if_vge.c revision 145537
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 145537 2005-04-25 23:26:20Z wpaul $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#include <sys/param.h>
84#include <sys/endian.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/module.h>
90#include <sys/kernel.h>
91#include <sys/socket.h>
92#include <sys/taskqueue.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_vlan_var.h>
100
101#include <net/bpf.h>
102
103#include <machine/bus_pio.h>
104#include <machine/bus_memio.h>
105#include <machine/bus.h>
106#include <machine/resource.h>
107#include <sys/bus.h>
108#include <sys/rman.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116MODULE_DEPEND(vge, pci, 1, 1, 1);
117MODULE_DEPEND(vge, ether, 1, 1, 1);
118MODULE_DEPEND(vge, miibus, 1, 1, 1);
119
120/* "controller miibus0" required.  See GENERIC if you get errors here. */
121#include "miibus_if.h"
122
123#include <dev/vge/if_vgereg.h>
124#include <dev/vge/if_vgevar.h>
125
126#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
127
128/*
129 * Various supported device vendors/types and their names.
130 */
131static struct vge_type vge_devs[] = {
132	{ VIA_VENDORID, VIA_DEVICEID_61XX,
133		"VIA Networking Gigabit Ethernet" },
134	{ 0, 0, NULL }
135};
136
137static int vge_probe		(device_t);
138static int vge_attach		(device_t);
139static int vge_detach		(device_t);
140
141static int vge_encap		(struct vge_softc *, struct mbuf *, int);
142
143static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
144static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
145				    bus_size_t, int);
146static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
147				    bus_size_t, int);
148static int vge_allocmem		(device_t, struct vge_softc *);
149static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
150static int vge_rx_list_init	(struct vge_softc *);
151static int vge_tx_list_init	(struct vge_softc *);
152#ifdef VGE_FIXUP_RX
153static __inline void vge_fixup_rx
154				(struct mbuf *);
155#endif
156static void vge_rxeof		(struct vge_softc *);
157static void vge_txeof		(struct vge_softc *);
158static void vge_intr		(void *);
159static void vge_tick		(void *);
160static void vge_tx_task		(void *, int);
161static void vge_start		(struct ifnet *);
162static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
163static void vge_init		(void *);
164static void vge_stop		(struct vge_softc *);
165static void vge_watchdog	(struct ifnet *);
166static int vge_suspend		(device_t);
167static int vge_resume		(device_t);
168static void vge_shutdown	(device_t);
169static int vge_ifmedia_upd	(struct ifnet *);
170static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
171
172#ifdef VGE_EEPROM
173static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
174#endif
175static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
176
177static void vge_miipoll_start	(struct vge_softc *);
178static void vge_miipoll_stop	(struct vge_softc *);
179static int vge_miibus_readreg	(device_t, int, int);
180static int vge_miibus_writereg	(device_t, int, int, int);
181static void vge_miibus_statchg	(device_t);
182
183static void vge_cam_clear	(struct vge_softc *);
184static int vge_cam_set		(struct vge_softc *, uint8_t *);
185#if __FreeBSD_version < 502113
186static uint32_t vge_mchash	(uint8_t *);
187#endif
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226
227#ifdef VGE_EEPROM
228/*
229 * Read a word of data stored in the EEPROM at address 'addr.'
230 */
231static void
232vge_eeprom_getword(sc, addr, dest)
233	struct vge_softc	*sc;
234	int			addr;
235	u_int16_t		*dest;
236{
237	register int		i;
238	u_int16_t		word = 0;
239
240	/*
241	 * Enter EEPROM embedded programming mode. In order to
242	 * access the EEPROM at all, we first have to set the
243	 * EELOAD bit in the CHIPCFG2 register.
244	 */
245	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248	/* Select the address of the word we want to read */
249	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251	/* Issue read command */
252	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254	/* Wait for the done bit to be set. */
255	for (i = 0; i < VGE_TIMEOUT; i++) {
256		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT) {
261		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262		*dest = 0;
263		return;
264	}
265
266	/* Read the result */
267	word = CSR_READ_2(sc, VGE_EERDDAT);
268
269	/* Turn off EEPROM access mode. */
270	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273	*dest = word;
274
275	return;
276}
277#endif
278
279/*
280 * Read a sequence of words from the EEPROM.
281 */
282static void
283vge_read_eeprom(sc, dest, off, cnt, swap)
284	struct vge_softc	*sc;
285	caddr_t			dest;
286	int			off;
287	int			cnt;
288	int			swap;
289{
290	int			i;
291#ifdef VGE_EEPROM
292	u_int16_t		word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (u_int16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	for (i = 0; i < ETHER_ADDR_LEN; i++)
304		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
305#endif
306}
307
308static void
309vge_miipoll_stop(sc)
310	struct vge_softc	*sc;
311{
312	int			i;
313
314	CSR_WRITE_1(sc, VGE_MIICMD, 0);
315
316	for (i = 0; i < VGE_TIMEOUT; i++) {
317		DELAY(1);
318		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
319			break;
320	}
321
322	if (i == VGE_TIMEOUT)
323		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
324
325	return;
326}
327
328static void
329vge_miipoll_start(sc)
330	struct vge_softc	*sc;
331{
332	int			i;
333
334	/* First, make sure we're idle. */
335
336	CSR_WRITE_1(sc, VGE_MIICMD, 0);
337	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
338
339	for (i = 0; i < VGE_TIMEOUT; i++) {
340		DELAY(1);
341		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
342			break;
343	}
344
345	if (i == VGE_TIMEOUT) {
346		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
347		return;
348	}
349
350	/* Now enable auto poll mode. */
351
352	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
353
354	/* And make sure it started. */
355
356	for (i = 0; i < VGE_TIMEOUT; i++) {
357		DELAY(1);
358		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
359			break;
360	}
361
362	if (i == VGE_TIMEOUT)
363		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
364
365	return;
366}
367
368static int
369vge_miibus_readreg(dev, phy, reg)
370	device_t		dev;
371	int			phy, reg;
372{
373	struct vge_softc	*sc;
374	int			i;
375	u_int16_t		rval = 0;
376
377	sc = device_get_softc(dev);
378
379	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
380		return(0);
381
382	VGE_LOCK(sc);
383	vge_miipoll_stop(sc);
384
385	/* Specify the register we want to read. */
386	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
387
388	/* Issue read command. */
389	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
390
391	/* Wait for the read command bit to self-clear. */
392	for (i = 0; i < VGE_TIMEOUT; i++) {
393		DELAY(1);
394		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
395			break;
396	}
397
398	if (i == VGE_TIMEOUT)
399		device_printf(sc->vge_dev, "MII read timed out\n");
400	else
401		rval = CSR_READ_2(sc, VGE_MIIDATA);
402
403	vge_miipoll_start(sc);
404	VGE_UNLOCK(sc);
405
406	return (rval);
407}
408
409static int
410vge_miibus_writereg(dev, phy, reg, data)
411	device_t		dev;
412	int			phy, reg, data;
413{
414	struct vge_softc	*sc;
415	int			i, rval = 0;
416
417	sc = device_get_softc(dev);
418
419	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
420		return(0);
421
422	VGE_LOCK(sc);
423	vge_miipoll_stop(sc);
424
425	/* Specify the register we want to write. */
426	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
427
428	/* Specify the data we want to write. */
429	CSR_WRITE_2(sc, VGE_MIIDATA, data);
430
431	/* Issue write command. */
432	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
433
434	/* Wait for the write command bit to self-clear. */
435	for (i = 0; i < VGE_TIMEOUT; i++) {
436		DELAY(1);
437		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
438			break;
439	}
440
441	if (i == VGE_TIMEOUT) {
442		device_printf(sc->vge_dev, "MII write timed out\n");
443		rval = EIO;
444	}
445
446	vge_miipoll_start(sc);
447	VGE_UNLOCK(sc);
448
449	return (rval);
450}
451
452static void
453vge_cam_clear(sc)
454	struct vge_softc	*sc;
455{
456	int			i;
457
458	/*
459	 * Turn off all the mask bits. This tells the chip
460	 * that none of the entries in the CAM filter are valid.
461	 * desired entries will be enabled as we fill the filter in.
462	 */
463
464	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
465	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
466	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
467	for (i = 0; i < 8; i++)
468		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
469
470	/* Clear the VLAN filter too. */
471
472	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
473	for (i = 0; i < 8; i++)
474		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
475
476	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
477	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
478	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
479
480	sc->vge_camidx = 0;
481
482	return;
483}
484
485static int
486vge_cam_set(sc, addr)
487	struct vge_softc	*sc;
488	uint8_t			*addr;
489{
490	int			i, error = 0;
491
492	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
493		return(ENOSPC);
494
495	/* Select the CAM data page. */
496	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
498
499	/* Set the filter entry we want to update and enable writing. */
500	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
501
502	/* Write the address to the CAM registers */
503	for (i = 0; i < ETHER_ADDR_LEN; i++)
504		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
505
506	/* Issue a write command. */
507	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
508
509	/* Wake for it to clear. */
510	for (i = 0; i < VGE_TIMEOUT; i++) {
511		DELAY(1);
512		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
513			break;
514	}
515
516	if (i == VGE_TIMEOUT) {
517		device_printf(sc->vge_dev, "setting CAM filter failed\n");
518		error = EIO;
519		goto fail;
520	}
521
522	/* Select the CAM mask page. */
523	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
524	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
525
526	/* Set the mask bit that enables this filter. */
527	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
528	    1<<(sc->vge_camidx & 7));
529
530	sc->vge_camidx++;
531
532fail:
533	/* Turn off access to CAM. */
534	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
535	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
536	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
537
538	return (error);
539}
540
541#if __FreeBSD_version < 502113
542static uint32_t
543vge_mchash(addr)
544        uint8_t			*addr;
545{
546	uint32_t		crc, carry;
547	int			idx, bit;
548	uint8_t			data;
549
550	/* Compute CRC for the address value. */
551	crc = 0xFFFFFFFF; /* initial value */
552
553	for (idx = 0; idx < 6; idx++) {
554		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
555			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
556			crc <<= 1;
557			if (carry)
558				crc = (crc ^ 0x04c11db6) | carry;
559		}
560	}
561
562	return(crc);
563}
564#endif
565
566/*
567 * Program the multicast filter. We use the 64-entry CAM filter
568 * for perfect filtering. If there's more than 64 multicast addresses,
569 * we use the hash filter insted.
570 */
571static void
572vge_setmulti(sc)
573	struct vge_softc	*sc;
574{
575	struct ifnet		*ifp;
576	int			error = 0/*, h = 0*/;
577	struct ifmultiaddr	*ifma;
578	u_int32_t		h, hashes[2] = { 0, 0 };
579
580	ifp = &sc->arpcom.ac_if;
581
582	/* First, zot all the multicast entries. */
583	vge_cam_clear(sc);
584	CSR_WRITE_4(sc, VGE_MAR0, 0);
585	CSR_WRITE_4(sc, VGE_MAR1, 0);
586
587	/*
588	 * If the user wants allmulti or promisc mode, enable reception
589	 * of all multicast frames.
590	 */
591	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
592		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
593		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
594		return;
595	}
596
597	/* Now program new ones */
598	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
599		if (ifma->ifma_addr->sa_family != AF_LINK)
600			continue;
601		error = vge_cam_set(sc,
602		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
603		if (error)
604			break;
605	}
606
607	/* If there were too many addresses, use the hash filter. */
608	if (error) {
609		vge_cam_clear(sc);
610
611		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
612			if (ifma->ifma_addr->sa_family != AF_LINK)
613				continue;
614#if __FreeBSD_version < 502113
615			h = vge_mchash(LLADDR((struct sockaddr_dl *)
616			    ifma->ifma_addr)) >> 26;
617#else
618			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
619			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
620#endif
621			if (h < 32)
622				hashes[0] |= (1 << h);
623			else
624				hashes[1] |= (1 << (h - 32));
625		}
626
627		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
628		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
629	}
630
631	return;
632}
633
634static void
635vge_reset(sc)
636	struct vge_softc		*sc;
637{
638	register int		i;
639
640	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
641
642	for (i = 0; i < VGE_TIMEOUT; i++) {
643		DELAY(5);
644		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
645			break;
646	}
647
648	if (i == VGE_TIMEOUT) {
649		device_printf(sc->vge_dev, "soft reset timed out");
650		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
651		DELAY(2000);
652	}
653
654	DELAY(5000);
655
656	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
657
658	for (i = 0; i < VGE_TIMEOUT; i++) {
659		DELAY(5);
660		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
661			break;
662	}
663
664	if (i == VGE_TIMEOUT) {
665		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
666		return;
667	}
668
669	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
670
671	return;
672}
673
674/*
675 * Probe for a VIA gigabit chip. Check the PCI vendor and device
676 * IDs against our list and return a device name if we find a match.
677 */
678static int
679vge_probe(dev)
680	device_t		dev;
681{
682	struct vge_type		*t;
683	struct vge_softc	*sc;
684
685	t = vge_devs;
686	sc = device_get_softc(dev);
687
688	while (t->vge_name != NULL) {
689		if ((pci_get_vendor(dev) == t->vge_vid) &&
690		    (pci_get_device(dev) == t->vge_did)) {
691			device_set_desc(dev, t->vge_name);
692			return (BUS_PROBE_DEFAULT);
693		}
694		t++;
695	}
696
697	return (ENXIO);
698}
699
700static void
701vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
702	void			*arg;
703	bus_dma_segment_t	*segs;
704	int			nseg;
705	bus_size_t		mapsize;
706	int			error;
707{
708
709	struct vge_dmaload_arg	*ctx;
710	struct vge_rx_desc	*d = NULL;
711
712	if (error)
713		return;
714
715	ctx = arg;
716
717	/* Signal error to caller if there's too many segments */
718	if (nseg > ctx->vge_maxsegs) {
719		ctx->vge_maxsegs = 0;
720		return;
721	}
722
723	/*
724	 * Map the segment array into descriptors.
725	 */
726
727	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
728
729	/* If this descriptor is still owned by the chip, bail. */
730
731	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
732		device_printf(ctx->sc->vge_dev,
733		    "tried to map busy descriptor\n");
734		ctx->vge_maxsegs = 0;
735		return;
736	}
737
738	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
739	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
740	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
741	d->vge_sts = 0;
742	d->vge_ctl = 0;
743
744	ctx->vge_maxsegs = 1;
745
746	return;
747}
748
749static void
750vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
751	void			*arg;
752	bus_dma_segment_t	*segs;
753	int			nseg;
754	bus_size_t		mapsize;
755	int			error;
756{
757	struct vge_dmaload_arg	*ctx;
758	struct vge_tx_desc	*d = NULL;
759	struct vge_tx_frag	*f;
760	int			i = 0;
761
762	if (error)
763		return;
764
765	ctx = arg;
766
767	/* Signal error to caller if there's too many segments */
768	if (nseg > ctx->vge_maxsegs) {
769		ctx->vge_maxsegs = 0;
770		return;
771	}
772
773	/* Map the segment array into descriptors. */
774
775	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
776
777	/* If this descriptor is still owned by the chip, bail. */
778
779	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
780		ctx->vge_maxsegs = 0;
781		return;
782	}
783
784	for (i = 0; i < nseg; i++) {
785		f = &d->vge_frag[i];
786		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
787		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
788		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
789	}
790
791	/* Argh. This chip does not autopad short frames */
792
793	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
794		f = &d->vge_frag[i];
795		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
796		    ctx->vge_m0->m_pkthdr.len));
797		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
798		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
799		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
800		i++;
801	}
802
803	/*
804	 * When telling the chip how many segments there are, we
805	 * must use nsegs + 1 instead of just nsegs. Darned if I
806	 * know why.
807	 */
808	i++;
809
810	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
811	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
812
813	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
814		d->vge_ctl |= VGE_TDCTL_JUMBO;
815
816	ctx->vge_maxsegs = nseg;
817
818	return;
819}
820
821/*
822 * Map a single buffer address.
823 */
824
825static void
826vge_dma_map_addr(arg, segs, nseg, error)
827	void			*arg;
828	bus_dma_segment_t	*segs;
829	int			nseg;
830	int			error;
831{
832	bus_addr_t		*addr;
833
834	if (error)
835		return;
836
837	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
838	addr = arg;
839	*addr = segs->ds_addr;
840
841	return;
842}
843
844static int
845vge_allocmem(dev, sc)
846	device_t		dev;
847	struct vge_softc		*sc;
848{
849	int			error;
850	int			nseg;
851	int			i;
852
853	/*
854	 * Allocate map for RX mbufs.
855	 */
856	nseg = 32;
857	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
858	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
859	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
860	    NULL, NULL, &sc->vge_ldata.vge_mtag);
861	if (error) {
862		device_printf(dev, "could not allocate dma tag\n");
863		return (ENOMEM);
864	}
865
866	/*
867	 * Allocate map for TX descriptor list.
868	 */
869	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
870	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
871	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
872	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
873	if (error) {
874		device_printf(dev, "could not allocate dma tag\n");
875		return (ENOMEM);
876	}
877
878	/* Allocate DMA'able memory for the TX ring */
879
880	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
881	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
882	    &sc->vge_ldata.vge_tx_list_map);
883	if (error)
884		return (ENOMEM);
885
886	/* Load the map for the TX ring. */
887
888	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
889	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
890	     VGE_TX_LIST_SZ, vge_dma_map_addr,
891	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
892
893	/* Create DMA maps for TX buffers */
894
895	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
896		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
897			    &sc->vge_ldata.vge_tx_dmamap[i]);
898		if (error) {
899			device_printf(dev, "can't create DMA map for TX\n");
900			return (ENOMEM);
901		}
902	}
903
904	/*
905	 * Allocate map for RX descriptor list.
906	 */
907	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
908	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
909	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
910	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
911	if (error) {
912		device_printf(dev, "could not allocate dma tag\n");
913		return (ENOMEM);
914	}
915
916	/* Allocate DMA'able memory for the RX ring */
917
918	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
919	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
920	    &sc->vge_ldata.vge_rx_list_map);
921	if (error)
922		return (ENOMEM);
923
924	/* Load the map for the RX ring. */
925
926	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
927	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
928	     VGE_TX_LIST_SZ, vge_dma_map_addr,
929	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
930
931	/* Create DMA maps for RX buffers */
932
933	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
934		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
935			    &sc->vge_ldata.vge_rx_dmamap[i]);
936		if (error) {
937			device_printf(dev, "can't create DMA map for RX\n");
938			return (ENOMEM);
939		}
940	}
941
942	return (0);
943}
944
945/*
946 * Attach the interface. Allocate softc structures, do ifmedia
947 * setup and ethernet/BPF attach.
948 */
949static int
950vge_attach(dev)
951	device_t		dev;
952{
953	u_char			eaddr[ETHER_ADDR_LEN];
954	struct vge_softc	*sc;
955	struct ifnet		*ifp;
956	int			unit, error = 0, rid;
957
958	sc = device_get_softc(dev);
959	unit = device_get_unit(dev);
960	sc->vge_dev = dev;
961
962	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
963	    MTX_DEF | MTX_RECURSE);
964	/*
965	 * Map control/status registers.
966	 */
967	pci_enable_busmaster(dev);
968
969	rid = VGE_PCI_LOMEM;
970	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
971	    0, ~0, 1, RF_ACTIVE);
972
973	if (sc->vge_res == NULL) {
974		printf ("vge%d: couldn't map ports/memory\n", unit);
975		error = ENXIO;
976		goto fail;
977	}
978
979	sc->vge_btag = rman_get_bustag(sc->vge_res);
980	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
981
982	/* Allocate interrupt */
983	rid = 0;
984	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
985	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
986
987	if (sc->vge_irq == NULL) {
988		printf("vge%d: couldn't map interrupt\n", unit);
989		error = ENXIO;
990		goto fail;
991	}
992
993	/* Reset the adapter. */
994	vge_reset(sc);
995
996	/*
997	 * Get station address from the EEPROM.
998	 */
999	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1000
1001	sc->vge_unit = unit;
1002	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1003
1004#if __FreeBSD_version < 502113
1005	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1006#endif
1007
1008	/*
1009	 * Allocate the parent bus DMA tag appropriate for PCI.
1010	 */
1011#define VGE_NSEG_NEW 32
1012	error = bus_dma_tag_create(NULL,	/* parent */
1013			1, 0,			/* alignment, boundary */
1014			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1015			BUS_SPACE_MAXADDR,	/* highaddr */
1016			NULL, NULL,		/* filter, filterarg */
1017			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1018			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1019			BUS_DMA_ALLOCNOW,	/* flags */
1020			NULL, NULL,		/* lockfunc, lockarg */
1021			&sc->vge_parent_tag);
1022	if (error)
1023		goto fail;
1024
1025	error = vge_allocmem(dev, sc);
1026
1027	if (error)
1028		goto fail;
1029
1030	/* Do MII setup */
1031	if (mii_phy_probe(dev, &sc->vge_miibus,
1032	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1033		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1034		error = ENXIO;
1035		goto fail;
1036	}
1037
1038	ifp = &sc->arpcom.ac_if;
1039	ifp->if_softc = sc;
1040	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1041	ifp->if_mtu = ETHERMTU;
1042	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1043	ifp->if_ioctl = vge_ioctl;
1044	ifp->if_capabilities = IFCAP_VLAN_MTU;
1045	ifp->if_start = vge_start;
1046	ifp->if_hwassist = VGE_CSUM_FEATURES;
1047	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1048#ifdef DEVICE_POLLING
1049#ifdef IFCAP_POLLING
1050	ifp->if_capabilities |= IFCAP_POLLING;
1051#endif
1052#endif
1053	ifp->if_watchdog = vge_watchdog;
1054	ifp->if_init = vge_init;
1055	ifp->if_baudrate = 1000000000;
1056	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1057	ifp->if_capenable = ifp->if_capabilities;
1058
1059	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1060
1061	/*
1062	 * Call MI attach routine.
1063	 */
1064	ether_ifattach(ifp, eaddr);
1065
1066	/* Hook interrupt last to avoid having to lock softc */
1067	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1068	    vge_intr, sc, &sc->vge_intrhand);
1069
1070	if (error) {
1071		printf("vge%d: couldn't set up irq\n", unit);
1072		ether_ifdetach(ifp);
1073		goto fail;
1074	}
1075
1076fail:
1077	if (error)
1078		vge_detach(dev);
1079
1080	return (error);
1081}
1082
1083/*
1084 * Shutdown hardware and free up resources. This can be called any
1085 * time after the mutex has been initialized. It is called in both
1086 * the error case in attach and the normal detach case so it needs
1087 * to be careful about only freeing resources that have actually been
1088 * allocated.
1089 */
1090static int
1091vge_detach(dev)
1092	device_t		dev;
1093{
1094	struct vge_softc		*sc;
1095	struct ifnet		*ifp;
1096	int			i;
1097
1098	sc = device_get_softc(dev);
1099	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1100	ifp = &sc->arpcom.ac_if;
1101
1102	/* These should only be active if attach succeeded */
1103	if (device_is_attached(dev)) {
1104		vge_stop(sc);
1105		/*
1106		 * Force off the IFF_UP flag here, in case someone
1107		 * still had a BPF descriptor attached to this
1108		 * interface. If they do, ether_ifattach() will cause
1109		 * the BPF code to try and clear the promisc mode
1110		 * flag, which will bubble down to vge_ioctl(),
1111		 * which will try to call vge_init() again. This will
1112		 * turn the NIC back on and restart the MII ticker,
1113		 * which will panic the system when the kernel tries
1114		 * to invoke the vge_tick() function that isn't there
1115		 * anymore.
1116		 */
1117		ifp->if_flags &= ~IFF_UP;
1118		ether_ifdetach(ifp);
1119	}
1120	if (sc->vge_miibus)
1121		device_delete_child(dev, sc->vge_miibus);
1122	bus_generic_detach(dev);
1123
1124	if (sc->vge_intrhand)
1125		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1126	if (sc->vge_irq)
1127		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1128	if (sc->vge_res)
1129		bus_release_resource(dev, SYS_RES_MEMORY,
1130		    VGE_PCI_LOMEM, sc->vge_res);
1131
1132	/* Unload and free the RX DMA ring memory and map */
1133
1134	if (sc->vge_ldata.vge_rx_list_tag) {
1135		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1136		    sc->vge_ldata.vge_rx_list_map);
1137		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1138		    sc->vge_ldata.vge_rx_list,
1139		    sc->vge_ldata.vge_rx_list_map);
1140		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1141	}
1142
1143	/* Unload and free the TX DMA ring memory and map */
1144
1145	if (sc->vge_ldata.vge_tx_list_tag) {
1146		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1147		    sc->vge_ldata.vge_tx_list_map);
1148		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1149		    sc->vge_ldata.vge_tx_list,
1150		    sc->vge_ldata.vge_tx_list_map);
1151		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1152	}
1153
1154	/* Destroy all the RX and TX buffer maps */
1155
1156	if (sc->vge_ldata.vge_mtag) {
1157		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1158			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1159			    sc->vge_ldata.vge_tx_dmamap[i]);
1160		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1161			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1162			    sc->vge_ldata.vge_rx_dmamap[i]);
1163		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1164	}
1165
1166	if (sc->vge_parent_tag)
1167		bus_dma_tag_destroy(sc->vge_parent_tag);
1168
1169	mtx_destroy(&sc->vge_mtx);
1170
1171	return (0);
1172}
1173
1174static int
1175vge_newbuf(sc, idx, m)
1176	struct vge_softc	*sc;
1177	int			idx;
1178	struct mbuf		*m;
1179{
1180	struct vge_dmaload_arg	arg;
1181	struct mbuf		*n = NULL;
1182	int			i, error;
1183
1184	if (m == NULL) {
1185		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1186		if (n == NULL)
1187			return (ENOBUFS);
1188		m = n;
1189	} else
1190		m->m_data = m->m_ext.ext_buf;
1191
1192
1193#ifdef VGE_FIXUP_RX
1194	/*
1195	 * This is part of an evil trick to deal with non-x86 platforms.
1196	 * The VIA chip requires RX buffers to be aligned on 32-bit
1197	 * boundaries, but that will hose non-x86 machines. To get around
1198	 * this, we leave some empty space at the start of each buffer
1199	 * and for non-x86 hosts, we copy the buffer back two bytes
1200	 * to achieve word alignment. This is slightly more efficient
1201	 * than allocating a new buffer, copying the contents, and
1202	 * discarding the old buffer.
1203	 */
1204	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1205	m_adj(m, VGE_ETHER_ALIGN);
1206#else
1207	m->m_len = m->m_pkthdr.len = MCLBYTES;
1208#endif
1209
1210	arg.sc = sc;
1211	arg.vge_idx = idx;
1212	arg.vge_maxsegs = 1;
1213	arg.vge_flags = 0;
1214
1215	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1216	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1217	    &arg, BUS_DMA_NOWAIT);
1218	if (error || arg.vge_maxsegs != 1) {
1219		if (n != NULL)
1220			m_freem(n);
1221		return (ENOMEM);
1222	}
1223
1224	/*
1225	 * Note: the manual fails to document the fact that for
1226	 * proper opration, the driver needs to replentish the RX
1227	 * DMA ring 4 descriptors at a time (rather than one at a
1228	 * time, like most chips). We can allocate the new buffers
1229	 * but we should not set the OWN bits until we're ready
1230	 * to hand back 4 of them in one shot.
1231	 */
1232
1233#define VGE_RXCHUNK 4
1234	sc->vge_rx_consumed++;
1235	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1236		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1237			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1238			    htole32(VGE_RDSTS_OWN);
1239		sc->vge_rx_consumed = 0;
1240	}
1241
1242	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1243
1244	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1245	    sc->vge_ldata.vge_rx_dmamap[idx],
1246	    BUS_DMASYNC_PREREAD);
1247
1248	return (0);
1249}
1250
1251static int
1252vge_tx_list_init(sc)
1253	struct vge_softc		*sc;
1254{
1255	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1256	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1257	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1258
1259	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1260	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1261	sc->vge_ldata.vge_tx_prodidx = 0;
1262	sc->vge_ldata.vge_tx_considx = 0;
1263	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1264
1265	return (0);
1266}
1267
1268static int
1269vge_rx_list_init(sc)
1270	struct vge_softc		*sc;
1271{
1272	int			i;
1273
1274	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1275	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1276	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1277
1278	sc->vge_rx_consumed = 0;
1279
1280	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1281		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1282			return (ENOBUFS);
1283	}
1284
1285	/* Flush the RX descriptors */
1286
1287	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1288	    sc->vge_ldata.vge_rx_list_map,
1289	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1290
1291	sc->vge_ldata.vge_rx_prodidx = 0;
1292	sc->vge_rx_consumed = 0;
1293	sc->vge_head = sc->vge_tail = NULL;
1294
1295	return (0);
1296}
1297
1298#ifdef VGE_FIXUP_RX
1299static __inline void
1300vge_fixup_rx(m)
1301	struct mbuf		*m;
1302{
1303	int			i;
1304	uint16_t		*src, *dst;
1305
1306	src = mtod(m, uint16_t *);
1307	dst = src - 1;
1308
1309	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1310		*dst++ = *src++;
1311
1312	m->m_data -= ETHER_ALIGN;
1313
1314	return;
1315}
1316#endif
1317
1318/*
1319 * RX handler. We support the reception of jumbo frames that have
1320 * been fragmented across multiple 2K mbuf cluster buffers.
1321 */
1322static void
1323vge_rxeof(sc)
1324	struct vge_softc	*sc;
1325{
1326	struct mbuf		*m;
1327	struct ifnet		*ifp;
1328	int			i, total_len;
1329	int			lim = 0;
1330	struct vge_rx_desc	*cur_rx;
1331	u_int32_t		rxstat, rxctl;
1332
1333	VGE_LOCK_ASSERT(sc);
1334	ifp = &sc->arpcom.ac_if;
1335	i = sc->vge_ldata.vge_rx_prodidx;
1336
1337	/* Invalidate the descriptor memory */
1338
1339	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1340	    sc->vge_ldata.vge_rx_list_map,
1341	    BUS_DMASYNC_POSTREAD);
1342
1343	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1344
1345#ifdef DEVICE_POLLING
1346		if (ifp->if_flags & IFF_POLLING) {
1347			if (sc->rxcycles <= 0)
1348				break;
1349			sc->rxcycles--;
1350		}
1351#endif /* DEVICE_POLLING */
1352
1353		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1354		m = sc->vge_ldata.vge_rx_mbuf[i];
1355		total_len = VGE_RXBYTES(cur_rx);
1356		rxstat = le32toh(cur_rx->vge_sts);
1357		rxctl = le32toh(cur_rx->vge_ctl);
1358
1359		/* Invalidate the RX mbuf and unload its map */
1360
1361		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1362		    sc->vge_ldata.vge_rx_dmamap[i],
1363		    BUS_DMASYNC_POSTWRITE);
1364		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1365		    sc->vge_ldata.vge_rx_dmamap[i]);
1366
1367		/*
1368		 * If the 'start of frame' bit is set, this indicates
1369		 * either the first fragment in a multi-fragment receive,
1370		 * or an intermediate fragment. Either way, we want to
1371		 * accumulate the buffers.
1372		 */
1373		if (rxstat & VGE_RXPKT_SOF) {
1374			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1375			if (sc->vge_head == NULL)
1376				sc->vge_head = sc->vge_tail = m;
1377			else {
1378				m->m_flags &= ~M_PKTHDR;
1379				sc->vge_tail->m_next = m;
1380				sc->vge_tail = m;
1381			}
1382			vge_newbuf(sc, i, NULL);
1383			VGE_RX_DESC_INC(i);
1384			continue;
1385		}
1386
1387		/*
1388		 * Bad/error frames will have the RXOK bit cleared.
1389		 * However, there's one error case we want to allow:
1390		 * if a VLAN tagged frame arrives and the chip can't
1391		 * match it against the CAM filter, it considers this
1392		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1393		 * We don't want to drop the frame though: our VLAN
1394		 * filtering is done in software.
1395		 */
1396		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1397		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1398			ifp->if_ierrors++;
1399			/*
1400			 * If this is part of a multi-fragment packet,
1401			 * discard all the pieces.
1402			 */
1403			if (sc->vge_head != NULL) {
1404				m_freem(sc->vge_head);
1405				sc->vge_head = sc->vge_tail = NULL;
1406			}
1407			vge_newbuf(sc, i, m);
1408			VGE_RX_DESC_INC(i);
1409			continue;
1410		}
1411
1412		/*
1413		 * If allocating a replacement mbuf fails,
1414		 * reload the current one.
1415		 */
1416
1417		if (vge_newbuf(sc, i, NULL)) {
1418			ifp->if_ierrors++;
1419			if (sc->vge_head != NULL) {
1420				m_freem(sc->vge_head);
1421				sc->vge_head = sc->vge_tail = NULL;
1422			}
1423			vge_newbuf(sc, i, m);
1424			VGE_RX_DESC_INC(i);
1425			continue;
1426		}
1427
1428		VGE_RX_DESC_INC(i);
1429
1430		if (sc->vge_head != NULL) {
1431			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1432			/*
1433			 * Special case: if there's 4 bytes or less
1434			 * in this buffer, the mbuf can be discarded:
1435			 * the last 4 bytes is the CRC, which we don't
1436			 * care about anyway.
1437			 */
1438			if (m->m_len <= ETHER_CRC_LEN) {
1439				sc->vge_tail->m_len -=
1440				    (ETHER_CRC_LEN - m->m_len);
1441				m_freem(m);
1442			} else {
1443				m->m_len -= ETHER_CRC_LEN;
1444				m->m_flags &= ~M_PKTHDR;
1445				sc->vge_tail->m_next = m;
1446			}
1447			m = sc->vge_head;
1448			sc->vge_head = sc->vge_tail = NULL;
1449			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1450		} else
1451			m->m_pkthdr.len = m->m_len =
1452			    (total_len - ETHER_CRC_LEN);
1453
1454#ifdef VGE_FIXUP_RX
1455		vge_fixup_rx(m);
1456#endif
1457		ifp->if_ipackets++;
1458		m->m_pkthdr.rcvif = ifp;
1459
1460		/* Do RX checksumming if enabled */
1461		if (ifp->if_capenable & IFCAP_RXCSUM) {
1462
1463			/* Check IP header checksum */
1464			if (rxctl & VGE_RDCTL_IPPKT)
1465				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1466			if (rxctl & VGE_RDCTL_IPCSUMOK)
1467				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1468
1469			/* Check TCP/UDP checksum */
1470			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1471			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1472				m->m_pkthdr.csum_flags |=
1473				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1474				m->m_pkthdr.csum_data = 0xffff;
1475			}
1476		}
1477
1478		if (rxstat & VGE_RDSTS_VTAG)
1479			VLAN_INPUT_TAG(ifp, m,
1480			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1481
1482		VGE_UNLOCK(sc);
1483		(*ifp->if_input)(ifp, m);
1484		VGE_LOCK(sc);
1485
1486		lim++;
1487		if (lim == VGE_RX_DESC_CNT)
1488			break;
1489
1490	}
1491
1492	/* Flush the RX DMA ring */
1493
1494	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1495	    sc->vge_ldata.vge_rx_list_map,
1496	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1497
1498	sc->vge_ldata.vge_rx_prodidx = i;
1499	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1500
1501
1502	return;
1503}
1504
1505static void
1506vge_txeof(sc)
1507	struct vge_softc		*sc;
1508{
1509	struct ifnet		*ifp;
1510	u_int32_t		txstat;
1511	int			idx;
1512
1513	ifp = &sc->arpcom.ac_if;
1514	idx = sc->vge_ldata.vge_tx_considx;
1515
1516	/* Invalidate the TX descriptor list */
1517
1518	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1519	    sc->vge_ldata.vge_tx_list_map,
1520	    BUS_DMASYNC_POSTREAD);
1521
1522	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1523
1524		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1525		if (txstat & VGE_TDSTS_OWN)
1526			break;
1527
1528		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1529		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1530		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1531		    sc->vge_ldata.vge_tx_dmamap[idx]);
1532		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1533			ifp->if_collisions++;
1534		if (txstat & VGE_TDSTS_TXERR)
1535			ifp->if_oerrors++;
1536		else
1537			ifp->if_opackets++;
1538
1539		sc->vge_ldata.vge_tx_free++;
1540		VGE_TX_DESC_INC(idx);
1541	}
1542
1543	/* No changes made to the TX ring, so no flush needed */
1544
1545	if (idx != sc->vge_ldata.vge_tx_considx) {
1546		sc->vge_ldata.vge_tx_considx = idx;
1547		ifp->if_flags &= ~IFF_OACTIVE;
1548		ifp->if_timer = 0;
1549	}
1550
1551	/*
1552	 * If not all descriptors have been released reaped yet,
1553	 * reload the timer so that we will eventually get another
1554	 * interrupt that will cause us to re-enter this routine.
1555	 * This is done in case the transmitter has gone idle.
1556	 */
1557	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1558		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1559	}
1560
1561	return;
1562}
1563
1564static void
1565vge_tick(xsc)
1566	void			*xsc;
1567{
1568	struct vge_softc	*sc;
1569	struct ifnet		*ifp;
1570	struct mii_data		*mii;
1571
1572	sc = xsc;
1573	ifp = &sc->arpcom.ac_if;
1574	VGE_LOCK(sc);
1575	mii = device_get_softc(sc->vge_miibus);
1576
1577	mii_tick(mii);
1578	if (sc->vge_link) {
1579		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1580			sc->vge_link = 0;
1581			if_link_state_change(&sc->arpcom.ac_if,
1582			    LINK_STATE_DOWN);
1583		}
1584	} else {
1585		if (mii->mii_media_status & IFM_ACTIVE &&
1586		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1587			sc->vge_link = 1;
1588			if_link_state_change(&sc->arpcom.ac_if,
1589			    LINK_STATE_UP);
1590#if __FreeBSD_version < 502114
1591			if (ifp->if_snd.ifq_head != NULL)
1592#else
1593			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1594#endif
1595				taskqueue_enqueue(taskqueue_swi,
1596				    &sc->vge_txtask);
1597		}
1598	}
1599
1600	VGE_UNLOCK(sc);
1601
1602	return;
1603}
1604
1605#ifdef DEVICE_POLLING
1606static void
1607vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1608{
1609	struct vge_softc *sc = ifp->if_softc;
1610
1611	VGE_LOCK(sc);
1612#ifdef IFCAP_POLLING
1613	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1614		ether_poll_deregister(ifp);
1615		cmd = POLL_DEREGISTER;
1616	}
1617#endif
1618	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1619		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1620		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1621		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1622		goto done;
1623	}
1624
1625	sc->rxcycles = count;
1626	vge_rxeof(sc);
1627	vge_txeof(sc);
1628
1629#if __FreeBSD_version < 502114
1630	if (ifp->if_snd.ifq_head != NULL)
1631#else
1632	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1633#endif
1634		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1635
1636	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1637		u_int32_t       status;
1638		status = CSR_READ_4(sc, VGE_ISR);
1639		if (status == 0xFFFFFFFF)
1640			goto done;
1641		if (status)
1642			CSR_WRITE_4(sc, VGE_ISR, status);
1643
1644		/*
1645		 * XXX check behaviour on receiver stalls.
1646		 */
1647
1648		if (status & VGE_ISR_TXDMA_STALL ||
1649		    status & VGE_ISR_RXDMA_STALL)
1650			vge_init(sc);
1651
1652		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1653			vge_rxeof(sc);
1654			ifp->if_ierrors++;
1655			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1656			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1657		}
1658	}
1659done:
1660	VGE_UNLOCK(sc);
1661}
1662#endif /* DEVICE_POLLING */
1663
1664static void
1665vge_intr(arg)
1666	void			*arg;
1667{
1668	struct vge_softc	*sc;
1669	struct ifnet		*ifp;
1670	u_int32_t		status;
1671
1672	sc = arg;
1673
1674	if (sc->suspended) {
1675		return;
1676	}
1677
1678	VGE_LOCK(sc);
1679	ifp = &sc->arpcom.ac_if;
1680
1681	if (!(ifp->if_flags & IFF_UP)) {
1682		VGE_UNLOCK(sc);
1683		return;
1684	}
1685
1686#ifdef DEVICE_POLLING
1687	if  (ifp->if_flags & IFF_POLLING)
1688		goto done;
1689	if (
1690#ifdef IFCAP_POLLING
1691	    (ifp->if_capenable & IFCAP_POLLING) &&
1692#endif
1693	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1694		CSR_WRITE_4(sc, VGE_IMR, 0);
1695		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1696		vge_poll(ifp, 0, 1);
1697		goto done;
1698	}
1699
1700#endif /* DEVICE_POLLING */
1701
1702	/* Disable interrupts */
1703	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1704
1705	for (;;) {
1706
1707		status = CSR_READ_4(sc, VGE_ISR);
1708		/* If the card has gone away the read returns 0xffff. */
1709		if (status == 0xFFFFFFFF)
1710			break;
1711
1712		if (status)
1713			CSR_WRITE_4(sc, VGE_ISR, status);
1714
1715		if ((status & VGE_INTRS) == 0)
1716			break;
1717
1718		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1719			vge_rxeof(sc);
1720
1721		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1722			vge_rxeof(sc);
1723			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1724			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1725		}
1726
1727		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1728			vge_txeof(sc);
1729
1730		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1731			vge_init(sc);
1732
1733		if (status & VGE_ISR_LINKSTS)
1734			vge_tick(sc);
1735	}
1736
1737	/* Re-enable interrupts */
1738	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1739
1740#ifdef DEVICE_POLLING
1741done:
1742#endif
1743	VGE_UNLOCK(sc);
1744
1745#if __FreeBSD_version < 502114
1746	if (ifp->if_snd.ifq_head != NULL)
1747#else
1748	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1749#endif
1750		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1751
1752	return;
1753}
1754
1755static int
1756vge_encap(sc, m_head, idx)
1757	struct vge_softc	*sc;
1758	struct mbuf		*m_head;
1759	int			idx;
1760{
1761	struct mbuf		*m_new = NULL;
1762	struct vge_dmaload_arg	arg;
1763	bus_dmamap_t		map;
1764	int			error;
1765	struct m_tag		*mtag;
1766
1767	if (sc->vge_ldata.vge_tx_free <= 2)
1768		return (EFBIG);
1769
1770	arg.vge_flags = 0;
1771
1772	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1773		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1774	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1775		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1776	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1777		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1778
1779	arg.sc = sc;
1780	arg.vge_idx = idx;
1781	arg.vge_m0 = m_head;
1782	arg.vge_maxsegs = VGE_TX_FRAGS;
1783
1784	map = sc->vge_ldata.vge_tx_dmamap[idx];
1785	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1786	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1787
1788	if (error && error != EFBIG) {
1789		printf("vge%d: can't map mbuf (error %d)\n",
1790		    sc->vge_unit, error);
1791		return (ENOBUFS);
1792	}
1793
1794	/* Too many segments to map, coalesce into a single mbuf */
1795
1796	if (error || arg.vge_maxsegs == 0) {
1797		m_new = m_defrag(m_head, M_DONTWAIT);
1798		if (m_new == NULL)
1799			return (1);
1800		else
1801			m_head = m_new;
1802
1803		arg.sc = sc;
1804		arg.vge_m0 = m_head;
1805		arg.vge_idx = idx;
1806		arg.vge_maxsegs = 1;
1807
1808		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1809		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1810		if (error) {
1811			printf("vge%d: can't map mbuf (error %d)\n",
1812			    sc->vge_unit, error);
1813			return (EFBIG);
1814		}
1815	}
1816
1817	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1818	sc->vge_ldata.vge_tx_free--;
1819
1820	/*
1821	 * Set up hardware VLAN tagging.
1822	 */
1823
1824	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1825	if (mtag != NULL)
1826		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1827		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1828
1829	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1830
1831	return (0);
1832}
1833
1834static void
1835vge_tx_task(arg, npending)
1836	void			*arg;
1837	int			npending;
1838{
1839	struct ifnet		*ifp;
1840
1841	ifp = arg;
1842	vge_start(ifp);
1843
1844	return;
1845}
1846
1847/*
1848 * Main transmit routine.
1849 */
1850
1851static void
1852vge_start(ifp)
1853	struct ifnet		*ifp;
1854{
1855	struct vge_softc	*sc;
1856	struct mbuf		*m_head = NULL;
1857	int			idx, pidx = 0;
1858
1859	sc = ifp->if_softc;
1860	VGE_LOCK(sc);
1861
1862	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1863		VGE_UNLOCK(sc);
1864		return;
1865	}
1866
1867#if __FreeBSD_version < 502114
1868	if (ifp->if_snd.ifq_head == NULL) {
1869#else
1870	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1871#endif
1872		VGE_UNLOCK(sc);
1873		return;
1874	}
1875
1876	idx = sc->vge_ldata.vge_tx_prodidx;
1877
1878	pidx = idx - 1;
1879	if (pidx < 0)
1880		pidx = VGE_TX_DESC_CNT - 1;
1881
1882
1883	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1884#if __FreeBSD_version < 502114
1885		IF_DEQUEUE(&ifp->if_snd, m_head);
1886#else
1887		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1888#endif
1889		if (m_head == NULL)
1890			break;
1891
1892		if (vge_encap(sc, m_head, idx)) {
1893#if __FreeBSD_version >= 502114
1894			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1895#else
1896			IF_PREPEND(&ifp->if_snd, m_head);
1897#endif
1898			ifp->if_flags |= IFF_OACTIVE;
1899			break;
1900		}
1901
1902		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1903		    htole16(VGE_TXDESC_Q);
1904
1905		pidx = idx;
1906		VGE_TX_DESC_INC(idx);
1907
1908		/*
1909		 * If there's a BPF listener, bounce a copy of this frame
1910		 * to him.
1911		 */
1912		BPF_MTAP(ifp, m_head);
1913	}
1914
1915	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1916		VGE_UNLOCK(sc);
1917		return;
1918	}
1919
1920	/* Flush the TX descriptors */
1921
1922	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1923	    sc->vge_ldata.vge_tx_list_map,
1924	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1925
1926	/* Issue a transmit command. */
1927	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1928
1929	sc->vge_ldata.vge_tx_prodidx = idx;
1930
1931	/*
1932	 * Use the countdown timer for interrupt moderation.
1933	 * 'TX done' interrupts are disabled. Instead, we reset the
1934	 * countdown timer, which will begin counting until it hits
1935	 * the value in the SSTIMER register, and then trigger an
1936	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1937	 * the timer count is reloaded. Only when the transmitter
1938	 * is idle will the timer hit 0 and an interrupt fire.
1939	 */
1940	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1941
1942	VGE_UNLOCK(sc);
1943
1944	/*
1945	 * Set a timeout in case the chip goes out to lunch.
1946	 */
1947	ifp->if_timer = 5;
1948
1949	return;
1950}
1951
1952static void
1953vge_init(xsc)
1954	void			*xsc;
1955{
1956	struct vge_softc	*sc = xsc;
1957	struct ifnet		*ifp = &sc->arpcom.ac_if;
1958	struct mii_data		*mii;
1959	int			i;
1960
1961	VGE_LOCK(sc);
1962	mii = device_get_softc(sc->vge_miibus);
1963
1964	/*
1965	 * Cancel pending I/O and free all RX/TX buffers.
1966	 */
1967	vge_stop(sc);
1968	vge_reset(sc);
1969
1970	/*
1971	 * Initialize the RX and TX descriptors and mbufs.
1972	 */
1973
1974	vge_rx_list_init(sc);
1975	vge_tx_list_init(sc);
1976
1977	/* Set our station address */
1978	for (i = 0; i < ETHER_ADDR_LEN; i++)
1979		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1980
1981	/*
1982	 * Set receive FIFO threshold. Also allow transmission and
1983	 * reception of VLAN tagged frames.
1984	 */
1985	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1986	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1987
1988	/* Set DMA burst length */
1989	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1990	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1991
1992	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1993
1994	/* Set collision backoff algorithm */
1995	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1996	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1997	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1998
1999	/* Disable LPSEL field in priority resolution */
2000	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2001
2002	/*
2003	 * Load the addresses of the DMA queues into the chip.
2004	 * Note that we only use one transmit queue.
2005	 */
2006
2007	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2008	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2009	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2010
2011	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2012	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2013	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2014	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2015
2016	/* Enable and wake up the RX descriptor queue */
2017	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2018	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2019
2020	/* Enable the TX descriptor queue */
2021	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2022
2023	/* Set up the receive filter -- allow large frames for VLANs. */
2024	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2025
2026	/* If we want promiscuous mode, set the allframes bit. */
2027	if (ifp->if_flags & IFF_PROMISC) {
2028		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2029	}
2030
2031	/* Set capture broadcast bit to capture broadcast frames. */
2032	if (ifp->if_flags & IFF_BROADCAST) {
2033		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2034	}
2035
2036	/* Set multicast bit to capture multicast frames. */
2037	if (ifp->if_flags & IFF_MULTICAST) {
2038		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2039	}
2040
2041	/* Init the cam filter. */
2042	vge_cam_clear(sc);
2043
2044	/* Init the multicast filter. */
2045	vge_setmulti(sc);
2046
2047	/* Enable flow control */
2048
2049	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2050
2051	/* Enable jumbo frame reception (if desired) */
2052
2053	/* Start the MAC. */
2054	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2055	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2056	CSR_WRITE_1(sc, VGE_CRS0,
2057	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2058
2059	/*
2060	 * Configure one-shot timer for microsecond
2061	 * resulution and load it for 500 usecs.
2062	 */
2063	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2064	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2065
2066	/*
2067	 * Configure interrupt moderation for receive. Enable
2068	 * the holdoff counter and load it, and set the RX
2069	 * suppression count to the number of descriptors we
2070	 * want to allow before triggering an interrupt.
2071	 * The holdoff timer is in units of 20 usecs.
2072	 */
2073
2074#ifdef notyet
2075	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2076	/* Select the interrupt holdoff timer page. */
2077	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2078	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2079	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2080
2081	/* Enable use of the holdoff timer. */
2082	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2083	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2084
2085	/* Select the RX suppression threshold page. */
2086	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2087	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2088	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2089
2090	/* Restore the page select bits. */
2091	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2092	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2093#endif
2094
2095#ifdef DEVICE_POLLING
2096	/*
2097	 * Disable interrupts if we are polling.
2098	 */
2099	if (ifp->if_flags & IFF_POLLING) {
2100		CSR_WRITE_4(sc, VGE_IMR, 0);
2101		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2102	} else	/* otherwise ... */
2103#endif /* DEVICE_POLLING */
2104	{
2105	/*
2106	 * Enable interrupts.
2107	 */
2108		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2109		CSR_WRITE_4(sc, VGE_ISR, 0);
2110		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2111	}
2112
2113	mii_mediachg(mii);
2114
2115	ifp->if_flags |= IFF_RUNNING;
2116	ifp->if_flags &= ~IFF_OACTIVE;
2117
2118	sc->vge_if_flags = 0;
2119	sc->vge_link = 0;
2120
2121	VGE_UNLOCK(sc);
2122
2123	return;
2124}
2125
2126/*
2127 * Set media options.
2128 */
2129static int
2130vge_ifmedia_upd(ifp)
2131	struct ifnet		*ifp;
2132{
2133	struct vge_softc	*sc;
2134	struct mii_data		*mii;
2135
2136	sc = ifp->if_softc;
2137	mii = device_get_softc(sc->vge_miibus);
2138	mii_mediachg(mii);
2139
2140	return (0);
2141}
2142
2143/*
2144 * Report current media status.
2145 */
2146static void
2147vge_ifmedia_sts(ifp, ifmr)
2148	struct ifnet		*ifp;
2149	struct ifmediareq	*ifmr;
2150{
2151	struct vge_softc	*sc;
2152	struct mii_data		*mii;
2153
2154	sc = ifp->if_softc;
2155	mii = device_get_softc(sc->vge_miibus);
2156
2157	mii_pollstat(mii);
2158	ifmr->ifm_active = mii->mii_media_active;
2159	ifmr->ifm_status = mii->mii_media_status;
2160
2161	return;
2162}
2163
2164static void
2165vge_miibus_statchg(dev)
2166	device_t		dev;
2167{
2168	struct vge_softc	*sc;
2169	struct mii_data		*mii;
2170	struct ifmedia_entry	*ife;
2171
2172	sc = device_get_softc(dev);
2173	mii = device_get_softc(sc->vge_miibus);
2174	ife = mii->mii_media.ifm_cur;
2175
2176	/*
2177	 * If the user manually selects a media mode, we need to turn
2178	 * on the forced MAC mode bit in the DIAGCTL register. If the
2179	 * user happens to choose a full duplex mode, we also need to
2180	 * set the 'force full duplex' bit. This applies only to
2181	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2182	 * mode is disabled, and in 1000baseT mode, full duplex is
2183	 * always implied, so we turn on the forced mode bit but leave
2184	 * the FDX bit cleared.
2185	 */
2186
2187	switch (IFM_SUBTYPE(ife->ifm_media)) {
2188	case IFM_AUTO:
2189		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2190		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2191		break;
2192	case IFM_1000_T:
2193		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2194		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2195		break;
2196	case IFM_100_TX:
2197	case IFM_10_T:
2198		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2199		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2200			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2201		} else {
2202			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2203		}
2204		break;
2205	default:
2206		device_printf(dev, "unknown media type: %x\n",
2207		    IFM_SUBTYPE(ife->ifm_media));
2208		break;
2209	}
2210
2211	return;
2212}
2213
2214static int
2215vge_ioctl(ifp, command, data)
2216	struct ifnet		*ifp;
2217	u_long			command;
2218	caddr_t			data;
2219{
2220	struct vge_softc	*sc = ifp->if_softc;
2221	struct ifreq		*ifr = (struct ifreq *) data;
2222	struct mii_data		*mii;
2223	int			error = 0;
2224
2225	switch (command) {
2226	case SIOCSIFMTU:
2227		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2228			error = EINVAL;
2229		ifp->if_mtu = ifr->ifr_mtu;
2230		break;
2231	case SIOCSIFFLAGS:
2232		if (ifp->if_flags & IFF_UP) {
2233			if (ifp->if_flags & IFF_RUNNING &&
2234			    ifp->if_flags & IFF_PROMISC &&
2235			    !(sc->vge_if_flags & IFF_PROMISC)) {
2236				CSR_SETBIT_1(sc, VGE_RXCTL,
2237				    VGE_RXCTL_RX_PROMISC);
2238				vge_setmulti(sc);
2239			} else if (ifp->if_flags & IFF_RUNNING &&
2240			    !(ifp->if_flags & IFF_PROMISC) &&
2241			    sc->vge_if_flags & IFF_PROMISC) {
2242				CSR_CLRBIT_1(sc, VGE_RXCTL,
2243				    VGE_RXCTL_RX_PROMISC);
2244				vge_setmulti(sc);
2245                        } else
2246				vge_init(sc);
2247		} else {
2248			if (ifp->if_flags & IFF_RUNNING)
2249				vge_stop(sc);
2250		}
2251		sc->vge_if_flags = ifp->if_flags;
2252		break;
2253	case SIOCADDMULTI:
2254	case SIOCDELMULTI:
2255		vge_setmulti(sc);
2256		break;
2257	case SIOCGIFMEDIA:
2258	case SIOCSIFMEDIA:
2259		mii = device_get_softc(sc->vge_miibus);
2260		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2261		break;
2262	case SIOCSIFCAP:
2263#ifdef IFCAP_POLLING
2264		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2265#else
2266		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2267#endif
2268		ifp->if_capenable |=
2269#ifdef IFCAP_POLLING
2270		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2271#else
2272		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2273#endif
2274		if (ifp->if_capenable & IFCAP_TXCSUM)
2275			ifp->if_hwassist = VGE_CSUM_FEATURES;
2276		else
2277			ifp->if_hwassist = 0;
2278		if (ifp->if_flags & IFF_RUNNING)
2279			vge_init(sc);
2280		break;
2281	default:
2282		error = ether_ioctl(ifp, command, data);
2283		break;
2284	}
2285
2286	return (error);
2287}
2288
2289static void
2290vge_watchdog(ifp)
2291	struct ifnet		*ifp;
2292{
2293	struct vge_softc		*sc;
2294
2295	sc = ifp->if_softc;
2296	VGE_LOCK(sc);
2297	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2298	ifp->if_oerrors++;
2299
2300	vge_txeof(sc);
2301	vge_rxeof(sc);
2302
2303	vge_init(sc);
2304
2305	VGE_UNLOCK(sc);
2306
2307	return;
2308}
2309
2310/*
2311 * Stop the adapter and free any mbufs allocated to the
2312 * RX and TX lists.
2313 */
2314static void
2315vge_stop(sc)
2316	struct vge_softc		*sc;
2317{
2318	register int		i;
2319	struct ifnet		*ifp;
2320
2321	VGE_LOCK(sc);
2322	ifp = &sc->arpcom.ac_if;
2323	ifp->if_timer = 0;
2324
2325	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2326#ifdef DEVICE_POLLING
2327	ether_poll_deregister(ifp);
2328#endif /* DEVICE_POLLING */
2329
2330	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2331	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2332	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2333	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2334	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2335	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2336
2337	if (sc->vge_head != NULL) {
2338		m_freem(sc->vge_head);
2339		sc->vge_head = sc->vge_tail = NULL;
2340	}
2341
2342	/* Free the TX list buffers. */
2343
2344	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2345		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2346			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2347			    sc->vge_ldata.vge_tx_dmamap[i]);
2348			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2349			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2350		}
2351	}
2352
2353	/* Free the RX list buffers. */
2354
2355	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2356		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2357			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2358			    sc->vge_ldata.vge_rx_dmamap[i]);
2359			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2360			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2361		}
2362	}
2363
2364	VGE_UNLOCK(sc);
2365
2366	return;
2367}
2368
2369/*
2370 * Device suspend routine.  Stop the interface and save some PCI
2371 * settings in case the BIOS doesn't restore them properly on
2372 * resume.
2373 */
2374static int
2375vge_suspend(dev)
2376	device_t		dev;
2377{
2378	struct vge_softc	*sc;
2379	int			i;
2380
2381	sc = device_get_softc(dev);
2382
2383	vge_stop(sc);
2384
2385        for (i = 0; i < 5; i++)
2386		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2387	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2388	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2389	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2390	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2391
2392	sc->suspended = 1;
2393
2394	return (0);
2395}
2396
2397/*
2398 * Device resume routine.  Restore some PCI settings in case the BIOS
2399 * doesn't, re-enable busmastering, and restart the interface if
2400 * appropriate.
2401 */
2402static int
2403vge_resume(dev)
2404	device_t		dev;
2405{
2406	struct vge_softc	*sc;
2407	struct ifnet		*ifp;
2408	int			i;
2409
2410	sc = device_get_softc(dev);
2411	ifp = &sc->arpcom.ac_if;
2412
2413        /* better way to do this? */
2414	for (i = 0; i < 5; i++)
2415		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2416	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2417	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2418	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2419	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2420
2421	/* reenable busmastering */
2422	pci_enable_busmaster(dev);
2423	pci_enable_io(dev, SYS_RES_MEMORY);
2424
2425	/* reinitialize interface if necessary */
2426	if (ifp->if_flags & IFF_UP)
2427		vge_init(sc);
2428
2429	sc->suspended = 0;
2430
2431	return (0);
2432}
2433
2434/*
2435 * Stop all chip I/O so that the kernel's probe routines don't
2436 * get confused by errant DMAs when rebooting.
2437 */
2438static void
2439vge_shutdown(dev)
2440	device_t		dev;
2441{
2442	struct vge_softc		*sc;
2443
2444	sc = device_get_softc(dev);
2445
2446	vge_stop(sc);
2447}
2448