1/*-
2 * Copyright (C) 2012-2014 Intel Corporation
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/buf.h>
33#include <sys/bus.h>
34#include <sys/conf.h>
35#include <sys/ioccom.h>
36#include <sys/proc.h>
37#include <sys/smp.h>
38#include <sys/uio.h>
39
40#include <dev/pci/pcireg.h>
41#include <dev/pci/pcivar.h>
42
43#include "nvme_private.h"
44
45static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
46						struct nvme_async_event_request *aer);
47
48static int
49nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
50{
51
52	/* Chatham puts the NVMe MMRs behind BAR 2/3, not BAR 0/1. */
53	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
54		ctrlr->resource_id = PCIR_BAR(2);
55	else
56		ctrlr->resource_id = PCIR_BAR(0);
57
58	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
59	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);
60
61	if(ctrlr->resource == NULL) {
62		nvme_printf(ctrlr, "unable to allocate pci resource\n");
63		return (ENOMEM);
64	}
65
66	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
67	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
68	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;
69
70	/*
71	 * The NVMe spec allows for the MSI-X table to be placed behind
72	 *  BAR 4/5, separate from the control/doorbell registers.  Always
73	 *  try to map this bar, because it must be mapped prior to calling
74	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
75	 *  bus_alloc_resource() will just return NULL which is OK.
76	 */
77	ctrlr->bar4_resource_id = PCIR_BAR(4);
78	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
79	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);
80
81	return (0);
82}
83
84#ifdef CHATHAM2
85static int
86nvme_ctrlr_allocate_chatham_bar(struct nvme_controller *ctrlr)
87{
88
89	ctrlr->chatham_resource_id = PCIR_BAR(CHATHAM_CONTROL_BAR);
90	ctrlr->chatham_resource = bus_alloc_resource(ctrlr->dev,
91	    SYS_RES_MEMORY, &ctrlr->chatham_resource_id, 0, ~0, 1,
92	    RF_ACTIVE);
93
94	if(ctrlr->chatham_resource == NULL) {
95		nvme_printf(ctrlr, "unable to alloc pci resource\n");
96		return (ENOMEM);
97	}
98
99	ctrlr->chatham_bus_tag = rman_get_bustag(ctrlr->chatham_resource);
100	ctrlr->chatham_bus_handle =
101	    rman_get_bushandle(ctrlr->chatham_resource);
102
103	return (0);
104}
105
106static void
107nvme_ctrlr_setup_chatham(struct nvme_controller *ctrlr)
108{
109	uint64_t reg1, reg2, reg3;
110	uint64_t temp1, temp2;
111	uint32_t temp3;
112	uint32_t use_flash_timings = 0;
113
114	DELAY(10000);
115
116	temp3 = chatham_read_4(ctrlr, 0x8080);
117
118	device_printf(ctrlr->dev, "Chatham version: 0x%x\n", temp3);
119
120	ctrlr->chatham_lbas = chatham_read_4(ctrlr, 0x8068) - 0x110;
121	ctrlr->chatham_size = ctrlr->chatham_lbas * 512;
122
123	device_printf(ctrlr->dev, "Chatham size: %jd\n",
124	    (intmax_t)ctrlr->chatham_size);
125
126	reg1 = reg2 = reg3 = ctrlr->chatham_size - 1;
127
128	TUNABLE_INT_FETCH("hw.nvme.use_flash_timings", &use_flash_timings);
129	if (use_flash_timings) {
130		device_printf(ctrlr->dev, "Chatham: using flash timings\n");
131		temp1 = 0x00001b58000007d0LL;
132		temp2 = 0x000000cb00000131LL;
133	} else {
134		device_printf(ctrlr->dev, "Chatham: using DDR timings\n");
135		temp1 = temp2 = 0x0LL;
136	}
137
138	chatham_write_8(ctrlr, 0x8000, reg1);
139	chatham_write_8(ctrlr, 0x8008, reg2);
140	chatham_write_8(ctrlr, 0x8010, reg3);
141
142	chatham_write_8(ctrlr, 0x8020, temp1);
143	temp3 = chatham_read_4(ctrlr, 0x8020);
144
145	chatham_write_8(ctrlr, 0x8028, temp2);
146	temp3 = chatham_read_4(ctrlr, 0x8028);
147
148	chatham_write_8(ctrlr, 0x8030, temp1);
149	chatham_write_8(ctrlr, 0x8038, temp2);
150	chatham_write_8(ctrlr, 0x8040, temp1);
151	chatham_write_8(ctrlr, 0x8048, temp2);
152	chatham_write_8(ctrlr, 0x8050, temp1);
153	chatham_write_8(ctrlr, 0x8058, temp2);
154
155	DELAY(10000);
156}
157
158static void
159nvme_chatham_populate_cdata(struct nvme_controller *ctrlr)
160{
161	struct nvme_controller_data *cdata;
162
163	cdata = &ctrlr->cdata;
164
165	cdata->vid = 0x8086;
166	cdata->ssvid = 0x2011;
167
168	/*
169	 * Chatham2 puts garbage data in these fields when we
170	 *  invoke IDENTIFY_CONTROLLER, so we need to re-zero
171	 *  the fields before calling bcopy().
172	 */
173	memset(cdata->sn, 0, sizeof(cdata->sn));
174	memcpy(cdata->sn, "2012", strlen("2012"));
175	memset(cdata->mn, 0, sizeof(cdata->mn));
176	memcpy(cdata->mn, "CHATHAM2", strlen("CHATHAM2"));
177	memset(cdata->fr, 0, sizeof(cdata->fr));
178	memcpy(cdata->fr, "0", strlen("0"));
179	cdata->rab = 8;
180	cdata->aerl = 3;
181	cdata->lpa.ns_smart = 1;
182	cdata->sqes.min = 6;
183	cdata->sqes.max = 6;
184	cdata->cqes.min = 4;
185	cdata->cqes.max = 4;
186	cdata->nn = 1;
187
188	/* Chatham2 doesn't support DSM command */
189	cdata->oncs.dsm = 0;
190
191	cdata->vwc.present = 1;
192}
193#endif /* CHATHAM2 */
194
195static void
196nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
197{
198	struct nvme_qpair	*qpair;
199	uint32_t		num_entries;
200
201	qpair = &ctrlr->adminq;
202
203	num_entries = NVME_ADMIN_ENTRIES;
204	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
205	/*
206	 * If admin_entries was overridden to an invalid value, revert it
207	 *  back to our default value.
208	 */
209	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
210	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
211		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
212		    "specified\n", num_entries);
213		num_entries = NVME_ADMIN_ENTRIES;
214	}
215
216	/*
217	 * The admin queue's max xfer size is treated differently than the
218	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
219	 */
220	nvme_qpair_construct(qpair,
221			     0, /* qpair ID */
222			     0, /* vector */
223			     num_entries,
224			     NVME_ADMIN_TRACKERS,
225			     ctrlr);
226}
227
228static int
229nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
230{
231	struct nvme_qpair	*qpair;
232	union cap_lo_register	cap_lo;
233	int			i, num_entries, num_trackers;
234
235	num_entries = NVME_IO_ENTRIES;
236	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);
237
238	/*
239	 * NVMe spec sets a hard limit of 64K max entries, but
240	 *  devices may specify a smaller limit, so we need to check
241	 *  the MQES field in the capabilities register.
242	 */
243	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
244	num_entries = min(num_entries, cap_lo.bits.mqes+1);
245
246	num_trackers = NVME_IO_TRACKERS;
247	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);
248
249	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
250	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
251	/*
252	 * No need to have more trackers than entries in the submit queue.
253	 *  Note also that for a queue size of N, we can only have (N-1)
254	 *  commands outstanding, hence the "-1" here.
255	 */
256	num_trackers = min(num_trackers, (num_entries-1));
257
258	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
259	    M_NVME, M_ZERO | M_WAITOK);
260
261	for (i = 0; i < ctrlr->num_io_queues; i++) {
262		qpair = &ctrlr->ioq[i];
263
264		/*
265		 * Admin queue has ID=0. IO queues start at ID=1 -
266		 *  hence the 'i+1' here.
267		 *
268		 * For I/O queues, use the controller-wide max_xfer_size
269		 *  calculated in nvme_attach().
270		 */
271		nvme_qpair_construct(qpair,
272				     i+1, /* qpair ID */
273				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
274				     num_entries,
275				     num_trackers,
276				     ctrlr);
277
278		if (ctrlr->per_cpu_io_queues)
279			bus_bind_intr(ctrlr->dev, qpair->res, i);
280	}
281
282	return (0);
283}
284
285static void
286nvme_ctrlr_fail(struct nvme_controller *ctrlr)
287{
288	int i;
289
290	ctrlr->is_failed = TRUE;
291	nvme_qpair_fail(&ctrlr->adminq);
292	for (i = 0; i < ctrlr->num_io_queues; i++)
293		nvme_qpair_fail(&ctrlr->ioq[i]);
294	nvme_notify_fail_consumers(ctrlr);
295}
296
297void
298nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
299    struct nvme_request *req)
300{
301
302	mtx_lock(&ctrlr->lock);
303	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
304	mtx_unlock(&ctrlr->lock);
305	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
306}
307
308static void
309nvme_ctrlr_fail_req_task(void *arg, int pending)
310{
311	struct nvme_controller	*ctrlr = arg;
312	struct nvme_request	*req;
313
314	mtx_lock(&ctrlr->lock);
315	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
316		req = STAILQ_FIRST(&ctrlr->fail_req);
317		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
318		nvme_qpair_manual_complete_request(req->qpair, req,
319		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
320	}
321	mtx_unlock(&ctrlr->lock);
322}
323
324static int
325nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr)
326{
327	int ms_waited;
328	union cc_register cc;
329	union csts_register csts;
330
331	cc.raw = nvme_mmio_read_4(ctrlr, cc);
332	csts.raw = nvme_mmio_read_4(ctrlr, csts);
333
334	if (!cc.bits.en) {
335		nvme_printf(ctrlr, "%s called with cc.en = 0\n", __func__);
336		return (ENXIO);
337	}
338
339	ms_waited = 0;
340
341	while (!csts.bits.rdy) {
342		DELAY(1000);
343		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
344			nvme_printf(ctrlr, "controller did not become ready "
345			    "within %d ms\n", ctrlr->ready_timeout_in_ms);
346			return (ENXIO);
347		}
348		csts.raw = nvme_mmio_read_4(ctrlr, csts);
349	}
350
351	return (0);
352}
353
354static void
355nvme_ctrlr_disable(struct nvme_controller *ctrlr)
356{
357	union cc_register cc;
358	union csts_register csts;
359
360	cc.raw = nvme_mmio_read_4(ctrlr, cc);
361	csts.raw = nvme_mmio_read_4(ctrlr, csts);
362
363	if (cc.bits.en == 1 && csts.bits.rdy == 0)
364		nvme_ctrlr_wait_for_ready(ctrlr);
365
366	cc.bits.en = 0;
367	nvme_mmio_write_4(ctrlr, cc, cc.raw);
368	DELAY(5000);
369}
370
371static int
372nvme_ctrlr_enable(struct nvme_controller *ctrlr)
373{
374	union cc_register	cc;
375	union csts_register	csts;
376	union aqa_register	aqa;
377
378	cc.raw = nvme_mmio_read_4(ctrlr, cc);
379	csts.raw = nvme_mmio_read_4(ctrlr, csts);
380
381	if (cc.bits.en == 1) {
382		if (csts.bits.rdy == 1)
383			return (0);
384		else
385			return (nvme_ctrlr_wait_for_ready(ctrlr));
386	}
387
388	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
389	DELAY(5000);
390	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
391	DELAY(5000);
392
393	aqa.raw = 0;
394	/* acqs and asqs are 0-based. */
395	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
396	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
397	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
398	DELAY(5000);
399
400	cc.bits.en = 1;
401	cc.bits.css = 0;
402	cc.bits.ams = 0;
403	cc.bits.shn = 0;
404	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
405	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */
406
407	/* This evaluates to 0, which is according to spec. */
408	cc.bits.mps = (PAGE_SIZE >> 13);
409
410	nvme_mmio_write_4(ctrlr, cc, cc.raw);
411	DELAY(5000);
412
413	return (nvme_ctrlr_wait_for_ready(ctrlr));
414}
415
416int
417nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
418{
419	int i;
420
421	nvme_admin_qpair_disable(&ctrlr->adminq);
422	for (i = 0; i < ctrlr->num_io_queues; i++)
423		nvme_io_qpair_disable(&ctrlr->ioq[i]);
424
425	DELAY(100*1000);
426
427	nvme_ctrlr_disable(ctrlr);
428	return (nvme_ctrlr_enable(ctrlr));
429}
430
431void
432nvme_ctrlr_reset(struct nvme_controller *ctrlr)
433{
434	int cmpset;
435
436	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);
437
438	if (cmpset == 0 || ctrlr->is_failed)
439		/*
440		 * Controller is already resetting or has failed.  Return
441		 *  immediately since there is no need to kick off another
442		 *  reset in these cases.
443		 */
444		return;
445
446	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
447}
448
449static int
450nvme_ctrlr_identify(struct nvme_controller *ctrlr)
451{
452	struct nvme_completion_poll_status	status;
453
454	status.done = FALSE;
455	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
456	    nvme_completion_poll_cb, &status);
457	while (status.done == FALSE)
458		pause("nvme", 1);
459	if (nvme_completion_is_error(&status.cpl)) {
460		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
461		return (ENXIO);
462	}
463
464#ifdef CHATHAM2
465	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
466		nvme_chatham_populate_cdata(ctrlr);
467#endif
468
469	/*
470	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
471	 *  controller supports.
472	 */
473	if (ctrlr->cdata.mdts > 0)
474		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
475		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));
476
477	return (0);
478}
479
480static int
481nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
482{
483	struct nvme_completion_poll_status	status;
484	int					cq_allocated, i, sq_allocated;
485
486	status.done = FALSE;
487	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
488	    nvme_completion_poll_cb, &status);
489	while (status.done == FALSE)
490		pause("nvme", 1);
491	if (nvme_completion_is_error(&status.cpl)) {
492		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
493		return (ENXIO);
494	}
495
496	/*
497	 * Data in cdw0 is 0-based.
498	 * Lower 16-bits indicate number of submission queues allocated.
499	 * Upper 16-bits indicate number of completion queues allocated.
500	 */
501	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
502	cq_allocated = (status.cpl.cdw0 >> 16) + 1;
503
504	/*
505	 * Check that the controller was able to allocate the number of
506	 *  queues we requested.  If not, revert to one IO queue pair.
507	 */
508	if (sq_allocated < ctrlr->num_io_queues ||
509	    cq_allocated < ctrlr->num_io_queues) {
510
511		/*
512		 * Destroy extra IO queue pairs that were created at
513		 *  controller construction time but are no longer
514		 *  needed.  This will only happen when a controller
515		 *  supports fewer queues than MSI-X vectors.  This
516		 *  is not the normal case, but does occur with the
517		 *  Chatham prototype board.
518		 */
519		for (i = 1; i < ctrlr->num_io_queues; i++)
520			nvme_io_qpair_destroy(&ctrlr->ioq[i]);
521
522		ctrlr->num_io_queues = 1;
523		ctrlr->per_cpu_io_queues = 0;
524	}
525
526	return (0);
527}
528
529static int
530nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
531{
532	struct nvme_completion_poll_status	status;
533	struct nvme_qpair			*qpair;
534	int					i;
535
536	for (i = 0; i < ctrlr->num_io_queues; i++) {
537		qpair = &ctrlr->ioq[i];
538
539		status.done = FALSE;
540		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
541		    nvme_completion_poll_cb, &status);
542		while (status.done == FALSE)
543			pause("nvme", 1);
544		if (nvme_completion_is_error(&status.cpl)) {
545			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
546			return (ENXIO);
547		}
548
549		status.done = FALSE;
550		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
551		    nvme_completion_poll_cb, &status);
552		while (status.done == FALSE)
553			pause("nvme", 1);
554		if (nvme_completion_is_error(&status.cpl)) {
555			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
556			return (ENXIO);
557		}
558	}
559
560	return (0);
561}
562
563static int
564nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
565{
566	struct nvme_namespace	*ns;
567	int			i, status;
568
569	for (i = 0; i < ctrlr->cdata.nn; i++) {
570		ns = &ctrlr->ns[i];
571		status = nvme_ns_construct(ns, i+1, ctrlr);
572		if (status != 0)
573			return (status);
574	}
575
576	return (0);
577}
578
579static boolean_t
580is_log_page_id_valid(uint8_t page_id)
581{
582
583	switch (page_id) {
584	case NVME_LOG_ERROR:
585	case NVME_LOG_HEALTH_INFORMATION:
586	case NVME_LOG_FIRMWARE_SLOT:
587		return (TRUE);
588	}
589
590	return (FALSE);
591}
592
593static uint32_t
594nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
595{
596	uint32_t	log_page_size;
597
598	switch (page_id) {
599	case NVME_LOG_ERROR:
600		log_page_size = min(
601		    sizeof(struct nvme_error_information_entry) *
602		    ctrlr->cdata.elpe,
603		    NVME_MAX_AER_LOG_SIZE);
604		break;
605	case NVME_LOG_HEALTH_INFORMATION:
606		log_page_size = sizeof(struct nvme_health_information_page);
607		break;
608	case NVME_LOG_FIRMWARE_SLOT:
609		log_page_size = sizeof(struct nvme_firmware_page);
610		break;
611	default:
612		log_page_size = 0;
613		break;
614	}
615
616	return (log_page_size);
617}
618
619static void
620nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
621    union nvme_critical_warning_state state)
622{
623
624	if (state.bits.available_spare == 1)
625		nvme_printf(ctrlr, "available spare space below threshold\n");
626
627	if (state.bits.temperature == 1)
628		nvme_printf(ctrlr, "temperature above threshold\n");
629
630	if (state.bits.device_reliability == 1)
631		nvme_printf(ctrlr, "device reliability degraded\n");
632
633	if (state.bits.read_only == 1)
634		nvme_printf(ctrlr, "media placed in read only mode\n");
635
636	if (state.bits.volatile_memory_backup == 1)
637		nvme_printf(ctrlr, "volatile memory backup device failed\n");
638
639	if (state.bits.reserved != 0)
640		nvme_printf(ctrlr,
641		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
642}
643
644static void
645nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
646{
647	struct nvme_async_event_request		*aer = arg;
648	struct nvme_health_information_page	*health_info;
649
650	/*
651	 * If the log page fetch for some reason completed with an error,
652	 *  don't pass log page data to the consumers.  In practice, this case
653	 *  should never happen.
654	 */
655	if (nvme_completion_is_error(cpl))
656		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
657		    aer->log_page_id, NULL, 0);
658	else {
659		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
660			health_info = (struct nvme_health_information_page *)
661			    aer->log_page_buffer;
662			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
663			    health_info->critical_warning);
664			/*
665			 * Critical warnings reported through the
666			 *  SMART/health log page are persistent, so
667			 *  clear the associated bits in the async event
668			 *  config so that we do not receive repeated
669			 *  notifications for the same event.
670			 */
671			aer->ctrlr->async_event_config.raw &=
672			    ~health_info->critical_warning.raw;
673			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
674			    aer->ctrlr->async_event_config, NULL, NULL);
675		}
676
677
678		/*
679		 * Pass the cpl data from the original async event completion,
680		 *  not the log page fetch.
681		 */
682		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
683		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
684	}
685
686	/*
687	 * Repost another asynchronous event request to replace the one
688	 *  that just completed.
689	 */
690	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
691}
692
693static void
694nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
695{
696	struct nvme_async_event_request	*aer = arg;
697
698	if (nvme_completion_is_error(cpl)) {
699		/*
700		 *  Do not retry failed async event requests.  This avoids
701		 *  infinite loops where a new async event request is submitted
702		 *  to replace the one just failed, only to fail again and
703		 *  perpetuate the loop.
704		 */
705		return;
706	}
707
708	/* Associated log page is in bits 23:16 of completion entry dw0. */
709	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;
710
711	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
712	    aer->log_page_id);
713
714	if (is_log_page_id_valid(aer->log_page_id)) {
715		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
716		    aer->log_page_id);
717		memcpy(&aer->cpl, cpl, sizeof(*cpl));
718		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
719		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
720		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
721		    aer);
722		/* Wait to notify consumers until after log page is fetched. */
723	} else {
724		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
725		    NULL, 0);
726
727		/*
728		 * Repost another asynchronous event request to replace the one
729		 *  that just completed.
730		 */
731		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
732	}
733}
734
735static void
736nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
737    struct nvme_async_event_request *aer)
738{
739	struct nvme_request *req;
740
741	aer->ctrlr = ctrlr;
742	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
743	aer->req = req;
744
745	/*
746	 * Disable timeout here, since asynchronous event requests should by
747	 *  nature never be timed out.
748	 */
749	req->timeout = FALSE;
750	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
751	nvme_ctrlr_submit_admin_request(ctrlr, req);
752}
753
754static void
755nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
756{
757	struct nvme_completion_poll_status	status;
758	struct nvme_async_event_request		*aer;
759	uint32_t				i;
760
761	ctrlr->async_event_config.raw = 0xFF;
762	ctrlr->async_event_config.bits.reserved = 0;
763
764	status.done = FALSE;
765	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
766	    0, NULL, 0, nvme_completion_poll_cb, &status);
767	while (status.done == FALSE)
768		pause("nvme", 1);
769	if (nvme_completion_is_error(&status.cpl) ||
770	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
771	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
772		nvme_printf(ctrlr, "temperature threshold not supported\n");
773		ctrlr->async_event_config.bits.temperature = 0;
774	}
775
776	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
777	    ctrlr->async_event_config, NULL, NULL);
778
779	/* aerl is a zero-based value, so we need to add 1 here. */
780	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));
781
782	/* Chatham doesn't support AERs. */
783	if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID)
784		ctrlr->num_aers = 0;
785
786	for (i = 0; i < ctrlr->num_aers; i++) {
787		aer = &ctrlr->aer[i];
788		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
789	}
790}
791
792static void
793nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
794{
795
796	ctrlr->int_coal_time = 0;
797	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
798	    &ctrlr->int_coal_time);
799
800	ctrlr->int_coal_threshold = 0;
801	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
802	    &ctrlr->int_coal_threshold);
803
804	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
805	    ctrlr->int_coal_threshold, NULL, NULL);
806}
807
808static void
809nvme_ctrlr_start(void *ctrlr_arg)
810{
811	struct nvme_controller *ctrlr = ctrlr_arg;
812	int i;
813
814	nvme_qpair_reset(&ctrlr->adminq);
815	for (i = 0; i < ctrlr->num_io_queues; i++)
816		nvme_qpair_reset(&ctrlr->ioq[i]);
817
818	nvme_admin_qpair_enable(&ctrlr->adminq);
819
820	if (nvme_ctrlr_identify(ctrlr) != 0) {
821		nvme_ctrlr_fail(ctrlr);
822		return;
823	}
824
825	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
826		nvme_ctrlr_fail(ctrlr);
827		return;
828	}
829
830	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
831		nvme_ctrlr_fail(ctrlr);
832		return;
833	}
834
835	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
836		nvme_ctrlr_fail(ctrlr);
837		return;
838	}
839
840	nvme_ctrlr_configure_aer(ctrlr);
841	nvme_ctrlr_configure_int_coalescing(ctrlr);
842
843	for (i = 0; i < ctrlr->num_io_queues; i++)
844		nvme_io_qpair_enable(&ctrlr->ioq[i]);
845}
846
847void
848nvme_ctrlr_start_config_hook(void *arg)
849{
850	struct nvme_controller *ctrlr = arg;
851
852	nvme_ctrlr_start(ctrlr);
853	config_intrhook_disestablish(&ctrlr->config_hook);
854
855	ctrlr->is_initialized = 1;
856	nvme_notify_new_controller(ctrlr);
857}
858
859static void
860nvme_ctrlr_reset_task(void *arg, int pending)
861{
862	struct nvme_controller	*ctrlr = arg;
863	int			status;
864
865	nvme_printf(ctrlr, "resetting controller\n");
866	status = nvme_ctrlr_hw_reset(ctrlr);
867	/*
868	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
869	 *  handlers on this CPU that were blocked on a qpair lock. We want
870	 *  all nvme interrupts completed before proceeding with restarting the
871	 *  controller.
872	 *
873	 * XXX - any way to guarantee the interrupt handlers have quiesced?
874	 */
875	pause("nvmereset", hz / 10);
876	if (status == 0)
877		nvme_ctrlr_start(ctrlr);
878	else
879		nvme_ctrlr_fail(ctrlr);
880
881	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
882}
883
884static void
885nvme_ctrlr_intx_handler(void *arg)
886{
887	struct nvme_controller *ctrlr = arg;
888
889	nvme_mmio_write_4(ctrlr, intms, 1);
890
891	nvme_qpair_process_completions(&ctrlr->adminq);
892
893	if (ctrlr->ioq[0].cpl)
894		nvme_qpair_process_completions(&ctrlr->ioq[0]);
895
896	nvme_mmio_write_4(ctrlr, intmc, 1);
897}
898
899static int
900nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
901{
902
903	ctrlr->num_io_queues = 1;
904	ctrlr->per_cpu_io_queues = 0;
905	ctrlr->rid = 0;
906	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
907	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);
908
909	if (ctrlr->res == NULL) {
910		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
911		return (ENOMEM);
912	}
913
914	bus_setup_intr(ctrlr->dev, ctrlr->res,
915	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
916	    ctrlr, &ctrlr->tag);
917
918	if (ctrlr->tag == NULL) {
919		nvme_printf(ctrlr, "unable to setup intx handler\n");
920		return (ENOMEM);
921	}
922
923	return (0);
924}
925
926static void
927nvme_pt_done(void *arg, const struct nvme_completion *cpl)
928{
929	struct nvme_pt_command *pt = arg;
930
931	bzero(&pt->cpl, sizeof(pt->cpl));
932	pt->cpl.cdw0 = cpl->cdw0;
933	pt->cpl.status = cpl->status;
934	pt->cpl.status.p = 0;
935
936	mtx_lock(pt->driver_lock);
937	wakeup(pt);
938	mtx_unlock(pt->driver_lock);
939}
940
941int
942nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
943    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
944    int is_admin_cmd)
945{
946	struct nvme_request	*req;
947	struct mtx		*mtx;
948	struct buf		*buf = NULL;
949	int			ret = 0;
950
951	if (pt->len > 0) {
952		if (pt->len > ctrlr->max_xfer_size) {
953			nvme_printf(ctrlr, "pt->len (%d) "
954			    "exceeds max_xfer_size (%d)\n", pt->len,
955			    ctrlr->max_xfer_size);
956			return EIO;
957		}
958		if (is_user_buffer) {
959			/*
960			 * Ensure the user buffer is wired for the duration of
961			 *  this passthrough command.
962			 */
963			PHOLD(curproc);
964			buf = getpbuf(NULL);
965			buf->b_saveaddr = buf->b_data;
966			buf->b_data = pt->buf;
967			buf->b_bufsize = pt->len;
968			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
969#ifdef NVME_UNMAPPED_BIO_SUPPORT
970			if (vmapbuf(buf, 1) < 0) {
971#else
972			if (vmapbuf(buf) < 0) {
973#endif
974				ret = EFAULT;
975				goto err;
976			}
977			req = nvme_allocate_request_vaddr(buf->b_data, pt->len,
978			    nvme_pt_done, pt);
979		} else
980			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
981			    nvme_pt_done, pt);
982	} else
983		req = nvme_allocate_request_null(nvme_pt_done, pt);
984
985	req->cmd.opc	= pt->cmd.opc;
986	req->cmd.cdw10	= pt->cmd.cdw10;
987	req->cmd.cdw11	= pt->cmd.cdw11;
988	req->cmd.cdw12	= pt->cmd.cdw12;
989	req->cmd.cdw13	= pt->cmd.cdw13;
990	req->cmd.cdw14	= pt->cmd.cdw14;
991	req->cmd.cdw15	= pt->cmd.cdw15;
992
993	req->cmd.nsid = nsid;
994
995	if (is_admin_cmd)
996		mtx = &ctrlr->lock;
997	else
998		mtx = &ctrlr->ns[nsid-1].lock;
999
1000	mtx_lock(mtx);
1001	pt->driver_lock = mtx;
1002
1003	if (is_admin_cmd)
1004		nvme_ctrlr_submit_admin_request(ctrlr, req);
1005	else
1006		nvme_ctrlr_submit_io_request(ctrlr, req);
1007
1008	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
1009	mtx_unlock(mtx);
1010
1011	pt->driver_lock = NULL;
1012
1013err:
1014	if (buf != NULL) {
1015		relpbuf(buf, NULL);
1016		PRELE(curproc);
1017	}
1018
1019	return (ret);
1020}
1021
1022static int
1023nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
1024    struct thread *td)
1025{
1026	struct nvme_controller			*ctrlr;
1027	struct nvme_pt_command			*pt;
1028
1029	ctrlr = cdev->si_drv1;
1030
1031	switch (cmd) {
1032	case NVME_RESET_CONTROLLER:
1033		nvme_ctrlr_reset(ctrlr);
1034		break;
1035	case NVME_PASSTHROUGH_CMD:
1036		pt = (struct nvme_pt_command *)arg;
1037#ifdef CHATHAM2
1038		/*
1039		 * Chatham IDENTIFY data is spoofed, so copy the spoofed data
1040		 *  rather than issuing the command to the Chatham controller.
1041		 */
1042		if (pci_get_devid(ctrlr->dev) == CHATHAM_PCI_ID &&
1043                    pt->cmd.opc == NVME_OPC_IDENTIFY) {
1044			if (pt->cmd.cdw10 == 1) {
1045                        	if (pt->len != sizeof(ctrlr->cdata))
1046                                	return (EINVAL);
1047                        	return (copyout(&ctrlr->cdata, pt->buf,
1048				    pt->len));
1049			} else {
1050				if (pt->len != sizeof(ctrlr->ns[0].data) ||
1051				    pt->cmd.nsid != 1)
1052					return (EINVAL);
1053				return (copyout(&ctrlr->ns[0].data, pt->buf,
1054				    pt->len));
1055			}
1056		}
1057#endif
1058		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
1059		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
1060	default:
1061		return (ENOTTY);
1062	}
1063
1064	return (0);
1065}
1066
1067static struct cdevsw nvme_ctrlr_cdevsw = {
1068	.d_version =	D_VERSION,
1069	.d_flags =	0,
1070	.d_ioctl =	nvme_ctrlr_ioctl
1071};
1072
1073int
1074nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
1075{
1076	union cap_lo_register	cap_lo;
1077	union cap_hi_register	cap_hi;
1078	int			i, num_vectors, per_cpu_io_queues, rid;
1079	int			status, timeout_period;
1080
1081	ctrlr->dev = dev;
1082
1083	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);
1084
1085	status = nvme_ctrlr_allocate_bar(ctrlr);
1086
1087	if (status != 0)
1088		return (status);
1089
1090#ifdef CHATHAM2
1091	if (pci_get_devid(dev) == CHATHAM_PCI_ID) {
1092		status = nvme_ctrlr_allocate_chatham_bar(ctrlr);
1093		if (status != 0)
1094			return (status);
1095		nvme_ctrlr_setup_chatham(ctrlr);
1096	}
1097#endif
1098
1099	/*
1100	 * Software emulators may set the doorbell stride to something
1101	 *  other than zero, but this driver is not set up to handle that.
1102	 */
1103	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
1104	if (cap_hi.bits.dstrd != 0)
1105		return (ENXIO);
1106
1107	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);
1108
1109	/* Get ready timeout value from controller, in units of 500ms. */
1110	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
1111	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;
1112
1113	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
1114	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
1115	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
1116	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
1117	ctrlr->timeout_period = timeout_period;
1118
1119	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
1120	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);
1121
1122	per_cpu_io_queues = 1;
1123	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
1124	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;
1125
1126	if (ctrlr->per_cpu_io_queues)
1127		ctrlr->num_io_queues = mp_ncpus;
1128	else
1129		ctrlr->num_io_queues = 1;
1130
1131	ctrlr->force_intx = 0;
1132	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);
1133
1134	ctrlr->enable_aborts = 0;
1135	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);
1136
1137	ctrlr->msix_enabled = 1;
1138
1139	if (ctrlr->force_intx) {
1140		ctrlr->msix_enabled = 0;
1141		goto intx;
1142	}
1143
1144	/* One vector per IO queue, plus one vector for admin queue. */
1145	num_vectors = ctrlr->num_io_queues + 1;
1146
1147	if (pci_msix_count(dev) < num_vectors) {
1148		ctrlr->msix_enabled = 0;
1149		goto intx;
1150	}
1151
1152	if (pci_alloc_msix(dev, &num_vectors) != 0) {
1153		ctrlr->msix_enabled = 0;
1154		goto intx;
1155	}
1156
1157	/*
1158	 * On earlier FreeBSD releases, there are reports that
1159	 *  pci_alloc_msix() can return successfully with all vectors
1160	 *  requested, but a subsequent bus_alloc_resource_any()
1161	 *  for one of those vectors fails.  This issue occurs more
1162	 *  readily with multiple devices using per-CPU vectors.
1163	 * To workaround this issue, try to allocate the resources now,
1164	 *  and fall back to INTx if we cannot allocate all of them.
1165	 *  This issue cannot be reproduced on more recent versions of
1166	 *  FreeBSD which have increased the maximum number of MSI-X
1167	 *  vectors, but adding the workaround makes it easier for
1168	 *  vendors wishing to import this driver into kernels based on
1169	 *  older versions of FreeBSD.
1170	 */
1171	for (i = 0; i < num_vectors; i++) {
1172		rid = i + 1;
1173		ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
1174		    SYS_RES_IRQ, &rid, RF_ACTIVE);
1175
1176		if (ctrlr->msi_res[i] == NULL) {
1177			ctrlr->msix_enabled = 0;
1178			while (i > 0) {
1179				i--;
1180				bus_release_resource(ctrlr->dev,
1181				    SYS_RES_IRQ,
1182				    rman_get_rid(ctrlr->msi_res[i]),
1183				    ctrlr->msi_res[i]);
1184			}
1185			pci_release_msi(dev);
1186			nvme_printf(ctrlr, "could not obtain all MSI-X "
1187			    "resources, reverting to intx\n");
1188			break;
1189		}
1190	}
1191
1192intx:
1193
1194	if (!ctrlr->msix_enabled)
1195		nvme_ctrlr_configure_intx(ctrlr);
1196
1197	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
1198	nvme_ctrlr_construct_admin_qpair(ctrlr);
1199	status = nvme_ctrlr_construct_io_qpairs(ctrlr);
1200
1201	if (status != 0)
1202		return (status);
1203
1204	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
1205	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));
1206
1207	if (ctrlr->cdev == NULL)
1208		return (ENXIO);
1209
1210	ctrlr->cdev->si_drv1 = (void *)ctrlr;
1211
1212	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
1213	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
1214	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");
1215
1216	ctrlr->is_resetting = 0;
1217	ctrlr->is_initialized = 0;
1218	ctrlr->notification_sent = 0;
1219	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);
1220
1221	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
1222	STAILQ_INIT(&ctrlr->fail_req);
1223	ctrlr->is_failed = FALSE;
1224
1225	return (0);
1226}
1227
1228void
1229nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
1230{
1231	int				i;
1232
1233	/*
1234	 *  Notify the controller of a shutdown, even though this is due to
1235	 *   a driver unload, not a system shutdown (this path is not invoked
1236	 *   during shutdown).  This ensures the controller receives a
1237	 *   shutdown notification in case the system is shutdown before
1238	 *   reloading the driver.
1239	 *
1240	 *  Chatham does not let you re-enable the controller after shutdown
1241	 *   notification has been received, so do not send it in this case.
1242	 *   This is OK because Chatham does not depend on the shutdown
1243	 *   notification anyways.
1244	 */
1245	if (pci_get_devid(ctrlr->dev) != CHATHAM_PCI_ID)
1246		nvme_ctrlr_shutdown(ctrlr);
1247
1248	nvme_ctrlr_disable(ctrlr);
1249	taskqueue_free(ctrlr->taskqueue);
1250
1251	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
1252		nvme_ns_destruct(&ctrlr->ns[i]);
1253
1254	if (ctrlr->cdev)
1255		destroy_dev(ctrlr->cdev);
1256
1257	for (i = 0; i < ctrlr->num_io_queues; i++) {
1258		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
1259	}
1260
1261	free(ctrlr->ioq, M_NVME);
1262
1263	nvme_admin_qpair_destroy(&ctrlr->adminq);
1264
1265	if (ctrlr->resource != NULL) {
1266		bus_release_resource(dev, SYS_RES_MEMORY,
1267		    ctrlr->resource_id, ctrlr->resource);
1268	}
1269
1270	if (ctrlr->bar4_resource != NULL) {
1271		bus_release_resource(dev, SYS_RES_MEMORY,
1272		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
1273	}
1274
1275#ifdef CHATHAM2
1276	if (ctrlr->chatham_resource != NULL) {
1277		bus_release_resource(dev, SYS_RES_MEMORY,
1278		    ctrlr->chatham_resource_id, ctrlr->chatham_resource);
1279	}
1280#endif
1281
1282	if (ctrlr->tag)
1283		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);
1284
1285	if (ctrlr->res)
1286		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
1287		    rman_get_rid(ctrlr->res), ctrlr->res);
1288
1289	if (ctrlr->msix_enabled)
1290		pci_release_msi(dev);
1291}
1292
1293void
1294nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
1295{
1296	union cc_register	cc;
1297	union csts_register	csts;
1298	int			ticks = 0;
1299
1300	cc.raw = nvme_mmio_read_4(ctrlr, cc);
1301	cc.bits.shn = NVME_SHN_NORMAL;
1302	nvme_mmio_write_4(ctrlr, cc, cc.raw);
1303	csts.raw = nvme_mmio_read_4(ctrlr, csts);
1304	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
1305		pause("nvme shn", 1);
1306		csts.raw = nvme_mmio_read_4(ctrlr, csts);
1307	}
1308	if (csts.bits.shst != NVME_SHST_COMPLETE)
1309		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
1310		    "of notification\n");
1311}
1312
1313void
1314nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
1315    struct nvme_request *req)
1316{
1317
1318	nvme_qpair_submit_request(&ctrlr->adminq, req);
1319}
1320
1321void
1322nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
1323    struct nvme_request *req)
1324{
1325	struct nvme_qpair       *qpair;
1326
1327	if (ctrlr->per_cpu_io_queues)
1328		qpair = &ctrlr->ioq[curcpu];
1329	else
1330		qpair = &ctrlr->ioq[0];
1331
1332	nvme_qpair_submit_request(qpair, req);
1333}
1334
1335device_t
1336nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
1337{
1338
1339	return (ctrlr->dev);
1340}
1341
1342const struct nvme_controller_data *
1343nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
1344{
1345
1346	return (&ctrlr->cdata);
1347}
1348