1/*-
2 * Copyright (C) 2007-2008 Semihalf, Rafal Jaworowski
3 * Copyright (C) 2006-2007 Semihalf, Piotr Kruszynski
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
18 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
20 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
21 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
22 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
23 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27/*
28 * Freescale integrated Three-Speed Ethernet Controller (TSEC) driver.
29 */
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#ifdef HAVE_KERNEL_OPTION_HEADERS
34#include "opt_device_polling.h"
35#endif
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/bus.h>
40#include <sys/endian.h>
41#include <sys/mbuf.h>
42#include <sys/kernel.h>
43#include <sys/module.h>
44#include <sys/socket.h>
45#include <sys/sockio.h>
46#include <sys/sysctl.h>
47
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_arp.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in_systm.h>
58#include <netinet/in.h>
59#include <netinet/ip.h>
60
61#include <machine/bus.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/tsec/if_tsec.h>
67#include <dev/tsec/if_tsecreg.h>
68
69static int	tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag,
70    bus_dmamap_t *dmap, bus_size_t dsize, void **vaddr, void *raddr,
71    const char *dname);
72static void	tsec_dma_ctl(struct tsec_softc *sc, int state);
73static int	tsec_encap(struct tsec_softc *sc, struct mbuf *m_head,
74    int fcb_inserted);
75static void	tsec_free_dma(struct tsec_softc *sc);
76static void	tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr);
77static int	tsec_ifmedia_upd(struct ifnet *ifp);
78static void	tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr);
79static int	tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map,
80    struct mbuf **mbufp, uint32_t *paddr);
81static void	tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs,
82    int nseg, int error);
83static void	tsec_intrs_ctl(struct tsec_softc *sc, int state);
84static void	tsec_init(void *xsc);
85static void	tsec_init_locked(struct tsec_softc *sc);
86static int	tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data);
87static void	tsec_reset_mac(struct tsec_softc *sc);
88static void	tsec_setfilter(struct tsec_softc *sc);
89static void	tsec_set_mac_address(struct tsec_softc *sc);
90static void	tsec_start(struct ifnet *ifp);
91static void	tsec_start_locked(struct ifnet *ifp);
92static void	tsec_stop(struct tsec_softc *sc);
93static void	tsec_tick(void *arg);
94static void	tsec_watchdog(struct tsec_softc *sc);
95static void	tsec_add_sysctls(struct tsec_softc *sc);
96static int	tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS);
97static int	tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS);
98static void	tsec_set_rxic(struct tsec_softc *sc);
99static void	tsec_set_txic(struct tsec_softc *sc);
100static int	tsec_receive_intr_locked(struct tsec_softc *sc, int count);
101static void	tsec_transmit_intr_locked(struct tsec_softc *sc);
102static void	tsec_error_intr_locked(struct tsec_softc *sc, int count);
103static void	tsec_offload_setup(struct tsec_softc *sc);
104static void	tsec_offload_process_frame(struct tsec_softc *sc,
105    struct mbuf *m);
106static void	tsec_setup_multicast(struct tsec_softc *sc);
107static int	tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu);
108
109devclass_t tsec_devclass;
110DRIVER_MODULE(miibus, tsec, miibus_driver, miibus_devclass, 0, 0);
111MODULE_DEPEND(tsec, ether, 1, 1, 1);
112MODULE_DEPEND(tsec, miibus, 1, 1, 1);
113
114int
115tsec_attach(struct tsec_softc *sc)
116{
117	uint8_t hwaddr[ETHER_ADDR_LEN];
118	struct ifnet *ifp;
119	bus_dmamap_t *map_ptr;
120	bus_dmamap_t **map_pptr;
121	int error = 0;
122	int i;
123
124	/* Reset all TSEC counters */
125	TSEC_TX_RX_COUNTERS_INIT(sc);
126
127	/* Stop DMA engine if enabled by firmware */
128	tsec_dma_ctl(sc, 0);
129
130	/* Reset MAC */
131	tsec_reset_mac(sc);
132
133	/* Disable interrupts for now */
134	tsec_intrs_ctl(sc, 0);
135
136	/* Configure defaults for interrupts coalescing */
137	sc->rx_ic_time = 768;
138	sc->rx_ic_count = 16;
139	sc->tx_ic_time = 768;
140	sc->tx_ic_count = 16;
141	tsec_set_rxic(sc);
142	tsec_set_txic(sc);
143	tsec_add_sysctls(sc);
144
145	/* Allocate a busdma tag and DMA safe memory for TX descriptors. */
146	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_tx_dtag,
147	    &sc->tsec_tx_dmap, sizeof(*sc->tsec_tx_vaddr) * TSEC_TX_NUM_DESC,
148	    (void **)&sc->tsec_tx_vaddr, &sc->tsec_tx_raddr, "TX");
149
150	if (error) {
151		tsec_detach(sc);
152		return (ENXIO);
153	}
154
155	/* Allocate a busdma tag and DMA safe memory for RX descriptors. */
156	error = tsec_alloc_dma_desc(sc->dev, &sc->tsec_rx_dtag,
157	    &sc->tsec_rx_dmap, sizeof(*sc->tsec_rx_vaddr) * TSEC_RX_NUM_DESC,
158	    (void **)&sc->tsec_rx_vaddr, &sc->tsec_rx_raddr, "RX");
159	if (error) {
160		tsec_detach(sc);
161		return (ENXIO);
162	}
163
164	/* Allocate a busdma tag for TX mbufs. */
165	error = bus_dma_tag_create(NULL,	/* parent */
166	    TSEC_TXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
167	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
168	    BUS_SPACE_MAXADDR,			/* highaddr */
169	    NULL, NULL,				/* filtfunc, filtfuncarg */
170	    MCLBYTES * (TSEC_TX_NUM_DESC - 1),	/* maxsize */
171	    TSEC_TX_NUM_DESC - 1,		/* nsegments */
172	    MCLBYTES, 0,			/* maxsegsz, flags */
173	    NULL, NULL,				/* lockfunc, lockfuncarg */
174	    &sc->tsec_tx_mtag);			/* dmat */
175	if (error) {
176		device_printf(sc->dev, "failed to allocate busdma tag "
177		    "(tx mbufs)\n");
178		tsec_detach(sc);
179		return (ENXIO);
180	}
181
182	/* Allocate a busdma tag for RX mbufs. */
183	error = bus_dma_tag_create(NULL,	/* parent */
184	    TSEC_RXBUFFER_ALIGNMENT, 0,		/* alignment, boundary */
185	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
186	    BUS_SPACE_MAXADDR,			/* highaddr */
187	    NULL, NULL,				/* filtfunc, filtfuncarg */
188	    MCLBYTES,				/* maxsize */
189	    1,					/* nsegments */
190	    MCLBYTES, 0,			/* maxsegsz, flags */
191	    NULL, NULL,				/* lockfunc, lockfuncarg */
192	    &sc->tsec_rx_mtag);			/* dmat */
193	if (error) {
194		device_printf(sc->dev, "failed to allocate busdma tag "
195		    "(rx mbufs)\n");
196		tsec_detach(sc);
197		return (ENXIO);
198	}
199
200	/* Create TX busdma maps */
201	map_ptr = sc->tx_map_data;
202	map_pptr = sc->tx_map_unused_data;
203
204	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
205		map_pptr[i] = &map_ptr[i];
206		error = bus_dmamap_create(sc->tsec_tx_mtag, 0, map_pptr[i]);
207		if (error) {
208			device_printf(sc->dev, "failed to init TX ring\n");
209			tsec_detach(sc);
210			return (ENXIO);
211		}
212	}
213
214	/* Create RX busdma maps and zero mbuf handlers */
215	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
216		error = bus_dmamap_create(sc->tsec_rx_mtag, 0,
217		    &sc->rx_data[i].map);
218		if (error) {
219			device_printf(sc->dev, "failed to init RX ring\n");
220			tsec_detach(sc);
221			return (ENXIO);
222		}
223		sc->rx_data[i].mbuf = NULL;
224	}
225
226	/* Create mbufs for RX buffers */
227	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
228		error = tsec_new_rxbuf(sc->tsec_rx_mtag, sc->rx_data[i].map,
229		    &sc->rx_data[i].mbuf, &sc->rx_data[i].paddr);
230		if (error) {
231			device_printf(sc->dev, "can't load rx DMA map %d, "
232			    "error = %d\n", i, error);
233			tsec_detach(sc);
234			return (error);
235		}
236	}
237
238	/* Create network interface for upper layers */
239	ifp = sc->tsec_ifp = if_alloc(IFT_ETHER);
240	if (ifp == NULL) {
241		device_printf(sc->dev, "if_alloc() failed\n");
242		tsec_detach(sc);
243		return (ENOMEM);
244	}
245
246	ifp->if_softc = sc;
247	if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
248	ifp->if_mtu = ETHERMTU;
249	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
250	ifp->if_init = tsec_init;
251	ifp->if_start = tsec_start;
252	ifp->if_ioctl = tsec_ioctl;
253
254	IFQ_SET_MAXLEN(&ifp->if_snd, TSEC_TX_NUM_DESC - 1);
255	ifp->if_snd.ifq_drv_maxlen = TSEC_TX_NUM_DESC - 1;
256	IFQ_SET_READY(&ifp->if_snd);
257
258	ifp->if_capabilities = IFCAP_VLAN_MTU;
259	if (sc->is_etsec)
260		ifp->if_capabilities |= IFCAP_HWCSUM;
261
262	ifp->if_capenable = ifp->if_capabilities;
263
264#ifdef DEVICE_POLLING
265	/* Advertise that polling is supported */
266	ifp->if_capabilities |= IFCAP_POLLING;
267#endif
268
269	/* Attach PHY(s) */
270	error = mii_attach(sc->dev, &sc->tsec_miibus, ifp, tsec_ifmedia_upd,
271	    tsec_ifmedia_sts, BMSR_DEFCAPMASK, sc->phyaddr, MII_OFFSET_ANY,
272	    0);
273	if (error) {
274		device_printf(sc->dev, "attaching PHYs failed\n");
275		if_free(ifp);
276		sc->tsec_ifp = NULL;
277		tsec_detach(sc);
278		return (error);
279	}
280	sc->tsec_mii = device_get_softc(sc->tsec_miibus);
281
282	/* Set MAC address */
283	tsec_get_hwaddr(sc, hwaddr);
284	ether_ifattach(ifp, hwaddr);
285
286	return (0);
287}
288
289int
290tsec_detach(struct tsec_softc *sc)
291{
292
293	if (sc->tsec_ifp != NULL) {
294#ifdef DEVICE_POLLING
295		if (sc->tsec_ifp->if_capenable & IFCAP_POLLING)
296			ether_poll_deregister(sc->tsec_ifp);
297#endif
298
299		/* Stop TSEC controller and free TX queue */
300		if (sc->sc_rres)
301			tsec_shutdown(sc->dev);
302
303		/* Detach network interface */
304		ether_ifdetach(sc->tsec_ifp);
305		if_free(sc->tsec_ifp);
306		sc->tsec_ifp = NULL;
307	}
308
309	/* Free DMA resources */
310	tsec_free_dma(sc);
311
312	return (0);
313}
314
315int
316tsec_shutdown(device_t dev)
317{
318	struct tsec_softc *sc;
319
320	sc = device_get_softc(dev);
321
322	TSEC_GLOBAL_LOCK(sc);
323	tsec_stop(sc);
324	TSEC_GLOBAL_UNLOCK(sc);
325	return (0);
326}
327
328int
329tsec_suspend(device_t dev)
330{
331
332	/* TODO not implemented! */
333	return (0);
334}
335
336int
337tsec_resume(device_t dev)
338{
339
340	/* TODO not implemented! */
341	return (0);
342}
343
344static void
345tsec_init(void *xsc)
346{
347	struct tsec_softc *sc = xsc;
348
349	TSEC_GLOBAL_LOCK(sc);
350	tsec_init_locked(sc);
351	TSEC_GLOBAL_UNLOCK(sc);
352}
353
354static void
355tsec_init_locked(struct tsec_softc *sc)
356{
357	struct tsec_desc *tx_desc = sc->tsec_tx_vaddr;
358	struct tsec_desc *rx_desc = sc->tsec_rx_vaddr;
359	struct ifnet *ifp = sc->tsec_ifp;
360	uint32_t timeout, val, i;
361
362	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
363		return;
364
365	TSEC_GLOBAL_LOCK_ASSERT(sc);
366	tsec_stop(sc);
367
368	/*
369	 * These steps are according to the MPC8555E PowerQUICCIII RM:
370	 * 14.7 Initialization/Application Information
371	 */
372
373	/* Step 1: soft reset MAC */
374	tsec_reset_mac(sc);
375
376	/* Step 2: Initialize MACCFG2 */
377	TSEC_WRITE(sc, TSEC_REG_MACCFG2,
378	    TSEC_MACCFG2_FULLDUPLEX |	/* Full Duplex = 1 */
379	    TSEC_MACCFG2_PADCRC |	/* PAD/CRC append */
380	    TSEC_MACCFG2_GMII |		/* I/F Mode bit */
381	    TSEC_MACCFG2_PRECNT		/* Preamble count = 7 */
382	);
383
384	/* Step 3: Initialize ECNTRL
385	 * While the documentation states that R100M is ignored if RPM is
386	 * not set, it does seem to be needed to get the orange boxes to
387	 * work (which have a Marvell 88E1111 PHY). Go figure.
388	 */
389
390	/*
391	 * XXX kludge - use circumstancial evidence to program ECNTRL
392	 * correctly. Ideally we need some board information to guide
393	 * us here.
394	 */
395	i = TSEC_READ(sc, TSEC_REG_ID2);
396	val = (i & 0xffff)
397	    ? (TSEC_ECNTRL_TBIM | TSEC_ECNTRL_SGMIIM)	/* Sumatra */
398	    : TSEC_ECNTRL_R100M;			/* Orange + CDS */
399	TSEC_WRITE(sc, TSEC_REG_ECNTRL, TSEC_ECNTRL_STEN | val);
400
401	/* Step 4: Initialize MAC station address */
402	tsec_set_mac_address(sc);
403
404	/*
405	 * Step 5: Assign a Physical address to the TBI so as to not conflict
406	 * with the external PHY physical address
407	 */
408	TSEC_WRITE(sc, TSEC_REG_TBIPA, 5);
409
410	/* Step 6: Reset the management interface */
411	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_RESETMGMT);
412
413	/* Step 7: Setup the MII Mgmt clock speed */
414	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCFG, TSEC_MIIMCFG_CLKDIV28);
415
416	/* Step 8: Read MII Mgmt indicator register and check for Busy = 0 */
417	timeout = TSEC_READ_RETRY;
418	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
419	    TSEC_MIIMIND_BUSY))
420		DELAY(TSEC_READ_DELAY);
421	if (timeout == 0) {
422		if_printf(ifp, "tsec_init_locked(): Mgmt busy timeout\n");
423		return;
424	}
425
426	/* Step 9: Setup the MII Mgmt */
427	mii_mediachg(sc->tsec_mii);
428
429	/* Step 10: Clear IEVENT register */
430	TSEC_WRITE(sc, TSEC_REG_IEVENT, 0xffffffff);
431
432	/* Step 11: Enable interrupts */
433#ifdef DEVICE_POLLING
434	/*
435	 * ...only if polling is not turned on. Disable interrupts explicitly
436	 * if polling is enabled.
437	 */
438	if (ifp->if_capenable & IFCAP_POLLING )
439		tsec_intrs_ctl(sc, 0);
440	else
441#endif /* DEVICE_POLLING */
442	tsec_intrs_ctl(sc, 1);
443
444	/* Step 12: Initialize IADDRn */
445	TSEC_WRITE(sc, TSEC_REG_IADDR0, 0);
446	TSEC_WRITE(sc, TSEC_REG_IADDR1, 0);
447	TSEC_WRITE(sc, TSEC_REG_IADDR2, 0);
448	TSEC_WRITE(sc, TSEC_REG_IADDR3, 0);
449	TSEC_WRITE(sc, TSEC_REG_IADDR4, 0);
450	TSEC_WRITE(sc, TSEC_REG_IADDR5, 0);
451	TSEC_WRITE(sc, TSEC_REG_IADDR6, 0);
452	TSEC_WRITE(sc, TSEC_REG_IADDR7, 0);
453
454	/* Step 13: Initialize GADDRn */
455	TSEC_WRITE(sc, TSEC_REG_GADDR0, 0);
456	TSEC_WRITE(sc, TSEC_REG_GADDR1, 0);
457	TSEC_WRITE(sc, TSEC_REG_GADDR2, 0);
458	TSEC_WRITE(sc, TSEC_REG_GADDR3, 0);
459	TSEC_WRITE(sc, TSEC_REG_GADDR4, 0);
460	TSEC_WRITE(sc, TSEC_REG_GADDR5, 0);
461	TSEC_WRITE(sc, TSEC_REG_GADDR6, 0);
462	TSEC_WRITE(sc, TSEC_REG_GADDR7, 0);
463
464	/* Step 14: Initialize RCTRL */
465	TSEC_WRITE(sc, TSEC_REG_RCTRL, 0);
466
467	/* Step 15: Initialize DMACTRL */
468	tsec_dma_ctl(sc, 1);
469
470	/* Step 16: Initialize FIFO_PAUSE_CTRL */
471	TSEC_WRITE(sc, TSEC_REG_FIFO_PAUSE_CTRL, TSEC_FIFO_PAUSE_CTRL_EN);
472
473	/*
474	 * Step 17: Initialize transmit/receive descriptor rings.
475	 * Initialize TBASE and RBASE.
476	 */
477	TSEC_WRITE(sc, TSEC_REG_TBASE, sc->tsec_tx_raddr);
478	TSEC_WRITE(sc, TSEC_REG_RBASE, sc->tsec_rx_raddr);
479
480	for (i = 0; i < TSEC_TX_NUM_DESC; i++) {
481		tx_desc[i].bufptr = 0;
482		tx_desc[i].length = 0;
483		tx_desc[i].flags = ((i == TSEC_TX_NUM_DESC - 1) ?
484		    TSEC_TXBD_W : 0);
485	}
486	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
487	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
488
489	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
490		rx_desc[i].bufptr = sc->rx_data[i].paddr;
491		rx_desc[i].length = 0;
492		rx_desc[i].flags = TSEC_RXBD_E | TSEC_RXBD_I |
493		    ((i == TSEC_RX_NUM_DESC - 1) ? TSEC_RXBD_W : 0);
494	}
495	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
496	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
497
498	/* Step 18: Initialize the maximum receive buffer length */
499	TSEC_WRITE(sc, TSEC_REG_MRBLR, MCLBYTES);
500
501	/* Step 19: Configure ethernet frame sizes */
502	TSEC_WRITE(sc, TSEC_REG_MINFLR, TSEC_MIN_FRAME_SIZE);
503	tsec_set_mtu(sc, ifp->if_mtu);
504
505	/* Step 20: Enable Rx and RxBD sdata snooping */
506	TSEC_WRITE(sc, TSEC_REG_ATTR, TSEC_ATTR_RDSEN | TSEC_ATTR_RBDSEN);
507	TSEC_WRITE(sc, TSEC_REG_ATTRELI, 0);
508
509	/* Step 21: Reset collision counters in hardware */
510	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
511	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
512	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
513	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
514	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
515
516	/* Step 22: Mask all CAM interrupts */
517	TSEC_WRITE(sc, TSEC_REG_MON_CAM1, 0xffffffff);
518	TSEC_WRITE(sc, TSEC_REG_MON_CAM2, 0xffffffff);
519
520	/* Step 23: Enable Rx and Tx */
521	val = TSEC_READ(sc, TSEC_REG_MACCFG1);
522	val |= (TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
523	TSEC_WRITE(sc, TSEC_REG_MACCFG1, val);
524
525	/* Step 24: Reset TSEC counters for Tx and Rx rings */
526	TSEC_TX_RX_COUNTERS_INIT(sc);
527
528	/* Step 25: Setup TCP/IP Off-Load engine */
529	if (sc->is_etsec)
530		tsec_offload_setup(sc);
531
532	/* Step 26: Setup multicast filters */
533	tsec_setup_multicast(sc);
534
535	/* Step 27: Activate network interface */
536	ifp->if_drv_flags |= IFF_DRV_RUNNING;
537	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
538	sc->tsec_if_flags = ifp->if_flags;
539	sc->tsec_watchdog = 0;
540
541	/* Schedule watchdog timeout */
542	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
543}
544
545static void
546tsec_set_mac_address(struct tsec_softc *sc)
547{
548	uint32_t macbuf[2] = { 0, 0 };
549	char *macbufp, *curmac;
550	int i;
551
552	TSEC_GLOBAL_LOCK_ASSERT(sc);
553
554	KASSERT((ETHER_ADDR_LEN <= sizeof(macbuf)),
555	    ("tsec_set_mac_address: (%d <= %d", ETHER_ADDR_LEN,
556	    sizeof(macbuf)));
557
558	macbufp = (char *)macbuf;
559	curmac = (char *)IF_LLADDR(sc->tsec_ifp);
560
561	/* Correct order of MAC address bytes */
562	for (i = 1; i <= ETHER_ADDR_LEN; i++)
563		macbufp[ETHER_ADDR_LEN-i] = curmac[i-1];
564
565	/* Initialize MAC station address MACSTNADDR2 and MACSTNADDR1 */
566	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR2, macbuf[1]);
567	TSEC_WRITE(sc, TSEC_REG_MACSTNADDR1, macbuf[0]);
568}
569
570/*
571 * DMA control function, if argument state is:
572 * 0 - DMA engine will be disabled
573 * 1 - DMA engine will be enabled
574 */
575static void
576tsec_dma_ctl(struct tsec_softc *sc, int state)
577{
578	device_t dev;
579	uint32_t dma_flags, timeout;
580
581	dev = sc->dev;
582
583	dma_flags = TSEC_READ(sc, TSEC_REG_DMACTRL);
584
585	switch (state) {
586	case 0:
587		/* Temporarily clear stop graceful stop bits. */
588		tsec_dma_ctl(sc, 1000);
589
590		/* Set it again */
591		dma_flags |= (TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
592		break;
593	case 1000:
594	case 1:
595		/* Set write with response (WWR), wait (WOP) and snoop bits */
596		dma_flags |= (TSEC_DMACTRL_TDSEN | TSEC_DMACTRL_TBDSEN |
597		    DMACTRL_WWR | DMACTRL_WOP);
598
599		/* Clear graceful stop bits */
600		dma_flags &= ~(TSEC_DMACTRL_GRS | TSEC_DMACTRL_GTS);
601		break;
602	default:
603		device_printf(dev, "tsec_dma_ctl(): unknown state value: %d\n",
604		    state);
605	}
606
607	TSEC_WRITE(sc, TSEC_REG_DMACTRL, dma_flags);
608
609	switch (state) {
610	case 0:
611		/* Wait for DMA stop */
612		timeout = TSEC_READ_RETRY;
613		while (--timeout && (!(TSEC_READ(sc, TSEC_REG_IEVENT) &
614		    (TSEC_IEVENT_GRSC | TSEC_IEVENT_GTSC))))
615			DELAY(TSEC_READ_DELAY);
616
617		if (timeout == 0)
618			device_printf(dev, "tsec_dma_ctl(): timeout!\n");
619		break;
620	case 1:
621		/* Restart transmission function */
622		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
623	}
624}
625
626/*
627 * Interrupts control function, if argument state is:
628 * 0 - all TSEC interrupts will be masked
629 * 1 - all TSEC interrupts will be unmasked
630 */
631static void
632tsec_intrs_ctl(struct tsec_softc *sc, int state)
633{
634	device_t dev;
635
636	dev = sc->dev;
637
638	switch (state) {
639	case 0:
640		TSEC_WRITE(sc, TSEC_REG_IMASK, 0);
641		break;
642	case 1:
643		TSEC_WRITE(sc, TSEC_REG_IMASK, TSEC_IMASK_BREN |
644		    TSEC_IMASK_RXCEN | TSEC_IMASK_BSYEN | TSEC_IMASK_EBERREN |
645		    TSEC_IMASK_BTEN | TSEC_IMASK_TXEEN | TSEC_IMASK_TXBEN |
646		    TSEC_IMASK_TXFEN | TSEC_IMASK_XFUNEN | TSEC_IMASK_RXFEN);
647		break;
648	default:
649		device_printf(dev, "tsec_intrs_ctl(): unknown state value: %d\n",
650		    state);
651	}
652}
653
654static void
655tsec_reset_mac(struct tsec_softc *sc)
656{
657	uint32_t maccfg1_flags;
658
659	/* Set soft reset bit */
660	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
661	maccfg1_flags |= TSEC_MACCFG1_SOFT_RESET;
662	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
663
664	/* Clear soft reset bit */
665	maccfg1_flags = TSEC_READ(sc, TSEC_REG_MACCFG1);
666	maccfg1_flags &= ~TSEC_MACCFG1_SOFT_RESET;
667	TSEC_WRITE(sc, TSEC_REG_MACCFG1, maccfg1_flags);
668}
669
670static void
671tsec_watchdog(struct tsec_softc *sc)
672{
673	struct ifnet *ifp;
674
675	TSEC_GLOBAL_LOCK_ASSERT(sc);
676
677	if (sc->tsec_watchdog == 0 || --sc->tsec_watchdog > 0)
678		return;
679
680	ifp = sc->tsec_ifp;
681	ifp->if_oerrors++;
682	if_printf(ifp, "watchdog timeout\n");
683
684	tsec_stop(sc);
685	tsec_init_locked(sc);
686}
687
688static void
689tsec_start(struct ifnet *ifp)
690{
691	struct tsec_softc *sc = ifp->if_softc;
692
693	TSEC_TRANSMIT_LOCK(sc);
694	tsec_start_locked(ifp);
695	TSEC_TRANSMIT_UNLOCK(sc);
696}
697
698static void
699tsec_start_locked(struct ifnet *ifp)
700{
701	struct tsec_softc *sc;
702	struct mbuf *m0, *mtmp;
703	struct tsec_tx_fcb *tx_fcb;
704	unsigned int queued = 0;
705	int csum_flags, fcb_inserted = 0;
706
707	sc = ifp->if_softc;
708
709	TSEC_TRANSMIT_LOCK_ASSERT(sc);
710
711	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
712	    IFF_DRV_RUNNING)
713		return;
714
715	if (sc->tsec_link == 0)
716		return;
717
718	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
719	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
720
721	while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
722		/* Get packet from the queue */
723		IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
724		if (m0 == NULL)
725			break;
726
727		/* Insert TCP/IP Off-load frame control block */
728		csum_flags = m0->m_pkthdr.csum_flags;
729		if (csum_flags) {
730
731			M_PREPEND(m0, sizeof(struct tsec_tx_fcb), M_NOWAIT);
732			if (m0 == NULL)
733				break;
734
735			tx_fcb = mtod(m0, struct tsec_tx_fcb *);
736			tx_fcb->flags = 0;
737			tx_fcb->l3_offset = ETHER_HDR_LEN;
738			tx_fcb->l4_offset = sizeof(struct ip);
739
740			if (csum_flags & CSUM_IP)
741				tx_fcb->flags |= TSEC_TX_FCB_IP4 |
742				    TSEC_TX_FCB_CSUM_IP;
743
744			if (csum_flags & CSUM_TCP)
745				tx_fcb->flags |= TSEC_TX_FCB_TCP |
746				    TSEC_TX_FCB_CSUM_TCP_UDP;
747
748			if (csum_flags & CSUM_UDP)
749				tx_fcb->flags |= TSEC_TX_FCB_UDP |
750				    TSEC_TX_FCB_CSUM_TCP_UDP;
751
752			fcb_inserted = 1;
753		}
754
755		mtmp = m_defrag(m0, M_NOWAIT);
756		if (mtmp)
757			m0 = mtmp;
758
759		if (tsec_encap(sc, m0, fcb_inserted)) {
760			IFQ_DRV_PREPEND(&ifp->if_snd, m0);
761			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
762			break;
763		}
764		queued++;
765		BPF_MTAP(ifp, m0);
766	}
767	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
768	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
769
770	if (queued) {
771		/* Enable transmitter and watchdog timer */
772		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
773		sc->tsec_watchdog = 5;
774	}
775}
776
777static int
778tsec_encap(struct tsec_softc *sc, struct mbuf *m0, int fcb_inserted)
779{
780	struct tsec_desc *tx_desc = NULL;
781	struct ifnet *ifp;
782	bus_dma_segment_t segs[TSEC_TX_NUM_DESC];
783	bus_dmamap_t *mapp;
784	int csum_flag = 0, error, seg, nsegs;
785
786	TSEC_TRANSMIT_LOCK_ASSERT(sc);
787
788	ifp = sc->tsec_ifp;
789
790	if (TSEC_FREE_TX_DESC(sc) == 0) {
791		/* No free descriptors */
792		return (-1);
793	}
794
795	/* Fetch unused map */
796	mapp = TSEC_ALLOC_TX_MAP(sc);
797
798	/* Create mapping in DMA memory */
799	error = bus_dmamap_load_mbuf_sg(sc->tsec_tx_mtag,
800	    *mapp, m0, segs, &nsegs, BUS_DMA_NOWAIT);
801	if (error != 0 || nsegs > TSEC_FREE_TX_DESC(sc) || nsegs <= 0) {
802		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
803		TSEC_FREE_TX_MAP(sc, mapp);
804		return ((error != 0) ? error : -1);
805	}
806	bus_dmamap_sync(sc->tsec_tx_mtag, *mapp, BUS_DMASYNC_PREWRITE);
807
808	if ((ifp->if_flags & IFF_DEBUG) && (nsegs > 1))
809		if_printf(ifp, "TX buffer has %d segments\n", nsegs);
810
811	if (fcb_inserted)
812		csum_flag = TSEC_TXBD_TOE;
813
814	/* Everything is ok, now we can send buffers */
815	for (seg = 0; seg < nsegs; seg++) {
816		tx_desc = TSEC_GET_CUR_TX_DESC(sc);
817
818		tx_desc->length = segs[seg].ds_len;
819		tx_desc->bufptr = segs[seg].ds_addr;
820
821		/*
822		 * Set flags:
823		 *   - wrap
824		 *   - checksum
825		 *   - ready to send
826		 *   - transmit the CRC sequence after the last data byte
827		 *   - interrupt after the last buffer
828		 */
829		tx_desc->flags =
830		    (tx_desc->flags & TSEC_TXBD_W) |
831		    ((seg == 0) ? csum_flag : 0) | TSEC_TXBD_R | TSEC_TXBD_TC |
832		    ((seg == nsegs - 1) ? TSEC_TXBD_L | TSEC_TXBD_I : 0);
833	}
834
835	/* Save mbuf and DMA mapping for release at later stage */
836	TSEC_PUT_TX_MBUF(sc, m0);
837	TSEC_PUT_TX_MAP(sc, mapp);
838
839	return (0);
840}
841
842static void
843tsec_setfilter(struct tsec_softc *sc)
844{
845	struct ifnet *ifp;
846	uint32_t flags;
847
848	ifp = sc->tsec_ifp;
849	flags = TSEC_READ(sc, TSEC_REG_RCTRL);
850
851	/* Promiscuous mode */
852	if (ifp->if_flags & IFF_PROMISC)
853		flags |= TSEC_RCTRL_PROM;
854	else
855		flags &= ~TSEC_RCTRL_PROM;
856
857	TSEC_WRITE(sc, TSEC_REG_RCTRL, flags);
858}
859
860#ifdef DEVICE_POLLING
861static poll_handler_t tsec_poll;
862
863static int
864tsec_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
865{
866	uint32_t ie;
867	struct tsec_softc *sc = ifp->if_softc;
868	int rx_npkts;
869
870	rx_npkts = 0;
871
872	TSEC_GLOBAL_LOCK(sc);
873	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
874		TSEC_GLOBAL_UNLOCK(sc);
875		return (rx_npkts);
876	}
877
878	if (cmd == POLL_AND_CHECK_STATUS) {
879		tsec_error_intr_locked(sc, count);
880
881		/* Clear all events reported */
882		ie = TSEC_READ(sc, TSEC_REG_IEVENT);
883		TSEC_WRITE(sc, TSEC_REG_IEVENT, ie);
884	}
885
886	tsec_transmit_intr_locked(sc);
887
888	TSEC_GLOBAL_TO_RECEIVE_LOCK(sc);
889
890	rx_npkts = tsec_receive_intr_locked(sc, count);
891
892	TSEC_RECEIVE_UNLOCK(sc);
893
894	return (rx_npkts);
895}
896#endif /* DEVICE_POLLING */
897
898static int
899tsec_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
900{
901	struct tsec_softc *sc = ifp->if_softc;
902	struct ifreq *ifr = (struct ifreq *)data;
903	device_t dev;
904	int mask, error = 0;
905
906	dev = sc->dev;
907
908	switch (command) {
909	case SIOCSIFMTU:
910		TSEC_GLOBAL_LOCK(sc);
911		if (tsec_set_mtu(sc, ifr->ifr_mtu))
912			ifp->if_mtu = ifr->ifr_mtu;
913		else
914			error = EINVAL;
915		TSEC_GLOBAL_UNLOCK(sc);
916		break;
917	case SIOCSIFFLAGS:
918		TSEC_GLOBAL_LOCK(sc);
919		if (ifp->if_flags & IFF_UP) {
920			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
921				if ((sc->tsec_if_flags ^ ifp->if_flags) &
922				    IFF_PROMISC)
923					tsec_setfilter(sc);
924
925				if ((sc->tsec_if_flags ^ ifp->if_flags) &
926				    IFF_ALLMULTI)
927					tsec_setup_multicast(sc);
928			} else
929				tsec_init_locked(sc);
930		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
931			tsec_stop(sc);
932
933		sc->tsec_if_flags = ifp->if_flags;
934		TSEC_GLOBAL_UNLOCK(sc);
935		break;
936	case SIOCADDMULTI:
937	case SIOCDELMULTI:
938		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
939			TSEC_GLOBAL_LOCK(sc);
940			tsec_setup_multicast(sc);
941			TSEC_GLOBAL_UNLOCK(sc);
942		}
943	case SIOCGIFMEDIA:
944	case SIOCSIFMEDIA:
945		error = ifmedia_ioctl(ifp, ifr, &sc->tsec_mii->mii_media,
946		    command);
947		break;
948	case SIOCSIFCAP:
949		mask = ifp->if_capenable ^ ifr->ifr_reqcap;
950		if ((mask & IFCAP_HWCSUM) && sc->is_etsec) {
951			TSEC_GLOBAL_LOCK(sc);
952			ifp->if_capenable &= ~IFCAP_HWCSUM;
953			ifp->if_capenable |= IFCAP_HWCSUM & ifr->ifr_reqcap;
954			tsec_offload_setup(sc);
955			TSEC_GLOBAL_UNLOCK(sc);
956		}
957#ifdef DEVICE_POLLING
958		if (mask & IFCAP_POLLING) {
959			if (ifr->ifr_reqcap & IFCAP_POLLING) {
960				error = ether_poll_register(tsec_poll, ifp);
961				if (error)
962					return (error);
963
964				TSEC_GLOBAL_LOCK(sc);
965				/* Disable interrupts */
966				tsec_intrs_ctl(sc, 0);
967				ifp->if_capenable |= IFCAP_POLLING;
968				TSEC_GLOBAL_UNLOCK(sc);
969			} else {
970				error = ether_poll_deregister(ifp);
971				TSEC_GLOBAL_LOCK(sc);
972				/* Enable interrupts */
973				tsec_intrs_ctl(sc, 1);
974				ifp->if_capenable &= ~IFCAP_POLLING;
975				TSEC_GLOBAL_UNLOCK(sc);
976			}
977		}
978#endif
979		break;
980
981	default:
982		error = ether_ioctl(ifp, command, data);
983	}
984
985	/* Flush buffers if not empty */
986	if (ifp->if_flags & IFF_UP)
987		tsec_start(ifp);
988	return (error);
989}
990
991static int
992tsec_ifmedia_upd(struct ifnet *ifp)
993{
994	struct tsec_softc *sc = ifp->if_softc;
995	struct mii_data *mii;
996
997	TSEC_TRANSMIT_LOCK(sc);
998
999	mii = sc->tsec_mii;
1000	mii_mediachg(mii);
1001
1002	TSEC_TRANSMIT_UNLOCK(sc);
1003	return (0);
1004}
1005
1006static void
1007tsec_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1008{
1009	struct tsec_softc *sc = ifp->if_softc;
1010	struct mii_data *mii;
1011
1012	TSEC_TRANSMIT_LOCK(sc);
1013
1014	mii = sc->tsec_mii;
1015	mii_pollstat(mii);
1016
1017	ifmr->ifm_active = mii->mii_media_active;
1018	ifmr->ifm_status = mii->mii_media_status;
1019
1020	TSEC_TRANSMIT_UNLOCK(sc);
1021}
1022
1023static int
1024tsec_new_rxbuf(bus_dma_tag_t tag, bus_dmamap_t map, struct mbuf **mbufp,
1025    uint32_t *paddr)
1026{
1027	struct mbuf *new_mbuf;
1028	bus_dma_segment_t seg[1];
1029	int error, nsegs;
1030
1031	KASSERT(mbufp != NULL, ("NULL mbuf pointer!"));
1032
1033	new_mbuf = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MCLBYTES);
1034	if (new_mbuf == NULL)
1035		return (ENOBUFS);
1036	new_mbuf->m_len = new_mbuf->m_pkthdr.len = new_mbuf->m_ext.ext_size;
1037
1038	if (*mbufp) {
1039		bus_dmamap_sync(tag, map, BUS_DMASYNC_POSTREAD);
1040		bus_dmamap_unload(tag, map);
1041	}
1042
1043	error = bus_dmamap_load_mbuf_sg(tag, map, new_mbuf, seg, &nsegs,
1044	    BUS_DMA_NOWAIT);
1045	KASSERT(nsegs == 1, ("Too many segments returned!"));
1046	if (nsegs != 1 || error)
1047		panic("tsec_new_rxbuf(): nsegs(%d), error(%d)", nsegs, error);
1048
1049#if 0
1050	if (error) {
1051		printf("tsec: bus_dmamap_load_mbuf_sg() returned: %d!\n",
1052			error);
1053		m_freem(new_mbuf);
1054		return (ENOBUFS);
1055	}
1056#endif
1057
1058#if 0
1059	KASSERT(((seg->ds_addr) & (TSEC_RXBUFFER_ALIGNMENT-1)) == 0,
1060		("Wrong alignment of RX buffer!"));
1061#endif
1062	bus_dmamap_sync(tag, map, BUS_DMASYNC_PREREAD);
1063
1064	(*mbufp) = new_mbuf;
1065	(*paddr) = seg->ds_addr;
1066	return (0);
1067}
1068
1069static void
1070tsec_map_dma_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1071{
1072	u_int32_t *paddr;
1073
1074	KASSERT(nseg == 1, ("wrong number of segments, should be 1"));
1075	paddr = arg;
1076	*paddr = segs->ds_addr;
1077}
1078
1079static int
1080tsec_alloc_dma_desc(device_t dev, bus_dma_tag_t *dtag, bus_dmamap_t *dmap,
1081    bus_size_t dsize, void **vaddr, void *raddr, const char *dname)
1082{
1083	int error;
1084
1085	/* Allocate a busdma tag and DMA safe memory for TX/RX descriptors. */
1086	error = bus_dma_tag_create(NULL,	/* parent */
1087	    PAGE_SIZE, 0,			/* alignment, boundary */
1088	    BUS_SPACE_MAXADDR_32BIT,		/* lowaddr */
1089	    BUS_SPACE_MAXADDR,			/* highaddr */
1090	    NULL, NULL,				/* filtfunc, filtfuncarg */
1091	    dsize, 1,				/* maxsize, nsegments */
1092	    dsize, 0,				/* maxsegsz, flags */
1093	    NULL, NULL,				/* lockfunc, lockfuncarg */
1094	    dtag);				/* dmat */
1095
1096	if (error) {
1097		device_printf(dev, "failed to allocate busdma %s tag\n",
1098		    dname);
1099		(*vaddr) = NULL;
1100		return (ENXIO);
1101	}
1102
1103	error = bus_dmamem_alloc(*dtag, vaddr, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1104	    dmap);
1105	if (error) {
1106		device_printf(dev, "failed to allocate %s DMA safe memory\n",
1107		    dname);
1108		bus_dma_tag_destroy(*dtag);
1109		(*vaddr) = NULL;
1110		return (ENXIO);
1111	}
1112
1113	error = bus_dmamap_load(*dtag, *dmap, *vaddr, dsize,
1114	    tsec_map_dma_addr, raddr, BUS_DMA_NOWAIT);
1115	if (error) {
1116		device_printf(dev, "cannot get address of the %s "
1117		    "descriptors\n", dname);
1118		bus_dmamem_free(*dtag, *vaddr, *dmap);
1119		bus_dma_tag_destroy(*dtag);
1120		(*vaddr) = NULL;
1121		return (ENXIO);
1122	}
1123
1124	return (0);
1125}
1126
1127static void
1128tsec_free_dma_desc(bus_dma_tag_t dtag, bus_dmamap_t dmap, void *vaddr)
1129{
1130
1131	if (vaddr == NULL)
1132		return;
1133
1134	/* Unmap descriptors from DMA memory */
1135	bus_dmamap_sync(dtag, dmap, BUS_DMASYNC_POSTREAD |
1136	    BUS_DMASYNC_POSTWRITE);
1137	bus_dmamap_unload(dtag, dmap);
1138
1139	/* Free descriptors memory */
1140	bus_dmamem_free(dtag, vaddr, dmap);
1141
1142	/* Destroy descriptors tag */
1143	bus_dma_tag_destroy(dtag);
1144}
1145
1146static void
1147tsec_free_dma(struct tsec_softc *sc)
1148{
1149	int i;
1150
1151	/* Free TX maps */
1152	for (i = 0; i < TSEC_TX_NUM_DESC; i++)
1153		if (sc->tx_map_data[i] != NULL)
1154			bus_dmamap_destroy(sc->tsec_tx_mtag,
1155			    sc->tx_map_data[i]);
1156	/* Destroy tag for TX mbufs */
1157	bus_dma_tag_destroy(sc->tsec_tx_mtag);
1158
1159	/* Free RX mbufs and maps */
1160	for (i = 0; i < TSEC_RX_NUM_DESC; i++) {
1161		if (sc->rx_data[i].mbuf) {
1162			/* Unload buffer from DMA */
1163			bus_dmamap_sync(sc->tsec_rx_mtag, sc->rx_data[i].map,
1164			    BUS_DMASYNC_POSTREAD);
1165			bus_dmamap_unload(sc->tsec_rx_mtag,
1166			    sc->rx_data[i].map);
1167
1168			/* Free buffer */
1169			m_freem(sc->rx_data[i].mbuf);
1170		}
1171		/* Destroy map for this buffer */
1172		if (sc->rx_data[i].map != NULL)
1173			bus_dmamap_destroy(sc->tsec_rx_mtag,
1174			    sc->rx_data[i].map);
1175	}
1176	/* Destroy tag for RX mbufs */
1177	bus_dma_tag_destroy(sc->tsec_rx_mtag);
1178
1179	/* Unload TX/RX descriptors */
1180	tsec_free_dma_desc(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1181	    sc->tsec_tx_vaddr);
1182	tsec_free_dma_desc(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1183	    sc->tsec_rx_vaddr);
1184}
1185
1186static void
1187tsec_stop(struct tsec_softc *sc)
1188{
1189	struct ifnet *ifp;
1190	struct mbuf *m0;
1191	bus_dmamap_t *mapp;
1192	uint32_t tmpval;
1193
1194	TSEC_GLOBAL_LOCK_ASSERT(sc);
1195
1196	ifp = sc->tsec_ifp;
1197
1198	/* Disable interface and watchdog timer */
1199	callout_stop(&sc->tsec_callout);
1200	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1201	sc->tsec_watchdog = 0;
1202
1203	/* Disable all interrupts and stop DMA */
1204	tsec_intrs_ctl(sc, 0);
1205	tsec_dma_ctl(sc, 0);
1206
1207	/* Remove pending data from TX queue */
1208	while (!TSEC_EMPTYQ_TX_MBUF(sc)) {
1209		m0 = TSEC_GET_TX_MBUF(sc);
1210		mapp = TSEC_GET_TX_MAP(sc);
1211
1212		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1213		    BUS_DMASYNC_POSTWRITE);
1214		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1215
1216		TSEC_FREE_TX_MAP(sc, mapp);
1217		m_freem(m0);
1218	}
1219
1220	/* Disable RX and TX */
1221	tmpval = TSEC_READ(sc, TSEC_REG_MACCFG1);
1222	tmpval &= ~(TSEC_MACCFG1_RX_EN | TSEC_MACCFG1_TX_EN);
1223	TSEC_WRITE(sc, TSEC_REG_MACCFG1, tmpval);
1224	DELAY(10);
1225}
1226
1227static void
1228tsec_tick(void *arg)
1229{
1230	struct tsec_softc *sc = arg;
1231	struct ifnet *ifp;
1232	int link;
1233
1234	TSEC_GLOBAL_LOCK(sc);
1235
1236	tsec_watchdog(sc);
1237
1238	ifp = sc->tsec_ifp;
1239	link = sc->tsec_link;
1240
1241	mii_tick(sc->tsec_mii);
1242
1243	if (link == 0 && sc->tsec_link == 1 &&
1244	    (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)))
1245		tsec_start_locked(ifp);
1246
1247	/* Schedule another timeout one second from now. */
1248	callout_reset(&sc->tsec_callout, hz, tsec_tick, sc);
1249
1250	TSEC_GLOBAL_UNLOCK(sc);
1251}
1252
1253/*
1254 *  This is the core RX routine. It replenishes mbufs in the descriptor and
1255 *  sends data which have been dma'ed into host memory to upper layer.
1256 *
1257 *  Loops at most count times if count is > 0, or until done if count < 0.
1258 */
1259static int
1260tsec_receive_intr_locked(struct tsec_softc *sc, int count)
1261{
1262	struct tsec_desc *rx_desc;
1263	struct ifnet *ifp;
1264	struct rx_data_type *rx_data;
1265	struct mbuf *m;
1266	device_t dev;
1267	uint32_t i;
1268	int c, rx_npkts;
1269	uint16_t flags;
1270
1271	TSEC_RECEIVE_LOCK_ASSERT(sc);
1272
1273	ifp = sc->tsec_ifp;
1274	rx_data = sc->rx_data;
1275	dev = sc->dev;
1276	rx_npkts = 0;
1277
1278	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1279	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1280
1281	for (c = 0; ; c++) {
1282		if (count >= 0 && count-- == 0)
1283			break;
1284
1285		rx_desc = TSEC_GET_CUR_RX_DESC(sc);
1286		flags = rx_desc->flags;
1287
1288		/* Check if there is anything to receive */
1289		if ((flags & TSEC_RXBD_E) || (c >= TSEC_RX_NUM_DESC)) {
1290			/*
1291			 * Avoid generating another interrupt
1292			 */
1293			if (flags & TSEC_RXBD_E)
1294				TSEC_WRITE(sc, TSEC_REG_IEVENT,
1295				    TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1296			/*
1297			 * We didn't consume current descriptor and have to
1298			 * return it to the queue
1299			 */
1300			TSEC_BACK_CUR_RX_DESC(sc);
1301			break;
1302		}
1303
1304		if (flags & (TSEC_RXBD_LG | TSEC_RXBD_SH | TSEC_RXBD_NO |
1305		    TSEC_RXBD_CR | TSEC_RXBD_OV | TSEC_RXBD_TR)) {
1306
1307			rx_desc->length = 0;
1308			rx_desc->flags = (rx_desc->flags &
1309			    ~TSEC_RXBD_ZEROONINIT) | TSEC_RXBD_E | TSEC_RXBD_I;
1310
1311			if (sc->frame != NULL) {
1312				m_free(sc->frame);
1313				sc->frame = NULL;
1314			}
1315
1316			continue;
1317		}
1318
1319		/* Ok... process frame */
1320		i = TSEC_GET_CUR_RX_DESC_CNT(sc);
1321		m = rx_data[i].mbuf;
1322		m->m_len = rx_desc->length;
1323
1324		if (sc->frame != NULL) {
1325			if ((flags & TSEC_RXBD_L) != 0)
1326				m->m_len -= m_length(sc->frame, NULL);
1327
1328			m->m_flags &= ~M_PKTHDR;
1329			m_cat(sc->frame, m);
1330		} else {
1331			sc->frame = m;
1332		}
1333
1334		m = NULL;
1335
1336		if ((flags & TSEC_RXBD_L) != 0) {
1337			m = sc->frame;
1338			sc->frame = NULL;
1339		}
1340
1341		if (tsec_new_rxbuf(sc->tsec_rx_mtag, rx_data[i].map,
1342		    &rx_data[i].mbuf, &rx_data[i].paddr)) {
1343			ifp->if_ierrors++;
1344			/*
1345			 * We ran out of mbufs; didn't consume current
1346			 * descriptor and have to return it to the queue.
1347			 */
1348			TSEC_BACK_CUR_RX_DESC(sc);
1349			break;
1350		}
1351
1352		/* Attach new buffer to descriptor and clear flags */
1353		rx_desc->bufptr = rx_data[i].paddr;
1354		rx_desc->length = 0;
1355		rx_desc->flags = (rx_desc->flags & ~TSEC_RXBD_ZEROONINIT) |
1356		    TSEC_RXBD_E | TSEC_RXBD_I;
1357
1358		if (m != NULL) {
1359			m->m_pkthdr.rcvif = ifp;
1360
1361			m_fixhdr(m);
1362			m_adj(m, -ETHER_CRC_LEN);
1363
1364			if (sc->is_etsec)
1365				tsec_offload_process_frame(sc, m);
1366
1367			TSEC_RECEIVE_UNLOCK(sc);
1368			(*ifp->if_input)(ifp, m);
1369			TSEC_RECEIVE_LOCK(sc);
1370			rx_npkts++;
1371		}
1372	}
1373
1374	bus_dmamap_sync(sc->tsec_rx_dtag, sc->tsec_rx_dmap,
1375	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1376
1377	/*
1378	 * Make sure TSEC receiver is not halted.
1379	 *
1380	 * Various conditions can stop the TSEC receiver, but not all are
1381	 * signaled and handled by error interrupt, so make sure the receiver
1382	 * is running. Writing to TSEC_REG_RSTAT restarts the receiver when
1383	 * halted, and is harmless if already running.
1384	 */
1385	TSEC_WRITE(sc, TSEC_REG_RSTAT, TSEC_RSTAT_QHLT);
1386	return (rx_npkts);
1387}
1388
1389void
1390tsec_receive_intr(void *arg)
1391{
1392	struct tsec_softc *sc = arg;
1393
1394	TSEC_RECEIVE_LOCK(sc);
1395
1396#ifdef DEVICE_POLLING
1397	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1398		TSEC_RECEIVE_UNLOCK(sc);
1399		return;
1400	}
1401#endif
1402
1403	/* Confirm the interrupt was received by driver */
1404	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXB | TSEC_IEVENT_RXF);
1405	tsec_receive_intr_locked(sc, -1);
1406
1407	TSEC_RECEIVE_UNLOCK(sc);
1408}
1409
1410static void
1411tsec_transmit_intr_locked(struct tsec_softc *sc)
1412{
1413	struct tsec_desc *tx_desc;
1414	struct ifnet *ifp;
1415	struct mbuf *m0;
1416	bus_dmamap_t *mapp;
1417	int send = 0;
1418
1419	TSEC_TRANSMIT_LOCK_ASSERT(sc);
1420
1421	ifp = sc->tsec_ifp;
1422
1423	/* Update collision statistics */
1424	ifp->if_collisions += TSEC_READ(sc, TSEC_REG_MON_TNCL);
1425
1426	/* Reset collision counters in hardware */
1427	TSEC_WRITE(sc, TSEC_REG_MON_TSCL, 0);
1428	TSEC_WRITE(sc, TSEC_REG_MON_TMCL, 0);
1429	TSEC_WRITE(sc, TSEC_REG_MON_TLCL, 0);
1430	TSEC_WRITE(sc, TSEC_REG_MON_TXCL, 0);
1431	TSEC_WRITE(sc, TSEC_REG_MON_TNCL, 0);
1432
1433	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1434	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1435
1436	while (TSEC_CUR_DIFF_DIRTY_TX_DESC(sc)) {
1437		tx_desc = TSEC_GET_DIRTY_TX_DESC(sc);
1438		if (tx_desc->flags & TSEC_TXBD_R) {
1439			TSEC_BACK_DIRTY_TX_DESC(sc);
1440			break;
1441		}
1442
1443		if ((tx_desc->flags & TSEC_TXBD_L) == 0)
1444			continue;
1445
1446		/*
1447		 * This is the last buf in this packet, so unmap and free it.
1448		 */
1449		m0 = TSEC_GET_TX_MBUF(sc);
1450		mapp = TSEC_GET_TX_MAP(sc);
1451
1452		bus_dmamap_sync(sc->tsec_tx_mtag, *mapp,
1453		    BUS_DMASYNC_POSTWRITE);
1454		bus_dmamap_unload(sc->tsec_tx_mtag, *mapp);
1455
1456		TSEC_FREE_TX_MAP(sc, mapp);
1457		m_freem(m0);
1458
1459		ifp->if_opackets++;
1460		send = 1;
1461	}
1462	bus_dmamap_sync(sc->tsec_tx_dtag, sc->tsec_tx_dmap,
1463	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1464
1465	if (send) {
1466		/* Now send anything that was pending */
1467		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1468		tsec_start_locked(ifp);
1469
1470		/* Stop wathdog if all sent */
1471		if (TSEC_EMPTYQ_TX_MBUF(sc))
1472			sc->tsec_watchdog = 0;
1473	}
1474}
1475
1476void
1477tsec_transmit_intr(void *arg)
1478{
1479	struct tsec_softc *sc = arg;
1480
1481	TSEC_TRANSMIT_LOCK(sc);
1482
1483#ifdef DEVICE_POLLING
1484	if (sc->tsec_ifp->if_capenable & IFCAP_POLLING) {
1485		TSEC_TRANSMIT_UNLOCK(sc);
1486		return;
1487	}
1488#endif
1489	/* Confirm the interrupt was received by driver */
1490	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_TXB | TSEC_IEVENT_TXF);
1491	tsec_transmit_intr_locked(sc);
1492
1493	TSEC_TRANSMIT_UNLOCK(sc);
1494}
1495
1496static void
1497tsec_error_intr_locked(struct tsec_softc *sc, int count)
1498{
1499	struct ifnet *ifp;
1500	uint32_t eflags;
1501
1502	TSEC_GLOBAL_LOCK_ASSERT(sc);
1503
1504	ifp = sc->tsec_ifp;
1505
1506	eflags = TSEC_READ(sc, TSEC_REG_IEVENT);
1507
1508	/* Clear events bits in hardware */
1509	TSEC_WRITE(sc, TSEC_REG_IEVENT, TSEC_IEVENT_RXC | TSEC_IEVENT_BSY |
1510	    TSEC_IEVENT_EBERR | TSEC_IEVENT_MSRO | TSEC_IEVENT_BABT |
1511	    TSEC_IEVENT_TXC | TSEC_IEVENT_TXE | TSEC_IEVENT_LC |
1512	    TSEC_IEVENT_CRL | TSEC_IEVENT_XFUN);
1513
1514	/* Check transmitter errors */
1515	if (eflags & TSEC_IEVENT_TXE) {
1516		ifp->if_oerrors++;
1517
1518		if (eflags & TSEC_IEVENT_LC)
1519			ifp->if_collisions++;
1520
1521		TSEC_WRITE(sc, TSEC_REG_TSTAT, TSEC_TSTAT_THLT);
1522	}
1523
1524	/* Check receiver errors */
1525	if (eflags & TSEC_IEVENT_BSY) {
1526		ifp->if_ierrors++;
1527		ifp->if_iqdrops++;
1528
1529		/* Get data from RX buffers */
1530		tsec_receive_intr_locked(sc, count);
1531	}
1532
1533	if (ifp->if_flags & IFF_DEBUG)
1534		if_printf(ifp, "tsec_error_intr(): event flags: 0x%x\n",
1535		    eflags);
1536
1537	if (eflags & TSEC_IEVENT_EBERR) {
1538		if_printf(ifp, "System bus error occurred during"
1539		    "DMA transaction (flags: 0x%x)\n", eflags);
1540		tsec_init_locked(sc);
1541	}
1542
1543	if (eflags & TSEC_IEVENT_BABT)
1544		ifp->if_oerrors++;
1545
1546	if (eflags & TSEC_IEVENT_BABR)
1547		ifp->if_ierrors++;
1548}
1549
1550void
1551tsec_error_intr(void *arg)
1552{
1553	struct tsec_softc *sc = arg;
1554
1555	TSEC_GLOBAL_LOCK(sc);
1556	tsec_error_intr_locked(sc, -1);
1557	TSEC_GLOBAL_UNLOCK(sc);
1558}
1559
1560int
1561tsec_miibus_readreg(device_t dev, int phy, int reg)
1562{
1563	struct tsec_softc *sc;
1564	uint32_t timeout;
1565
1566	sc = device_get_softc(dev);
1567
1568	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1569	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, 0);
1570	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCOM, TSEC_MIIMCOM_READCYCLE);
1571
1572	timeout = TSEC_READ_RETRY;
1573	while (--timeout && TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1574	    (TSEC_MIIMIND_NOTVALID | TSEC_MIIMIND_BUSY))
1575		DELAY(TSEC_READ_DELAY);
1576
1577	if (timeout == 0)
1578		device_printf(dev, "Timeout while reading from PHY!\n");
1579
1580	return (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMSTAT));
1581}
1582
1583int
1584tsec_miibus_writereg(device_t dev, int phy, int reg, int value)
1585{
1586	struct tsec_softc *sc;
1587	uint32_t timeout;
1588
1589	sc = device_get_softc(dev);
1590
1591	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMADD, (phy << 8) | reg);
1592	TSEC_WRITE(sc->phy_sc, TSEC_REG_MIIMCON, value);
1593
1594	timeout = TSEC_READ_RETRY;
1595	while (--timeout && (TSEC_READ(sc->phy_sc, TSEC_REG_MIIMIND) &
1596	    TSEC_MIIMIND_BUSY))
1597		DELAY(TSEC_READ_DELAY);
1598
1599	if (timeout == 0)
1600		device_printf(dev, "Timeout while writing to PHY!\n");
1601
1602	return (0);
1603}
1604
1605void
1606tsec_miibus_statchg(device_t dev)
1607{
1608	struct tsec_softc *sc;
1609	struct mii_data *mii;
1610	uint32_t ecntrl, id, tmp;
1611	int link;
1612
1613	sc = device_get_softc(dev);
1614	mii = sc->tsec_mii;
1615	link = ((mii->mii_media_status & IFM_ACTIVE) ? 1 : 0);
1616
1617	tmp = TSEC_READ(sc, TSEC_REG_MACCFG2) & ~TSEC_MACCFG2_IF;
1618
1619	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
1620		tmp |= TSEC_MACCFG2_FULLDUPLEX;
1621	else
1622		tmp &= ~TSEC_MACCFG2_FULLDUPLEX;
1623
1624	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1625	case IFM_1000_T:
1626	case IFM_1000_SX:
1627		tmp |= TSEC_MACCFG2_GMII;
1628		sc->tsec_link = link;
1629		break;
1630	case IFM_100_TX:
1631	case IFM_10_T:
1632		tmp |= TSEC_MACCFG2_MII;
1633		sc->tsec_link = link;
1634		break;
1635	case IFM_NONE:
1636		if (link)
1637			device_printf(dev, "No speed selected but link "
1638			    "active!\n");
1639		sc->tsec_link = 0;
1640		return;
1641	default:
1642		sc->tsec_link = 0;
1643		device_printf(dev, "Unknown speed (%d), link %s!\n",
1644		    IFM_SUBTYPE(mii->mii_media_active),
1645		        ((link) ? "up" : "down"));
1646		return;
1647	}
1648	TSEC_WRITE(sc, TSEC_REG_MACCFG2, tmp);
1649
1650	/* XXX kludge - use circumstantial evidence for reduced mode. */
1651	id = TSEC_READ(sc, TSEC_REG_ID2);
1652	if (id & 0xffff) {
1653		ecntrl = TSEC_READ(sc, TSEC_REG_ECNTRL) & ~TSEC_ECNTRL_R100M;
1654		ecntrl |= (tmp & TSEC_MACCFG2_MII) ? TSEC_ECNTRL_R100M : 0;
1655		TSEC_WRITE(sc, TSEC_REG_ECNTRL, ecntrl);
1656	}
1657}
1658
1659static void
1660tsec_add_sysctls(struct tsec_softc *sc)
1661{
1662	struct sysctl_ctx_list *ctx;
1663	struct sysctl_oid_list *children;
1664	struct sysctl_oid *tree;
1665
1666	ctx = device_get_sysctl_ctx(sc->dev);
1667	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
1668	tree = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "int_coal",
1669	    CTLFLAG_RD, 0, "TSEC Interrupts coalescing");
1670	children = SYSCTL_CHILDREN(tree);
1671
1672	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_time",
1673	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_time,
1674	    "I", "IC RX time threshold (0-65535)");
1675	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rx_count",
1676	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_RX, tsec_sysctl_ic_count,
1677	    "I", "IC RX frame count threshold (0-255)");
1678
1679	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_time",
1680	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_time,
1681	    "I", "IC TX time threshold (0-65535)");
1682	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_count",
1683	    CTLTYPE_UINT | CTLFLAG_RW, sc, TSEC_IC_TX, tsec_sysctl_ic_count,
1684	    "I", "IC TX frame count threshold (0-255)");
1685}
1686
1687/*
1688 * With Interrupt Coalescing (IC) active, a transmit/receive frame
1689 * interrupt is raised either upon:
1690 *
1691 * - threshold-defined period of time elapsed, or
1692 * - threshold-defined number of frames is received/transmitted,
1693 *   whichever occurs first.
1694 *
1695 * The following sysctls regulate IC behaviour (for TX/RX separately):
1696 *
1697 * dev.tsec.<unit>.int_coal.rx_time
1698 * dev.tsec.<unit>.int_coal.rx_count
1699 * dev.tsec.<unit>.int_coal.tx_time
1700 * dev.tsec.<unit>.int_coal.tx_count
1701 *
1702 * Values:
1703 *
1704 * - 0 for either time or count disables IC on the given TX/RX path
1705 *
1706 * - count: 1-255 (expresses frame count number; note that value of 1 is
1707 *   effectively IC off)
1708 *
1709 * - time: 1-65535 (value corresponds to a real time period and is
1710 *   expressed in units equivalent to 64 TSEC interface clocks, i.e. one timer
1711 *   threshold unit is 26.5 us, 2.56 us, or 512 ns, corresponding to 10 Mbps,
1712 *   100 Mbps, or 1Gbps, respectively. For detailed discussion consult the
1713 *   TSEC reference manual.
1714 */
1715static int
1716tsec_sysctl_ic_time(SYSCTL_HANDLER_ARGS)
1717{
1718	int error;
1719	uint32_t time;
1720	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1721
1722	time = (arg2 == TSEC_IC_RX) ? sc->rx_ic_time : sc->tx_ic_time;
1723
1724	error = sysctl_handle_int(oidp, &time, 0, req);
1725	if (error != 0)
1726		return (error);
1727
1728	if (time > 65535)
1729		return (EINVAL);
1730
1731	TSEC_IC_LOCK(sc);
1732	if (arg2 == TSEC_IC_RX) {
1733		sc->rx_ic_time = time;
1734		tsec_set_rxic(sc);
1735	} else {
1736		sc->tx_ic_time = time;
1737		tsec_set_txic(sc);
1738	}
1739	TSEC_IC_UNLOCK(sc);
1740
1741	return (0);
1742}
1743
1744static int
1745tsec_sysctl_ic_count(SYSCTL_HANDLER_ARGS)
1746{
1747	int error;
1748	uint32_t count;
1749	struct tsec_softc *sc = (struct tsec_softc *)arg1;
1750
1751	count = (arg2 == TSEC_IC_RX) ? sc->rx_ic_count : sc->tx_ic_count;
1752
1753	error = sysctl_handle_int(oidp, &count, 0, req);
1754	if (error != 0)
1755		return (error);
1756
1757	if (count > 255)
1758		return (EINVAL);
1759
1760	TSEC_IC_LOCK(sc);
1761	if (arg2 == TSEC_IC_RX) {
1762		sc->rx_ic_count = count;
1763		tsec_set_rxic(sc);
1764	} else {
1765		sc->tx_ic_count = count;
1766		tsec_set_txic(sc);
1767	}
1768	TSEC_IC_UNLOCK(sc);
1769
1770	return (0);
1771}
1772
1773static void
1774tsec_set_rxic(struct tsec_softc *sc)
1775{
1776	uint32_t rxic_val;
1777
1778	if (sc->rx_ic_count == 0 || sc->rx_ic_time == 0)
1779		/* Disable RX IC */
1780		rxic_val = 0;
1781	else {
1782		rxic_val = 0x80000000;
1783		rxic_val |= (sc->rx_ic_count << 21);
1784		rxic_val |= sc->rx_ic_time;
1785	}
1786
1787	TSEC_WRITE(sc, TSEC_REG_RXIC, rxic_val);
1788}
1789
1790static void
1791tsec_set_txic(struct tsec_softc *sc)
1792{
1793	uint32_t txic_val;
1794
1795	if (sc->tx_ic_count == 0 || sc->tx_ic_time == 0)
1796		/* Disable TX IC */
1797		txic_val = 0;
1798	else {
1799		txic_val = 0x80000000;
1800		txic_val |= (sc->tx_ic_count << 21);
1801		txic_val |= sc->tx_ic_time;
1802	}
1803
1804	TSEC_WRITE(sc, TSEC_REG_TXIC, txic_val);
1805}
1806
1807static void
1808tsec_offload_setup(struct tsec_softc *sc)
1809{
1810	struct ifnet *ifp = sc->tsec_ifp;
1811	uint32_t reg;
1812
1813	TSEC_GLOBAL_LOCK_ASSERT(sc);
1814
1815	reg = TSEC_READ(sc, TSEC_REG_TCTRL);
1816	reg |= TSEC_TCTRL_IPCSEN | TSEC_TCTRL_TUCSEN;
1817
1818	if (ifp->if_capenable & IFCAP_TXCSUM)
1819		ifp->if_hwassist = TSEC_CHECKSUM_FEATURES;
1820	else
1821		ifp->if_hwassist = 0;
1822
1823	TSEC_WRITE(sc, TSEC_REG_TCTRL, reg);
1824
1825	reg = TSEC_READ(sc, TSEC_REG_RCTRL);
1826	reg &= ~(TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN | TSEC_RCTRL_PRSDEP);
1827	reg |= TSEC_RCTRL_PRSDEP_PARSE_L2 | TSEC_RCTRL_VLEX;
1828
1829	if (ifp->if_capenable & IFCAP_RXCSUM)
1830		reg |= TSEC_RCTRL_IPCSEN | TSEC_RCTRL_TUCSEN |
1831		    TSEC_RCTRL_PRSDEP_PARSE_L234;
1832
1833	TSEC_WRITE(sc, TSEC_REG_RCTRL, reg);
1834}
1835
1836
1837static void
1838tsec_offload_process_frame(struct tsec_softc *sc, struct mbuf *m)
1839{
1840	struct tsec_rx_fcb rx_fcb;
1841	int csum_flags = 0;
1842	int protocol, flags;
1843
1844	TSEC_RECEIVE_LOCK_ASSERT(sc);
1845
1846	m_copydata(m, 0, sizeof(struct tsec_rx_fcb), (caddr_t)(&rx_fcb));
1847	flags = rx_fcb.flags;
1848	protocol = rx_fcb.protocol;
1849
1850	if (TSEC_RX_FCB_IP_CSUM_CHECKED(flags)) {
1851		csum_flags |= CSUM_IP_CHECKED;
1852
1853		if ((flags & TSEC_RX_FCB_IP_CSUM_ERROR) == 0)
1854			csum_flags |= CSUM_IP_VALID;
1855	}
1856
1857	if ((protocol == IPPROTO_TCP || protocol == IPPROTO_UDP) &&
1858	    TSEC_RX_FCB_TCP_UDP_CSUM_CHECKED(flags) &&
1859	    (flags & TSEC_RX_FCB_TCP_UDP_CSUM_ERROR) == 0) {
1860
1861		csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1862		m->m_pkthdr.csum_data = 0xFFFF;
1863	}
1864
1865	m->m_pkthdr.csum_flags = csum_flags;
1866
1867	if (flags & TSEC_RX_FCB_VLAN) {
1868		m->m_pkthdr.ether_vtag = rx_fcb.vlan;
1869		m->m_flags |= M_VLANTAG;
1870	}
1871
1872	m_adj(m, sizeof(struct tsec_rx_fcb));
1873}
1874
1875static void
1876tsec_setup_multicast(struct tsec_softc *sc)
1877{
1878	uint32_t hashtable[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
1879	struct ifnet *ifp = sc->tsec_ifp;
1880	struct ifmultiaddr *ifma;
1881	uint32_t h;
1882	int i;
1883
1884	TSEC_GLOBAL_LOCK_ASSERT(sc);
1885
1886	if (ifp->if_flags & IFF_ALLMULTI) {
1887		for (i = 0; i < 8; i++)
1888			TSEC_WRITE(sc, TSEC_REG_GADDR(i), 0xFFFFFFFF);
1889
1890		return;
1891	}
1892
1893	if_maddr_rlock(ifp);
1894	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1895
1896		if (ifma->ifma_addr->sa_family != AF_LINK)
1897			continue;
1898
1899		h = (ether_crc32_be(LLADDR((struct sockaddr_dl *)
1900		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 24) & 0xFF;
1901
1902		hashtable[(h >> 5)] |= 1 << (0x1F - (h & 0x1F));
1903	}
1904	if_maddr_runlock(ifp);
1905
1906	for (i = 0; i < 8; i++)
1907		TSEC_WRITE(sc, TSEC_REG_GADDR(i), hashtable[i]);
1908}
1909
1910static int
1911tsec_set_mtu(struct tsec_softc *sc, unsigned int mtu)
1912{
1913
1914	mtu += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
1915
1916	TSEC_GLOBAL_LOCK_ASSERT(sc);
1917
1918	if (mtu >= TSEC_MIN_FRAME_SIZE && mtu <= TSEC_MAX_FRAME_SIZE) {
1919		TSEC_WRITE(sc, TSEC_REG_MAXFRM, mtu);
1920		return (mtu);
1921	}
1922
1923	return (0);
1924}
1925