1/*-
2 * Copyright (c) 2001 Wind River Systems
3 * Copyright (c) 1997, 1998, 1999, 2000, 2001
4 *	Bill Paul <william.paul@windriver.com>.  All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. All advertising materials mentioning features or use of this software
15 *    must display the following acknowledgement:
16 *	This product includes software developed by Bill Paul.
17 * 4. Neither the name of the author nor the names of any co-contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD$");
36
37/*
38 * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public
39 * documentation not available, but ask me nicely.
40 *
41 * The Level 1 chip is used on some D-Link, SMC and Addtron NICs.
42 * It's a 64-bit PCI part that supports TCP/IP checksum offload,
43 * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There
44 * are three supported methods for data transfer between host and
45 * NIC: programmed I/O, traditional scatter/gather DMA and Packet
46 * Propulsion Technology (tm) DMA. The latter mechanism is a form
47 * of double buffer DMA where the packet data is copied to a
48 * pre-allocated DMA buffer who's physical address has been loaded
49 * into a table at device initialization time. The rationale is that
50 * the virtual to physical address translation needed for normal
51 * scatter/gather DMA is more expensive than the data copy needed
52 * for double buffering. This may be true in Windows NT and the like,
53 * but it isn't true for us, at least on the x86 arch. This driver
54 * uses the scatter/gather I/O method for both TX and RX.
55 *
56 * The LXT1001 only supports TCP/IP checksum offload on receive.
57 * Also, the VLAN tagging is done using a 16-entry table which allows
58 * the chip to perform hardware filtering based on VLAN tags. Sadly,
59 * our vlan support doesn't currently play well with this kind of
60 * hardware support.
61 *
62 * Special thanks to:
63 * - Jeff James at Intel, for arranging to have the LXT1001 manual
64 *   released (at long last)
65 * - Beny Chen at D-Link, for actually sending it to me
66 * - Brad Short and Keith Alexis at SMC, for sending me sample
67 *   SMC9462SX and SMC9462TX adapters for testing
68 * - Paul Saab at Y!, for not killing me (though it remains to be seen
69 *   if in fact he did me much of a favor)
70 */
71
72#include <sys/param.h>
73#include <sys/systm.h>
74#include <sys/sockio.h>
75#include <sys/mbuf.h>
76#include <sys/malloc.h>
77#include <sys/kernel.h>
78#include <sys/module.h>
79#include <sys/socket.h>
80
81#include <net/if.h>
82#include <net/if_arp.h>
83#include <net/ethernet.h>
84#include <net/if_dl.h>
85#include <net/if_media.h>
86#include <net/if_types.h>
87
88#include <net/bpf.h>
89
90#include <vm/vm.h>              /* for vtophys */
91#include <vm/pmap.h>            /* for vtophys */
92#include <machine/bus.h>
93#include <machine/resource.h>
94#include <sys/bus.h>
95#include <sys/rman.h>
96
97#include <dev/mii/mii.h>
98#include <dev/mii/miivar.h>
99
100#include <dev/pci/pcireg.h>
101#include <dev/pci/pcivar.h>
102
103#define LGE_USEIOSPACE
104
105#include <dev/lge/if_lgereg.h>
106
107/* "device miibus" required.  See GENERIC if you get errors here. */
108#include "miibus_if.h"
109
110/*
111 * Various supported device vendors/types and their names.
112 */
113static const struct lge_type lge_devs[] = {
114	{ LGE_VENDORID, LGE_DEVICEID, "Level 1 Gigabit Ethernet" },
115	{ 0, 0, NULL }
116};
117
118static int lge_probe(device_t);
119static int lge_attach(device_t);
120static int lge_detach(device_t);
121
122static int lge_alloc_jumbo_mem(struct lge_softc *);
123static void lge_free_jumbo_mem(struct lge_softc *);
124static void *lge_jalloc(struct lge_softc *);
125static void lge_jfree(void *, void *);
126
127static int lge_newbuf(struct lge_softc *, struct lge_rx_desc *, struct mbuf *);
128static int lge_encap(struct lge_softc *, struct mbuf *, u_int32_t *);
129static void lge_rxeof(struct lge_softc *, int);
130static void lge_rxeoc(struct lge_softc *);
131static void lge_txeof(struct lge_softc *);
132static void lge_intr(void *);
133static void lge_tick(void *);
134static void lge_start(struct ifnet *);
135static void lge_start_locked(struct ifnet *);
136static int lge_ioctl(struct ifnet *, u_long, caddr_t);
137static void lge_init(void *);
138static void lge_init_locked(struct lge_softc *);
139static void lge_stop(struct lge_softc *);
140static void lge_watchdog(struct lge_softc *);
141static int lge_shutdown(device_t);
142static int lge_ifmedia_upd(struct ifnet *);
143static void lge_ifmedia_upd_locked(struct ifnet *);
144static void lge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
145
146static void lge_eeprom_getword(struct lge_softc *, int, u_int16_t *);
147static void lge_read_eeprom(struct lge_softc *, caddr_t, int, int, int);
148
149static int lge_miibus_readreg(device_t, int, int);
150static int lge_miibus_writereg(device_t, int, int, int);
151static void lge_miibus_statchg(device_t);
152
153static void lge_setmulti(struct lge_softc *);
154static void lge_reset(struct lge_softc *);
155static int lge_list_rx_init(struct lge_softc *);
156static int lge_list_tx_init(struct lge_softc *);
157
158#ifdef LGE_USEIOSPACE
159#define LGE_RES			SYS_RES_IOPORT
160#define LGE_RID			LGE_PCI_LOIO
161#else
162#define LGE_RES			SYS_RES_MEMORY
163#define LGE_RID			LGE_PCI_LOMEM
164#endif
165
166static device_method_t lge_methods[] = {
167	/* Device interface */
168	DEVMETHOD(device_probe,		lge_probe),
169	DEVMETHOD(device_attach,	lge_attach),
170	DEVMETHOD(device_detach,	lge_detach),
171	DEVMETHOD(device_shutdown,	lge_shutdown),
172
173	/* MII interface */
174	DEVMETHOD(miibus_readreg,	lge_miibus_readreg),
175	DEVMETHOD(miibus_writereg,	lge_miibus_writereg),
176	DEVMETHOD(miibus_statchg,	lge_miibus_statchg),
177
178	DEVMETHOD_END
179};
180
181static driver_t lge_driver = {
182	"lge",
183	lge_methods,
184	sizeof(struct lge_softc)
185};
186
187static devclass_t lge_devclass;
188
189DRIVER_MODULE(lge, pci, lge_driver, lge_devclass, 0, 0);
190DRIVER_MODULE(miibus, lge, miibus_driver, miibus_devclass, 0, 0);
191MODULE_DEPEND(lge, pci, 1, 1, 1);
192MODULE_DEPEND(lge, ether, 1, 1, 1);
193MODULE_DEPEND(lge, miibus, 1, 1, 1);
194
195#define LGE_SETBIT(sc, reg, x)				\
196	CSR_WRITE_4(sc, reg,				\
197		CSR_READ_4(sc, reg) | (x))
198
199#define LGE_CLRBIT(sc, reg, x)				\
200	CSR_WRITE_4(sc, reg,				\
201		CSR_READ_4(sc, reg) & ~(x))
202
203#define SIO_SET(x)					\
204	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x)
205
206#define SIO_CLR(x)					\
207	CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x)
208
209/*
210 * Read a word of data stored in the EEPROM at address 'addr.'
211 */
212static void
213lge_eeprom_getword(sc, addr, dest)
214	struct lge_softc	*sc;
215	int			addr;
216	u_int16_t		*dest;
217{
218	register int		i;
219	u_int32_t		val;
220
221	CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ|
222	    LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8));
223
224	for (i = 0; i < LGE_TIMEOUT; i++)
225		if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ))
226			break;
227
228	if (i == LGE_TIMEOUT) {
229		device_printf(sc->lge_dev, "EEPROM read timed out\n");
230		return;
231	}
232
233	val = CSR_READ_4(sc, LGE_EEDATA);
234
235	if (addr & 1)
236		*dest = (val >> 16) & 0xFFFF;
237	else
238		*dest = val & 0xFFFF;
239
240	return;
241}
242
243/*
244 * Read a sequence of words from the EEPROM.
245 */
246static void
247lge_read_eeprom(sc, dest, off, cnt, swap)
248	struct lge_softc	*sc;
249	caddr_t			dest;
250	int			off;
251	int			cnt;
252	int			swap;
253{
254	int			i;
255	u_int16_t		word = 0, *ptr;
256
257	for (i = 0; i < cnt; i++) {
258		lge_eeprom_getword(sc, off + i, &word);
259		ptr = (u_int16_t *)(dest + (i * 2));
260		if (swap)
261			*ptr = ntohs(word);
262		else
263			*ptr = word;
264	}
265
266	return;
267}
268
269static int
270lge_miibus_readreg(dev, phy, reg)
271	device_t		dev;
272	int			phy, reg;
273{
274	struct lge_softc	*sc;
275	int			i;
276
277	sc = device_get_softc(dev);
278
279	/*
280	 * If we have a non-PCS PHY, pretend that the internal
281	 * autoneg stuff at PHY address 0 isn't there so that
282	 * the miibus code will find only the GMII PHY.
283	 */
284	if (sc->lge_pcs == 0 && phy == 0)
285		return(0);
286
287	CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ);
288
289	for (i = 0; i < LGE_TIMEOUT; i++)
290		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
291			break;
292
293	if (i == LGE_TIMEOUT) {
294		device_printf(sc->lge_dev, "PHY read timed out\n");
295		return(0);
296	}
297
298	return(CSR_READ_4(sc, LGE_GMIICTL) >> 16);
299}
300
301static int
302lge_miibus_writereg(dev, phy, reg, data)
303	device_t		dev;
304	int			phy, reg, data;
305{
306	struct lge_softc	*sc;
307	int			i;
308
309	sc = device_get_softc(dev);
310
311	CSR_WRITE_4(sc, LGE_GMIICTL,
312	    (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE);
313
314	for (i = 0; i < LGE_TIMEOUT; i++)
315		if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY))
316			break;
317
318	if (i == LGE_TIMEOUT) {
319		device_printf(sc->lge_dev, "PHY write timed out\n");
320		return(0);
321	}
322
323	return(0);
324}
325
326static void
327lge_miibus_statchg(dev)
328	device_t		dev;
329{
330	struct lge_softc	*sc;
331	struct mii_data		*mii;
332
333	sc = device_get_softc(dev);
334	mii = device_get_softc(sc->lge_miibus);
335
336	LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED);
337	switch (IFM_SUBTYPE(mii->mii_media_active)) {
338	case IFM_1000_T:
339	case IFM_1000_SX:
340		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
341		break;
342	case IFM_100_TX:
343		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100);
344		break;
345	case IFM_10_T:
346		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10);
347		break;
348	default:
349		/*
350		 * Choose something, even if it's wrong. Clearing
351		 * all the bits will hose autoneg on the internal
352		 * PHY.
353		 */
354		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000);
355		break;
356	}
357
358	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
359		LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
360	} else {
361		LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX);
362	}
363
364	return;
365}
366
367static void
368lge_setmulti(sc)
369	struct lge_softc	*sc;
370{
371	struct ifnet		*ifp;
372	struct ifmultiaddr	*ifma;
373	u_int32_t		h = 0, hashes[2] = { 0, 0 };
374
375	ifp = sc->lge_ifp;
376	LGE_LOCK_ASSERT(sc);
377
378	/* Make sure multicast hash table is enabled. */
379	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST);
380
381	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
382		CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF);
383		CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF);
384		return;
385	}
386
387	/* first, zot all the existing hash bits */
388	CSR_WRITE_4(sc, LGE_MAR0, 0);
389	CSR_WRITE_4(sc, LGE_MAR1, 0);
390
391	/* now program new ones */
392	if_maddr_rlock(ifp);
393	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
394		if (ifma->ifma_addr->sa_family != AF_LINK)
395			continue;
396		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
397		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
398		if (h < 32)
399			hashes[0] |= (1 << h);
400		else
401			hashes[1] |= (1 << (h - 32));
402	}
403	if_maddr_runlock(ifp);
404
405	CSR_WRITE_4(sc, LGE_MAR0, hashes[0]);
406	CSR_WRITE_4(sc, LGE_MAR1, hashes[1]);
407
408	return;
409}
410
411static void
412lge_reset(sc)
413	struct lge_softc	*sc;
414{
415	register int		i;
416
417	LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST);
418
419	for (i = 0; i < LGE_TIMEOUT; i++) {
420		if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST))
421			break;
422	}
423
424	if (i == LGE_TIMEOUT)
425		device_printf(sc->lge_dev, "reset never completed\n");
426
427	/* Wait a little while for the chip to get its brains in order. */
428	DELAY(1000);
429
430        return;
431}
432
433/*
434 * Probe for a Level 1 chip. Check the PCI vendor and device
435 * IDs against our list and return a device name if we find a match.
436 */
437static int
438lge_probe(dev)
439	device_t		dev;
440{
441	const struct lge_type	*t;
442
443	t = lge_devs;
444
445	while(t->lge_name != NULL) {
446		if ((pci_get_vendor(dev) == t->lge_vid) &&
447		    (pci_get_device(dev) == t->lge_did)) {
448			device_set_desc(dev, t->lge_name);
449			return(BUS_PROBE_DEFAULT);
450		}
451		t++;
452	}
453
454	return(ENXIO);
455}
456
457/*
458 * Attach the interface. Allocate softc structures, do ifmedia
459 * setup and ethernet/BPF attach.
460 */
461static int
462lge_attach(dev)
463	device_t		dev;
464{
465	u_char			eaddr[ETHER_ADDR_LEN];
466	struct lge_softc	*sc;
467	struct ifnet		*ifp = NULL;
468	int			error = 0, rid;
469
470	sc = device_get_softc(dev);
471	sc->lge_dev = dev;
472
473	mtx_init(&sc->lge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474	    MTX_DEF);
475	callout_init_mtx(&sc->lge_stat_callout, &sc->lge_mtx, 0);
476
477	/*
478	 * Map control/status registers.
479	 */
480	pci_enable_busmaster(dev);
481
482	rid = LGE_RID;
483	sc->lge_res = bus_alloc_resource_any(dev, LGE_RES, &rid, RF_ACTIVE);
484
485	if (sc->lge_res == NULL) {
486		device_printf(dev, "couldn't map ports/memory\n");
487		error = ENXIO;
488		goto fail;
489	}
490
491	sc->lge_btag = rman_get_bustag(sc->lge_res);
492	sc->lge_bhandle = rman_get_bushandle(sc->lge_res);
493
494	/* Allocate interrupt */
495	rid = 0;
496	sc->lge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
497	    RF_SHAREABLE | RF_ACTIVE);
498
499	if (sc->lge_irq == NULL) {
500		device_printf(dev, "couldn't map interrupt\n");
501		error = ENXIO;
502		goto fail;
503	}
504
505	/* Reset the adapter. */
506	lge_reset(sc);
507
508	/*
509	 * Get station address from the EEPROM.
510	 */
511	lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0);
512	lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0);
513	lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0);
514
515	sc->lge_ldata = contigmalloc(sizeof(struct lge_list_data), M_DEVBUF,
516	    M_NOWAIT | M_ZERO, 0, 0xffffffff, PAGE_SIZE, 0);
517
518	if (sc->lge_ldata == NULL) {
519		device_printf(dev, "no memory for list buffers!\n");
520		error = ENXIO;
521		goto fail;
522	}
523
524	/* Try to allocate memory for jumbo buffers. */
525	if (lge_alloc_jumbo_mem(sc)) {
526		device_printf(dev, "jumbo buffer allocation failed\n");
527		error = ENXIO;
528		goto fail;
529	}
530
531	ifp = sc->lge_ifp = if_alloc(IFT_ETHER);
532	if (ifp == NULL) {
533		device_printf(dev, "can not if_alloc()\n");
534		error = ENOSPC;
535		goto fail;
536	}
537	ifp->if_softc = sc;
538	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
539	ifp->if_mtu = ETHERMTU;
540	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
541	ifp->if_ioctl = lge_ioctl;
542	ifp->if_start = lge_start;
543	ifp->if_init = lge_init;
544	ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1;
545	ifp->if_capabilities = IFCAP_RXCSUM;
546	ifp->if_capenable = ifp->if_capabilities;
547
548	if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH)
549		sc->lge_pcs = 1;
550	else
551		sc->lge_pcs = 0;
552
553	/*
554	 * Do MII setup.
555	 */
556	error = mii_attach(dev, &sc->lge_miibus, ifp, lge_ifmedia_upd,
557	    lge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
558	if (error != 0) {
559		device_printf(dev, "attaching PHYs failed\n");
560		goto fail;
561	}
562
563	/*
564	 * Call MI attach routine.
565	 */
566	ether_ifattach(ifp, eaddr);
567
568	error = bus_setup_intr(dev, sc->lge_irq, INTR_TYPE_NET | INTR_MPSAFE,
569	    NULL, lge_intr, sc, &sc->lge_intrhand);
570
571	if (error) {
572		ether_ifdetach(ifp);
573		device_printf(dev, "couldn't set up irq\n");
574		goto fail;
575	}
576	return (0);
577
578fail:
579	lge_free_jumbo_mem(sc);
580	if (sc->lge_ldata)
581		contigfree(sc->lge_ldata,
582		    sizeof(struct lge_list_data), M_DEVBUF);
583	if (ifp)
584		if_free(ifp);
585	if (sc->lge_irq)
586		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
587	if (sc->lge_res)
588		bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
589	mtx_destroy(&sc->lge_mtx);
590	return(error);
591}
592
593static int
594lge_detach(dev)
595	device_t		dev;
596{
597	struct lge_softc	*sc;
598	struct ifnet		*ifp;
599
600	sc = device_get_softc(dev);
601	ifp = sc->lge_ifp;
602
603	LGE_LOCK(sc);
604	lge_reset(sc);
605	lge_stop(sc);
606	LGE_UNLOCK(sc);
607	callout_drain(&sc->lge_stat_callout);
608	ether_ifdetach(ifp);
609
610	bus_generic_detach(dev);
611	device_delete_child(dev, sc->lge_miibus);
612
613	bus_teardown_intr(dev, sc->lge_irq, sc->lge_intrhand);
614	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->lge_irq);
615	bus_release_resource(dev, LGE_RES, LGE_RID, sc->lge_res);
616
617	contigfree(sc->lge_ldata, sizeof(struct lge_list_data), M_DEVBUF);
618	if_free(ifp);
619	lge_free_jumbo_mem(sc);
620	mtx_destroy(&sc->lge_mtx);
621
622	return(0);
623}
624
625/*
626 * Initialize the transmit descriptors.
627 */
628static int
629lge_list_tx_init(sc)
630	struct lge_softc	*sc;
631{
632	struct lge_list_data	*ld;
633	struct lge_ring_data	*cd;
634	int			i;
635
636	cd = &sc->lge_cdata;
637	ld = sc->lge_ldata;
638	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
639		ld->lge_tx_list[i].lge_mbuf = NULL;
640		ld->lge_tx_list[i].lge_ctl = 0;
641	}
642
643	cd->lge_tx_prod = cd->lge_tx_cons = 0;
644
645	return(0);
646}
647
648
649/*
650 * Initialize the RX descriptors and allocate mbufs for them. Note that
651 * we arralge the descriptors in a closed ring, so that the last descriptor
652 * points back to the first.
653 */
654static int
655lge_list_rx_init(sc)
656	struct lge_softc	*sc;
657{
658	struct lge_list_data	*ld;
659	struct lge_ring_data	*cd;
660	int			i;
661
662	ld = sc->lge_ldata;
663	cd = &sc->lge_cdata;
664
665	cd->lge_rx_prod = cd->lge_rx_cons = 0;
666
667	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
668
669	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
670		if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0)
671			break;
672		if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS)
673			return(ENOBUFS);
674	}
675
676	/* Clear possible 'rx command queue empty' interrupt. */
677	CSR_READ_4(sc, LGE_ISR);
678
679	return(0);
680}
681
682/*
683 * Initialize an RX descriptor and attach an MBUF cluster.
684 */
685static int
686lge_newbuf(sc, c, m)
687	struct lge_softc	*sc;
688	struct lge_rx_desc	*c;
689	struct mbuf		*m;
690{
691	struct mbuf		*m_new = NULL;
692	caddr_t			*buf = NULL;
693
694	if (m == NULL) {
695		MGETHDR(m_new, M_NOWAIT, MT_DATA);
696		if (m_new == NULL) {
697			device_printf(sc->lge_dev, "no memory for rx list "
698			    "-- packet dropped!\n");
699			return(ENOBUFS);
700		}
701
702		/* Allocate the jumbo buffer */
703		buf = lge_jalloc(sc);
704		if (buf == NULL) {
705#ifdef LGE_VERBOSE
706			device_printf(sc->lge_dev, "jumbo allocation failed "
707			    "-- packet dropped!\n");
708#endif
709			m_freem(m_new);
710			return(ENOBUFS);
711		}
712		/* Attach the buffer to the mbuf */
713		m_new->m_data = (void *)buf;
714		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
715		MEXTADD(m_new, buf, LGE_JUMBO_FRAMELEN, lge_jfree,
716		    buf, (struct lge_softc *)sc, 0, EXT_NET_DRV);
717	} else {
718		m_new = m;
719		m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN;
720		m_new->m_data = m_new->m_ext.ext_buf;
721	}
722
723	/*
724	 * Adjust alignment so packet payload begins on a
725	 * longword boundary. Mandatory for Alpha, useful on
726	 * x86 too.
727	*/
728	m_adj(m_new, ETHER_ALIGN);
729
730	c->lge_mbuf = m_new;
731	c->lge_fragptr_hi = 0;
732	c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t));
733	c->lge_fraglen = m_new->m_len;
734	c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1);
735	c->lge_sts = 0;
736
737	/*
738	 * Put this buffer in the RX command FIFO. To do this,
739	 * we just write the physical address of the descriptor
740	 * into the RX descriptor address registers. Note that
741	 * there are two registers, one high DWORD and one low
742	 * DWORD, which lets us specify a 64-bit address if
743	 * desired. We only use a 32-bit address for now.
744	 * Writing to the low DWORD register is what actually
745	 * causes the command to be issued, so we do that
746	 * last.
747	 */
748	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c));
749	LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT);
750
751	return(0);
752}
753
754static int
755lge_alloc_jumbo_mem(sc)
756	struct lge_softc	*sc;
757{
758	caddr_t			ptr;
759	register int		i;
760	struct lge_jpool_entry   *entry;
761
762	/* Grab a big chunk o' storage. */
763	sc->lge_cdata.lge_jumbo_buf = contigmalloc(LGE_JMEM, M_DEVBUF,
764	    M_NOWAIT, 0, 0xffffffff, PAGE_SIZE, 0);
765
766	if (sc->lge_cdata.lge_jumbo_buf == NULL) {
767		device_printf(sc->lge_dev, "no memory for jumbo buffers!\n");
768		return(ENOBUFS);
769	}
770
771	SLIST_INIT(&sc->lge_jfree_listhead);
772	SLIST_INIT(&sc->lge_jinuse_listhead);
773
774	/*
775	 * Now divide it up into 9K pieces and save the addresses
776	 * in an array.
777	 */
778	ptr = sc->lge_cdata.lge_jumbo_buf;
779	for (i = 0; i < LGE_JSLOTS; i++) {
780		sc->lge_cdata.lge_jslots[i] = ptr;
781		ptr += LGE_JLEN;
782		entry = malloc(sizeof(struct lge_jpool_entry),
783		    M_DEVBUF, M_NOWAIT);
784		if (entry == NULL) {
785			device_printf(sc->lge_dev, "no memory for jumbo "
786			    "buffer queue!\n");
787			return(ENOBUFS);
788		}
789		entry->slot = i;
790		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead,
791		    entry, jpool_entries);
792	}
793
794	return(0);
795}
796
797static void
798lge_free_jumbo_mem(sc)
799	struct lge_softc	*sc;
800{
801	struct lge_jpool_entry	*entry;
802
803	if (sc->lge_cdata.lge_jumbo_buf == NULL)
804		return;
805
806	while ((entry = SLIST_FIRST(&sc->lge_jinuse_listhead))) {
807		device_printf(sc->lge_dev,
808		    "asked to free buffer that is in use!\n");
809		SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
810		SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry,
811		    jpool_entries);
812	}
813	while (!SLIST_EMPTY(&sc->lge_jfree_listhead)) {
814		entry = SLIST_FIRST(&sc->lge_jfree_listhead);
815		SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
816		free(entry, M_DEVBUF);
817	}
818
819	contigfree(sc->lge_cdata.lge_jumbo_buf, LGE_JMEM, M_DEVBUF);
820
821	return;
822}
823
824/*
825 * Allocate a jumbo buffer.
826 */
827static void *
828lge_jalloc(sc)
829	struct lge_softc	*sc;
830{
831	struct lge_jpool_entry   *entry;
832
833	entry = SLIST_FIRST(&sc->lge_jfree_listhead);
834
835	if (entry == NULL) {
836#ifdef LGE_VERBOSE
837		device_printf(sc->lge_dev, "no free jumbo buffers\n");
838#endif
839		return(NULL);
840	}
841
842	SLIST_REMOVE_HEAD(&sc->lge_jfree_listhead, jpool_entries);
843	SLIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries);
844	return(sc->lge_cdata.lge_jslots[entry->slot]);
845}
846
847/*
848 * Release a jumbo buffer.
849 */
850static void
851lge_jfree(buf, args)
852	void			*buf;
853	void			*args;
854{
855	struct lge_softc	*sc;
856	int		        i;
857	struct lge_jpool_entry   *entry;
858
859	/* Extract the softc struct pointer. */
860	sc = args;
861
862	if (sc == NULL)
863		panic("lge_jfree: can't find softc pointer!");
864
865	/* calculate the slot this buffer belongs to */
866	i = ((vm_offset_t)buf
867	     - (vm_offset_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN;
868
869	if ((i < 0) || (i >= LGE_JSLOTS))
870		panic("lge_jfree: asked to free buffer that we don't manage!");
871
872	entry = SLIST_FIRST(&sc->lge_jinuse_listhead);
873	if (entry == NULL)
874		panic("lge_jfree: buffer not in use!");
875	entry->slot = i;
876	SLIST_REMOVE_HEAD(&sc->lge_jinuse_listhead, jpool_entries);
877	SLIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries);
878
879	return;
880}
881
882/*
883 * A frame has been uploaded: pass the resulting mbuf chain up to
884 * the higher level protocols.
885 */
886static void
887lge_rxeof(sc, cnt)
888	struct lge_softc	*sc;
889	int			cnt;
890{
891        struct mbuf		*m;
892        struct ifnet		*ifp;
893	struct lge_rx_desc	*cur_rx;
894	int			c, i, total_len = 0;
895	u_int32_t		rxsts, rxctl;
896
897	ifp = sc->lge_ifp;
898
899	/* Find out how many frames were processed. */
900	c = cnt;
901	i = sc->lge_cdata.lge_rx_cons;
902
903	/* Suck them in. */
904	while(c) {
905		struct mbuf		*m0 = NULL;
906
907		cur_rx = &sc->lge_ldata->lge_rx_list[i];
908		rxctl = cur_rx->lge_ctl;
909		rxsts = cur_rx->lge_sts;
910		m = cur_rx->lge_mbuf;
911		cur_rx->lge_mbuf = NULL;
912		total_len = LGE_RXBYTES(cur_rx);
913		LGE_INC(i, LGE_RX_LIST_CNT);
914		c--;
915
916		/*
917		 * If an error occurs, update stats, clear the
918		 * status word and leave the mbuf cluster in place:
919		 * it should simply get re-used next time this descriptor
920	 	 * comes up in the ring.
921		 */
922		if (rxctl & LGE_RXCTL_ERRMASK) {
923			ifp->if_ierrors++;
924			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
925			continue;
926		}
927
928		if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) {
929			m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN,
930			    ifp, NULL);
931			lge_newbuf(sc, &LGE_RXTAIL(sc), m);
932			if (m0 == NULL) {
933				device_printf(sc->lge_dev, "no receive buffers "
934				    "available -- packet dropped!\n");
935				ifp->if_ierrors++;
936				continue;
937			}
938			m = m0;
939		} else {
940			m->m_pkthdr.rcvif = ifp;
941			m->m_pkthdr.len = m->m_len = total_len;
942		}
943
944		ifp->if_ipackets++;
945
946		/* Do IP checksum checking. */
947		if (rxsts & LGE_RXSTS_ISIP)
948			m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
949		if (!(rxsts & LGE_RXSTS_IPCSUMERR))
950			m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
951		if ((rxsts & LGE_RXSTS_ISTCP &&
952		    !(rxsts & LGE_RXSTS_TCPCSUMERR)) ||
953		    (rxsts & LGE_RXSTS_ISUDP &&
954		    !(rxsts & LGE_RXSTS_UDPCSUMERR))) {
955			m->m_pkthdr.csum_flags |=
956			    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
957			m->m_pkthdr.csum_data = 0xffff;
958		}
959
960		LGE_UNLOCK(sc);
961		(*ifp->if_input)(ifp, m);
962		LGE_LOCK(sc);
963	}
964
965	sc->lge_cdata.lge_rx_cons = i;
966
967	return;
968}
969
970static void
971lge_rxeoc(sc)
972	struct lge_softc	*sc;
973{
974	struct ifnet		*ifp;
975
976	ifp = sc->lge_ifp;
977	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
978	lge_init_locked(sc);
979	return;
980}
981
982/*
983 * A frame was downloaded to the chip. It's safe for us to clean up
984 * the list buffers.
985 */
986
987static void
988lge_txeof(sc)
989	struct lge_softc	*sc;
990{
991	struct lge_tx_desc	*cur_tx = NULL;
992	struct ifnet		*ifp;
993	u_int32_t		idx, txdone;
994
995	ifp = sc->lge_ifp;
996
997	/* Clear the timeout timer. */
998	sc->lge_timer = 0;
999
1000	/*
1001	 * Go through our tx list and free mbufs for those
1002	 * frames that have been transmitted.
1003	 */
1004	idx = sc->lge_cdata.lge_tx_cons;
1005	txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT);
1006
1007	while (idx != sc->lge_cdata.lge_tx_prod && txdone) {
1008		cur_tx = &sc->lge_ldata->lge_tx_list[idx];
1009
1010		ifp->if_opackets++;
1011		if (cur_tx->lge_mbuf != NULL) {
1012			m_freem(cur_tx->lge_mbuf);
1013			cur_tx->lge_mbuf = NULL;
1014		}
1015		cur_tx->lge_ctl = 0;
1016
1017		txdone--;
1018		LGE_INC(idx, LGE_TX_LIST_CNT);
1019		sc->lge_timer = 0;
1020	}
1021
1022	sc->lge_cdata.lge_tx_cons = idx;
1023
1024	if (cur_tx != NULL)
1025		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1026
1027	return;
1028}
1029
1030static void
1031lge_tick(xsc)
1032	void			*xsc;
1033{
1034	struct lge_softc	*sc;
1035	struct mii_data		*mii;
1036	struct ifnet		*ifp;
1037
1038	sc = xsc;
1039	ifp = sc->lge_ifp;
1040	LGE_LOCK_ASSERT(sc);
1041
1042	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS);
1043	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1044	CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS);
1045	ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL);
1046
1047	if (!sc->lge_link) {
1048		mii = device_get_softc(sc->lge_miibus);
1049		mii_tick(mii);
1050		if (mii->mii_media_status & IFM_ACTIVE &&
1051		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1052			sc->lge_link++;
1053			if (bootverbose &&
1054		  	    (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX||
1055			    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T))
1056				device_printf(sc->lge_dev, "gigabit link up\n");
1057			if (ifp->if_snd.ifq_head != NULL)
1058				lge_start_locked(ifp);
1059		}
1060	}
1061
1062	if (sc->lge_timer != 0 && --sc->lge_timer == 0)
1063		lge_watchdog(sc);
1064	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1065
1066	return;
1067}
1068
1069static void
1070lge_intr(arg)
1071	void			*arg;
1072{
1073	struct lge_softc	*sc;
1074	struct ifnet		*ifp;
1075	u_int32_t		status;
1076
1077	sc = arg;
1078	ifp = sc->lge_ifp;
1079	LGE_LOCK(sc);
1080
1081	/* Supress unwanted interrupts */
1082	if (!(ifp->if_flags & IFF_UP)) {
1083		lge_stop(sc);
1084		LGE_UNLOCK(sc);
1085		return;
1086	}
1087
1088	for (;;) {
1089		/*
1090		 * Reading the ISR register clears all interrupts, and
1091		 * clears the 'interrupts enabled' bit in the IMR
1092		 * register.
1093		 */
1094		status = CSR_READ_4(sc, LGE_ISR);
1095
1096		if ((status & LGE_INTRS) == 0)
1097			break;
1098
1099		if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE)))
1100			lge_txeof(sc);
1101
1102		if (status & LGE_ISR_RXDMA_DONE)
1103			lge_rxeof(sc, LGE_RX_DMACNT(status));
1104
1105		if (status & LGE_ISR_RXCMDFIFO_EMPTY)
1106			lge_rxeoc(sc);
1107
1108		if (status & LGE_ISR_PHY_INTR) {
1109			sc->lge_link = 0;
1110			callout_stop(&sc->lge_stat_callout);
1111			lge_tick(sc);
1112		}
1113	}
1114
1115	/* Re-enable interrupts. */
1116	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB);
1117
1118	if (ifp->if_snd.ifq_head != NULL)
1119		lge_start_locked(ifp);
1120
1121	LGE_UNLOCK(sc);
1122	return;
1123}
1124
1125/*
1126 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1127 * pointers to the fragment pointers.
1128 */
1129static int
1130lge_encap(sc, m_head, txidx)
1131	struct lge_softc	*sc;
1132	struct mbuf		*m_head;
1133	u_int32_t		*txidx;
1134{
1135	struct lge_frag		*f = NULL;
1136	struct lge_tx_desc	*cur_tx;
1137	struct mbuf		*m;
1138	int			frag = 0, tot_len = 0;
1139
1140	/*
1141 	 * Start packing the mbufs in this chain into
1142	 * the fragment pointers. Stop when we run out
1143 	 * of fragments or hit the end of the mbuf chain.
1144	 */
1145	m = m_head;
1146	cur_tx = &sc->lge_ldata->lge_tx_list[*txidx];
1147	frag = 0;
1148
1149	for (m = m_head; m != NULL; m = m->m_next) {
1150		if (m->m_len != 0) {
1151			tot_len += m->m_len;
1152			f = &cur_tx->lge_frags[frag];
1153			f->lge_fraglen = m->m_len;
1154			f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t));
1155			f->lge_fragptr_hi = 0;
1156			frag++;
1157		}
1158	}
1159
1160	if (m != NULL)
1161		return(ENOBUFS);
1162
1163	cur_tx->lge_mbuf = m_head;
1164	cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len;
1165	LGE_INC((*txidx), LGE_TX_LIST_CNT);
1166
1167	/* Queue for transmit */
1168	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx));
1169
1170	return(0);
1171}
1172
1173/*
1174 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1175 * to the mbuf data regions directly in the transmit lists. We also save a
1176 * copy of the pointers since the transmit list fragment pointers are
1177 * physical addresses.
1178 */
1179
1180static void
1181lge_start(ifp)
1182	struct ifnet		*ifp;
1183{
1184	struct lge_softc	*sc;
1185
1186	sc = ifp->if_softc;
1187	LGE_LOCK(sc);
1188	lge_start_locked(ifp);
1189	LGE_UNLOCK(sc);
1190}
1191
1192static void
1193lge_start_locked(ifp)
1194	struct ifnet		*ifp;
1195{
1196	struct lge_softc	*sc;
1197	struct mbuf		*m_head = NULL;
1198	u_int32_t		idx;
1199
1200	sc = ifp->if_softc;
1201
1202	if (!sc->lge_link)
1203		return;
1204
1205	idx = sc->lge_cdata.lge_tx_prod;
1206
1207	if (ifp->if_drv_flags & IFF_DRV_OACTIVE)
1208		return;
1209
1210	while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) {
1211		if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0)
1212			break;
1213
1214		IF_DEQUEUE(&ifp->if_snd, m_head);
1215		if (m_head == NULL)
1216			break;
1217
1218		if (lge_encap(sc, m_head, &idx)) {
1219			IF_PREPEND(&ifp->if_snd, m_head);
1220			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1221			break;
1222		}
1223
1224		/*
1225		 * If there's a BPF listener, bounce a copy of this frame
1226		 * to him.
1227		 */
1228		BPF_MTAP(ifp, m_head);
1229	}
1230
1231	sc->lge_cdata.lge_tx_prod = idx;
1232
1233	/*
1234	 * Set a timeout in case the chip goes out to lunch.
1235	 */
1236	sc->lge_timer = 5;
1237
1238	return;
1239}
1240
1241static void
1242lge_init(xsc)
1243	void			*xsc;
1244{
1245	struct lge_softc	*sc = xsc;
1246
1247	LGE_LOCK(sc);
1248	lge_init_locked(sc);
1249	LGE_UNLOCK(sc);
1250}
1251
1252static void
1253lge_init_locked(sc)
1254	struct lge_softc	*sc;
1255{
1256	struct ifnet		*ifp = sc->lge_ifp;
1257
1258	LGE_LOCK_ASSERT(sc);
1259	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1260		return;
1261
1262	/*
1263	 * Cancel pending I/O and free all RX/TX buffers.
1264	 */
1265	lge_stop(sc);
1266	lge_reset(sc);
1267
1268	/* Set MAC address */
1269	CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[0]));
1270	CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&IF_LLADDR(sc->lge_ifp)[4]));
1271
1272	/* Init circular RX list. */
1273	if (lge_list_rx_init(sc) == ENOBUFS) {
1274		device_printf(sc->lge_dev, "initialization failed: no "
1275		    "memory for rx buffers\n");
1276		lge_stop(sc);
1277		return;
1278	}
1279
1280	/*
1281	 * Init tx descriptors.
1282	 */
1283	lge_list_tx_init(sc);
1284
1285	/* Set initial value for MODE1 register. */
1286	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST|
1287	    LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD|
1288	    LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0|
1289	    LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2);
1290
1291	 /* If we want promiscuous mode, set the allframes bit. */
1292	if (ifp->if_flags & IFF_PROMISC) {
1293		CSR_WRITE_4(sc, LGE_MODE1,
1294		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC);
1295	} else {
1296		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC);
1297	}
1298
1299	/*
1300	 * Set the capture broadcast bit to capture broadcast frames.
1301	 */
1302	if (ifp->if_flags & IFF_BROADCAST) {
1303		CSR_WRITE_4(sc, LGE_MODE1,
1304		    LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST);
1305	} else {
1306		CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST);
1307	}
1308
1309	/* Packet padding workaround? */
1310	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD);
1311
1312	/* No error frames */
1313	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS);
1314
1315	/* Receive large frames */
1316	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS);
1317
1318	/* Workaround: disable RX/TX flow control */
1319	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL);
1320	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL);
1321
1322	/* Make sure to strip CRC from received frames */
1323	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC);
1324
1325	/* Turn off magic packet mode */
1326	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB);
1327
1328	/* Turn off all VLAN stuff */
1329	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX|
1330	    LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT);
1331
1332	/* Workarond: FIFO overflow */
1333	CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF);
1334	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT);
1335
1336	/*
1337	 * Load the multicast filter.
1338	 */
1339	lge_setmulti(sc);
1340
1341	/*
1342	 * Enable hardware checksum validation for all received IPv4
1343	 * packets, do not reject packets with bad checksums.
1344	 */
1345	CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM|
1346	    LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM|
1347	    LGE_MODE2_RX_ERRCSUM);
1348
1349	/*
1350	 * Enable the delivery of PHY interrupts based on
1351	 * link/speed/duplex status chalges.
1352	 */
1353	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL);
1354
1355	/* Enable receiver and transmitter. */
1356	CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0);
1357	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB);
1358
1359	CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0);
1360	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB);
1361
1362	/*
1363	 * Enable interrupts.
1364	 */
1365	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|
1366	    LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS);
1367
1368	lge_ifmedia_upd_locked(ifp);
1369
1370	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1371	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1372
1373	callout_reset(&sc->lge_stat_callout, hz, lge_tick, sc);
1374
1375	return;
1376}
1377
1378/*
1379 * Set media options.
1380 */
1381static int
1382lge_ifmedia_upd(ifp)
1383	struct ifnet		*ifp;
1384{
1385	struct lge_softc	*sc;
1386
1387	sc = ifp->if_softc;
1388	LGE_LOCK(sc);
1389	lge_ifmedia_upd_locked(ifp);
1390	LGE_UNLOCK(sc);
1391
1392	return(0);
1393}
1394
1395static void
1396lge_ifmedia_upd_locked(ifp)
1397	struct ifnet		*ifp;
1398{
1399	struct lge_softc	*sc;
1400	struct mii_data		*mii;
1401	struct mii_softc	*miisc;
1402
1403	sc = ifp->if_softc;
1404
1405	LGE_LOCK_ASSERT(sc);
1406	mii = device_get_softc(sc->lge_miibus);
1407	sc->lge_link = 0;
1408	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1409		PHY_RESET(miisc);
1410	mii_mediachg(mii);
1411}
1412
1413/*
1414 * Report current media status.
1415 */
1416static void
1417lge_ifmedia_sts(ifp, ifmr)
1418	struct ifnet		*ifp;
1419	struct ifmediareq	*ifmr;
1420{
1421	struct lge_softc	*sc;
1422	struct mii_data		*mii;
1423
1424	sc = ifp->if_softc;
1425
1426	LGE_LOCK(sc);
1427	mii = device_get_softc(sc->lge_miibus);
1428	mii_pollstat(mii);
1429	ifmr->ifm_active = mii->mii_media_active;
1430	ifmr->ifm_status = mii->mii_media_status;
1431	LGE_UNLOCK(sc);
1432
1433	return;
1434}
1435
1436static int
1437lge_ioctl(ifp, command, data)
1438	struct ifnet		*ifp;
1439	u_long			command;
1440	caddr_t			data;
1441{
1442	struct lge_softc	*sc = ifp->if_softc;
1443	struct ifreq		*ifr = (struct ifreq *) data;
1444	struct mii_data		*mii;
1445	int			error = 0;
1446
1447	switch(command) {
1448	case SIOCSIFMTU:
1449		LGE_LOCK(sc);
1450		if (ifr->ifr_mtu > LGE_JUMBO_MTU)
1451			error = EINVAL;
1452		else
1453			ifp->if_mtu = ifr->ifr_mtu;
1454		LGE_UNLOCK(sc);
1455		break;
1456	case SIOCSIFFLAGS:
1457		LGE_LOCK(sc);
1458		if (ifp->if_flags & IFF_UP) {
1459			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1460			    ifp->if_flags & IFF_PROMISC &&
1461			    !(sc->lge_if_flags & IFF_PROMISC)) {
1462				CSR_WRITE_4(sc, LGE_MODE1,
1463				    LGE_MODE1_SETRST_CTL1|
1464				    LGE_MODE1_RX_PROMISC);
1465			} else if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1466			    !(ifp->if_flags & IFF_PROMISC) &&
1467			    sc->lge_if_flags & IFF_PROMISC) {
1468				CSR_WRITE_4(sc, LGE_MODE1,
1469				    LGE_MODE1_RX_PROMISC);
1470			} else {
1471				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1472				lge_init_locked(sc);
1473			}
1474		} else {
1475			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1476				lge_stop(sc);
1477		}
1478		sc->lge_if_flags = ifp->if_flags;
1479		LGE_UNLOCK(sc);
1480		error = 0;
1481		break;
1482	case SIOCADDMULTI:
1483	case SIOCDELMULTI:
1484		LGE_LOCK(sc);
1485		lge_setmulti(sc);
1486		LGE_UNLOCK(sc);
1487		error = 0;
1488		break;
1489	case SIOCGIFMEDIA:
1490	case SIOCSIFMEDIA:
1491		mii = device_get_softc(sc->lge_miibus);
1492		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1493		break;
1494	default:
1495		error = ether_ioctl(ifp, command, data);
1496		break;
1497	}
1498
1499	return(error);
1500}
1501
1502static void
1503lge_watchdog(sc)
1504	struct lge_softc	*sc;
1505{
1506	struct ifnet		*ifp;
1507
1508	LGE_LOCK_ASSERT(sc);
1509	ifp = sc->lge_ifp;
1510
1511	ifp->if_oerrors++;
1512	if_printf(ifp, "watchdog timeout\n");
1513
1514	lge_stop(sc);
1515	lge_reset(sc);
1516	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1517	lge_init_locked(sc);
1518
1519	if (ifp->if_snd.ifq_head != NULL)
1520		lge_start_locked(ifp);
1521}
1522
1523/*
1524 * Stop the adapter and free any mbufs allocated to the
1525 * RX and TX lists.
1526 */
1527static void
1528lge_stop(sc)
1529	struct lge_softc	*sc;
1530{
1531	register int		i;
1532	struct ifnet		*ifp;
1533
1534	LGE_LOCK_ASSERT(sc);
1535	ifp = sc->lge_ifp;
1536	sc->lge_timer = 0;
1537	callout_stop(&sc->lge_stat_callout);
1538	CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB);
1539
1540	/* Disable receiver and transmitter. */
1541	CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB);
1542	sc->lge_link = 0;
1543
1544	/*
1545	 * Free data in the RX lists.
1546	 */
1547	for (i = 0; i < LGE_RX_LIST_CNT; i++) {
1548		if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) {
1549			m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf);
1550			sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL;
1551		}
1552	}
1553	bzero((char *)&sc->lge_ldata->lge_rx_list,
1554		sizeof(sc->lge_ldata->lge_rx_list));
1555
1556	/*
1557	 * Free the TX list buffers.
1558	 */
1559	for (i = 0; i < LGE_TX_LIST_CNT; i++) {
1560		if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) {
1561			m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf);
1562			sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL;
1563		}
1564	}
1565
1566	bzero((char *)&sc->lge_ldata->lge_tx_list,
1567		sizeof(sc->lge_ldata->lge_tx_list));
1568
1569	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1570
1571	return;
1572}
1573
1574/*
1575 * Stop all chip I/O so that the kernel's probe routines don't
1576 * get confused by errant DMAs when rebooting.
1577 */
1578static int
1579lge_shutdown(dev)
1580	device_t		dev;
1581{
1582	struct lge_softc	*sc;
1583
1584	sc = device_get_softc(dev);
1585
1586	LGE_LOCK(sc);
1587	lge_reset(sc);
1588	lge_stop(sc);
1589	LGE_UNLOCK(sc);
1590
1591	return (0);
1592}
1593