1/*-
2 * Copyright (c) 1997, 1998, 1999
3 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD$");
35
36#ifdef HAVE_KERNEL_OPTION_HEADERS
37#include "opt_device_polling.h"
38#endif
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/bus.h>
43#include <sys/endian.h>
44#include <sys/kernel.h>
45#include <sys/lock.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/module.h>
49#include <sys/rman.h>
50#include <sys/socket.h>
51#include <sys/sockio.h>
52#include <sys/sysctl.h>
53
54#include <net/bpf.h>
55#include <net/if.h>
56#include <net/if_arp.h>
57#include <net/ethernet.h>
58#include <net/if_dl.h>
59#include <net/if_media.h>
60#include <net/if_types.h>
61#include <net/if_vlan_var.h>
62
63#include <machine/bus.h>
64#include <machine/resource.h>
65
66#include <dev/mii/mii.h>
67#include <dev/mii/mii_bitbang.h>
68#include <dev/mii/miivar.h>
69
70#include <dev/pci/pcireg.h>
71#include <dev/pci/pcivar.h>
72
73#include <dev/ste/if_stereg.h>
74
75/* "device miibus" required.  See GENERIC if you get errors here. */
76#include "miibus_if.h"
77
78MODULE_DEPEND(ste, pci, 1, 1, 1);
79MODULE_DEPEND(ste, ether, 1, 1, 1);
80MODULE_DEPEND(ste, miibus, 1, 1, 1);
81
82/* Define to show Tx error status. */
83#define	STE_SHOW_TXERRORS
84
85/*
86 * Various supported device vendors/types and their names.
87 */
88static const struct ste_type ste_devs[] = {
89	{ ST_VENDORID, ST_DEVICEID_ST201_1, "Sundance ST201 10/100BaseTX" },
90	{ ST_VENDORID, ST_DEVICEID_ST201_2, "Sundance ST201 10/100BaseTX" },
91	{ DL_VENDORID, DL_DEVICEID_DL10050, "D-Link DL10050 10/100BaseTX" },
92	{ 0, 0, NULL }
93};
94
95static int	ste_attach(device_t);
96static int	ste_detach(device_t);
97static int	ste_probe(device_t);
98static int	ste_resume(device_t);
99static int	ste_shutdown(device_t);
100static int	ste_suspend(device_t);
101
102static int	ste_dma_alloc(struct ste_softc *);
103static void	ste_dma_free(struct ste_softc *);
104static void	ste_dmamap_cb(void *, bus_dma_segment_t *, int, int);
105static int 	ste_eeprom_wait(struct ste_softc *);
106static int	ste_encap(struct ste_softc *, struct mbuf **,
107		    struct ste_chain *);
108static int	ste_ifmedia_upd(struct ifnet *);
109static void	ste_ifmedia_sts(struct ifnet *, struct ifmediareq *);
110static void	ste_init(void *);
111static void	ste_init_locked(struct ste_softc *);
112static int	ste_init_rx_list(struct ste_softc *);
113static void	ste_init_tx_list(struct ste_softc *);
114static void	ste_intr(void *);
115static int	ste_ioctl(struct ifnet *, u_long, caddr_t);
116static uint32_t ste_mii_bitbang_read(device_t);
117static void	ste_mii_bitbang_write(device_t, uint32_t);
118static int	ste_miibus_readreg(device_t, int, int);
119static void	ste_miibus_statchg(device_t);
120static int	ste_miibus_writereg(device_t, int, int, int);
121static int	ste_newbuf(struct ste_softc *, struct ste_chain_onefrag *);
122static int	ste_read_eeprom(struct ste_softc *, uint16_t *, int, int);
123static void	ste_reset(struct ste_softc *);
124static void	ste_restart_tx(struct ste_softc *);
125static int	ste_rxeof(struct ste_softc *, int);
126static void	ste_rxfilter(struct ste_softc *);
127static void	ste_setwol(struct ste_softc *);
128static void	ste_start(struct ifnet *);
129static void	ste_start_locked(struct ifnet *);
130static void	ste_stats_clear(struct ste_softc *);
131static void	ste_stats_update(struct ste_softc *);
132static void	ste_stop(struct ste_softc *);
133static void	ste_sysctl_node(struct ste_softc *);
134static void	ste_tick(void *);
135static void	ste_txeoc(struct ste_softc *);
136static void	ste_txeof(struct ste_softc *);
137static void	ste_wait(struct ste_softc *);
138static void	ste_watchdog(struct ste_softc *);
139
140/*
141 * MII bit-bang glue
142 */
143static const struct mii_bitbang_ops ste_mii_bitbang_ops = {
144	ste_mii_bitbang_read,
145	ste_mii_bitbang_write,
146	{
147		STE_PHYCTL_MDATA,	/* MII_BIT_MDO */
148		STE_PHYCTL_MDATA,	/* MII_BIT_MDI */
149		STE_PHYCTL_MCLK,	/* MII_BIT_MDC */
150		STE_PHYCTL_MDIR,	/* MII_BIT_DIR_HOST_PHY */
151		0,			/* MII_BIT_DIR_PHY_HOST */
152	}
153};
154
155static device_method_t ste_methods[] = {
156	/* Device interface */
157	DEVMETHOD(device_probe,		ste_probe),
158	DEVMETHOD(device_attach,	ste_attach),
159	DEVMETHOD(device_detach,	ste_detach),
160	DEVMETHOD(device_shutdown,	ste_shutdown),
161	DEVMETHOD(device_suspend,	ste_suspend),
162	DEVMETHOD(device_resume,	ste_resume),
163
164	/* MII interface */
165	DEVMETHOD(miibus_readreg,	ste_miibus_readreg),
166	DEVMETHOD(miibus_writereg,	ste_miibus_writereg),
167	DEVMETHOD(miibus_statchg,	ste_miibus_statchg),
168
169	DEVMETHOD_END
170};
171
172static driver_t ste_driver = {
173	"ste",
174	ste_methods,
175	sizeof(struct ste_softc)
176};
177
178static devclass_t ste_devclass;
179
180DRIVER_MODULE(ste, pci, ste_driver, ste_devclass, 0, 0);
181DRIVER_MODULE(miibus, ste, miibus_driver, miibus_devclass, 0, 0);
182
183#define STE_SETBIT4(sc, reg, x)				\
184	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | (x))
185
186#define STE_CLRBIT4(sc, reg, x)				\
187	CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~(x))
188
189#define STE_SETBIT2(sc, reg, x)				\
190	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | (x))
191
192#define STE_CLRBIT2(sc, reg, x)				\
193	CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~(x))
194
195#define STE_SETBIT1(sc, reg, x)				\
196	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | (x))
197
198#define STE_CLRBIT1(sc, reg, x)				\
199	CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~(x))
200
201/*
202 * Read the MII serial port for the MII bit-bang module.
203 */
204static uint32_t
205ste_mii_bitbang_read(device_t dev)
206{
207	struct ste_softc *sc;
208	uint32_t val;
209
210	sc = device_get_softc(dev);
211
212	val = CSR_READ_1(sc, STE_PHYCTL);
213	CSR_BARRIER(sc, STE_PHYCTL, 1,
214	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
215
216	return (val);
217}
218
219/*
220 * Write the MII serial port for the MII bit-bang module.
221 */
222static void
223ste_mii_bitbang_write(device_t dev, uint32_t val)
224{
225	struct ste_softc *sc;
226
227	sc = device_get_softc(dev);
228
229	CSR_WRITE_1(sc, STE_PHYCTL, val);
230	CSR_BARRIER(sc, STE_PHYCTL, 1,
231	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
232}
233
234static int
235ste_miibus_readreg(device_t dev, int phy, int reg)
236{
237
238	return (mii_bitbang_readreg(dev, &ste_mii_bitbang_ops, phy, reg));
239}
240
241static int
242ste_miibus_writereg(device_t dev, int phy, int reg, int data)
243{
244
245	mii_bitbang_writereg(dev, &ste_mii_bitbang_ops, phy, reg, data);
246
247	return (0);
248}
249
250static void
251ste_miibus_statchg(device_t dev)
252{
253	struct ste_softc *sc;
254	struct mii_data *mii;
255	struct ifnet *ifp;
256	uint16_t cfg;
257
258	sc = device_get_softc(dev);
259
260	mii = device_get_softc(sc->ste_miibus);
261	ifp = sc->ste_ifp;
262	if (mii == NULL || ifp == NULL ||
263	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
264		return;
265
266	sc->ste_flags &= ~STE_FLAG_LINK;
267	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
268	    (IFM_ACTIVE | IFM_AVALID)) {
269		switch (IFM_SUBTYPE(mii->mii_media_active)) {
270		case IFM_10_T:
271		case IFM_100_TX:
272		case IFM_100_FX:
273		case IFM_100_T4:
274			sc->ste_flags |= STE_FLAG_LINK;
275		default:
276			break;
277		}
278	}
279
280	/* Program MACs with resolved speed/duplex/flow-control. */
281	if ((sc->ste_flags & STE_FLAG_LINK) != 0) {
282		cfg = CSR_READ_2(sc, STE_MACCTL0);
283		cfg &= ~(STE_MACCTL0_FLOWCTL_ENABLE | STE_MACCTL0_FULLDUPLEX);
284		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
285			/*
286			 * ST201 data sheet says driver should enable receiving
287			 * MAC control frames bit of receive mode register to
288			 * receive flow-control frames but the register has no
289			 * such bits. In addition the controller has no ability
290			 * to send pause frames so it should be handled in
291			 * driver. Implementing pause timer handling in driver
292			 * layer is not trivial, so don't enable flow-control
293			 * here.
294			 */
295			cfg |= STE_MACCTL0_FULLDUPLEX;
296		}
297		CSR_WRITE_2(sc, STE_MACCTL0, cfg);
298	}
299}
300
301static int
302ste_ifmedia_upd(struct ifnet *ifp)
303{
304	struct ste_softc *sc;
305	struct mii_data	*mii;
306	struct mii_softc *miisc;
307	int error;
308
309	sc = ifp->if_softc;
310	STE_LOCK(sc);
311	mii = device_get_softc(sc->ste_miibus);
312	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313		PHY_RESET(miisc);
314	error = mii_mediachg(mii);
315	STE_UNLOCK(sc);
316
317	return (error);
318}
319
320static void
321ste_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
322{
323	struct ste_softc *sc;
324	struct mii_data *mii;
325
326	sc = ifp->if_softc;
327	mii = device_get_softc(sc->ste_miibus);
328
329	STE_LOCK(sc);
330	if ((ifp->if_flags & IFF_UP) == 0) {
331		STE_UNLOCK(sc);
332		return;
333	}
334	mii_pollstat(mii);
335	ifmr->ifm_active = mii->mii_media_active;
336	ifmr->ifm_status = mii->mii_media_status;
337	STE_UNLOCK(sc);
338}
339
340static void
341ste_wait(struct ste_softc *sc)
342{
343	int i;
344
345	for (i = 0; i < STE_TIMEOUT; i++) {
346		if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG))
347			break;
348		DELAY(1);
349	}
350
351	if (i == STE_TIMEOUT)
352		device_printf(sc->ste_dev, "command never completed!\n");
353}
354
355/*
356 * The EEPROM is slow: give it time to come ready after issuing
357 * it a command.
358 */
359static int
360ste_eeprom_wait(struct ste_softc *sc)
361{
362	int i;
363
364	DELAY(1000);
365
366	for (i = 0; i < 100; i++) {
367		if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY)
368			DELAY(1000);
369		else
370			break;
371	}
372
373	if (i == 100) {
374		device_printf(sc->ste_dev, "eeprom failed to come ready\n");
375		return (1);
376	}
377
378	return (0);
379}
380
381/*
382 * Read a sequence of words from the EEPROM. Note that ethernet address
383 * data is stored in the EEPROM in network byte order.
384 */
385static int
386ste_read_eeprom(struct ste_softc *sc, uint16_t *dest, int off, int cnt)
387{
388	int err = 0, i;
389
390	if (ste_eeprom_wait(sc))
391		return (1);
392
393	for (i = 0; i < cnt; i++) {
394		CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i));
395		err = ste_eeprom_wait(sc);
396		if (err)
397			break;
398		*dest = le16toh(CSR_READ_2(sc, STE_EEPROM_DATA));
399		dest++;
400	}
401
402	return (err ? 1 : 0);
403}
404
405static void
406ste_rxfilter(struct ste_softc *sc)
407{
408	struct ifnet *ifp;
409	struct ifmultiaddr *ifma;
410	uint32_t hashes[2] = { 0, 0 };
411	uint8_t rxcfg;
412	int h;
413
414	STE_LOCK_ASSERT(sc);
415
416	ifp = sc->ste_ifp;
417	rxcfg = CSR_READ_1(sc, STE_RX_MODE);
418	rxcfg |= STE_RXMODE_UNICAST;
419	rxcfg &= ~(STE_RXMODE_ALLMULTI | STE_RXMODE_MULTIHASH |
420	    STE_RXMODE_BROADCAST | STE_RXMODE_PROMISC);
421	if (ifp->if_flags & IFF_BROADCAST)
422		rxcfg |= STE_RXMODE_BROADCAST;
423	if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
424		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
425			rxcfg |= STE_RXMODE_ALLMULTI;
426		if ((ifp->if_flags & IFF_PROMISC) != 0)
427			rxcfg |= STE_RXMODE_PROMISC;
428		goto chipit;
429	}
430
431	rxcfg |= STE_RXMODE_MULTIHASH;
432	/* Now program new ones. */
433	if_maddr_rlock(ifp);
434	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
435		if (ifma->ifma_addr->sa_family != AF_LINK)
436			continue;
437		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
438		    ifma->ifma_addr), ETHER_ADDR_LEN) & 0x3F;
439		if (h < 32)
440			hashes[0] |= (1 << h);
441		else
442			hashes[1] |= (1 << (h - 32));
443	}
444	if_maddr_runlock(ifp);
445
446chipit:
447	CSR_WRITE_2(sc, STE_MAR0, hashes[0] & 0xFFFF);
448	CSR_WRITE_2(sc, STE_MAR1, (hashes[0] >> 16) & 0xFFFF);
449	CSR_WRITE_2(sc, STE_MAR2, hashes[1] & 0xFFFF);
450	CSR_WRITE_2(sc, STE_MAR3, (hashes[1] >> 16) & 0xFFFF);
451	CSR_WRITE_1(sc, STE_RX_MODE, rxcfg);
452	CSR_READ_1(sc, STE_RX_MODE);
453}
454
455#ifdef DEVICE_POLLING
456static poll_handler_t ste_poll, ste_poll_locked;
457
458static int
459ste_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
460{
461	struct ste_softc *sc = ifp->if_softc;
462	int rx_npkts = 0;
463
464	STE_LOCK(sc);
465	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
466		rx_npkts = ste_poll_locked(ifp, cmd, count);
467	STE_UNLOCK(sc);
468	return (rx_npkts);
469}
470
471static int
472ste_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
473{
474	struct ste_softc *sc = ifp->if_softc;
475	int rx_npkts;
476
477	STE_LOCK_ASSERT(sc);
478
479	rx_npkts = ste_rxeof(sc, count);
480	ste_txeof(sc);
481	ste_txeoc(sc);
482	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
483		ste_start_locked(ifp);
484
485	if (cmd == POLL_AND_CHECK_STATUS) {
486		uint16_t status;
487
488		status = CSR_READ_2(sc, STE_ISR_ACK);
489
490		if (status & STE_ISR_STATS_OFLOW)
491			ste_stats_update(sc);
492
493		if (status & STE_ISR_HOSTERR) {
494			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
495			ste_init_locked(sc);
496		}
497	}
498	return (rx_npkts);
499}
500#endif /* DEVICE_POLLING */
501
502static void
503ste_intr(void *xsc)
504{
505	struct ste_softc *sc;
506	struct ifnet *ifp;
507	uint16_t intrs, status;
508
509	sc = xsc;
510	STE_LOCK(sc);
511	ifp = sc->ste_ifp;
512
513#ifdef DEVICE_POLLING
514	if (ifp->if_capenable & IFCAP_POLLING) {
515		STE_UNLOCK(sc);
516		return;
517	}
518#endif
519	/* Reading STE_ISR_ACK clears STE_IMR register. */
520	status = CSR_READ_2(sc, STE_ISR_ACK);
521	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
522		STE_UNLOCK(sc);
523		return;
524	}
525
526	intrs = STE_INTRS;
527	if (status == 0xFFFF || (status & intrs) == 0)
528		goto done;
529
530	if (sc->ste_int_rx_act > 0) {
531		status &= ~STE_ISR_RX_DMADONE;
532		intrs &= ~STE_IMR_RX_DMADONE;
533	}
534
535	if ((status & (STE_ISR_SOFTINTR | STE_ISR_RX_DMADONE)) != 0) {
536		ste_rxeof(sc, -1);
537		/*
538		 * The controller has no ability to Rx interrupt
539		 * moderation feature. Receiving 64 bytes frames
540		 * from wire generates too many interrupts which in
541		 * turn make system useless to process other useful
542		 * things. Fortunately ST201 supports single shot
543		 * timer so use the timer to implement Rx interrupt
544		 * moderation in driver. This adds more register
545		 * access but it greatly reduces number of Rx
546		 * interrupts under high network load.
547		 */
548		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
549		    (sc->ste_int_rx_mod != 0)) {
550			if ((status & STE_ISR_RX_DMADONE) != 0) {
551				CSR_WRITE_2(sc, STE_COUNTDOWN,
552				    STE_TIMER_USECS(sc->ste_int_rx_mod));
553				intrs &= ~STE_IMR_RX_DMADONE;
554				sc->ste_int_rx_act = 1;
555			} else {
556				intrs |= STE_IMR_RX_DMADONE;
557				sc->ste_int_rx_act = 0;
558			}
559		}
560	}
561	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
562		if ((status & STE_ISR_TX_DMADONE) != 0)
563			ste_txeof(sc);
564		if ((status & STE_ISR_TX_DONE) != 0)
565			ste_txeoc(sc);
566		if ((status & STE_ISR_STATS_OFLOW) != 0)
567			ste_stats_update(sc);
568		if ((status & STE_ISR_HOSTERR) != 0) {
569			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
570			ste_init_locked(sc);
571			STE_UNLOCK(sc);
572			return;
573		}
574		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
575			ste_start_locked(ifp);
576done:
577		/* Re-enable interrupts */
578		CSR_WRITE_2(sc, STE_IMR, intrs);
579	}
580	STE_UNLOCK(sc);
581}
582
583/*
584 * A frame has been uploaded: pass the resulting mbuf chain up to
585 * the higher level protocols.
586 */
587static int
588ste_rxeof(struct ste_softc *sc, int count)
589{
590        struct mbuf *m;
591        struct ifnet *ifp;
592	struct ste_chain_onefrag *cur_rx;
593	uint32_t rxstat;
594	int total_len, rx_npkts;
595
596	ifp = sc->ste_ifp;
597
598	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
599	    sc->ste_cdata.ste_rx_list_map,
600	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
601
602	cur_rx = sc->ste_cdata.ste_rx_head;
603	for (rx_npkts = 0; rx_npkts < STE_RX_LIST_CNT; rx_npkts++,
604	    cur_rx = cur_rx->ste_next) {
605		rxstat = le32toh(cur_rx->ste_ptr->ste_status);
606		if ((rxstat & STE_RXSTAT_DMADONE) == 0)
607			break;
608#ifdef DEVICE_POLLING
609		if (ifp->if_capenable & IFCAP_POLLING) {
610			if (count == 0)
611				break;
612			count--;
613		}
614#endif
615		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
616			break;
617		/*
618		 * If an error occurs, update stats, clear the
619		 * status word and leave the mbuf cluster in place:
620		 * it should simply get re-used next time this descriptor
621	 	 * comes up in the ring.
622		 */
623		if (rxstat & STE_RXSTAT_FRAME_ERR) {
624			ifp->if_ierrors++;
625			cur_rx->ste_ptr->ste_status = 0;
626			continue;
627		}
628
629		/* No errors; receive the packet. */
630		m = cur_rx->ste_mbuf;
631		total_len = STE_RX_BYTES(rxstat);
632
633		/*
634		 * Try to conjure up a new mbuf cluster. If that
635		 * fails, it means we have an out of memory condition and
636		 * should leave the buffer in place and continue. This will
637		 * result in a lost packet, but there's little else we
638		 * can do in this situation.
639		 */
640		if (ste_newbuf(sc, cur_rx) != 0) {
641			ifp->if_iqdrops++;
642			cur_rx->ste_ptr->ste_status = 0;
643			continue;
644		}
645
646		m->m_pkthdr.rcvif = ifp;
647		m->m_pkthdr.len = m->m_len = total_len;
648
649		ifp->if_ipackets++;
650		STE_UNLOCK(sc);
651		(*ifp->if_input)(ifp, m);
652		STE_LOCK(sc);
653	}
654
655	if (rx_npkts > 0) {
656		sc->ste_cdata.ste_rx_head = cur_rx;
657		bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
658		    sc->ste_cdata.ste_rx_list_map,
659		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
660	}
661
662	return (rx_npkts);
663}
664
665static void
666ste_txeoc(struct ste_softc *sc)
667{
668	uint16_t txstat;
669	struct ifnet *ifp;
670
671	STE_LOCK_ASSERT(sc);
672
673	ifp = sc->ste_ifp;
674
675	/*
676	 * STE_TX_STATUS register implements a queue of up to 31
677	 * transmit status byte. Writing an arbitrary value to the
678	 * register will advance the queue to the next transmit
679	 * status byte. This means if driver does not read
680	 * STE_TX_STATUS register after completing sending more
681	 * than 31 frames the controller would be stalled so driver
682	 * should re-wake the Tx MAC. This is the most severe
683	 * limitation of ST201 based controller.
684	 */
685	for (;;) {
686		txstat = CSR_READ_2(sc, STE_TX_STATUS);
687		if ((txstat & STE_TXSTATUS_TXDONE) == 0)
688			break;
689		if ((txstat & (STE_TXSTATUS_UNDERRUN |
690		    STE_TXSTATUS_EXCESSCOLLS | STE_TXSTATUS_RECLAIMERR |
691		    STE_TXSTATUS_STATSOFLOW)) != 0) {
692			ifp->if_oerrors++;
693#ifdef	STE_SHOW_TXERRORS
694			device_printf(sc->ste_dev, "TX error : 0x%b\n",
695			    txstat & 0xFF, STE_ERR_BITS);
696#endif
697			if ((txstat & STE_TXSTATUS_UNDERRUN) != 0 &&
698			    sc->ste_tx_thresh < STE_PACKET_SIZE) {
699				sc->ste_tx_thresh += STE_MIN_FRAMELEN;
700				if (sc->ste_tx_thresh > STE_PACKET_SIZE)
701					sc->ste_tx_thresh = STE_PACKET_SIZE;
702				device_printf(sc->ste_dev,
703				    "TX underrun, increasing TX"
704				    " start threshold to %d bytes\n",
705				    sc->ste_tx_thresh);
706				/* Make sure to disable active DMA cycles. */
707				STE_SETBIT4(sc, STE_DMACTL,
708				    STE_DMACTL_TXDMA_STALL);
709				ste_wait(sc);
710				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
711				ste_init_locked(sc);
712				break;
713			}
714			/* Restart Tx. */
715			ste_restart_tx(sc);
716		}
717		/*
718		 * Advance to next status and ACK TxComplete
719		 * interrupt. ST201 data sheet was wrong here, to
720		 * get next Tx status, we have to write both
721		 * STE_TX_STATUS and STE_TX_FRAMEID register.
722		 * Otherwise controller returns the same status
723		 * as well as not acknowledge Tx completion
724		 * interrupt.
725		 */
726		CSR_WRITE_2(sc, STE_TX_STATUS, txstat);
727	}
728}
729
730static void
731ste_tick(void *arg)
732{
733	struct ste_softc *sc;
734	struct mii_data *mii;
735
736	sc = (struct ste_softc *)arg;
737
738	STE_LOCK_ASSERT(sc);
739
740	mii = device_get_softc(sc->ste_miibus);
741	mii_tick(mii);
742	/*
743	 * ukphy(4) does not seem to generate CB that reports
744	 * resolved link state so if we know we lost a link,
745	 * explicitly check the link state.
746	 */
747	if ((sc->ste_flags & STE_FLAG_LINK) == 0)
748		ste_miibus_statchg(sc->ste_dev);
749	/*
750	 * Because we are not generating Tx completion
751	 * interrupt for every frame, reclaim transmitted
752	 * buffers here.
753	 */
754	ste_txeof(sc);
755	ste_txeoc(sc);
756	ste_stats_update(sc);
757	ste_watchdog(sc);
758	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
759}
760
761static void
762ste_txeof(struct ste_softc *sc)
763{
764	struct ifnet *ifp;
765	struct ste_chain *cur_tx;
766	uint32_t txstat;
767	int idx;
768
769	STE_LOCK_ASSERT(sc);
770
771	ifp = sc->ste_ifp;
772	idx = sc->ste_cdata.ste_tx_cons;
773	if (idx == sc->ste_cdata.ste_tx_prod)
774		return;
775
776	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
777	    sc->ste_cdata.ste_tx_list_map,
778	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
779
780	while (idx != sc->ste_cdata.ste_tx_prod) {
781		cur_tx = &sc->ste_cdata.ste_tx_chain[idx];
782		txstat = le32toh(cur_tx->ste_ptr->ste_ctl);
783		if ((txstat & STE_TXCTL_DMADONE) == 0)
784			break;
785		bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map,
786		    BUS_DMASYNC_POSTWRITE);
787		bus_dmamap_unload(sc->ste_cdata.ste_tx_tag, cur_tx->ste_map);
788		KASSERT(cur_tx->ste_mbuf != NULL,
789		    ("%s: freeing NULL mbuf!\n", __func__));
790		m_freem(cur_tx->ste_mbuf);
791		cur_tx->ste_mbuf = NULL;
792		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
793		ifp->if_opackets++;
794		sc->ste_cdata.ste_tx_cnt--;
795		STE_INC(idx, STE_TX_LIST_CNT);
796	}
797
798	sc->ste_cdata.ste_tx_cons = idx;
799	if (sc->ste_cdata.ste_tx_cnt == 0)
800		sc->ste_timer = 0;
801}
802
803static void
804ste_stats_clear(struct ste_softc *sc)
805{
806
807	STE_LOCK_ASSERT(sc);
808
809	/* Rx stats. */
810	CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO);
811	CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI);
812	CSR_READ_2(sc, STE_STAT_RX_FRAMES);
813	CSR_READ_1(sc, STE_STAT_RX_BCAST);
814	CSR_READ_1(sc, STE_STAT_RX_MCAST);
815	CSR_READ_1(sc, STE_STAT_RX_LOST);
816	/* Tx stats. */
817	CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO);
818	CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI);
819	CSR_READ_2(sc, STE_STAT_TX_FRAMES);
820	CSR_READ_1(sc, STE_STAT_TX_BCAST);
821	CSR_READ_1(sc, STE_STAT_TX_MCAST);
822	CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
823	CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
824	CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
825	CSR_READ_1(sc, STE_STAT_LATE_COLLS);
826	CSR_READ_1(sc, STE_STAT_TX_DEFER);
827	CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
828	CSR_READ_1(sc, STE_STAT_TX_ABORT);
829}
830
831static void
832ste_stats_update(struct ste_softc *sc)
833{
834	struct ifnet *ifp;
835	struct ste_hw_stats *stats;
836	uint32_t val;
837
838	STE_LOCK_ASSERT(sc);
839
840	ifp = sc->ste_ifp;
841	stats = &sc->ste_stats;
842	/* Rx stats. */
843	val = (uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_LO) |
844	    ((uint32_t)CSR_READ_2(sc, STE_STAT_RX_OCTETS_HI)) << 16;
845	val &= 0x000FFFFF;
846	stats->rx_bytes += val;
847	stats->rx_frames += CSR_READ_2(sc, STE_STAT_RX_FRAMES);
848	stats->rx_bcast_frames += CSR_READ_1(sc, STE_STAT_RX_BCAST);
849	stats->rx_mcast_frames += CSR_READ_1(sc, STE_STAT_RX_MCAST);
850	stats->rx_lost_frames += CSR_READ_1(sc, STE_STAT_RX_LOST);
851	/* Tx stats. */
852	val = (uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_LO) |
853	    ((uint32_t)CSR_READ_2(sc, STE_STAT_TX_OCTETS_HI)) << 16;
854	val &= 0x000FFFFF;
855	stats->tx_bytes += val;
856	stats->tx_frames += CSR_READ_2(sc, STE_STAT_TX_FRAMES);
857	stats->tx_bcast_frames += CSR_READ_1(sc, STE_STAT_TX_BCAST);
858	stats->tx_mcast_frames += CSR_READ_1(sc, STE_STAT_TX_MCAST);
859	stats->tx_carrsense_errs += CSR_READ_1(sc, STE_STAT_CARRIER_ERR);
860	val = CSR_READ_1(sc, STE_STAT_SINGLE_COLLS);
861	stats->tx_single_colls += val;
862	ifp->if_collisions += val;
863	val = CSR_READ_1(sc, STE_STAT_MULTI_COLLS);
864	stats->tx_multi_colls += val;
865	ifp->if_collisions += val;
866	val += CSR_READ_1(sc, STE_STAT_LATE_COLLS);
867	stats->tx_late_colls += val;
868	ifp->if_collisions += val;
869	stats->tx_frames_defered += CSR_READ_1(sc, STE_STAT_TX_DEFER);
870	stats->tx_excess_defers += CSR_READ_1(sc, STE_STAT_TX_EXDEFER);
871	stats->tx_abort += CSR_READ_1(sc, STE_STAT_TX_ABORT);
872}
873
874/*
875 * Probe for a Sundance ST201 chip. Check the PCI vendor and device
876 * IDs against our list and return a device name if we find a match.
877 */
878static int
879ste_probe(device_t dev)
880{
881	const struct ste_type *t;
882
883	t = ste_devs;
884
885	while (t->ste_name != NULL) {
886		if ((pci_get_vendor(dev) == t->ste_vid) &&
887		    (pci_get_device(dev) == t->ste_did)) {
888			device_set_desc(dev, t->ste_name);
889			return (BUS_PROBE_DEFAULT);
890		}
891		t++;
892	}
893
894	return (ENXIO);
895}
896
897/*
898 * Attach the interface. Allocate softc structures, do ifmedia
899 * setup and ethernet/BPF attach.
900 */
901static int
902ste_attach(device_t dev)
903{
904	struct ste_softc *sc;
905	struct ifnet *ifp;
906	uint16_t eaddr[ETHER_ADDR_LEN / 2];
907	int error = 0, phy, pmc, prefer_iomap, rid;
908
909	sc = device_get_softc(dev);
910	sc->ste_dev = dev;
911
912	/*
913	 * Only use one PHY since this chip reports multiple
914	 * Note on the DFE-550 the PHY is at 1 on the DFE-580
915	 * it is at 0 & 1.  It is rev 0x12.
916	 */
917	if (pci_get_vendor(dev) == DL_VENDORID &&
918	    pci_get_device(dev) == DL_DEVICEID_DL10050 &&
919	    pci_get_revid(dev) == 0x12 )
920		sc->ste_flags |= STE_FLAG_ONE_PHY;
921
922	mtx_init(&sc->ste_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
923	    MTX_DEF);
924	/*
925	 * Map control/status registers.
926	 */
927	pci_enable_busmaster(dev);
928
929	/*
930	 * Prefer memory space register mapping over IO space but use
931	 * IO space for a device that is known to have issues on memory
932	 * mapping.
933	 */
934	prefer_iomap = 0;
935	if (pci_get_device(dev) == ST_DEVICEID_ST201_1)
936		prefer_iomap = 1;
937	else
938		resource_int_value(device_get_name(sc->ste_dev),
939		    device_get_unit(sc->ste_dev), "prefer_iomap",
940		    &prefer_iomap);
941	if (prefer_iomap == 0) {
942		sc->ste_res_id = PCIR_BAR(1);
943		sc->ste_res_type = SYS_RES_MEMORY;
944		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
945		    &sc->ste_res_id, RF_ACTIVE);
946	}
947	if (prefer_iomap || sc->ste_res == NULL) {
948		sc->ste_res_id = PCIR_BAR(0);
949		sc->ste_res_type = SYS_RES_IOPORT;
950		sc->ste_res = bus_alloc_resource_any(dev, sc->ste_res_type,
951		    &sc->ste_res_id, RF_ACTIVE);
952	}
953	if (sc->ste_res == NULL) {
954		device_printf(dev, "couldn't map ports/memory\n");
955		error = ENXIO;
956		goto fail;
957	}
958
959	/* Allocate interrupt */
960	rid = 0;
961	sc->ste_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
962	    RF_SHAREABLE | RF_ACTIVE);
963
964	if (sc->ste_irq == NULL) {
965		device_printf(dev, "couldn't map interrupt\n");
966		error = ENXIO;
967		goto fail;
968	}
969
970	callout_init_mtx(&sc->ste_callout, &sc->ste_mtx, 0);
971
972	/* Reset the adapter. */
973	ste_reset(sc);
974
975	/*
976	 * Get station address from the EEPROM.
977	 */
978	if (ste_read_eeprom(sc, eaddr, STE_EEADDR_NODE0, ETHER_ADDR_LEN / 2)) {
979		device_printf(dev, "failed to read station address\n");
980		error = ENXIO;
981		goto fail;
982	}
983	ste_sysctl_node(sc);
984
985	if ((error = ste_dma_alloc(sc)) != 0)
986		goto fail;
987
988	ifp = sc->ste_ifp = if_alloc(IFT_ETHER);
989	if (ifp == NULL) {
990		device_printf(dev, "can not if_alloc()\n");
991		error = ENOSPC;
992		goto fail;
993	}
994
995	/* Do MII setup. */
996	phy = MII_PHY_ANY;
997	if ((sc->ste_flags & STE_FLAG_ONE_PHY) != 0)
998		phy = 0;
999	error = mii_attach(dev, &sc->ste_miibus, ifp, ste_ifmedia_upd,
1000		ste_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1001	if (error != 0) {
1002		device_printf(dev, "attaching PHYs failed\n");
1003		goto fail;
1004	}
1005
1006	ifp->if_softc = sc;
1007	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1008	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1009	ifp->if_ioctl = ste_ioctl;
1010	ifp->if_start = ste_start;
1011	ifp->if_init = ste_init;
1012	IFQ_SET_MAXLEN(&ifp->if_snd, STE_TX_LIST_CNT - 1);
1013	ifp->if_snd.ifq_drv_maxlen = STE_TX_LIST_CNT - 1;
1014	IFQ_SET_READY(&ifp->if_snd);
1015
1016	sc->ste_tx_thresh = STE_TXSTART_THRESH;
1017
1018	/*
1019	 * Call MI attach routine.
1020	 */
1021	ether_ifattach(ifp, (uint8_t *)eaddr);
1022
1023	/*
1024	 * Tell the upper layer(s) we support long frames.
1025	 */
1026	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1027	ifp->if_capabilities |= IFCAP_VLAN_MTU;
1028	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0)
1029		ifp->if_capabilities |= IFCAP_WOL_MAGIC;
1030	ifp->if_capenable = ifp->if_capabilities;
1031#ifdef DEVICE_POLLING
1032	ifp->if_capabilities |= IFCAP_POLLING;
1033#endif
1034
1035	/* Hook interrupt last to avoid having to lock softc */
1036	error = bus_setup_intr(dev, sc->ste_irq, INTR_TYPE_NET | INTR_MPSAFE,
1037	    NULL, ste_intr, sc, &sc->ste_intrhand);
1038
1039	if (error) {
1040		device_printf(dev, "couldn't set up irq\n");
1041		ether_ifdetach(ifp);
1042		goto fail;
1043	}
1044
1045fail:
1046	if (error)
1047		ste_detach(dev);
1048
1049	return (error);
1050}
1051
1052/*
1053 * Shutdown hardware and free up resources. This can be called any
1054 * time after the mutex has been initialized. It is called in both
1055 * the error case in attach and the normal detach case so it needs
1056 * to be careful about only freeing resources that have actually been
1057 * allocated.
1058 */
1059static int
1060ste_detach(device_t dev)
1061{
1062	struct ste_softc *sc;
1063	struct ifnet *ifp;
1064
1065	sc = device_get_softc(dev);
1066	KASSERT(mtx_initialized(&sc->ste_mtx), ("ste mutex not initialized"));
1067	ifp = sc->ste_ifp;
1068
1069#ifdef DEVICE_POLLING
1070	if (ifp->if_capenable & IFCAP_POLLING)
1071		ether_poll_deregister(ifp);
1072#endif
1073
1074	/* These should only be active if attach succeeded */
1075	if (device_is_attached(dev)) {
1076		ether_ifdetach(ifp);
1077		STE_LOCK(sc);
1078		ste_stop(sc);
1079		STE_UNLOCK(sc);
1080		callout_drain(&sc->ste_callout);
1081	}
1082	if (sc->ste_miibus)
1083		device_delete_child(dev, sc->ste_miibus);
1084	bus_generic_detach(dev);
1085
1086	if (sc->ste_intrhand)
1087		bus_teardown_intr(dev, sc->ste_irq, sc->ste_intrhand);
1088	if (sc->ste_irq)
1089		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ste_irq);
1090	if (sc->ste_res)
1091		bus_release_resource(dev, sc->ste_res_type, sc->ste_res_id,
1092		    sc->ste_res);
1093
1094	if (ifp)
1095		if_free(ifp);
1096
1097	ste_dma_free(sc);
1098	mtx_destroy(&sc->ste_mtx);
1099
1100	return (0);
1101}
1102
1103struct ste_dmamap_arg {
1104	bus_addr_t	ste_busaddr;
1105};
1106
1107static void
1108ste_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1109{
1110	struct ste_dmamap_arg *ctx;
1111
1112	if (error != 0)
1113		return;
1114
1115	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1116
1117	ctx = (struct ste_dmamap_arg *)arg;
1118	ctx->ste_busaddr = segs[0].ds_addr;
1119}
1120
1121static int
1122ste_dma_alloc(struct ste_softc *sc)
1123{
1124	struct ste_chain *txc;
1125	struct ste_chain_onefrag *rxc;
1126	struct ste_dmamap_arg ctx;
1127	int error, i;
1128
1129	/* Create parent DMA tag. */
1130	error = bus_dma_tag_create(
1131	    bus_get_dma_tag(sc->ste_dev), /* parent */
1132	    1, 0,			/* alignment, boundary */
1133	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1134	    BUS_SPACE_MAXADDR,		/* highaddr */
1135	    NULL, NULL,			/* filter, filterarg */
1136	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1137	    0,				/* nsegments */
1138	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1139	    0,				/* flags */
1140	    NULL, NULL,			/* lockfunc, lockarg */
1141	    &sc->ste_cdata.ste_parent_tag);
1142	if (error != 0) {
1143		device_printf(sc->ste_dev,
1144		    "could not create parent DMA tag.\n");
1145		goto fail;
1146	}
1147
1148	/* Create DMA tag for Tx descriptor list. */
1149	error = bus_dma_tag_create(
1150	    sc->ste_cdata.ste_parent_tag, /* parent */
1151	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1152	    BUS_SPACE_MAXADDR,		/* lowaddr */
1153	    BUS_SPACE_MAXADDR,		/* highaddr */
1154	    NULL, NULL,			/* filter, filterarg */
1155	    STE_TX_LIST_SZ,		/* maxsize */
1156	    1,				/* nsegments */
1157	    STE_TX_LIST_SZ,		/* maxsegsize */
1158	    0,				/* flags */
1159	    NULL, NULL,			/* lockfunc, lockarg */
1160	    &sc->ste_cdata.ste_tx_list_tag);
1161	if (error != 0) {
1162		device_printf(sc->ste_dev,
1163		    "could not create Tx list DMA tag.\n");
1164		goto fail;
1165	}
1166
1167	/* Create DMA tag for Rx descriptor list. */
1168	error = bus_dma_tag_create(
1169	    sc->ste_cdata.ste_parent_tag, /* parent */
1170	    STE_DESC_ALIGN, 0,		/* alignment, boundary */
1171	    BUS_SPACE_MAXADDR,		/* lowaddr */
1172	    BUS_SPACE_MAXADDR,		/* highaddr */
1173	    NULL, NULL,			/* filter, filterarg */
1174	    STE_RX_LIST_SZ,		/* maxsize */
1175	    1,				/* nsegments */
1176	    STE_RX_LIST_SZ,		/* maxsegsize */
1177	    0,				/* flags */
1178	    NULL, NULL,			/* lockfunc, lockarg */
1179	    &sc->ste_cdata.ste_rx_list_tag);
1180	if (error != 0) {
1181		device_printf(sc->ste_dev,
1182		    "could not create Rx list DMA tag.\n");
1183		goto fail;
1184	}
1185
1186	/* Create DMA tag for Tx buffers. */
1187	error = bus_dma_tag_create(
1188	    sc->ste_cdata.ste_parent_tag, /* parent */
1189	    1, 0,			/* alignment, boundary */
1190	    BUS_SPACE_MAXADDR,		/* lowaddr */
1191	    BUS_SPACE_MAXADDR,		/* highaddr */
1192	    NULL, NULL,			/* filter, filterarg */
1193	    MCLBYTES * STE_MAXFRAGS,	/* maxsize */
1194	    STE_MAXFRAGS,		/* nsegments */
1195	    MCLBYTES,			/* maxsegsize */
1196	    0,				/* flags */
1197	    NULL, NULL,			/* lockfunc, lockarg */
1198	    &sc->ste_cdata.ste_tx_tag);
1199	if (error != 0) {
1200		device_printf(sc->ste_dev, "could not create Tx DMA tag.\n");
1201		goto fail;
1202	}
1203
1204	/* Create DMA tag for Rx buffers. */
1205	error = bus_dma_tag_create(
1206	    sc->ste_cdata.ste_parent_tag, /* parent */
1207	    1, 0,			/* alignment, boundary */
1208	    BUS_SPACE_MAXADDR,		/* lowaddr */
1209	    BUS_SPACE_MAXADDR,		/* highaddr */
1210	    NULL, NULL,			/* filter, filterarg */
1211	    MCLBYTES,			/* maxsize */
1212	    1,				/* nsegments */
1213	    MCLBYTES,			/* maxsegsize */
1214	    0,				/* flags */
1215	    NULL, NULL,			/* lockfunc, lockarg */
1216	    &sc->ste_cdata.ste_rx_tag);
1217	if (error != 0) {
1218		device_printf(sc->ste_dev, "could not create Rx DMA tag.\n");
1219		goto fail;
1220	}
1221
1222	/* Allocate DMA'able memory and load the DMA map for Tx list. */
1223	error = bus_dmamem_alloc(sc->ste_cdata.ste_tx_list_tag,
1224	    (void **)&sc->ste_ldata.ste_tx_list,
1225	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1226	    &sc->ste_cdata.ste_tx_list_map);
1227	if (error != 0) {
1228		device_printf(sc->ste_dev,
1229		    "could not allocate DMA'able memory for Tx list.\n");
1230		goto fail;
1231	}
1232	ctx.ste_busaddr = 0;
1233	error = bus_dmamap_load(sc->ste_cdata.ste_tx_list_tag,
1234	    sc->ste_cdata.ste_tx_list_map, sc->ste_ldata.ste_tx_list,
1235	    STE_TX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1236	if (error != 0 || ctx.ste_busaddr == 0) {
1237		device_printf(sc->ste_dev,
1238		    "could not load DMA'able memory for Tx list.\n");
1239		goto fail;
1240	}
1241	sc->ste_ldata.ste_tx_list_paddr = ctx.ste_busaddr;
1242
1243	/* Allocate DMA'able memory and load the DMA map for Rx list. */
1244	error = bus_dmamem_alloc(sc->ste_cdata.ste_rx_list_tag,
1245	    (void **)&sc->ste_ldata.ste_rx_list,
1246	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1247	    &sc->ste_cdata.ste_rx_list_map);
1248	if (error != 0) {
1249		device_printf(sc->ste_dev,
1250		    "could not allocate DMA'able memory for Rx list.\n");
1251		goto fail;
1252	}
1253	ctx.ste_busaddr = 0;
1254	error = bus_dmamap_load(sc->ste_cdata.ste_rx_list_tag,
1255	    sc->ste_cdata.ste_rx_list_map, sc->ste_ldata.ste_rx_list,
1256	    STE_RX_LIST_SZ, ste_dmamap_cb, &ctx, 0);
1257	if (error != 0 || ctx.ste_busaddr == 0) {
1258		device_printf(sc->ste_dev,
1259		    "could not load DMA'able memory for Rx list.\n");
1260		goto fail;
1261	}
1262	sc->ste_ldata.ste_rx_list_paddr = ctx.ste_busaddr;
1263
1264	/* Create DMA maps for Tx buffers. */
1265	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1266		txc = &sc->ste_cdata.ste_tx_chain[i];
1267		txc->ste_ptr = NULL;
1268		txc->ste_mbuf = NULL;
1269		txc->ste_next = NULL;
1270		txc->ste_phys = 0;
1271		txc->ste_map = NULL;
1272		error = bus_dmamap_create(sc->ste_cdata.ste_tx_tag, 0,
1273		    &txc->ste_map);
1274		if (error != 0) {
1275			device_printf(sc->ste_dev,
1276			    "could not create Tx dmamap.\n");
1277			goto fail;
1278		}
1279	}
1280	/* Create DMA maps for Rx buffers. */
1281	if ((error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1282	    &sc->ste_cdata.ste_rx_sparemap)) != 0) {
1283		device_printf(sc->ste_dev,
1284		    "could not create spare Rx dmamap.\n");
1285		goto fail;
1286	}
1287	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1288		rxc = &sc->ste_cdata.ste_rx_chain[i];
1289		rxc->ste_ptr = NULL;
1290		rxc->ste_mbuf = NULL;
1291		rxc->ste_next = NULL;
1292		rxc->ste_map = NULL;
1293		error = bus_dmamap_create(sc->ste_cdata.ste_rx_tag, 0,
1294		    &rxc->ste_map);
1295		if (error != 0) {
1296			device_printf(sc->ste_dev,
1297			    "could not create Rx dmamap.\n");
1298			goto fail;
1299		}
1300	}
1301
1302fail:
1303	return (error);
1304}
1305
1306static void
1307ste_dma_free(struct ste_softc *sc)
1308{
1309	struct ste_chain *txc;
1310	struct ste_chain_onefrag *rxc;
1311	int i;
1312
1313	/* Tx buffers. */
1314	if (sc->ste_cdata.ste_tx_tag != NULL) {
1315		for (i = 0; i < STE_TX_LIST_CNT; i++) {
1316			txc = &sc->ste_cdata.ste_tx_chain[i];
1317			if (txc->ste_map != NULL) {
1318				bus_dmamap_destroy(sc->ste_cdata.ste_tx_tag,
1319				    txc->ste_map);
1320				txc->ste_map = NULL;
1321			}
1322		}
1323		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_tag);
1324		sc->ste_cdata.ste_tx_tag = NULL;
1325	}
1326	/* Rx buffers. */
1327	if (sc->ste_cdata.ste_rx_tag != NULL) {
1328		for (i = 0; i < STE_RX_LIST_CNT; i++) {
1329			rxc = &sc->ste_cdata.ste_rx_chain[i];
1330			if (rxc->ste_map != NULL) {
1331				bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1332				    rxc->ste_map);
1333				rxc->ste_map = NULL;
1334			}
1335		}
1336		if (sc->ste_cdata.ste_rx_sparemap != NULL) {
1337			bus_dmamap_destroy(sc->ste_cdata.ste_rx_tag,
1338			    sc->ste_cdata.ste_rx_sparemap);
1339			sc->ste_cdata.ste_rx_sparemap = NULL;
1340		}
1341		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_tag);
1342		sc->ste_cdata.ste_rx_tag = NULL;
1343	}
1344	/* Tx descriptor list. */
1345	if (sc->ste_cdata.ste_tx_list_tag != NULL) {
1346		if (sc->ste_cdata.ste_tx_list_map != NULL)
1347			bus_dmamap_unload(sc->ste_cdata.ste_tx_list_tag,
1348			    sc->ste_cdata.ste_tx_list_map);
1349		if (sc->ste_cdata.ste_tx_list_map != NULL &&
1350		    sc->ste_ldata.ste_tx_list != NULL)
1351			bus_dmamem_free(sc->ste_cdata.ste_tx_list_tag,
1352			    sc->ste_ldata.ste_tx_list,
1353			    sc->ste_cdata.ste_tx_list_map);
1354		sc->ste_ldata.ste_tx_list = NULL;
1355		sc->ste_cdata.ste_tx_list_map = NULL;
1356		bus_dma_tag_destroy(sc->ste_cdata.ste_tx_list_tag);
1357		sc->ste_cdata.ste_tx_list_tag = NULL;
1358	}
1359	/* Rx descriptor list. */
1360	if (sc->ste_cdata.ste_rx_list_tag != NULL) {
1361		if (sc->ste_cdata.ste_rx_list_map != NULL)
1362			bus_dmamap_unload(sc->ste_cdata.ste_rx_list_tag,
1363			    sc->ste_cdata.ste_rx_list_map);
1364		if (sc->ste_cdata.ste_rx_list_map != NULL &&
1365		    sc->ste_ldata.ste_rx_list != NULL)
1366			bus_dmamem_free(sc->ste_cdata.ste_rx_list_tag,
1367			    sc->ste_ldata.ste_rx_list,
1368			    sc->ste_cdata.ste_rx_list_map);
1369		sc->ste_ldata.ste_rx_list = NULL;
1370		sc->ste_cdata.ste_rx_list_map = NULL;
1371		bus_dma_tag_destroy(sc->ste_cdata.ste_rx_list_tag);
1372		sc->ste_cdata.ste_rx_list_tag = NULL;
1373	}
1374	if (sc->ste_cdata.ste_parent_tag != NULL) {
1375		bus_dma_tag_destroy(sc->ste_cdata.ste_parent_tag);
1376		sc->ste_cdata.ste_parent_tag = NULL;
1377	}
1378}
1379
1380static int
1381ste_newbuf(struct ste_softc *sc, struct ste_chain_onefrag *rxc)
1382{
1383	struct mbuf *m;
1384	bus_dma_segment_t segs[1];
1385	bus_dmamap_t map;
1386	int error, nsegs;
1387
1388	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1389	if (m == NULL)
1390		return (ENOBUFS);
1391	m->m_len = m->m_pkthdr.len = MCLBYTES;
1392	m_adj(m, ETHER_ALIGN);
1393
1394	if ((error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_rx_tag,
1395	    sc->ste_cdata.ste_rx_sparemap, m, segs, &nsegs, 0)) != 0) {
1396		m_freem(m);
1397		return (error);
1398	}
1399	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
1400
1401	if (rxc->ste_mbuf != NULL) {
1402		bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1403		    BUS_DMASYNC_POSTREAD);
1404		bus_dmamap_unload(sc->ste_cdata.ste_rx_tag, rxc->ste_map);
1405	}
1406	map = rxc->ste_map;
1407	rxc->ste_map = sc->ste_cdata.ste_rx_sparemap;
1408	sc->ste_cdata.ste_rx_sparemap = map;
1409	bus_dmamap_sync(sc->ste_cdata.ste_rx_tag, rxc->ste_map,
1410	    BUS_DMASYNC_PREREAD);
1411	rxc->ste_mbuf = m;
1412	rxc->ste_ptr->ste_status = 0;
1413	rxc->ste_ptr->ste_frag.ste_addr = htole32(segs[0].ds_addr);
1414	rxc->ste_ptr->ste_frag.ste_len = htole32(segs[0].ds_len |
1415	    STE_FRAG_LAST);
1416	return (0);
1417}
1418
1419static int
1420ste_init_rx_list(struct ste_softc *sc)
1421{
1422	struct ste_chain_data *cd;
1423	struct ste_list_data *ld;
1424	int error, i;
1425
1426	sc->ste_int_rx_act = 0;
1427	cd = &sc->ste_cdata;
1428	ld = &sc->ste_ldata;
1429	bzero(ld->ste_rx_list, STE_RX_LIST_SZ);
1430	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1431		cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i];
1432		error = ste_newbuf(sc, &cd->ste_rx_chain[i]);
1433		if (error != 0)
1434			return (error);
1435		if (i == (STE_RX_LIST_CNT - 1)) {
1436			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0];
1437			ld->ste_rx_list[i].ste_next =
1438			    htole32(ld->ste_rx_list_paddr +
1439			    (sizeof(struct ste_desc_onefrag) * 0));
1440		} else {
1441			cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1];
1442			ld->ste_rx_list[i].ste_next =
1443			    htole32(ld->ste_rx_list_paddr +
1444			    (sizeof(struct ste_desc_onefrag) * (i + 1)));
1445		}
1446	}
1447
1448	cd->ste_rx_head = &cd->ste_rx_chain[0];
1449	bus_dmamap_sync(sc->ste_cdata.ste_rx_list_tag,
1450	    sc->ste_cdata.ste_rx_list_map,
1451	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1452
1453	return (0);
1454}
1455
1456static void
1457ste_init_tx_list(struct ste_softc *sc)
1458{
1459	struct ste_chain_data *cd;
1460	struct ste_list_data *ld;
1461	int i;
1462
1463	cd = &sc->ste_cdata;
1464	ld = &sc->ste_ldata;
1465	bzero(ld->ste_tx_list, STE_TX_LIST_SZ);
1466	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1467		cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i];
1468		cd->ste_tx_chain[i].ste_mbuf = NULL;
1469		if (i == (STE_TX_LIST_CNT - 1)) {
1470			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0];
1471			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1472			    ld->ste_tx_list_paddr +
1473			    (sizeof(struct ste_desc) * 0)));
1474		} else {
1475			cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1];
1476			cd->ste_tx_chain[i].ste_phys = htole32(STE_ADDR_LO(
1477			    ld->ste_tx_list_paddr +
1478			    (sizeof(struct ste_desc) * (i + 1))));
1479		}
1480	}
1481
1482	cd->ste_last_tx = NULL;
1483	cd->ste_tx_prod = 0;
1484	cd->ste_tx_cons = 0;
1485	cd->ste_tx_cnt = 0;
1486
1487	bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1488	    sc->ste_cdata.ste_tx_list_map,
1489	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1490}
1491
1492static void
1493ste_init(void *xsc)
1494{
1495	struct ste_softc *sc;
1496
1497	sc = xsc;
1498	STE_LOCK(sc);
1499	ste_init_locked(sc);
1500	STE_UNLOCK(sc);
1501}
1502
1503static void
1504ste_init_locked(struct ste_softc *sc)
1505{
1506	struct ifnet *ifp;
1507	struct mii_data *mii;
1508	uint8_t val;
1509	int i;
1510
1511	STE_LOCK_ASSERT(sc);
1512	ifp = sc->ste_ifp;
1513	mii = device_get_softc(sc->ste_miibus);
1514
1515	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1516		return;
1517
1518	ste_stop(sc);
1519	/* Reset the chip to a known state. */
1520	ste_reset(sc);
1521
1522	/* Init our MAC address */
1523	for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
1524		CSR_WRITE_2(sc, STE_PAR0 + i,
1525		    ((IF_LLADDR(sc->ste_ifp)[i] & 0xff) |
1526		     IF_LLADDR(sc->ste_ifp)[i + 1] << 8));
1527	}
1528
1529	/* Init RX list */
1530	if (ste_init_rx_list(sc) != 0) {
1531		device_printf(sc->ste_dev,
1532		    "initialization failed: no memory for RX buffers\n");
1533		ste_stop(sc);
1534		return;
1535	}
1536
1537	/* Set RX polling interval */
1538	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 64);
1539
1540	/* Init TX descriptors */
1541	ste_init_tx_list(sc);
1542
1543	/* Clear and disable WOL. */
1544	val = CSR_READ_1(sc, STE_WAKE_EVENT);
1545	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
1546	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
1547	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
1548
1549	/* Set the TX freethresh value */
1550	CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8);
1551
1552	/* Set the TX start threshold for best performance. */
1553	CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh);
1554
1555	/* Set the TX reclaim threshold. */
1556	CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4));
1557
1558	/* Accept VLAN length packets */
1559	CSR_WRITE_2(sc, STE_MAX_FRAMELEN, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN);
1560
1561	/* Set up the RX filter. */
1562	ste_rxfilter(sc);
1563
1564	/* Load the address of the RX list. */
1565	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL);
1566	ste_wait(sc);
1567	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR,
1568	    STE_ADDR_LO(sc->ste_ldata.ste_rx_list_paddr));
1569	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1570	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL);
1571
1572	/* Set TX polling interval(defer until we TX first packet). */
1573	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1574
1575	/* Load address of the TX list */
1576	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1577	ste_wait(sc);
1578	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1579	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1580	STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1581	ste_wait(sc);
1582	/* Select 3.2us timer. */
1583	STE_CLRBIT4(sc, STE_DMACTL, STE_DMACTL_COUNTDOWN_SPEED |
1584	    STE_DMACTL_COUNTDOWN_MODE);
1585
1586	/* Enable receiver and transmitter */
1587	CSR_WRITE_2(sc, STE_MACCTL0, 0);
1588	CSR_WRITE_2(sc, STE_MACCTL1, 0);
1589	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE);
1590	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE);
1591
1592	/* Enable stats counters. */
1593	STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE);
1594	/* Clear stats counters. */
1595	ste_stats_clear(sc);
1596
1597	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1598	CSR_WRITE_2(sc, STE_ISR, 0xFFFF);
1599#ifdef DEVICE_POLLING
1600	/* Disable interrupts if we are polling. */
1601	if (ifp->if_capenable & IFCAP_POLLING)
1602		CSR_WRITE_2(sc, STE_IMR, 0);
1603	else
1604#endif
1605	/* Enable interrupts. */
1606	CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1607
1608	sc->ste_flags &= ~STE_FLAG_LINK;
1609	/* Switch to the current media. */
1610	mii_mediachg(mii);
1611
1612	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1613	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1614
1615	callout_reset(&sc->ste_callout, hz, ste_tick, sc);
1616}
1617
1618static void
1619ste_stop(struct ste_softc *sc)
1620{
1621	struct ifnet *ifp;
1622	struct ste_chain_onefrag *cur_rx;
1623	struct ste_chain *cur_tx;
1624	uint32_t val;
1625	int i;
1626
1627	STE_LOCK_ASSERT(sc);
1628	ifp = sc->ste_ifp;
1629
1630	callout_stop(&sc->ste_callout);
1631	sc->ste_timer = 0;
1632	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
1633
1634	CSR_WRITE_2(sc, STE_IMR, 0);
1635	CSR_WRITE_2(sc, STE_COUNTDOWN, 0);
1636	/* Stop pending DMA. */
1637	val = CSR_READ_4(sc, STE_DMACTL);
1638	val |= STE_DMACTL_TXDMA_STALL | STE_DMACTL_RXDMA_STALL;
1639	CSR_WRITE_4(sc, STE_DMACTL, val);
1640	ste_wait(sc);
1641	/* Disable auto-polling. */
1642	CSR_WRITE_1(sc, STE_RX_DMAPOLL_PERIOD, 0);
1643	CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 0);
1644	/* Nullify DMA address to stop any further DMA. */
1645	CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, 0);
1646	CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, 0);
1647	/* Stop TX/RX MAC. */
1648	val = CSR_READ_2(sc, STE_MACCTL1);
1649	val |= STE_MACCTL1_TX_DISABLE | STE_MACCTL1_RX_DISABLE |
1650	    STE_MACCTL1_STATS_DISABLE;
1651	CSR_WRITE_2(sc, STE_MACCTL1, val);
1652	for (i = 0; i < STE_TIMEOUT; i++) {
1653		DELAY(10);
1654		if ((CSR_READ_2(sc, STE_MACCTL1) & (STE_MACCTL1_TX_DISABLE |
1655		    STE_MACCTL1_RX_DISABLE | STE_MACCTL1_STATS_DISABLE)) == 0)
1656			break;
1657	}
1658	if (i == STE_TIMEOUT)
1659		device_printf(sc->ste_dev, "Stopping MAC timed out\n");
1660	/* Acknowledge any pending interrupts. */
1661	CSR_READ_2(sc, STE_ISR_ACK);
1662	ste_stats_update(sc);
1663
1664	for (i = 0; i < STE_RX_LIST_CNT; i++) {
1665		cur_rx = &sc->ste_cdata.ste_rx_chain[i];
1666		if (cur_rx->ste_mbuf != NULL) {
1667			bus_dmamap_sync(sc->ste_cdata.ste_rx_tag,
1668			    cur_rx->ste_map, BUS_DMASYNC_POSTREAD);
1669			bus_dmamap_unload(sc->ste_cdata.ste_rx_tag,
1670			    cur_rx->ste_map);
1671			m_freem(cur_rx->ste_mbuf);
1672			cur_rx->ste_mbuf = NULL;
1673		}
1674	}
1675
1676	for (i = 0; i < STE_TX_LIST_CNT; i++) {
1677		cur_tx = &sc->ste_cdata.ste_tx_chain[i];
1678		if (cur_tx->ste_mbuf != NULL) {
1679			bus_dmamap_sync(sc->ste_cdata.ste_tx_tag,
1680			    cur_tx->ste_map, BUS_DMASYNC_POSTWRITE);
1681			bus_dmamap_unload(sc->ste_cdata.ste_tx_tag,
1682			    cur_tx->ste_map);
1683			m_freem(cur_tx->ste_mbuf);
1684			cur_tx->ste_mbuf = NULL;
1685		}
1686	}
1687}
1688
1689static void
1690ste_reset(struct ste_softc *sc)
1691{
1692	uint32_t ctl;
1693	int i;
1694
1695	ctl = CSR_READ_4(sc, STE_ASICCTL);
1696	ctl |= STE_ASICCTL_GLOBAL_RESET | STE_ASICCTL_RX_RESET |
1697	    STE_ASICCTL_TX_RESET | STE_ASICCTL_DMA_RESET |
1698	    STE_ASICCTL_FIFO_RESET | STE_ASICCTL_NETWORK_RESET |
1699	    STE_ASICCTL_AUTOINIT_RESET |STE_ASICCTL_HOST_RESET |
1700	    STE_ASICCTL_EXTRESET_RESET;
1701	CSR_WRITE_4(sc, STE_ASICCTL, ctl);
1702	CSR_READ_4(sc, STE_ASICCTL);
1703	/*
1704	 * Due to the need of accessing EEPROM controller can take
1705	 * up to 1ms to complete the global reset.
1706	 */
1707	DELAY(1000);
1708
1709	for (i = 0; i < STE_TIMEOUT; i++) {
1710		if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY))
1711			break;
1712		DELAY(10);
1713	}
1714
1715	if (i == STE_TIMEOUT)
1716		device_printf(sc->ste_dev, "global reset never completed\n");
1717}
1718
1719static void
1720ste_restart_tx(struct ste_softc *sc)
1721{
1722	uint16_t mac;
1723	int i;
1724
1725	for (i = 0; i < STE_TIMEOUT; i++) {
1726		mac = CSR_READ_2(sc, STE_MACCTL1);
1727		mac |= STE_MACCTL1_TX_ENABLE;
1728		CSR_WRITE_2(sc, STE_MACCTL1, mac);
1729		mac = CSR_READ_2(sc, STE_MACCTL1);
1730		if ((mac & STE_MACCTL1_TX_ENABLED) != 0)
1731			break;
1732		DELAY(10);
1733	}
1734
1735	if (i == STE_TIMEOUT)
1736		device_printf(sc->ste_dev, "starting Tx failed");
1737}
1738
1739static int
1740ste_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1741{
1742	struct ste_softc *sc;
1743	struct ifreq *ifr;
1744	struct mii_data *mii;
1745	int error = 0, mask;
1746
1747	sc = ifp->if_softc;
1748	ifr = (struct ifreq *)data;
1749
1750	switch (command) {
1751	case SIOCSIFFLAGS:
1752		STE_LOCK(sc);
1753		if ((ifp->if_flags & IFF_UP) != 0) {
1754			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
1755			    ((ifp->if_flags ^ sc->ste_if_flags) &
1756			     (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1757				ste_rxfilter(sc);
1758			else
1759				ste_init_locked(sc);
1760		} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1761			ste_stop(sc);
1762		sc->ste_if_flags = ifp->if_flags;
1763		STE_UNLOCK(sc);
1764		break;
1765	case SIOCADDMULTI:
1766	case SIOCDELMULTI:
1767		STE_LOCK(sc);
1768		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1769			ste_rxfilter(sc);
1770		STE_UNLOCK(sc);
1771		break;
1772	case SIOCGIFMEDIA:
1773	case SIOCSIFMEDIA:
1774		mii = device_get_softc(sc->ste_miibus);
1775		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1776		break;
1777	case SIOCSIFCAP:
1778		STE_LOCK(sc);
1779		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1780#ifdef DEVICE_POLLING
1781		if ((mask & IFCAP_POLLING) != 0 &&
1782		    (IFCAP_POLLING & ifp->if_capabilities) != 0) {
1783			ifp->if_capenable ^= IFCAP_POLLING;
1784			if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
1785				error = ether_poll_register(ste_poll, ifp);
1786				if (error != 0) {
1787					STE_UNLOCK(sc);
1788					break;
1789				}
1790				/* Disable interrupts. */
1791				CSR_WRITE_2(sc, STE_IMR, 0);
1792			} else {
1793				error = ether_poll_deregister(ifp);
1794				/* Enable interrupts. */
1795				CSR_WRITE_2(sc, STE_IMR, STE_INTRS);
1796			}
1797		}
1798#endif /* DEVICE_POLLING */
1799		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1800		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1801			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1802		STE_UNLOCK(sc);
1803		break;
1804	default:
1805		error = ether_ioctl(ifp, command, data);
1806		break;
1807	}
1808
1809	return (error);
1810}
1811
1812static int
1813ste_encap(struct ste_softc *sc, struct mbuf **m_head, struct ste_chain *txc)
1814{
1815	struct ste_frag *frag;
1816	struct mbuf *m;
1817	struct ste_desc *desc;
1818	bus_dma_segment_t txsegs[STE_MAXFRAGS];
1819	int error, i, nsegs;
1820
1821	STE_LOCK_ASSERT(sc);
1822	M_ASSERTPKTHDR((*m_head));
1823
1824	error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1825	    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1826	if (error == EFBIG) {
1827		m = m_collapse(*m_head, M_NOWAIT, STE_MAXFRAGS);
1828		if (m == NULL) {
1829			m_freem(*m_head);
1830			*m_head = NULL;
1831			return (ENOMEM);
1832		}
1833		*m_head = m;
1834		error = bus_dmamap_load_mbuf_sg(sc->ste_cdata.ste_tx_tag,
1835		    txc->ste_map, *m_head, txsegs, &nsegs, 0);
1836		if (error != 0) {
1837			m_freem(*m_head);
1838			*m_head = NULL;
1839			return (error);
1840		}
1841	} else if (error != 0)
1842		return (error);
1843	if (nsegs == 0) {
1844		m_freem(*m_head);
1845		*m_head = NULL;
1846		return (EIO);
1847	}
1848	bus_dmamap_sync(sc->ste_cdata.ste_tx_tag, txc->ste_map,
1849	    BUS_DMASYNC_PREWRITE);
1850
1851	desc = txc->ste_ptr;
1852	for (i = 0; i < nsegs; i++) {
1853		frag = &desc->ste_frags[i];
1854		frag->ste_addr = htole32(STE_ADDR_LO(txsegs[i].ds_addr));
1855		frag->ste_len = htole32(txsegs[i].ds_len);
1856	}
1857	desc->ste_frags[i - 1].ste_len |= htole32(STE_FRAG_LAST);
1858	/*
1859	 * Because we use Tx polling we can't chain multiple
1860	 * Tx descriptors here. Otherwise we race with controller.
1861	 */
1862	desc->ste_next = 0;
1863	if ((sc->ste_cdata.ste_tx_prod % STE_TX_INTR_FRAMES) == 0)
1864		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS |
1865		    STE_TXCTL_DMAINTR);
1866	else
1867		desc->ste_ctl = htole32(STE_TXCTL_ALIGN_DIS);
1868	txc->ste_mbuf = *m_head;
1869	STE_INC(sc->ste_cdata.ste_tx_prod, STE_TX_LIST_CNT);
1870	sc->ste_cdata.ste_tx_cnt++;
1871
1872	return (0);
1873}
1874
1875static void
1876ste_start(struct ifnet *ifp)
1877{
1878	struct ste_softc *sc;
1879
1880	sc = ifp->if_softc;
1881	STE_LOCK(sc);
1882	ste_start_locked(ifp);
1883	STE_UNLOCK(sc);
1884}
1885
1886static void
1887ste_start_locked(struct ifnet *ifp)
1888{
1889	struct ste_softc *sc;
1890	struct ste_chain *cur_tx;
1891	struct mbuf *m_head = NULL;
1892	int enq;
1893
1894	sc = ifp->if_softc;
1895	STE_LOCK_ASSERT(sc);
1896
1897	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1898	    IFF_DRV_RUNNING || (sc->ste_flags & STE_FLAG_LINK) == 0)
1899		return;
1900
1901	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd);) {
1902		if (sc->ste_cdata.ste_tx_cnt == STE_TX_LIST_CNT - 1) {
1903			/*
1904			 * Controller may have cached copy of the last used
1905			 * next ptr so we have to reserve one TFD to avoid
1906			 * TFD overruns.
1907			 */
1908			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1909			break;
1910		}
1911		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1912		if (m_head == NULL)
1913			break;
1914		cur_tx = &sc->ste_cdata.ste_tx_chain[sc->ste_cdata.ste_tx_prod];
1915		if (ste_encap(sc, &m_head, cur_tx) != 0) {
1916			if (m_head == NULL)
1917				break;
1918			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1919			break;
1920		}
1921		if (sc->ste_cdata.ste_last_tx == NULL) {
1922			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1923			    sc->ste_cdata.ste_tx_list_map,
1924			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1925			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL);
1926			ste_wait(sc);
1927			CSR_WRITE_4(sc, STE_TX_DMALIST_PTR,
1928	    		    STE_ADDR_LO(sc->ste_ldata.ste_tx_list_paddr));
1929			CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64);
1930			STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL);
1931			ste_wait(sc);
1932		} else {
1933			sc->ste_cdata.ste_last_tx->ste_ptr->ste_next =
1934			    sc->ste_cdata.ste_last_tx->ste_phys;
1935			bus_dmamap_sync(sc->ste_cdata.ste_tx_list_tag,
1936			    sc->ste_cdata.ste_tx_list_map,
1937			    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1938		}
1939		sc->ste_cdata.ste_last_tx = cur_tx;
1940
1941		enq++;
1942		/*
1943		 * If there's a BPF listener, bounce a copy of this frame
1944		 * to him.
1945	 	 */
1946		BPF_MTAP(ifp, m_head);
1947	}
1948
1949	if (enq > 0)
1950		sc->ste_timer = STE_TX_TIMEOUT;
1951}
1952
1953static void
1954ste_watchdog(struct ste_softc *sc)
1955{
1956	struct ifnet *ifp;
1957
1958	ifp = sc->ste_ifp;
1959	STE_LOCK_ASSERT(sc);
1960
1961	if (sc->ste_timer == 0 || --sc->ste_timer)
1962		return;
1963
1964	ifp->if_oerrors++;
1965	if_printf(ifp, "watchdog timeout\n");
1966
1967	ste_txeof(sc);
1968	ste_txeoc(sc);
1969	ste_rxeof(sc, -1);
1970	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1971	ste_init_locked(sc);
1972
1973	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1974		ste_start_locked(ifp);
1975}
1976
1977static int
1978ste_shutdown(device_t dev)
1979{
1980
1981	return (ste_suspend(dev));
1982}
1983
1984static int
1985ste_suspend(device_t dev)
1986{
1987	struct ste_softc *sc;
1988
1989	sc = device_get_softc(dev);
1990
1991	STE_LOCK(sc);
1992	ste_stop(sc);
1993	ste_setwol(sc);
1994	STE_UNLOCK(sc);
1995
1996	return (0);
1997}
1998
1999static int
2000ste_resume(device_t dev)
2001{
2002	struct ste_softc *sc;
2003	struct ifnet *ifp;
2004	int pmc;
2005	uint16_t pmstat;
2006
2007	sc = device_get_softc(dev);
2008	STE_LOCK(sc);
2009	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) == 0) {
2010		/* Disable PME and clear PME status. */
2011		pmstat = pci_read_config(sc->ste_dev,
2012		    pmc + PCIR_POWER_STATUS, 2);
2013		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2014			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2015			pci_write_config(sc->ste_dev,
2016			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2017		}
2018	}
2019	ifp = sc->ste_ifp;
2020	if ((ifp->if_flags & IFF_UP) != 0) {
2021		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2022		ste_init_locked(sc);
2023	}
2024	STE_UNLOCK(sc);
2025
2026	return (0);
2027}
2028
2029#define	STE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
2030	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
2031#define	STE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
2032	    SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
2033
2034static void
2035ste_sysctl_node(struct ste_softc *sc)
2036{
2037	struct sysctl_ctx_list *ctx;
2038	struct sysctl_oid_list *child, *parent;
2039	struct sysctl_oid *tree;
2040	struct ste_hw_stats *stats;
2041
2042	stats = &sc->ste_stats;
2043	ctx = device_get_sysctl_ctx(sc->ste_dev);
2044	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ste_dev));
2045
2046	SYSCTL_ADD_INT(ctx, child, OID_AUTO, "int_rx_mod",
2047	    CTLFLAG_RW, &sc->ste_int_rx_mod, 0, "ste RX interrupt moderation");
2048	/* Pull in device tunables. */
2049	sc->ste_int_rx_mod = STE_IM_RX_TIMER_DEFAULT;
2050	resource_int_value(device_get_name(sc->ste_dev),
2051	    device_get_unit(sc->ste_dev), "int_rx_mod", &sc->ste_int_rx_mod);
2052
2053	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
2054	    NULL, "STE statistics");
2055	parent = SYSCTL_CHILDREN(tree);
2056
2057	/* Rx statistics. */
2058	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
2059	    NULL, "Rx MAC statistics");
2060	child = SYSCTL_CHILDREN(tree);
2061	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2062	    &stats->rx_bytes, "Good octets");
2063	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2064	    &stats->rx_frames, "Good frames");
2065	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2066	    &stats->rx_bcast_frames, "Good broadcast frames");
2067	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2068	    &stats->rx_mcast_frames, "Good multicast frames");
2069	STE_SYSCTL_STAT_ADD32(ctx, child, "lost_frames",
2070	    &stats->rx_lost_frames, "Lost frames");
2071
2072	/* Tx statistics. */
2073	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
2074	    NULL, "Tx MAC statistics");
2075	child = SYSCTL_CHILDREN(tree);
2076	STE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
2077	    &stats->tx_bytes, "Good octets");
2078	STE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
2079	    &stats->tx_frames, "Good frames");
2080	STE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
2081	    &stats->tx_bcast_frames, "Good broadcast frames");
2082	STE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
2083	    &stats->tx_mcast_frames, "Good multicast frames");
2084	STE_SYSCTL_STAT_ADD32(ctx, child, "carrier_errs",
2085	    &stats->tx_carrsense_errs, "Carrier sense errors");
2086	STE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
2087	    &stats->tx_single_colls, "Single collisions");
2088	STE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
2089	    &stats->tx_multi_colls, "Multiple collisions");
2090	STE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
2091	    &stats->tx_late_colls, "Late collisions");
2092	STE_SYSCTL_STAT_ADD32(ctx, child, "defers",
2093	    &stats->tx_frames_defered, "Frames with deferrals");
2094	STE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
2095	    &stats->tx_excess_defers, "Frames with excessive derferrals");
2096	STE_SYSCTL_STAT_ADD32(ctx, child, "abort",
2097	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
2098}
2099
2100#undef STE_SYSCTL_STAT_ADD32
2101#undef STE_SYSCTL_STAT_ADD64
2102
2103static void
2104ste_setwol(struct ste_softc *sc)
2105{
2106	struct ifnet *ifp;
2107	uint16_t pmstat;
2108	uint8_t val;
2109	int pmc;
2110
2111	STE_LOCK_ASSERT(sc);
2112
2113	if (pci_find_cap(sc->ste_dev, PCIY_PMG, &pmc) != 0) {
2114		/* Disable WOL. */
2115		CSR_READ_1(sc, STE_WAKE_EVENT);
2116		CSR_WRITE_1(sc, STE_WAKE_EVENT, 0);
2117		return;
2118	}
2119
2120	ifp = sc->ste_ifp;
2121	val = CSR_READ_1(sc, STE_WAKE_EVENT);
2122	val &= ~(STE_WAKEEVENT_WAKEPKT_ENB | STE_WAKEEVENT_MAGICPKT_ENB |
2123	    STE_WAKEEVENT_LINKEVT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB);
2124	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2125		val |= STE_WAKEEVENT_MAGICPKT_ENB | STE_WAKEEVENT_WAKEONLAN_ENB;
2126	CSR_WRITE_1(sc, STE_WAKE_EVENT, val);
2127	/* Request PME. */
2128	pmstat = pci_read_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, 2);
2129	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2130	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2131		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2132	pci_write_config(sc->ste_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2133}
2134