1/*-
2 * Copyright (c) 2000, 2001 Michael Smith
3 * Copyright (c) 2000 BSDi
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 *	$FreeBSD$
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/malloc.h>
33#include <sys/kernel.h>
34#include <sys/bus.h>
35#include <sys/conf.h>
36#include <sys/ctype.h>
37#include <sys/ioccom.h>
38#include <sys/stat.h>
39
40#include <machine/bus.h>
41#include <machine/resource.h>
42#include <sys/rman.h>
43
44#include <cam/cam.h>
45#include <cam/cam_ccb.h>
46#include <cam/cam_periph.h>
47#include <cam/cam_sim.h>
48#include <cam/cam_xpt_sim.h>
49#include <cam/scsi/scsi_all.h>
50#include <cam/scsi/scsi_message.h>
51
52#include <dev/pci/pcireg.h>
53#include <dev/pci/pcivar.h>
54
55#include <dev/mly/mlyreg.h>
56#include <dev/mly/mlyio.h>
57#include <dev/mly/mlyvar.h>
58#include <dev/mly/mly_tables.h>
59
60static int	mly_probe(device_t dev);
61static int	mly_attach(device_t dev);
62static int	mly_pci_attach(struct mly_softc *sc);
63static int	mly_detach(device_t dev);
64static int	mly_shutdown(device_t dev);
65static void	mly_intr(void *arg);
66
67static int	mly_sg_map(struct mly_softc *sc);
68static void	mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
69static int	mly_mmbox_map(struct mly_softc *sc);
70static void	mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error);
71static void	mly_free(struct mly_softc *sc);
72
73static int	mly_get_controllerinfo(struct mly_softc *sc);
74static void	mly_scan_devices(struct mly_softc *sc);
75static void	mly_rescan_btl(struct mly_softc *sc, int bus, int target);
76static void	mly_complete_rescan(struct mly_command *mc);
77static int	mly_get_eventstatus(struct mly_softc *sc);
78static int	mly_enable_mmbox(struct mly_softc *sc);
79static int	mly_flush(struct mly_softc *sc);
80static int	mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data,
81			  size_t datasize, u_int8_t *status, void *sense_buffer, size_t *sense_length);
82static void	mly_check_event(struct mly_softc *sc);
83static void	mly_fetch_event(struct mly_softc *sc);
84static void	mly_complete_event(struct mly_command *mc);
85static void	mly_process_event(struct mly_softc *sc, struct mly_event *me);
86static void	mly_periodic(void *data);
87
88static int	mly_immediate_command(struct mly_command *mc);
89static int	mly_start(struct mly_command *mc);
90static void	mly_done(struct mly_softc *sc);
91static void	mly_complete(void *context, int pending);
92
93static int	mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp);
94static void	mly_release_command(struct mly_command *mc);
95static void	mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error);
96static int	mly_alloc_commands(struct mly_softc *sc);
97static void	mly_release_commands(struct mly_softc *sc);
98static void	mly_map_command(struct mly_command *mc);
99static void	mly_unmap_command(struct mly_command *mc);
100
101static int	mly_cam_attach(struct mly_softc *sc);
102static void	mly_cam_detach(struct mly_softc *sc);
103static void	mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target);
104static void	mly_cam_action(struct cam_sim *sim, union ccb *ccb);
105static int	mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio);
106static void	mly_cam_poll(struct cam_sim *sim);
107static void	mly_cam_complete(struct mly_command *mc);
108static struct cam_periph *mly_find_periph(struct mly_softc *sc, int bus, int target);
109static int	mly_name_device(struct mly_softc *sc, int bus, int target);
110
111static int	mly_fwhandshake(struct mly_softc *sc);
112
113static void	mly_describe_controller(struct mly_softc *sc);
114#ifdef MLY_DEBUG
115static void	mly_printstate(struct mly_softc *sc);
116static void	mly_print_command(struct mly_command *mc);
117static void	mly_print_packet(struct mly_command *mc);
118static void	mly_panic(struct mly_softc *sc, char *reason);
119static int	mly_timeout(struct mly_softc *sc);
120#endif
121void		mly_print_controller(int controller);
122
123
124static d_open_t		mly_user_open;
125static d_close_t	mly_user_close;
126static d_ioctl_t	mly_user_ioctl;
127static int	mly_user_command(struct mly_softc *sc, struct mly_user_command *uc);
128static int	mly_user_health(struct mly_softc *sc, struct mly_user_health *uh);
129
130#define MLY_CMD_TIMEOUT		20
131
132static device_method_t mly_methods[] = {
133    /* Device interface */
134    DEVMETHOD(device_probe,	mly_probe),
135    DEVMETHOD(device_attach,	mly_attach),
136    DEVMETHOD(device_detach,	mly_detach),
137    DEVMETHOD(device_shutdown,	mly_shutdown),
138    { 0, 0 }
139};
140
141static driver_t mly_pci_driver = {
142	"mly",
143	mly_methods,
144	sizeof(struct mly_softc)
145};
146
147static devclass_t	mly_devclass;
148DRIVER_MODULE(mly, pci, mly_pci_driver, mly_devclass, 0, 0);
149MODULE_DEPEND(mly, pci, 1, 1, 1);
150MODULE_DEPEND(mly, cam, 1, 1, 1);
151
152static struct cdevsw mly_cdevsw = {
153	.d_version =	D_VERSION,
154	.d_flags =	D_NEEDGIANT,
155	.d_open =	mly_user_open,
156	.d_close =	mly_user_close,
157	.d_ioctl =	mly_user_ioctl,
158	.d_name =	"mly",
159};
160
161/********************************************************************************
162 ********************************************************************************
163                                                                 Device Interface
164 ********************************************************************************
165 ********************************************************************************/
166
167static struct mly_ident
168{
169    u_int16_t		vendor;
170    u_int16_t		device;
171    u_int16_t		subvendor;
172    u_int16_t		subdevice;
173    int			hwif;
174    char		*desc;
175} mly_identifiers[] = {
176    {0x1069, 0xba56, 0x1069, 0x0040, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 2000"},
177    {0x1069, 0xba56, 0x1069, 0x0030, MLY_HWIF_STRONGARM, "Mylex eXtremeRAID 3000"},
178    {0x1069, 0x0050, 0x1069, 0x0050, MLY_HWIF_I960RX,    "Mylex AcceleRAID 352"},
179    {0x1069, 0x0050, 0x1069, 0x0052, MLY_HWIF_I960RX,    "Mylex AcceleRAID 170"},
180    {0x1069, 0x0050, 0x1069, 0x0054, MLY_HWIF_I960RX,    "Mylex AcceleRAID 160"},
181    {0, 0, 0, 0, 0, 0}
182};
183
184/********************************************************************************
185 * Compare the provided PCI device with the list we support.
186 */
187static int
188mly_probe(device_t dev)
189{
190    struct mly_ident	*m;
191
192    debug_called(1);
193
194    for (m = mly_identifiers; m->vendor != 0; m++) {
195	if ((m->vendor == pci_get_vendor(dev)) &&
196	    (m->device == pci_get_device(dev)) &&
197	    ((m->subvendor == 0) || ((m->subvendor == pci_get_subvendor(dev)) &&
198				     (m->subdevice == pci_get_subdevice(dev))))) {
199
200	    device_set_desc(dev, m->desc);
201	    return(BUS_PROBE_DEFAULT);	/* allow room to be overridden */
202	}
203    }
204    return(ENXIO);
205}
206
207/********************************************************************************
208 * Initialise the controller and softc
209 */
210static int
211mly_attach(device_t dev)
212{
213    struct mly_softc	*sc = device_get_softc(dev);
214    int			error;
215
216    debug_called(1);
217
218    sc->mly_dev = dev;
219
220#ifdef MLY_DEBUG
221    if (device_get_unit(sc->mly_dev) == 0)
222	mly_softc0 = sc;
223#endif
224
225    /*
226     * Do PCI-specific initialisation.
227     */
228    if ((error = mly_pci_attach(sc)) != 0)
229	goto out;
230
231    /*
232     * Initialise per-controller queues.
233     */
234    mly_initq_free(sc);
235    mly_initq_busy(sc);
236    mly_initq_complete(sc);
237
238    /*
239     * Initialise command-completion task.
240     */
241    TASK_INIT(&sc->mly_task_complete, 0, mly_complete, sc);
242
243    /* disable interrupts before we start talking to the controller */
244    MLY_MASK_INTERRUPTS(sc);
245
246    /*
247     * Wait for the controller to come ready, handshake with the firmware if required.
248     * This is typically only necessary on platforms where the controller BIOS does not
249     * run.
250     */
251    if ((error = mly_fwhandshake(sc)))
252	goto out;
253
254    /*
255     * Allocate initial command buffers.
256     */
257    if ((error = mly_alloc_commands(sc)))
258	goto out;
259
260    /*
261     * Obtain controller feature information
262     */
263    if ((error = mly_get_controllerinfo(sc)))
264	goto out;
265
266    /*
267     * Reallocate command buffers now we know how many we want.
268     */
269    mly_release_commands(sc);
270    if ((error = mly_alloc_commands(sc)))
271	goto out;
272
273    /*
274     * Get the current event counter for health purposes, populate the initial
275     * health status buffer.
276     */
277    if ((error = mly_get_eventstatus(sc)))
278	goto out;
279
280    /*
281     * Enable memory-mailbox mode.
282     */
283    if ((error = mly_enable_mmbox(sc)))
284	goto out;
285
286    /*
287     * Attach to CAM.
288     */
289    if ((error = mly_cam_attach(sc)))
290	goto out;
291
292    /*
293     * Print a little information about the controller
294     */
295    mly_describe_controller(sc);
296
297    /*
298     * Mark all attached devices for rescan.
299     */
300    mly_scan_devices(sc);
301
302    /*
303     * Instigate the first status poll immediately.  Rescan completions won't
304     * happen until interrupts are enabled, which should still be before
305     * the SCSI subsystem gets to us, courtesy of the "SCSI settling delay".
306     */
307    mly_periodic((void *)sc);
308
309    /*
310     * Create the control device.
311     */
312    sc->mly_dev_t = make_dev(&mly_cdevsw, 0, UID_ROOT, GID_OPERATOR,
313			     S_IRUSR | S_IWUSR, "mly%d", device_get_unit(sc->mly_dev));
314    sc->mly_dev_t->si_drv1 = sc;
315
316    /* enable interrupts now */
317    MLY_UNMASK_INTERRUPTS(sc);
318
319#ifdef MLY_DEBUG
320    timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz);
321#endif
322
323 out:
324    if (error != 0)
325	mly_free(sc);
326    return(error);
327}
328
329/********************************************************************************
330 * Perform PCI-specific initialisation.
331 */
332static int
333mly_pci_attach(struct mly_softc *sc)
334{
335    int			i, error;
336
337    debug_called(1);
338
339    /* assume failure is 'not configured' */
340    error = ENXIO;
341
342    /*
343     * Verify that the adapter is correctly set up in PCI space.
344     */
345    pci_enable_busmaster(sc->mly_dev);
346
347    /*
348     * Allocate the PCI register window.
349     */
350    sc->mly_regs_rid = PCIR_BAR(0);	/* first base address register */
351    if ((sc->mly_regs_resource = bus_alloc_resource_any(sc->mly_dev,
352	    SYS_RES_MEMORY, &sc->mly_regs_rid, RF_ACTIVE)) == NULL) {
353	mly_printf(sc, "can't allocate register window\n");
354	goto fail;
355    }
356    sc->mly_btag = rman_get_bustag(sc->mly_regs_resource);
357    sc->mly_bhandle = rman_get_bushandle(sc->mly_regs_resource);
358
359    /*
360     * Allocate and connect our interrupt.
361     */
362    sc->mly_irq_rid = 0;
363    if ((sc->mly_irq = bus_alloc_resource_any(sc->mly_dev, SYS_RES_IRQ,
364		    &sc->mly_irq_rid, RF_SHAREABLE | RF_ACTIVE)) == NULL) {
365	mly_printf(sc, "can't allocate interrupt\n");
366	goto fail;
367    }
368    if (bus_setup_intr(sc->mly_dev, sc->mly_irq, INTR_TYPE_CAM | INTR_ENTROPY, NULL, mly_intr, sc, &sc->mly_intr)) {
369	mly_printf(sc, "can't set up interrupt\n");
370	goto fail;
371    }
372
373    /* assume failure is 'out of memory' */
374    error = ENOMEM;
375
376    /*
377     * Allocate the parent bus DMA tag appropriate for our PCI interface.
378     *
379     * Note that all of these controllers are 64-bit capable.
380     */
381    if (bus_dma_tag_create(bus_get_dma_tag(sc->mly_dev),/* PCI parent */
382			   1, 0, 			/* alignment, boundary */
383			   BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
384			   BUS_SPACE_MAXADDR, 		/* highaddr */
385			   NULL, NULL, 			/* filter, filterarg */
386			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
387			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
388			   BUS_DMA_ALLOCNOW,		/* flags */
389			   NULL,			/* lockfunc */
390			   NULL,			/* lockarg */
391			   &sc->mly_parent_dmat)) {
392	mly_printf(sc, "can't allocate parent DMA tag\n");
393	goto fail;
394    }
395
396    /*
397     * Create DMA tag for mapping buffers into controller-addressable space.
398     */
399    if (bus_dma_tag_create(sc->mly_parent_dmat, 	/* parent */
400			   1, 0, 			/* alignment, boundary */
401			   BUS_SPACE_MAXADDR,		/* lowaddr */
402			   BUS_SPACE_MAXADDR, 		/* highaddr */
403			   NULL, NULL, 			/* filter, filterarg */
404			   MAXBSIZE, MLY_MAX_SGENTRIES,	/* maxsize, nsegments */
405			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
406			   0,				/* flags */
407			   busdma_lock_mutex,		/* lockfunc */
408			   &Giant,			/* lockarg */
409			   &sc->mly_buffer_dmat)) {
410	mly_printf(sc, "can't allocate buffer DMA tag\n");
411	goto fail;
412    }
413
414    /*
415     * Initialise the DMA tag for command packets.
416     */
417    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
418			   1, 0, 			/* alignment, boundary */
419			   BUS_SPACE_MAXADDR,		/* lowaddr */
420			   BUS_SPACE_MAXADDR, 		/* highaddr */
421			   NULL, NULL, 			/* filter, filterarg */
422			   sizeof(union mly_command_packet) * MLY_MAX_COMMANDS, 1,	/* maxsize, nsegments */
423			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
424			   BUS_DMA_ALLOCNOW,		/* flags */
425			   NULL, NULL,			/* lockfunc, lockarg */
426			   &sc->mly_packet_dmat)) {
427	mly_printf(sc, "can't allocate command packet DMA tag\n");
428	goto fail;
429    }
430
431    /*
432     * Detect the hardware interface version
433     */
434    for (i = 0; mly_identifiers[i].vendor != 0; i++) {
435	if ((mly_identifiers[i].vendor == pci_get_vendor(sc->mly_dev)) &&
436	    (mly_identifiers[i].device == pci_get_device(sc->mly_dev))) {
437	    sc->mly_hwif = mly_identifiers[i].hwif;
438	    switch(sc->mly_hwif) {
439	    case MLY_HWIF_I960RX:
440		debug(1, "set hardware up for i960RX");
441		sc->mly_doorbell_true = 0x00;
442		sc->mly_command_mailbox =  MLY_I960RX_COMMAND_MAILBOX;
443		sc->mly_status_mailbox =   MLY_I960RX_STATUS_MAILBOX;
444		sc->mly_idbr =             MLY_I960RX_IDBR;
445		sc->mly_odbr =             MLY_I960RX_ODBR;
446		sc->mly_error_status =     MLY_I960RX_ERROR_STATUS;
447		sc->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
448		sc->mly_interrupt_mask =   MLY_I960RX_INTERRUPT_MASK;
449		break;
450	    case MLY_HWIF_STRONGARM:
451		debug(1, "set hardware up for StrongARM");
452		sc->mly_doorbell_true = 0xff;		/* doorbell 'true' is 0 */
453		sc->mly_command_mailbox =  MLY_STRONGARM_COMMAND_MAILBOX;
454		sc->mly_status_mailbox =   MLY_STRONGARM_STATUS_MAILBOX;
455		sc->mly_idbr =             MLY_STRONGARM_IDBR;
456		sc->mly_odbr =             MLY_STRONGARM_ODBR;
457		sc->mly_error_status =     MLY_STRONGARM_ERROR_STATUS;
458		sc->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
459		sc->mly_interrupt_mask =   MLY_STRONGARM_INTERRUPT_MASK;
460		break;
461	    }
462	    break;
463	}
464    }
465
466    /*
467     * Create the scatter/gather mappings.
468     */
469    if ((error = mly_sg_map(sc)))
470	goto fail;
471
472    /*
473     * Allocate and map the memory mailbox
474     */
475    if ((error = mly_mmbox_map(sc)))
476	goto fail;
477
478    error = 0;
479
480fail:
481    return(error);
482}
483
484/********************************************************************************
485 * Shut the controller down and detach all our resources.
486 */
487static int
488mly_detach(device_t dev)
489{
490    int			error;
491
492    if ((error = mly_shutdown(dev)) != 0)
493	return(error);
494
495    mly_free(device_get_softc(dev));
496    return(0);
497}
498
499/********************************************************************************
500 * Bring the controller to a state where it can be safely left alone.
501 *
502 * Note that it should not be necessary to wait for any outstanding commands,
503 * as they should be completed prior to calling here.
504 *
505 * XXX this applies for I/O, but not status polls; we should beware of
506 *     the case where a status command is running while we detach.
507 */
508static int
509mly_shutdown(device_t dev)
510{
511    struct mly_softc	*sc = device_get_softc(dev);
512
513    debug_called(1);
514
515    if (sc->mly_state & MLY_STATE_OPEN)
516	return(EBUSY);
517
518    /* kill the periodic event */
519    untimeout(mly_periodic, sc, sc->mly_periodic);
520
521    /* flush controller */
522    mly_printf(sc, "flushing cache...");
523    printf("%s\n", mly_flush(sc) ? "failed" : "done");
524
525    MLY_MASK_INTERRUPTS(sc);
526
527    return(0);
528}
529
530/*******************************************************************************
531 * Take an interrupt, or be poked by other code to look for interrupt-worthy
532 * status.
533 */
534static void
535mly_intr(void *arg)
536{
537    struct mly_softc	*sc = (struct mly_softc *)arg;
538
539    debug_called(2);
540
541    mly_done(sc);
542};
543
544/********************************************************************************
545 ********************************************************************************
546                                                Bus-dependant Resource Management
547 ********************************************************************************
548 ********************************************************************************/
549
550/********************************************************************************
551 * Allocate memory for the scatter/gather tables
552 */
553static int
554mly_sg_map(struct mly_softc *sc)
555{
556    size_t	segsize;
557
558    debug_called(1);
559
560    /*
561     * Create a single tag describing a region large enough to hold all of
562     * the s/g lists we will need.
563     */
564    segsize = sizeof(struct mly_sg_entry) * MLY_MAX_COMMANDS *MLY_MAX_SGENTRIES;
565    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
566			   1, 0, 			/* alignment,boundary */
567			   BUS_SPACE_MAXADDR,		/* lowaddr */
568			   BUS_SPACE_MAXADDR, 		/* highaddr */
569			   NULL, NULL, 			/* filter, filterarg */
570			   segsize, 1,			/* maxsize, nsegments */
571			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
572			   BUS_DMA_ALLOCNOW,		/* flags */
573			   NULL, NULL,			/* lockfunc, lockarg */
574			   &sc->mly_sg_dmat)) {
575	mly_printf(sc, "can't allocate scatter/gather DMA tag\n");
576	return(ENOMEM);
577    }
578
579    /*
580     * Allocate enough s/g maps for all commands and permanently map them into
581     * controller-visible space.
582     *
583     * XXX this assumes we can get enough space for all the s/g maps in one
584     * contiguous slab.
585     */
586    if (bus_dmamem_alloc(sc->mly_sg_dmat, (void **)&sc->mly_sg_table,
587			 BUS_DMA_NOWAIT, &sc->mly_sg_dmamap)) {
588	mly_printf(sc, "can't allocate s/g table\n");
589	return(ENOMEM);
590    }
591    if (bus_dmamap_load(sc->mly_sg_dmat, sc->mly_sg_dmamap, sc->mly_sg_table,
592			segsize, mly_sg_map_helper, sc, BUS_DMA_NOWAIT) != 0)
593	return (ENOMEM);
594    return(0);
595}
596
597/********************************************************************************
598 * Save the physical address of the base of the s/g table.
599 */
600static void
601mly_sg_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
602{
603    struct mly_softc	*sc = (struct mly_softc *)arg;
604
605    debug_called(1);
606
607    /* save base of s/g table's address in bus space */
608    sc->mly_sg_busaddr = segs->ds_addr;
609}
610
611/********************************************************************************
612 * Allocate memory for the memory-mailbox interface
613 */
614static int
615mly_mmbox_map(struct mly_softc *sc)
616{
617
618    /*
619     * Create a DMA tag for a single contiguous region large enough for the
620     * memory mailbox structure.
621     */
622    if (bus_dma_tag_create(sc->mly_parent_dmat,		/* parent */
623			   1, 0, 			/* alignment,boundary */
624			   BUS_SPACE_MAXADDR,		/* lowaddr */
625			   BUS_SPACE_MAXADDR, 		/* highaddr */
626			   NULL, NULL, 			/* filter, filterarg */
627			   sizeof(struct mly_mmbox), 1,	/* maxsize, nsegments */
628			   BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
629			   BUS_DMA_ALLOCNOW,		/* flags */
630			   NULL, NULL,			/* lockfunc, lockarg */
631			   &sc->mly_mmbox_dmat)) {
632	mly_printf(sc, "can't allocate memory mailbox DMA tag\n");
633	return(ENOMEM);
634    }
635
636    /*
637     * Allocate the buffer
638     */
639    if (bus_dmamem_alloc(sc->mly_mmbox_dmat, (void **)&sc->mly_mmbox, BUS_DMA_NOWAIT, &sc->mly_mmbox_dmamap)) {
640	mly_printf(sc, "can't allocate memory mailbox\n");
641	return(ENOMEM);
642    }
643    if (bus_dmamap_load(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap, sc->mly_mmbox,
644			sizeof(struct mly_mmbox), mly_mmbox_map_helper, sc,
645			BUS_DMA_NOWAIT) != 0)
646	return (ENOMEM);
647    bzero(sc->mly_mmbox, sizeof(*sc->mly_mmbox));
648    return(0);
649
650}
651
652/********************************************************************************
653 * Save the physical address of the memory mailbox
654 */
655static void
656mly_mmbox_map_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
657{
658    struct mly_softc	*sc = (struct mly_softc *)arg;
659
660    debug_called(1);
661
662    sc->mly_mmbox_busaddr = segs->ds_addr;
663}
664
665/********************************************************************************
666 * Free all of the resources associated with (sc)
667 *
668 * Should not be called if the controller is active.
669 */
670static void
671mly_free(struct mly_softc *sc)
672{
673
674    debug_called(1);
675
676    /* Remove the management device */
677    destroy_dev(sc->mly_dev_t);
678
679    /* detach from CAM */
680    mly_cam_detach(sc);
681
682    /* release command memory */
683    mly_release_commands(sc);
684
685    /* throw away the controllerinfo structure */
686    if (sc->mly_controllerinfo != NULL)
687	free(sc->mly_controllerinfo, M_DEVBUF);
688
689    /* throw away the controllerparam structure */
690    if (sc->mly_controllerparam != NULL)
691	free(sc->mly_controllerparam, M_DEVBUF);
692
693    /* destroy data-transfer DMA tag */
694    if (sc->mly_buffer_dmat)
695	bus_dma_tag_destroy(sc->mly_buffer_dmat);
696
697    /* free and destroy DMA memory and tag for s/g lists */
698    if (sc->mly_sg_table) {
699	bus_dmamap_unload(sc->mly_sg_dmat, sc->mly_sg_dmamap);
700	bus_dmamem_free(sc->mly_sg_dmat, sc->mly_sg_table, sc->mly_sg_dmamap);
701    }
702    if (sc->mly_sg_dmat)
703	bus_dma_tag_destroy(sc->mly_sg_dmat);
704
705    /* free and destroy DMA memory and tag for memory mailbox */
706    if (sc->mly_mmbox) {
707	bus_dmamap_unload(sc->mly_mmbox_dmat, sc->mly_mmbox_dmamap);
708	bus_dmamem_free(sc->mly_mmbox_dmat, sc->mly_mmbox, sc->mly_mmbox_dmamap);
709    }
710    if (sc->mly_mmbox_dmat)
711	bus_dma_tag_destroy(sc->mly_mmbox_dmat);
712
713    /* disconnect the interrupt handler */
714    if (sc->mly_intr)
715	bus_teardown_intr(sc->mly_dev, sc->mly_irq, sc->mly_intr);
716    if (sc->mly_irq != NULL)
717	bus_release_resource(sc->mly_dev, SYS_RES_IRQ, sc->mly_irq_rid, sc->mly_irq);
718
719    /* destroy the parent DMA tag */
720    if (sc->mly_parent_dmat)
721	bus_dma_tag_destroy(sc->mly_parent_dmat);
722
723    /* release the register window mapping */
724    if (sc->mly_regs_resource != NULL)
725	bus_release_resource(sc->mly_dev, SYS_RES_MEMORY, sc->mly_regs_rid, sc->mly_regs_resource);
726}
727
728/********************************************************************************
729 ********************************************************************************
730                                                                 Command Wrappers
731 ********************************************************************************
732 ********************************************************************************/
733
734/********************************************************************************
735 * Fill in the mly_controllerinfo and mly_controllerparam fields in the softc.
736 */
737static int
738mly_get_controllerinfo(struct mly_softc *sc)
739{
740    struct mly_command_ioctl	mci;
741    u_int8_t			status;
742    int				error;
743
744    debug_called(1);
745
746    if (sc->mly_controllerinfo != NULL)
747	free(sc->mly_controllerinfo, M_DEVBUF);
748
749    /* build the getcontrollerinfo ioctl and send it */
750    bzero(&mci, sizeof(mci));
751    sc->mly_controllerinfo = NULL;
752    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
753    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerinfo, sizeof(*sc->mly_controllerinfo),
754			   &status, NULL, NULL)))
755	return(error);
756    if (status != 0)
757	return(EIO);
758
759    if (sc->mly_controllerparam != NULL)
760	free(sc->mly_controllerparam, M_DEVBUF);
761
762    /* build the getcontrollerparameter ioctl and send it */
763    bzero(&mci, sizeof(mci));
764    sc->mly_controllerparam = NULL;
765    mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
766    if ((error = mly_ioctl(sc, &mci, (void **)&sc->mly_controllerparam, sizeof(*sc->mly_controllerparam),
767			   &status, NULL, NULL)))
768	return(error);
769    if (status != 0)
770	return(EIO);
771
772    return(0);
773}
774
775/********************************************************************************
776 * Schedule all possible devices for a rescan.
777 *
778 */
779static void
780mly_scan_devices(struct mly_softc *sc)
781{
782    int		bus, target;
783
784    debug_called(1);
785
786    /*
787     * Clear any previous BTL information.
788     */
789    bzero(&sc->mly_btl, sizeof(sc->mly_btl));
790
791    /*
792     * Mark all devices as requiring a rescan, and let the next
793     * periodic scan collect them.
794     */
795    for (bus = 0; bus < sc->mly_cam_channels; bus++)
796	if (MLY_BUS_IS_VALID(sc, bus))
797	    for (target = 0; target < MLY_MAX_TARGETS; target++)
798		sc->mly_btl[bus][target].mb_flags = MLY_BTL_RESCAN;
799
800}
801
802/********************************************************************************
803 * Rescan a device, possibly as a consequence of getting an event which suggests
804 * that it may have changed.
805 *
806 * If we suffer resource starvation, we can abandon the rescan as we'll be
807 * retried.
808 */
809static void
810mly_rescan_btl(struct mly_softc *sc, int bus, int target)
811{
812    struct mly_command		*mc;
813    struct mly_command_ioctl	*mci;
814
815    debug_called(1);
816
817    /* check that this bus is valid */
818    if (!MLY_BUS_IS_VALID(sc, bus))
819	return;
820
821    /* get a command */
822    if (mly_alloc_command(sc, &mc))
823	return;
824
825    /* set up the data buffer */
826    if ((mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
827	mly_release_command(mc);
828	return;
829    }
830    mc->mc_flags |= MLY_CMD_DATAIN;
831    mc->mc_complete = mly_complete_rescan;
832
833    /*
834     * Build the ioctl.
835     */
836    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
837    mci->opcode = MDACMD_IOCTL;
838    mci->addr.phys.controller = 0;
839    mci->timeout.value = 30;
840    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
841    if (MLY_BUS_IS_VIRTUAL(sc, bus)) {
842	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getlogdevinfovalid);
843	mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
844	mci->addr.log.logdev = MLY_LOGDEV_ID(sc, bus, target);
845	debug(1, "logical device %d", mci->addr.log.logdev);
846    } else {
847	mc->mc_length = mci->data_size = sizeof(struct mly_ioctl_getphysdevinfovalid);
848	mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
849	mci->addr.phys.lun = 0;
850	mci->addr.phys.target = target;
851	mci->addr.phys.channel = bus;
852	debug(1, "physical device %d:%d", mci->addr.phys.channel, mci->addr.phys.target);
853    }
854
855    /*
856     * Dispatch the command.  If we successfully send the command, clear the rescan
857     * bit.
858     */
859    if (mly_start(mc) != 0) {
860	mly_release_command(mc);
861    } else {
862	sc->mly_btl[bus][target].mb_flags &= ~MLY_BTL_RESCAN;	/* success */
863    }
864}
865
866/********************************************************************************
867 * Handle the completion of a rescan operation
868 */
869static void
870mly_complete_rescan(struct mly_command *mc)
871{
872    struct mly_softc				*sc = mc->mc_sc;
873    struct mly_ioctl_getlogdevinfovalid		*ldi;
874    struct mly_ioctl_getphysdevinfovalid	*pdi;
875    struct mly_command_ioctl			*mci;
876    struct mly_btl				btl, *btlp;
877    int						bus, target, rescan;
878
879    debug_called(1);
880
881    /*
882     * Recover the bus and target from the command.  We need these even in
883     * the case where we don't have a useful response.
884     */
885    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
886    if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
887	bus = MLY_LOGDEV_BUS(sc, mci->addr.log.logdev);
888	target = MLY_LOGDEV_TARGET(sc, mci->addr.log.logdev);
889    } else {
890	bus = mci->addr.phys.channel;
891	target = mci->addr.phys.target;
892    }
893    /* XXX validate bus/target? */
894
895    /* the default result is 'no device' */
896    bzero(&btl, sizeof(btl));
897
898    /* if the rescan completed OK, we have possibly-new BTL data */
899    if (mc->mc_status == 0) {
900	if (mc->mc_length == sizeof(*ldi)) {
901	    ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
902	    if ((MLY_LOGDEV_BUS(sc, ldi->logical_device_number) != bus) ||
903		(MLY_LOGDEV_TARGET(sc, ldi->logical_device_number) != target)) {
904		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
905			   bus, target, MLY_LOGDEV_BUS(sc, ldi->logical_device_number),
906			   MLY_LOGDEV_TARGET(sc, ldi->logical_device_number));
907		/* XXX what can we do about this? */
908	    }
909	    btl.mb_flags = MLY_BTL_LOGICAL;
910	    btl.mb_type = ldi->raid_level;
911	    btl.mb_state = ldi->state;
912	    debug(1, "BTL rescan for %d returns %s, %s", ldi->logical_device_number,
913		  mly_describe_code(mly_table_device_type, ldi->raid_level),
914		  mly_describe_code(mly_table_device_state, ldi->state));
915	} else if (mc->mc_length == sizeof(*pdi)) {
916	    pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
917	    if ((pdi->channel != bus) || (pdi->target != target)) {
918		mly_printf(sc, "WARNING: BTL rescan for %d:%d returned data for %d:%d instead\n",
919			   bus, target, pdi->channel, pdi->target);
920		/* XXX what can we do about this? */
921	    }
922	    btl.mb_flags = MLY_BTL_PHYSICAL;
923	    btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
924	    btl.mb_state = pdi->state;
925	    btl.mb_speed = pdi->speed;
926	    btl.mb_width = pdi->width;
927	    if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
928		sc->mly_btl[bus][target].mb_flags |= MLY_BTL_PROTECTED;
929	    debug(1, "BTL rescan for %d:%d returns %s", bus, target,
930		  mly_describe_code(mly_table_device_state, pdi->state));
931	} else {
932	    mly_printf(sc, "BTL rescan result invalid\n");
933	}
934    }
935
936    free(mc->mc_data, M_DEVBUF);
937    mly_release_command(mc);
938
939    /*
940     * Decide whether we need to rescan the device.
941     */
942    rescan = 0;
943
944    /* device type changes (usually between 'nothing' and 'something') */
945    btlp = &sc->mly_btl[bus][target];
946    if (btl.mb_flags != btlp->mb_flags) {
947	debug(1, "flags changed, rescanning");
948	rescan = 1;
949    }
950
951    /* XXX other reasons? */
952
953    /*
954     * Update BTL information.
955     */
956    *btlp = btl;
957
958    /*
959     * Perform CAM rescan if required.
960     */
961    if (rescan)
962	mly_cam_rescan_btl(sc, bus, target);
963}
964
965/********************************************************************************
966 * Get the current health status and set the 'next event' counter to suit.
967 */
968static int
969mly_get_eventstatus(struct mly_softc *sc)
970{
971    struct mly_command_ioctl	mci;
972    struct mly_health_status	*mh;
973    u_int8_t			status;
974    int				error;
975
976    /* build the gethealthstatus ioctl and send it */
977    bzero(&mci, sizeof(mci));
978    mh = NULL;
979    mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
980
981    if ((error = mly_ioctl(sc, &mci, (void **)&mh, sizeof(*mh), &status, NULL, NULL)))
982	return(error);
983    if (status != 0)
984	return(EIO);
985
986    /* get the event counter */
987    sc->mly_event_change = mh->change_counter;
988    sc->mly_event_waiting = mh->next_event;
989    sc->mly_event_counter = mh->next_event;
990
991    /* save the health status into the memory mailbox */
992    bcopy(mh, &sc->mly_mmbox->mmm_health.status, sizeof(*mh));
993
994    debug(1, "initial change counter %d, event counter %d", mh->change_counter, mh->next_event);
995
996    free(mh, M_DEVBUF);
997    return(0);
998}
999
1000/********************************************************************************
1001 * Enable the memory mailbox mode.
1002 */
1003static int
1004mly_enable_mmbox(struct mly_softc *sc)
1005{
1006    struct mly_command_ioctl	mci;
1007    u_int8_t			*sp, status;
1008    int				error;
1009
1010    debug_called(1);
1011
1012    /* build the ioctl and send it */
1013    bzero(&mci, sizeof(mci));
1014    mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
1015    /* set buffer addresses */
1016    mci.param.setmemorymailbox.command_mailbox_physaddr =
1017	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
1018    mci.param.setmemorymailbox.status_mailbox_physaddr =
1019	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
1020    mci.param.setmemorymailbox.health_buffer_physaddr =
1021	sc->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
1022
1023    /* set buffer sizes - abuse of data_size field is revolting */
1024    sp = (u_int8_t *)&mci.data_size;
1025    sp[0] = ((sizeof(union mly_command_packet) * MLY_MMBOX_COMMANDS) / 1024);
1026    sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) / 1024;
1027    mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) / 1024;
1028
1029    debug(1, "memory mailbox at %p (0x%llx/%d 0x%llx/%d 0x%llx/%d", sc->mly_mmbox,
1030	  mci.param.setmemorymailbox.command_mailbox_physaddr, sp[0],
1031	  mci.param.setmemorymailbox.status_mailbox_physaddr, sp[1],
1032	  mci.param.setmemorymailbox.health_buffer_physaddr,
1033	  mci.param.setmemorymailbox.health_buffer_size);
1034
1035    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1036	return(error);
1037    if (status != 0)
1038	return(EIO);
1039    sc->mly_state |= MLY_STATE_MMBOX_ACTIVE;
1040    debug(1, "memory mailbox active");
1041    return(0);
1042}
1043
1044/********************************************************************************
1045 * Flush all pending I/O from the controller.
1046 */
1047static int
1048mly_flush(struct mly_softc *sc)
1049{
1050    struct mly_command_ioctl	mci;
1051    u_int8_t			status;
1052    int				error;
1053
1054    debug_called(1);
1055
1056    /* build the ioctl */
1057    bzero(&mci, sizeof(mci));
1058    mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
1059    mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER;
1060
1061    /* pass it off to the controller */
1062    if ((error = mly_ioctl(sc, &mci, NULL, 0, &status, NULL, NULL)))
1063	return(error);
1064
1065    return((status == 0) ? 0 : EIO);
1066}
1067
1068/********************************************************************************
1069 * Perform an ioctl command.
1070 *
1071 * If (data) is not NULL, the command requires data transfer.  If (*data) is NULL
1072 * the command requires data transfer from the controller, and we will allocate
1073 * a buffer for it.  If (*data) is not NULL, the command requires data transfer
1074 * to the controller.
1075 *
1076 * XXX passing in the whole ioctl structure is ugly.  Better ideas?
1077 *
1078 * XXX we don't even try to handle the case where datasize > 4k.  We should.
1079 */
1080static int
1081mly_ioctl(struct mly_softc *sc, struct mly_command_ioctl *ioctl, void **data, size_t datasize,
1082	  u_int8_t *status, void *sense_buffer, size_t *sense_length)
1083{
1084    struct mly_command		*mc;
1085    struct mly_command_ioctl	*mci;
1086    int				error;
1087
1088    debug_called(1);
1089
1090    mc = NULL;
1091    if (mly_alloc_command(sc, &mc)) {
1092	error = ENOMEM;
1093	goto out;
1094    }
1095
1096    /* copy the ioctl structure, but save some important fields and then fixup */
1097    mci = &mc->mc_packet->ioctl;
1098    ioctl->sense_buffer_address = mci->sense_buffer_address;
1099    ioctl->maximum_sense_size = mci->maximum_sense_size;
1100    *mci = *ioctl;
1101    mci->opcode = MDACMD_IOCTL;
1102    mci->timeout.value = 30;
1103    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1104
1105    /* handle the data buffer */
1106    if (data != NULL) {
1107	if (*data == NULL) {
1108	    /* allocate data buffer */
1109	    if ((mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT)) == NULL) {
1110		error = ENOMEM;
1111		goto out;
1112	    }
1113	    mc->mc_flags |= MLY_CMD_DATAIN;
1114	} else {
1115	    mc->mc_data = *data;
1116	    mc->mc_flags |= MLY_CMD_DATAOUT;
1117	}
1118	mc->mc_length = datasize;
1119	mc->mc_packet->generic.data_size = datasize;
1120    }
1121
1122    /* run the command */
1123    if ((error = mly_immediate_command(mc)))
1124	goto out;
1125
1126    /* clean up and return any data */
1127    *status = mc->mc_status;
1128    if ((mc->mc_sense > 0) && (sense_buffer != NULL)) {
1129	bcopy(mc->mc_packet, sense_buffer, mc->mc_sense);
1130	*sense_length = mc->mc_sense;
1131	goto out;
1132    }
1133
1134    /* should we return a data pointer? */
1135    if ((data != NULL) && (*data == NULL))
1136	*data = mc->mc_data;
1137
1138    /* command completed OK */
1139    error = 0;
1140
1141out:
1142    if (mc != NULL) {
1143	/* do we need to free a data buffer we allocated? */
1144	if (error && (mc->mc_data != NULL) && (*data == NULL))
1145	    free(mc->mc_data, M_DEVBUF);
1146	mly_release_command(mc);
1147    }
1148    return(error);
1149}
1150
1151/********************************************************************************
1152 * Check for event(s) outstanding in the controller.
1153 */
1154static void
1155mly_check_event(struct mly_softc *sc)
1156{
1157
1158    /*
1159     * The controller may have updated the health status information,
1160     * so check for it here.  Note that the counters are all in host memory,
1161     * so this check is very cheap.  Also note that we depend on checking on
1162     * completion
1163     */
1164    if (sc->mly_mmbox->mmm_health.status.change_counter != sc->mly_event_change) {
1165	sc->mly_event_change = sc->mly_mmbox->mmm_health.status.change_counter;
1166	debug(1, "event change %d, event status update, %d -> %d", sc->mly_event_change,
1167	      sc->mly_event_waiting, sc->mly_mmbox->mmm_health.status.next_event);
1168	sc->mly_event_waiting = sc->mly_mmbox->mmm_health.status.next_event;
1169
1170	/* wake up anyone that might be interested in this */
1171	wakeup(&sc->mly_event_change);
1172    }
1173    if (sc->mly_event_counter != sc->mly_event_waiting)
1174    mly_fetch_event(sc);
1175}
1176
1177/********************************************************************************
1178 * Fetch one event from the controller.
1179 *
1180 * If we fail due to resource starvation, we'll be retried the next time a
1181 * command completes.
1182 */
1183static void
1184mly_fetch_event(struct mly_softc *sc)
1185{
1186    struct mly_command		*mc;
1187    struct mly_command_ioctl	*mci;
1188    int				s;
1189    u_int32_t			event;
1190
1191    debug_called(1);
1192
1193    /* get a command */
1194    if (mly_alloc_command(sc, &mc))
1195	return;
1196
1197    /* set up the data buffer */
1198    if ((mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT | M_ZERO)) == NULL) {
1199	mly_release_command(mc);
1200	return;
1201    }
1202    mc->mc_length = sizeof(struct mly_event);
1203    mc->mc_flags |= MLY_CMD_DATAIN;
1204    mc->mc_complete = mly_complete_event;
1205
1206    /*
1207     * Get an event number to fetch.  It's possible that we've raced with another
1208     * context for the last event, in which case there will be no more events.
1209     */
1210    s = splcam();
1211    if (sc->mly_event_counter == sc->mly_event_waiting) {
1212	mly_release_command(mc);
1213	splx(s);
1214	return;
1215    }
1216    event = sc->mly_event_counter++;
1217    splx(s);
1218
1219    /*
1220     * Build the ioctl.
1221     *
1222     * At this point we are committed to sending this request, as it
1223     * will be the only one constructed for this particular event number.
1224     */
1225    mci = (struct mly_command_ioctl *)&mc->mc_packet->ioctl;
1226    mci->opcode = MDACMD_IOCTL;
1227    mci->data_size = sizeof(struct mly_event);
1228    mci->addr.phys.lun = (event >> 16) & 0xff;
1229    mci->addr.phys.target = (event >> 24) & 0xff;
1230    mci->addr.phys.channel = 0;
1231    mci->addr.phys.controller = 0;
1232    mci->timeout.value = 30;
1233    mci->timeout.scale = MLY_TIMEOUT_SECONDS;
1234    mci->sub_ioctl = MDACIOCTL_GETEVENT;
1235    mci->param.getevent.sequence_number_low = event & 0xffff;
1236
1237    debug(1, "fetch event %u", event);
1238
1239    /*
1240     * Submit the command.
1241     *
1242     * Note that failure of mly_start() will result in this event never being
1243     * fetched.
1244     */
1245    if (mly_start(mc) != 0) {
1246	mly_printf(sc, "couldn't fetch event %u\n", event);
1247	mly_release_command(mc);
1248    }
1249}
1250
1251/********************************************************************************
1252 * Handle the completion of an event poll.
1253 */
1254static void
1255mly_complete_event(struct mly_command *mc)
1256{
1257    struct mly_softc	*sc = mc->mc_sc;
1258    struct mly_event	*me = (struct mly_event *)mc->mc_data;
1259
1260    debug_called(1);
1261
1262    /*
1263     * If the event was successfully fetched, process it.
1264     */
1265    if (mc->mc_status == SCSI_STATUS_OK) {
1266	mly_process_event(sc, me);
1267	free(me, M_DEVBUF);
1268    }
1269    mly_release_command(mc);
1270
1271    /*
1272     * Check for another event.
1273     */
1274    mly_check_event(sc);
1275}
1276
1277/********************************************************************************
1278 * Process a controller event.
1279 */
1280static void
1281mly_process_event(struct mly_softc *sc, struct mly_event *me)
1282{
1283    struct scsi_sense_data_fixed *ssd;
1284    char			 *fp, *tp;
1285    int				 bus, target, event, class, action;
1286
1287    ssd = (struct scsi_sense_data_fixed *)&me->sense[0];
1288
1289    /*
1290     * Errors can be reported using vendor-unique sense data.  In this case, the
1291     * event code will be 0x1c (Request sense data present), the sense key will
1292     * be 0x09 (vendor specific), the MSB of the ASC will be set, and the
1293     * actual event code will be a 16-bit value comprised of the ASCQ (low byte)
1294     * and low seven bits of the ASC (low seven bits of the high byte).
1295     */
1296    if ((me->code == 0x1c) &&
1297	((ssd->flags & SSD_KEY) == SSD_KEY_Vendor_Specific) &&
1298	(ssd->add_sense_code & 0x80)) {
1299	event = ((int)(ssd->add_sense_code & ~0x80) << 8) + ssd->add_sense_code_qual;
1300    } else {
1301	event = me->code;
1302    }
1303
1304    /* look up event, get codes */
1305    fp = mly_describe_code(mly_table_event, event);
1306
1307    debug(1, "Event %d  code 0x%x", me->sequence_number, me->code);
1308
1309    /* quiet event? */
1310    class = fp[0];
1311    if (isupper(class) && bootverbose)
1312	class = tolower(class);
1313
1314    /* get action code, text string */
1315    action = fp[1];
1316    tp = &fp[2];
1317
1318    /*
1319     * Print some information about the event.
1320     *
1321     * This code uses a table derived from the corresponding portion of the Linux
1322     * driver, and thus the parser is very similar.
1323     */
1324    switch(class) {
1325    case 'p':		/* error on physical device */
1326	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1327	if (action == 'r')
1328	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1329	break;
1330    case 'l':		/* error on logical unit */
1331    case 'm':		/* message about logical unit */
1332	bus = MLY_LOGDEV_BUS(sc, me->lun);
1333	target = MLY_LOGDEV_TARGET(sc, me->lun);
1334	mly_name_device(sc, bus, target);
1335	mly_printf(sc, "logical device %d (%s) %s\n", me->lun, sc->mly_btl[bus][target].mb_name, tp);
1336	if (action == 'r')
1337	    sc->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
1338	break;
1339      break;
1340    case 's':		/* report of sense data */
1341	if (((ssd->flags & SSD_KEY) == SSD_KEY_NO_SENSE) ||
1342	    (((ssd->flags & SSD_KEY) == SSD_KEY_NOT_READY) &&
1343	     (ssd->add_sense_code == 0x04) &&
1344	     ((ssd->add_sense_code_qual == 0x01) || (ssd->add_sense_code_qual == 0x02))))
1345	    break;	/* ignore NO_SENSE or NOT_READY in one case */
1346
1347	mly_printf(sc, "physical device %d:%d %s\n", me->channel, me->target, tp);
1348	mly_printf(sc, "  sense key %d  asc %02x  ascq %02x\n",
1349		      ssd->flags & SSD_KEY, ssd->add_sense_code, ssd->add_sense_code_qual);
1350	mly_printf(sc, "  info %4D  csi %4D\n", ssd->info, "", ssd->cmd_spec_info, "");
1351	if (action == 'r')
1352	    sc->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN;
1353	break;
1354    case 'e':
1355	mly_printf(sc, tp, me->target, me->lun);
1356	printf("\n");
1357	break;
1358    case 'c':
1359	mly_printf(sc, "controller %s\n", tp);
1360	break;
1361    case '?':
1362	mly_printf(sc, "%s - %d\n", tp, me->code);
1363	break;
1364    default:	/* probably a 'noisy' event being ignored */
1365	break;
1366    }
1367}
1368
1369/********************************************************************************
1370 * Perform periodic activities.
1371 */
1372static void
1373mly_periodic(void *data)
1374{
1375    struct mly_softc	*sc = (struct mly_softc *)data;
1376    int			bus, target;
1377
1378    debug_called(2);
1379
1380    /*
1381     * Scan devices.
1382     */
1383    for (bus = 0; bus < sc->mly_cam_channels; bus++) {
1384	if (MLY_BUS_IS_VALID(sc, bus)) {
1385	    for (target = 0; target < MLY_MAX_TARGETS; target++) {
1386
1387		/* ignore the controller in this scan */
1388		if (target == sc->mly_controllerparam->initiator_id)
1389		    continue;
1390
1391		/* perform device rescan? */
1392		if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_RESCAN)
1393		    mly_rescan_btl(sc, bus, target);
1394	    }
1395	}
1396    }
1397
1398    /* check for controller events */
1399    mly_check_event(sc);
1400
1401    /* reschedule ourselves */
1402    sc->mly_periodic = timeout(mly_periodic, sc, MLY_PERIODIC_INTERVAL * hz);
1403}
1404
1405/********************************************************************************
1406 ********************************************************************************
1407                                                               Command Processing
1408 ********************************************************************************
1409 ********************************************************************************/
1410
1411/********************************************************************************
1412 * Run a command and wait for it to complete.
1413 *
1414 */
1415static int
1416mly_immediate_command(struct mly_command *mc)
1417{
1418    struct mly_softc	*sc = mc->mc_sc;
1419    int			error, s;
1420
1421    debug_called(1);
1422
1423    /* spinning at splcam is ugly, but we're only used during controller init */
1424    s = splcam();
1425    if ((error = mly_start(mc))) {
1426	splx(s);
1427	return(error);
1428    }
1429
1430    if (sc->mly_state & MLY_STATE_INTERRUPTS_ON) {
1431	/* sleep on the command */
1432	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1433	    tsleep(mc, PRIBIO, "mlywait", 0);
1434	}
1435    } else {
1436	/* spin and collect status while we do */
1437	while(!(mc->mc_flags & MLY_CMD_COMPLETE)) {
1438	    mly_done(mc->mc_sc);
1439	}
1440    }
1441    splx(s);
1442    return(0);
1443}
1444
1445/********************************************************************************
1446 * Deliver a command to the controller.
1447 *
1448 * XXX it would be good to just queue commands that we can't submit immediately
1449 *     and send them later, but we probably want a wrapper for that so that
1450 *     we don't hang on a failed submission for an immediate command.
1451 */
1452static int
1453mly_start(struct mly_command *mc)
1454{
1455    struct mly_softc		*sc = mc->mc_sc;
1456    union mly_command_packet	*pkt;
1457    int				s;
1458
1459    debug_called(2);
1460
1461    /*
1462     * Set the command up for delivery to the controller.
1463     */
1464    mly_map_command(mc);
1465    mc->mc_packet->generic.command_id = mc->mc_slot;
1466
1467#ifdef MLY_DEBUG
1468    mc->mc_timestamp = time_second;
1469#endif
1470
1471    s = splcam();
1472
1473    /*
1474     * Do we have to use the hardware mailbox?
1475     */
1476    if (!(sc->mly_state & MLY_STATE_MMBOX_ACTIVE)) {
1477	/*
1478	 * Check to see if the controller is ready for us.
1479	 */
1480	if (MLY_IDBR_TRUE(sc, MLY_HM_CMDSENT)) {
1481	    splx(s);
1482	    return(EBUSY);
1483	}
1484	mc->mc_flags |= MLY_CMD_BUSY;
1485
1486	/*
1487	 * It's ready, send the command.
1488	 */
1489	MLY_SET_MBOX(sc, sc->mly_command_mailbox, &mc->mc_packetphys);
1490	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_CMDSENT);
1491
1492    } else {	/* use memory-mailbox mode */
1493
1494	pkt = &sc->mly_mmbox->mmm_command[sc->mly_mmbox_command_index];
1495
1496	/* check to see if the next index is free yet */
1497	if (pkt->mmbox.flag != 0) {
1498	    splx(s);
1499	    return(EBUSY);
1500	}
1501	mc->mc_flags |= MLY_CMD_BUSY;
1502
1503	/* copy in new command */
1504	bcopy(mc->mc_packet->mmbox.data, pkt->mmbox.data, sizeof(pkt->mmbox.data));
1505	/* barrier to ensure completion of previous write before we write the flag */
1506	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1507	    BUS_SPACE_BARRIER_WRITE);
1508	/* copy flag last */
1509	pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
1510	/* barrier to ensure completion of previous write before we notify the controller */
1511	bus_space_barrier(sc->mly_btag, sc->mly_bhandle, 0, 0,
1512	    BUS_SPACE_BARRIER_WRITE);
1513
1514	/* signal controller, update index */
1515	MLY_SET_REG(sc, sc->mly_idbr, MLY_AM_CMDSENT);
1516	sc->mly_mmbox_command_index = (sc->mly_mmbox_command_index + 1) % MLY_MMBOX_COMMANDS;
1517    }
1518
1519    mly_enqueue_busy(mc);
1520    splx(s);
1521    return(0);
1522}
1523
1524/********************************************************************************
1525 * Pick up command status from the controller, schedule a completion event
1526 */
1527static void
1528mly_done(struct mly_softc *sc)
1529{
1530    struct mly_command		*mc;
1531    union mly_status_packet	*sp;
1532    u_int16_t			slot;
1533    int				s, worked;
1534
1535    s = splcam();
1536    worked = 0;
1537
1538    /* pick up hardware-mailbox commands */
1539    if (MLY_ODBR_TRUE(sc, MLY_HM_STSREADY)) {
1540	slot = MLY_GET_REG2(sc, sc->mly_status_mailbox);
1541	if (slot < MLY_SLOT_MAX) {
1542	    mc = &sc->mly_command[slot - MLY_SLOT_START];
1543	    mc->mc_status = MLY_GET_REG(sc, sc->mly_status_mailbox + 2);
1544	    mc->mc_sense = MLY_GET_REG(sc, sc->mly_status_mailbox + 3);
1545	    mc->mc_resid = MLY_GET_REG4(sc, sc->mly_status_mailbox + 4);
1546	    mly_remove_busy(mc);
1547	    mc->mc_flags &= ~MLY_CMD_BUSY;
1548	    mly_enqueue_complete(mc);
1549	    worked = 1;
1550	} else {
1551	    /* slot 0xffff may mean "extremely bogus command" */
1552	    mly_printf(sc, "got HM completion for illegal slot %u\n", slot);
1553	}
1554	/* unconditionally acknowledge status */
1555	MLY_SET_REG(sc, sc->mly_odbr, MLY_HM_STSREADY);
1556	MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
1557    }
1558
1559    /* pick up memory-mailbox commands */
1560    if (MLY_ODBR_TRUE(sc, MLY_AM_STSREADY)) {
1561	for (;;) {
1562	    sp = &sc->mly_mmbox->mmm_status[sc->mly_mmbox_status_index];
1563
1564	    /* check for more status */
1565	    if (sp->mmbox.flag == 0)
1566		break;
1567
1568	    /* get slot number */
1569	    slot = sp->status.command_id;
1570	    if (slot < MLY_SLOT_MAX) {
1571		mc = &sc->mly_command[slot - MLY_SLOT_START];
1572		mc->mc_status = sp->status.status;
1573		mc->mc_sense = sp->status.sense_length;
1574		mc->mc_resid = sp->status.residue;
1575		mly_remove_busy(mc);
1576		mc->mc_flags &= ~MLY_CMD_BUSY;
1577		mly_enqueue_complete(mc);
1578		worked = 1;
1579	    } else {
1580		/* slot 0xffff may mean "extremely bogus command" */
1581		mly_printf(sc, "got AM completion for illegal slot %u at %d\n",
1582			   slot, sc->mly_mmbox_status_index);
1583	    }
1584
1585	    /* clear and move to next index */
1586	    sp->mmbox.flag = 0;
1587	    sc->mly_mmbox_status_index = (sc->mly_mmbox_status_index + 1) % MLY_MMBOX_STATUS;
1588	}
1589	/* acknowledge that we have collected status value(s) */
1590	MLY_SET_REG(sc, sc->mly_odbr, MLY_AM_STSREADY);
1591    }
1592
1593    splx(s);
1594    if (worked) {
1595	if (sc->mly_state & MLY_STATE_INTERRUPTS_ON)
1596	    taskqueue_enqueue(taskqueue_swi_giant, &sc->mly_task_complete);
1597	else
1598	    mly_complete(sc, 0);
1599    }
1600}
1601
1602/********************************************************************************
1603 * Process completed commands
1604 */
1605static void
1606mly_complete(void *context, int pending)
1607{
1608    struct mly_softc	*sc = (struct mly_softc *)context;
1609    struct mly_command	*mc;
1610    void	        (* mc_complete)(struct mly_command *mc);
1611
1612
1613    debug_called(2);
1614
1615    /*
1616     * Spin pulling commands off the completed queue and processing them.
1617     */
1618    while ((mc = mly_dequeue_complete(sc)) != NULL) {
1619
1620	/*
1621	 * Free controller resources, mark command complete.
1622	 *
1623	 * Note that as soon as we mark the command complete, it may be freed
1624	 * out from under us, so we need to save the mc_complete field in
1625	 * order to later avoid dereferencing mc.  (We would not expect to
1626	 * have a polling/sleeping consumer with mc_complete != NULL).
1627	 */
1628	mly_unmap_command(mc);
1629	mc_complete = mc->mc_complete;
1630	mc->mc_flags |= MLY_CMD_COMPLETE;
1631
1632	/*
1633	 * Call completion handler or wake up sleeping consumer.
1634	 */
1635	if (mc_complete != NULL) {
1636	    mc_complete(mc);
1637	} else {
1638	    wakeup(mc);
1639	}
1640    }
1641
1642    /*
1643     * XXX if we are deferring commands due to controller-busy status, we should
1644     *     retry submitting them here.
1645     */
1646}
1647
1648/********************************************************************************
1649 ********************************************************************************
1650                                                        Command Buffer Management
1651 ********************************************************************************
1652 ********************************************************************************/
1653
1654/********************************************************************************
1655 * Allocate a command.
1656 */
1657static int
1658mly_alloc_command(struct mly_softc *sc, struct mly_command **mcp)
1659{
1660    struct mly_command	*mc;
1661
1662    debug_called(3);
1663
1664    if ((mc = mly_dequeue_free(sc)) == NULL)
1665	return(ENOMEM);
1666
1667    *mcp = mc;
1668    return(0);
1669}
1670
1671/********************************************************************************
1672 * Release a command back to the freelist.
1673 */
1674static void
1675mly_release_command(struct mly_command *mc)
1676{
1677    debug_called(3);
1678
1679    /*
1680     * Fill in parts of the command that may cause confusion if
1681     * a consumer doesn't when we are later allocated.
1682     */
1683    mc->mc_data = NULL;
1684    mc->mc_flags = 0;
1685    mc->mc_complete = NULL;
1686    mc->mc_private = NULL;
1687
1688    /*
1689     * By default, we set up to overwrite the command packet with
1690     * sense information.
1691     */
1692    mc->mc_packet->generic.sense_buffer_address = mc->mc_packetphys;
1693    mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_command_packet);
1694
1695    mly_enqueue_free(mc);
1696}
1697
1698/********************************************************************************
1699 * Map helper for command allocation.
1700 */
1701static void
1702mly_alloc_commands_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1703{
1704    struct mly_softc	*sc = (struct mly_softc *)arg;
1705
1706    debug_called(1);
1707
1708    sc->mly_packetphys = segs[0].ds_addr;
1709}
1710
1711/********************************************************************************
1712 * Allocate and initialise command and packet structures.
1713 *
1714 * If the controller supports fewer than MLY_MAX_COMMANDS commands, limit our
1715 * allocation to that number.  If we don't yet know how many commands the
1716 * controller supports, allocate a very small set (suitable for initialisation
1717 * purposes only).
1718 */
1719static int
1720mly_alloc_commands(struct mly_softc *sc)
1721{
1722    struct mly_command		*mc;
1723    int				i, ncmd;
1724
1725    if (sc->mly_controllerinfo == NULL) {
1726	ncmd = 4;
1727    } else {
1728	ncmd = min(MLY_MAX_COMMANDS, sc->mly_controllerinfo->maximum_parallel_commands);
1729    }
1730
1731    /*
1732     * Allocate enough space for all the command packets in one chunk and
1733     * map them permanently into controller-visible space.
1734     */
1735    if (bus_dmamem_alloc(sc->mly_packet_dmat, (void **)&sc->mly_packet,
1736			 BUS_DMA_NOWAIT, &sc->mly_packetmap)) {
1737	return(ENOMEM);
1738    }
1739    if (bus_dmamap_load(sc->mly_packet_dmat, sc->mly_packetmap, sc->mly_packet,
1740			ncmd * sizeof(union mly_command_packet),
1741			mly_alloc_commands_map, sc, BUS_DMA_NOWAIT) != 0)
1742	return (ENOMEM);
1743
1744    for (i = 0; i < ncmd; i++) {
1745	mc = &sc->mly_command[i];
1746	bzero(mc, sizeof(*mc));
1747	mc->mc_sc = sc;
1748	mc->mc_slot = MLY_SLOT_START + i;
1749	mc->mc_packet = sc->mly_packet + i;
1750	mc->mc_packetphys = sc->mly_packetphys + (i * sizeof(union mly_command_packet));
1751	if (!bus_dmamap_create(sc->mly_buffer_dmat, 0, &mc->mc_datamap))
1752	    mly_release_command(mc);
1753    }
1754    return(0);
1755}
1756
1757/********************************************************************************
1758 * Free all the storage held by commands.
1759 *
1760 * Must be called with all commands on the free list.
1761 */
1762static void
1763mly_release_commands(struct mly_softc *sc)
1764{
1765    struct mly_command	*mc;
1766
1767    /* throw away command buffer DMA maps */
1768    while (mly_alloc_command(sc, &mc) == 0)
1769	bus_dmamap_destroy(sc->mly_buffer_dmat, mc->mc_datamap);
1770
1771    /* release the packet storage */
1772    if (sc->mly_packet != NULL) {
1773	bus_dmamap_unload(sc->mly_packet_dmat, sc->mly_packetmap);
1774	bus_dmamem_free(sc->mly_packet_dmat, sc->mly_packet, sc->mly_packetmap);
1775	sc->mly_packet = NULL;
1776    }
1777}
1778
1779
1780/********************************************************************************
1781 * Command-mapping helper function - populate this command's s/g table
1782 * with the s/g entries for its data.
1783 */
1784static void
1785mly_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1786{
1787    struct mly_command		*mc = (struct mly_command *)arg;
1788    struct mly_softc		*sc = mc->mc_sc;
1789    struct mly_command_generic	*gen = &(mc->mc_packet->generic);
1790    struct mly_sg_entry		*sg;
1791    int				i, tabofs;
1792
1793    debug_called(2);
1794
1795    /* can we use the transfer structure directly? */
1796    if (nseg <= 2) {
1797	sg = &gen->transfer.direct.sg[0];
1798	gen->command_control.extended_sg_table = 0;
1799    } else {
1800	tabofs = ((mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SGENTRIES);
1801	sg = sc->mly_sg_table + tabofs;
1802	gen->transfer.indirect.entries[0] = nseg;
1803	gen->transfer.indirect.table_physaddr[0] = sc->mly_sg_busaddr + (tabofs * sizeof(struct mly_sg_entry));
1804	gen->command_control.extended_sg_table = 1;
1805    }
1806
1807    /* copy the s/g table */
1808    for (i = 0; i < nseg; i++) {
1809	sg[i].physaddr = segs[i].ds_addr;
1810	sg[i].length = segs[i].ds_len;
1811    }
1812
1813}
1814
1815#if 0
1816/********************************************************************************
1817 * Command-mapping helper function - save the cdb's physical address.
1818 *
1819 * We don't support 'large' SCSI commands at this time, so this is unused.
1820 */
1821static void
1822mly_map_command_cdb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1823{
1824    struct mly_command			*mc = (struct mly_command *)arg;
1825
1826    debug_called(2);
1827
1828    /* XXX can we safely assume that a CDB will never cross a page boundary? */
1829    if ((segs[0].ds_addr % PAGE_SIZE) >
1830	((segs[0].ds_addr + mc->mc_packet->scsi_large.cdb_length) % PAGE_SIZE))
1831	panic("cdb crosses page boundary");
1832
1833    /* fix up fields in the command packet */
1834    mc->mc_packet->scsi_large.cdb_physaddr = segs[0].ds_addr;
1835}
1836#endif
1837
1838/********************************************************************************
1839 * Map a command into controller-visible space
1840 */
1841static void
1842mly_map_command(struct mly_command *mc)
1843{
1844    struct mly_softc	*sc = mc->mc_sc;
1845
1846    debug_called(2);
1847
1848    /* don't map more than once */
1849    if (mc->mc_flags & MLY_CMD_MAPPED)
1850	return;
1851
1852    /* does the command have a data buffer? */
1853    if (mc->mc_data != NULL) {
1854	if (mc->mc_flags & MLY_CMD_CCB)
1855		bus_dmamap_load_ccb(sc->mly_buffer_dmat, mc->mc_datamap,
1856				mc->mc_data, mly_map_command_sg, mc, 0);
1857	else
1858		bus_dmamap_load(sc->mly_buffer_dmat, mc->mc_datamap,
1859				mc->mc_data, mc->mc_length,
1860				mly_map_command_sg, mc, 0);
1861	if (mc->mc_flags & MLY_CMD_DATAIN)
1862	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREREAD);
1863	if (mc->mc_flags & MLY_CMD_DATAOUT)
1864	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_PREWRITE);
1865    }
1866    mc->mc_flags |= MLY_CMD_MAPPED;
1867}
1868
1869/********************************************************************************
1870 * Unmap a command from controller-visible space
1871 */
1872static void
1873mly_unmap_command(struct mly_command *mc)
1874{
1875    struct mly_softc	*sc = mc->mc_sc;
1876
1877    debug_called(2);
1878
1879    if (!(mc->mc_flags & MLY_CMD_MAPPED))
1880	return;
1881
1882    /* does the command have a data buffer? */
1883    if (mc->mc_data != NULL) {
1884	if (mc->mc_flags & MLY_CMD_DATAIN)
1885	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTREAD);
1886	if (mc->mc_flags & MLY_CMD_DATAOUT)
1887	    bus_dmamap_sync(sc->mly_buffer_dmat, mc->mc_datamap, BUS_DMASYNC_POSTWRITE);
1888
1889	bus_dmamap_unload(sc->mly_buffer_dmat, mc->mc_datamap);
1890    }
1891    mc->mc_flags &= ~MLY_CMD_MAPPED;
1892}
1893
1894
1895/********************************************************************************
1896 ********************************************************************************
1897                                                                    CAM interface
1898 ********************************************************************************
1899 ********************************************************************************/
1900
1901/********************************************************************************
1902 * Attach the physical and virtual SCSI busses to CAM.
1903 *
1904 * Physical bus numbering starts from 0, virtual bus numbering from one greater
1905 * than the highest physical bus.  Physical busses are only registered if
1906 * the kernel environment variable "hw.mly.register_physical_channels" is set.
1907 *
1908 * When we refer to a "bus", we are referring to the bus number registered with
1909 * the SIM, wheras a "channel" is a channel number given to the adapter.  In order
1910 * to keep things simple, we map these 1:1, so "bus" and "channel" may be used
1911 * interchangeably.
1912 */
1913static int
1914mly_cam_attach(struct mly_softc *sc)
1915{
1916    struct cam_devq	*devq;
1917    int			chn, i;
1918
1919    debug_called(1);
1920
1921    /*
1922     * Allocate a devq for all our channels combined.
1923     */
1924    if ((devq = cam_simq_alloc(sc->mly_controllerinfo->maximum_parallel_commands)) == NULL) {
1925	mly_printf(sc, "can't allocate CAM SIM queue\n");
1926	return(ENOMEM);
1927    }
1928
1929    /*
1930     * If physical channel registration has been requested, register these first.
1931     * Note that we enable tagged command queueing for physical channels.
1932     */
1933    if (testenv("hw.mly.register_physical_channels")) {
1934	chn = 0;
1935	for (i = 0; i < sc->mly_controllerinfo->physical_channels_present; i++, chn++) {
1936
1937	    if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1938						      device_get_unit(sc->mly_dev),
1939						      &Giant,
1940						      sc->mly_controllerinfo->maximum_parallel_commands,
1941						      1, devq)) == NULL) {
1942		return(ENOMEM);
1943	    }
1944	    if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1945		mly_printf(sc, "CAM XPT phsyical channel registration failed\n");
1946		return(ENXIO);
1947	    }
1948	    debug(1, "registered physical channel %d", chn);
1949	}
1950    }
1951
1952    /*
1953     * Register our virtual channels, with bus numbers matching channel numbers.
1954     */
1955    chn = sc->mly_controllerinfo->physical_channels_present;
1956    for (i = 0; i < sc->mly_controllerinfo->virtual_channels_present; i++, chn++) {
1957	if ((sc->mly_cam_sim[chn] = cam_sim_alloc(mly_cam_action, mly_cam_poll, "mly", sc,
1958						  device_get_unit(sc->mly_dev),
1959						  &Giant,
1960						  sc->mly_controllerinfo->maximum_parallel_commands,
1961						  0, devq)) == NULL) {
1962	    return(ENOMEM);
1963	}
1964	if (xpt_bus_register(sc->mly_cam_sim[chn], sc->mly_dev, chn)) {
1965	    mly_printf(sc, "CAM XPT virtual channel registration failed\n");
1966	    return(ENXIO);
1967	}
1968	debug(1, "registered virtual channel %d", chn);
1969    }
1970
1971    /*
1972     * This is the total number of channels that (might have been) registered with
1973     * CAM.  Some may not have been; check the mly_cam_sim array to be certain.
1974     */
1975    sc->mly_cam_channels = sc->mly_controllerinfo->physical_channels_present +
1976	sc->mly_controllerinfo->virtual_channels_present;
1977
1978    return(0);
1979}
1980
1981/********************************************************************************
1982 * Detach from CAM
1983 */
1984static void
1985mly_cam_detach(struct mly_softc *sc)
1986{
1987    int		i;
1988
1989    debug_called(1);
1990
1991    for (i = 0; i < sc->mly_cam_channels; i++) {
1992	if (sc->mly_cam_sim[i] != NULL) {
1993	    xpt_bus_deregister(cam_sim_path(sc->mly_cam_sim[i]));
1994	    cam_sim_free(sc->mly_cam_sim[i], 0);
1995	}
1996    }
1997    if (sc->mly_cam_devq != NULL)
1998	cam_simq_free(sc->mly_cam_devq);
1999}
2000
2001/************************************************************************
2002 * Rescan a device.
2003 */
2004static void
2005mly_cam_rescan_btl(struct mly_softc *sc, int bus, int target)
2006{
2007    union ccb	*ccb;
2008
2009    debug_called(1);
2010
2011    if ((ccb = xpt_alloc_ccb()) == NULL) {
2012	mly_printf(sc, "rescan failed (can't allocate CCB)\n");
2013	return;
2014    }
2015    if (xpt_create_path(&ccb->ccb_h.path, NULL,
2016	    cam_sim_path(sc->mly_cam_sim[bus]), target, 0) != CAM_REQ_CMP) {
2017	mly_printf(sc, "rescan failed (can't create path)\n");
2018	xpt_free_ccb(ccb);
2019	return;
2020    }
2021    debug(1, "rescan target %d:%d", bus, target);
2022    xpt_rescan(ccb);
2023}
2024
2025/********************************************************************************
2026 * Handle an action requested by CAM
2027 */
2028static void
2029mly_cam_action(struct cam_sim *sim, union ccb *ccb)
2030{
2031    struct mly_softc	*sc = cam_sim_softc(sim);
2032
2033    debug_called(2);
2034
2035    switch (ccb->ccb_h.func_code) {
2036
2037	/* perform SCSI I/O */
2038    case XPT_SCSI_IO:
2039	if (!mly_cam_action_io(sim, (struct ccb_scsiio *)&ccb->csio))
2040	    return;
2041	break;
2042
2043	/* perform geometry calculations */
2044    case XPT_CALC_GEOMETRY:
2045    {
2046	struct ccb_calc_geometry	*ccg = &ccb->ccg;
2047        u_int32_t			secs_per_cylinder;
2048
2049	debug(2, "XPT_CALC_GEOMETRY %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2050
2051	if (sc->mly_controllerparam->bios_geometry == MLY_BIOSGEOM_8G) {
2052	    ccg->heads = 255;
2053            ccg->secs_per_track = 63;
2054	} else {				/* MLY_BIOSGEOM_2G */
2055	    ccg->heads = 128;
2056            ccg->secs_per_track = 32;
2057	}
2058	secs_per_cylinder = ccg->heads * ccg->secs_per_track;
2059        ccg->cylinders = ccg->volume_size / secs_per_cylinder;
2060        ccb->ccb_h.status = CAM_REQ_CMP;
2061        break;
2062    }
2063
2064	/* handle path attribute inquiry */
2065    case XPT_PATH_INQ:
2066    {
2067	struct ccb_pathinq	*cpi = &ccb->cpi;
2068
2069	debug(2, "XPT_PATH_INQ %d:%d:%d", cam_sim_bus(sim), ccb->ccb_h.target_id, ccb->ccb_h.target_lun);
2070
2071	cpi->version_num = 1;
2072	cpi->hba_inquiry = PI_TAG_ABLE;		/* XXX extra flags for physical channels? */
2073	cpi->target_sprt = 0;
2074	cpi->hba_misc = 0;
2075	cpi->max_target = MLY_MAX_TARGETS - 1;
2076	cpi->max_lun = MLY_MAX_LUNS - 1;
2077	cpi->initiator_id = sc->mly_controllerparam->initiator_id;
2078	strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
2079        strncpy(cpi->hba_vid, "FreeBSD", HBA_IDLEN);
2080        strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
2081        cpi->unit_number = cam_sim_unit(sim);
2082        cpi->bus_id = cam_sim_bus(sim);
2083	cpi->base_transfer_speed = 132 * 1024;	/* XXX what to set this to? */
2084	cpi->transport = XPORT_SPI;
2085	cpi->transport_version = 2;
2086	cpi->protocol = PROTO_SCSI;
2087	cpi->protocol_version = SCSI_REV_2;
2088	ccb->ccb_h.status = CAM_REQ_CMP;
2089	break;
2090    }
2091
2092    case XPT_GET_TRAN_SETTINGS:
2093    {
2094	struct ccb_trans_settings	*cts = &ccb->cts;
2095	int				bus, target;
2096	struct ccb_trans_settings_scsi *scsi = &cts->proto_specific.scsi;
2097	struct ccb_trans_settings_spi *spi = &cts->xport_specific.spi;
2098
2099	cts->protocol = PROTO_SCSI;
2100	cts->protocol_version = SCSI_REV_2;
2101	cts->transport = XPORT_SPI;
2102	cts->transport_version = 2;
2103
2104	scsi->flags = 0;
2105	scsi->valid = 0;
2106	spi->flags = 0;
2107	spi->valid = 0;
2108
2109	bus = cam_sim_bus(sim);
2110	target = cts->ccb_h.target_id;
2111	debug(2, "XPT_GET_TRAN_SETTINGS %d:%d", bus, target);
2112	/* logical device? */
2113	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2114	    /* nothing special for these */
2115	/* physical device? */
2116	} else if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PHYSICAL) {
2117	    /* allow CAM to try tagged transactions */
2118	    scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
2119	    scsi->valid |= CTS_SCSI_VALID_TQ;
2120
2121	    /* convert speed (MHz) to usec */
2122	    if (sc->mly_btl[bus][target].mb_speed == 0) {
2123		spi->sync_period = 1000000 / 5;
2124	    } else {
2125		spi->sync_period = 1000000 / sc->mly_btl[bus][target].mb_speed;
2126	    }
2127
2128	    /* convert bus width to CAM internal encoding */
2129	    switch (sc->mly_btl[bus][target].mb_width) {
2130	    case 32:
2131		spi->bus_width = MSG_EXT_WDTR_BUS_32_BIT;
2132		break;
2133	    case 16:
2134		spi->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
2135		break;
2136	    case 8:
2137	    default:
2138		spi->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
2139		break;
2140	    }
2141	    spi->valid |= CTS_SPI_VALID_SYNC_RATE | CTS_SPI_VALID_BUS_WIDTH;
2142
2143	    /* not a device, bail out */
2144	} else {
2145	    cts->ccb_h.status = CAM_REQ_CMP_ERR;
2146	    break;
2147	}
2148
2149	/* disconnect always OK */
2150	spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
2151	spi->valid |= CTS_SPI_VALID_DISC;
2152
2153	cts->ccb_h.status = CAM_REQ_CMP;
2154	break;
2155    }
2156
2157    default:		/* we can't do this */
2158	debug(2, "unspported func_code = 0x%x", ccb->ccb_h.func_code);
2159	ccb->ccb_h.status = CAM_REQ_INVALID;
2160	break;
2161    }
2162
2163    xpt_done(ccb);
2164}
2165
2166/********************************************************************************
2167 * Handle an I/O operation requested by CAM
2168 */
2169static int
2170mly_cam_action_io(struct cam_sim *sim, struct ccb_scsiio *csio)
2171{
2172    struct mly_softc			*sc = cam_sim_softc(sim);
2173    struct mly_command			*mc;
2174    struct mly_command_scsi_small	*ss;
2175    int					bus, target;
2176    int					error;
2177    int					s;
2178
2179    bus = cam_sim_bus(sim);
2180    target = csio->ccb_h.target_id;
2181
2182    debug(2, "XPT_SCSI_IO %d:%d:%d", bus, target, csio->ccb_h.target_lun);
2183
2184    /* validate bus number */
2185    if (!MLY_BUS_IS_VALID(sc, bus)) {
2186	debug(0, " invalid bus %d", bus);
2187	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2188    }
2189
2190    /*  check for I/O attempt to a protected device */
2191    if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_PROTECTED) {
2192	debug(2, "  device protected");
2193	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2194    }
2195
2196    /* check for I/O attempt to nonexistent device */
2197    if (!(sc->mly_btl[bus][target].mb_flags & (MLY_BTL_LOGICAL | MLY_BTL_PHYSICAL))) {
2198	debug(2, "  device %d:%d does not exist", bus, target);
2199	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2200    }
2201
2202    /* XXX increase if/when we support large SCSI commands */
2203    if (csio->cdb_len > MLY_CMD_SCSI_SMALL_CDB) {
2204	debug(0, "  command too large (%d > %d)", csio->cdb_len, MLY_CMD_SCSI_SMALL_CDB);
2205	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2206    }
2207
2208    /* check that the CDB pointer is not to a physical address */
2209    if ((csio->ccb_h.flags & CAM_CDB_POINTER) && (csio->ccb_h.flags & CAM_CDB_PHYS)) {
2210	debug(0, "  CDB pointer is to physical address");
2211	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2212    }
2213
2214    /* abandon aborted ccbs or those that have failed validation */
2215    if ((csio->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_INPROG) {
2216	debug(2, "abandoning CCB due to abort/validation failure");
2217	return(EINVAL);
2218    }
2219
2220    /*
2221     * Get a command, or push the ccb back to CAM and freeze the queue.
2222     */
2223    if ((error = mly_alloc_command(sc, &mc))) {
2224	s = splcam();
2225	xpt_freeze_simq(sim, 1);
2226	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2227	sc->mly_qfrzn_cnt++;
2228	splx(s);
2229	return(error);
2230    }
2231
2232    /* build the command */
2233    mc->mc_data = csio;
2234    mc->mc_length = csio->dxfer_len;
2235    mc->mc_complete = mly_cam_complete;
2236    mc->mc_private = csio;
2237    mc->mc_flags |= MLY_CMD_CCB;
2238    /* XXX This code doesn't set the data direction in mc_flags. */
2239
2240    /* save the bus number in the ccb for later recovery XXX should be a better way */
2241     csio->ccb_h.sim_priv.entries[0].field = bus;
2242
2243    /* build the packet for the controller */
2244    ss = &mc->mc_packet->scsi_small;
2245    ss->opcode = MDACMD_SCSI;
2246    if (csio->ccb_h.flags & CAM_DIS_DISCONNECT)
2247	ss->command_control.disable_disconnect = 1;
2248    if ((csio->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
2249	ss->command_control.data_direction = MLY_CCB_WRITE;
2250    ss->data_size = csio->dxfer_len;
2251    ss->addr.phys.lun = csio->ccb_h.target_lun;
2252    ss->addr.phys.target = csio->ccb_h.target_id;
2253    ss->addr.phys.channel = bus;
2254    if (csio->ccb_h.timeout < (60 * 1000)) {
2255	ss->timeout.value = csio->ccb_h.timeout / 1000;
2256	ss->timeout.scale = MLY_TIMEOUT_SECONDS;
2257    } else if (csio->ccb_h.timeout < (60 * 60 * 1000)) {
2258	ss->timeout.value = csio->ccb_h.timeout / (60 * 1000);
2259	ss->timeout.scale = MLY_TIMEOUT_MINUTES;
2260    } else {
2261	ss->timeout.value = csio->ccb_h.timeout / (60 * 60 * 1000);	/* overflow? */
2262	ss->timeout.scale = MLY_TIMEOUT_HOURS;
2263    }
2264    ss->maximum_sense_size = csio->sense_len;
2265    ss->cdb_length = csio->cdb_len;
2266    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2267	bcopy(csio->cdb_io.cdb_ptr, ss->cdb, csio->cdb_len);
2268    } else {
2269	bcopy(csio->cdb_io.cdb_bytes, ss->cdb, csio->cdb_len);
2270    }
2271
2272    /* give the command to the controller */
2273    if ((error = mly_start(mc))) {
2274	s = splcam();
2275	xpt_freeze_simq(sim, 1);
2276	csio->ccb_h.status |= CAM_REQUEUE_REQ;
2277	sc->mly_qfrzn_cnt++;
2278	splx(s);
2279	return(error);
2280    }
2281
2282    return(0);
2283}
2284
2285/********************************************************************************
2286 * Check for possibly-completed commands.
2287 */
2288static void
2289mly_cam_poll(struct cam_sim *sim)
2290{
2291    struct mly_softc	*sc = cam_sim_softc(sim);
2292
2293    debug_called(2);
2294
2295    mly_done(sc);
2296}
2297
2298/********************************************************************************
2299 * Handle completion of a command - pass results back through the CCB
2300 */
2301static void
2302mly_cam_complete(struct mly_command *mc)
2303{
2304    struct mly_softc		*sc = mc->mc_sc;
2305    struct ccb_scsiio		*csio = (struct ccb_scsiio *)mc->mc_private;
2306    struct scsi_inquiry_data	*inq = (struct scsi_inquiry_data *)csio->data_ptr;
2307    struct mly_btl		*btl;
2308    u_int8_t			cmd;
2309    int				bus, target;
2310    int				s;
2311
2312    debug_called(2);
2313
2314    csio->scsi_status = mc->mc_status;
2315    switch(mc->mc_status) {
2316    case SCSI_STATUS_OK:
2317	/*
2318	 * In order to report logical device type and status, we overwrite
2319	 * the result of the INQUIRY command to logical devices.
2320	 */
2321	bus = csio->ccb_h.sim_priv.entries[0].field;
2322	target = csio->ccb_h.target_id;
2323	/* XXX validate bus/target? */
2324	if (sc->mly_btl[bus][target].mb_flags & MLY_BTL_LOGICAL) {
2325	    if (csio->ccb_h.flags & CAM_CDB_POINTER) {
2326		cmd = *csio->cdb_io.cdb_ptr;
2327	    } else {
2328		cmd = csio->cdb_io.cdb_bytes[0];
2329	    }
2330	    if (cmd == INQUIRY) {
2331		btl = &sc->mly_btl[bus][target];
2332		padstr(inq->vendor, mly_describe_code(mly_table_device_type, btl->mb_type), 8);
2333		padstr(inq->product, mly_describe_code(mly_table_device_state, btl->mb_state), 16);
2334		padstr(inq->revision, "", 4);
2335	    }
2336	}
2337
2338	debug(2, "SCSI_STATUS_OK");
2339	csio->ccb_h.status = CAM_REQ_CMP;
2340	break;
2341
2342    case SCSI_STATUS_CHECK_COND:
2343	debug(1, "SCSI_STATUS_CHECK_COND  sense %d  resid %d", mc->mc_sense, mc->mc_resid);
2344	csio->ccb_h.status = CAM_SCSI_STATUS_ERROR;
2345	bzero(&csio->sense_data, SSD_FULL_SIZE);
2346	bcopy(mc->mc_packet, &csio->sense_data, mc->mc_sense);
2347	csio->sense_len = mc->mc_sense;
2348	csio->ccb_h.status |= CAM_AUTOSNS_VALID;
2349	csio->resid = mc->mc_resid;	/* XXX this is a signed value... */
2350	break;
2351
2352    case SCSI_STATUS_BUSY:
2353	debug(1, "SCSI_STATUS_BUSY");
2354	csio->ccb_h.status = CAM_SCSI_BUSY;
2355	break;
2356
2357    default:
2358	debug(1, "unknown status 0x%x", csio->scsi_status);
2359	csio->ccb_h.status = CAM_REQ_CMP_ERR;
2360	break;
2361    }
2362
2363    s = splcam();
2364    if (sc->mly_qfrzn_cnt) {
2365	csio->ccb_h.status |= CAM_RELEASE_SIMQ;
2366	sc->mly_qfrzn_cnt--;
2367    }
2368    splx(s);
2369
2370    xpt_done((union ccb *)csio);
2371    mly_release_command(mc);
2372}
2373
2374/********************************************************************************
2375 * Find a peripheral attahed at (bus),(target)
2376 */
2377static struct cam_periph *
2378mly_find_periph(struct mly_softc *sc, int bus, int target)
2379{
2380    struct cam_periph	*periph;
2381    struct cam_path	*path;
2382    int			status;
2383
2384    status = xpt_create_path(&path, NULL, cam_sim_path(sc->mly_cam_sim[bus]), target, 0);
2385    if (status == CAM_REQ_CMP) {
2386	periph = cam_periph_find(path, NULL);
2387	xpt_free_path(path);
2388    } else {
2389	periph = NULL;
2390    }
2391    return(periph);
2392}
2393
2394/********************************************************************************
2395 * Name the device at (bus)(target)
2396 */
2397static int
2398mly_name_device(struct mly_softc *sc, int bus, int target)
2399{
2400    struct cam_periph	*periph;
2401
2402    if ((periph = mly_find_periph(sc, bus, target)) != NULL) {
2403	sprintf(sc->mly_btl[bus][target].mb_name, "%s%d", periph->periph_name, periph->unit_number);
2404	return(0);
2405    }
2406    sc->mly_btl[bus][target].mb_name[0] = 0;
2407    return(ENOENT);
2408}
2409
2410/********************************************************************************
2411 ********************************************************************************
2412                                                                 Hardware Control
2413 ********************************************************************************
2414 ********************************************************************************/
2415
2416/********************************************************************************
2417 * Handshake with the firmware while the card is being initialised.
2418 */
2419static int
2420mly_fwhandshake(struct mly_softc *sc)
2421{
2422    u_int8_t	error, param0, param1;
2423    int		spinup = 0;
2424
2425    debug_called(1);
2426
2427    /* set HM_STSACK and let the firmware initialise */
2428    MLY_SET_REG(sc, sc->mly_idbr, MLY_HM_STSACK);
2429    DELAY(1000);	/* too short? */
2430
2431    /* if HM_STSACK is still true, the controller is initialising */
2432    if (!MLY_IDBR_TRUE(sc, MLY_HM_STSACK))
2433	return(0);
2434    mly_printf(sc, "controller initialisation started\n");
2435
2436    /* spin waiting for initialisation to finish, or for a message to be delivered */
2437    while (MLY_IDBR_TRUE(sc, MLY_HM_STSACK)) {
2438	/* check for a message */
2439	if (MLY_ERROR_VALID(sc)) {
2440	    error = MLY_GET_REG(sc, sc->mly_error_status) & ~MLY_MSG_EMPTY;
2441	    param0 = MLY_GET_REG(sc, sc->mly_command_mailbox);
2442	    param1 = MLY_GET_REG(sc, sc->mly_command_mailbox + 1);
2443
2444	    switch(error) {
2445	    case MLY_MSG_SPINUP:
2446		if (!spinup) {
2447		    mly_printf(sc, "drive spinup in progress\n");
2448		    spinup = 1;			/* only print this once (should print drive being spun?) */
2449		}
2450		break;
2451	    case MLY_MSG_RACE_RECOVERY_FAIL:
2452		mly_printf(sc, "mirror race recovery failed, one or more drives offline\n");
2453		break;
2454	    case MLY_MSG_RACE_IN_PROGRESS:
2455		mly_printf(sc, "mirror race recovery in progress\n");
2456		break;
2457	    case MLY_MSG_RACE_ON_CRITICAL:
2458		mly_printf(sc, "mirror race recovery on a critical drive\n");
2459		break;
2460	    case MLY_MSG_PARITY_ERROR:
2461		mly_printf(sc, "FATAL MEMORY PARITY ERROR\n");
2462		return(ENXIO);
2463	    default:
2464		mly_printf(sc, "unknown initialisation code 0x%x\n", error);
2465	    }
2466	}
2467    }
2468    return(0);
2469}
2470
2471/********************************************************************************
2472 ********************************************************************************
2473                                                        Debugging and Diagnostics
2474 ********************************************************************************
2475 ********************************************************************************/
2476
2477/********************************************************************************
2478 * Print some information about the controller.
2479 */
2480static void
2481mly_describe_controller(struct mly_softc *sc)
2482{
2483    struct mly_ioctl_getcontrollerinfo	*mi = sc->mly_controllerinfo;
2484
2485    mly_printf(sc, "%16s, %d channel%s, firmware %d.%02d-%d-%02d (%02d%02d%02d%02d), %dMB RAM\n",
2486	       mi->controller_name, mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "",
2487	       mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,	/* XXX turn encoding? */
2488	       mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
2489	       mi->memory_size);
2490
2491    if (bootverbose) {
2492	mly_printf(sc, "%s %s (%x), %dMHz %d-bit %.16s\n",
2493		   mly_describe_code(mly_table_oemname, mi->oem_information),
2494		   mly_describe_code(mly_table_controllertype, mi->controller_type), mi->controller_type,
2495		   mi->interface_speed, mi->interface_width, mi->interface_name);
2496	mly_printf(sc, "%dMB %dMHz %d-bit %s%s%s, cache %dMB\n",
2497		   mi->memory_size, mi->memory_speed, mi->memory_width,
2498		   mly_describe_code(mly_table_memorytype, mi->memory_type),
2499		   mi->memory_parity ? "+parity": "",mi->memory_ecc ? "+ECC": "",
2500		   mi->cache_size);
2501	mly_printf(sc, "CPU: %s @ %dMHz\n",
2502		   mly_describe_code(mly_table_cputype, mi->cpu[0].type), mi->cpu[0].speed);
2503	if (mi->l2cache_size != 0)
2504	    mly_printf(sc, "%dKB L2 cache\n", mi->l2cache_size);
2505	if (mi->exmemory_size != 0)
2506	    mly_printf(sc, "%dMB %dMHz %d-bit private %s%s%s\n",
2507		       mi->exmemory_size, mi->exmemory_speed, mi->exmemory_width,
2508		       mly_describe_code(mly_table_memorytype, mi->exmemory_type),
2509		       mi->exmemory_parity ? "+parity": "",mi->exmemory_ecc ? "+ECC": "");
2510	mly_printf(sc, "battery backup %s\n", mi->bbu_present ? "present" : "not installed");
2511	mly_printf(sc, "maximum data transfer %d blocks, maximum sg entries/command %d\n",
2512		   mi->maximum_block_count, mi->maximum_sg_entries);
2513	mly_printf(sc, "logical devices present/critical/offline %d/%d/%d\n",
2514		   mi->logical_devices_present, mi->logical_devices_critical, mi->logical_devices_offline);
2515	mly_printf(sc, "physical devices present %d\n",
2516		   mi->physical_devices_present);
2517	mly_printf(sc, "physical disks present/offline %d/%d\n",
2518		   mi->physical_disks_present, mi->physical_disks_offline);
2519	mly_printf(sc, "%d physical channel%s, %d virtual channel%s of %d possible\n",
2520		   mi->physical_channels_present, mi->physical_channels_present == 1 ? "" : "s",
2521		   mi->virtual_channels_present, mi->virtual_channels_present == 1 ? "" : "s",
2522		   mi->virtual_channels_possible);
2523	mly_printf(sc, "%d parallel commands supported\n", mi->maximum_parallel_commands);
2524	mly_printf(sc, "%dMB flash ROM, %d of %d maximum cycles\n",
2525		   mi->flash_size, mi->flash_age, mi->flash_maximum_age);
2526    }
2527}
2528
2529#ifdef MLY_DEBUG
2530/********************************************************************************
2531 * Print some controller state
2532 */
2533static void
2534mly_printstate(struct mly_softc *sc)
2535{
2536    mly_printf(sc, "IDBR %02x  ODBR %02x  ERROR %02x  (%x %x %x)\n",
2537		  MLY_GET_REG(sc, sc->mly_idbr),
2538		  MLY_GET_REG(sc, sc->mly_odbr),
2539		  MLY_GET_REG(sc, sc->mly_error_status),
2540		  sc->mly_idbr,
2541		  sc->mly_odbr,
2542		  sc->mly_error_status);
2543    mly_printf(sc, "IMASK %02x  ISTATUS %02x\n",
2544		  MLY_GET_REG(sc, sc->mly_interrupt_mask),
2545		  MLY_GET_REG(sc, sc->mly_interrupt_status));
2546    mly_printf(sc, "COMMAND %02x %02x %02x %02x %02x %02x %02x %02x\n",
2547		  MLY_GET_REG(sc, sc->mly_command_mailbox),
2548		  MLY_GET_REG(sc, sc->mly_command_mailbox + 1),
2549		  MLY_GET_REG(sc, sc->mly_command_mailbox + 2),
2550		  MLY_GET_REG(sc, sc->mly_command_mailbox + 3),
2551		  MLY_GET_REG(sc, sc->mly_command_mailbox + 4),
2552		  MLY_GET_REG(sc, sc->mly_command_mailbox + 5),
2553		  MLY_GET_REG(sc, sc->mly_command_mailbox + 6),
2554		  MLY_GET_REG(sc, sc->mly_command_mailbox + 7));
2555    mly_printf(sc, "STATUS  %02x %02x %02x %02x %02x %02x %02x %02x\n",
2556		  MLY_GET_REG(sc, sc->mly_status_mailbox),
2557		  MLY_GET_REG(sc, sc->mly_status_mailbox + 1),
2558		  MLY_GET_REG(sc, sc->mly_status_mailbox + 2),
2559		  MLY_GET_REG(sc, sc->mly_status_mailbox + 3),
2560		  MLY_GET_REG(sc, sc->mly_status_mailbox + 4),
2561		  MLY_GET_REG(sc, sc->mly_status_mailbox + 5),
2562		  MLY_GET_REG(sc, sc->mly_status_mailbox + 6),
2563		  MLY_GET_REG(sc, sc->mly_status_mailbox + 7));
2564    mly_printf(sc, "        %04x        %08x\n",
2565		  MLY_GET_REG2(sc, sc->mly_status_mailbox),
2566		  MLY_GET_REG4(sc, sc->mly_status_mailbox + 4));
2567}
2568
2569struct mly_softc	*mly_softc0 = NULL;
2570void
2571mly_printstate0(void)
2572{
2573    if (mly_softc0 != NULL)
2574	mly_printstate(mly_softc0);
2575}
2576
2577/********************************************************************************
2578 * Print a command
2579 */
2580static void
2581mly_print_command(struct mly_command *mc)
2582{
2583    struct mly_softc	*sc = mc->mc_sc;
2584
2585    mly_printf(sc, "COMMAND @ %p\n", mc);
2586    mly_printf(sc, "  slot      %d\n", mc->mc_slot);
2587    mly_printf(sc, "  status    0x%x\n", mc->mc_status);
2588    mly_printf(sc, "  sense len %d\n", mc->mc_sense);
2589    mly_printf(sc, "  resid     %d\n", mc->mc_resid);
2590    mly_printf(sc, "  packet    %p/0x%llx\n", mc->mc_packet, mc->mc_packetphys);
2591    if (mc->mc_packet != NULL)
2592	mly_print_packet(mc);
2593    mly_printf(sc, "  data      %p/%d\n", mc->mc_data, mc->mc_length);
2594    mly_printf(sc, "  flags     %b\n", mc->mc_flags, "\20\1busy\2complete\3slotted\4mapped\5datain\6dataout\n");
2595    mly_printf(sc, "  complete  %p\n", mc->mc_complete);
2596    mly_printf(sc, "  private   %p\n", mc->mc_private);
2597}
2598
2599/********************************************************************************
2600 * Print a command packet
2601 */
2602static void
2603mly_print_packet(struct mly_command *mc)
2604{
2605    struct mly_softc			*sc = mc->mc_sc;
2606    struct mly_command_generic		*ge = (struct mly_command_generic *)mc->mc_packet;
2607    struct mly_command_scsi_small	*ss = (struct mly_command_scsi_small *)mc->mc_packet;
2608    struct mly_command_scsi_large	*sl = (struct mly_command_scsi_large *)mc->mc_packet;
2609    struct mly_command_ioctl		*io = (struct mly_command_ioctl *)mc->mc_packet;
2610    int					transfer;
2611
2612    mly_printf(sc, "   command_id           %d\n", ge->command_id);
2613    mly_printf(sc, "   opcode               %d\n", ge->opcode);
2614    mly_printf(sc, "   command_control      fua %d  dpo %d  est %d  dd %s  nas %d ddis %d\n",
2615		  ge->command_control.force_unit_access,
2616		  ge->command_control.disable_page_out,
2617		  ge->command_control.extended_sg_table,
2618		  (ge->command_control.data_direction == MLY_CCB_WRITE) ? "WRITE" : "READ",
2619		  ge->command_control.no_auto_sense,
2620		  ge->command_control.disable_disconnect);
2621    mly_printf(sc, "   data_size            %d\n", ge->data_size);
2622    mly_printf(sc, "   sense_buffer_address 0x%llx\n", ge->sense_buffer_address);
2623    mly_printf(sc, "   lun                  %d\n", ge->addr.phys.lun);
2624    mly_printf(sc, "   target               %d\n", ge->addr.phys.target);
2625    mly_printf(sc, "   channel              %d\n", ge->addr.phys.channel);
2626    mly_printf(sc, "   logical device       %d\n", ge->addr.log.logdev);
2627    mly_printf(sc, "   controller           %d\n", ge->addr.phys.controller);
2628    mly_printf(sc, "   timeout              %d %s\n",
2629		  ge->timeout.value,
2630		  (ge->timeout.scale == MLY_TIMEOUT_SECONDS) ? "seconds" :
2631		  ((ge->timeout.scale == MLY_TIMEOUT_MINUTES) ? "minutes" : "hours"));
2632    mly_printf(sc, "   maximum_sense_size   %d\n", ge->maximum_sense_size);
2633    switch(ge->opcode) {
2634    case MDACMD_SCSIPT:
2635    case MDACMD_SCSI:
2636	mly_printf(sc, "   cdb length           %d\n", ss->cdb_length);
2637	mly_printf(sc, "   cdb                  %*D\n", ss->cdb_length, ss->cdb, " ");
2638	transfer = 1;
2639	break;
2640    case MDACMD_SCSILC:
2641    case MDACMD_SCSILCPT:
2642	mly_printf(sc, "   cdb length           %d\n", sl->cdb_length);
2643	mly_printf(sc, "   cdb                  0x%llx\n", sl->cdb_physaddr);
2644	transfer = 1;
2645	break;
2646    case MDACMD_IOCTL:
2647	mly_printf(sc, "   sub_ioctl            0x%x\n", io->sub_ioctl);
2648	switch(io->sub_ioctl) {
2649	case MDACIOCTL_SETMEMORYMAILBOX:
2650	    mly_printf(sc, "   health_buffer_size   %d\n",
2651			  io->param.setmemorymailbox.health_buffer_size);
2652	    mly_printf(sc, "   health_buffer_phys   0x%llx\n",
2653			  io->param.setmemorymailbox.health_buffer_physaddr);
2654	    mly_printf(sc, "   command_mailbox      0x%llx\n",
2655			  io->param.setmemorymailbox.command_mailbox_physaddr);
2656	    mly_printf(sc, "   status_mailbox       0x%llx\n",
2657			  io->param.setmemorymailbox.status_mailbox_physaddr);
2658	    transfer = 0;
2659	    break;
2660
2661	case MDACIOCTL_SETREALTIMECLOCK:
2662	case MDACIOCTL_GETHEALTHSTATUS:
2663	case MDACIOCTL_GETCONTROLLERINFO:
2664	case MDACIOCTL_GETLOGDEVINFOVALID:
2665	case MDACIOCTL_GETPHYSDEVINFOVALID:
2666	case MDACIOCTL_GETPHYSDEVSTATISTICS:
2667	case MDACIOCTL_GETLOGDEVSTATISTICS:
2668	case MDACIOCTL_GETCONTROLLERSTATISTICS:
2669	case MDACIOCTL_GETBDT_FOR_SYSDRIVE:
2670	case MDACIOCTL_CREATENEWCONF:
2671	case MDACIOCTL_ADDNEWCONF:
2672	case MDACIOCTL_GETDEVCONFINFO:
2673	case MDACIOCTL_GETFREESPACELIST:
2674	case MDACIOCTL_MORE:
2675	case MDACIOCTL_SETPHYSDEVPARAMETER:
2676	case MDACIOCTL_GETPHYSDEVPARAMETER:
2677	case MDACIOCTL_GETLOGDEVPARAMETER:
2678	case MDACIOCTL_SETLOGDEVPARAMETER:
2679	    mly_printf(sc, "   param                %10D\n", io->param.data.param, " ");
2680	    transfer = 1;
2681	    break;
2682
2683	case MDACIOCTL_GETEVENT:
2684	    mly_printf(sc, "   event                %d\n",
2685		       io->param.getevent.sequence_number_low + ((u_int32_t)io->addr.log.logdev << 16));
2686	    transfer = 1;
2687	    break;
2688
2689	case MDACIOCTL_SETRAIDDEVSTATE:
2690	    mly_printf(sc, "   state                %d\n", io->param.setraiddevstate.state);
2691	    transfer = 0;
2692	    break;
2693
2694	case MDACIOCTL_XLATEPHYSDEVTORAIDDEV:
2695	    mly_printf(sc, "   raid_device          %d\n", io->param.xlatephysdevtoraiddev.raid_device);
2696	    mly_printf(sc, "   controller           %d\n", io->param.xlatephysdevtoraiddev.controller);
2697	    mly_printf(sc, "   channel              %d\n", io->param.xlatephysdevtoraiddev.channel);
2698	    mly_printf(sc, "   target               %d\n", io->param.xlatephysdevtoraiddev.target);
2699	    mly_printf(sc, "   lun                  %d\n", io->param.xlatephysdevtoraiddev.lun);
2700	    transfer = 0;
2701	    break;
2702
2703	case MDACIOCTL_GETGROUPCONFINFO:
2704	    mly_printf(sc, "   group                %d\n", io->param.getgroupconfinfo.group);
2705	    transfer = 1;
2706	    break;
2707
2708	case MDACIOCTL_GET_SUBSYSTEM_DATA:
2709	case MDACIOCTL_SET_SUBSYSTEM_DATA:
2710	case MDACIOCTL_STARTDISOCVERY:
2711	case MDACIOCTL_INITPHYSDEVSTART:
2712	case MDACIOCTL_INITPHYSDEVSTOP:
2713	case MDACIOCTL_INITRAIDDEVSTART:
2714	case MDACIOCTL_INITRAIDDEVSTOP:
2715	case MDACIOCTL_REBUILDRAIDDEVSTART:
2716	case MDACIOCTL_REBUILDRAIDDEVSTOP:
2717	case MDACIOCTL_MAKECONSISTENTDATASTART:
2718	case MDACIOCTL_MAKECONSISTENTDATASTOP:
2719	case MDACIOCTL_CONSISTENCYCHECKSTART:
2720	case MDACIOCTL_CONSISTENCYCHECKSTOP:
2721	case MDACIOCTL_RESETDEVICE:
2722	case MDACIOCTL_FLUSHDEVICEDATA:
2723	case MDACIOCTL_PAUSEDEVICE:
2724	case MDACIOCTL_UNPAUSEDEVICE:
2725	case MDACIOCTL_LOCATEDEVICE:
2726	case MDACIOCTL_SETMASTERSLAVEMODE:
2727	case MDACIOCTL_DELETERAIDDEV:
2728	case MDACIOCTL_REPLACEINTERNALDEV:
2729	case MDACIOCTL_CLEARCONF:
2730	case MDACIOCTL_GETCONTROLLERPARAMETER:
2731	case MDACIOCTL_SETCONTRLLERPARAMETER:
2732	case MDACIOCTL_CLEARCONFSUSPMODE:
2733	case MDACIOCTL_STOREIMAGE:
2734	case MDACIOCTL_READIMAGE:
2735	case MDACIOCTL_FLASHIMAGES:
2736	case MDACIOCTL_RENAMERAIDDEV:
2737	default:			/* no idea what to print */
2738	    transfer = 0;
2739	    break;
2740	}
2741	break;
2742
2743    case MDACMD_IOCTLCHECK:
2744    case MDACMD_MEMCOPY:
2745    default:
2746	transfer = 0;
2747	break;	/* print nothing */
2748    }
2749    if (transfer) {
2750	if (ge->command_control.extended_sg_table) {
2751	    mly_printf(sc, "   sg table             0x%llx/%d\n",
2752			  ge->transfer.indirect.table_physaddr[0], ge->transfer.indirect.entries[0]);
2753	} else {
2754	    mly_printf(sc, "   0000                 0x%llx/%lld\n",
2755			  ge->transfer.direct.sg[0].physaddr, ge->transfer.direct.sg[0].length);
2756	    mly_printf(sc, "   0001                 0x%llx/%lld\n",
2757			  ge->transfer.direct.sg[1].physaddr, ge->transfer.direct.sg[1].length);
2758	}
2759    }
2760}
2761
2762/********************************************************************************
2763 * Panic in a slightly informative fashion
2764 */
2765static void
2766mly_panic(struct mly_softc *sc, char *reason)
2767{
2768    mly_printstate(sc);
2769    panic(reason);
2770}
2771
2772/********************************************************************************
2773 * Print queue statistics, callable from DDB.
2774 */
2775void
2776mly_print_controller(int controller)
2777{
2778    struct mly_softc	*sc;
2779
2780    if ((sc = devclass_get_softc(devclass_find("mly"), controller)) == NULL) {
2781	printf("mly: controller %d invalid\n", controller);
2782    } else {
2783	device_printf(sc->mly_dev, "queue    curr max\n");
2784	device_printf(sc->mly_dev, "free     %04d/%04d\n",
2785		      sc->mly_qstat[MLYQ_FREE].q_length, sc->mly_qstat[MLYQ_FREE].q_max);
2786	device_printf(sc->mly_dev, "busy     %04d/%04d\n",
2787		      sc->mly_qstat[MLYQ_BUSY].q_length, sc->mly_qstat[MLYQ_BUSY].q_max);
2788	device_printf(sc->mly_dev, "complete %04d/%04d\n",
2789		      sc->mly_qstat[MLYQ_COMPLETE].q_length, sc->mly_qstat[MLYQ_COMPLETE].q_max);
2790    }
2791}
2792#endif
2793
2794
2795/********************************************************************************
2796 ********************************************************************************
2797                                                         Control device interface
2798 ********************************************************************************
2799 ********************************************************************************/
2800
2801/********************************************************************************
2802 * Accept an open operation on the control device.
2803 */
2804static int
2805mly_user_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2806{
2807    struct mly_softc	*sc = dev->si_drv1;
2808
2809    sc->mly_state |= MLY_STATE_OPEN;
2810    return(0);
2811}
2812
2813/********************************************************************************
2814 * Accept the last close on the control device.
2815 */
2816static int
2817mly_user_close(struct cdev *dev, int flags, int fmt, struct thread *td)
2818{
2819    struct mly_softc	*sc = dev->si_drv1;
2820
2821    sc->mly_state &= ~MLY_STATE_OPEN;
2822    return (0);
2823}
2824
2825/********************************************************************************
2826 * Handle controller-specific control operations.
2827 */
2828static int
2829mly_user_ioctl(struct cdev *dev, u_long cmd, caddr_t addr,
2830				int32_t flag, struct thread *td)
2831{
2832    struct mly_softc		*sc = (struct mly_softc *)dev->si_drv1;
2833    struct mly_user_command	*uc = (struct mly_user_command *)addr;
2834    struct mly_user_health	*uh = (struct mly_user_health *)addr;
2835
2836    switch(cmd) {
2837    case MLYIO_COMMAND:
2838	return(mly_user_command(sc, uc));
2839    case MLYIO_HEALTH:
2840	return(mly_user_health(sc, uh));
2841    default:
2842	return(ENOIOCTL);
2843    }
2844}
2845
2846/********************************************************************************
2847 * Execute a command passed in from userspace.
2848 *
2849 * The control structure contains the actual command for the controller, as well
2850 * as the user-space data pointer and data size, and an optional sense buffer
2851 * size/pointer.  On completion, the data size is adjusted to the command
2852 * residual, and the sense buffer size to the size of the returned sense data.
2853 *
2854 */
2855static int
2856mly_user_command(struct mly_softc *sc, struct mly_user_command *uc)
2857{
2858    struct mly_command	*mc;
2859    int			error, s;
2860
2861    /* allocate a command */
2862    if (mly_alloc_command(sc, &mc)) {
2863	error = ENOMEM;
2864	goto out;		/* XXX Linux version will wait for a command */
2865    }
2866
2867    /* handle data size/direction */
2868    mc->mc_length = (uc->DataTransferLength >= 0) ? uc->DataTransferLength : -uc->DataTransferLength;
2869    if (mc->mc_length > 0) {
2870	if ((mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_NOWAIT)) == NULL) {
2871	    error = ENOMEM;
2872	    goto out;
2873	}
2874    }
2875    if (uc->DataTransferLength > 0) {
2876	mc->mc_flags |= MLY_CMD_DATAIN;
2877	bzero(mc->mc_data, mc->mc_length);
2878    }
2879    if (uc->DataTransferLength < 0) {
2880	mc->mc_flags |= MLY_CMD_DATAOUT;
2881	if ((error = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length)) != 0)
2882	    goto out;
2883    }
2884
2885    /* copy the controller command */
2886    bcopy(&uc->CommandMailbox, mc->mc_packet, sizeof(uc->CommandMailbox));
2887
2888    /* clear command completion handler so that we get woken up */
2889    mc->mc_complete = NULL;
2890
2891    /* execute the command */
2892    if ((error = mly_start(mc)) != 0)
2893	goto out;
2894    s = splcam();
2895    while (!(mc->mc_flags & MLY_CMD_COMPLETE))
2896	tsleep(mc, PRIBIO, "mlyioctl", 0);
2897    splx(s);
2898
2899    /* return the data to userspace */
2900    if (uc->DataTransferLength > 0)
2901	if ((error = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length)) != 0)
2902	    goto out;
2903
2904    /* return the sense buffer to userspace */
2905    if ((uc->RequestSenseLength > 0) && (mc->mc_sense > 0)) {
2906	if ((error = copyout(mc->mc_packet, uc->RequestSenseBuffer,
2907			     min(uc->RequestSenseLength, mc->mc_sense))) != 0)
2908	    goto out;
2909    }
2910
2911    /* return command results to userspace (caller will copy out) */
2912    uc->DataTransferLength = mc->mc_resid;
2913    uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
2914    uc->CommandStatus = mc->mc_status;
2915    error = 0;
2916
2917 out:
2918    if (mc->mc_data != NULL)
2919	free(mc->mc_data, M_DEVBUF);
2920    if (mc != NULL)
2921	mly_release_command(mc);
2922    return(error);
2923}
2924
2925/********************************************************************************
2926 * Return health status to userspace.  If the health change index in the user
2927 * structure does not match that currently exported by the controller, we
2928 * return the current status immediately.  Otherwise, we block until either
2929 * interrupted or new status is delivered.
2930 */
2931static int
2932mly_user_health(struct mly_softc *sc, struct mly_user_health *uh)
2933{
2934    struct mly_health_status		mh;
2935    int					error, s;
2936
2937    /* fetch the current health status from userspace */
2938    if ((error = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh))) != 0)
2939	return(error);
2940
2941    /* spin waiting for a status update */
2942    s = splcam();
2943    error = EWOULDBLOCK;
2944    while ((error != 0) && (sc->mly_event_change == mh.change_counter))
2945	error = tsleep(&sc->mly_event_change, PRIBIO | PCATCH, "mlyhealth", 0);
2946    splx(s);
2947
2948    /* copy the controller's health status buffer out (there is a race here if it changes again) */
2949    error = copyout(&sc->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer,
2950		    sizeof(uh->HealthStatusBuffer));
2951    return(error);
2952}
2953
2954#ifdef MLY_DEBUG
2955static int
2956mly_timeout(struct mly_softc *sc)
2957{
2958	struct mly_command *mc;
2959	int deadline;
2960
2961	deadline = time_second - MLY_CMD_TIMEOUT;
2962	TAILQ_FOREACH(mc, &sc->mly_busy, mc_link) {
2963		if ((mc->mc_timestamp < deadline)) {
2964			device_printf(sc->mly_dev,
2965			    "COMMAND %p TIMEOUT AFTER %d SECONDS\n", mc,
2966			    (int)(time_second - mc->mc_timestamp));
2967		}
2968	}
2969
2970	timeout((timeout_t *)mly_timeout, sc, MLY_CMD_TIMEOUT * hz);
2971
2972	return (0);
2973}
2974#endif
2975