if_vge.c revision 200422
1115894Stjr/*-
2115894Stjr * Copyright (c) 2004
3115894Stjr *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4115894Stjr *
5115894Stjr * Redistribution and use in source and binary forms, with or without
6115894Stjr * modification, are permitted provided that the following conditions
7115894Stjr * are met:
8115894Stjr * 1. Redistributions of source code must retain the above copyright
9115894Stjr *    notice, this list of conditions and the following disclaimer.
10115894Stjr * 2. Redistributions in binary form must reproduce the above copyright
11115894Stjr *    notice, this list of conditions and the following disclaimer in the
12115894Stjr *    documentation and/or other materials provided with the distribution.
13115894Stjr * 3. All advertising materials mentioning features or use of this software
14115894Stjr *    must display the following acknowledgement:
15115894Stjr *	This product includes software developed by Bill Paul.
16115894Stjr * 4. Neither the name of the author nor the names of any co-contributors
17115894Stjr *    may be used to endorse or promote products derived from this software
18115894Stjr *    without specific prior written permission.
19115894Stjr *
20115894Stjr * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21115894Stjr * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22115894Stjr * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23115894Stjr * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24115894Stjr * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25115894Stjr * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26115894Stjr * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27115894Stjr * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28115894Stjr * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29115894Stjr * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30115894Stjr * THE POSSIBILITY OF SUCH DAMAGE.
31115894Stjr */
32115894Stjr
33115894Stjr#include <sys/cdefs.h>
34115894Stjr__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 200422 2009-12-12 00:06:43Z yongari $");
35115894Stjr
36115894Stjr/*
37115894Stjr * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38115894Stjr *
39115894Stjr * Written by Bill Paul <wpaul@windriver.com>
40115894Stjr * Senior Networking Software Engineer
41115894Stjr * Wind River Systems
42115894Stjr */
43115894Stjr
44115894Stjr/*
45115894Stjr * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46115894Stjr * combines a tri-speed ethernet MAC and PHY, with the following
47115894Stjr * features:
48115894Stjr *
49115894Stjr *	o Jumbo frame support up to 16K
50115894Stjr *	o Transmit and receive flow control
51115894Stjr *	o IPv4 checksum offload
52115894Stjr *	o VLAN tag insertion and stripping
53115894Stjr *	o TCP large send
54115894Stjr *	o 64-bit multicast hash table filter
55115894Stjr *	o 64 entry CAM filter
56137587Snik *	o 16K RX FIFO and 48K TX FIFO memory
57137587Snik *	o Interrupt moderation
58115894Stjr *
59115894Stjr * The VT6122 supports up to four transmit DMA queues. The descriptors
60115894Stjr * in the transmit ring can address up to 7 data fragments; frames which
61115894Stjr * span more than 7 data buffers must be coalesced, but in general the
62115894Stjr * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63115894Stjr * long. The receive descriptors address only a single buffer.
64115894Stjr *
65115894Stjr * There are two peculiar design issues with the VT6122. One is that
66115894Stjr * receive data buffers must be aligned on a 32-bit boundary. This is
67132391Stjr * not a problem where the VT6122 is used as a LOM device in x86-based
68115894Stjr * systems, but on architectures that generate unaligned access traps, we
69115894Stjr * have to do some copying.
70115894Stjr *
71115894Stjr * The other issue has to do with the way 64-bit addresses are handled.
72115894Stjr * The DMA descriptors only allow you to specify 48 bits of addressing
73115894Stjr * information. The remaining 16 bits are specified using one of the
74115894Stjr * I/O registers. If you only have a 32-bit system, then this isn't
75115894Stjr * an issue, but if you have a 64-bit system and more than 4GB of
76115894Stjr * memory, you must have to make sure your network data buffers reside
77115894Stjr * in the same 48-bit 'segment.'
78115894Stjr *
79115894Stjr * Special thanks to Ryan Fu at VIA Networking for providing documentation
80115894Stjr * and sample NICs for testing.
81115894Stjr */
82132391Stjr
83115894Stjr#ifdef HAVE_KERNEL_OPTION_HEADERS
84115894Stjr#include "opt_device_polling.h"
85115894Stjr#endif
86115894Stjr
87137587Snik#include <sys/param.h>
88137587Snik#include <sys/endian.h>
89115894Stjr#include <sys/systm.h>
90115894Stjr#include <sys/sockio.h>
91115894Stjr#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96
97#include <net/if.h>
98#include <net/if_arp.h>
99#include <net/ethernet.h>
100#include <net/if_dl.h>
101#include <net/if_media.h>
102#include <net/if_types.h>
103#include <net/if_vlan_var.h>
104
105#include <net/bpf.h>
106
107#include <machine/bus.h>
108#include <machine/resource.h>
109#include <sys/bus.h>
110#include <sys/rman.h>
111
112#include <dev/mii/mii.h>
113#include <dev/mii/miivar.h>
114
115#include <dev/pci/pcireg.h>
116#include <dev/pci/pcivar.h>
117
118MODULE_DEPEND(vge, pci, 1, 1, 1);
119MODULE_DEPEND(vge, ether, 1, 1, 1);
120MODULE_DEPEND(vge, miibus, 1, 1, 1);
121
122/* "device miibus" required.  See GENERIC if you get errors here. */
123#include "miibus_if.h"
124
125#include <dev/vge/if_vgereg.h>
126#include <dev/vge/if_vgevar.h>
127
128#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
129
130/*
131 * Various supported device vendors/types and their names.
132 */
133static struct vge_type vge_devs[] = {
134	{ VIA_VENDORID, VIA_DEVICEID_61XX,
135		"VIA Networking Gigabit Ethernet" },
136	{ 0, 0, NULL }
137};
138
139static int vge_probe		(device_t);
140static int vge_attach		(device_t);
141static int vge_detach		(device_t);
142
143static int vge_encap		(struct vge_softc *, struct mbuf *, int);
144
145static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
146static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
147				    bus_size_t, int);
148static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
149				    bus_size_t, int);
150static int vge_allocmem		(device_t, struct vge_softc *);
151static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
152static int vge_rx_list_init	(struct vge_softc *);
153static int vge_tx_list_init	(struct vge_softc *);
154#ifdef VGE_FIXUP_RX
155static __inline void vge_fixup_rx
156				(struct mbuf *);
157#endif
158static int vge_rxeof		(struct vge_softc *);
159static void vge_txeof		(struct vge_softc *);
160static void vge_intr		(void *);
161static void vge_tick		(void *);
162static void vge_start		(struct ifnet *);
163static void vge_start_locked	(struct ifnet *);
164static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
165static void vge_init		(void *);
166static void vge_init_locked	(struct vge_softc *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(void *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static int vge_shutdown		(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
225
226#ifdef VGE_EEPROM
227/*
228 * Read a word of data stored in the EEPROM at address 'addr.'
229 */
230static void
231vge_eeprom_getword(sc, addr, dest)
232	struct vge_softc	*sc;
233	int			addr;
234	u_int16_t		*dest;
235{
236	register int		i;
237	u_int16_t		word = 0;
238
239	/*
240	 * Enter EEPROM embedded programming mode. In order to
241	 * access the EEPROM at all, we first have to set the
242	 * EELOAD bit in the CHIPCFG2 register.
243	 */
244	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
246
247	/* Select the address of the word we want to read */
248	CSR_WRITE_1(sc, VGE_EEADDR, addr);
249
250	/* Issue read command */
251	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
252
253	/* Wait for the done bit to be set. */
254	for (i = 0; i < VGE_TIMEOUT; i++) {
255		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256			break;
257	}
258
259	if (i == VGE_TIMEOUT) {
260		device_printf(sc->vge_dev, "EEPROM read timed out\n");
261		*dest = 0;
262		return;
263	}
264
265	/* Read the result */
266	word = CSR_READ_2(sc, VGE_EERDDAT);
267
268	/* Turn off EEPROM access mode. */
269	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
270	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271
272	*dest = word;
273
274	return;
275}
276#endif
277
278/*
279 * Read a sequence of words from the EEPROM.
280 */
281static void
282vge_read_eeprom(sc, dest, off, cnt, swap)
283	struct vge_softc	*sc;
284	caddr_t			dest;
285	int			off;
286	int			cnt;
287	int			swap;
288{
289	int			i;
290#ifdef VGE_EEPROM
291	u_int16_t		word = 0, *ptr;
292
293	for (i = 0; i < cnt; i++) {
294		vge_eeprom_getword(sc, off + i, &word);
295		ptr = (u_int16_t *)(dest + (i * 2));
296		if (swap)
297			*ptr = ntohs(word);
298		else
299			*ptr = word;
300	}
301#else
302	for (i = 0; i < ETHER_ADDR_LEN; i++)
303		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
304#endif
305}
306
307static void
308vge_miipoll_stop(sc)
309	struct vge_softc	*sc;
310{
311	int			i;
312
313	CSR_WRITE_1(sc, VGE_MIICMD, 0);
314
315	for (i = 0; i < VGE_TIMEOUT; i++) {
316		DELAY(1);
317		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
318			break;
319	}
320
321	if (i == VGE_TIMEOUT)
322		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
323
324	return;
325}
326
327static void
328vge_miipoll_start(sc)
329	struct vge_softc	*sc;
330{
331	int			i;
332
333	/* First, make sure we're idle. */
334
335	CSR_WRITE_1(sc, VGE_MIICMD, 0);
336	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
337
338	for (i = 0; i < VGE_TIMEOUT; i++) {
339		DELAY(1);
340		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
341			break;
342	}
343
344	if (i == VGE_TIMEOUT) {
345		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
346		return;
347	}
348
349	/* Now enable auto poll mode. */
350
351	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
352
353	/* And make sure it started. */
354
355	for (i = 0; i < VGE_TIMEOUT; i++) {
356		DELAY(1);
357		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
358			break;
359	}
360
361	if (i == VGE_TIMEOUT)
362		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
363
364	return;
365}
366
367static int
368vge_miibus_readreg(dev, phy, reg)
369	device_t		dev;
370	int			phy, reg;
371{
372	struct vge_softc	*sc;
373	int			i;
374	u_int16_t		rval = 0;
375
376	sc = device_get_softc(dev);
377
378	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
379		return(0);
380
381	vge_miipoll_stop(sc);
382
383	/* Specify the register we want to read. */
384	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
385
386	/* Issue read command. */
387	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
388
389	/* Wait for the read command bit to self-clear. */
390	for (i = 0; i < VGE_TIMEOUT; i++) {
391		DELAY(1);
392		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
393			break;
394	}
395
396	if (i == VGE_TIMEOUT)
397		device_printf(sc->vge_dev, "MII read timed out\n");
398	else
399		rval = CSR_READ_2(sc, VGE_MIIDATA);
400
401	vge_miipoll_start(sc);
402
403	return (rval);
404}
405
406static int
407vge_miibus_writereg(dev, phy, reg, data)
408	device_t		dev;
409	int			phy, reg, data;
410{
411	struct vge_softc	*sc;
412	int			i, rval = 0;
413
414	sc = device_get_softc(dev);
415
416	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
417		return(0);
418
419	vge_miipoll_stop(sc);
420
421	/* Specify the register we want to write. */
422	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
423
424	/* Specify the data we want to write. */
425	CSR_WRITE_2(sc, VGE_MIIDATA, data);
426
427	/* Issue write command. */
428	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
429
430	/* Wait for the write command bit to self-clear. */
431	for (i = 0; i < VGE_TIMEOUT; i++) {
432		DELAY(1);
433		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
434			break;
435	}
436
437	if (i == VGE_TIMEOUT) {
438		device_printf(sc->vge_dev, "MII write timed out\n");
439		rval = EIO;
440	}
441
442	vge_miipoll_start(sc);
443
444	return (rval);
445}
446
447static void
448vge_cam_clear(sc)
449	struct vge_softc	*sc;
450{
451	int			i;
452
453	/*
454	 * Turn off all the mask bits. This tells the chip
455	 * that none of the entries in the CAM filter are valid.
456	 * desired entries will be enabled as we fill the filter in.
457	 */
458
459	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
460	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
461	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
462	for (i = 0; i < 8; i++)
463		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
464
465	/* Clear the VLAN filter too. */
466
467	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
468	for (i = 0; i < 8; i++)
469		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
470
471	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
472	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
473	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
474
475	sc->vge_camidx = 0;
476
477	return;
478}
479
480static int
481vge_cam_set(sc, addr)
482	struct vge_softc	*sc;
483	uint8_t			*addr;
484{
485	int			i, error = 0;
486
487	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
488		return(ENOSPC);
489
490	/* Select the CAM data page. */
491	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
492	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
493
494	/* Set the filter entry we want to update and enable writing. */
495	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
496
497	/* Write the address to the CAM registers */
498	for (i = 0; i < ETHER_ADDR_LEN; i++)
499		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
500
501	/* Issue a write command. */
502	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
503
504	/* Wake for it to clear. */
505	for (i = 0; i < VGE_TIMEOUT; i++) {
506		DELAY(1);
507		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
508			break;
509	}
510
511	if (i == VGE_TIMEOUT) {
512		device_printf(sc->vge_dev, "setting CAM filter failed\n");
513		error = EIO;
514		goto fail;
515	}
516
517	/* Select the CAM mask page. */
518	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
519	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
520
521	/* Set the mask bit that enables this filter. */
522	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
523	    1<<(sc->vge_camidx & 7));
524
525	sc->vge_camidx++;
526
527fail:
528	/* Turn off access to CAM. */
529	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
530	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
531	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
532
533	return (error);
534}
535
536/*
537 * Program the multicast filter. We use the 64-entry CAM filter
538 * for perfect filtering. If there's more than 64 multicast addresses,
539 * we use the hash filter insted.
540 */
541static void
542vge_setmulti(sc)
543	struct vge_softc	*sc;
544{
545	struct ifnet		*ifp;
546	int			error = 0/*, h = 0*/;
547	struct ifmultiaddr	*ifma;
548	u_int32_t		h, hashes[2] = { 0, 0 };
549
550	ifp = sc->vge_ifp;
551
552	/* First, zot all the multicast entries. */
553	vge_cam_clear(sc);
554	CSR_WRITE_4(sc, VGE_MAR0, 0);
555	CSR_WRITE_4(sc, VGE_MAR1, 0);
556
557	/*
558	 * If the user wants allmulti or promisc mode, enable reception
559	 * of all multicast frames.
560	 */
561	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
562		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
563		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
564		return;
565	}
566
567	/* Now program new ones */
568	if_maddr_rlock(ifp);
569	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
570		if (ifma->ifma_addr->sa_family != AF_LINK)
571			continue;
572		error = vge_cam_set(sc,
573		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
574		if (error)
575			break;
576	}
577
578	/* If there were too many addresses, use the hash filter. */
579	if (error) {
580		vge_cam_clear(sc);
581
582		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
583			if (ifma->ifma_addr->sa_family != AF_LINK)
584				continue;
585			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
586			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
587			if (h < 32)
588				hashes[0] |= (1 << h);
589			else
590				hashes[1] |= (1 << (h - 32));
591		}
592
593		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
594		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
595	}
596	if_maddr_runlock(ifp);
597
598	return;
599}
600
601static void
602vge_reset(sc)
603	struct vge_softc		*sc;
604{
605	register int		i;
606
607	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
608
609	for (i = 0; i < VGE_TIMEOUT; i++) {
610		DELAY(5);
611		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
612			break;
613	}
614
615	if (i == VGE_TIMEOUT) {
616		device_printf(sc->vge_dev, "soft reset timed out");
617		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
618		DELAY(2000);
619	}
620
621	DELAY(5000);
622
623	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
624
625	for (i = 0; i < VGE_TIMEOUT; i++) {
626		DELAY(5);
627		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
628			break;
629	}
630
631	if (i == VGE_TIMEOUT) {
632		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
633		return;
634	}
635
636	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
637
638	return;
639}
640
641/*
642 * Probe for a VIA gigabit chip. Check the PCI vendor and device
643 * IDs against our list and return a device name if we find a match.
644 */
645static int
646vge_probe(dev)
647	device_t		dev;
648{
649	struct vge_type		*t;
650
651	t = vge_devs;
652
653	while (t->vge_name != NULL) {
654		if ((pci_get_vendor(dev) == t->vge_vid) &&
655		    (pci_get_device(dev) == t->vge_did)) {
656			device_set_desc(dev, t->vge_name);
657			return (BUS_PROBE_DEFAULT);
658		}
659		t++;
660	}
661
662	return (ENXIO);
663}
664
665static void
666vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
667	void			*arg;
668	bus_dma_segment_t	*segs;
669	int			nseg;
670	bus_size_t		mapsize;
671	int			error;
672{
673
674	struct vge_dmaload_arg	*ctx;
675	struct vge_rx_desc	*d = NULL;
676
677	if (error)
678		return;
679
680	ctx = arg;
681
682	/* Signal error to caller if there's too many segments */
683	if (nseg > ctx->vge_maxsegs) {
684		ctx->vge_maxsegs = 0;
685		return;
686	}
687
688	/*
689	 * Map the segment array into descriptors.
690	 */
691
692	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
693
694	/* If this descriptor is still owned by the chip, bail. */
695
696	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
697		device_printf(ctx->sc->vge_dev,
698		    "tried to map busy descriptor\n");
699		ctx->vge_maxsegs = 0;
700		return;
701	}
702
703	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
704	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
705	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
706	d->vge_sts = 0;
707	d->vge_ctl = 0;
708
709	ctx->vge_maxsegs = 1;
710
711	return;
712}
713
714static void
715vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
716	void			*arg;
717	bus_dma_segment_t	*segs;
718	int			nseg;
719	bus_size_t		mapsize;
720	int			error;
721{
722	struct vge_dmaload_arg	*ctx;
723	struct vge_tx_desc	*d = NULL;
724	struct vge_tx_frag	*f;
725	int			i = 0;
726
727	if (error)
728		return;
729
730	ctx = arg;
731
732	/* Signal error to caller if there's too many segments */
733	if (nseg > ctx->vge_maxsegs) {
734		ctx->vge_maxsegs = 0;
735		return;
736	}
737
738	/* Map the segment array into descriptors. */
739
740	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
741
742	/* If this descriptor is still owned by the chip, bail. */
743
744	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
745		ctx->vge_maxsegs = 0;
746		return;
747	}
748
749	for (i = 0; i < nseg; i++) {
750		f = &d->vge_frag[i];
751		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
752		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
753		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
754	}
755
756	/* Argh. This chip does not autopad short frames */
757
758	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
759		f = &d->vge_frag[i];
760		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
761		    ctx->vge_m0->m_pkthdr.len));
762		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
763		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
764		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
765		i++;
766	}
767
768	/*
769	 * When telling the chip how many segments there are, we
770	 * must use nsegs + 1 instead of just nsegs. Darned if I
771	 * know why.
772	 */
773	i++;
774
775	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
776	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
777
778	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
779		d->vge_ctl |= VGE_TDCTL_JUMBO;
780
781	ctx->vge_maxsegs = nseg;
782
783	return;
784}
785
786/*
787 * Map a single buffer address.
788 */
789
790static void
791vge_dma_map_addr(arg, segs, nseg, error)
792	void			*arg;
793	bus_dma_segment_t	*segs;
794	int			nseg;
795	int			error;
796{
797	bus_addr_t		*addr;
798
799	if (error)
800		return;
801
802	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
803	addr = arg;
804	*addr = segs->ds_addr;
805
806	return;
807}
808
809static int
810vge_allocmem(dev, sc)
811	device_t		dev;
812	struct vge_softc		*sc;
813{
814	int			error;
815	int			nseg;
816	int			i;
817
818	/*
819	 * Allocate map for RX mbufs.
820	 */
821	nseg = 32;
822	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
823	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
824	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
825	    NULL, NULL, &sc->vge_ldata.vge_mtag);
826	if (error) {
827		device_printf(dev, "could not allocate dma tag\n");
828		return (ENOMEM);
829	}
830
831	/*
832	 * Allocate map for TX descriptor list.
833	 */
834	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
835	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
836	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
837	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
838	if (error) {
839		device_printf(dev, "could not allocate dma tag\n");
840		return (ENOMEM);
841	}
842
843	/* Allocate DMA'able memory for the TX ring */
844
845	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
846	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
847	    &sc->vge_ldata.vge_tx_list_map);
848	if (error)
849		return (ENOMEM);
850
851	/* Load the map for the TX ring. */
852
853	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
854	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
855	     VGE_TX_LIST_SZ, vge_dma_map_addr,
856	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
857
858	/* Create DMA maps for TX buffers */
859
860	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
861		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
862			    &sc->vge_ldata.vge_tx_dmamap[i]);
863		if (error) {
864			device_printf(dev, "can't create DMA map for TX\n");
865			return (ENOMEM);
866		}
867	}
868
869	/*
870	 * Allocate map for RX descriptor list.
871	 */
872	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
873	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
874	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
875	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
876	if (error) {
877		device_printf(dev, "could not allocate dma tag\n");
878		return (ENOMEM);
879	}
880
881	/* Allocate DMA'able memory for the RX ring */
882
883	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
884	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
885	    &sc->vge_ldata.vge_rx_list_map);
886	if (error)
887		return (ENOMEM);
888
889	/* Load the map for the RX ring. */
890
891	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
892	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
893	     VGE_TX_LIST_SZ, vge_dma_map_addr,
894	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
895
896	/* Create DMA maps for RX buffers */
897
898	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
899		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
900			    &sc->vge_ldata.vge_rx_dmamap[i]);
901		if (error) {
902			device_printf(dev, "can't create DMA map for RX\n");
903			return (ENOMEM);
904		}
905	}
906
907	return (0);
908}
909
910/*
911 * Attach the interface. Allocate softc structures, do ifmedia
912 * setup and ethernet/BPF attach.
913 */
914static int
915vge_attach(dev)
916	device_t		dev;
917{
918	u_char			eaddr[ETHER_ADDR_LEN];
919	struct vge_softc	*sc;
920	struct ifnet		*ifp;
921	int			unit, error = 0, rid;
922
923	sc = device_get_softc(dev);
924	unit = device_get_unit(dev);
925	sc->vge_dev = dev;
926
927	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
928	    MTX_DEF);
929	callout_init_mtx(&sc->vge_watchdog, &sc->vge_mtx, 0);
930
931	/*
932	 * Map control/status registers.
933	 */
934	pci_enable_busmaster(dev);
935
936	rid = VGE_PCI_LOMEM;
937	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
938	    0, ~0, 1, RF_ACTIVE);
939
940	if (sc->vge_res == NULL) {
941		printf ("vge%d: couldn't map ports/memory\n", unit);
942		error = ENXIO;
943		goto fail;
944	}
945
946	/* Allocate interrupt */
947	rid = 0;
948	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
949	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
950
951	if (sc->vge_irq == NULL) {
952		printf("vge%d: couldn't map interrupt\n", unit);
953		error = ENXIO;
954		goto fail;
955	}
956
957	/* Reset the adapter. */
958	vge_reset(sc);
959
960	/*
961	 * Get station address from the EEPROM.
962	 */
963	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
964
965	/*
966	 * Allocate the parent bus DMA tag appropriate for PCI.
967	 */
968#define VGE_NSEG_NEW 32
969	error = bus_dma_tag_create(NULL,	/* parent */
970			1, 0,			/* alignment, boundary */
971			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
972			BUS_SPACE_MAXADDR,	/* highaddr */
973			NULL, NULL,		/* filter, filterarg */
974			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
975			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
976			BUS_DMA_ALLOCNOW,	/* flags */
977			NULL, NULL,		/* lockfunc, lockarg */
978			&sc->vge_parent_tag);
979	if (error)
980		goto fail;
981
982	error = vge_allocmem(dev, sc);
983
984	if (error)
985		goto fail;
986
987	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
988	if (ifp == NULL) {
989		device_printf(dev, "can not if_alloc()\n");
990		error = ENOSPC;
991		goto fail;
992	}
993
994	/* Do MII setup */
995	if (mii_phy_probe(dev, &sc->vge_miibus,
996	    vge_ifmedia_upd, vge_ifmedia_sts)) {
997		device_printf(dev, "MII without any phy!\n");
998		error = ENXIO;
999		goto fail;
1000	}
1001
1002	ifp->if_softc = sc;
1003	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1004	ifp->if_mtu = ETHERMTU;
1005	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1006	ifp->if_ioctl = vge_ioctl;
1007	ifp->if_capabilities = IFCAP_VLAN_MTU;
1008	ifp->if_start = vge_start;
1009	ifp->if_hwassist = VGE_CSUM_FEATURES;
1010	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1011	ifp->if_capenable = ifp->if_capabilities;
1012#ifdef DEVICE_POLLING
1013	ifp->if_capabilities |= IFCAP_POLLING;
1014#endif
1015	ifp->if_init = vge_init;
1016	IFQ_SET_MAXLEN(&ifp->if_snd, VGE_IFQ_MAXLEN);
1017	ifp->if_snd.ifq_drv_maxlen = VGE_IFQ_MAXLEN;
1018	IFQ_SET_READY(&ifp->if_snd);
1019
1020	/*
1021	 * Call MI attach routine.
1022	 */
1023	ether_ifattach(ifp, eaddr);
1024
1025	/* Hook interrupt last to avoid having to lock softc */
1026	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1027	    NULL, vge_intr, sc, &sc->vge_intrhand);
1028
1029	if (error) {
1030		printf("vge%d: couldn't set up irq\n", unit);
1031		ether_ifdetach(ifp);
1032		goto fail;
1033	}
1034
1035fail:
1036	if (error)
1037		vge_detach(dev);
1038
1039	return (error);
1040}
1041
1042/*
1043 * Shutdown hardware and free up resources. This can be called any
1044 * time after the mutex has been initialized. It is called in both
1045 * the error case in attach and the normal detach case so it needs
1046 * to be careful about only freeing resources that have actually been
1047 * allocated.
1048 */
1049static int
1050vge_detach(dev)
1051	device_t		dev;
1052{
1053	struct vge_softc		*sc;
1054	struct ifnet		*ifp;
1055	int			i;
1056
1057	sc = device_get_softc(dev);
1058	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1059	ifp = sc->vge_ifp;
1060
1061#ifdef DEVICE_POLLING
1062	if (ifp->if_capenable & IFCAP_POLLING)
1063		ether_poll_deregister(ifp);
1064#endif
1065
1066	/* These should only be active if attach succeeded */
1067	if (device_is_attached(dev)) {
1068		ether_ifdetach(ifp);
1069		VGE_LOCK(sc);
1070		vge_stop(sc);
1071		VGE_UNLOCK(sc);
1072		callout_drain(&sc->vge_watchdog);
1073	}
1074	if (sc->vge_miibus)
1075		device_delete_child(dev, sc->vge_miibus);
1076	bus_generic_detach(dev);
1077
1078	if (sc->vge_intrhand)
1079		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1080	if (sc->vge_irq)
1081		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1082	if (sc->vge_res)
1083		bus_release_resource(dev, SYS_RES_MEMORY,
1084		    VGE_PCI_LOMEM, sc->vge_res);
1085	if (ifp)
1086		if_free(ifp);
1087
1088	/* Unload and free the RX DMA ring memory and map */
1089
1090	if (sc->vge_ldata.vge_rx_list_tag) {
1091		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1092		    sc->vge_ldata.vge_rx_list_map);
1093		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1094		    sc->vge_ldata.vge_rx_list,
1095		    sc->vge_ldata.vge_rx_list_map);
1096		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1097	}
1098
1099	/* Unload and free the TX DMA ring memory and map */
1100
1101	if (sc->vge_ldata.vge_tx_list_tag) {
1102		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1103		    sc->vge_ldata.vge_tx_list_map);
1104		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1105		    sc->vge_ldata.vge_tx_list,
1106		    sc->vge_ldata.vge_tx_list_map);
1107		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1108	}
1109
1110	/* Destroy all the RX and TX buffer maps */
1111
1112	if (sc->vge_ldata.vge_mtag) {
1113		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1114			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1115			    sc->vge_ldata.vge_tx_dmamap[i]);
1116		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1117			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1118			    sc->vge_ldata.vge_rx_dmamap[i]);
1119		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1120	}
1121
1122	if (sc->vge_parent_tag)
1123		bus_dma_tag_destroy(sc->vge_parent_tag);
1124
1125	mtx_destroy(&sc->vge_mtx);
1126
1127	return (0);
1128}
1129
1130static int
1131vge_newbuf(sc, idx, m)
1132	struct vge_softc	*sc;
1133	int			idx;
1134	struct mbuf		*m;
1135{
1136	struct vge_dmaload_arg	arg;
1137	struct mbuf		*n = NULL;
1138	int			i, error;
1139
1140	if (m == NULL) {
1141		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1142		if (n == NULL)
1143			return (ENOBUFS);
1144		m = n;
1145	} else
1146		m->m_data = m->m_ext.ext_buf;
1147
1148
1149#ifdef VGE_FIXUP_RX
1150	/*
1151	 * This is part of an evil trick to deal with non-x86 platforms.
1152	 * The VIA chip requires RX buffers to be aligned on 32-bit
1153	 * boundaries, but that will hose non-x86 machines. To get around
1154	 * this, we leave some empty space at the start of each buffer
1155	 * and for non-x86 hosts, we copy the buffer back two bytes
1156	 * to achieve word alignment. This is slightly more efficient
1157	 * than allocating a new buffer, copying the contents, and
1158	 * discarding the old buffer.
1159	 */
1160	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1161	m_adj(m, VGE_ETHER_ALIGN);
1162#else
1163	m->m_len = m->m_pkthdr.len = MCLBYTES;
1164#endif
1165
1166	arg.sc = sc;
1167	arg.vge_idx = idx;
1168	arg.vge_maxsegs = 1;
1169	arg.vge_flags = 0;
1170
1171	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1172	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1173	    &arg, BUS_DMA_NOWAIT);
1174	if (error || arg.vge_maxsegs != 1) {
1175		if (n != NULL)
1176			m_freem(n);
1177		return (ENOMEM);
1178	}
1179
1180	/*
1181	 * Note: the manual fails to document the fact that for
1182	 * proper opration, the driver needs to replentish the RX
1183	 * DMA ring 4 descriptors at a time (rather than one at a
1184	 * time, like most chips). We can allocate the new buffers
1185	 * but we should not set the OWN bits until we're ready
1186	 * to hand back 4 of them in one shot.
1187	 */
1188
1189#define VGE_RXCHUNK 4
1190	sc->vge_rx_consumed++;
1191	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1192		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1193			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1194			    htole32(VGE_RDSTS_OWN);
1195		sc->vge_rx_consumed = 0;
1196	}
1197
1198	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1199
1200	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1201	    sc->vge_ldata.vge_rx_dmamap[idx],
1202	    BUS_DMASYNC_PREREAD);
1203
1204	return (0);
1205}
1206
1207static int
1208vge_tx_list_init(sc)
1209	struct vge_softc		*sc;
1210{
1211	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1212	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1213	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1214
1215	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1216	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1217	sc->vge_ldata.vge_tx_prodidx = 0;
1218	sc->vge_ldata.vge_tx_considx = 0;
1219	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1220
1221	return (0);
1222}
1223
1224static int
1225vge_rx_list_init(sc)
1226	struct vge_softc		*sc;
1227{
1228	int			i;
1229
1230	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1231	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1232	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1233
1234	sc->vge_rx_consumed = 0;
1235
1236	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1237		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1238			return (ENOBUFS);
1239	}
1240
1241	/* Flush the RX descriptors */
1242
1243	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1244	    sc->vge_ldata.vge_rx_list_map,
1245	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1246
1247	sc->vge_ldata.vge_rx_prodidx = 0;
1248	sc->vge_rx_consumed = 0;
1249	sc->vge_head = sc->vge_tail = NULL;
1250
1251	return (0);
1252}
1253
1254#ifdef VGE_FIXUP_RX
1255static __inline void
1256vge_fixup_rx(m)
1257	struct mbuf		*m;
1258{
1259	int			i;
1260	uint16_t		*src, *dst;
1261
1262	src = mtod(m, uint16_t *);
1263	dst = src - 1;
1264
1265	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1266		*dst++ = *src++;
1267
1268	m->m_data -= ETHER_ALIGN;
1269
1270	return;
1271}
1272#endif
1273
1274/*
1275 * RX handler. We support the reception of jumbo frames that have
1276 * been fragmented across multiple 2K mbuf cluster buffers.
1277 */
1278static int
1279vge_rxeof(sc)
1280	struct vge_softc	*sc;
1281{
1282	struct mbuf		*m;
1283	struct ifnet		*ifp;
1284	int			i, total_len;
1285	int			lim = 0;
1286	struct vge_rx_desc	*cur_rx;
1287	u_int32_t		rxstat, rxctl;
1288
1289	VGE_LOCK_ASSERT(sc);
1290	ifp = sc->vge_ifp;
1291	i = sc->vge_ldata.vge_rx_prodidx;
1292
1293	/* Invalidate the descriptor memory */
1294
1295	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1296	    sc->vge_ldata.vge_rx_list_map,
1297	    BUS_DMASYNC_POSTREAD);
1298
1299	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1300
1301#ifdef DEVICE_POLLING
1302		if (ifp->if_capenable & IFCAP_POLLING) {
1303			if (sc->rxcycles <= 0)
1304				break;
1305			sc->rxcycles--;
1306		}
1307#endif
1308
1309		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1310		m = sc->vge_ldata.vge_rx_mbuf[i];
1311		total_len = VGE_RXBYTES(cur_rx);
1312		rxstat = le32toh(cur_rx->vge_sts);
1313		rxctl = le32toh(cur_rx->vge_ctl);
1314
1315		/* Invalidate the RX mbuf and unload its map */
1316
1317		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1318		    sc->vge_ldata.vge_rx_dmamap[i],
1319		    BUS_DMASYNC_POSTWRITE);
1320		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1321		    sc->vge_ldata.vge_rx_dmamap[i]);
1322
1323		/*
1324		 * If the 'start of frame' bit is set, this indicates
1325		 * either the first fragment in a multi-fragment receive,
1326		 * or an intermediate fragment. Either way, we want to
1327		 * accumulate the buffers.
1328		 */
1329		if (rxstat & VGE_RXPKT_SOF) {
1330			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1331			if (sc->vge_head == NULL)
1332				sc->vge_head = sc->vge_tail = m;
1333			else {
1334				m->m_flags &= ~M_PKTHDR;
1335				sc->vge_tail->m_next = m;
1336				sc->vge_tail = m;
1337			}
1338			vge_newbuf(sc, i, NULL);
1339			VGE_RX_DESC_INC(i);
1340			continue;
1341		}
1342
1343		/*
1344		 * Bad/error frames will have the RXOK bit cleared.
1345		 * However, there's one error case we want to allow:
1346		 * if a VLAN tagged frame arrives and the chip can't
1347		 * match it against the CAM filter, it considers this
1348		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1349		 * We don't want to drop the frame though: our VLAN
1350		 * filtering is done in software.
1351		 */
1352		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1353		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1354			ifp->if_ierrors++;
1355			/*
1356			 * If this is part of a multi-fragment packet,
1357			 * discard all the pieces.
1358			 */
1359			if (sc->vge_head != NULL) {
1360				m_freem(sc->vge_head);
1361				sc->vge_head = sc->vge_tail = NULL;
1362			}
1363			vge_newbuf(sc, i, m);
1364			VGE_RX_DESC_INC(i);
1365			continue;
1366		}
1367
1368		/*
1369		 * If allocating a replacement mbuf fails,
1370		 * reload the current one.
1371		 */
1372
1373		if (vge_newbuf(sc, i, NULL)) {
1374			ifp->if_ierrors++;
1375			if (sc->vge_head != NULL) {
1376				m_freem(sc->vge_head);
1377				sc->vge_head = sc->vge_tail = NULL;
1378			}
1379			vge_newbuf(sc, i, m);
1380			VGE_RX_DESC_INC(i);
1381			continue;
1382		}
1383
1384		VGE_RX_DESC_INC(i);
1385
1386		if (sc->vge_head != NULL) {
1387			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1388			/*
1389			 * Special case: if there's 4 bytes or less
1390			 * in this buffer, the mbuf can be discarded:
1391			 * the last 4 bytes is the CRC, which we don't
1392			 * care about anyway.
1393			 */
1394			if (m->m_len <= ETHER_CRC_LEN) {
1395				sc->vge_tail->m_len -=
1396				    (ETHER_CRC_LEN - m->m_len);
1397				m_freem(m);
1398			} else {
1399				m->m_len -= ETHER_CRC_LEN;
1400				m->m_flags &= ~M_PKTHDR;
1401				sc->vge_tail->m_next = m;
1402			}
1403			m = sc->vge_head;
1404			sc->vge_head = sc->vge_tail = NULL;
1405			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1406		} else
1407			m->m_pkthdr.len = m->m_len =
1408			    (total_len - ETHER_CRC_LEN);
1409
1410#ifdef VGE_FIXUP_RX
1411		vge_fixup_rx(m);
1412#endif
1413		ifp->if_ipackets++;
1414		m->m_pkthdr.rcvif = ifp;
1415
1416		/* Do RX checksumming if enabled */
1417		if (ifp->if_capenable & IFCAP_RXCSUM) {
1418
1419			/* Check IP header checksum */
1420			if (rxctl & VGE_RDCTL_IPPKT)
1421				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1422			if (rxctl & VGE_RDCTL_IPCSUMOK)
1423				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1424
1425			/* Check TCP/UDP checksum */
1426			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1427			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1428				m->m_pkthdr.csum_flags |=
1429				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1430				m->m_pkthdr.csum_data = 0xffff;
1431			}
1432		}
1433
1434		if (rxstat & VGE_RDSTS_VTAG) {
1435			/*
1436			 * The 32-bit rxctl register is stored in little-endian.
1437			 * However, the 16-bit vlan tag is stored in big-endian,
1438			 * so we have to byte swap it.
1439			 */
1440			m->m_pkthdr.ether_vtag =
1441			    bswap16(rxctl & VGE_RDCTL_VLANID);
1442			m->m_flags |= M_VLANTAG;
1443		}
1444
1445		VGE_UNLOCK(sc);
1446		(*ifp->if_input)(ifp, m);
1447		VGE_LOCK(sc);
1448
1449		lim++;
1450		if (lim == VGE_RX_DESC_CNT)
1451			break;
1452
1453	}
1454
1455	/* Flush the RX DMA ring */
1456
1457	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1458	    sc->vge_ldata.vge_rx_list_map,
1459	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1460
1461	sc->vge_ldata.vge_rx_prodidx = i;
1462	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1463
1464
1465	return (lim);
1466}
1467
1468static void
1469vge_txeof(sc)
1470	struct vge_softc		*sc;
1471{
1472	struct ifnet		*ifp;
1473	u_int32_t		txstat;
1474	int			idx;
1475
1476	ifp = sc->vge_ifp;
1477	idx = sc->vge_ldata.vge_tx_considx;
1478
1479	/* Invalidate the TX descriptor list */
1480
1481	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1482	    sc->vge_ldata.vge_tx_list_map,
1483	    BUS_DMASYNC_POSTREAD);
1484
1485	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1486
1487		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1488		if (txstat & VGE_TDSTS_OWN)
1489			break;
1490
1491		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1492		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1493		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1494		    sc->vge_ldata.vge_tx_dmamap[idx]);
1495		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1496			ifp->if_collisions++;
1497		if (txstat & VGE_TDSTS_TXERR)
1498			ifp->if_oerrors++;
1499		else
1500			ifp->if_opackets++;
1501
1502		sc->vge_ldata.vge_tx_free++;
1503		VGE_TX_DESC_INC(idx);
1504	}
1505
1506	/* No changes made to the TX ring, so no flush needed */
1507
1508	if (idx != sc->vge_ldata.vge_tx_considx) {
1509		sc->vge_ldata.vge_tx_considx = idx;
1510		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1511		sc->vge_timer = 0;
1512	}
1513
1514	/*
1515	 * If not all descriptors have been released reaped yet,
1516	 * reload the timer so that we will eventually get another
1517	 * interrupt that will cause us to re-enter this routine.
1518	 * This is done in case the transmitter has gone idle.
1519	 */
1520	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1521		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1522	}
1523
1524	return;
1525}
1526
1527static void
1528vge_tick(xsc)
1529	void			*xsc;
1530{
1531	struct vge_softc	*sc;
1532	struct ifnet		*ifp;
1533	struct mii_data		*mii;
1534
1535	sc = xsc;
1536	ifp = sc->vge_ifp;
1537	VGE_LOCK_ASSERT(sc);
1538	mii = device_get_softc(sc->vge_miibus);
1539
1540	mii_tick(mii);
1541	if (sc->vge_link) {
1542		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1543			sc->vge_link = 0;
1544			if_link_state_change(sc->vge_ifp,
1545			    LINK_STATE_DOWN);
1546		}
1547	} else {
1548		if (mii->mii_media_status & IFM_ACTIVE &&
1549		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1550			sc->vge_link = 1;
1551			if_link_state_change(sc->vge_ifp,
1552			    LINK_STATE_UP);
1553			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1554				vge_start_locked(ifp);
1555		}
1556	}
1557
1558	return;
1559}
1560
1561#ifdef DEVICE_POLLING
1562static int
1563vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1564{
1565	struct vge_softc *sc = ifp->if_softc;
1566	int rx_npkts = 0;
1567
1568	VGE_LOCK(sc);
1569	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1570		goto done;
1571
1572	sc->rxcycles = count;
1573	rx_npkts = vge_rxeof(sc);
1574	vge_txeof(sc);
1575
1576	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1577		vge_start_locked(ifp);
1578
1579	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1580		u_int32_t       status;
1581		status = CSR_READ_4(sc, VGE_ISR);
1582		if (status == 0xFFFFFFFF)
1583			goto done;
1584		if (status)
1585			CSR_WRITE_4(sc, VGE_ISR, status);
1586
1587		/*
1588		 * XXX check behaviour on receiver stalls.
1589		 */
1590
1591		if (status & VGE_ISR_TXDMA_STALL ||
1592		    status & VGE_ISR_RXDMA_STALL)
1593			vge_init_locked(sc);
1594
1595		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1596			vge_rxeof(sc);
1597			ifp->if_ierrors++;
1598			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1599			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1600		}
1601	}
1602done:
1603	VGE_UNLOCK(sc);
1604	return (rx_npkts);
1605}
1606#endif /* DEVICE_POLLING */
1607
1608static void
1609vge_intr(arg)
1610	void			*arg;
1611{
1612	struct vge_softc	*sc;
1613	struct ifnet		*ifp;
1614	u_int32_t		status;
1615
1616	sc = arg;
1617
1618	if (sc->suspended) {
1619		return;
1620	}
1621
1622	VGE_LOCK(sc);
1623	ifp = sc->vge_ifp;
1624
1625	if (!(ifp->if_flags & IFF_UP)) {
1626		VGE_UNLOCK(sc);
1627		return;
1628	}
1629
1630#ifdef DEVICE_POLLING
1631	if  (ifp->if_capenable & IFCAP_POLLING) {
1632		VGE_UNLOCK(sc);
1633		return;
1634	}
1635#endif
1636
1637	/* Disable interrupts */
1638	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1639
1640	for (;;) {
1641
1642		status = CSR_READ_4(sc, VGE_ISR);
1643		/* If the card has gone away the read returns 0xffff. */
1644		if (status == 0xFFFFFFFF)
1645			break;
1646
1647		if (status)
1648			CSR_WRITE_4(sc, VGE_ISR, status);
1649
1650		if ((status & VGE_INTRS) == 0)
1651			break;
1652
1653		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1654			vge_rxeof(sc);
1655
1656		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1657			vge_rxeof(sc);
1658			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1659			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1660		}
1661
1662		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1663			vge_txeof(sc);
1664
1665		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1666			vge_init_locked(sc);
1667
1668		if (status & VGE_ISR_LINKSTS)
1669			vge_tick(sc);
1670	}
1671
1672	/* Re-enable interrupts */
1673	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1674
1675	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1676		vge_start_locked(ifp);
1677
1678	VGE_UNLOCK(sc);
1679
1680	return;
1681}
1682
1683static int
1684vge_encap(sc, m_head, idx)
1685	struct vge_softc	*sc;
1686	struct mbuf		*m_head;
1687	int			idx;
1688{
1689	struct mbuf		*m_new = NULL;
1690	struct vge_dmaload_arg	arg;
1691	bus_dmamap_t		map;
1692	int			error;
1693
1694	if (sc->vge_ldata.vge_tx_free <= 2)
1695		return (EFBIG);
1696
1697	arg.vge_flags = 0;
1698
1699	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1700		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1701	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1702		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1703	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1704		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1705
1706	arg.sc = sc;
1707	arg.vge_idx = idx;
1708	arg.vge_m0 = m_head;
1709	arg.vge_maxsegs = VGE_TX_FRAGS;
1710
1711	map = sc->vge_ldata.vge_tx_dmamap[idx];
1712	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1713	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1714
1715	if (error && error != EFBIG) {
1716		if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n", error);
1717		return (ENOBUFS);
1718	}
1719
1720	/* Too many segments to map, coalesce into a single mbuf */
1721
1722	if (error || arg.vge_maxsegs == 0) {
1723		m_new = m_defrag(m_head, M_DONTWAIT);
1724		if (m_new == NULL)
1725			return (1);
1726		else
1727			m_head = m_new;
1728
1729		arg.sc = sc;
1730		arg.vge_m0 = m_head;
1731		arg.vge_idx = idx;
1732		arg.vge_maxsegs = 1;
1733
1734		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1735		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1736		if (error) {
1737			if_printf(sc->vge_ifp, "can't map mbuf (error %d)\n",
1738			    error);
1739			return (EFBIG);
1740		}
1741	}
1742
1743	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1744	sc->vge_ldata.vge_tx_free--;
1745
1746	/*
1747	 * Set up hardware VLAN tagging.
1748	 */
1749
1750	if (m_head->m_flags & M_VLANTAG)
1751		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1752		    htole32(m_head->m_pkthdr.ether_vtag | VGE_TDCTL_VTAG);
1753
1754	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1755
1756	return (0);
1757}
1758
1759/*
1760 * Main transmit routine.
1761 */
1762
1763static void
1764vge_start(ifp)
1765	struct ifnet		*ifp;
1766{
1767	struct vge_softc	*sc;
1768
1769	sc = ifp->if_softc;
1770	VGE_LOCK(sc);
1771	vge_start_locked(ifp);
1772	VGE_UNLOCK(sc);
1773}
1774
1775static void
1776vge_start_locked(ifp)
1777	struct ifnet		*ifp;
1778{
1779	struct vge_softc	*sc;
1780	struct mbuf		*m_head = NULL;
1781	int			idx, pidx = 0;
1782
1783	sc = ifp->if_softc;
1784	VGE_LOCK_ASSERT(sc);
1785
1786	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE)
1787		return;
1788
1789	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1790		return;
1791
1792	idx = sc->vge_ldata.vge_tx_prodidx;
1793
1794	pidx = idx - 1;
1795	if (pidx < 0)
1796		pidx = VGE_TX_DESC_CNT - 1;
1797
1798
1799	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1800		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1801		if (m_head == NULL)
1802			break;
1803
1804		if (vge_encap(sc, m_head, idx)) {
1805			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1806			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1807			break;
1808		}
1809
1810		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1811		    htole16(VGE_TXDESC_Q);
1812
1813		pidx = idx;
1814		VGE_TX_DESC_INC(idx);
1815
1816		/*
1817		 * If there's a BPF listener, bounce a copy of this frame
1818		 * to him.
1819		 */
1820		ETHER_BPF_MTAP(ifp, m_head);
1821	}
1822
1823	if (idx == sc->vge_ldata.vge_tx_prodidx)
1824		return;
1825
1826	/* Flush the TX descriptors */
1827
1828	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1829	    sc->vge_ldata.vge_tx_list_map,
1830	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1831
1832	/* Issue a transmit command. */
1833	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1834
1835	sc->vge_ldata.vge_tx_prodidx = idx;
1836
1837	/*
1838	 * Use the countdown timer for interrupt moderation.
1839	 * 'TX done' interrupts are disabled. Instead, we reset the
1840	 * countdown timer, which will begin counting until it hits
1841	 * the value in the SSTIMER register, and then trigger an
1842	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1843	 * the timer count is reloaded. Only when the transmitter
1844	 * is idle will the timer hit 0 and an interrupt fire.
1845	 */
1846	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1847
1848	/*
1849	 * Set a timeout in case the chip goes out to lunch.
1850	 */
1851	sc->vge_timer = 5;
1852
1853	return;
1854}
1855
1856static void
1857vge_init(xsc)
1858	void			*xsc;
1859{
1860	struct vge_softc	*sc = xsc;
1861
1862	VGE_LOCK(sc);
1863	vge_init_locked(sc);
1864	VGE_UNLOCK(sc);
1865}
1866
1867static void
1868vge_init_locked(struct vge_softc *sc)
1869{
1870	struct ifnet		*ifp = sc->vge_ifp;
1871	struct mii_data		*mii;
1872	int			i;
1873
1874	VGE_LOCK_ASSERT(sc);
1875	mii = device_get_softc(sc->vge_miibus);
1876
1877	/*
1878	 * Cancel pending I/O and free all RX/TX buffers.
1879	 */
1880	vge_stop(sc);
1881	vge_reset(sc);
1882
1883	/*
1884	 * Initialize the RX and TX descriptors and mbufs.
1885	 */
1886
1887	vge_rx_list_init(sc);
1888	vge_tx_list_init(sc);
1889
1890	/* Set our station address */
1891	for (i = 0; i < ETHER_ADDR_LEN; i++)
1892		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1893
1894	/*
1895	 * Set receive FIFO threshold. Also allow transmission and
1896	 * reception of VLAN tagged frames.
1897	 */
1898	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1899	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1900
1901	/* Set DMA burst length */
1902	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1903	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1904
1905	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1906
1907	/* Set collision backoff algorithm */
1908	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1909	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1910	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1911
1912	/* Disable LPSEL field in priority resolution */
1913	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1914
1915	/*
1916	 * Load the addresses of the DMA queues into the chip.
1917	 * Note that we only use one transmit queue.
1918	 */
1919
1920	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1921	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1922	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1923
1924	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1925	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1926	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1927	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1928
1929	/* Enable and wake up the RX descriptor queue */
1930	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1931	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1932
1933	/* Enable the TX descriptor queue */
1934	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1935
1936	/* Set up the receive filter -- allow large frames for VLANs. */
1937	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1938
1939	/* If we want promiscuous mode, set the allframes bit. */
1940	if (ifp->if_flags & IFF_PROMISC) {
1941		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1942	}
1943
1944	/* Set capture broadcast bit to capture broadcast frames. */
1945	if (ifp->if_flags & IFF_BROADCAST) {
1946		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1947	}
1948
1949	/* Set multicast bit to capture multicast frames. */
1950	if (ifp->if_flags & IFF_MULTICAST) {
1951		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1952	}
1953
1954	/* Init the cam filter. */
1955	vge_cam_clear(sc);
1956
1957	/* Init the multicast filter. */
1958	vge_setmulti(sc);
1959
1960	/* Enable flow control */
1961
1962	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1963
1964	/* Enable jumbo frame reception (if desired) */
1965
1966	/* Start the MAC. */
1967	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1968	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1969	CSR_WRITE_1(sc, VGE_CRS0,
1970	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1971
1972	/*
1973	 * Configure one-shot timer for microsecond
1974	 * resulution and load it for 500 usecs.
1975	 */
1976	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1977	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1978
1979	/*
1980	 * Configure interrupt moderation for receive. Enable
1981	 * the holdoff counter and load it, and set the RX
1982	 * suppression count to the number of descriptors we
1983	 * want to allow before triggering an interrupt.
1984	 * The holdoff timer is in units of 20 usecs.
1985	 */
1986
1987#ifdef notyet
1988	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1989	/* Select the interrupt holdoff timer page. */
1990	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1991	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1992	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1993
1994	/* Enable use of the holdoff timer. */
1995	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1996	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1997
1998	/* Select the RX suppression threshold page. */
1999	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2000	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2001	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2002
2003	/* Restore the page select bits. */
2004	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2005	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2006#endif
2007
2008#ifdef DEVICE_POLLING
2009	/*
2010	 * Disable interrupts if we are polling.
2011	 */
2012	if (ifp->if_capenable & IFCAP_POLLING) {
2013		CSR_WRITE_4(sc, VGE_IMR, 0);
2014		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2015	} else	/* otherwise ... */
2016#endif
2017	{
2018	/*
2019	 * Enable interrupts.
2020	 */
2021		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2022		CSR_WRITE_4(sc, VGE_ISR, 0);
2023		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2024	}
2025
2026	mii_mediachg(mii);
2027
2028	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2029	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2030	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2031
2032	sc->vge_if_flags = 0;
2033	sc->vge_link = 0;
2034
2035	return;
2036}
2037
2038/*
2039 * Set media options.
2040 */
2041static int
2042vge_ifmedia_upd(ifp)
2043	struct ifnet		*ifp;
2044{
2045	struct vge_softc	*sc;
2046	struct mii_data		*mii;
2047
2048	sc = ifp->if_softc;
2049	VGE_LOCK(sc);
2050	mii = device_get_softc(sc->vge_miibus);
2051	mii_mediachg(mii);
2052	VGE_UNLOCK(sc);
2053
2054	return (0);
2055}
2056
2057/*
2058 * Report current media status.
2059 */
2060static void
2061vge_ifmedia_sts(ifp, ifmr)
2062	struct ifnet		*ifp;
2063	struct ifmediareq	*ifmr;
2064{
2065	struct vge_softc	*sc;
2066	struct mii_data		*mii;
2067
2068	sc = ifp->if_softc;
2069	mii = device_get_softc(sc->vge_miibus);
2070
2071	VGE_LOCK(sc);
2072	mii_pollstat(mii);
2073	VGE_UNLOCK(sc);
2074	ifmr->ifm_active = mii->mii_media_active;
2075	ifmr->ifm_status = mii->mii_media_status;
2076
2077	return;
2078}
2079
2080static void
2081vge_miibus_statchg(dev)
2082	device_t		dev;
2083{
2084	struct vge_softc	*sc;
2085	struct mii_data		*mii;
2086	struct ifmedia_entry	*ife;
2087
2088	sc = device_get_softc(dev);
2089	mii = device_get_softc(sc->vge_miibus);
2090	ife = mii->mii_media.ifm_cur;
2091
2092	/*
2093	 * If the user manually selects a media mode, we need to turn
2094	 * on the forced MAC mode bit in the DIAGCTL register. If the
2095	 * user happens to choose a full duplex mode, we also need to
2096	 * set the 'force full duplex' bit. This applies only to
2097	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2098	 * mode is disabled, and in 1000baseT mode, full duplex is
2099	 * always implied, so we turn on the forced mode bit but leave
2100	 * the FDX bit cleared.
2101	 */
2102
2103	switch (IFM_SUBTYPE(ife->ifm_media)) {
2104	case IFM_AUTO:
2105		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2106		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2107		break;
2108	case IFM_1000_T:
2109		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2110		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2111		break;
2112	case IFM_100_TX:
2113	case IFM_10_T:
2114		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2115		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2116			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2117		} else {
2118			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2119		}
2120		break;
2121	default:
2122		device_printf(dev, "unknown media type: %x\n",
2123		    IFM_SUBTYPE(ife->ifm_media));
2124		break;
2125	}
2126
2127	return;
2128}
2129
2130static int
2131vge_ioctl(ifp, command, data)
2132	struct ifnet		*ifp;
2133	u_long			command;
2134	caddr_t			data;
2135{
2136	struct vge_softc	*sc = ifp->if_softc;
2137	struct ifreq		*ifr = (struct ifreq *) data;
2138	struct mii_data		*mii;
2139	int			error = 0;
2140
2141	switch (command) {
2142	case SIOCSIFMTU:
2143		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2144			error = EINVAL;
2145		ifp->if_mtu = ifr->ifr_mtu;
2146		break;
2147	case SIOCSIFFLAGS:
2148		VGE_LOCK(sc);
2149		if (ifp->if_flags & IFF_UP) {
2150			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2151			    ifp->if_flags & IFF_PROMISC &&
2152			    !(sc->vge_if_flags & IFF_PROMISC)) {
2153				CSR_SETBIT_1(sc, VGE_RXCTL,
2154				    VGE_RXCTL_RX_PROMISC);
2155				vge_setmulti(sc);
2156			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2157			    !(ifp->if_flags & IFF_PROMISC) &&
2158			    sc->vge_if_flags & IFF_PROMISC) {
2159				CSR_CLRBIT_1(sc, VGE_RXCTL,
2160				    VGE_RXCTL_RX_PROMISC);
2161				vge_setmulti(sc);
2162                        } else
2163				vge_init_locked(sc);
2164		} else {
2165			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2166				vge_stop(sc);
2167		}
2168		sc->vge_if_flags = ifp->if_flags;
2169		VGE_UNLOCK(sc);
2170		break;
2171	case SIOCADDMULTI:
2172	case SIOCDELMULTI:
2173		VGE_LOCK(sc);
2174		vge_setmulti(sc);
2175		VGE_UNLOCK(sc);
2176		break;
2177	case SIOCGIFMEDIA:
2178	case SIOCSIFMEDIA:
2179		mii = device_get_softc(sc->vge_miibus);
2180		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2181		break;
2182	case SIOCSIFCAP:
2183	    {
2184		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2185#ifdef DEVICE_POLLING
2186		if (mask & IFCAP_POLLING) {
2187			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2188				error = ether_poll_register(vge_poll, ifp);
2189				if (error)
2190					return(error);
2191				VGE_LOCK(sc);
2192					/* Disable interrupts */
2193				CSR_WRITE_4(sc, VGE_IMR, 0);
2194				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2195				ifp->if_capenable |= IFCAP_POLLING;
2196				VGE_UNLOCK(sc);
2197			} else {
2198				error = ether_poll_deregister(ifp);
2199				/* Enable interrupts. */
2200				VGE_LOCK(sc);
2201				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2202				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2203				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2204				ifp->if_capenable &= ~IFCAP_POLLING;
2205				VGE_UNLOCK(sc);
2206			}
2207		}
2208#endif /* DEVICE_POLLING */
2209		VGE_LOCK(sc);
2210		if ((mask & IFCAP_TXCSUM) != 0 &&
2211		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
2212			ifp->if_capenable ^= IFCAP_TXCSUM;
2213			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
2214				ifp->if_hwassist |= VGE_CSUM_FEATURES;
2215			else
2216				ifp->if_hwassist &= ~VGE_CSUM_FEATURES;
2217		}
2218		if ((mask & IFCAP_RXCSUM) != 0 &&
2219		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
2220			ifp->if_capenable ^= IFCAP_RXCSUM;
2221		VGE_UNLOCK(sc);
2222	    }
2223		break;
2224	default:
2225		error = ether_ioctl(ifp, command, data);
2226		break;
2227	}
2228
2229	return (error);
2230}
2231
2232static void
2233vge_watchdog(void *arg)
2234{
2235	struct vge_softc *sc;
2236	struct ifnet *ifp;
2237
2238	sc = arg;
2239	VGE_LOCK_ASSERT(sc);
2240	callout_reset(&sc->vge_watchdog, hz, vge_watchdog, sc);
2241	if (sc->vge_timer == 0 || --sc->vge_timer > 0)
2242		return;
2243
2244	ifp = sc->vge_ifp;
2245	if_printf(ifp, "watchdog timeout\n");
2246	ifp->if_oerrors++;
2247
2248	vge_txeof(sc);
2249	vge_rxeof(sc);
2250
2251	vge_init_locked(sc);
2252
2253	return;
2254}
2255
2256/*
2257 * Stop the adapter and free any mbufs allocated to the
2258 * RX and TX lists.
2259 */
2260static void
2261vge_stop(sc)
2262	struct vge_softc		*sc;
2263{
2264	register int		i;
2265	struct ifnet		*ifp;
2266
2267	VGE_LOCK_ASSERT(sc);
2268	ifp = sc->vge_ifp;
2269	sc->vge_timer = 0;
2270	callout_stop(&sc->vge_watchdog);
2271
2272	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2273
2274	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2275	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2276	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2277	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2278	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2279	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2280
2281	if (sc->vge_head != NULL) {
2282		m_freem(sc->vge_head);
2283		sc->vge_head = sc->vge_tail = NULL;
2284	}
2285
2286	/* Free the TX list buffers. */
2287
2288	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2289		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2290			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2291			    sc->vge_ldata.vge_tx_dmamap[i]);
2292			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2293			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2294		}
2295	}
2296
2297	/* Free the RX list buffers. */
2298
2299	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2300		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2301			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2302			    sc->vge_ldata.vge_rx_dmamap[i]);
2303			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2304			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2305		}
2306	}
2307
2308	return;
2309}
2310
2311/*
2312 * Device suspend routine.  Stop the interface and save some PCI
2313 * settings in case the BIOS doesn't restore them properly on
2314 * resume.
2315 */
2316static int
2317vge_suspend(dev)
2318	device_t		dev;
2319{
2320	struct vge_softc	*sc;
2321
2322	sc = device_get_softc(dev);
2323
2324	VGE_LOCK(sc);
2325	vge_stop(sc);
2326
2327	sc->suspended = 1;
2328	VGE_UNLOCK(sc);
2329
2330	return (0);
2331}
2332
2333/*
2334 * Device resume routine.  Restore some PCI settings in case the BIOS
2335 * doesn't, re-enable busmastering, and restart the interface if
2336 * appropriate.
2337 */
2338static int
2339vge_resume(dev)
2340	device_t		dev;
2341{
2342	struct vge_softc	*sc;
2343	struct ifnet		*ifp;
2344
2345	sc = device_get_softc(dev);
2346	ifp = sc->vge_ifp;
2347
2348	/* reenable busmastering */
2349	pci_enable_busmaster(dev);
2350	pci_enable_io(dev, SYS_RES_MEMORY);
2351
2352	/* reinitialize interface if necessary */
2353	VGE_LOCK(sc);
2354	if (ifp->if_flags & IFF_UP)
2355		vge_init_locked(sc);
2356
2357	sc->suspended = 0;
2358	VGE_UNLOCK(sc);
2359
2360	return (0);
2361}
2362
2363/*
2364 * Stop all chip I/O so that the kernel's probe routines don't
2365 * get confused by errant DMAs when rebooting.
2366 */
2367static int
2368vge_shutdown(dev)
2369	device_t		dev;
2370{
2371	struct vge_softc		*sc;
2372
2373	sc = device_get_softc(dev);
2374
2375	VGE_LOCK(sc);
2376	vge_stop(sc);
2377	VGE_UNLOCK(sc);
2378
2379	return (0);
2380}
2381