if_vge.c revision 155671
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 155671 2006-02-14 12:44:56Z glebius $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "device miibus" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static void vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static void vge_shutdown	(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188#if __FreeBSD_version < 502113
189static uint32_t vge_mchash	(uint8_t *);
190#endif
191static void vge_setmulti	(struct vge_softc *);
192static void vge_reset		(struct vge_softc *);
193
194#define VGE_PCI_LOIO             0x10
195#define VGE_PCI_LOMEM            0x14
196
197static device_method_t vge_methods[] = {
198	/* Device interface */
199	DEVMETHOD(device_probe,		vge_probe),
200	DEVMETHOD(device_attach,	vge_attach),
201	DEVMETHOD(device_detach,	vge_detach),
202	DEVMETHOD(device_suspend,	vge_suspend),
203	DEVMETHOD(device_resume,	vge_resume),
204	DEVMETHOD(device_shutdown,	vge_shutdown),
205
206	/* bus interface */
207	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209
210	/* MII interface */
211	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214
215	{ 0, 0 }
216};
217
218static driver_t vge_driver = {
219	"vge",
220	vge_methods,
221	sizeof(struct vge_softc)
222};
223
224static devclass_t vge_devclass;
225
226DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
227DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
228DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229
230#ifdef VGE_EEPROM
231/*
232 * Read a word of data stored in the EEPROM at address 'addr.'
233 */
234static void
235vge_eeprom_getword(sc, addr, dest)
236	struct vge_softc	*sc;
237	int			addr;
238	u_int16_t		*dest;
239{
240	register int		i;
241	u_int16_t		word = 0;
242
243	/*
244	 * Enter EEPROM embedded programming mode. In order to
245	 * access the EEPROM at all, we first have to set the
246	 * EELOAD bit in the CHIPCFG2 register.
247	 */
248	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251	/* Select the address of the word we want to read */
252	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254	/* Issue read command */
255	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257	/* Wait for the done bit to be set. */
258	for (i = 0; i < VGE_TIMEOUT; i++) {
259		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260			break;
261	}
262
263	if (i == VGE_TIMEOUT) {
264		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265		*dest = 0;
266		return;
267	}
268
269	/* Read the result */
270	word = CSR_READ_2(sc, VGE_EERDDAT);
271
272	/* Turn off EEPROM access mode. */
273	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276	*dest = word;
277
278	return;
279}
280#endif
281
282/*
283 * Read a sequence of words from the EEPROM.
284 */
285static void
286vge_read_eeprom(sc, dest, off, cnt, swap)
287	struct vge_softc	*sc;
288	caddr_t			dest;
289	int			off;
290	int			cnt;
291	int			swap;
292{
293	int			i;
294#ifdef VGE_EEPROM
295	u_int16_t		word = 0, *ptr;
296
297	for (i = 0; i < cnt; i++) {
298		vge_eeprom_getword(sc, off + i, &word);
299		ptr = (u_int16_t *)(dest + (i * 2));
300		if (swap)
301			*ptr = ntohs(word);
302		else
303			*ptr = word;
304	}
305#else
306	for (i = 0; i < ETHER_ADDR_LEN; i++)
307		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
308#endif
309}
310
311static void
312vge_miipoll_stop(sc)
313	struct vge_softc	*sc;
314{
315	int			i;
316
317	CSR_WRITE_1(sc, VGE_MIICMD, 0);
318
319	for (i = 0; i < VGE_TIMEOUT; i++) {
320		DELAY(1);
321		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
322			break;
323	}
324
325	if (i == VGE_TIMEOUT)
326		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
327
328	return;
329}
330
331static void
332vge_miipoll_start(sc)
333	struct vge_softc	*sc;
334{
335	int			i;
336
337	/* First, make sure we're idle. */
338
339	CSR_WRITE_1(sc, VGE_MIICMD, 0);
340	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
341
342	for (i = 0; i < VGE_TIMEOUT; i++) {
343		DELAY(1);
344		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
345			break;
346	}
347
348	if (i == VGE_TIMEOUT) {
349		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
350		return;
351	}
352
353	/* Now enable auto poll mode. */
354
355	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
356
357	/* And make sure it started. */
358
359	for (i = 0; i < VGE_TIMEOUT; i++) {
360		DELAY(1);
361		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
362			break;
363	}
364
365	if (i == VGE_TIMEOUT)
366		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
367
368	return;
369}
370
371static int
372vge_miibus_readreg(dev, phy, reg)
373	device_t		dev;
374	int			phy, reg;
375{
376	struct vge_softc	*sc;
377	int			i;
378	u_int16_t		rval = 0;
379
380	sc = device_get_softc(dev);
381
382	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
383		return(0);
384
385	VGE_LOCK(sc);
386	vge_miipoll_stop(sc);
387
388	/* Specify the register we want to read. */
389	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
390
391	/* Issue read command. */
392	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
393
394	/* Wait for the read command bit to self-clear. */
395	for (i = 0; i < VGE_TIMEOUT; i++) {
396		DELAY(1);
397		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
398			break;
399	}
400
401	if (i == VGE_TIMEOUT)
402		device_printf(sc->vge_dev, "MII read timed out\n");
403	else
404		rval = CSR_READ_2(sc, VGE_MIIDATA);
405
406	vge_miipoll_start(sc);
407	VGE_UNLOCK(sc);
408
409	return (rval);
410}
411
412static int
413vge_miibus_writereg(dev, phy, reg, data)
414	device_t		dev;
415	int			phy, reg, data;
416{
417	struct vge_softc	*sc;
418	int			i, rval = 0;
419
420	sc = device_get_softc(dev);
421
422	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
423		return(0);
424
425	VGE_LOCK(sc);
426	vge_miipoll_stop(sc);
427
428	/* Specify the register we want to write. */
429	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
430
431	/* Specify the data we want to write. */
432	CSR_WRITE_2(sc, VGE_MIIDATA, data);
433
434	/* Issue write command. */
435	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
436
437	/* Wait for the write command bit to self-clear. */
438	for (i = 0; i < VGE_TIMEOUT; i++) {
439		DELAY(1);
440		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
441			break;
442	}
443
444	if (i == VGE_TIMEOUT) {
445		device_printf(sc->vge_dev, "MII write timed out\n");
446		rval = EIO;
447	}
448
449	vge_miipoll_start(sc);
450	VGE_UNLOCK(sc);
451
452	return (rval);
453}
454
455static void
456vge_cam_clear(sc)
457	struct vge_softc	*sc;
458{
459	int			i;
460
461	/*
462	 * Turn off all the mask bits. This tells the chip
463	 * that none of the entries in the CAM filter are valid.
464	 * desired entries will be enabled as we fill the filter in.
465	 */
466
467	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
469	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
470	for (i = 0; i < 8; i++)
471		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472
473	/* Clear the VLAN filter too. */
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
476	for (i = 0; i < 8; i++)
477		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
478
479	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
480	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
481	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
482
483	sc->vge_camidx = 0;
484
485	return;
486}
487
488static int
489vge_cam_set(sc, addr)
490	struct vge_softc	*sc;
491	uint8_t			*addr;
492{
493	int			i, error = 0;
494
495	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
496		return(ENOSPC);
497
498	/* Select the CAM data page. */
499	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
501
502	/* Set the filter entry we want to update and enable writing. */
503	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
504
505	/* Write the address to the CAM registers */
506	for (i = 0; i < ETHER_ADDR_LEN; i++)
507		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
508
509	/* Issue a write command. */
510	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
511
512	/* Wake for it to clear. */
513	for (i = 0; i < VGE_TIMEOUT; i++) {
514		DELAY(1);
515		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
516			break;
517	}
518
519	if (i == VGE_TIMEOUT) {
520		device_printf(sc->vge_dev, "setting CAM filter failed\n");
521		error = EIO;
522		goto fail;
523	}
524
525	/* Select the CAM mask page. */
526	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
527	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
528
529	/* Set the mask bit that enables this filter. */
530	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
531	    1<<(sc->vge_camidx & 7));
532
533	sc->vge_camidx++;
534
535fail:
536	/* Turn off access to CAM. */
537	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
538	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
539	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
540
541	return (error);
542}
543
544#if __FreeBSD_version < 502113
545static uint32_t
546vge_mchash(addr)
547        uint8_t			*addr;
548{
549	uint32_t		crc, carry;
550	int			idx, bit;
551	uint8_t			data;
552
553	/* Compute CRC for the address value. */
554	crc = 0xFFFFFFFF; /* initial value */
555
556	for (idx = 0; idx < 6; idx++) {
557		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
558			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
559			crc <<= 1;
560			if (carry)
561				crc = (crc ^ 0x04c11db6) | carry;
562		}
563	}
564
565	return(crc);
566}
567#endif
568
569/*
570 * Program the multicast filter. We use the 64-entry CAM filter
571 * for perfect filtering. If there's more than 64 multicast addresses,
572 * we use the hash filter insted.
573 */
574static void
575vge_setmulti(sc)
576	struct vge_softc	*sc;
577{
578	struct ifnet		*ifp;
579	int			error = 0/*, h = 0*/;
580	struct ifmultiaddr	*ifma;
581	u_int32_t		h, hashes[2] = { 0, 0 };
582
583	ifp = sc->vge_ifp;
584
585	/* First, zot all the multicast entries. */
586	vge_cam_clear(sc);
587	CSR_WRITE_4(sc, VGE_MAR0, 0);
588	CSR_WRITE_4(sc, VGE_MAR1, 0);
589
590	/*
591	 * If the user wants allmulti or promisc mode, enable reception
592	 * of all multicast frames.
593	 */
594	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
595		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
596		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
597		return;
598	}
599
600	/* Now program new ones */
601	IF_ADDR_LOCK(ifp);
602	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603		if (ifma->ifma_addr->sa_family != AF_LINK)
604			continue;
605		error = vge_cam_set(sc,
606		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
607		if (error)
608			break;
609	}
610
611	/* If there were too many addresses, use the hash filter. */
612	if (error) {
613		vge_cam_clear(sc);
614
615		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
616			if (ifma->ifma_addr->sa_family != AF_LINK)
617				continue;
618#if __FreeBSD_version < 502113
619			h = vge_mchash(LLADDR((struct sockaddr_dl *)
620			    ifma->ifma_addr)) >> 26;
621#else
622			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624#endif
625			if (h < 32)
626				hashes[0] |= (1 << h);
627			else
628				hashes[1] |= (1 << (h - 32));
629		}
630
631		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
632		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
633	}
634	IF_ADDR_UNLOCK(ifp);
635
636	return;
637}
638
639static void
640vge_reset(sc)
641	struct vge_softc		*sc;
642{
643	register int		i;
644
645	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
646
647	for (i = 0; i < VGE_TIMEOUT; i++) {
648		DELAY(5);
649		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
650			break;
651	}
652
653	if (i == VGE_TIMEOUT) {
654		device_printf(sc->vge_dev, "soft reset timed out");
655		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
656		DELAY(2000);
657	}
658
659	DELAY(5000);
660
661	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
662
663	for (i = 0; i < VGE_TIMEOUT; i++) {
664		DELAY(5);
665		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
666			break;
667	}
668
669	if (i == VGE_TIMEOUT) {
670		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
671		return;
672	}
673
674	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
675
676	return;
677}
678
679/*
680 * Probe for a VIA gigabit chip. Check the PCI vendor and device
681 * IDs against our list and return a device name if we find a match.
682 */
683static int
684vge_probe(dev)
685	device_t		dev;
686{
687	struct vge_type		*t;
688	struct vge_softc	*sc;
689
690	t = vge_devs;
691	sc = device_get_softc(dev);
692
693	while (t->vge_name != NULL) {
694		if ((pci_get_vendor(dev) == t->vge_vid) &&
695		    (pci_get_device(dev) == t->vge_did)) {
696			device_set_desc(dev, t->vge_name);
697			return (BUS_PROBE_DEFAULT);
698		}
699		t++;
700	}
701
702	return (ENXIO);
703}
704
705static void
706vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
707	void			*arg;
708	bus_dma_segment_t	*segs;
709	int			nseg;
710	bus_size_t		mapsize;
711	int			error;
712{
713
714	struct vge_dmaload_arg	*ctx;
715	struct vge_rx_desc	*d = NULL;
716
717	if (error)
718		return;
719
720	ctx = arg;
721
722	/* Signal error to caller if there's too many segments */
723	if (nseg > ctx->vge_maxsegs) {
724		ctx->vge_maxsegs = 0;
725		return;
726	}
727
728	/*
729	 * Map the segment array into descriptors.
730	 */
731
732	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
733
734	/* If this descriptor is still owned by the chip, bail. */
735
736	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
737		device_printf(ctx->sc->vge_dev,
738		    "tried to map busy descriptor\n");
739		ctx->vge_maxsegs = 0;
740		return;
741	}
742
743	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
744	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
745	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
746	d->vge_sts = 0;
747	d->vge_ctl = 0;
748
749	ctx->vge_maxsegs = 1;
750
751	return;
752}
753
754static void
755vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
756	void			*arg;
757	bus_dma_segment_t	*segs;
758	int			nseg;
759	bus_size_t		mapsize;
760	int			error;
761{
762	struct vge_dmaload_arg	*ctx;
763	struct vge_tx_desc	*d = NULL;
764	struct vge_tx_frag	*f;
765	int			i = 0;
766
767	if (error)
768		return;
769
770	ctx = arg;
771
772	/* Signal error to caller if there's too many segments */
773	if (nseg > ctx->vge_maxsegs) {
774		ctx->vge_maxsegs = 0;
775		return;
776	}
777
778	/* Map the segment array into descriptors. */
779
780	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
781
782	/* If this descriptor is still owned by the chip, bail. */
783
784	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
785		ctx->vge_maxsegs = 0;
786		return;
787	}
788
789	for (i = 0; i < nseg; i++) {
790		f = &d->vge_frag[i];
791		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
792		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
793		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
794	}
795
796	/* Argh. This chip does not autopad short frames */
797
798	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
799		f = &d->vge_frag[i];
800		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
801		    ctx->vge_m0->m_pkthdr.len));
802		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
803		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
804		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
805		i++;
806	}
807
808	/*
809	 * When telling the chip how many segments there are, we
810	 * must use nsegs + 1 instead of just nsegs. Darned if I
811	 * know why.
812	 */
813	i++;
814
815	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
816	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
817
818	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
819		d->vge_ctl |= VGE_TDCTL_JUMBO;
820
821	ctx->vge_maxsegs = nseg;
822
823	return;
824}
825
826/*
827 * Map a single buffer address.
828 */
829
830static void
831vge_dma_map_addr(arg, segs, nseg, error)
832	void			*arg;
833	bus_dma_segment_t	*segs;
834	int			nseg;
835	int			error;
836{
837	bus_addr_t		*addr;
838
839	if (error)
840		return;
841
842	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
843	addr = arg;
844	*addr = segs->ds_addr;
845
846	return;
847}
848
849static int
850vge_allocmem(dev, sc)
851	device_t		dev;
852	struct vge_softc		*sc;
853{
854	int			error;
855	int			nseg;
856	int			i;
857
858	/*
859	 * Allocate map for RX mbufs.
860	 */
861	nseg = 32;
862	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
863	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
864	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
865	    NULL, NULL, &sc->vge_ldata.vge_mtag);
866	if (error) {
867		device_printf(dev, "could not allocate dma tag\n");
868		return (ENOMEM);
869	}
870
871	/*
872	 * Allocate map for TX descriptor list.
873	 */
874	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
878	if (error) {
879		device_printf(dev, "could not allocate dma tag\n");
880		return (ENOMEM);
881	}
882
883	/* Allocate DMA'able memory for the TX ring */
884
885	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
886	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887	    &sc->vge_ldata.vge_tx_list_map);
888	if (error)
889		return (ENOMEM);
890
891	/* Load the map for the TX ring. */
892
893	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
894	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
895	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
897
898	/* Create DMA maps for TX buffers */
899
900	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
901		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902			    &sc->vge_ldata.vge_tx_dmamap[i]);
903		if (error) {
904			device_printf(dev, "can't create DMA map for TX\n");
905			return (ENOMEM);
906		}
907	}
908
909	/*
910	 * Allocate map for RX descriptor list.
911	 */
912	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
913	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
914	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
915	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
916	if (error) {
917		device_printf(dev, "could not allocate dma tag\n");
918		return (ENOMEM);
919	}
920
921	/* Allocate DMA'able memory for the RX ring */
922
923	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
924	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
925	    &sc->vge_ldata.vge_rx_list_map);
926	if (error)
927		return (ENOMEM);
928
929	/* Load the map for the RX ring. */
930
931	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
932	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
933	     VGE_TX_LIST_SZ, vge_dma_map_addr,
934	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
935
936	/* Create DMA maps for RX buffers */
937
938	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
939		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
940			    &sc->vge_ldata.vge_rx_dmamap[i]);
941		if (error) {
942			device_printf(dev, "can't create DMA map for RX\n");
943			return (ENOMEM);
944		}
945	}
946
947	return (0);
948}
949
950/*
951 * Attach the interface. Allocate softc structures, do ifmedia
952 * setup and ethernet/BPF attach.
953 */
954static int
955vge_attach(dev)
956	device_t		dev;
957{
958	u_char			eaddr[ETHER_ADDR_LEN];
959	struct vge_softc	*sc;
960	struct ifnet		*ifp;
961	int			unit, error = 0, rid;
962
963	sc = device_get_softc(dev);
964	unit = device_get_unit(dev);
965	sc->vge_dev = dev;
966
967	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
968	    MTX_DEF | MTX_RECURSE);
969	/*
970	 * Map control/status registers.
971	 */
972	pci_enable_busmaster(dev);
973
974	rid = VGE_PCI_LOMEM;
975	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
976	    0, ~0, 1, RF_ACTIVE);
977
978	if (sc->vge_res == NULL) {
979		printf ("vge%d: couldn't map ports/memory\n", unit);
980		error = ENXIO;
981		goto fail;
982	}
983
984	sc->vge_btag = rman_get_bustag(sc->vge_res);
985	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
986
987	/* Allocate interrupt */
988	rid = 0;
989	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
990	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
991
992	if (sc->vge_irq == NULL) {
993		printf("vge%d: couldn't map interrupt\n", unit);
994		error = ENXIO;
995		goto fail;
996	}
997
998	/* Reset the adapter. */
999	vge_reset(sc);
1000
1001	/*
1002	 * Get station address from the EEPROM.
1003	 */
1004	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1005
1006	sc->vge_unit = unit;
1007
1008#if __FreeBSD_version < 502113
1009	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1010#endif
1011
1012	/*
1013	 * Allocate the parent bus DMA tag appropriate for PCI.
1014	 */
1015#define VGE_NSEG_NEW 32
1016	error = bus_dma_tag_create(NULL,	/* parent */
1017			1, 0,			/* alignment, boundary */
1018			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1019			BUS_SPACE_MAXADDR,	/* highaddr */
1020			NULL, NULL,		/* filter, filterarg */
1021			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1022			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1023			BUS_DMA_ALLOCNOW,	/* flags */
1024			NULL, NULL,		/* lockfunc, lockarg */
1025			&sc->vge_parent_tag);
1026	if (error)
1027		goto fail;
1028
1029	error = vge_allocmem(dev, sc);
1030
1031	if (error)
1032		goto fail;
1033
1034	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1035	if (ifp == NULL) {
1036		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1037		error = ENOSPC;
1038		goto fail;
1039	}
1040
1041	/* Do MII setup */
1042	if (mii_phy_probe(dev, &sc->vge_miibus,
1043	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1044		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1045		error = ENXIO;
1046		goto fail;
1047	}
1048
1049	ifp->if_softc = sc;
1050	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051	ifp->if_mtu = ETHERMTU;
1052	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053	ifp->if_ioctl = vge_ioctl;
1054	ifp->if_capabilities = IFCAP_VLAN_MTU;
1055	ifp->if_start = vge_start;
1056	ifp->if_hwassist = VGE_CSUM_FEATURES;
1057	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1058	ifp->if_capenable = ifp->if_capabilities;
1059#ifdef DEVICE_POLLING
1060	ifp->if_capabilities |= IFCAP_POLLING;
1061#endif
1062	ifp->if_watchdog = vge_watchdog;
1063	ifp->if_init = vge_init;
1064	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1065
1066	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1067
1068	/*
1069	 * Call MI attach routine.
1070	 */
1071	ether_ifattach(ifp, eaddr);
1072
1073	/* Hook interrupt last to avoid having to lock softc */
1074	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1075	    vge_intr, sc, &sc->vge_intrhand);
1076
1077	if (error) {
1078		printf("vge%d: couldn't set up irq\n", unit);
1079		ether_ifdetach(ifp);
1080		goto fail;
1081	}
1082
1083fail:
1084	if (error)
1085		vge_detach(dev);
1086
1087	return (error);
1088}
1089
1090/*
1091 * Shutdown hardware and free up resources. This can be called any
1092 * time after the mutex has been initialized. It is called in both
1093 * the error case in attach and the normal detach case so it needs
1094 * to be careful about only freeing resources that have actually been
1095 * allocated.
1096 */
1097static int
1098vge_detach(dev)
1099	device_t		dev;
1100{
1101	struct vge_softc		*sc;
1102	struct ifnet		*ifp;
1103	int			i;
1104
1105	sc = device_get_softc(dev);
1106	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1107	ifp = sc->vge_ifp;
1108
1109#ifdef DEVICE_POLLING
1110	if (ifp->if_capenable & IFCAP_POLLING)
1111		ether_poll_deregister(ifp);
1112#endif
1113
1114	/* These should only be active if attach succeeded */
1115	if (device_is_attached(dev)) {
1116		vge_stop(sc);
1117		/*
1118		 * Force off the IFF_UP flag here, in case someone
1119		 * still had a BPF descriptor attached to this
1120		 * interface. If they do, ether_ifattach() will cause
1121		 * the BPF code to try and clear the promisc mode
1122		 * flag, which will bubble down to vge_ioctl(),
1123		 * which will try to call vge_init() again. This will
1124		 * turn the NIC back on and restart the MII ticker,
1125		 * which will panic the system when the kernel tries
1126		 * to invoke the vge_tick() function that isn't there
1127		 * anymore.
1128		 */
1129		ifp->if_flags &= ~IFF_UP;
1130		ether_ifdetach(ifp);
1131	}
1132	if (sc->vge_miibus)
1133		device_delete_child(dev, sc->vge_miibus);
1134	bus_generic_detach(dev);
1135
1136	if (sc->vge_intrhand)
1137		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1138	if (sc->vge_irq)
1139		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1140	if (sc->vge_res)
1141		bus_release_resource(dev, SYS_RES_MEMORY,
1142		    VGE_PCI_LOMEM, sc->vge_res);
1143	if (ifp)
1144		if_free(ifp);
1145
1146	/* Unload and free the RX DMA ring memory and map */
1147
1148	if (sc->vge_ldata.vge_rx_list_tag) {
1149		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1150		    sc->vge_ldata.vge_rx_list_map);
1151		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1152		    sc->vge_ldata.vge_rx_list,
1153		    sc->vge_ldata.vge_rx_list_map);
1154		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1155	}
1156
1157	/* Unload and free the TX DMA ring memory and map */
1158
1159	if (sc->vge_ldata.vge_tx_list_tag) {
1160		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1161		    sc->vge_ldata.vge_tx_list_map);
1162		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1163		    sc->vge_ldata.vge_tx_list,
1164		    sc->vge_ldata.vge_tx_list_map);
1165		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1166	}
1167
1168	/* Destroy all the RX and TX buffer maps */
1169
1170	if (sc->vge_ldata.vge_mtag) {
1171		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1172			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1173			    sc->vge_ldata.vge_tx_dmamap[i]);
1174		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1175			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1176			    sc->vge_ldata.vge_rx_dmamap[i]);
1177		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1178	}
1179
1180	if (sc->vge_parent_tag)
1181		bus_dma_tag_destroy(sc->vge_parent_tag);
1182
1183	mtx_destroy(&sc->vge_mtx);
1184
1185	return (0);
1186}
1187
1188static int
1189vge_newbuf(sc, idx, m)
1190	struct vge_softc	*sc;
1191	int			idx;
1192	struct mbuf		*m;
1193{
1194	struct vge_dmaload_arg	arg;
1195	struct mbuf		*n = NULL;
1196	int			i, error;
1197
1198	if (m == NULL) {
1199		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1200		if (n == NULL)
1201			return (ENOBUFS);
1202		m = n;
1203	} else
1204		m->m_data = m->m_ext.ext_buf;
1205
1206
1207#ifdef VGE_FIXUP_RX
1208	/*
1209	 * This is part of an evil trick to deal with non-x86 platforms.
1210	 * The VIA chip requires RX buffers to be aligned on 32-bit
1211	 * boundaries, but that will hose non-x86 machines. To get around
1212	 * this, we leave some empty space at the start of each buffer
1213	 * and for non-x86 hosts, we copy the buffer back two bytes
1214	 * to achieve word alignment. This is slightly more efficient
1215	 * than allocating a new buffer, copying the contents, and
1216	 * discarding the old buffer.
1217	 */
1218	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1219	m_adj(m, VGE_ETHER_ALIGN);
1220#else
1221	m->m_len = m->m_pkthdr.len = MCLBYTES;
1222#endif
1223
1224	arg.sc = sc;
1225	arg.vge_idx = idx;
1226	arg.vge_maxsegs = 1;
1227	arg.vge_flags = 0;
1228
1229	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1230	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1231	    &arg, BUS_DMA_NOWAIT);
1232	if (error || arg.vge_maxsegs != 1) {
1233		if (n != NULL)
1234			m_freem(n);
1235		return (ENOMEM);
1236	}
1237
1238	/*
1239	 * Note: the manual fails to document the fact that for
1240	 * proper opration, the driver needs to replentish the RX
1241	 * DMA ring 4 descriptors at a time (rather than one at a
1242	 * time, like most chips). We can allocate the new buffers
1243	 * but we should not set the OWN bits until we're ready
1244	 * to hand back 4 of them in one shot.
1245	 */
1246
1247#define VGE_RXCHUNK 4
1248	sc->vge_rx_consumed++;
1249	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1250		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1251			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1252			    htole32(VGE_RDSTS_OWN);
1253		sc->vge_rx_consumed = 0;
1254	}
1255
1256	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1257
1258	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1259	    sc->vge_ldata.vge_rx_dmamap[idx],
1260	    BUS_DMASYNC_PREREAD);
1261
1262	return (0);
1263}
1264
1265static int
1266vge_tx_list_init(sc)
1267	struct vge_softc		*sc;
1268{
1269	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1270	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1271	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1272
1273	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1274	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1275	sc->vge_ldata.vge_tx_prodidx = 0;
1276	sc->vge_ldata.vge_tx_considx = 0;
1277	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1278
1279	return (0);
1280}
1281
1282static int
1283vge_rx_list_init(sc)
1284	struct vge_softc		*sc;
1285{
1286	int			i;
1287
1288	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1289	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1290	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1291
1292	sc->vge_rx_consumed = 0;
1293
1294	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1295		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1296			return (ENOBUFS);
1297	}
1298
1299	/* Flush the RX descriptors */
1300
1301	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1302	    sc->vge_ldata.vge_rx_list_map,
1303	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1304
1305	sc->vge_ldata.vge_rx_prodidx = 0;
1306	sc->vge_rx_consumed = 0;
1307	sc->vge_head = sc->vge_tail = NULL;
1308
1309	return (0);
1310}
1311
1312#ifdef VGE_FIXUP_RX
1313static __inline void
1314vge_fixup_rx(m)
1315	struct mbuf		*m;
1316{
1317	int			i;
1318	uint16_t		*src, *dst;
1319
1320	src = mtod(m, uint16_t *);
1321	dst = src - 1;
1322
1323	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1324		*dst++ = *src++;
1325
1326	m->m_data -= ETHER_ALIGN;
1327
1328	return;
1329}
1330#endif
1331
1332/*
1333 * RX handler. We support the reception of jumbo frames that have
1334 * been fragmented across multiple 2K mbuf cluster buffers.
1335 */
1336static void
1337vge_rxeof(sc)
1338	struct vge_softc	*sc;
1339{
1340	struct mbuf		*m;
1341	struct ifnet		*ifp;
1342	int			i, total_len;
1343	int			lim = 0;
1344	struct vge_rx_desc	*cur_rx;
1345	u_int32_t		rxstat, rxctl;
1346
1347	VGE_LOCK_ASSERT(sc);
1348	ifp = sc->vge_ifp;
1349	i = sc->vge_ldata.vge_rx_prodidx;
1350
1351	/* Invalidate the descriptor memory */
1352
1353	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1354	    sc->vge_ldata.vge_rx_list_map,
1355	    BUS_DMASYNC_POSTREAD);
1356
1357	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1358
1359#ifdef DEVICE_POLLING
1360		if (ifp->if_capenable & IFCAP_POLLING) {
1361			if (sc->rxcycles <= 0)
1362				break;
1363			sc->rxcycles--;
1364		}
1365#endif
1366
1367		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1368		m = sc->vge_ldata.vge_rx_mbuf[i];
1369		total_len = VGE_RXBYTES(cur_rx);
1370		rxstat = le32toh(cur_rx->vge_sts);
1371		rxctl = le32toh(cur_rx->vge_ctl);
1372
1373		/* Invalidate the RX mbuf and unload its map */
1374
1375		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1376		    sc->vge_ldata.vge_rx_dmamap[i],
1377		    BUS_DMASYNC_POSTWRITE);
1378		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1379		    sc->vge_ldata.vge_rx_dmamap[i]);
1380
1381		/*
1382		 * If the 'start of frame' bit is set, this indicates
1383		 * either the first fragment in a multi-fragment receive,
1384		 * or an intermediate fragment. Either way, we want to
1385		 * accumulate the buffers.
1386		 */
1387		if (rxstat & VGE_RXPKT_SOF) {
1388			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1389			if (sc->vge_head == NULL)
1390				sc->vge_head = sc->vge_tail = m;
1391			else {
1392				m->m_flags &= ~M_PKTHDR;
1393				sc->vge_tail->m_next = m;
1394				sc->vge_tail = m;
1395			}
1396			vge_newbuf(sc, i, NULL);
1397			VGE_RX_DESC_INC(i);
1398			continue;
1399		}
1400
1401		/*
1402		 * Bad/error frames will have the RXOK bit cleared.
1403		 * However, there's one error case we want to allow:
1404		 * if a VLAN tagged frame arrives and the chip can't
1405		 * match it against the CAM filter, it considers this
1406		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1407		 * We don't want to drop the frame though: our VLAN
1408		 * filtering is done in software.
1409		 */
1410		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1411		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1412			ifp->if_ierrors++;
1413			/*
1414			 * If this is part of a multi-fragment packet,
1415			 * discard all the pieces.
1416			 */
1417			if (sc->vge_head != NULL) {
1418				m_freem(sc->vge_head);
1419				sc->vge_head = sc->vge_tail = NULL;
1420			}
1421			vge_newbuf(sc, i, m);
1422			VGE_RX_DESC_INC(i);
1423			continue;
1424		}
1425
1426		/*
1427		 * If allocating a replacement mbuf fails,
1428		 * reload the current one.
1429		 */
1430
1431		if (vge_newbuf(sc, i, NULL)) {
1432			ifp->if_ierrors++;
1433			if (sc->vge_head != NULL) {
1434				m_freem(sc->vge_head);
1435				sc->vge_head = sc->vge_tail = NULL;
1436			}
1437			vge_newbuf(sc, i, m);
1438			VGE_RX_DESC_INC(i);
1439			continue;
1440		}
1441
1442		VGE_RX_DESC_INC(i);
1443
1444		if (sc->vge_head != NULL) {
1445			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1446			/*
1447			 * Special case: if there's 4 bytes or less
1448			 * in this buffer, the mbuf can be discarded:
1449			 * the last 4 bytes is the CRC, which we don't
1450			 * care about anyway.
1451			 */
1452			if (m->m_len <= ETHER_CRC_LEN) {
1453				sc->vge_tail->m_len -=
1454				    (ETHER_CRC_LEN - m->m_len);
1455				m_freem(m);
1456			} else {
1457				m->m_len -= ETHER_CRC_LEN;
1458				m->m_flags &= ~M_PKTHDR;
1459				sc->vge_tail->m_next = m;
1460			}
1461			m = sc->vge_head;
1462			sc->vge_head = sc->vge_tail = NULL;
1463			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1464		} else
1465			m->m_pkthdr.len = m->m_len =
1466			    (total_len - ETHER_CRC_LEN);
1467
1468#ifdef VGE_FIXUP_RX
1469		vge_fixup_rx(m);
1470#endif
1471		ifp->if_ipackets++;
1472		m->m_pkthdr.rcvif = ifp;
1473
1474		/* Do RX checksumming if enabled */
1475		if (ifp->if_capenable & IFCAP_RXCSUM) {
1476
1477			/* Check IP header checksum */
1478			if (rxctl & VGE_RDCTL_IPPKT)
1479				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1480			if (rxctl & VGE_RDCTL_IPCSUMOK)
1481				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1482
1483			/* Check TCP/UDP checksum */
1484			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1485			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1486				m->m_pkthdr.csum_flags |=
1487				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1488				m->m_pkthdr.csum_data = 0xffff;
1489			}
1490		}
1491
1492		if (rxstat & VGE_RDSTS_VTAG) {
1493			VLAN_INPUT_TAG(ifp, m,
1494			    ntohs((rxctl & VGE_RDCTL_VLANID)));
1495			if (m == NULL)
1496				continue;
1497		}
1498
1499		VGE_UNLOCK(sc);
1500		(*ifp->if_input)(ifp, m);
1501		VGE_LOCK(sc);
1502
1503		lim++;
1504		if (lim == VGE_RX_DESC_CNT)
1505			break;
1506
1507	}
1508
1509	/* Flush the RX DMA ring */
1510
1511	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1512	    sc->vge_ldata.vge_rx_list_map,
1513	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1514
1515	sc->vge_ldata.vge_rx_prodidx = i;
1516	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1517
1518
1519	return;
1520}
1521
1522static void
1523vge_txeof(sc)
1524	struct vge_softc		*sc;
1525{
1526	struct ifnet		*ifp;
1527	u_int32_t		txstat;
1528	int			idx;
1529
1530	ifp = sc->vge_ifp;
1531	idx = sc->vge_ldata.vge_tx_considx;
1532
1533	/* Invalidate the TX descriptor list */
1534
1535	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1536	    sc->vge_ldata.vge_tx_list_map,
1537	    BUS_DMASYNC_POSTREAD);
1538
1539	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1540
1541		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1542		if (txstat & VGE_TDSTS_OWN)
1543			break;
1544
1545		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1546		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1547		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1548		    sc->vge_ldata.vge_tx_dmamap[idx]);
1549		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1550			ifp->if_collisions++;
1551		if (txstat & VGE_TDSTS_TXERR)
1552			ifp->if_oerrors++;
1553		else
1554			ifp->if_opackets++;
1555
1556		sc->vge_ldata.vge_tx_free++;
1557		VGE_TX_DESC_INC(idx);
1558	}
1559
1560	/* No changes made to the TX ring, so no flush needed */
1561
1562	if (idx != sc->vge_ldata.vge_tx_considx) {
1563		sc->vge_ldata.vge_tx_considx = idx;
1564		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1565		ifp->if_timer = 0;
1566	}
1567
1568	/*
1569	 * If not all descriptors have been released reaped yet,
1570	 * reload the timer so that we will eventually get another
1571	 * interrupt that will cause us to re-enter this routine.
1572	 * This is done in case the transmitter has gone idle.
1573	 */
1574	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1575		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1576	}
1577
1578	return;
1579}
1580
1581static void
1582vge_tick(xsc)
1583	void			*xsc;
1584{
1585	struct vge_softc	*sc;
1586	struct ifnet		*ifp;
1587	struct mii_data		*mii;
1588
1589	sc = xsc;
1590	ifp = sc->vge_ifp;
1591	VGE_LOCK(sc);
1592	mii = device_get_softc(sc->vge_miibus);
1593
1594	mii_tick(mii);
1595	if (sc->vge_link) {
1596		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1597			sc->vge_link = 0;
1598			if_link_state_change(sc->vge_ifp,
1599			    LINK_STATE_DOWN);
1600		}
1601	} else {
1602		if (mii->mii_media_status & IFM_ACTIVE &&
1603		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1604			sc->vge_link = 1;
1605			if_link_state_change(sc->vge_ifp,
1606			    LINK_STATE_UP);
1607#if __FreeBSD_version < 502114
1608			if (ifp->if_snd.ifq_head != NULL)
1609#else
1610			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1611#endif
1612				taskqueue_enqueue(taskqueue_swi,
1613				    &sc->vge_txtask);
1614		}
1615	}
1616
1617	VGE_UNLOCK(sc);
1618
1619	return;
1620}
1621
1622#ifdef DEVICE_POLLING
1623static void
1624vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1625{
1626	struct vge_softc *sc = ifp->if_softc;
1627
1628	VGE_LOCK(sc);
1629	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1630		goto done;
1631
1632	sc->rxcycles = count;
1633	vge_rxeof(sc);
1634	vge_txeof(sc);
1635
1636#if __FreeBSD_version < 502114
1637	if (ifp->if_snd.ifq_head != NULL)
1638#else
1639	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1640#endif
1641		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1642
1643	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1644		u_int32_t       status;
1645		status = CSR_READ_4(sc, VGE_ISR);
1646		if (status == 0xFFFFFFFF)
1647			goto done;
1648		if (status)
1649			CSR_WRITE_4(sc, VGE_ISR, status);
1650
1651		/*
1652		 * XXX check behaviour on receiver stalls.
1653		 */
1654
1655		if (status & VGE_ISR_TXDMA_STALL ||
1656		    status & VGE_ISR_RXDMA_STALL)
1657			vge_init(sc);
1658
1659		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1660			vge_rxeof(sc);
1661			ifp->if_ierrors++;
1662			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1663			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1664		}
1665	}
1666done:
1667	VGE_UNLOCK(sc);
1668}
1669#endif /* DEVICE_POLLING */
1670
1671static void
1672vge_intr(arg)
1673	void			*arg;
1674{
1675	struct vge_softc	*sc;
1676	struct ifnet		*ifp;
1677	u_int32_t		status;
1678
1679	sc = arg;
1680
1681	if (sc->suspended) {
1682		return;
1683	}
1684
1685	VGE_LOCK(sc);
1686	ifp = sc->vge_ifp;
1687
1688	if (!(ifp->if_flags & IFF_UP)) {
1689		VGE_UNLOCK(sc);
1690		return;
1691	}
1692
1693#ifdef DEVICE_POLLING
1694	if  (ifp->if_capenable & IFCAP_POLLING) {
1695		VGE_UNLOCK(sc);
1696		return;
1697	}
1698#endif
1699
1700	/* Disable interrupts */
1701	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1702
1703	for (;;) {
1704
1705		status = CSR_READ_4(sc, VGE_ISR);
1706		/* If the card has gone away the read returns 0xffff. */
1707		if (status == 0xFFFFFFFF)
1708			break;
1709
1710		if (status)
1711			CSR_WRITE_4(sc, VGE_ISR, status);
1712
1713		if ((status & VGE_INTRS) == 0)
1714			break;
1715
1716		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1717			vge_rxeof(sc);
1718
1719		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1720			vge_rxeof(sc);
1721			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1722			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1723		}
1724
1725		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1726			vge_txeof(sc);
1727
1728		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1729			vge_init(sc);
1730
1731		if (status & VGE_ISR_LINKSTS)
1732			vge_tick(sc);
1733	}
1734
1735	/* Re-enable interrupts */
1736	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1737
1738	VGE_UNLOCK(sc);
1739
1740#if __FreeBSD_version < 502114
1741	if (ifp->if_snd.ifq_head != NULL)
1742#else
1743	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1744#endif
1745		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1746
1747	return;
1748}
1749
1750static int
1751vge_encap(sc, m_head, idx)
1752	struct vge_softc	*sc;
1753	struct mbuf		*m_head;
1754	int			idx;
1755{
1756	struct mbuf		*m_new = NULL;
1757	struct vge_dmaload_arg	arg;
1758	bus_dmamap_t		map;
1759	int			error;
1760	struct m_tag		*mtag;
1761
1762	if (sc->vge_ldata.vge_tx_free <= 2)
1763		return (EFBIG);
1764
1765	arg.vge_flags = 0;
1766
1767	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1768		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1769	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1770		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1771	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1772		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1773
1774	arg.sc = sc;
1775	arg.vge_idx = idx;
1776	arg.vge_m0 = m_head;
1777	arg.vge_maxsegs = VGE_TX_FRAGS;
1778
1779	map = sc->vge_ldata.vge_tx_dmamap[idx];
1780	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1781	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1782
1783	if (error && error != EFBIG) {
1784		printf("vge%d: can't map mbuf (error %d)\n",
1785		    sc->vge_unit, error);
1786		return (ENOBUFS);
1787	}
1788
1789	/* Too many segments to map, coalesce into a single mbuf */
1790
1791	if (error || arg.vge_maxsegs == 0) {
1792		m_new = m_defrag(m_head, M_DONTWAIT);
1793		if (m_new == NULL)
1794			return (1);
1795		else
1796			m_head = m_new;
1797
1798		arg.sc = sc;
1799		arg.vge_m0 = m_head;
1800		arg.vge_idx = idx;
1801		arg.vge_maxsegs = 1;
1802
1803		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1804		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1805		if (error) {
1806			printf("vge%d: can't map mbuf (error %d)\n",
1807			    sc->vge_unit, error);
1808			return (EFBIG);
1809		}
1810	}
1811
1812	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1813	sc->vge_ldata.vge_tx_free--;
1814
1815	/*
1816	 * Set up hardware VLAN tagging.
1817	 */
1818
1819	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1820	if (mtag != NULL)
1821		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1822		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1823
1824	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1825
1826	return (0);
1827}
1828
1829static void
1830vge_tx_task(arg, npending)
1831	void			*arg;
1832	int			npending;
1833{
1834	struct ifnet		*ifp;
1835
1836	ifp = arg;
1837	vge_start(ifp);
1838
1839	return;
1840}
1841
1842/*
1843 * Main transmit routine.
1844 */
1845
1846static void
1847vge_start(ifp)
1848	struct ifnet		*ifp;
1849{
1850	struct vge_softc	*sc;
1851	struct mbuf		*m_head = NULL;
1852	int			idx, pidx = 0;
1853
1854	sc = ifp->if_softc;
1855	VGE_LOCK(sc);
1856
1857	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1858		VGE_UNLOCK(sc);
1859		return;
1860	}
1861
1862#if __FreeBSD_version < 502114
1863	if (ifp->if_snd.ifq_head == NULL) {
1864#else
1865	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1866#endif
1867		VGE_UNLOCK(sc);
1868		return;
1869	}
1870
1871	idx = sc->vge_ldata.vge_tx_prodidx;
1872
1873	pidx = idx - 1;
1874	if (pidx < 0)
1875		pidx = VGE_TX_DESC_CNT - 1;
1876
1877
1878	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1879#if __FreeBSD_version < 502114
1880		IF_DEQUEUE(&ifp->if_snd, m_head);
1881#else
1882		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1883#endif
1884		if (m_head == NULL)
1885			break;
1886
1887		if (vge_encap(sc, m_head, idx)) {
1888#if __FreeBSD_version >= 502114
1889			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1890#else
1891			IF_PREPEND(&ifp->if_snd, m_head);
1892#endif
1893			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1894			break;
1895		}
1896
1897		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1898		    htole16(VGE_TXDESC_Q);
1899
1900		pidx = idx;
1901		VGE_TX_DESC_INC(idx);
1902
1903		/*
1904		 * If there's a BPF listener, bounce a copy of this frame
1905		 * to him.
1906		 */
1907		BPF_MTAP(ifp, m_head);
1908	}
1909
1910	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1911		VGE_UNLOCK(sc);
1912		return;
1913	}
1914
1915	/* Flush the TX descriptors */
1916
1917	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1918	    sc->vge_ldata.vge_tx_list_map,
1919	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1920
1921	/* Issue a transmit command. */
1922	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1923
1924	sc->vge_ldata.vge_tx_prodidx = idx;
1925
1926	/*
1927	 * Use the countdown timer for interrupt moderation.
1928	 * 'TX done' interrupts are disabled. Instead, we reset the
1929	 * countdown timer, which will begin counting until it hits
1930	 * the value in the SSTIMER register, and then trigger an
1931	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1932	 * the timer count is reloaded. Only when the transmitter
1933	 * is idle will the timer hit 0 and an interrupt fire.
1934	 */
1935	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1936
1937	VGE_UNLOCK(sc);
1938
1939	/*
1940	 * Set a timeout in case the chip goes out to lunch.
1941	 */
1942	ifp->if_timer = 5;
1943
1944	return;
1945}
1946
1947static void
1948vge_init(xsc)
1949	void			*xsc;
1950{
1951	struct vge_softc	*sc = xsc;
1952	struct ifnet		*ifp = sc->vge_ifp;
1953	struct mii_data		*mii;
1954	int			i;
1955
1956	VGE_LOCK(sc);
1957	mii = device_get_softc(sc->vge_miibus);
1958
1959	/*
1960	 * Cancel pending I/O and free all RX/TX buffers.
1961	 */
1962	vge_stop(sc);
1963	vge_reset(sc);
1964
1965	/*
1966	 * Initialize the RX and TX descriptors and mbufs.
1967	 */
1968
1969	vge_rx_list_init(sc);
1970	vge_tx_list_init(sc);
1971
1972	/* Set our station address */
1973	for (i = 0; i < ETHER_ADDR_LEN; i++)
1974		CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(sc->vge_ifp)[i]);
1975
1976	/*
1977	 * Set receive FIFO threshold. Also allow transmission and
1978	 * reception of VLAN tagged frames.
1979	 */
1980	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1981	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1982
1983	/* Set DMA burst length */
1984	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1985	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1986
1987	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1988
1989	/* Set collision backoff algorithm */
1990	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1991	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1992	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1993
1994	/* Disable LPSEL field in priority resolution */
1995	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1996
1997	/*
1998	 * Load the addresses of the DMA queues into the chip.
1999	 * Note that we only use one transmit queue.
2000	 */
2001
2002	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2003	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2004	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2005
2006	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2007	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2008	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2009	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2010
2011	/* Enable and wake up the RX descriptor queue */
2012	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2013	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2014
2015	/* Enable the TX descriptor queue */
2016	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2017
2018	/* Set up the receive filter -- allow large frames for VLANs. */
2019	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2020
2021	/* If we want promiscuous mode, set the allframes bit. */
2022	if (ifp->if_flags & IFF_PROMISC) {
2023		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2024	}
2025
2026	/* Set capture broadcast bit to capture broadcast frames. */
2027	if (ifp->if_flags & IFF_BROADCAST) {
2028		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2029	}
2030
2031	/* Set multicast bit to capture multicast frames. */
2032	if (ifp->if_flags & IFF_MULTICAST) {
2033		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2034	}
2035
2036	/* Init the cam filter. */
2037	vge_cam_clear(sc);
2038
2039	/* Init the multicast filter. */
2040	vge_setmulti(sc);
2041
2042	/* Enable flow control */
2043
2044	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2045
2046	/* Enable jumbo frame reception (if desired) */
2047
2048	/* Start the MAC. */
2049	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2050	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2051	CSR_WRITE_1(sc, VGE_CRS0,
2052	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2053
2054	/*
2055	 * Configure one-shot timer for microsecond
2056	 * resulution and load it for 500 usecs.
2057	 */
2058	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2059	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2060
2061	/*
2062	 * Configure interrupt moderation for receive. Enable
2063	 * the holdoff counter and load it, and set the RX
2064	 * suppression count to the number of descriptors we
2065	 * want to allow before triggering an interrupt.
2066	 * The holdoff timer is in units of 20 usecs.
2067	 */
2068
2069#ifdef notyet
2070	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2071	/* Select the interrupt holdoff timer page. */
2072	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2073	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2074	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2075
2076	/* Enable use of the holdoff timer. */
2077	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2078	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2079
2080	/* Select the RX suppression threshold page. */
2081	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2082	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2083	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2084
2085	/* Restore the page select bits. */
2086	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2087	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2088#endif
2089
2090#ifdef DEVICE_POLLING
2091	/*
2092	 * Disable interrupts if we are polling.
2093	 */
2094	if (ifp->if_capenable & IFCAP_POLLING) {
2095		CSR_WRITE_4(sc, VGE_IMR, 0);
2096		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2097	} else	/* otherwise ... */
2098#endif
2099	{
2100	/*
2101	 * Enable interrupts.
2102	 */
2103		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2104		CSR_WRITE_4(sc, VGE_ISR, 0);
2105		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2106	}
2107
2108	mii_mediachg(mii);
2109
2110	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2111	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2112
2113	sc->vge_if_flags = 0;
2114	sc->vge_link = 0;
2115
2116	VGE_UNLOCK(sc);
2117
2118	return;
2119}
2120
2121/*
2122 * Set media options.
2123 */
2124static int
2125vge_ifmedia_upd(ifp)
2126	struct ifnet		*ifp;
2127{
2128	struct vge_softc	*sc;
2129	struct mii_data		*mii;
2130
2131	sc = ifp->if_softc;
2132	mii = device_get_softc(sc->vge_miibus);
2133	mii_mediachg(mii);
2134
2135	return (0);
2136}
2137
2138/*
2139 * Report current media status.
2140 */
2141static void
2142vge_ifmedia_sts(ifp, ifmr)
2143	struct ifnet		*ifp;
2144	struct ifmediareq	*ifmr;
2145{
2146	struct vge_softc	*sc;
2147	struct mii_data		*mii;
2148
2149	sc = ifp->if_softc;
2150	mii = device_get_softc(sc->vge_miibus);
2151
2152	mii_pollstat(mii);
2153	ifmr->ifm_active = mii->mii_media_active;
2154	ifmr->ifm_status = mii->mii_media_status;
2155
2156	return;
2157}
2158
2159static void
2160vge_miibus_statchg(dev)
2161	device_t		dev;
2162{
2163	struct vge_softc	*sc;
2164	struct mii_data		*mii;
2165	struct ifmedia_entry	*ife;
2166
2167	sc = device_get_softc(dev);
2168	mii = device_get_softc(sc->vge_miibus);
2169	ife = mii->mii_media.ifm_cur;
2170
2171	/*
2172	 * If the user manually selects a media mode, we need to turn
2173	 * on the forced MAC mode bit in the DIAGCTL register. If the
2174	 * user happens to choose a full duplex mode, we also need to
2175	 * set the 'force full duplex' bit. This applies only to
2176	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2177	 * mode is disabled, and in 1000baseT mode, full duplex is
2178	 * always implied, so we turn on the forced mode bit but leave
2179	 * the FDX bit cleared.
2180	 */
2181
2182	switch (IFM_SUBTYPE(ife->ifm_media)) {
2183	case IFM_AUTO:
2184		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2185		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2186		break;
2187	case IFM_1000_T:
2188		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2189		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2190		break;
2191	case IFM_100_TX:
2192	case IFM_10_T:
2193		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2194		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2195			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2196		} else {
2197			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2198		}
2199		break;
2200	default:
2201		device_printf(dev, "unknown media type: %x\n",
2202		    IFM_SUBTYPE(ife->ifm_media));
2203		break;
2204	}
2205
2206	return;
2207}
2208
2209static int
2210vge_ioctl(ifp, command, data)
2211	struct ifnet		*ifp;
2212	u_long			command;
2213	caddr_t			data;
2214{
2215	struct vge_softc	*sc = ifp->if_softc;
2216	struct ifreq		*ifr = (struct ifreq *) data;
2217	struct mii_data		*mii;
2218	int			error = 0;
2219
2220	switch (command) {
2221	case SIOCSIFMTU:
2222		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2223			error = EINVAL;
2224		ifp->if_mtu = ifr->ifr_mtu;
2225		break;
2226	case SIOCSIFFLAGS:
2227		if (ifp->if_flags & IFF_UP) {
2228			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2229			    ifp->if_flags & IFF_PROMISC &&
2230			    !(sc->vge_if_flags & IFF_PROMISC)) {
2231				CSR_SETBIT_1(sc, VGE_RXCTL,
2232				    VGE_RXCTL_RX_PROMISC);
2233				vge_setmulti(sc);
2234			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2235			    !(ifp->if_flags & IFF_PROMISC) &&
2236			    sc->vge_if_flags & IFF_PROMISC) {
2237				CSR_CLRBIT_1(sc, VGE_RXCTL,
2238				    VGE_RXCTL_RX_PROMISC);
2239				vge_setmulti(sc);
2240                        } else
2241				vge_init(sc);
2242		} else {
2243			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2244				vge_stop(sc);
2245		}
2246		sc->vge_if_flags = ifp->if_flags;
2247		break;
2248	case SIOCADDMULTI:
2249	case SIOCDELMULTI:
2250		vge_setmulti(sc);
2251		break;
2252	case SIOCGIFMEDIA:
2253	case SIOCSIFMEDIA:
2254		mii = device_get_softc(sc->vge_miibus);
2255		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2256		break;
2257	case SIOCSIFCAP:
2258	    {
2259		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2260#ifdef DEVICE_POLLING
2261		if (mask & IFCAP_POLLING) {
2262			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2263				error = ether_poll_register(vge_poll, ifp);
2264				if (error)
2265					return(error);
2266				VGE_LOCK(sc);
2267					/* Disable interrupts */
2268				CSR_WRITE_4(sc, VGE_IMR, 0);
2269				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2270				ifp->if_capenable |= IFCAP_POLLING;
2271				VGE_UNLOCK(sc);
2272			} else {
2273				error = ether_poll_deregister(ifp);
2274				/* Enable interrupts. */
2275				VGE_LOCK(sc);
2276				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2277				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2278				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2279				ifp->if_capenable &= ~IFCAP_POLLING;
2280				VGE_UNLOCK(sc);
2281			}
2282		}
2283#endif /* DEVICE_POLLING */
2284		if (mask & IFCAP_HWCSUM) {
2285			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2286			if (ifp->if_capenable & IFCAP_TXCSUM)
2287				ifp->if_hwassist = VGE_CSUM_FEATURES;
2288			else
2289				ifp->if_hwassist = 0;
2290			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2291				vge_init(sc);
2292		}
2293	    }
2294		break;
2295	default:
2296		error = ether_ioctl(ifp, command, data);
2297		break;
2298	}
2299
2300	return (error);
2301}
2302
2303static void
2304vge_watchdog(ifp)
2305	struct ifnet		*ifp;
2306{
2307	struct vge_softc		*sc;
2308
2309	sc = ifp->if_softc;
2310	VGE_LOCK(sc);
2311	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2312	ifp->if_oerrors++;
2313
2314	vge_txeof(sc);
2315	vge_rxeof(sc);
2316
2317	vge_init(sc);
2318
2319	VGE_UNLOCK(sc);
2320
2321	return;
2322}
2323
2324/*
2325 * Stop the adapter and free any mbufs allocated to the
2326 * RX and TX lists.
2327 */
2328static void
2329vge_stop(sc)
2330	struct vge_softc		*sc;
2331{
2332	register int		i;
2333	struct ifnet		*ifp;
2334
2335	VGE_LOCK(sc);
2336	ifp = sc->vge_ifp;
2337	ifp->if_timer = 0;
2338
2339	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2340
2341	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2342	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2343	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2344	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2345	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2346	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2347
2348	if (sc->vge_head != NULL) {
2349		m_freem(sc->vge_head);
2350		sc->vge_head = sc->vge_tail = NULL;
2351	}
2352
2353	/* Free the TX list buffers. */
2354
2355	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2356		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2357			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2358			    sc->vge_ldata.vge_tx_dmamap[i]);
2359			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2360			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2361		}
2362	}
2363
2364	/* Free the RX list buffers. */
2365
2366	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2367		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2368			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2369			    sc->vge_ldata.vge_rx_dmamap[i]);
2370			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2371			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2372		}
2373	}
2374
2375	VGE_UNLOCK(sc);
2376
2377	return;
2378}
2379
2380/*
2381 * Device suspend routine.  Stop the interface and save some PCI
2382 * settings in case the BIOS doesn't restore them properly on
2383 * resume.
2384 */
2385static int
2386vge_suspend(dev)
2387	device_t		dev;
2388{
2389	struct vge_softc	*sc;
2390
2391	sc = device_get_softc(dev);
2392
2393	vge_stop(sc);
2394
2395	sc->suspended = 1;
2396
2397	return (0);
2398}
2399
2400/*
2401 * Device resume routine.  Restore some PCI settings in case the BIOS
2402 * doesn't, re-enable busmastering, and restart the interface if
2403 * appropriate.
2404 */
2405static int
2406vge_resume(dev)
2407	device_t		dev;
2408{
2409	struct vge_softc	*sc;
2410	struct ifnet		*ifp;
2411
2412	sc = device_get_softc(dev);
2413	ifp = sc->vge_ifp;
2414
2415	/* reenable busmastering */
2416	pci_enable_busmaster(dev);
2417	pci_enable_io(dev, SYS_RES_MEMORY);
2418
2419	/* reinitialize interface if necessary */
2420	if (ifp->if_flags & IFF_UP)
2421		vge_init(sc);
2422
2423	sc->suspended = 0;
2424
2425	return (0);
2426}
2427
2428/*
2429 * Stop all chip I/O so that the kernel's probe routines don't
2430 * get confused by errant DMAs when rebooting.
2431 */
2432static void
2433vge_shutdown(dev)
2434	device_t		dev;
2435{
2436	struct vge_softc		*sc;
2437
2438	sc = device_get_softc(dev);
2439
2440	vge_stop(sc);
2441}
2442