if_vge.c revision 150968
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 150968 2005-10-05 10:09:17Z glebius $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#ifdef HAVE_KERNEL_OPTION_HEADERS
84#include "opt_device_polling.h"
85#endif
86
87#include <sys/param.h>
88#include <sys/endian.h>
89#include <sys/systm.h>
90#include <sys/sockio.h>
91#include <sys/mbuf.h>
92#include <sys/malloc.h>
93#include <sys/module.h>
94#include <sys/kernel.h>
95#include <sys/socket.h>
96#include <sys/taskqueue.h>
97
98#include <net/if.h>
99#include <net/if_arp.h>
100#include <net/ethernet.h>
101#include <net/if_dl.h>
102#include <net/if_media.h>
103#include <net/if_types.h>
104#include <net/if_vlan_var.h>
105
106#include <net/bpf.h>
107
108#include <machine/bus.h>
109#include <machine/resource.h>
110#include <sys/bus.h>
111#include <sys/rman.h>
112
113#include <dev/mii/mii.h>
114#include <dev/mii/miivar.h>
115
116#include <dev/pci/pcireg.h>
117#include <dev/pci/pcivar.h>
118
119MODULE_DEPEND(vge, pci, 1, 1, 1);
120MODULE_DEPEND(vge, ether, 1, 1, 1);
121MODULE_DEPEND(vge, miibus, 1, 1, 1);
122
123/* "controller miibus0" required.  See GENERIC if you get errors here. */
124#include "miibus_if.h"
125
126#include <dev/vge/if_vgereg.h>
127#include <dev/vge/if_vgevar.h>
128
129#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
130
131/*
132 * Various supported device vendors/types and their names.
133 */
134static struct vge_type vge_devs[] = {
135	{ VIA_VENDORID, VIA_DEVICEID_61XX,
136		"VIA Networking Gigabit Ethernet" },
137	{ 0, 0, NULL }
138};
139
140static int vge_probe		(device_t);
141static int vge_attach		(device_t);
142static int vge_detach		(device_t);
143
144static int vge_encap		(struct vge_softc *, struct mbuf *, int);
145
146static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
147static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
148				    bus_size_t, int);
149static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
150				    bus_size_t, int);
151static int vge_allocmem		(device_t, struct vge_softc *);
152static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
153static int vge_rx_list_init	(struct vge_softc *);
154static int vge_tx_list_init	(struct vge_softc *);
155#ifdef VGE_FIXUP_RX
156static __inline void vge_fixup_rx
157				(struct mbuf *);
158#endif
159static void vge_rxeof		(struct vge_softc *);
160static void vge_txeof		(struct vge_softc *);
161static void vge_intr		(void *);
162static void vge_tick		(void *);
163static void vge_tx_task		(void *, int);
164static void vge_start		(struct ifnet *);
165static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
166static void vge_init		(void *);
167static void vge_stop		(struct vge_softc *);
168static void vge_watchdog	(struct ifnet *);
169static int vge_suspend		(device_t);
170static int vge_resume		(device_t);
171static void vge_shutdown	(device_t);
172static int vge_ifmedia_upd	(struct ifnet *);
173static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
174
175#ifdef VGE_EEPROM
176static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
177#endif
178static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
179
180static void vge_miipoll_start	(struct vge_softc *);
181static void vge_miipoll_stop	(struct vge_softc *);
182static int vge_miibus_readreg	(device_t, int, int);
183static int vge_miibus_writereg	(device_t, int, int, int);
184static void vge_miibus_statchg	(device_t);
185
186static void vge_cam_clear	(struct vge_softc *);
187static int vge_cam_set		(struct vge_softc *, uint8_t *);
188#if __FreeBSD_version < 502113
189static uint32_t vge_mchash	(uint8_t *);
190#endif
191static void vge_setmulti	(struct vge_softc *);
192static void vge_reset		(struct vge_softc *);
193
194#define VGE_PCI_LOIO             0x10
195#define VGE_PCI_LOMEM            0x14
196
197static device_method_t vge_methods[] = {
198	/* Device interface */
199	DEVMETHOD(device_probe,		vge_probe),
200	DEVMETHOD(device_attach,	vge_attach),
201	DEVMETHOD(device_detach,	vge_detach),
202	DEVMETHOD(device_suspend,	vge_suspend),
203	DEVMETHOD(device_resume,	vge_resume),
204	DEVMETHOD(device_shutdown,	vge_shutdown),
205
206	/* bus interface */
207	DEVMETHOD(bus_print_child,	bus_generic_print_child),
208	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
209
210	/* MII interface */
211	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
212	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
213	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
214
215	{ 0, 0 }
216};
217
218static driver_t vge_driver = {
219	"vge",
220	vge_methods,
221	sizeof(struct vge_softc)
222};
223
224static devclass_t vge_devclass;
225
226DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
227DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
228DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229
230#ifdef VGE_EEPROM
231/*
232 * Read a word of data stored in the EEPROM at address 'addr.'
233 */
234static void
235vge_eeprom_getword(sc, addr, dest)
236	struct vge_softc	*sc;
237	int			addr;
238	u_int16_t		*dest;
239{
240	register int		i;
241	u_int16_t		word = 0;
242
243	/*
244	 * Enter EEPROM embedded programming mode. In order to
245	 * access the EEPROM at all, we first have to set the
246	 * EELOAD bit in the CHIPCFG2 register.
247	 */
248	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
249	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
250
251	/* Select the address of the word we want to read */
252	CSR_WRITE_1(sc, VGE_EEADDR, addr);
253
254	/* Issue read command */
255	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
256
257	/* Wait for the done bit to be set. */
258	for (i = 0; i < VGE_TIMEOUT; i++) {
259		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
260			break;
261	}
262
263	if (i == VGE_TIMEOUT) {
264		device_printf(sc->vge_dev, "EEPROM read timed out\n");
265		*dest = 0;
266		return;
267	}
268
269	/* Read the result */
270	word = CSR_READ_2(sc, VGE_EERDDAT);
271
272	/* Turn off EEPROM access mode. */
273	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
274	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
275
276	*dest = word;
277
278	return;
279}
280#endif
281
282/*
283 * Read a sequence of words from the EEPROM.
284 */
285static void
286vge_read_eeprom(sc, dest, off, cnt, swap)
287	struct vge_softc	*sc;
288	caddr_t			dest;
289	int			off;
290	int			cnt;
291	int			swap;
292{
293	int			i;
294#ifdef VGE_EEPROM
295	u_int16_t		word = 0, *ptr;
296
297	for (i = 0; i < cnt; i++) {
298		vge_eeprom_getword(sc, off + i, &word);
299		ptr = (u_int16_t *)(dest + (i * 2));
300		if (swap)
301			*ptr = ntohs(word);
302		else
303			*ptr = word;
304	}
305#else
306	for (i = 0; i < ETHER_ADDR_LEN; i++)
307		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
308#endif
309}
310
311static void
312vge_miipoll_stop(sc)
313	struct vge_softc	*sc;
314{
315	int			i;
316
317	CSR_WRITE_1(sc, VGE_MIICMD, 0);
318
319	for (i = 0; i < VGE_TIMEOUT; i++) {
320		DELAY(1);
321		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
322			break;
323	}
324
325	if (i == VGE_TIMEOUT)
326		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
327
328	return;
329}
330
331static void
332vge_miipoll_start(sc)
333	struct vge_softc	*sc;
334{
335	int			i;
336
337	/* First, make sure we're idle. */
338
339	CSR_WRITE_1(sc, VGE_MIICMD, 0);
340	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
341
342	for (i = 0; i < VGE_TIMEOUT; i++) {
343		DELAY(1);
344		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
345			break;
346	}
347
348	if (i == VGE_TIMEOUT) {
349		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
350		return;
351	}
352
353	/* Now enable auto poll mode. */
354
355	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
356
357	/* And make sure it started. */
358
359	for (i = 0; i < VGE_TIMEOUT; i++) {
360		DELAY(1);
361		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
362			break;
363	}
364
365	if (i == VGE_TIMEOUT)
366		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
367
368	return;
369}
370
371static int
372vge_miibus_readreg(dev, phy, reg)
373	device_t		dev;
374	int			phy, reg;
375{
376	struct vge_softc	*sc;
377	int			i;
378	u_int16_t		rval = 0;
379
380	sc = device_get_softc(dev);
381
382	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
383		return(0);
384
385	VGE_LOCK(sc);
386	vge_miipoll_stop(sc);
387
388	/* Specify the register we want to read. */
389	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
390
391	/* Issue read command. */
392	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
393
394	/* Wait for the read command bit to self-clear. */
395	for (i = 0; i < VGE_TIMEOUT; i++) {
396		DELAY(1);
397		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
398			break;
399	}
400
401	if (i == VGE_TIMEOUT)
402		device_printf(sc->vge_dev, "MII read timed out\n");
403	else
404		rval = CSR_READ_2(sc, VGE_MIIDATA);
405
406	vge_miipoll_start(sc);
407	VGE_UNLOCK(sc);
408
409	return (rval);
410}
411
412static int
413vge_miibus_writereg(dev, phy, reg, data)
414	device_t		dev;
415	int			phy, reg, data;
416{
417	struct vge_softc	*sc;
418	int			i, rval = 0;
419
420	sc = device_get_softc(dev);
421
422	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
423		return(0);
424
425	VGE_LOCK(sc);
426	vge_miipoll_stop(sc);
427
428	/* Specify the register we want to write. */
429	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
430
431	/* Specify the data we want to write. */
432	CSR_WRITE_2(sc, VGE_MIIDATA, data);
433
434	/* Issue write command. */
435	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
436
437	/* Wait for the write command bit to self-clear. */
438	for (i = 0; i < VGE_TIMEOUT; i++) {
439		DELAY(1);
440		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
441			break;
442	}
443
444	if (i == VGE_TIMEOUT) {
445		device_printf(sc->vge_dev, "MII write timed out\n");
446		rval = EIO;
447	}
448
449	vge_miipoll_start(sc);
450	VGE_UNLOCK(sc);
451
452	return (rval);
453}
454
455static void
456vge_cam_clear(sc)
457	struct vge_softc	*sc;
458{
459	int			i;
460
461	/*
462	 * Turn off all the mask bits. This tells the chip
463	 * that none of the entries in the CAM filter are valid.
464	 * desired entries will be enabled as we fill the filter in.
465	 */
466
467	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
468	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
469	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
470	for (i = 0; i < 8; i++)
471		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
472
473	/* Clear the VLAN filter too. */
474
475	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
476	for (i = 0; i < 8; i++)
477		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
478
479	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
480	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
481	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
482
483	sc->vge_camidx = 0;
484
485	return;
486}
487
488static int
489vge_cam_set(sc, addr)
490	struct vge_softc	*sc;
491	uint8_t			*addr;
492{
493	int			i, error = 0;
494
495	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
496		return(ENOSPC);
497
498	/* Select the CAM data page. */
499	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
500	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
501
502	/* Set the filter entry we want to update and enable writing. */
503	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
504
505	/* Write the address to the CAM registers */
506	for (i = 0; i < ETHER_ADDR_LEN; i++)
507		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
508
509	/* Issue a write command. */
510	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
511
512	/* Wake for it to clear. */
513	for (i = 0; i < VGE_TIMEOUT; i++) {
514		DELAY(1);
515		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
516			break;
517	}
518
519	if (i == VGE_TIMEOUT) {
520		device_printf(sc->vge_dev, "setting CAM filter failed\n");
521		error = EIO;
522		goto fail;
523	}
524
525	/* Select the CAM mask page. */
526	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
527	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
528
529	/* Set the mask bit that enables this filter. */
530	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
531	    1<<(sc->vge_camidx & 7));
532
533	sc->vge_camidx++;
534
535fail:
536	/* Turn off access to CAM. */
537	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
538	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
539	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
540
541	return (error);
542}
543
544#if __FreeBSD_version < 502113
545static uint32_t
546vge_mchash(addr)
547        uint8_t			*addr;
548{
549	uint32_t		crc, carry;
550	int			idx, bit;
551	uint8_t			data;
552
553	/* Compute CRC for the address value. */
554	crc = 0xFFFFFFFF; /* initial value */
555
556	for (idx = 0; idx < 6; idx++) {
557		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
558			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
559			crc <<= 1;
560			if (carry)
561				crc = (crc ^ 0x04c11db6) | carry;
562		}
563	}
564
565	return(crc);
566}
567#endif
568
569/*
570 * Program the multicast filter. We use the 64-entry CAM filter
571 * for perfect filtering. If there's more than 64 multicast addresses,
572 * we use the hash filter insted.
573 */
574static void
575vge_setmulti(sc)
576	struct vge_softc	*sc;
577{
578	struct ifnet		*ifp;
579	int			error = 0/*, h = 0*/;
580	struct ifmultiaddr	*ifma;
581	u_int32_t		h, hashes[2] = { 0, 0 };
582
583	ifp = sc->vge_ifp;
584
585	/* First, zot all the multicast entries. */
586	vge_cam_clear(sc);
587	CSR_WRITE_4(sc, VGE_MAR0, 0);
588	CSR_WRITE_4(sc, VGE_MAR1, 0);
589
590	/*
591	 * If the user wants allmulti or promisc mode, enable reception
592	 * of all multicast frames.
593	 */
594	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
595		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
596		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
597		return;
598	}
599
600	/* Now program new ones */
601	IF_ADDR_LOCK(ifp);
602	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603		if (ifma->ifma_addr->sa_family != AF_LINK)
604			continue;
605		error = vge_cam_set(sc,
606		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
607		if (error)
608			break;
609	}
610
611	/* If there were too many addresses, use the hash filter. */
612	if (error) {
613		vge_cam_clear(sc);
614
615		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
616			if (ifma->ifma_addr->sa_family != AF_LINK)
617				continue;
618#if __FreeBSD_version < 502113
619			h = vge_mchash(LLADDR((struct sockaddr_dl *)
620			    ifma->ifma_addr)) >> 26;
621#else
622			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624#endif
625			if (h < 32)
626				hashes[0] |= (1 << h);
627			else
628				hashes[1] |= (1 << (h - 32));
629		}
630
631		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
632		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
633	}
634	IF_ADDR_UNLOCK(ifp);
635
636	return;
637}
638
639static void
640vge_reset(sc)
641	struct vge_softc		*sc;
642{
643	register int		i;
644
645	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
646
647	for (i = 0; i < VGE_TIMEOUT; i++) {
648		DELAY(5);
649		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
650			break;
651	}
652
653	if (i == VGE_TIMEOUT) {
654		device_printf(sc->vge_dev, "soft reset timed out");
655		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
656		DELAY(2000);
657	}
658
659	DELAY(5000);
660
661	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
662
663	for (i = 0; i < VGE_TIMEOUT; i++) {
664		DELAY(5);
665		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
666			break;
667	}
668
669	if (i == VGE_TIMEOUT) {
670		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
671		return;
672	}
673
674	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
675
676	return;
677}
678
679/*
680 * Probe for a VIA gigabit chip. Check the PCI vendor and device
681 * IDs against our list and return a device name if we find a match.
682 */
683static int
684vge_probe(dev)
685	device_t		dev;
686{
687	struct vge_type		*t;
688	struct vge_softc	*sc;
689
690	t = vge_devs;
691	sc = device_get_softc(dev);
692
693	while (t->vge_name != NULL) {
694		if ((pci_get_vendor(dev) == t->vge_vid) &&
695		    (pci_get_device(dev) == t->vge_did)) {
696			device_set_desc(dev, t->vge_name);
697			return (BUS_PROBE_DEFAULT);
698		}
699		t++;
700	}
701
702	return (ENXIO);
703}
704
705static void
706vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
707	void			*arg;
708	bus_dma_segment_t	*segs;
709	int			nseg;
710	bus_size_t		mapsize;
711	int			error;
712{
713
714	struct vge_dmaload_arg	*ctx;
715	struct vge_rx_desc	*d = NULL;
716
717	if (error)
718		return;
719
720	ctx = arg;
721
722	/* Signal error to caller if there's too many segments */
723	if (nseg > ctx->vge_maxsegs) {
724		ctx->vge_maxsegs = 0;
725		return;
726	}
727
728	/*
729	 * Map the segment array into descriptors.
730	 */
731
732	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
733
734	/* If this descriptor is still owned by the chip, bail. */
735
736	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
737		device_printf(ctx->sc->vge_dev,
738		    "tried to map busy descriptor\n");
739		ctx->vge_maxsegs = 0;
740		return;
741	}
742
743	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
744	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
745	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
746	d->vge_sts = 0;
747	d->vge_ctl = 0;
748
749	ctx->vge_maxsegs = 1;
750
751	return;
752}
753
754static void
755vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
756	void			*arg;
757	bus_dma_segment_t	*segs;
758	int			nseg;
759	bus_size_t		mapsize;
760	int			error;
761{
762	struct vge_dmaload_arg	*ctx;
763	struct vge_tx_desc	*d = NULL;
764	struct vge_tx_frag	*f;
765	int			i = 0;
766
767	if (error)
768		return;
769
770	ctx = arg;
771
772	/* Signal error to caller if there's too many segments */
773	if (nseg > ctx->vge_maxsegs) {
774		ctx->vge_maxsegs = 0;
775		return;
776	}
777
778	/* Map the segment array into descriptors. */
779
780	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
781
782	/* If this descriptor is still owned by the chip, bail. */
783
784	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
785		ctx->vge_maxsegs = 0;
786		return;
787	}
788
789	for (i = 0; i < nseg; i++) {
790		f = &d->vge_frag[i];
791		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
792		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
793		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
794	}
795
796	/* Argh. This chip does not autopad short frames */
797
798	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
799		f = &d->vge_frag[i];
800		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
801		    ctx->vge_m0->m_pkthdr.len));
802		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
803		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
804		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
805		i++;
806	}
807
808	/*
809	 * When telling the chip how many segments there are, we
810	 * must use nsegs + 1 instead of just nsegs. Darned if I
811	 * know why.
812	 */
813	i++;
814
815	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
816	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
817
818	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
819		d->vge_ctl |= VGE_TDCTL_JUMBO;
820
821	ctx->vge_maxsegs = nseg;
822
823	return;
824}
825
826/*
827 * Map a single buffer address.
828 */
829
830static void
831vge_dma_map_addr(arg, segs, nseg, error)
832	void			*arg;
833	bus_dma_segment_t	*segs;
834	int			nseg;
835	int			error;
836{
837	bus_addr_t		*addr;
838
839	if (error)
840		return;
841
842	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
843	addr = arg;
844	*addr = segs->ds_addr;
845
846	return;
847}
848
849static int
850vge_allocmem(dev, sc)
851	device_t		dev;
852	struct vge_softc		*sc;
853{
854	int			error;
855	int			nseg;
856	int			i;
857
858	/*
859	 * Allocate map for RX mbufs.
860	 */
861	nseg = 32;
862	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
863	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
864	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
865	    NULL, NULL, &sc->vge_ldata.vge_mtag);
866	if (error) {
867		device_printf(dev, "could not allocate dma tag\n");
868		return (ENOMEM);
869	}
870
871	/*
872	 * Allocate map for TX descriptor list.
873	 */
874	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
875	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
876	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
877	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
878	if (error) {
879		device_printf(dev, "could not allocate dma tag\n");
880		return (ENOMEM);
881	}
882
883	/* Allocate DMA'able memory for the TX ring */
884
885	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
886	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
887	    &sc->vge_ldata.vge_tx_list_map);
888	if (error)
889		return (ENOMEM);
890
891	/* Load the map for the TX ring. */
892
893	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
894	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
895	     VGE_TX_LIST_SZ, vge_dma_map_addr,
896	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
897
898	/* Create DMA maps for TX buffers */
899
900	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
901		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
902			    &sc->vge_ldata.vge_tx_dmamap[i]);
903		if (error) {
904			device_printf(dev, "can't create DMA map for TX\n");
905			return (ENOMEM);
906		}
907	}
908
909	/*
910	 * Allocate map for RX descriptor list.
911	 */
912	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
913	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
914	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
915	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
916	if (error) {
917		device_printf(dev, "could not allocate dma tag\n");
918		return (ENOMEM);
919	}
920
921	/* Allocate DMA'able memory for the RX ring */
922
923	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
924	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
925	    &sc->vge_ldata.vge_rx_list_map);
926	if (error)
927		return (ENOMEM);
928
929	/* Load the map for the RX ring. */
930
931	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
932	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
933	     VGE_TX_LIST_SZ, vge_dma_map_addr,
934	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
935
936	/* Create DMA maps for RX buffers */
937
938	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
939		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
940			    &sc->vge_ldata.vge_rx_dmamap[i]);
941		if (error) {
942			device_printf(dev, "can't create DMA map for RX\n");
943			return (ENOMEM);
944		}
945	}
946
947	return (0);
948}
949
950/*
951 * Attach the interface. Allocate softc structures, do ifmedia
952 * setup and ethernet/BPF attach.
953 */
954static int
955vge_attach(dev)
956	device_t		dev;
957{
958	u_char			eaddr[ETHER_ADDR_LEN];
959	struct vge_softc	*sc;
960	struct ifnet		*ifp;
961	int			unit, error = 0, rid;
962
963	sc = device_get_softc(dev);
964	unit = device_get_unit(dev);
965	sc->vge_dev = dev;
966
967	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
968	    MTX_DEF | MTX_RECURSE);
969	/*
970	 * Map control/status registers.
971	 */
972	pci_enable_busmaster(dev);
973
974	rid = VGE_PCI_LOMEM;
975	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
976	    0, ~0, 1, RF_ACTIVE);
977
978	if (sc->vge_res == NULL) {
979		printf ("vge%d: couldn't map ports/memory\n", unit);
980		error = ENXIO;
981		goto fail;
982	}
983
984	sc->vge_btag = rman_get_bustag(sc->vge_res);
985	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
986
987	/* Allocate interrupt */
988	rid = 0;
989	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
990	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
991
992	if (sc->vge_irq == NULL) {
993		printf("vge%d: couldn't map interrupt\n", unit);
994		error = ENXIO;
995		goto fail;
996	}
997
998	/* Reset the adapter. */
999	vge_reset(sc);
1000
1001	/*
1002	 * Get station address from the EEPROM.
1003	 */
1004	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1005
1006	sc->vge_unit = unit;
1007
1008#if __FreeBSD_version < 502113
1009	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1010#endif
1011
1012	/*
1013	 * Allocate the parent bus DMA tag appropriate for PCI.
1014	 */
1015#define VGE_NSEG_NEW 32
1016	error = bus_dma_tag_create(NULL,	/* parent */
1017			1, 0,			/* alignment, boundary */
1018			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1019			BUS_SPACE_MAXADDR,	/* highaddr */
1020			NULL, NULL,		/* filter, filterarg */
1021			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1022			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1023			BUS_DMA_ALLOCNOW,	/* flags */
1024			NULL, NULL,		/* lockfunc, lockarg */
1025			&sc->vge_parent_tag);
1026	if (error)
1027		goto fail;
1028
1029	error = vge_allocmem(dev, sc);
1030
1031	if (error)
1032		goto fail;
1033
1034	ifp = sc->vge_ifp = if_alloc(IFT_ETHER);
1035	if (ifp == NULL) {
1036		printf("vge%d: can not if_alloc()\n", sc->vge_unit);
1037		error = ENOSPC;
1038		goto fail;
1039	}
1040
1041	/* Do MII setup */
1042	if (mii_phy_probe(dev, &sc->vge_miibus,
1043	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1044		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1045		error = ENXIO;
1046		goto fail;
1047	}
1048
1049	ifp->if_softc = sc;
1050	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1051	ifp->if_mtu = ETHERMTU;
1052	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1053	ifp->if_ioctl = vge_ioctl;
1054	ifp->if_capabilities = IFCAP_VLAN_MTU;
1055	ifp->if_start = vge_start;
1056	ifp->if_hwassist = VGE_CSUM_FEATURES;
1057	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1058	ifp->if_capenable = ifp->if_capabilities;
1059#ifdef DEVICE_POLLING
1060	ifp->if_capabilities |= IFCAP_POLLING;
1061#endif
1062	ifp->if_watchdog = vge_watchdog;
1063	ifp->if_init = vge_init;
1064	ifp->if_baudrate = 1000000000;
1065	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1066
1067	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1068
1069	/*
1070	 * Call MI attach routine.
1071	 */
1072	ether_ifattach(ifp, eaddr);
1073
1074	/* Hook interrupt last to avoid having to lock softc */
1075	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1076	    vge_intr, sc, &sc->vge_intrhand);
1077
1078	if (error) {
1079		printf("vge%d: couldn't set up irq\n", unit);
1080		ether_ifdetach(ifp);
1081		goto fail;
1082	}
1083
1084fail:
1085	if (error)
1086		vge_detach(dev);
1087
1088	return (error);
1089}
1090
1091/*
1092 * Shutdown hardware and free up resources. This can be called any
1093 * time after the mutex has been initialized. It is called in both
1094 * the error case in attach and the normal detach case so it needs
1095 * to be careful about only freeing resources that have actually been
1096 * allocated.
1097 */
1098static int
1099vge_detach(dev)
1100	device_t		dev;
1101{
1102	struct vge_softc		*sc;
1103	struct ifnet		*ifp;
1104	int			i;
1105
1106	sc = device_get_softc(dev);
1107	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1108	ifp = sc->vge_ifp;
1109
1110#ifdef DEVICE_POLLING
1111	if (ifp->if_capenable & IFCAP_POLLING)
1112		ether_poll_deregister(ifp);
1113#endif
1114
1115	/* These should only be active if attach succeeded */
1116	if (device_is_attached(dev)) {
1117		vge_stop(sc);
1118		/*
1119		 * Force off the IFF_UP flag here, in case someone
1120		 * still had a BPF descriptor attached to this
1121		 * interface. If they do, ether_ifattach() will cause
1122		 * the BPF code to try and clear the promisc mode
1123		 * flag, which will bubble down to vge_ioctl(),
1124		 * which will try to call vge_init() again. This will
1125		 * turn the NIC back on and restart the MII ticker,
1126		 * which will panic the system when the kernel tries
1127		 * to invoke the vge_tick() function that isn't there
1128		 * anymore.
1129		 */
1130		ifp->if_flags &= ~IFF_UP;
1131		ether_ifdetach(ifp);
1132	}
1133	if (sc->vge_miibus)
1134		device_delete_child(dev, sc->vge_miibus);
1135	bus_generic_detach(dev);
1136
1137	if (sc->vge_intrhand)
1138		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1139	if (sc->vge_irq)
1140		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1141	if (sc->vge_res)
1142		bus_release_resource(dev, SYS_RES_MEMORY,
1143		    VGE_PCI_LOMEM, sc->vge_res);
1144	if (ifp)
1145		if_free(ifp);
1146
1147	/* Unload and free the RX DMA ring memory and map */
1148
1149	if (sc->vge_ldata.vge_rx_list_tag) {
1150		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1151		    sc->vge_ldata.vge_rx_list_map);
1152		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1153		    sc->vge_ldata.vge_rx_list,
1154		    sc->vge_ldata.vge_rx_list_map);
1155		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1156	}
1157
1158	/* Unload and free the TX DMA ring memory and map */
1159
1160	if (sc->vge_ldata.vge_tx_list_tag) {
1161		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1162		    sc->vge_ldata.vge_tx_list_map);
1163		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1164		    sc->vge_ldata.vge_tx_list,
1165		    sc->vge_ldata.vge_tx_list_map);
1166		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1167	}
1168
1169	/* Destroy all the RX and TX buffer maps */
1170
1171	if (sc->vge_ldata.vge_mtag) {
1172		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1173			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1174			    sc->vge_ldata.vge_tx_dmamap[i]);
1175		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1176			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1177			    sc->vge_ldata.vge_rx_dmamap[i]);
1178		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1179	}
1180
1181	if (sc->vge_parent_tag)
1182		bus_dma_tag_destroy(sc->vge_parent_tag);
1183
1184	mtx_destroy(&sc->vge_mtx);
1185
1186	return (0);
1187}
1188
1189static int
1190vge_newbuf(sc, idx, m)
1191	struct vge_softc	*sc;
1192	int			idx;
1193	struct mbuf		*m;
1194{
1195	struct vge_dmaload_arg	arg;
1196	struct mbuf		*n = NULL;
1197	int			i, error;
1198
1199	if (m == NULL) {
1200		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1201		if (n == NULL)
1202			return (ENOBUFS);
1203		m = n;
1204	} else
1205		m->m_data = m->m_ext.ext_buf;
1206
1207
1208#ifdef VGE_FIXUP_RX
1209	/*
1210	 * This is part of an evil trick to deal with non-x86 platforms.
1211	 * The VIA chip requires RX buffers to be aligned on 32-bit
1212	 * boundaries, but that will hose non-x86 machines. To get around
1213	 * this, we leave some empty space at the start of each buffer
1214	 * and for non-x86 hosts, we copy the buffer back two bytes
1215	 * to achieve word alignment. This is slightly more efficient
1216	 * than allocating a new buffer, copying the contents, and
1217	 * discarding the old buffer.
1218	 */
1219	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1220	m_adj(m, VGE_ETHER_ALIGN);
1221#else
1222	m->m_len = m->m_pkthdr.len = MCLBYTES;
1223#endif
1224
1225	arg.sc = sc;
1226	arg.vge_idx = idx;
1227	arg.vge_maxsegs = 1;
1228	arg.vge_flags = 0;
1229
1230	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1231	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1232	    &arg, BUS_DMA_NOWAIT);
1233	if (error || arg.vge_maxsegs != 1) {
1234		if (n != NULL)
1235			m_freem(n);
1236		return (ENOMEM);
1237	}
1238
1239	/*
1240	 * Note: the manual fails to document the fact that for
1241	 * proper opration, the driver needs to replentish the RX
1242	 * DMA ring 4 descriptors at a time (rather than one at a
1243	 * time, like most chips). We can allocate the new buffers
1244	 * but we should not set the OWN bits until we're ready
1245	 * to hand back 4 of them in one shot.
1246	 */
1247
1248#define VGE_RXCHUNK 4
1249	sc->vge_rx_consumed++;
1250	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1251		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1252			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1253			    htole32(VGE_RDSTS_OWN);
1254		sc->vge_rx_consumed = 0;
1255	}
1256
1257	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1258
1259	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1260	    sc->vge_ldata.vge_rx_dmamap[idx],
1261	    BUS_DMASYNC_PREREAD);
1262
1263	return (0);
1264}
1265
1266static int
1267vge_tx_list_init(sc)
1268	struct vge_softc		*sc;
1269{
1270	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1271	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1272	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1273
1274	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1275	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1276	sc->vge_ldata.vge_tx_prodidx = 0;
1277	sc->vge_ldata.vge_tx_considx = 0;
1278	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1279
1280	return (0);
1281}
1282
1283static int
1284vge_rx_list_init(sc)
1285	struct vge_softc		*sc;
1286{
1287	int			i;
1288
1289	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1290	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1291	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1292
1293	sc->vge_rx_consumed = 0;
1294
1295	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1296		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1297			return (ENOBUFS);
1298	}
1299
1300	/* Flush the RX descriptors */
1301
1302	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1303	    sc->vge_ldata.vge_rx_list_map,
1304	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1305
1306	sc->vge_ldata.vge_rx_prodidx = 0;
1307	sc->vge_rx_consumed = 0;
1308	sc->vge_head = sc->vge_tail = NULL;
1309
1310	return (0);
1311}
1312
1313#ifdef VGE_FIXUP_RX
1314static __inline void
1315vge_fixup_rx(m)
1316	struct mbuf		*m;
1317{
1318	int			i;
1319	uint16_t		*src, *dst;
1320
1321	src = mtod(m, uint16_t *);
1322	dst = src - 1;
1323
1324	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1325		*dst++ = *src++;
1326
1327	m->m_data -= ETHER_ALIGN;
1328
1329	return;
1330}
1331#endif
1332
1333/*
1334 * RX handler. We support the reception of jumbo frames that have
1335 * been fragmented across multiple 2K mbuf cluster buffers.
1336 */
1337static void
1338vge_rxeof(sc)
1339	struct vge_softc	*sc;
1340{
1341	struct mbuf		*m;
1342	struct ifnet		*ifp;
1343	int			i, total_len;
1344	int			lim = 0;
1345	struct vge_rx_desc	*cur_rx;
1346	u_int32_t		rxstat, rxctl;
1347
1348	VGE_LOCK_ASSERT(sc);
1349	ifp = sc->vge_ifp;
1350	i = sc->vge_ldata.vge_rx_prodidx;
1351
1352	/* Invalidate the descriptor memory */
1353
1354	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1355	    sc->vge_ldata.vge_rx_list_map,
1356	    BUS_DMASYNC_POSTREAD);
1357
1358	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1359
1360#ifdef DEVICE_POLLING
1361		if (ifp->if_capenable & IFCAP_POLLING) {
1362			if (sc->rxcycles <= 0)
1363				break;
1364			sc->rxcycles--;
1365		}
1366#endif
1367
1368		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1369		m = sc->vge_ldata.vge_rx_mbuf[i];
1370		total_len = VGE_RXBYTES(cur_rx);
1371		rxstat = le32toh(cur_rx->vge_sts);
1372		rxctl = le32toh(cur_rx->vge_ctl);
1373
1374		/* Invalidate the RX mbuf and unload its map */
1375
1376		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1377		    sc->vge_ldata.vge_rx_dmamap[i],
1378		    BUS_DMASYNC_POSTWRITE);
1379		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1380		    sc->vge_ldata.vge_rx_dmamap[i]);
1381
1382		/*
1383		 * If the 'start of frame' bit is set, this indicates
1384		 * either the first fragment in a multi-fragment receive,
1385		 * or an intermediate fragment. Either way, we want to
1386		 * accumulate the buffers.
1387		 */
1388		if (rxstat & VGE_RXPKT_SOF) {
1389			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1390			if (sc->vge_head == NULL)
1391				sc->vge_head = sc->vge_tail = m;
1392			else {
1393				m->m_flags &= ~M_PKTHDR;
1394				sc->vge_tail->m_next = m;
1395				sc->vge_tail = m;
1396			}
1397			vge_newbuf(sc, i, NULL);
1398			VGE_RX_DESC_INC(i);
1399			continue;
1400		}
1401
1402		/*
1403		 * Bad/error frames will have the RXOK bit cleared.
1404		 * However, there's one error case we want to allow:
1405		 * if a VLAN tagged frame arrives and the chip can't
1406		 * match it against the CAM filter, it considers this
1407		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1408		 * We don't want to drop the frame though: our VLAN
1409		 * filtering is done in software.
1410		 */
1411		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1412		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1413			ifp->if_ierrors++;
1414			/*
1415			 * If this is part of a multi-fragment packet,
1416			 * discard all the pieces.
1417			 */
1418			if (sc->vge_head != NULL) {
1419				m_freem(sc->vge_head);
1420				sc->vge_head = sc->vge_tail = NULL;
1421			}
1422			vge_newbuf(sc, i, m);
1423			VGE_RX_DESC_INC(i);
1424			continue;
1425		}
1426
1427		/*
1428		 * If allocating a replacement mbuf fails,
1429		 * reload the current one.
1430		 */
1431
1432		if (vge_newbuf(sc, i, NULL)) {
1433			ifp->if_ierrors++;
1434			if (sc->vge_head != NULL) {
1435				m_freem(sc->vge_head);
1436				sc->vge_head = sc->vge_tail = NULL;
1437			}
1438			vge_newbuf(sc, i, m);
1439			VGE_RX_DESC_INC(i);
1440			continue;
1441		}
1442
1443		VGE_RX_DESC_INC(i);
1444
1445		if (sc->vge_head != NULL) {
1446			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1447			/*
1448			 * Special case: if there's 4 bytes or less
1449			 * in this buffer, the mbuf can be discarded:
1450			 * the last 4 bytes is the CRC, which we don't
1451			 * care about anyway.
1452			 */
1453			if (m->m_len <= ETHER_CRC_LEN) {
1454				sc->vge_tail->m_len -=
1455				    (ETHER_CRC_LEN - m->m_len);
1456				m_freem(m);
1457			} else {
1458				m->m_len -= ETHER_CRC_LEN;
1459				m->m_flags &= ~M_PKTHDR;
1460				sc->vge_tail->m_next = m;
1461			}
1462			m = sc->vge_head;
1463			sc->vge_head = sc->vge_tail = NULL;
1464			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1465		} else
1466			m->m_pkthdr.len = m->m_len =
1467			    (total_len - ETHER_CRC_LEN);
1468
1469#ifdef VGE_FIXUP_RX
1470		vge_fixup_rx(m);
1471#endif
1472		ifp->if_ipackets++;
1473		m->m_pkthdr.rcvif = ifp;
1474
1475		/* Do RX checksumming if enabled */
1476		if (ifp->if_capenable & IFCAP_RXCSUM) {
1477
1478			/* Check IP header checksum */
1479			if (rxctl & VGE_RDCTL_IPPKT)
1480				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1481			if (rxctl & VGE_RDCTL_IPCSUMOK)
1482				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1483
1484			/* Check TCP/UDP checksum */
1485			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1486			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1487				m->m_pkthdr.csum_flags |=
1488				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1489				m->m_pkthdr.csum_data = 0xffff;
1490			}
1491		}
1492
1493		if (rxstat & VGE_RDSTS_VTAG)
1494			VLAN_INPUT_TAG(ifp, m,
1495			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1496
1497		VGE_UNLOCK(sc);
1498		(*ifp->if_input)(ifp, m);
1499		VGE_LOCK(sc);
1500
1501		lim++;
1502		if (lim == VGE_RX_DESC_CNT)
1503			break;
1504
1505	}
1506
1507	/* Flush the RX DMA ring */
1508
1509	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1510	    sc->vge_ldata.vge_rx_list_map,
1511	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1512
1513	sc->vge_ldata.vge_rx_prodidx = i;
1514	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1515
1516
1517	return;
1518}
1519
1520static void
1521vge_txeof(sc)
1522	struct vge_softc		*sc;
1523{
1524	struct ifnet		*ifp;
1525	u_int32_t		txstat;
1526	int			idx;
1527
1528	ifp = sc->vge_ifp;
1529	idx = sc->vge_ldata.vge_tx_considx;
1530
1531	/* Invalidate the TX descriptor list */
1532
1533	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1534	    sc->vge_ldata.vge_tx_list_map,
1535	    BUS_DMASYNC_POSTREAD);
1536
1537	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1538
1539		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1540		if (txstat & VGE_TDSTS_OWN)
1541			break;
1542
1543		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1544		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1545		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1546		    sc->vge_ldata.vge_tx_dmamap[idx]);
1547		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1548			ifp->if_collisions++;
1549		if (txstat & VGE_TDSTS_TXERR)
1550			ifp->if_oerrors++;
1551		else
1552			ifp->if_opackets++;
1553
1554		sc->vge_ldata.vge_tx_free++;
1555		VGE_TX_DESC_INC(idx);
1556	}
1557
1558	/* No changes made to the TX ring, so no flush needed */
1559
1560	if (idx != sc->vge_ldata.vge_tx_considx) {
1561		sc->vge_ldata.vge_tx_considx = idx;
1562		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1563		ifp->if_timer = 0;
1564	}
1565
1566	/*
1567	 * If not all descriptors have been released reaped yet,
1568	 * reload the timer so that we will eventually get another
1569	 * interrupt that will cause us to re-enter this routine.
1570	 * This is done in case the transmitter has gone idle.
1571	 */
1572	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1573		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1574	}
1575
1576	return;
1577}
1578
1579static void
1580vge_tick(xsc)
1581	void			*xsc;
1582{
1583	struct vge_softc	*sc;
1584	struct ifnet		*ifp;
1585	struct mii_data		*mii;
1586
1587	sc = xsc;
1588	ifp = sc->vge_ifp;
1589	VGE_LOCK(sc);
1590	mii = device_get_softc(sc->vge_miibus);
1591
1592	mii_tick(mii);
1593	if (sc->vge_link) {
1594		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1595			sc->vge_link = 0;
1596			if_link_state_change(sc->vge_ifp,
1597			    LINK_STATE_DOWN);
1598		}
1599	} else {
1600		if (mii->mii_media_status & IFM_ACTIVE &&
1601		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1602			sc->vge_link = 1;
1603			if_link_state_change(sc->vge_ifp,
1604			    LINK_STATE_UP);
1605#if __FreeBSD_version < 502114
1606			if (ifp->if_snd.ifq_head != NULL)
1607#else
1608			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1609#endif
1610				taskqueue_enqueue(taskqueue_swi,
1611				    &sc->vge_txtask);
1612		}
1613	}
1614
1615	VGE_UNLOCK(sc);
1616
1617	return;
1618}
1619
1620#ifdef DEVICE_POLLING
1621static void
1622vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1623{
1624	struct vge_softc *sc = ifp->if_softc;
1625
1626	VGE_LOCK(sc);
1627	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1628		goto done;
1629
1630	sc->rxcycles = count;
1631	vge_rxeof(sc);
1632	vge_txeof(sc);
1633
1634#if __FreeBSD_version < 502114
1635	if (ifp->if_snd.ifq_head != NULL)
1636#else
1637	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1638#endif
1639		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1640
1641	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1642		u_int32_t       status;
1643		status = CSR_READ_4(sc, VGE_ISR);
1644		if (status == 0xFFFFFFFF)
1645			goto done;
1646		if (status)
1647			CSR_WRITE_4(sc, VGE_ISR, status);
1648
1649		/*
1650		 * XXX check behaviour on receiver stalls.
1651		 */
1652
1653		if (status & VGE_ISR_TXDMA_STALL ||
1654		    status & VGE_ISR_RXDMA_STALL)
1655			vge_init(sc);
1656
1657		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1658			vge_rxeof(sc);
1659			ifp->if_ierrors++;
1660			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1661			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1662		}
1663	}
1664done:
1665	VGE_UNLOCK(sc);
1666}
1667#endif /* DEVICE_POLLING */
1668
1669static void
1670vge_intr(arg)
1671	void			*arg;
1672{
1673	struct vge_softc	*sc;
1674	struct ifnet		*ifp;
1675	u_int32_t		status;
1676
1677	sc = arg;
1678
1679	if (sc->suspended) {
1680		return;
1681	}
1682
1683	VGE_LOCK(sc);
1684	ifp = sc->vge_ifp;
1685
1686	if (!(ifp->if_flags & IFF_UP)) {
1687		VGE_UNLOCK(sc);
1688		return;
1689	}
1690
1691#ifdef DEVICE_POLLING
1692	if  (ifp->if_capenable & IFCAP_POLLING) {
1693		VGE_UNLOCK(sc);
1694		return;
1695	}
1696#endif
1697
1698	/* Disable interrupts */
1699	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1700
1701	for (;;) {
1702
1703		status = CSR_READ_4(sc, VGE_ISR);
1704		/* If the card has gone away the read returns 0xffff. */
1705		if (status == 0xFFFFFFFF)
1706			break;
1707
1708		if (status)
1709			CSR_WRITE_4(sc, VGE_ISR, status);
1710
1711		if ((status & VGE_INTRS) == 0)
1712			break;
1713
1714		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1715			vge_rxeof(sc);
1716
1717		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1718			vge_rxeof(sc);
1719			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1720			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1721		}
1722
1723		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1724			vge_txeof(sc);
1725
1726		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1727			vge_init(sc);
1728
1729		if (status & VGE_ISR_LINKSTS)
1730			vge_tick(sc);
1731	}
1732
1733	/* Re-enable interrupts */
1734	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1735
1736	VGE_UNLOCK(sc);
1737
1738#if __FreeBSD_version < 502114
1739	if (ifp->if_snd.ifq_head != NULL)
1740#else
1741	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1742#endif
1743		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1744
1745	return;
1746}
1747
1748static int
1749vge_encap(sc, m_head, idx)
1750	struct vge_softc	*sc;
1751	struct mbuf		*m_head;
1752	int			idx;
1753{
1754	struct mbuf		*m_new = NULL;
1755	struct vge_dmaload_arg	arg;
1756	bus_dmamap_t		map;
1757	int			error;
1758	struct m_tag		*mtag;
1759
1760	if (sc->vge_ldata.vge_tx_free <= 2)
1761		return (EFBIG);
1762
1763	arg.vge_flags = 0;
1764
1765	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1766		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1767	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1768		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1769	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1770		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1771
1772	arg.sc = sc;
1773	arg.vge_idx = idx;
1774	arg.vge_m0 = m_head;
1775	arg.vge_maxsegs = VGE_TX_FRAGS;
1776
1777	map = sc->vge_ldata.vge_tx_dmamap[idx];
1778	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1779	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1780
1781	if (error && error != EFBIG) {
1782		printf("vge%d: can't map mbuf (error %d)\n",
1783		    sc->vge_unit, error);
1784		return (ENOBUFS);
1785	}
1786
1787	/* Too many segments to map, coalesce into a single mbuf */
1788
1789	if (error || arg.vge_maxsegs == 0) {
1790		m_new = m_defrag(m_head, M_DONTWAIT);
1791		if (m_new == NULL)
1792			return (1);
1793		else
1794			m_head = m_new;
1795
1796		arg.sc = sc;
1797		arg.vge_m0 = m_head;
1798		arg.vge_idx = idx;
1799		arg.vge_maxsegs = 1;
1800
1801		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1802		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1803		if (error) {
1804			printf("vge%d: can't map mbuf (error %d)\n",
1805			    sc->vge_unit, error);
1806			return (EFBIG);
1807		}
1808	}
1809
1810	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1811	sc->vge_ldata.vge_tx_free--;
1812
1813	/*
1814	 * Set up hardware VLAN tagging.
1815	 */
1816
1817	mtag = VLAN_OUTPUT_TAG(sc->vge_ifp, m_head);
1818	if (mtag != NULL)
1819		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1820		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1821
1822	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1823
1824	return (0);
1825}
1826
1827static void
1828vge_tx_task(arg, npending)
1829	void			*arg;
1830	int			npending;
1831{
1832	struct ifnet		*ifp;
1833
1834	ifp = arg;
1835	vge_start(ifp);
1836
1837	return;
1838}
1839
1840/*
1841 * Main transmit routine.
1842 */
1843
1844static void
1845vge_start(ifp)
1846	struct ifnet		*ifp;
1847{
1848	struct vge_softc	*sc;
1849	struct mbuf		*m_head = NULL;
1850	int			idx, pidx = 0;
1851
1852	sc = ifp->if_softc;
1853	VGE_LOCK(sc);
1854
1855	if (!sc->vge_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
1856		VGE_UNLOCK(sc);
1857		return;
1858	}
1859
1860#if __FreeBSD_version < 502114
1861	if (ifp->if_snd.ifq_head == NULL) {
1862#else
1863	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1864#endif
1865		VGE_UNLOCK(sc);
1866		return;
1867	}
1868
1869	idx = sc->vge_ldata.vge_tx_prodidx;
1870
1871	pidx = idx - 1;
1872	if (pidx < 0)
1873		pidx = VGE_TX_DESC_CNT - 1;
1874
1875
1876	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1877#if __FreeBSD_version < 502114
1878		IF_DEQUEUE(&ifp->if_snd, m_head);
1879#else
1880		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1881#endif
1882		if (m_head == NULL)
1883			break;
1884
1885		if (vge_encap(sc, m_head, idx)) {
1886#if __FreeBSD_version >= 502114
1887			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1888#else
1889			IF_PREPEND(&ifp->if_snd, m_head);
1890#endif
1891			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1892			break;
1893		}
1894
1895		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1896		    htole16(VGE_TXDESC_Q);
1897
1898		pidx = idx;
1899		VGE_TX_DESC_INC(idx);
1900
1901		/*
1902		 * If there's a BPF listener, bounce a copy of this frame
1903		 * to him.
1904		 */
1905		BPF_MTAP(ifp, m_head);
1906	}
1907
1908	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1909		VGE_UNLOCK(sc);
1910		return;
1911	}
1912
1913	/* Flush the TX descriptors */
1914
1915	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1916	    sc->vge_ldata.vge_tx_list_map,
1917	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1918
1919	/* Issue a transmit command. */
1920	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1921
1922	sc->vge_ldata.vge_tx_prodidx = idx;
1923
1924	/*
1925	 * Use the countdown timer for interrupt moderation.
1926	 * 'TX done' interrupts are disabled. Instead, we reset the
1927	 * countdown timer, which will begin counting until it hits
1928	 * the value in the SSTIMER register, and then trigger an
1929	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1930	 * the timer count is reloaded. Only when the transmitter
1931	 * is idle will the timer hit 0 and an interrupt fire.
1932	 */
1933	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1934
1935	VGE_UNLOCK(sc);
1936
1937	/*
1938	 * Set a timeout in case the chip goes out to lunch.
1939	 */
1940	ifp->if_timer = 5;
1941
1942	return;
1943}
1944
1945static void
1946vge_init(xsc)
1947	void			*xsc;
1948{
1949	struct vge_softc	*sc = xsc;
1950	struct ifnet		*ifp = sc->vge_ifp;
1951	struct mii_data		*mii;
1952	int			i;
1953
1954	VGE_LOCK(sc);
1955	mii = device_get_softc(sc->vge_miibus);
1956
1957	/*
1958	 * Cancel pending I/O and free all RX/TX buffers.
1959	 */
1960	vge_stop(sc);
1961	vge_reset(sc);
1962
1963	/*
1964	 * Initialize the RX and TX descriptors and mbufs.
1965	 */
1966
1967	vge_rx_list_init(sc);
1968	vge_tx_list_init(sc);
1969
1970	/* Set our station address */
1971	for (i = 0; i < ETHER_ADDR_LEN; i++)
1972		CSR_WRITE_1(sc, VGE_PAR0 + i, IFP2ENADDR(sc->vge_ifp)[i]);
1973
1974	/*
1975	 * Set receive FIFO threshold. Also allow transmission and
1976	 * reception of VLAN tagged frames.
1977	 */
1978	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1979	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1980
1981	/* Set DMA burst length */
1982	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1983	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1984
1985	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1986
1987	/* Set collision backoff algorithm */
1988	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1989	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1990	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1991
1992	/* Disable LPSEL field in priority resolution */
1993	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1994
1995	/*
1996	 * Load the addresses of the DMA queues into the chip.
1997	 * Note that we only use one transmit queue.
1998	 */
1999
2000	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2001	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2002	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2003
2004	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2005	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2006	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2007	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2008
2009	/* Enable and wake up the RX descriptor queue */
2010	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2011	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2012
2013	/* Enable the TX descriptor queue */
2014	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2015
2016	/* Set up the receive filter -- allow large frames for VLANs. */
2017	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2018
2019	/* If we want promiscuous mode, set the allframes bit. */
2020	if (ifp->if_flags & IFF_PROMISC) {
2021		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2022	}
2023
2024	/* Set capture broadcast bit to capture broadcast frames. */
2025	if (ifp->if_flags & IFF_BROADCAST) {
2026		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2027	}
2028
2029	/* Set multicast bit to capture multicast frames. */
2030	if (ifp->if_flags & IFF_MULTICAST) {
2031		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2032	}
2033
2034	/* Init the cam filter. */
2035	vge_cam_clear(sc);
2036
2037	/* Init the multicast filter. */
2038	vge_setmulti(sc);
2039
2040	/* Enable flow control */
2041
2042	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2043
2044	/* Enable jumbo frame reception (if desired) */
2045
2046	/* Start the MAC. */
2047	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2048	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2049	CSR_WRITE_1(sc, VGE_CRS0,
2050	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2051
2052	/*
2053	 * Configure one-shot timer for microsecond
2054	 * resulution and load it for 500 usecs.
2055	 */
2056	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2057	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2058
2059	/*
2060	 * Configure interrupt moderation for receive. Enable
2061	 * the holdoff counter and load it, and set the RX
2062	 * suppression count to the number of descriptors we
2063	 * want to allow before triggering an interrupt.
2064	 * The holdoff timer is in units of 20 usecs.
2065	 */
2066
2067#ifdef notyet
2068	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2069	/* Select the interrupt holdoff timer page. */
2070	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2071	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2072	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2073
2074	/* Enable use of the holdoff timer. */
2075	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2076	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2077
2078	/* Select the RX suppression threshold page. */
2079	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2080	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2081	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2082
2083	/* Restore the page select bits. */
2084	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2085	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2086#endif
2087
2088#ifdef DEVICE_POLLING
2089	/*
2090	 * Disable interrupts if we are polling.
2091	 */
2092	if (ifp->if_capenable & IFCAP_POLLING) {
2093		CSR_WRITE_4(sc, VGE_IMR, 0);
2094		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2095	} else	/* otherwise ... */
2096#endif
2097	{
2098	/*
2099	 * Enable interrupts.
2100	 */
2101		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2102		CSR_WRITE_4(sc, VGE_ISR, 0);
2103		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2104	}
2105
2106	mii_mediachg(mii);
2107
2108	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2109	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2110
2111	sc->vge_if_flags = 0;
2112	sc->vge_link = 0;
2113
2114	VGE_UNLOCK(sc);
2115
2116	return;
2117}
2118
2119/*
2120 * Set media options.
2121 */
2122static int
2123vge_ifmedia_upd(ifp)
2124	struct ifnet		*ifp;
2125{
2126	struct vge_softc	*sc;
2127	struct mii_data		*mii;
2128
2129	sc = ifp->if_softc;
2130	mii = device_get_softc(sc->vge_miibus);
2131	mii_mediachg(mii);
2132
2133	return (0);
2134}
2135
2136/*
2137 * Report current media status.
2138 */
2139static void
2140vge_ifmedia_sts(ifp, ifmr)
2141	struct ifnet		*ifp;
2142	struct ifmediareq	*ifmr;
2143{
2144	struct vge_softc	*sc;
2145	struct mii_data		*mii;
2146
2147	sc = ifp->if_softc;
2148	mii = device_get_softc(sc->vge_miibus);
2149
2150	mii_pollstat(mii);
2151	ifmr->ifm_active = mii->mii_media_active;
2152	ifmr->ifm_status = mii->mii_media_status;
2153
2154	return;
2155}
2156
2157static void
2158vge_miibus_statchg(dev)
2159	device_t		dev;
2160{
2161	struct vge_softc	*sc;
2162	struct mii_data		*mii;
2163	struct ifmedia_entry	*ife;
2164
2165	sc = device_get_softc(dev);
2166	mii = device_get_softc(sc->vge_miibus);
2167	ife = mii->mii_media.ifm_cur;
2168
2169	/*
2170	 * If the user manually selects a media mode, we need to turn
2171	 * on the forced MAC mode bit in the DIAGCTL register. If the
2172	 * user happens to choose a full duplex mode, we also need to
2173	 * set the 'force full duplex' bit. This applies only to
2174	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2175	 * mode is disabled, and in 1000baseT mode, full duplex is
2176	 * always implied, so we turn on the forced mode bit but leave
2177	 * the FDX bit cleared.
2178	 */
2179
2180	switch (IFM_SUBTYPE(ife->ifm_media)) {
2181	case IFM_AUTO:
2182		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2183		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2184		break;
2185	case IFM_1000_T:
2186		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2187		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2188		break;
2189	case IFM_100_TX:
2190	case IFM_10_T:
2191		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2192		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2193			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2194		} else {
2195			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2196		}
2197		break;
2198	default:
2199		device_printf(dev, "unknown media type: %x\n",
2200		    IFM_SUBTYPE(ife->ifm_media));
2201		break;
2202	}
2203
2204	return;
2205}
2206
2207static int
2208vge_ioctl(ifp, command, data)
2209	struct ifnet		*ifp;
2210	u_long			command;
2211	caddr_t			data;
2212{
2213	struct vge_softc	*sc = ifp->if_softc;
2214	struct ifreq		*ifr = (struct ifreq *) data;
2215	struct mii_data		*mii;
2216	int			error = 0;
2217
2218	switch (command) {
2219	case SIOCSIFMTU:
2220		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2221			error = EINVAL;
2222		ifp->if_mtu = ifr->ifr_mtu;
2223		break;
2224	case SIOCSIFFLAGS:
2225		if (ifp->if_flags & IFF_UP) {
2226			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2227			    ifp->if_flags & IFF_PROMISC &&
2228			    !(sc->vge_if_flags & IFF_PROMISC)) {
2229				CSR_SETBIT_1(sc, VGE_RXCTL,
2230				    VGE_RXCTL_RX_PROMISC);
2231				vge_setmulti(sc);
2232			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
2233			    !(ifp->if_flags & IFF_PROMISC) &&
2234			    sc->vge_if_flags & IFF_PROMISC) {
2235				CSR_CLRBIT_1(sc, VGE_RXCTL,
2236				    VGE_RXCTL_RX_PROMISC);
2237				vge_setmulti(sc);
2238                        } else
2239				vge_init(sc);
2240		} else {
2241			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2242				vge_stop(sc);
2243		}
2244		sc->vge_if_flags = ifp->if_flags;
2245		break;
2246	case SIOCADDMULTI:
2247	case SIOCDELMULTI:
2248		vge_setmulti(sc);
2249		break;
2250	case SIOCGIFMEDIA:
2251	case SIOCSIFMEDIA:
2252		mii = device_get_softc(sc->vge_miibus);
2253		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2254		break;
2255	case SIOCSIFCAP:
2256	    {
2257		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2258#ifdef DEVICE_POLLING
2259		if (mask & IFCAP_POLLING) {
2260			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2261				error = ether_poll_register(vge_poll, ifp);
2262				if (error)
2263					return(error);
2264				VGE_LOCK(sc);
2265					/* Disable interrupts */
2266				CSR_WRITE_4(sc, VGE_IMR, 0);
2267				CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2268				ifp->if_capenable |= IFCAP_POLLING;
2269				VGE_UNLOCK(sc);
2270			} else {
2271				error = ether_poll_deregister(ifp);
2272				/* Enable interrupts. */
2273				VGE_LOCK(sc);
2274				CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2275				CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2276				CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2277				ifp->if_capenable &= ~IFCAP_POLLING;
2278				VGE_UNLOCK(sc);
2279			}
2280		}
2281#endif /* DEVICE_POLLING */
2282		if (mask & IFCAP_HWCSUM) {
2283			ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2284			if (ifp->if_capenable & IFCAP_TXCSUM)
2285				ifp->if_hwassist = VGE_CSUM_FEATURES;
2286			else
2287				ifp->if_hwassist = 0;
2288			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2289				vge_init(sc);
2290		}
2291	    }
2292		break;
2293	default:
2294		error = ether_ioctl(ifp, command, data);
2295		break;
2296	}
2297
2298	return (error);
2299}
2300
2301static void
2302vge_watchdog(ifp)
2303	struct ifnet		*ifp;
2304{
2305	struct vge_softc		*sc;
2306
2307	sc = ifp->if_softc;
2308	VGE_LOCK(sc);
2309	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2310	ifp->if_oerrors++;
2311
2312	vge_txeof(sc);
2313	vge_rxeof(sc);
2314
2315	vge_init(sc);
2316
2317	VGE_UNLOCK(sc);
2318
2319	return;
2320}
2321
2322/*
2323 * Stop the adapter and free any mbufs allocated to the
2324 * RX and TX lists.
2325 */
2326static void
2327vge_stop(sc)
2328	struct vge_softc		*sc;
2329{
2330	register int		i;
2331	struct ifnet		*ifp;
2332
2333	VGE_LOCK(sc);
2334	ifp = sc->vge_ifp;
2335	ifp->if_timer = 0;
2336
2337	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2338
2339	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2340	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2341	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2342	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2343	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2344	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2345
2346	if (sc->vge_head != NULL) {
2347		m_freem(sc->vge_head);
2348		sc->vge_head = sc->vge_tail = NULL;
2349	}
2350
2351	/* Free the TX list buffers. */
2352
2353	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2354		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2355			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2356			    sc->vge_ldata.vge_tx_dmamap[i]);
2357			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2358			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2359		}
2360	}
2361
2362	/* Free the RX list buffers. */
2363
2364	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2365		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2366			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2367			    sc->vge_ldata.vge_rx_dmamap[i]);
2368			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2369			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2370		}
2371	}
2372
2373	VGE_UNLOCK(sc);
2374
2375	return;
2376}
2377
2378/*
2379 * Device suspend routine.  Stop the interface and save some PCI
2380 * settings in case the BIOS doesn't restore them properly on
2381 * resume.
2382 */
2383static int
2384vge_suspend(dev)
2385	device_t		dev;
2386{
2387	struct vge_softc	*sc;
2388
2389	sc = device_get_softc(dev);
2390
2391	vge_stop(sc);
2392
2393	sc->suspended = 1;
2394
2395	return (0);
2396}
2397
2398/*
2399 * Device resume routine.  Restore some PCI settings in case the BIOS
2400 * doesn't, re-enable busmastering, and restart the interface if
2401 * appropriate.
2402 */
2403static int
2404vge_resume(dev)
2405	device_t		dev;
2406{
2407	struct vge_softc	*sc;
2408	struct ifnet		*ifp;
2409
2410	sc = device_get_softc(dev);
2411	ifp = sc->vge_ifp;
2412
2413	/* reenable busmastering */
2414	pci_enable_busmaster(dev);
2415	pci_enable_io(dev, SYS_RES_MEMORY);
2416
2417	/* reinitialize interface if necessary */
2418	if (ifp->if_flags & IFF_UP)
2419		vge_init(sc);
2420
2421	sc->suspended = 0;
2422
2423	return (0);
2424}
2425
2426/*
2427 * Stop all chip I/O so that the kernel's probe routines don't
2428 * get confused by errant DMAs when rebooting.
2429 */
2430static void
2431vge_shutdown(dev)
2432	device_t		dev;
2433{
2434	struct vge_softc		*sc;
2435
2436	sc = device_get_softc(dev);
2437
2438	vge_stop(sc);
2439}
2440