if_vge.c revision 145520
1/*-
2 * Copyright (c) 2004
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/vge/if_vge.c 145520 2005-04-25 18:29:42Z wpaul $");
35
36/*
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
48 *
49 *	o Jumbo frame support up to 16K
50 *	o Transmit and receive flow control
51 *	o IPv4 checksum offload
52 *	o VLAN tag insertion and stripping
53 *	o TCP large send
54 *	o 64-bit multicast hash table filter
55 *	o 64 entry CAM filter
56 *	o 16K RX FIFO and 48K TX FIFO memory
57 *	o Interrupt moderation
58 *
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
64 *
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
70 *
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
78 *
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
81 */
82
83#include <sys/param.h>
84#include <sys/endian.h>
85#include <sys/systm.h>
86#include <sys/sockio.h>
87#include <sys/mbuf.h>
88#include <sys/malloc.h>
89#include <sys/module.h>
90#include <sys/kernel.h>
91#include <sys/socket.h>
92#include <sys/taskqueue.h>
93
94#include <net/if.h>
95#include <net/if_arp.h>
96#include <net/ethernet.h>
97#include <net/if_dl.h>
98#include <net/if_media.h>
99#include <net/if_vlan_var.h>
100
101#include <net/bpf.h>
102
103#include <machine/bus_pio.h>
104#include <machine/bus_memio.h>
105#include <machine/bus.h>
106#include <machine/resource.h>
107#include <sys/bus.h>
108#include <sys/rman.h>
109
110#include <dev/mii/mii.h>
111#include <dev/mii/miivar.h>
112
113#include <dev/pci/pcireg.h>
114#include <dev/pci/pcivar.h>
115
116MODULE_DEPEND(vge, pci, 1, 1, 1);
117MODULE_DEPEND(vge, ether, 1, 1, 1);
118MODULE_DEPEND(vge, miibus, 1, 1, 1);
119
120/* "controller miibus0" required.  See GENERIC if you get errors here. */
121#include "miibus_if.h"
122
123#include <dev/vge/if_vgereg.h>
124#include <dev/vge/if_vgevar.h>
125
126#define VGE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
127
128/*
129 * Various supported device vendors/types and their names.
130 */
131static struct vge_type vge_devs[] = {
132	{ VIA_VENDORID, VIA_DEVICEID_61XX,
133		"VIA Networking Gigabit Ethernet" },
134	{ 0, 0, NULL }
135};
136
137static int vge_probe		(device_t);
138static int vge_attach		(device_t);
139static int vge_detach		(device_t);
140
141static int vge_encap		(struct vge_softc *, struct mbuf *, int);
142
143static void vge_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
144static void vge_dma_map_rx_desc	(void *, bus_dma_segment_t *, int,
145				    bus_size_t, int);
146static void vge_dma_map_tx_desc	(void *, bus_dma_segment_t *, int,
147				    bus_size_t, int);
148static int vge_allocmem		(device_t, struct vge_softc *);
149static int vge_newbuf		(struct vge_softc *, int, struct mbuf *);
150static int vge_rx_list_init	(struct vge_softc *);
151static int vge_tx_list_init	(struct vge_softc *);
152#ifdef VGE_FIXUP_RX
153static __inline void vge_fixup_rx
154				(struct mbuf *);
155#endif
156static void vge_rxeof		(struct vge_softc *);
157static void vge_txeof		(struct vge_softc *);
158static void vge_intr		(void *);
159static void vge_tick		(void *);
160static void vge_tx_task		(void *, int);
161static void vge_start		(struct ifnet *);
162static int vge_ioctl		(struct ifnet *, u_long, caddr_t);
163static void vge_init		(void *);
164static void vge_stop		(struct vge_softc *);
165static void vge_watchdog	(struct ifnet *);
166static int vge_suspend		(device_t);
167static int vge_resume		(device_t);
168static void vge_shutdown	(device_t);
169static int vge_ifmedia_upd	(struct ifnet *);
170static void vge_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
171
172#ifdef VGE_EEPROM
173static void vge_eeprom_getword	(struct vge_softc *, int, u_int16_t *);
174#endif
175static void vge_read_eeprom	(struct vge_softc *, caddr_t, int, int, int);
176
177static void vge_miipoll_start	(struct vge_softc *);
178static void vge_miipoll_stop	(struct vge_softc *);
179static int vge_miibus_readreg	(device_t, int, int);
180static int vge_miibus_writereg	(device_t, int, int, int);
181static void vge_miibus_statchg	(device_t);
182
183static void vge_cam_clear	(struct vge_softc *);
184static int vge_cam_set		(struct vge_softc *, uint8_t *);
185#if __FreeBSD_version < 502113
186static uint32_t vge_mchash	(uint8_t *);
187#endif
188static void vge_setmulti	(struct vge_softc *);
189static void vge_reset		(struct vge_softc *);
190
191#define VGE_PCI_LOIO             0x10
192#define VGE_PCI_LOMEM            0x14
193
194static device_method_t vge_methods[] = {
195	/* Device interface */
196	DEVMETHOD(device_probe,		vge_probe),
197	DEVMETHOD(device_attach,	vge_attach),
198	DEVMETHOD(device_detach,	vge_detach),
199	DEVMETHOD(device_suspend,	vge_suspend),
200	DEVMETHOD(device_resume,	vge_resume),
201	DEVMETHOD(device_shutdown,	vge_shutdown),
202
203	/* bus interface */
204	DEVMETHOD(bus_print_child,	bus_generic_print_child),
205	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
206
207	/* MII interface */
208	DEVMETHOD(miibus_readreg,	vge_miibus_readreg),
209	DEVMETHOD(miibus_writereg,	vge_miibus_writereg),
210	DEVMETHOD(miibus_statchg,	vge_miibus_statchg),
211
212	{ 0, 0 }
213};
214
215static driver_t vge_driver = {
216	"vge",
217	vge_methods,
218	sizeof(struct vge_softc)
219};
220
221static devclass_t vge_devclass;
222
223DRIVER_MODULE(vge, pci, vge_driver, vge_devclass, 0, 0);
224DRIVER_MODULE(vge, cardbus, vge_driver, vge_devclass, 0, 0);
225DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
226
227#ifdef VGE_EEPROM
228/*
229 * Read a word of data stored in the EEPROM at address 'addr.'
230 */
231static void
232vge_eeprom_getword(sc, addr, dest)
233	struct vge_softc	*sc;
234	int			addr;
235	u_int16_t		*dest;
236{
237	register int		i;
238	u_int16_t		word = 0;
239
240	/*
241	 * Enter EEPROM embedded programming mode. In order to
242	 * access the EEPROM at all, we first have to set the
243	 * EELOAD bit in the CHIPCFG2 register.
244	 */
245	CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
246	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247
248	/* Select the address of the word we want to read */
249	CSR_WRITE_1(sc, VGE_EEADDR, addr);
250
251	/* Issue read command */
252	CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253
254	/* Wait for the done bit to be set. */
255	for (i = 0; i < VGE_TIMEOUT; i++) {
256		if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
257			break;
258	}
259
260	if (i == VGE_TIMEOUT) {
261		device_printf(sc->vge_dev, "EEPROM read timed out\n");
262		*dest = 0;
263		return;
264	}
265
266	/* Read the result */
267	word = CSR_READ_2(sc, VGE_EERDDAT);
268
269	/* Turn off EEPROM access mode. */
270	CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
271	CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
272
273	*dest = word;
274
275	return;
276}
277#endif
278
279/*
280 * Read a sequence of words from the EEPROM.
281 */
282static void
283vge_read_eeprom(sc, dest, off, cnt, swap)
284	struct vge_softc	*sc;
285	caddr_t			dest;
286	int			off;
287	int			cnt;
288	int			swap;
289{
290	int			i;
291#ifdef VGE_EEPROM
292	u_int16_t		word = 0, *ptr;
293
294	for (i = 0; i < cnt; i++) {
295		vge_eeprom_getword(sc, off + i, &word);
296		ptr = (u_int16_t *)(dest + (i * 2));
297		if (swap)
298			*ptr = ntohs(word);
299		else
300			*ptr = word;
301	}
302#else
303	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
304	DELAY(500);
305	for (i = 0; i < ETHER_ADDR_LEN; i++)
306		dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
307#endif
308}
309
310static void
311vge_miipoll_stop(sc)
312	struct vge_softc	*sc;
313{
314	int			i;
315
316	CSR_WRITE_1(sc, VGE_MIICMD, 0);
317
318	for (i = 0; i < VGE_TIMEOUT; i++) {
319		DELAY(1);
320		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
321			break;
322	}
323
324	if (i == VGE_TIMEOUT)
325		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
326
327	return;
328}
329
330static void
331vge_miipoll_start(sc)
332	struct vge_softc	*sc;
333{
334	int			i;
335
336	/* First, make sure we're idle. */
337
338	CSR_WRITE_1(sc, VGE_MIICMD, 0);
339	CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
340
341	for (i = 0; i < VGE_TIMEOUT; i++) {
342		DELAY(1);
343		if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
344			break;
345	}
346
347	if (i == VGE_TIMEOUT) {
348		device_printf(sc->vge_dev, "failed to idle MII autopoll\n");
349		return;
350	}
351
352	/* Now enable auto poll mode. */
353
354	CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
355
356	/* And make sure it started. */
357
358	for (i = 0; i < VGE_TIMEOUT; i++) {
359		DELAY(1);
360		if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
361			break;
362	}
363
364	if (i == VGE_TIMEOUT)
365		device_printf(sc->vge_dev, "failed to start MII autopoll\n");
366
367	return;
368}
369
370static int
371vge_miibus_readreg(dev, phy, reg)
372	device_t		dev;
373	int			phy, reg;
374{
375	struct vge_softc	*sc;
376	int			i;
377	u_int16_t		rval = 0;
378
379	sc = device_get_softc(dev);
380
381	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
382		return(0);
383
384	VGE_LOCK(sc);
385	vge_miipoll_stop(sc);
386
387	/* Specify the register we want to read. */
388	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
389
390	/* Issue read command. */
391	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
392
393	/* Wait for the read command bit to self-clear. */
394	for (i = 0; i < VGE_TIMEOUT; i++) {
395		DELAY(1);
396		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
397			break;
398	}
399
400	if (i == VGE_TIMEOUT)
401		device_printf(sc->vge_dev, "MII read timed out\n");
402	else
403		rval = CSR_READ_2(sc, VGE_MIIDATA);
404
405	vge_miipoll_start(sc);
406	VGE_UNLOCK(sc);
407
408	return (rval);
409}
410
411static int
412vge_miibus_writereg(dev, phy, reg, data)
413	device_t		dev;
414	int			phy, reg, data;
415{
416	struct vge_softc	*sc;
417	int			i, rval = 0;
418
419	sc = device_get_softc(dev);
420
421	if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
422		return(0);
423
424	VGE_LOCK(sc);
425	vge_miipoll_stop(sc);
426
427	/* Specify the register we want to write. */
428	CSR_WRITE_1(sc, VGE_MIIADDR, reg);
429
430	/* Specify the data we want to write. */
431	CSR_WRITE_2(sc, VGE_MIIDATA, data);
432
433	/* Issue write command. */
434	CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
435
436	/* Wait for the write command bit to self-clear. */
437	for (i = 0; i < VGE_TIMEOUT; i++) {
438		DELAY(1);
439		if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
440			break;
441	}
442
443	if (i == VGE_TIMEOUT) {
444		device_printf(sc->vge_dev, "MII write timed out\n");
445		rval = EIO;
446	}
447
448	vge_miipoll_start(sc);
449	VGE_UNLOCK(sc);
450
451	return (rval);
452}
453
454static void
455vge_cam_clear(sc)
456	struct vge_softc	*sc;
457{
458	int			i;
459
460	/*
461	 * Turn off all the mask bits. This tells the chip
462	 * that none of the entries in the CAM filter are valid.
463	 * desired entries will be enabled as we fill the filter in.
464	 */
465
466	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
467	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
468	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
469	for (i = 0; i < 8; i++)
470		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
471
472	/* Clear the VLAN filter too. */
473
474	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
475	for (i = 0; i < 8; i++)
476		CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
477
478	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
479	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
480	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
481
482	sc->vge_camidx = 0;
483
484	return;
485}
486
487static int
488vge_cam_set(sc, addr)
489	struct vge_softc	*sc;
490	uint8_t			*addr;
491{
492	int			i, error = 0;
493
494	if (sc->vge_camidx == VGE_CAM_MAXADDRS)
495		return(ENOSPC);
496
497	/* Select the CAM data page. */
498	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
499	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
500
501	/* Set the filter entry we want to update and enable writing. */
502	CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
503
504	/* Write the address to the CAM registers */
505	for (i = 0; i < ETHER_ADDR_LEN; i++)
506		CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
507
508	/* Issue a write command. */
509	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
510
511	/* Wake for it to clear. */
512	for (i = 0; i < VGE_TIMEOUT; i++) {
513		DELAY(1);
514		if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
515			break;
516	}
517
518	if (i == VGE_TIMEOUT) {
519		device_printf(sc->vge_dev, "setting CAM filter failed\n");
520		error = EIO;
521		goto fail;
522	}
523
524	/* Select the CAM mask page. */
525	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
526	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
527
528	/* Set the mask bit that enables this filter. */
529	CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
530	    1<<(sc->vge_camidx & 7));
531
532	sc->vge_camidx++;
533
534fail:
535	/* Turn off access to CAM. */
536	CSR_WRITE_1(sc, VGE_CAMADDR, 0);
537	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
538	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
539
540	return (error);
541}
542
543#if __FreeBSD_version < 502113
544static uint32_t
545vge_mchash(addr)
546        uint8_t			*addr;
547{
548	uint32_t		crc, carry;
549	int			idx, bit;
550	uint8_t			data;
551
552	/* Compute CRC for the address value. */
553	crc = 0xFFFFFFFF; /* initial value */
554
555	for (idx = 0; idx < 6; idx++) {
556		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
557			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
558			crc <<= 1;
559			if (carry)
560				crc = (crc ^ 0x04c11db6) | carry;
561		}
562	}
563
564	return(crc);
565}
566#endif
567
568/*
569 * Program the multicast filter. We use the 64-entry CAM filter
570 * for perfect filtering. If there's more than 64 multicast addresses,
571 * we use the hash filter insted.
572 */
573static void
574vge_setmulti(sc)
575	struct vge_softc	*sc;
576{
577	struct ifnet		*ifp;
578	int			error = 0/*, h = 0*/;
579	struct ifmultiaddr	*ifma;
580	u_int32_t		h, hashes[2] = { 0, 0 };
581
582	ifp = &sc->arpcom.ac_if;
583
584	/* First, zot all the multicast entries. */
585	vge_cam_clear(sc);
586	CSR_WRITE_4(sc, VGE_MAR0, 0);
587	CSR_WRITE_4(sc, VGE_MAR1, 0);
588
589	/*
590	 * If the user wants allmulti or promisc mode, enable reception
591	 * of all multicast frames.
592	 */
593	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
594		CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
595		CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
596		return;
597	}
598
599	/* Now program new ones */
600	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
601		if (ifma->ifma_addr->sa_family != AF_LINK)
602			continue;
603		error = vge_cam_set(sc,
604		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
605		if (error)
606			break;
607	}
608
609	/* If there were too many addresses, use the hash filter. */
610	if (error) {
611		vge_cam_clear(sc);
612
613		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
614			if (ifma->ifma_addr->sa_family != AF_LINK)
615				continue;
616#if __FreeBSD_version < 502113
617			h = vge_mchash(LLADDR((struct sockaddr_dl *)
618			    ifma->ifma_addr)) >> 26;
619#else
620			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
621			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
622#endif
623			if (h < 32)
624				hashes[0] |= (1 << h);
625			else
626				hashes[1] |= (1 << (h - 32));
627		}
628
629		CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
630		CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
631	}
632
633	return;
634}
635
636static void
637vge_reset(sc)
638	struct vge_softc		*sc;
639{
640	register int		i;
641
642	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
643
644	for (i = 0; i < VGE_TIMEOUT; i++) {
645		DELAY(5);
646		if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
647			break;
648	}
649
650	if (i == VGE_TIMEOUT) {
651		device_printf(sc->vge_dev, "soft reset timed out");
652		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
653		DELAY(2000);
654	}
655
656	DELAY(5000);
657
658	CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
659
660	for (i = 0; i < VGE_TIMEOUT; i++) {
661		DELAY(5);
662		if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
663			break;
664	}
665
666	if (i == VGE_TIMEOUT) {
667		device_printf(sc->vge_dev, "EEPROM reload timed out\n");
668		return;
669	}
670
671	CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
672
673	return;
674}
675
676/*
677 * Probe for a VIA gigabit chip. Check the PCI vendor and device
678 * IDs against our list and return a device name if we find a match.
679 */
680static int
681vge_probe(dev)
682	device_t		dev;
683{
684	struct vge_type		*t;
685	struct vge_softc	*sc;
686
687	t = vge_devs;
688	sc = device_get_softc(dev);
689
690	while (t->vge_name != NULL) {
691		if ((pci_get_vendor(dev) == t->vge_vid) &&
692		    (pci_get_device(dev) == t->vge_did)) {
693			device_set_desc(dev, t->vge_name);
694			return (BUS_PROBE_DEFAULT);
695		}
696		t++;
697	}
698
699	return (ENXIO);
700}
701
702static void
703vge_dma_map_rx_desc(arg, segs, nseg, mapsize, error)
704	void			*arg;
705	bus_dma_segment_t	*segs;
706	int			nseg;
707	bus_size_t		mapsize;
708	int			error;
709{
710
711	struct vge_dmaload_arg	*ctx;
712	struct vge_rx_desc	*d = NULL;
713
714	if (error)
715		return;
716
717	ctx = arg;
718
719	/* Signal error to caller if there's too many segments */
720	if (nseg > ctx->vge_maxsegs) {
721		ctx->vge_maxsegs = 0;
722		return;
723	}
724
725	/*
726	 * Map the segment array into descriptors.
727	 */
728
729	d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
730
731	/* If this descriptor is still owned by the chip, bail. */
732
733	if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
734		device_printf(ctx->sc->vge_dev,
735		    "tried to map busy descriptor\n");
736		ctx->vge_maxsegs = 0;
737		return;
738	}
739
740	d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
741	d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
742	d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
743	d->vge_sts = 0;
744	d->vge_ctl = 0;
745
746	ctx->vge_maxsegs = 1;
747
748	return;
749}
750
751static void
752vge_dma_map_tx_desc(arg, segs, nseg, mapsize, error)
753	void			*arg;
754	bus_dma_segment_t	*segs;
755	int			nseg;
756	bus_size_t		mapsize;
757	int			error;
758{
759	struct vge_dmaload_arg	*ctx;
760	struct vge_tx_desc	*d = NULL;
761	struct vge_tx_frag	*f;
762	int			i = 0;
763
764	if (error)
765		return;
766
767	ctx = arg;
768
769	/* Signal error to caller if there's too many segments */
770	if (nseg > ctx->vge_maxsegs) {
771		ctx->vge_maxsegs = 0;
772		return;
773	}
774
775	/* Map the segment array into descriptors. */
776
777	d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
778
779	/* If this descriptor is still owned by the chip, bail. */
780
781	if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
782		ctx->vge_maxsegs = 0;
783		return;
784	}
785
786	for (i = 0; i < nseg; i++) {
787		f = &d->vge_frag[i];
788		f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
789		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
790		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
791	}
792
793	/* Argh. This chip does not autopad short frames */
794
795	if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
796		f = &d->vge_frag[i];
797		f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
798		    ctx->vge_m0->m_pkthdr.len));
799		f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
800		f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
801		ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
802		i++;
803	}
804
805	/*
806	 * When telling the chip how many segments there are, we
807	 * must use nsegs + 1 instead of just nsegs. Darned if I
808	 * know why.
809	 */
810	i++;
811
812	d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
813	d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
814
815	if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
816		d->vge_ctl |= VGE_TDCTL_JUMBO;
817
818	ctx->vge_maxsegs = nseg;
819
820	return;
821}
822
823/*
824 * Map a single buffer address.
825 */
826
827static void
828vge_dma_map_addr(arg, segs, nseg, error)
829	void			*arg;
830	bus_dma_segment_t	*segs;
831	int			nseg;
832	int			error;
833{
834	bus_addr_t		*addr;
835
836	if (error)
837		return;
838
839	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
840	addr = arg;
841	*addr = segs->ds_addr;
842
843	return;
844}
845
846static int
847vge_allocmem(dev, sc)
848	device_t		dev;
849	struct vge_softc		*sc;
850{
851	int			error;
852	int			nseg;
853	int			i;
854
855	/*
856	 * Allocate map for RX mbufs.
857	 */
858	nseg = 32;
859	error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
860	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
861	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
862	    NULL, NULL, &sc->vge_ldata.vge_mtag);
863	if (error) {
864		device_printf(dev, "could not allocate dma tag\n");
865		return (ENOMEM);
866	}
867
868	/*
869	 * Allocate map for TX descriptor list.
870	 */
871	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
872	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
873	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
874	    NULL, NULL, &sc->vge_ldata.vge_tx_list_tag);
875	if (error) {
876		device_printf(dev, "could not allocate dma tag\n");
877		return (ENOMEM);
878	}
879
880	/* Allocate DMA'able memory for the TX ring */
881
882	error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
883	    (void **)&sc->vge_ldata.vge_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
884	    &sc->vge_ldata.vge_tx_list_map);
885	if (error)
886		return (ENOMEM);
887
888	/* Load the map for the TX ring. */
889
890	error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
891	     sc->vge_ldata.vge_tx_list_map, sc->vge_ldata.vge_tx_list,
892	     VGE_TX_LIST_SZ, vge_dma_map_addr,
893	     &sc->vge_ldata.vge_tx_list_addr, BUS_DMA_NOWAIT);
894
895	/* Create DMA maps for TX buffers */
896
897	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
898		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
899			    &sc->vge_ldata.vge_tx_dmamap[i]);
900		if (error) {
901			device_printf(dev, "can't create DMA map for TX\n");
902			return (ENOMEM);
903		}
904	}
905
906	/*
907	 * Allocate map for RX descriptor list.
908	 */
909	error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN,
910	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
911	    NULL, VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
912	    NULL, NULL, &sc->vge_ldata.vge_rx_list_tag);
913	if (error) {
914		device_printf(dev, "could not allocate dma tag\n");
915		return (ENOMEM);
916	}
917
918	/* Allocate DMA'able memory for the RX ring */
919
920	error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
921	    (void **)&sc->vge_ldata.vge_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
922	    &sc->vge_ldata.vge_rx_list_map);
923	if (error)
924		return (ENOMEM);
925
926	/* Load the map for the RX ring. */
927
928	error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
929	     sc->vge_ldata.vge_rx_list_map, sc->vge_ldata.vge_rx_list,
930	     VGE_TX_LIST_SZ, vge_dma_map_addr,
931	     &sc->vge_ldata.vge_rx_list_addr, BUS_DMA_NOWAIT);
932
933	/* Create DMA maps for RX buffers */
934
935	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
936		error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
937			    &sc->vge_ldata.vge_rx_dmamap[i]);
938		if (error) {
939			device_printf(dev, "can't create DMA map for RX\n");
940			return (ENOMEM);
941		}
942	}
943
944	return (0);
945}
946
947/*
948 * Attach the interface. Allocate softc structures, do ifmedia
949 * setup and ethernet/BPF attach.
950 */
951static int
952vge_attach(dev)
953	device_t		dev;
954{
955	u_char			eaddr[ETHER_ADDR_LEN];
956	struct vge_softc	*sc;
957	struct ifnet		*ifp;
958	int			unit, error = 0, rid;
959
960	sc = device_get_softc(dev);
961	unit = device_get_unit(dev);
962	sc->vge_dev = dev;
963
964	mtx_init(&sc->vge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
965	    MTX_DEF | MTX_RECURSE);
966	/*
967	 * Map control/status registers.
968	 */
969	pci_enable_busmaster(dev);
970
971	rid = VGE_PCI_LOMEM;
972	sc->vge_res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
973	    0, ~0, 1, RF_ACTIVE);
974
975	if (sc->vge_res == NULL) {
976		printf ("vge%d: couldn't map ports/memory\n", unit);
977		error = ENXIO;
978		goto fail;
979	}
980
981	sc->vge_btag = rman_get_bustag(sc->vge_res);
982	sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
983
984	/* Allocate interrupt */
985	rid = 0;
986	sc->vge_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid,
987	    0, ~0, 1, RF_SHAREABLE | RF_ACTIVE);
988
989	if (sc->vge_irq == NULL) {
990		printf("vge%d: couldn't map interrupt\n", unit);
991		error = ENXIO;
992		goto fail;
993	}
994
995	/* Reset the adapter. */
996	vge_reset(sc);
997
998	/*
999	 * Get station address from the EEPROM.
1000	 */
1001	vge_read_eeprom(sc, (caddr_t)eaddr, VGE_EE_EADDR, 3, 0);
1002
1003	sc->vge_unit = unit;
1004	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1005
1006#if __FreeBSD_version < 502113
1007	printf("vge%d: Ethernet address: %6D\n", unit, eaddr, ":");
1008#endif
1009
1010	/*
1011	 * Allocate the parent bus DMA tag appropriate for PCI.
1012	 */
1013#define VGE_NSEG_NEW 32
1014	error = bus_dma_tag_create(NULL,	/* parent */
1015			1, 0,			/* alignment, boundary */
1016			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1017			BUS_SPACE_MAXADDR,	/* highaddr */
1018			NULL, NULL,		/* filter, filterarg */
1019			MAXBSIZE, VGE_NSEG_NEW,	/* maxsize, nsegments */
1020			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1021			BUS_DMA_ALLOCNOW,	/* flags */
1022			NULL, NULL,		/* lockfunc, lockarg */
1023			&sc->vge_parent_tag);
1024	if (error)
1025		goto fail;
1026
1027	error = vge_allocmem(dev, sc);
1028
1029	if (error)
1030		goto fail;
1031
1032	/* Do MII setup */
1033	if (mii_phy_probe(dev, &sc->vge_miibus,
1034	    vge_ifmedia_upd, vge_ifmedia_sts)) {
1035		printf("vge%d: MII without any phy!\n", sc->vge_unit);
1036		error = ENXIO;
1037		goto fail;
1038	}
1039
1040	ifp = &sc->arpcom.ac_if;
1041	ifp->if_softc = sc;
1042	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1043	ifp->if_mtu = ETHERMTU;
1044	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1045	ifp->if_ioctl = vge_ioctl;
1046	ifp->if_capabilities = IFCAP_VLAN_MTU;
1047	ifp->if_start = vge_start;
1048	ifp->if_hwassist = VGE_CSUM_FEATURES;
1049	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1050#ifdef DEVICE_POLLING
1051#ifdef IFCAP_POLLING
1052	ifp->if_capabilities |= IFCAP_POLLING;
1053#endif
1054#endif
1055	ifp->if_watchdog = vge_watchdog;
1056	ifp->if_init = vge_init;
1057	ifp->if_baudrate = 1000000000;
1058	ifp->if_snd.ifq_maxlen = VGE_IFQ_MAXLEN;
1059	ifp->if_capenable = ifp->if_capabilities;
1060
1061	TASK_INIT(&sc->vge_txtask, 0, vge_tx_task, ifp);
1062
1063	/*
1064	 * Call MI attach routine.
1065	 */
1066	ether_ifattach(ifp, eaddr);
1067
1068	/* Hook interrupt last to avoid having to lock softc */
1069	error = bus_setup_intr(dev, sc->vge_irq, INTR_TYPE_NET|INTR_MPSAFE,
1070	    vge_intr, sc, &sc->vge_intrhand);
1071
1072	if (error) {
1073		printf("vge%d: couldn't set up irq\n", unit);
1074		ether_ifdetach(ifp);
1075		goto fail;
1076	}
1077
1078fail:
1079	if (error)
1080		vge_detach(dev);
1081
1082	return (error);
1083}
1084
1085/*
1086 * Shutdown hardware and free up resources. This can be called any
1087 * time after the mutex has been initialized. It is called in both
1088 * the error case in attach and the normal detach case so it needs
1089 * to be careful about only freeing resources that have actually been
1090 * allocated.
1091 */
1092static int
1093vge_detach(dev)
1094	device_t		dev;
1095{
1096	struct vge_softc		*sc;
1097	struct ifnet		*ifp;
1098	int			i;
1099
1100	sc = device_get_softc(dev);
1101	KASSERT(mtx_initialized(&sc->vge_mtx), ("vge mutex not initialized"));
1102	ifp = &sc->arpcom.ac_if;
1103
1104	/* These should only be active if attach succeeded */
1105	if (device_is_attached(dev)) {
1106		vge_stop(sc);
1107		/*
1108		 * Force off the IFF_UP flag here, in case someone
1109		 * still had a BPF descriptor attached to this
1110		 * interface. If they do, ether_ifattach() will cause
1111		 * the BPF code to try and clear the promisc mode
1112		 * flag, which will bubble down to vge_ioctl(),
1113		 * which will try to call vge_init() again. This will
1114		 * turn the NIC back on and restart the MII ticker,
1115		 * which will panic the system when the kernel tries
1116		 * to invoke the vge_tick() function that isn't there
1117		 * anymore.
1118		 */
1119		ifp->if_flags &= ~IFF_UP;
1120		ether_ifdetach(ifp);
1121	}
1122	if (sc->vge_miibus)
1123		device_delete_child(dev, sc->vge_miibus);
1124	bus_generic_detach(dev);
1125
1126	if (sc->vge_intrhand)
1127		bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1128	if (sc->vge_irq)
1129		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->vge_irq);
1130	if (sc->vge_res)
1131		bus_release_resource(dev, SYS_RES_MEMORY,
1132		    VGE_PCI_LOMEM, sc->vge_res);
1133
1134	/* Unload and free the RX DMA ring memory and map */
1135
1136	if (sc->vge_ldata.vge_rx_list_tag) {
1137		bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
1138		    sc->vge_ldata.vge_rx_list_map);
1139		bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
1140		    sc->vge_ldata.vge_rx_list,
1141		    sc->vge_ldata.vge_rx_list_map);
1142		bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
1143	}
1144
1145	/* Unload and free the TX DMA ring memory and map */
1146
1147	if (sc->vge_ldata.vge_tx_list_tag) {
1148		bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
1149		    sc->vge_ldata.vge_tx_list_map);
1150		bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
1151		    sc->vge_ldata.vge_tx_list,
1152		    sc->vge_ldata.vge_tx_list_map);
1153		bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
1154	}
1155
1156	/* Destroy all the RX and TX buffer maps */
1157
1158	if (sc->vge_ldata.vge_mtag) {
1159		for (i = 0; i < VGE_TX_DESC_CNT; i++)
1160			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1161			    sc->vge_ldata.vge_tx_dmamap[i]);
1162		for (i = 0; i < VGE_RX_DESC_CNT; i++)
1163			bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
1164			    sc->vge_ldata.vge_rx_dmamap[i]);
1165		bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
1166	}
1167
1168	if (sc->vge_parent_tag)
1169		bus_dma_tag_destroy(sc->vge_parent_tag);
1170
1171	mtx_destroy(&sc->vge_mtx);
1172
1173	return (0);
1174}
1175
1176static int
1177vge_newbuf(sc, idx, m)
1178	struct vge_softc	*sc;
1179	int			idx;
1180	struct mbuf		*m;
1181{
1182	struct vge_dmaload_arg	arg;
1183	struct mbuf		*n = NULL;
1184	int			i, error;
1185
1186	if (m == NULL) {
1187		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1188		if (n == NULL)
1189			return (ENOBUFS);
1190		m = n;
1191	} else
1192		m->m_data = m->m_ext.ext_buf;
1193
1194
1195#ifdef VGE_FIXUP_RX
1196	/*
1197	 * This is part of an evil trick to deal with non-x86 platforms.
1198	 * The VIA chip requires RX buffers to be aligned on 32-bit
1199	 * boundaries, but that will hose non-x86 machines. To get around
1200	 * this, we leave some empty space at the start of each buffer
1201	 * and for non-x86 hosts, we copy the buffer back two bytes
1202	 * to achieve word alignment. This is slightly more efficient
1203	 * than allocating a new buffer, copying the contents, and
1204	 * discarding the old buffer.
1205	 */
1206	m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1207	m_adj(m, VGE_ETHER_ALIGN);
1208#else
1209	m->m_len = m->m_pkthdr.len = MCLBYTES;
1210#endif
1211
1212	arg.sc = sc;
1213	arg.vge_idx = idx;
1214	arg.vge_maxsegs = 1;
1215	arg.vge_flags = 0;
1216
1217	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1218	    sc->vge_ldata.vge_rx_dmamap[idx], m, vge_dma_map_rx_desc,
1219	    &arg, BUS_DMA_NOWAIT);
1220	if (error || arg.vge_maxsegs != 1) {
1221		if (n != NULL)
1222			m_freem(n);
1223		return (ENOMEM);
1224	}
1225
1226	/*
1227	 * Note: the manual fails to document the fact that for
1228	 * proper opration, the driver needs to replentish the RX
1229	 * DMA ring 4 descriptors at a time (rather than one at a
1230	 * time, like most chips). We can allocate the new buffers
1231	 * but we should not set the OWN bits until we're ready
1232	 * to hand back 4 of them in one shot.
1233	 */
1234
1235#define VGE_RXCHUNK 4
1236	sc->vge_rx_consumed++;
1237	if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1238		for (i = idx; i != idx - sc->vge_rx_consumed; i--)
1239			sc->vge_ldata.vge_rx_list[i].vge_sts |=
1240			    htole32(VGE_RDSTS_OWN);
1241		sc->vge_rx_consumed = 0;
1242	}
1243
1244	sc->vge_ldata.vge_rx_mbuf[idx] = m;
1245
1246	bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1247	    sc->vge_ldata.vge_rx_dmamap[idx],
1248	    BUS_DMASYNC_PREREAD);
1249
1250	return (0);
1251}
1252
1253static int
1254vge_tx_list_init(sc)
1255	struct vge_softc		*sc;
1256{
1257	bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1258	bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1259	    (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1260
1261	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1262	    sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1263	sc->vge_ldata.vge_tx_prodidx = 0;
1264	sc->vge_ldata.vge_tx_considx = 0;
1265	sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1266
1267	return (0);
1268}
1269
1270static int
1271vge_rx_list_init(sc)
1272	struct vge_softc		*sc;
1273{
1274	int			i;
1275
1276	bzero ((char *)sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1277	bzero ((char *)&sc->vge_ldata.vge_rx_mbuf,
1278	    (VGE_RX_DESC_CNT * sizeof(struct mbuf *)));
1279
1280	sc->vge_rx_consumed = 0;
1281
1282	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1283		if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1284			return (ENOBUFS);
1285	}
1286
1287	/* Flush the RX descriptors */
1288
1289	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1290	    sc->vge_ldata.vge_rx_list_map,
1291	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1292
1293	sc->vge_ldata.vge_rx_prodidx = 0;
1294	sc->vge_rx_consumed = 0;
1295	sc->vge_head = sc->vge_tail = NULL;
1296
1297	return (0);
1298}
1299
1300#ifdef VGE_FIXUP_RX
1301static __inline void
1302vge_fixup_rx(m)
1303	struct mbuf		*m;
1304{
1305	int			i;
1306	uint16_t		*src, *dst;
1307
1308	src = mtod(m, uint16_t *);
1309	dst = src - 1;
1310
1311	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1312		*dst++ = *src++;
1313
1314	m->m_data -= ETHER_ALIGN;
1315
1316	return;
1317}
1318#endif
1319
1320/*
1321 * RX handler. We support the reception of jumbo frames that have
1322 * been fragmented across multiple 2K mbuf cluster buffers.
1323 */
1324static void
1325vge_rxeof(sc)
1326	struct vge_softc	*sc;
1327{
1328	struct mbuf		*m;
1329	struct ifnet		*ifp;
1330	int			i, total_len;
1331	int			lim = 0;
1332	struct vge_rx_desc	*cur_rx;
1333	u_int32_t		rxstat, rxctl;
1334
1335	VGE_LOCK_ASSERT(sc);
1336	ifp = &sc->arpcom.ac_if;
1337	i = sc->vge_ldata.vge_rx_prodidx;
1338
1339	/* Invalidate the descriptor memory */
1340
1341	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1342	    sc->vge_ldata.vge_rx_list_map,
1343	    BUS_DMASYNC_POSTREAD);
1344
1345	while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1346
1347#ifdef DEVICE_POLLING
1348		if (ifp->if_flags & IFF_POLLING) {
1349			if (sc->rxcycles <= 0)
1350				break;
1351			sc->rxcycles--;
1352		}
1353#endif /* DEVICE_POLLING */
1354
1355		cur_rx = &sc->vge_ldata.vge_rx_list[i];
1356		m = sc->vge_ldata.vge_rx_mbuf[i];
1357		total_len = VGE_RXBYTES(cur_rx);
1358		rxstat = le32toh(cur_rx->vge_sts);
1359		rxctl = le32toh(cur_rx->vge_ctl);
1360
1361		/* Invalidate the RX mbuf and unload its map */
1362
1363		bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1364		    sc->vge_ldata.vge_rx_dmamap[i],
1365		    BUS_DMASYNC_POSTWRITE);
1366		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1367		    sc->vge_ldata.vge_rx_dmamap[i]);
1368
1369		/*
1370		 * If the 'start of frame' bit is set, this indicates
1371		 * either the first fragment in a multi-fragment receive,
1372		 * or an intermediate fragment. Either way, we want to
1373		 * accumulate the buffers.
1374		 */
1375		if (rxstat & VGE_RXPKT_SOF) {
1376			m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1377			if (sc->vge_head == NULL)
1378				sc->vge_head = sc->vge_tail = m;
1379			else {
1380				m->m_flags &= ~M_PKTHDR;
1381				sc->vge_tail->m_next = m;
1382				sc->vge_tail = m;
1383			}
1384			vge_newbuf(sc, i, NULL);
1385			VGE_RX_DESC_INC(i);
1386			continue;
1387		}
1388
1389		/*
1390		 * Bad/error frames will have the RXOK bit cleared.
1391		 * However, there's one error case we want to allow:
1392		 * if a VLAN tagged frame arrives and the chip can't
1393		 * match it against the CAM filter, it considers this
1394		 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1395		 * We don't want to drop the frame though: our VLAN
1396		 * filtering is done in software.
1397		 */
1398		if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM)
1399		    && !(rxstat & VGE_RDSTS_CSUMERR)) {
1400			ifp->if_ierrors++;
1401			/*
1402			 * If this is part of a multi-fragment packet,
1403			 * discard all the pieces.
1404			 */
1405			if (sc->vge_head != NULL) {
1406				m_freem(sc->vge_head);
1407				sc->vge_head = sc->vge_tail = NULL;
1408			}
1409			vge_newbuf(sc, i, m);
1410			VGE_RX_DESC_INC(i);
1411			continue;
1412		}
1413
1414		/*
1415		 * If allocating a replacement mbuf fails,
1416		 * reload the current one.
1417		 */
1418
1419		if (vge_newbuf(sc, i, NULL)) {
1420			ifp->if_ierrors++;
1421			if (sc->vge_head != NULL) {
1422				m_freem(sc->vge_head);
1423				sc->vge_head = sc->vge_tail = NULL;
1424			}
1425			vge_newbuf(sc, i, m);
1426			VGE_RX_DESC_INC(i);
1427			continue;
1428		}
1429
1430		VGE_RX_DESC_INC(i);
1431
1432		if (sc->vge_head != NULL) {
1433			m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1434			/*
1435			 * Special case: if there's 4 bytes or less
1436			 * in this buffer, the mbuf can be discarded:
1437			 * the last 4 bytes is the CRC, which we don't
1438			 * care about anyway.
1439			 */
1440			if (m->m_len <= ETHER_CRC_LEN) {
1441				sc->vge_tail->m_len -=
1442				    (ETHER_CRC_LEN - m->m_len);
1443				m_freem(m);
1444			} else {
1445				m->m_len -= ETHER_CRC_LEN;
1446				m->m_flags &= ~M_PKTHDR;
1447				sc->vge_tail->m_next = m;
1448			}
1449			m = sc->vge_head;
1450			sc->vge_head = sc->vge_tail = NULL;
1451			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1452		} else
1453			m->m_pkthdr.len = m->m_len =
1454			    (total_len - ETHER_CRC_LEN);
1455
1456#ifdef VGE_FIXUP_RX
1457		vge_fixup_rx(m);
1458#endif
1459		ifp->if_ipackets++;
1460		m->m_pkthdr.rcvif = ifp;
1461
1462		/* Do RX checksumming if enabled */
1463		if (ifp->if_capenable & IFCAP_RXCSUM) {
1464
1465			/* Check IP header checksum */
1466			if (rxctl & VGE_RDCTL_IPPKT)
1467				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1468			if (rxctl & VGE_RDCTL_IPCSUMOK)
1469				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1470
1471			/* Check TCP/UDP checksum */
1472			if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1473			    rxctl & VGE_RDCTL_PROTOCSUMOK) {
1474				m->m_pkthdr.csum_flags |=
1475				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1476				m->m_pkthdr.csum_data = 0xffff;
1477			}
1478		}
1479
1480		if (rxstat & VGE_RDSTS_VTAG)
1481			VLAN_INPUT_TAG(ifp, m,
1482			    ntohs((rxctl & VGE_RDCTL_VLANID)), continue);
1483
1484		VGE_UNLOCK(sc);
1485		(*ifp->if_input)(ifp, m);
1486		VGE_LOCK(sc);
1487
1488		lim++;
1489		if (lim == VGE_RX_DESC_CNT)
1490			break;
1491
1492	}
1493
1494	/* Flush the RX DMA ring */
1495
1496	bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1497	    sc->vge_ldata.vge_rx_list_map,
1498	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1499
1500	sc->vge_ldata.vge_rx_prodidx = i;
1501	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1502
1503
1504	return;
1505}
1506
1507static void
1508vge_txeof(sc)
1509	struct vge_softc		*sc;
1510{
1511	struct ifnet		*ifp;
1512	u_int32_t		txstat;
1513	int			idx;
1514
1515	ifp = &sc->arpcom.ac_if;
1516	idx = sc->vge_ldata.vge_tx_considx;
1517
1518	/* Invalidate the TX descriptor list */
1519
1520	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1521	    sc->vge_ldata.vge_tx_list_map,
1522	    BUS_DMASYNC_POSTREAD);
1523
1524	while (idx != sc->vge_ldata.vge_tx_prodidx) {
1525
1526		txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1527		if (txstat & VGE_TDSTS_OWN)
1528			break;
1529
1530		m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1531		sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1532		bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1533		    sc->vge_ldata.vge_tx_dmamap[idx]);
1534		if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1535			ifp->if_collisions++;
1536		if (txstat & VGE_TDSTS_TXERR)
1537			ifp->if_oerrors++;
1538		else
1539			ifp->if_opackets++;
1540
1541		sc->vge_ldata.vge_tx_free++;
1542		VGE_TX_DESC_INC(idx);
1543	}
1544
1545	/* No changes made to the TX ring, so no flush needed */
1546
1547	if (idx != sc->vge_ldata.vge_tx_considx) {
1548		sc->vge_ldata.vge_tx_considx = idx;
1549		ifp->if_flags &= ~IFF_OACTIVE;
1550		ifp->if_timer = 0;
1551	}
1552
1553	/*
1554	 * If not all descriptors have been released reaped yet,
1555	 * reload the timer so that we will eventually get another
1556	 * interrupt that will cause us to re-enter this routine.
1557	 * This is done in case the transmitter has gone idle.
1558	 */
1559	if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT) {
1560		CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1561	}
1562
1563	return;
1564}
1565
1566static void
1567vge_tick(xsc)
1568	void			*xsc;
1569{
1570	struct vge_softc	*sc;
1571	struct ifnet		*ifp;
1572	struct mii_data		*mii;
1573
1574	sc = xsc;
1575	ifp = &sc->arpcom.ac_if;
1576	VGE_LOCK(sc);
1577	mii = device_get_softc(sc->vge_miibus);
1578
1579	mii_tick(mii);
1580	if (sc->vge_link) {
1581		if (!(mii->mii_media_status & IFM_ACTIVE)) {
1582			sc->vge_link = 0;
1583			if_link_state_change(&sc->arpcom.ac_if,
1584			    LINK_STATE_UP);
1585		}
1586	} else {
1587		if (mii->mii_media_status & IFM_ACTIVE &&
1588		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1589			sc->vge_link = 1;
1590			if_link_state_change(&sc->arpcom.ac_if,
1591			    LINK_STATE_DOWN);
1592#if __FreeBSD_version < 502114
1593			if (ifp->if_snd.ifq_head != NULL)
1594#else
1595			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1596#endif
1597				taskqueue_enqueue(taskqueue_swi,
1598				    &sc->vge_txtask);
1599		}
1600	}
1601
1602	VGE_UNLOCK(sc);
1603
1604	return;
1605}
1606
1607#ifdef DEVICE_POLLING
1608static void
1609vge_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1610{
1611	struct vge_softc *sc = ifp->if_softc;
1612
1613	VGE_LOCK(sc);
1614#ifdef IFCAP_POLLING
1615	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1616		ether_poll_deregister(ifp);
1617		cmd = POLL_DEREGISTER;
1618	}
1619#endif
1620	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1621		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
1622		CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
1623		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1624		goto done;
1625	}
1626
1627	sc->rxcycles = count;
1628	vge_rxeof(sc);
1629	vge_txeof(sc);
1630
1631#if __FreeBSD_version < 502114
1632	if (ifp->if_snd.ifq_head != NULL)
1633#else
1634	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1635#endif
1636		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1637
1638	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1639		u_int32_t       status;
1640		status = CSR_READ_4(sc, VGE_ISR);
1641		if (status == 0xFFFFFFFF)
1642			goto done;
1643		if (status)
1644			CSR_WRITE_4(sc, VGE_ISR, status);
1645
1646		/*
1647		 * XXX check behaviour on receiver stalls.
1648		 */
1649
1650		if (status & VGE_ISR_TXDMA_STALL ||
1651		    status & VGE_ISR_RXDMA_STALL)
1652			vge_init(sc);
1653
1654		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1655			vge_rxeof(sc);
1656			ifp->if_ierrors++;
1657			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1658			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1659		}
1660	}
1661done:
1662	VGE_UNLOCK(sc);
1663}
1664#endif /* DEVICE_POLLING */
1665
1666static void
1667vge_intr(arg)
1668	void			*arg;
1669{
1670	struct vge_softc	*sc;
1671	struct ifnet		*ifp;
1672	u_int32_t		status;
1673
1674	sc = arg;
1675
1676	if (sc->suspended) {
1677		return;
1678	}
1679
1680	VGE_LOCK(sc);
1681	ifp = &sc->arpcom.ac_if;
1682
1683	if (!(ifp->if_flags & IFF_UP)) {
1684		VGE_UNLOCK(sc);
1685		return;
1686	}
1687
1688#ifdef DEVICE_POLLING
1689	if  (ifp->if_flags & IFF_POLLING)
1690		goto done;
1691	if (
1692#ifdef IFCAP_POLLING
1693	    (ifp->if_capenable & IFCAP_POLLING) &&
1694#endif
1695	    ether_poll_register(vge_poll, ifp)) { /* ok, disable interrupts */
1696		CSR_WRITE_4(sc, VGE_IMR, 0);
1697		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1698		vge_poll(ifp, 0, 1);
1699		goto done;
1700	}
1701
1702#endif /* DEVICE_POLLING */
1703
1704	/* Disable interrupts */
1705	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1706
1707	for (;;) {
1708
1709		status = CSR_READ_4(sc, VGE_ISR);
1710		/* If the card has gone away the read returns 0xffff. */
1711		if (status == 0xFFFFFFFF)
1712			break;
1713
1714		if (status)
1715			CSR_WRITE_4(sc, VGE_ISR, status);
1716
1717		if ((status & VGE_INTRS) == 0)
1718			break;
1719
1720		if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1721			vge_rxeof(sc);
1722
1723		if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1724			vge_rxeof(sc);
1725			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1726			CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1727		}
1728
1729		if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1730			vge_txeof(sc);
1731
1732		if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1733			vge_init(sc);
1734
1735		if (status & VGE_ISR_LINKSTS)
1736			vge_tick(sc);
1737	}
1738
1739	/* Re-enable interrupts */
1740	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1741
1742#ifdef DEVICE_POLLING
1743done:
1744#endif
1745	VGE_UNLOCK(sc);
1746
1747#if __FreeBSD_version < 502114
1748	if (ifp->if_snd.ifq_head != NULL)
1749#else
1750	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1751#endif
1752		taskqueue_enqueue(taskqueue_swi, &sc->vge_txtask);
1753
1754	return;
1755}
1756
1757static int
1758vge_encap(sc, m_head, idx)
1759	struct vge_softc	*sc;
1760	struct mbuf		*m_head;
1761	int			idx;
1762{
1763	struct mbuf		*m_new = NULL;
1764	struct vge_dmaload_arg	arg;
1765	bus_dmamap_t		map;
1766	int			error;
1767	struct m_tag		*mtag;
1768
1769	if (sc->vge_ldata.vge_tx_free <= 2)
1770		return (EFBIG);
1771
1772	arg.vge_flags = 0;
1773
1774	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1775		arg.vge_flags |= VGE_TDCTL_IPCSUM;
1776	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1777		arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1778	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1779		arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1780
1781	arg.sc = sc;
1782	arg.vge_idx = idx;
1783	arg.vge_m0 = m_head;
1784	arg.vge_maxsegs = VGE_TX_FRAGS;
1785
1786	map = sc->vge_ldata.vge_tx_dmamap[idx];
1787	error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1788	    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1789
1790	if (error && error != EFBIG) {
1791		printf("vge%d: can't map mbuf (error %d)\n",
1792		    sc->vge_unit, error);
1793		return (ENOBUFS);
1794	}
1795
1796	/* Too many segments to map, coalesce into a single mbuf */
1797
1798	if (error || arg.vge_maxsegs == 0) {
1799		m_new = m_defrag(m_head, M_DONTWAIT);
1800		if (m_new == NULL)
1801			return (1);
1802		else
1803			m_head = m_new;
1804
1805		arg.sc = sc;
1806		arg.vge_m0 = m_head;
1807		arg.vge_idx = idx;
1808		arg.vge_maxsegs = 1;
1809
1810		error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1811		    m_head, vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1812		if (error) {
1813			printf("vge%d: can't map mbuf (error %d)\n",
1814			    sc->vge_unit, error);
1815			return (EFBIG);
1816		}
1817	}
1818
1819	sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1820	sc->vge_ldata.vge_tx_free--;
1821
1822	/*
1823	 * Set up hardware VLAN tagging.
1824	 */
1825
1826	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1827	if (mtag != NULL)
1828		sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1829		    htole32(htons(VLAN_TAG_VALUE(mtag)) | VGE_TDCTL_VTAG);
1830
1831	sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1832
1833	return (0);
1834}
1835
1836static void
1837vge_tx_task(arg, npending)
1838	void			*arg;
1839	int			npending;
1840{
1841	struct ifnet		*ifp;
1842
1843	ifp = arg;
1844	vge_start(ifp);
1845
1846	return;
1847}
1848
1849/*
1850 * Main transmit routine.
1851 */
1852
1853static void
1854vge_start(ifp)
1855	struct ifnet		*ifp;
1856{
1857	struct vge_softc	*sc;
1858	struct mbuf		*m_head = NULL;
1859	int			idx, pidx = 0;
1860
1861	sc = ifp->if_softc;
1862	VGE_LOCK(sc);
1863
1864	if (!sc->vge_link || ifp->if_flags & IFF_OACTIVE) {
1865		VGE_UNLOCK(sc);
1866		return;
1867	}
1868
1869#if __FreeBSD_version < 502114
1870	if (ifp->if_snd.ifq_head == NULL) {
1871#else
1872	if (IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
1873#endif
1874		VGE_UNLOCK(sc);
1875		return;
1876	}
1877
1878	idx = sc->vge_ldata.vge_tx_prodidx;
1879
1880	pidx = idx - 1;
1881	if (pidx < 0)
1882		pidx = VGE_TX_DESC_CNT - 1;
1883
1884
1885	while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1886#if __FreeBSD_version < 502114
1887		IF_DEQUEUE(&ifp->if_snd, m_head);
1888#else
1889		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1890#endif
1891		if (m_head == NULL)
1892			break;
1893
1894		if (vge_encap(sc, m_head, idx)) {
1895#if __FreeBSD_version >= 502114
1896			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1897#else
1898			IF_PREPEND(&ifp->if_snd, m_head);
1899#endif
1900			ifp->if_flags |= IFF_OACTIVE;
1901			break;
1902		}
1903
1904		sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1905		    htole16(VGE_TXDESC_Q);
1906
1907		pidx = idx;
1908		VGE_TX_DESC_INC(idx);
1909
1910		/*
1911		 * If there's a BPF listener, bounce a copy of this frame
1912		 * to him.
1913		 */
1914		BPF_MTAP(ifp, m_head);
1915	}
1916
1917	if (idx == sc->vge_ldata.vge_tx_prodidx) {
1918		VGE_UNLOCK(sc);
1919		return;
1920	}
1921
1922	/* Flush the TX descriptors */
1923
1924	bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1925	    sc->vge_ldata.vge_tx_list_map,
1926	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1927
1928	/* Issue a transmit command. */
1929	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1930
1931	sc->vge_ldata.vge_tx_prodidx = idx;
1932
1933	/*
1934	 * Use the countdown timer for interrupt moderation.
1935	 * 'TX done' interrupts are disabled. Instead, we reset the
1936	 * countdown timer, which will begin counting until it hits
1937	 * the value in the SSTIMER register, and then trigger an
1938	 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1939	 * the timer count is reloaded. Only when the transmitter
1940	 * is idle will the timer hit 0 and an interrupt fire.
1941	 */
1942	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1943
1944	VGE_UNLOCK(sc);
1945
1946	/*
1947	 * Set a timeout in case the chip goes out to lunch.
1948	 */
1949	ifp->if_timer = 5;
1950
1951	return;
1952}
1953
1954static void
1955vge_init(xsc)
1956	void			*xsc;
1957{
1958	struct vge_softc	*sc = xsc;
1959	struct ifnet		*ifp = &sc->arpcom.ac_if;
1960	struct mii_data		*mii;
1961	int			i;
1962
1963	VGE_LOCK(sc);
1964	mii = device_get_softc(sc->vge_miibus);
1965
1966	/*
1967	 * Cancel pending I/O and free all RX/TX buffers.
1968	 */
1969	vge_stop(sc);
1970	vge_reset(sc);
1971
1972	/*
1973	 * Initialize the RX and TX descriptors and mbufs.
1974	 */
1975
1976	vge_rx_list_init(sc);
1977	vge_tx_list_init(sc);
1978
1979	/* Set our station address */
1980	for (i = 0; i < ETHER_ADDR_LEN; i++)
1981		CSR_WRITE_1(sc, VGE_PAR0 + i, sc->arpcom.ac_enaddr[i]);
1982
1983	/*
1984	 * Set receive FIFO threshold. Also allow transmission and
1985	 * reception of VLAN tagged frames.
1986	 */
1987	CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1988	CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1989
1990	/* Set DMA burst length */
1991	CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1992	CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1993
1994	CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1995
1996	/* Set collision backoff algorithm */
1997	CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1998	    VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1999	CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
2000
2001	/* Disable LPSEL field in priority resolution */
2002	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
2003
2004	/*
2005	 * Load the addresses of the DMA queues into the chip.
2006	 * Note that we only use one transmit queue.
2007	 */
2008
2009	CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
2010	    VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
2011	CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
2012
2013	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
2014	    VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
2015	CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
2016	CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
2017
2018	/* Enable and wake up the RX descriptor queue */
2019	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
2020	CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
2021
2022	/* Enable the TX descriptor queue */
2023	CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
2024
2025	/* Set up the receive filter -- allow large frames for VLANs. */
2026	CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
2027
2028	/* If we want promiscuous mode, set the allframes bit. */
2029	if (ifp->if_flags & IFF_PROMISC) {
2030		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
2031	}
2032
2033	/* Set capture broadcast bit to capture broadcast frames. */
2034	if (ifp->if_flags & IFF_BROADCAST) {
2035		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
2036	}
2037
2038	/* Set multicast bit to capture multicast frames. */
2039	if (ifp->if_flags & IFF_MULTICAST) {
2040		CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
2041	}
2042
2043	/* Init the cam filter. */
2044	vge_cam_clear(sc);
2045
2046	/* Init the multicast filter. */
2047	vge_setmulti(sc);
2048
2049	/* Enable flow control */
2050
2051	CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
2052
2053	/* Enable jumbo frame reception (if desired) */
2054
2055	/* Start the MAC. */
2056	CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
2057	CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
2058	CSR_WRITE_1(sc, VGE_CRS0,
2059	    VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
2060
2061	/*
2062	 * Configure one-shot timer for microsecond
2063	 * resulution and load it for 500 usecs.
2064	 */
2065	CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
2066	CSR_WRITE_2(sc, VGE_SSTIMER, 400);
2067
2068	/*
2069	 * Configure interrupt moderation for receive. Enable
2070	 * the holdoff counter and load it, and set the RX
2071	 * suppression count to the number of descriptors we
2072	 * want to allow before triggering an interrupt.
2073	 * The holdoff timer is in units of 20 usecs.
2074	 */
2075
2076#ifdef notyet
2077	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
2078	/* Select the interrupt holdoff timer page. */
2079	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2080	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
2081	CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
2082
2083	/* Enable use of the holdoff timer. */
2084	CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
2085	CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
2086
2087	/* Select the RX suppression threshold page. */
2088	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2089	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
2090	CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
2091
2092	/* Restore the page select bits. */
2093	CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
2094	CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
2095#endif
2096
2097#ifdef DEVICE_POLLING
2098	/*
2099	 * Disable interrupts if we are polling.
2100	 */
2101	if (ifp->if_flags & IFF_POLLING) {
2102		CSR_WRITE_4(sc, VGE_IMR, 0);
2103		CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2104	} else	/* otherwise ... */
2105#endif /* DEVICE_POLLING */
2106	{
2107	/*
2108	 * Enable interrupts.
2109	 */
2110		CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2111		CSR_WRITE_4(sc, VGE_ISR, 0);
2112		CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2113	}
2114
2115	mii_mediachg(mii);
2116
2117	ifp->if_flags |= IFF_RUNNING;
2118	ifp->if_flags &= ~IFF_OACTIVE;
2119
2120	sc->vge_if_flags = 0;
2121	sc->vge_link = 0;
2122
2123	VGE_UNLOCK(sc);
2124
2125	return;
2126}
2127
2128/*
2129 * Set media options.
2130 */
2131static int
2132vge_ifmedia_upd(ifp)
2133	struct ifnet		*ifp;
2134{
2135	struct vge_softc	*sc;
2136	struct mii_data		*mii;
2137
2138	sc = ifp->if_softc;
2139	mii = device_get_softc(sc->vge_miibus);
2140	mii_mediachg(mii);
2141
2142	return (0);
2143}
2144
2145/*
2146 * Report current media status.
2147 */
2148static void
2149vge_ifmedia_sts(ifp, ifmr)
2150	struct ifnet		*ifp;
2151	struct ifmediareq	*ifmr;
2152{
2153	struct vge_softc	*sc;
2154	struct mii_data		*mii;
2155
2156	sc = ifp->if_softc;
2157	mii = device_get_softc(sc->vge_miibus);
2158
2159	mii_pollstat(mii);
2160	ifmr->ifm_active = mii->mii_media_active;
2161	ifmr->ifm_status = mii->mii_media_status;
2162
2163	return;
2164}
2165
2166static void
2167vge_miibus_statchg(dev)
2168	device_t		dev;
2169{
2170	struct vge_softc	*sc;
2171	struct mii_data		*mii;
2172	struct ifmedia_entry	*ife;
2173
2174	sc = device_get_softc(dev);
2175	mii = device_get_softc(sc->vge_miibus);
2176	ife = mii->mii_media.ifm_cur;
2177
2178	/*
2179	 * If the user manually selects a media mode, we need to turn
2180	 * on the forced MAC mode bit in the DIAGCTL register. If the
2181	 * user happens to choose a full duplex mode, we also need to
2182	 * set the 'force full duplex' bit. This applies only to
2183	 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
2184	 * mode is disabled, and in 1000baseT mode, full duplex is
2185	 * always implied, so we turn on the forced mode bit but leave
2186	 * the FDX bit cleared.
2187	 */
2188
2189	switch (IFM_SUBTYPE(ife->ifm_media)) {
2190	case IFM_AUTO:
2191		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2192		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2193		break;
2194	case IFM_1000_T:
2195		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2196		CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2197		break;
2198	case IFM_100_TX:
2199	case IFM_10_T:
2200		CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
2201		if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
2202			CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2203		} else {
2204			CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
2205		}
2206		break;
2207	default:
2208		device_printf(dev, "unknown media type: %x\n",
2209		    IFM_SUBTYPE(ife->ifm_media));
2210		break;
2211	}
2212
2213	return;
2214}
2215
2216static int
2217vge_ioctl(ifp, command, data)
2218	struct ifnet		*ifp;
2219	u_long			command;
2220	caddr_t			data;
2221{
2222	struct vge_softc	*sc = ifp->if_softc;
2223	struct ifreq		*ifr = (struct ifreq *) data;
2224	struct mii_data		*mii;
2225	int			error = 0;
2226
2227	switch (command) {
2228	case SIOCSIFMTU:
2229		if (ifr->ifr_mtu > VGE_JUMBO_MTU)
2230			error = EINVAL;
2231		ifp->if_mtu = ifr->ifr_mtu;
2232		break;
2233	case SIOCSIFFLAGS:
2234		if (ifp->if_flags & IFF_UP) {
2235			if (ifp->if_flags & IFF_RUNNING &&
2236			    ifp->if_flags & IFF_PROMISC &&
2237			    !(sc->vge_if_flags & IFF_PROMISC)) {
2238				CSR_SETBIT_1(sc, VGE_RXCTL,
2239				    VGE_RXCTL_RX_PROMISC);
2240				vge_setmulti(sc);
2241			} else if (ifp->if_flags & IFF_RUNNING &&
2242			    !(ifp->if_flags & IFF_PROMISC) &&
2243			    sc->vge_if_flags & IFF_PROMISC) {
2244				CSR_CLRBIT_1(sc, VGE_RXCTL,
2245				    VGE_RXCTL_RX_PROMISC);
2246				vge_setmulti(sc);
2247                        } else
2248				vge_init(sc);
2249		} else {
2250			if (ifp->if_flags & IFF_RUNNING)
2251				vge_stop(sc);
2252		}
2253		sc->vge_if_flags = ifp->if_flags;
2254		break;
2255	case SIOCADDMULTI:
2256	case SIOCDELMULTI:
2257		vge_setmulti(sc);
2258		break;
2259	case SIOCGIFMEDIA:
2260	case SIOCSIFMEDIA:
2261		mii = device_get_softc(sc->vge_miibus);
2262		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2263		break;
2264	case SIOCSIFCAP:
2265#ifdef IFCAP_POLLING
2266		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2267#else
2268		ifp->if_capenable &= ~(IFCAP_HWCSUM);
2269#endif
2270		ifp->if_capenable |=
2271#ifdef IFCAP_POLLING
2272		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2273#else
2274		    ifr->ifr_reqcap & (IFCAP_HWCSUM);
2275#endif
2276		if (ifp->if_capenable & IFCAP_TXCSUM)
2277			ifp->if_hwassist = VGE_CSUM_FEATURES;
2278		else
2279			ifp->if_hwassist = 0;
2280		if (ifp->if_flags & IFF_RUNNING)
2281			vge_init(sc);
2282		break;
2283	default:
2284		error = ether_ioctl(ifp, command, data);
2285		break;
2286	}
2287
2288	return (error);
2289}
2290
2291static void
2292vge_watchdog(ifp)
2293	struct ifnet		*ifp;
2294{
2295	struct vge_softc		*sc;
2296
2297	sc = ifp->if_softc;
2298	VGE_LOCK(sc);
2299	printf("vge%d: watchdog timeout\n", sc->vge_unit);
2300	ifp->if_oerrors++;
2301
2302	vge_txeof(sc);
2303	vge_rxeof(sc);
2304
2305	vge_init(sc);
2306
2307	VGE_UNLOCK(sc);
2308
2309	return;
2310}
2311
2312/*
2313 * Stop the adapter and free any mbufs allocated to the
2314 * RX and TX lists.
2315 */
2316static void
2317vge_stop(sc)
2318	struct vge_softc		*sc;
2319{
2320	register int		i;
2321	struct ifnet		*ifp;
2322
2323	VGE_LOCK(sc);
2324	ifp = &sc->arpcom.ac_if;
2325	ifp->if_timer = 0;
2326
2327	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2328#ifdef DEVICE_POLLING
2329	ether_poll_deregister(ifp);
2330#endif /* DEVICE_POLLING */
2331
2332	CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2333	CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2334	CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2335	CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2336	CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2337	CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2338
2339	if (sc->vge_head != NULL) {
2340		m_freem(sc->vge_head);
2341		sc->vge_head = sc->vge_tail = NULL;
2342	}
2343
2344	/* Free the TX list buffers. */
2345
2346	for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2347		if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2348			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2349			    sc->vge_ldata.vge_tx_dmamap[i]);
2350			m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2351			sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2352		}
2353	}
2354
2355	/* Free the RX list buffers. */
2356
2357	for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2358		if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2359			bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2360			    sc->vge_ldata.vge_rx_dmamap[i]);
2361			m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2362			sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2363		}
2364	}
2365
2366	VGE_UNLOCK(sc);
2367
2368	return;
2369}
2370
2371/*
2372 * Device suspend routine.  Stop the interface and save some PCI
2373 * settings in case the BIOS doesn't restore them properly on
2374 * resume.
2375 */
2376static int
2377vge_suspend(dev)
2378	device_t		dev;
2379{
2380	struct vge_softc	*sc;
2381	int			i;
2382
2383	sc = device_get_softc(dev);
2384
2385	vge_stop(sc);
2386
2387        for (i = 0; i < 5; i++)
2388		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2389	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2390	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2391	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2392	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2393
2394	sc->suspended = 1;
2395
2396	return (0);
2397}
2398
2399/*
2400 * Device resume routine.  Restore some PCI settings in case the BIOS
2401 * doesn't, re-enable busmastering, and restart the interface if
2402 * appropriate.
2403 */
2404static int
2405vge_resume(dev)
2406	device_t		dev;
2407{
2408	struct vge_softc	*sc;
2409	struct ifnet		*ifp;
2410	int			i;
2411
2412	sc = device_get_softc(dev);
2413	ifp = &sc->arpcom.ac_if;
2414
2415        /* better way to do this? */
2416	for (i = 0; i < 5; i++)
2417		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2418	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2419	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2420	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2421	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2422
2423	/* reenable busmastering */
2424	pci_enable_busmaster(dev);
2425	pci_enable_io(dev, SYS_RES_MEMORY);
2426
2427	/* reinitialize interface if necessary */
2428	if (ifp->if_flags & IFF_UP)
2429		vge_init(sc);
2430
2431	sc->suspended = 0;
2432
2433	return (0);
2434}
2435
2436/*
2437 * Stop all chip I/O so that the kernel's probe routines don't
2438 * get confused by errant DMAs when rebooting.
2439 */
2440static void
2441vge_shutdown(dev)
2442	device_t		dev;
2443{
2444	struct vge_softc		*sc;
2445
2446	sc = device_get_softc(dev);
2447
2448	vge_stop(sc);
2449}
2450