					return(error);
2282				VGE_LOCK(sc);
2283					/* Disable interrupts */
2284				CSR_WRITE_4(sc, VGE_IMR, 0);
2285				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2286				ifp->if_capenable |= IFCAP_POLLING;
2287				VGE_UNLOCK(sc);
2288			} else {
2289				error = ether_poll_deregister(ifp);
2290				/* Enable interrupts. */
2291				VGE_LOCK(sc);
2292				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2293				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2294				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2295				ifp->if_capenable &= ~IFCAP_POLLING;
2296				VGE_UNLOCK(sc);
2297			}
2298		}
2299#endif /* DEVICE_POLLING */
2300		VGE_LOCK(sc);
2301		if ((mask & IFCAP_TXCSUM) != 0 &&
2302		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2303			ifp->if_capenable ^= IFCAP_TXCSUM;
2304			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2305				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2306			else
2307				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2308		}
2309		if ((mask & IFCAP_RXCSUM) != 0 &&
2310		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2311			ifp->if_capenable ^= IFCAP_RXCSUM;
2312		VGE_UNLOCK(sc);
2313	    }
2314		break;
2315	default:
2316		error = ether_ioctl(ifp, command, data);
2317		break;
2318	}
2319
2320	return (error);
2321}
2322
2323static void
2324vge_watchdog(void *arg)
2325{
2326	struct vge_softc *sc;
2327	struct ifnet *ifp;
2328
2329	sc = arg;
2330	VGE_LOCK_ASSERT(sc);
2331	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2332	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2333		return;
2334
2335	ifp = sc->vge_ifp;
2336	if_printf(ifp, "watchdog timeout\n");
2337	ifp->if_oerrors++;
2338
2339	vge_txeof(sc);
2340	vge_rxeof(sc, VGE_RX_DESC_CNT);
2341
2342	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2343	vge_init_locked(sc);
2344
2345	return;
2346}
2347
2348/*
2349 * Stop the adapter and free any mbufs allocated to the
2350 * RX and TX lists.
2351 */
2352static void
2353vge_stop(struct vge_softc *sc)
2354{
2355	struct ifnet		*ifp;
2356
2357	VGE_LOCK_ASSERT(sc);
2358	ifp = sc->vge_ifp;
2359	sc->vge_timer = 0;
2360	callout_stop(&sc->vge_watchdog);
2361
2362	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2363
2364	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2365	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2366	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2367	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2368	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2369	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2370
2371	VGE_CHAIN_RESET(sc);
2372	vge_txeof(sc);
2373	vge_freebufs(sc);
2374}
2375
2376/*
2377 * Device suspend routine.  Stop the interface and save some PCI
2378 * settings in case the BIOS doesn't restore them properly on
2379 * resume.
2380 */
2381static int
2382vge_suspend(device_t dev)
2383{
2384	struct vge_softc	*sc;
2385
2386	sc = device_get_softc(dev);
2387
2388	VGE_LOCK(sc);
2389	vge_stop(sc);
2390
2391	sc->suspended = 1;
2392	VGE_UNLOCK(sc);
2393
2394	return (0);
2395}
2396
2397/*
2398 * Device resume routine.  Restore some PCI settings in case the BIOS
2399 * doesn't, re-enable busmastering, and restart the interface if
2400 * appropriate.
2401 */
2402static int
2403vge_resume(device_t dev)
2404{
2405	struct vge_softc	*sc;
2406	struct ifnet		*ifp;
2407
2408	sc = device_get_softc(dev);
2409	ifp = sc->vge_ifp;
2410
2411	/* reenable busmastering */
2412	pci_enable_busmaster(dev);
2413	pci_enable_io(dev, SYS_RES_MEMORY);
2414
2415	/* reinitialize interface if necessary */
2416	VGE_LOCK(sc);
2417	if (ifp->if_flags & IFF_UP) {
2418		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2419		vge_init_locked(sc);
2420	}
2421	sc->suspended = 0;
2422	VGE_UNLOCK(sc);
2423
2424	return (0);
2425}
2426
2427/*
2428 * Stop all chip I/O so that the kernel's probe routines don't
2429 * get confused by errant DMAs when rebooting.
2430 */
2431static int
2432vge_shutdown(device_t dev)
2433{
2434	struct vge_softc		*sc;
2435
2436	sc = device_get_softc(dev);
2437
2438	VGE_LOCK(sc);
2439	vge_stop(sc);
2440	VGE_UNLOCK(sc);
2441
2442	return (0);
2443}
2444