1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#define BXE_DRIVER_VERSION "1.78.78"
31
32#include "bxe.h"
33#include "ecore_sp.h"
34#include "ecore_init.h"
35#include "ecore_init_ops.h"
36
37#include "57710_int_offsets.h"
38#include "57711_int_offsets.h"
39#include "57712_int_offsets.h"
40
41/*
42 * CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43 * explicitly here for older kernels that don't include this changeset.
44 */
45#ifndef CTLTYPE_U64
46#define CTLTYPE_U64      CTLTYPE_QUAD
47#define sysctl_handle_64 sysctl_handle_quad
48#endif
49
50/*
51 * CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52 * here as zero(0) for older kernels that don't include this changeset
53 * thereby masking the functionality.
54 */
55#ifndef CSUM_TCP_IPV6
56#define CSUM_TCP_IPV6 0
57#define CSUM_UDP_IPV6 0
58#endif
59
60/*
61 * pci_find_cap was added in r219865. Re-define this at pci_find_extcap
62 * for older kernels that don't include this changeset.
63 */
64#if __FreeBSD_version < 900035
65#define pci_find_cap pci_find_extcap
66#endif
67
68#define BXE_DEF_SB_ATT_IDX 0x0001
69#define BXE_DEF_SB_IDX     0x0002
70
71/*
72 * FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
73 * function HW initialization.
74 */
75#define FLR_WAIT_USEC     10000 /* 10 msecs */
76#define FLR_WAIT_INTERVAL 50    /* usecs */
77#define FLR_POLL_CNT      (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
78
79struct pbf_pN_buf_regs {
80    int pN;
81    uint32_t init_crd;
82    uint32_t crd;
83    uint32_t crd_freed;
84};
85
86struct pbf_pN_cmd_regs {
87    int pN;
88    uint32_t lines_occup;
89    uint32_t lines_freed;
90};
91
92/*
93 * PCI Device ID Table used by bxe_probe().
94 */
95#define BXE_DEVDESC_MAX 64
96static struct bxe_device_type bxe_devs[] = {
97    {
98        BRCM_VENDORID,
99        CHIP_NUM_57710,
100        PCI_ANY_ID, PCI_ANY_ID,
101        "QLogic NetXtreme II BCM57710 10GbE"
102    },
103    {
104        BRCM_VENDORID,
105        CHIP_NUM_57711,
106        PCI_ANY_ID, PCI_ANY_ID,
107        "QLogic NetXtreme II BCM57711 10GbE"
108    },
109    {
110        BRCM_VENDORID,
111        CHIP_NUM_57711E,
112        PCI_ANY_ID, PCI_ANY_ID,
113        "QLogic NetXtreme II BCM57711E 10GbE"
114    },
115    {
116        BRCM_VENDORID,
117        CHIP_NUM_57712,
118        PCI_ANY_ID, PCI_ANY_ID,
119        "QLogic NetXtreme II BCM57712 10GbE"
120    },
121    {
122        BRCM_VENDORID,
123        CHIP_NUM_57712_MF,
124        PCI_ANY_ID, PCI_ANY_ID,
125        "QLogic NetXtreme II BCM57712 MF 10GbE"
126    },
127#if 0
128    {
129        BRCM_VENDORID,
130        CHIP_NUM_57712_VF,
131        PCI_ANY_ID, PCI_ANY_ID,
132        "QLogic NetXtreme II BCM57712 VF 10GbE"
133    },
134#endif
135    {
136        BRCM_VENDORID,
137        CHIP_NUM_57800,
138        PCI_ANY_ID, PCI_ANY_ID,
139        "QLogic NetXtreme II BCM57800 10GbE"
140    },
141    {
142        BRCM_VENDORID,
143        CHIP_NUM_57800_MF,
144        PCI_ANY_ID, PCI_ANY_ID,
145        "QLogic NetXtreme II BCM57800 MF 10GbE"
146    },
147#if 0
148    {
149        BRCM_VENDORID,
150        CHIP_NUM_57800_VF,
151        PCI_ANY_ID, PCI_ANY_ID,
152        "QLogic NetXtreme II BCM57800 VF 10GbE"
153    },
154#endif
155    {
156        BRCM_VENDORID,
157        CHIP_NUM_57810,
158        PCI_ANY_ID, PCI_ANY_ID,
159        "QLogic NetXtreme II BCM57810 10GbE"
160    },
161    {
162        BRCM_VENDORID,
163        CHIP_NUM_57810_MF,
164        PCI_ANY_ID, PCI_ANY_ID,
165        "QLogic NetXtreme II BCM57810 MF 10GbE"
166    },
167#if 0
168    {
169        BRCM_VENDORID,
170        CHIP_NUM_57810_VF,
171        PCI_ANY_ID, PCI_ANY_ID,
172        "QLogic NetXtreme II BCM57810 VF 10GbE"
173    },
174#endif
175    {
176        BRCM_VENDORID,
177        CHIP_NUM_57811,
178        PCI_ANY_ID, PCI_ANY_ID,
179        "QLogic NetXtreme II BCM57811 10GbE"
180    },
181    {
182        BRCM_VENDORID,
183        CHIP_NUM_57811_MF,
184        PCI_ANY_ID, PCI_ANY_ID,
185        "QLogic NetXtreme II BCM57811 MF 10GbE"
186    },
187#if 0
188    {
189        BRCM_VENDORID,
190        CHIP_NUM_57811_VF,
191        PCI_ANY_ID, PCI_ANY_ID,
192        "QLogic NetXtreme II BCM57811 VF 10GbE"
193    },
194#endif
195    {
196        BRCM_VENDORID,
197        CHIP_NUM_57840_4_10,
198        PCI_ANY_ID, PCI_ANY_ID,
199        "QLogic NetXtreme II BCM57840 4x10GbE"
200    },
201#if 0
202    {
203        BRCM_VENDORID,
204        CHIP_NUM_57840_2_20,
205        PCI_ANY_ID, PCI_ANY_ID,
206        "QLogic NetXtreme II BCM57840 2x20GbE"
207    },
208#endif
209    {
210        BRCM_VENDORID,
211        CHIP_NUM_57840_MF,
212        PCI_ANY_ID, PCI_ANY_ID,
213        "QLogic NetXtreme II BCM57840 MF 10GbE"
214    },
215#if 0
216    {
217        BRCM_VENDORID,
218        CHIP_NUM_57840_VF,
219        PCI_ANY_ID, PCI_ANY_ID,
220        "QLogic NetXtreme II BCM57840 VF 10GbE"
221    },
222#endif
223    {
224        0, 0, 0, 0, NULL
225    }
226};
227
228MALLOC_DECLARE(M_BXE_ILT);
229MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
230
231/*
232 * FreeBSD device entry points.
233 */
234static int bxe_probe(device_t);
235static int bxe_attach(device_t);
236static int bxe_detach(device_t);
237static int bxe_shutdown(device_t);
238
239/*
240 * FreeBSD KLD module/device interface event handler method.
241 */
242static device_method_t bxe_methods[] = {
243    /* Device interface (device_if.h) */
244    DEVMETHOD(device_probe,     bxe_probe),
245    DEVMETHOD(device_attach,    bxe_attach),
246    DEVMETHOD(device_detach,    bxe_detach),
247    DEVMETHOD(device_shutdown,  bxe_shutdown),
248#if 0
249    DEVMETHOD(device_suspend,   bxe_suspend),
250    DEVMETHOD(device_resume,    bxe_resume),
251#endif
252    /* Bus interface (bus_if.h) */
253    DEVMETHOD(bus_print_child,  bus_generic_print_child),
254    DEVMETHOD(bus_driver_added, bus_generic_driver_added),
255    KOBJMETHOD_END
256};
257
258/*
259 * FreeBSD KLD Module data declaration
260 */
261static driver_t bxe_driver = {
262    "bxe",                   /* module name */
263    bxe_methods,             /* event handler */
264    sizeof(struct bxe_softc) /* extra data */
265};
266
267/*
268 * FreeBSD dev class is needed to manage dev instances and
269 * to associate with a bus type
270 */
271static devclass_t bxe_devclass;
272
273MODULE_DEPEND(bxe, pci, 1, 1, 1);
274MODULE_DEPEND(bxe, ether, 1, 1, 1);
275DRIVER_MODULE(bxe, pci, bxe_driver, bxe_devclass, 0, 0);
276
277/* resources needed for unloading a previously loaded device */
278
279#define BXE_PREV_WAIT_NEEDED 1
280struct mtx bxe_prev_mtx;
281MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
282struct bxe_prev_list_node {
283    LIST_ENTRY(bxe_prev_list_node) node;
284    uint8_t bus;
285    uint8_t slot;
286    uint8_t path;
287    uint8_t aer; /* XXX automatic error recovery */
288    uint8_t undi;
289};
290static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
291
292static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
293
294/* Tunable device values... */
295
296SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD, 0, "bxe driver parameters");
297
298/* Debug */
299unsigned long bxe_debug = 0;
300TUNABLE_ULONG("hw.bxe.debug", &bxe_debug);
301SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, (CTLFLAG_RDTUN),
302             &bxe_debug, 0, "Debug logging mode");
303
304/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
305static int bxe_interrupt_mode = INTR_MODE_MSIX;
306TUNABLE_INT("hw.bxe.interrupt_mode", &bxe_interrupt_mode);
307SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
308           &bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
309
310/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
311static int bxe_queue_count = 4;
312TUNABLE_INT("hw.bxe.queue_count", &bxe_queue_count);
313SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
314           &bxe_queue_count, 0, "Multi-Queue queue count");
315
316/* max number of buffers per queue (default RX_BD_USABLE) */
317static int bxe_max_rx_bufs = 0;
318TUNABLE_INT("hw.bxe.max_rx_bufs", &bxe_max_rx_bufs);
319SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
320           &bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
321
322/* Host interrupt coalescing RX tick timer (usecs) */
323static int bxe_hc_rx_ticks = 25;
324TUNABLE_INT("hw.bxe.hc_rx_ticks", &bxe_hc_rx_ticks);
325SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
326           &bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
327
328/* Host interrupt coalescing TX tick timer (usecs) */
329static int bxe_hc_tx_ticks = 50;
330TUNABLE_INT("hw.bxe.hc_tx_ticks", &bxe_hc_tx_ticks);
331SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
332           &bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
333
334/* Maximum number of Rx packets to process at a time */
335static int bxe_rx_budget = 0xffffffff;
336TUNABLE_INT("hw.bxe.rx_budget", &bxe_rx_budget);
337SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_TUN,
338           &bxe_rx_budget, 0, "Rx processing budget");
339
340/* Maximum LRO aggregation size */
341static int bxe_max_aggregation_size = 0;
342TUNABLE_INT("hw.bxe.max_aggregation_size", &bxe_max_aggregation_size);
343SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_TUN,
344           &bxe_max_aggregation_size, 0, "max aggregation size");
345
346/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
347static int bxe_mrrs = -1;
348TUNABLE_INT("hw.bxe.mrrs", &bxe_mrrs);
349SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
350           &bxe_mrrs, 0, "PCIe maximum read request size");
351
352/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
353static int bxe_autogreeen = 0;
354TUNABLE_INT("hw.bxe.autogreeen", &bxe_autogreeen);
355SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
356           &bxe_autogreeen, 0, "AutoGrEEEn support");
357
358/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
359static int bxe_udp_rss = 0;
360TUNABLE_INT("hw.bxe.udp_rss", &bxe_udp_rss);
361SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
362           &bxe_udp_rss, 0, "UDP RSS support");
363
364
365#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
366
367#define STATS_OFFSET32(stat_name)                   \
368    (offsetof(struct bxe_eth_stats, stat_name) / 4)
369
370#define Q_STATS_OFFSET32(stat_name)                   \
371    (offsetof(struct bxe_eth_q_stats, stat_name) / 4)
372
373static const struct {
374    uint32_t offset;
375    uint32_t size;
376    uint32_t flags;
377#define STATS_FLAGS_PORT  1
378#define STATS_FLAGS_FUNC  2 /* MF only cares about function stats */
379#define STATS_FLAGS_BOTH  (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
380    char string[STAT_NAME_LEN];
381} bxe_eth_stats_arr[] = {
382    { STATS_OFFSET32(total_bytes_received_hi),
383                8, STATS_FLAGS_BOTH, "rx_bytes" },
384    { STATS_OFFSET32(error_bytes_received_hi),
385                8, STATS_FLAGS_BOTH, "rx_error_bytes" },
386    { STATS_OFFSET32(total_unicast_packets_received_hi),
387                8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
388    { STATS_OFFSET32(total_multicast_packets_received_hi),
389                8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
390    { STATS_OFFSET32(total_broadcast_packets_received_hi),
391                8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
392    { STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
393                8, STATS_FLAGS_PORT, "rx_crc_errors" },
394    { STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
395                8, STATS_FLAGS_PORT, "rx_align_errors" },
396    { STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
397                8, STATS_FLAGS_PORT, "rx_undersize_packets" },
398    { STATS_OFFSET32(etherstatsoverrsizepkts_hi),
399                8, STATS_FLAGS_PORT, "rx_oversize_packets" },
400    { STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
401                8, STATS_FLAGS_PORT, "rx_fragments" },
402    { STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
403                8, STATS_FLAGS_PORT, "rx_jabbers" },
404    { STATS_OFFSET32(no_buff_discard_hi),
405                8, STATS_FLAGS_BOTH, "rx_discards" },
406    { STATS_OFFSET32(mac_filter_discard),
407                4, STATS_FLAGS_PORT, "rx_filtered_packets" },
408    { STATS_OFFSET32(mf_tag_discard),
409                4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
410    { STATS_OFFSET32(pfc_frames_received_hi),
411                8, STATS_FLAGS_PORT, "pfc_frames_received" },
412    { STATS_OFFSET32(pfc_frames_sent_hi),
413                8, STATS_FLAGS_PORT, "pfc_frames_sent" },
414    { STATS_OFFSET32(brb_drop_hi),
415                8, STATS_FLAGS_PORT, "rx_brb_discard" },
416    { STATS_OFFSET32(brb_truncate_hi),
417                8, STATS_FLAGS_PORT, "rx_brb_truncate" },
418    { STATS_OFFSET32(pause_frames_received_hi),
419                8, STATS_FLAGS_PORT, "rx_pause_frames" },
420    { STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
421                8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
422    { STATS_OFFSET32(nig_timer_max),
423                4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
424    { STATS_OFFSET32(total_bytes_transmitted_hi),
425                8, STATS_FLAGS_BOTH, "tx_bytes" },
426    { STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
427                8, STATS_FLAGS_PORT, "tx_error_bytes" },
428    { STATS_OFFSET32(total_unicast_packets_transmitted_hi),
429                8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
430    { STATS_OFFSET32(total_multicast_packets_transmitted_hi),
431                8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
432    { STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
433                8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
434    { STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
435                8, STATS_FLAGS_PORT, "tx_mac_errors" },
436    { STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
437                8, STATS_FLAGS_PORT, "tx_carrier_errors" },
438    { STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
439                8, STATS_FLAGS_PORT, "tx_single_collisions" },
440    { STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
441                8, STATS_FLAGS_PORT, "tx_multi_collisions" },
442    { STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
443                8, STATS_FLAGS_PORT, "tx_deferred" },
444    { STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
445                8, STATS_FLAGS_PORT, "tx_excess_collisions" },
446    { STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
447                8, STATS_FLAGS_PORT, "tx_late_collisions" },
448    { STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
449                8, STATS_FLAGS_PORT, "tx_total_collisions" },
450    { STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
451                8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
452    { STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
453                8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
454    { STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
455                8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
456    { STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
457                8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
458    { STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
459                8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
460    { STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
461                8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
462    { STATS_OFFSET32(etherstatspktsover1522octets_hi),
463                8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
464    { STATS_OFFSET32(pause_frames_sent_hi),
465                8, STATS_FLAGS_PORT, "tx_pause_frames" },
466    { STATS_OFFSET32(total_tpa_aggregations_hi),
467                8, STATS_FLAGS_FUNC, "tpa_aggregations" },
468    { STATS_OFFSET32(total_tpa_aggregated_frames_hi),
469                8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
470    { STATS_OFFSET32(total_tpa_bytes_hi),
471                8, STATS_FLAGS_FUNC, "tpa_bytes"},
472#if 0
473    { STATS_OFFSET32(recoverable_error),
474                4, STATS_FLAGS_FUNC, "recoverable_errors" },
475    { STATS_OFFSET32(unrecoverable_error),
476                4, STATS_FLAGS_FUNC, "unrecoverable_errors" },
477#endif
478    { STATS_OFFSET32(eee_tx_lpi),
479                4, STATS_FLAGS_PORT, "eee_tx_lpi"},
480    { STATS_OFFSET32(rx_calls),
481                4, STATS_FLAGS_FUNC, "rx_calls"},
482    { STATS_OFFSET32(rx_pkts),
483                4, STATS_FLAGS_FUNC, "rx_pkts"},
484    { STATS_OFFSET32(rx_tpa_pkts),
485                4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
486    { STATS_OFFSET32(rx_soft_errors),
487                4, STATS_FLAGS_FUNC, "rx_soft_errors"},
488    { STATS_OFFSET32(rx_hw_csum_errors),
489                4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
490    { STATS_OFFSET32(rx_ofld_frames_csum_ip),
491                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
492    { STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
493                4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
494    { STATS_OFFSET32(rx_budget_reached),
495                4, STATS_FLAGS_FUNC, "rx_budget_reached"},
496    { STATS_OFFSET32(tx_pkts),
497                4, STATS_FLAGS_FUNC, "tx_pkts"},
498    { STATS_OFFSET32(tx_soft_errors),
499                4, STATS_FLAGS_FUNC, "tx_soft_errors"},
500    { STATS_OFFSET32(tx_ofld_frames_csum_ip),
501                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
502    { STATS_OFFSET32(tx_ofld_frames_csum_tcp),
503                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
504    { STATS_OFFSET32(tx_ofld_frames_csum_udp),
505                4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
506    { STATS_OFFSET32(tx_ofld_frames_lso),
507                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
508    { STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
509                4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
510    { STATS_OFFSET32(tx_encap_failures),
511                4, STATS_FLAGS_FUNC, "tx_encap_failures"},
512    { STATS_OFFSET32(tx_hw_queue_full),
513                4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
514    { STATS_OFFSET32(tx_hw_max_queue_depth),
515                4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
516    { STATS_OFFSET32(tx_dma_mapping_failure),
517                4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
518    { STATS_OFFSET32(tx_max_drbr_queue_depth),
519                4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
520    { STATS_OFFSET32(tx_window_violation_std),
521                4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
522    { STATS_OFFSET32(tx_window_violation_tso),
523                4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
524#if 0
525    { STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
526                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_ipv6"},
527    { STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
528                4, STATS_FLAGS_FUNC, "tx_unsupported_tso_request_not_tcp"},
529#endif
530    { STATS_OFFSET32(tx_chain_lost_mbuf),
531                4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
532    { STATS_OFFSET32(tx_frames_deferred),
533                4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
534    { STATS_OFFSET32(tx_queue_xoff),
535                4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
536    { STATS_OFFSET32(mbuf_defrag_attempts),
537                4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
538    { STATS_OFFSET32(mbuf_defrag_failures),
539                4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
540    { STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
541                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
542    { STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
543                4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
544    { STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
545                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
546    { STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
547                4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
548    { STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
549                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
550    { STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
551                4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
552    { STATS_OFFSET32(mbuf_alloc_tx),
553                4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
554    { STATS_OFFSET32(mbuf_alloc_rx),
555                4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
556    { STATS_OFFSET32(mbuf_alloc_sge),
557                4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
558    { STATS_OFFSET32(mbuf_alloc_tpa),
559                4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"}
560};
561
562static const struct {
563    uint32_t offset;
564    uint32_t size;
565    char string[STAT_NAME_LEN];
566} bxe_eth_q_stats_arr[] = {
567    { Q_STATS_OFFSET32(total_bytes_received_hi),
568                8, "rx_bytes" },
569    { Q_STATS_OFFSET32(total_unicast_packets_received_hi),
570                8, "rx_ucast_packets" },
571    { Q_STATS_OFFSET32(total_multicast_packets_received_hi),
572                8, "rx_mcast_packets" },
573    { Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
574                8, "rx_bcast_packets" },
575    { Q_STATS_OFFSET32(no_buff_discard_hi),
576                8, "rx_discards" },
577    { Q_STATS_OFFSET32(total_bytes_transmitted_hi),
578                8, "tx_bytes" },
579    { Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
580                8, "tx_ucast_packets" },
581    { Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
582                8, "tx_mcast_packets" },
583    { Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
584                8, "tx_bcast_packets" },
585    { Q_STATS_OFFSET32(total_tpa_aggregations_hi),
586                8, "tpa_aggregations" },
587    { Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
588                8, "tpa_aggregated_frames"},
589    { Q_STATS_OFFSET32(total_tpa_bytes_hi),
590                8, "tpa_bytes"},
591    { Q_STATS_OFFSET32(rx_calls),
592                4, "rx_calls"},
593    { Q_STATS_OFFSET32(rx_pkts),
594                4, "rx_pkts"},
595    { Q_STATS_OFFSET32(rx_tpa_pkts),
596                4, "rx_tpa_pkts"},
597    { Q_STATS_OFFSET32(rx_soft_errors),
598                4, "rx_soft_errors"},
599    { Q_STATS_OFFSET32(rx_hw_csum_errors),
600                4, "rx_hw_csum_errors"},
601    { Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
602                4, "rx_ofld_frames_csum_ip"},
603    { Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
604                4, "rx_ofld_frames_csum_tcp_udp"},
605    { Q_STATS_OFFSET32(rx_budget_reached),
606                4, "rx_budget_reached"},
607    { Q_STATS_OFFSET32(tx_pkts),
608                4, "tx_pkts"},
609    { Q_STATS_OFFSET32(tx_soft_errors),
610                4, "tx_soft_errors"},
611    { Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
612                4, "tx_ofld_frames_csum_ip"},
613    { Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
614                4, "tx_ofld_frames_csum_tcp"},
615    { Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
616                4, "tx_ofld_frames_csum_udp"},
617    { Q_STATS_OFFSET32(tx_ofld_frames_lso),
618                4, "tx_ofld_frames_lso"},
619    { Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
620                4, "tx_ofld_frames_lso_hdr_splits"},
621    { Q_STATS_OFFSET32(tx_encap_failures),
622                4, "tx_encap_failures"},
623    { Q_STATS_OFFSET32(tx_hw_queue_full),
624                4, "tx_hw_queue_full"},
625    { Q_STATS_OFFSET32(tx_hw_max_queue_depth),
626                4, "tx_hw_max_queue_depth"},
627    { Q_STATS_OFFSET32(tx_dma_mapping_failure),
628                4, "tx_dma_mapping_failure"},
629    { Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
630                4, "tx_max_drbr_queue_depth"},
631    { Q_STATS_OFFSET32(tx_window_violation_std),
632                4, "tx_window_violation_std"},
633    { Q_STATS_OFFSET32(tx_window_violation_tso),
634                4, "tx_window_violation_tso"},
635#if 0
636    { Q_STATS_OFFSET32(tx_unsupported_tso_request_ipv6),
637                4, "tx_unsupported_tso_request_ipv6"},
638    { Q_STATS_OFFSET32(tx_unsupported_tso_request_not_tcp),
639                4, "tx_unsupported_tso_request_not_tcp"},
640#endif
641    { Q_STATS_OFFSET32(tx_chain_lost_mbuf),
642                4, "tx_chain_lost_mbuf"},
643    { Q_STATS_OFFSET32(tx_frames_deferred),
644                4, "tx_frames_deferred"},
645    { Q_STATS_OFFSET32(tx_queue_xoff),
646                4, "tx_queue_xoff"},
647    { Q_STATS_OFFSET32(mbuf_defrag_attempts),
648                4, "mbuf_defrag_attempts"},
649    { Q_STATS_OFFSET32(mbuf_defrag_failures),
650                4, "mbuf_defrag_failures"},
651    { Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
652                4, "mbuf_rx_bd_alloc_failed"},
653    { Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
654                4, "mbuf_rx_bd_mapping_failed"},
655    { Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
656                4, "mbuf_rx_tpa_alloc_failed"},
657    { Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
658                4, "mbuf_rx_tpa_mapping_failed"},
659    { Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
660                4, "mbuf_rx_sge_alloc_failed"},
661    { Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
662                4, "mbuf_rx_sge_mapping_failed"},
663    { Q_STATS_OFFSET32(mbuf_alloc_tx),
664                4, "mbuf_alloc_tx"},
665    { Q_STATS_OFFSET32(mbuf_alloc_rx),
666                4, "mbuf_alloc_rx"},
667    { Q_STATS_OFFSET32(mbuf_alloc_sge),
668                4, "mbuf_alloc_sge"},
669    { Q_STATS_OFFSET32(mbuf_alloc_tpa),
670                4, "mbuf_alloc_tpa"}
671};
672
673#define BXE_NUM_ETH_STATS   ARRAY_SIZE(bxe_eth_stats_arr)
674#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
675
676
677static void    bxe_cmng_fns_init(struct bxe_softc *sc,
678                                 uint8_t          read_cfg,
679                                 uint8_t          cmng_type);
680static int     bxe_get_cmng_fns_mode(struct bxe_softc *sc);
681static void    storm_memset_cmng(struct bxe_softc *sc,
682                                 struct cmng_init *cmng,
683                                 uint8_t          port);
684static void    bxe_set_reset_global(struct bxe_softc *sc);
685static void    bxe_set_reset_in_progress(struct bxe_softc *sc);
686static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
687                                 int              engine);
688static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
689static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
690                                   uint8_t          *global,
691                                   uint8_t          print);
692static void    bxe_int_disable(struct bxe_softc *sc);
693static int     bxe_release_leader_lock(struct bxe_softc *sc);
694static void    bxe_pf_disable(struct bxe_softc *sc);
695static void    bxe_free_fp_buffers(struct bxe_softc *sc);
696static inline void bxe_update_rx_prod(struct bxe_softc    *sc,
697                                      struct bxe_fastpath *fp,
698                                      uint16_t            rx_bd_prod,
699                                      uint16_t            rx_cq_prod,
700                                      uint16_t            rx_sge_prod);
701static void    bxe_link_report_locked(struct bxe_softc *sc);
702static void    bxe_link_report(struct bxe_softc *sc);
703static void    bxe_link_status_update(struct bxe_softc *sc);
704static void    bxe_periodic_callout_func(void *xsc);
705static void    bxe_periodic_start(struct bxe_softc *sc);
706static void    bxe_periodic_stop(struct bxe_softc *sc);
707static int     bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
708                                    uint16_t prev_index,
709                                    uint16_t index);
710static int     bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
711                                     int                 queue);
712static int     bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
713                                     uint16_t            index);
714static uint8_t bxe_txeof(struct bxe_softc *sc,
715                         struct bxe_fastpath *fp);
716static void    bxe_task_fp(struct bxe_fastpath *fp);
717static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
718                                     struct mbuf      *m,
719                                     uint8_t          contents);
720static int     bxe_alloc_mem(struct bxe_softc *sc);
721static void    bxe_free_mem(struct bxe_softc *sc);
722static int     bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
723static void    bxe_free_fw_stats_mem(struct bxe_softc *sc);
724static int     bxe_interrupt_attach(struct bxe_softc *sc);
725static void    bxe_interrupt_detach(struct bxe_softc *sc);
726static void    bxe_set_rx_mode(struct bxe_softc *sc);
727static int     bxe_init_locked(struct bxe_softc *sc);
728static int     bxe_stop_locked(struct bxe_softc *sc);
729static __noinline int bxe_nic_load(struct bxe_softc *sc,
730                                   int              load_mode);
731static __noinline int bxe_nic_unload(struct bxe_softc *sc,
732                                     uint32_t         unload_mode,
733                                     uint8_t          keep_link);
734
735static void bxe_handle_sp_tq(void *context, int pending);
736static void bxe_handle_rx_mode_tq(void *context, int pending);
737static void bxe_handle_fp_tq(void *context, int pending);
738
739
740/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
741uint32_t
742calc_crc32(uint8_t  *crc32_packet,
743           uint32_t crc32_length,
744           uint32_t crc32_seed,
745           uint8_t  complement)
746{
747   uint32_t byte         = 0;
748   uint32_t bit          = 0;
749   uint8_t  msb          = 0;
750   uint32_t temp         = 0;
751   uint32_t shft         = 0;
752   uint8_t  current_byte = 0;
753   uint32_t crc32_result = crc32_seed;
754   const uint32_t CRC32_POLY = 0x1edc6f41;
755
756   if ((crc32_packet == NULL) ||
757       (crc32_length == 0) ||
758       ((crc32_length % 8) != 0))
759    {
760        return (crc32_result);
761    }
762
763    for (byte = 0; byte < crc32_length; byte = byte + 1)
764    {
765        current_byte = crc32_packet[byte];
766        for (bit = 0; bit < 8; bit = bit + 1)
767        {
768            /* msb = crc32_result[31]; */
769            msb = (uint8_t)(crc32_result >> 31);
770
771            crc32_result = crc32_result << 1;
772
773            /* it (msb != current_byte[bit]) */
774            if (msb != (0x1 & (current_byte >> bit)))
775            {
776                crc32_result = crc32_result ^ CRC32_POLY;
777                /* crc32_result[0] = 1 */
778                crc32_result |= 1;
779            }
780        }
781    }
782
783    /* Last step is to:
784     * 1. "mirror" every bit
785     * 2. swap the 4 bytes
786     * 3. complement each bit
787     */
788
789    /* Mirror */
790    temp = crc32_result;
791    shft = sizeof(crc32_result) * 8 - 1;
792
793    for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
794    {
795        temp <<= 1;
796        temp |= crc32_result & 1;
797        shft-- ;
798    }
799
800    /* temp[31-bit] = crc32_result[bit] */
801    temp <<= shft;
802
803    /* Swap */
804    /* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
805    {
806        uint32_t t0, t1, t2, t3;
807        t0 = (0x000000ff & (temp >> 24));
808        t1 = (0x0000ff00 & (temp >> 8));
809        t2 = (0x00ff0000 & (temp << 8));
810        t3 = (0xff000000 & (temp << 24));
811        crc32_result = t0 | t1 | t2 | t3;
812    }
813
814    /* Complement */
815    if (complement)
816    {
817        crc32_result = ~crc32_result;
818    }
819
820    return (crc32_result);
821}
822
823int
824bxe_test_bit(int                    nr,
825             volatile unsigned long *addr)
826{
827    return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
828}
829
830void
831bxe_set_bit(unsigned int           nr,
832            volatile unsigned long *addr)
833{
834    atomic_set_acq_long(addr, (1 << nr));
835}
836
837void
838bxe_clear_bit(int                    nr,
839              volatile unsigned long *addr)
840{
841    atomic_clear_acq_long(addr, (1 << nr));
842}
843
844int
845bxe_test_and_set_bit(int                    nr,
846                       volatile unsigned long *addr)
847{
848    unsigned long x;
849    nr = (1 << nr);
850    do {
851        x = *addr;
852    } while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
853    // if (x & nr) bit_was_set; else bit_was_not_set;
854    return (x & nr);
855}
856
857int
858bxe_test_and_clear_bit(int                    nr,
859                       volatile unsigned long *addr)
860{
861    unsigned long x;
862    nr = (1 << nr);
863    do {
864        x = *addr;
865    } while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
866    // if (x & nr) bit_was_set; else bit_was_not_set;
867    return (x & nr);
868}
869
870int
871bxe_cmpxchg(volatile int *addr,
872            int          old,
873            int          new)
874{
875    int x;
876    do {
877        x = *addr;
878    } while (atomic_cmpset_acq_int(addr, old, new) == 0);
879    return (x);
880}
881
882/*
883 * Get DMA memory from the OS.
884 *
885 * Validates that the OS has provided DMA buffers in response to a
886 * bus_dmamap_load call and saves the physical address of those buffers.
887 * When the callback is used the OS will return 0 for the mapping function
888 * (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
889 * failures back to the caller.
890 *
891 * Returns:
892 *   Nothing.
893 */
894static void
895bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
896{
897    struct bxe_dma *dma = arg;
898
899    if (error) {
900        dma->paddr = 0;
901        dma->nseg  = 0;
902        BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
903    } else {
904        dma->paddr = segs->ds_addr;
905        dma->nseg  = nseg;
906#if 0
907        BLOGD(dma->sc, DBG_LOAD,
908              "DMA alloc '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
909              dma->msg, dma->vaddr, (void *)dma->paddr,
910              dma->nseg, dma->size);
911#endif
912    }
913}
914
915/*
916 * Allocate a block of memory and map it for DMA. No partial completions
917 * allowed and release any resources acquired if we can't acquire all
918 * resources.
919 *
920 * Returns:
921 *   0 = Success, !0 = Failure
922 */
923int
924bxe_dma_alloc(struct bxe_softc *sc,
925              bus_size_t       size,
926              struct bxe_dma   *dma,
927              const char       *msg)
928{
929    int rc;
930
931    if (dma->size > 0) {
932        BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
933              (unsigned long)dma->size);
934        return (1);
935    }
936
937    memset(dma, 0, sizeof(*dma)); /* sanity */
938    dma->sc   = sc;
939    dma->size = size;
940    snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
941
942    rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
943                            BCM_PAGE_SIZE,      /* alignment */
944                            0,                  /* boundary limit */
945                            BUS_SPACE_MAXADDR,  /* restricted low */
946                            BUS_SPACE_MAXADDR,  /* restricted hi */
947                            NULL,               /* addr filter() */
948                            NULL,               /* addr filter() arg */
949                            size,               /* max map size */
950                            1,                  /* num discontinuous */
951                            size,               /* max seg size */
952                            BUS_DMA_ALLOCNOW,   /* flags */
953                            NULL,               /* lock() */
954                            NULL,               /* lock() arg */
955                            &dma->tag);         /* returned dma tag */
956    if (rc != 0) {
957        BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
958        memset(dma, 0, sizeof(*dma));
959        return (1);
960    }
961
962    rc = bus_dmamem_alloc(dma->tag,
963                          (void **)&dma->vaddr,
964                          (BUS_DMA_NOWAIT | BUS_DMA_ZERO),
965                          &dma->map);
966    if (rc != 0) {
967        BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
968        bus_dma_tag_destroy(dma->tag);
969        memset(dma, 0, sizeof(*dma));
970        return (1);
971    }
972
973    rc = bus_dmamap_load(dma->tag,
974                         dma->map,
975                         dma->vaddr,
976                         size,
977                         bxe_dma_map_addr, /* BLOGD in here */
978                         dma,
979                         BUS_DMA_NOWAIT);
980    if (rc != 0) {
981        BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
982        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
983        bus_dma_tag_destroy(dma->tag);
984        memset(dma, 0, sizeof(*dma));
985        return (1);
986    }
987
988    return (0);
989}
990
991void
992bxe_dma_free(struct bxe_softc *sc,
993             struct bxe_dma   *dma)
994{
995    if (dma->size > 0) {
996#if 0
997        BLOGD(sc, DBG_LOAD,
998              "DMA free '%s': vaddr=%p paddr=%p nseg=%d size=%lu\n",
999              dma->msg, dma->vaddr, (void *)dma->paddr,
1000              dma->nseg, dma->size);
1001#endif
1002
1003        DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
1004
1005        bus_dmamap_sync(dma->tag, dma->map,
1006                        (BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
1007        bus_dmamap_unload(dma->tag, dma->map);
1008        bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
1009        bus_dma_tag_destroy(dma->tag);
1010    }
1011
1012    memset(dma, 0, sizeof(*dma));
1013}
1014
1015/*
1016 * These indirect read and write routines are only during init.
1017 * The locking is handled by the MCP.
1018 */
1019
1020void
1021bxe_reg_wr_ind(struct bxe_softc *sc,
1022               uint32_t         addr,
1023               uint32_t         val)
1024{
1025    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1026    pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
1027    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1028}
1029
1030uint32_t
1031bxe_reg_rd_ind(struct bxe_softc *sc,
1032               uint32_t         addr)
1033{
1034    uint32_t val;
1035
1036    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
1037    val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
1038    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
1039
1040    return (val);
1041}
1042
1043#if 0
1044void bxe_dp_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int msglvl)
1045{
1046    uint32_t src_type = dmae->opcode & DMAE_COMMAND_SRC;
1047
1048    switch (dmae->opcode & DMAE_COMMAND_DST) {
1049    case DMAE_CMD_DST_PCI:
1050        if (src_type == DMAE_CMD_SRC_PCI)
1051            DP(msglvl, "DMAE: opcode 0x%08x\n"
1052               "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
1053               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1054               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1055               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1056               dmae->comp_addr_hi, dmae->comp_addr_lo,
1057               dmae->comp_val);
1058        else
1059            DP(msglvl, "DMAE: opcode 0x%08x\n"
1060               "src [%08x], len [%d*4], dst [%x:%08x]\n"
1061               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1062               dmae->opcode, dmae->src_addr_lo >> 2,
1063               dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
1064               dmae->comp_addr_hi, dmae->comp_addr_lo,
1065               dmae->comp_val);
1066        break;
1067    case DMAE_CMD_DST_GRC:
1068        if (src_type == DMAE_CMD_SRC_PCI)
1069            DP(msglvl, "DMAE: opcode 0x%08x\n"
1070               "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
1071               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1072               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1073               dmae->len, dmae->dst_addr_lo >> 2,
1074               dmae->comp_addr_hi, dmae->comp_addr_lo,
1075               dmae->comp_val);
1076        else
1077            DP(msglvl, "DMAE: opcode 0x%08x\n"
1078               "src [%08x], len [%d*4], dst [%08x]\n"
1079               "comp_addr [%x:%08x], comp_val 0x%08x\n",
1080               dmae->opcode, dmae->src_addr_lo >> 2,
1081               dmae->len, dmae->dst_addr_lo >> 2,
1082               dmae->comp_addr_hi, dmae->comp_addr_lo,
1083               dmae->comp_val);
1084        break;
1085    default:
1086        if (src_type == DMAE_CMD_SRC_PCI)
1087            DP(msglvl, "DMAE: opcode 0x%08x\n"
1088               "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
1089               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1090               dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
1091               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1092               dmae->comp_val);
1093        else
1094            DP(msglvl, "DMAE: opcode 0x%08x\n"
1095               "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
1096               "comp_addr [%x:%08x]  comp_val 0x%08x\n",
1097               dmae->opcode, dmae->src_addr_lo >> 2,
1098               dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
1099               dmae->comp_val);
1100        break;
1101    }
1102
1103}
1104#endif
1105
1106static int
1107bxe_acquire_hw_lock(struct bxe_softc *sc,
1108                    uint32_t         resource)
1109{
1110    uint32_t lock_status;
1111    uint32_t resource_bit = (1 << resource);
1112    int func = SC_FUNC(sc);
1113    uint32_t hw_lock_control_reg;
1114    int cnt;
1115
1116    /* validate the resource is within range */
1117    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1118        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1119        return (-1);
1120    }
1121
1122    if (func <= 5) {
1123        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1124    } else {
1125        hw_lock_control_reg =
1126                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1127    }
1128
1129    /* validate the resource is not already taken */
1130    lock_status = REG_RD(sc, hw_lock_control_reg);
1131    if (lock_status & resource_bit) {
1132        BLOGE(sc, "resource in use (status 0x%x bit 0x%x)\n",
1133              lock_status, resource_bit);
1134        return (-1);
1135    }
1136
1137    /* try every 5ms for 5 seconds */
1138    for (cnt = 0; cnt < 1000; cnt++) {
1139        REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1140        lock_status = REG_RD(sc, hw_lock_control_reg);
1141        if (lock_status & resource_bit) {
1142            return (0);
1143        }
1144        DELAY(5000);
1145    }
1146
1147    BLOGE(sc, "Resource lock timeout!\n");
1148    return (-1);
1149}
1150
1151static int
1152bxe_release_hw_lock(struct bxe_softc *sc,
1153                    uint32_t         resource)
1154{
1155    uint32_t lock_status;
1156    uint32_t resource_bit = (1 << resource);
1157    int func = SC_FUNC(sc);
1158    uint32_t hw_lock_control_reg;
1159
1160    /* validate the resource is within range */
1161    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1162        BLOGE(sc, "resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE\n", resource);
1163        return (-1);
1164    }
1165
1166    if (func <= 5) {
1167        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1168    } else {
1169        hw_lock_control_reg =
1170                (MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1171    }
1172
1173    /* validate the resource is currently taken */
1174    lock_status = REG_RD(sc, hw_lock_control_reg);
1175    if (!(lock_status & resource_bit)) {
1176        BLOGE(sc, "resource not in use (status 0x%x bit 0x%x)\n",
1177              lock_status, resource_bit);
1178        return (-1);
1179    }
1180
1181    REG_WR(sc, hw_lock_control_reg, resource_bit);
1182    return (0);
1183}
1184
1185/*
1186 * Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1187 * had we done things the other way around, if two pfs from the same port
1188 * would attempt to access nvram at the same time, we could run into a
1189 * scenario such as:
1190 * pf A takes the port lock.
1191 * pf B succeeds in taking the same lock since they are from the same port.
1192 * pf A takes the per pf misc lock. Performs eeprom access.
1193 * pf A finishes. Unlocks the per pf misc lock.
1194 * Pf B takes the lock and proceeds to perform it's own access.
1195 * pf A unlocks the per port lock, while pf B is still working (!).
1196 * mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1197 * access corrupted by pf B).*
1198 */
1199static int
1200bxe_acquire_nvram_lock(struct bxe_softc *sc)
1201{
1202    int port = SC_PORT(sc);
1203    int count, i;
1204    uint32_t val = 0;
1205
1206    /* acquire HW lock: protect against other PFs in PF Direct Assignment */
1207    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1208
1209    /* adjust timeout for emulation/FPGA */
1210    count = NVRAM_TIMEOUT_COUNT;
1211    if (CHIP_REV_IS_SLOW(sc)) {
1212        count *= 100;
1213    }
1214
1215    /* request access to nvram interface */
1216    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1217           (MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1218
1219    for (i = 0; i < count*10; i++) {
1220        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1221        if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1222            break;
1223        }
1224
1225        DELAY(5);
1226    }
1227
1228    if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1229        BLOGE(sc, "Cannot get access to nvram interface\n");
1230        return (-1);
1231    }
1232
1233    return (0);
1234}
1235
1236static int
1237bxe_release_nvram_lock(struct bxe_softc *sc)
1238{
1239    int port = SC_PORT(sc);
1240    int count, i;
1241    uint32_t val = 0;
1242
1243    /* adjust timeout for emulation/FPGA */
1244    count = NVRAM_TIMEOUT_COUNT;
1245    if (CHIP_REV_IS_SLOW(sc)) {
1246        count *= 100;
1247    }
1248
1249    /* relinquish nvram interface */
1250    REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1251           (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1252
1253    for (i = 0; i < count*10; i++) {
1254        val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1255        if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1256            break;
1257        }
1258
1259        DELAY(5);
1260    }
1261
1262    if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1263        BLOGE(sc, "Cannot free access to nvram interface\n");
1264        return (-1);
1265    }
1266
1267    /* release HW lock: protect against other PFs in PF Direct Assignment */
1268    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1269
1270    return (0);
1271}
1272
1273static void
1274bxe_enable_nvram_access(struct bxe_softc *sc)
1275{
1276    uint32_t val;
1277
1278    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1279
1280    /* enable both bits, even on read */
1281    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1282           (val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1283}
1284
1285static void
1286bxe_disable_nvram_access(struct bxe_softc *sc)
1287{
1288    uint32_t val;
1289
1290    val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1291
1292    /* disable both bits, even after read */
1293    REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1294           (val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1295                    MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1296}
1297
1298static int
1299bxe_nvram_read_dword(struct bxe_softc *sc,
1300                     uint32_t         offset,
1301                     uint32_t         *ret_val,
1302                     uint32_t         cmd_flags)
1303{
1304    int count, i, rc;
1305    uint32_t val;
1306
1307    /* build the command word */
1308    cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1309
1310    /* need to clear DONE bit separately */
1311    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1312
1313    /* address of the NVRAM to read from */
1314    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1315           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1316
1317    /* issue a read command */
1318    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1319
1320    /* adjust timeout for emulation/FPGA */
1321    count = NVRAM_TIMEOUT_COUNT;
1322    if (CHIP_REV_IS_SLOW(sc)) {
1323        count *= 100;
1324    }
1325
1326    /* wait for completion */
1327    *ret_val = 0;
1328    rc = -1;
1329    for (i = 0; i < count; i++) {
1330        DELAY(5);
1331        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1332
1333        if (val & MCPR_NVM_COMMAND_DONE) {
1334            val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1335            /* we read nvram data in cpu order
1336             * but ethtool sees it as an array of bytes
1337             * converting to big-endian will do the work
1338             */
1339            *ret_val = htobe32(val);
1340            rc = 0;
1341            break;
1342        }
1343    }
1344
1345    if (rc == -1) {
1346        BLOGE(sc, "nvram read timeout expired\n");
1347    }
1348
1349    return (rc);
1350}
1351
1352static int
1353bxe_nvram_read(struct bxe_softc *sc,
1354               uint32_t         offset,
1355               uint8_t          *ret_buf,
1356               int              buf_size)
1357{
1358    uint32_t cmd_flags;
1359    uint32_t val;
1360    int rc;
1361
1362    if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1363        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1364              offset, buf_size);
1365        return (-1);
1366    }
1367
1368    if ((offset + buf_size) > sc->devinfo.flash_size) {
1369        BLOGE(sc, "Invalid parameter, "
1370                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1371              offset, buf_size, sc->devinfo.flash_size);
1372        return (-1);
1373    }
1374
1375    /* request access to nvram interface */
1376    rc = bxe_acquire_nvram_lock(sc);
1377    if (rc) {
1378        return (rc);
1379    }
1380
1381    /* enable access to nvram interface */
1382    bxe_enable_nvram_access(sc);
1383
1384    /* read the first word(s) */
1385    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1386    while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1387        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1388        memcpy(ret_buf, &val, 4);
1389
1390        /* advance to the next dword */
1391        offset += sizeof(uint32_t);
1392        ret_buf += sizeof(uint32_t);
1393        buf_size -= sizeof(uint32_t);
1394        cmd_flags = 0;
1395    }
1396
1397    if (rc == 0) {
1398        cmd_flags |= MCPR_NVM_COMMAND_LAST;
1399        rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1400        memcpy(ret_buf, &val, 4);
1401    }
1402
1403    /* disable access to nvram interface */
1404    bxe_disable_nvram_access(sc);
1405    bxe_release_nvram_lock(sc);
1406
1407    return (rc);
1408}
1409
1410static int
1411bxe_nvram_write_dword(struct bxe_softc *sc,
1412                      uint32_t         offset,
1413                      uint32_t         val,
1414                      uint32_t         cmd_flags)
1415{
1416    int count, i, rc;
1417
1418    /* build the command word */
1419    cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1420
1421    /* need to clear DONE bit separately */
1422    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1423
1424    /* write the data */
1425    REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1426
1427    /* address of the NVRAM to write to */
1428    REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1429           (offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1430
1431    /* issue the write command */
1432    REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1433
1434    /* adjust timeout for emulation/FPGA */
1435    count = NVRAM_TIMEOUT_COUNT;
1436    if (CHIP_REV_IS_SLOW(sc)) {
1437        count *= 100;
1438    }
1439
1440    /* wait for completion */
1441    rc = -1;
1442    for (i = 0; i < count; i++) {
1443        DELAY(5);
1444        val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1445        if (val & MCPR_NVM_COMMAND_DONE) {
1446            rc = 0;
1447            break;
1448        }
1449    }
1450
1451    if (rc == -1) {
1452        BLOGE(sc, "nvram write timeout expired\n");
1453    }
1454
1455    return (rc);
1456}
1457
1458#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1459
1460static int
1461bxe_nvram_write1(struct bxe_softc *sc,
1462                 uint32_t         offset,
1463                 uint8_t          *data_buf,
1464                 int              buf_size)
1465{
1466    uint32_t cmd_flags;
1467    uint32_t align_offset;
1468    uint32_t val;
1469    int rc;
1470
1471    if ((offset + buf_size) > sc->devinfo.flash_size) {
1472        BLOGE(sc, "Invalid parameter, "
1473                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1474              offset, buf_size, sc->devinfo.flash_size);
1475        return (-1);
1476    }
1477
1478    /* request access to nvram interface */
1479    rc = bxe_acquire_nvram_lock(sc);
1480    if (rc) {
1481        return (rc);
1482    }
1483
1484    /* enable access to nvram interface */
1485    bxe_enable_nvram_access(sc);
1486
1487    cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1488    align_offset = (offset & ~0x03);
1489    rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1490
1491    if (rc == 0) {
1492        val &= ~(0xff << BYTE_OFFSET(offset));
1493        val |= (*data_buf << BYTE_OFFSET(offset));
1494
1495        /* nvram data is returned as an array of bytes
1496         * convert it back to cpu order
1497         */
1498        val = be32toh(val);
1499
1500        rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1501    }
1502
1503    /* disable access to nvram interface */
1504    bxe_disable_nvram_access(sc);
1505    bxe_release_nvram_lock(sc);
1506
1507    return (rc);
1508}
1509
1510static int
1511bxe_nvram_write(struct bxe_softc *sc,
1512                uint32_t         offset,
1513                uint8_t          *data_buf,
1514                int              buf_size)
1515{
1516    uint32_t cmd_flags;
1517    uint32_t val;
1518    uint32_t written_so_far;
1519    int rc;
1520
1521    if (buf_size == 1) {
1522        return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1523    }
1524
1525    if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1526        BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1527              offset, buf_size);
1528        return (-1);
1529    }
1530
1531    if (buf_size == 0) {
1532        return (0); /* nothing to do */
1533    }
1534
1535    if ((offset + buf_size) > sc->devinfo.flash_size) {
1536        BLOGE(sc, "Invalid parameter, "
1537                  "offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1538              offset, buf_size, sc->devinfo.flash_size);
1539        return (-1);
1540    }
1541
1542    /* request access to nvram interface */
1543    rc = bxe_acquire_nvram_lock(sc);
1544    if (rc) {
1545        return (rc);
1546    }
1547
1548    /* enable access to nvram interface */
1549    bxe_enable_nvram_access(sc);
1550
1551    written_so_far = 0;
1552    cmd_flags = MCPR_NVM_COMMAND_FIRST;
1553    while ((written_so_far < buf_size) && (rc == 0)) {
1554        if (written_so_far == (buf_size - sizeof(uint32_t))) {
1555            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1556        } else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1557            cmd_flags |= MCPR_NVM_COMMAND_LAST;
1558        } else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1559            cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1560        }
1561
1562        memcpy(&val, data_buf, 4);
1563
1564        rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1565
1566        /* advance to the next dword */
1567        offset += sizeof(uint32_t);
1568        data_buf += sizeof(uint32_t);
1569        written_so_far += sizeof(uint32_t);
1570        cmd_flags = 0;
1571    }
1572
1573    /* disable access to nvram interface */
1574    bxe_disable_nvram_access(sc);
1575    bxe_release_nvram_lock(sc);
1576
1577    return (rc);
1578}
1579
1580/* copy command into DMAE command memory and set DMAE command Go */
1581void
1582bxe_post_dmae(struct bxe_softc    *sc,
1583              struct dmae_command *dmae,
1584              int                 idx)
1585{
1586    uint32_t cmd_offset;
1587    int i;
1588
1589    cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_command) * idx));
1590    for (i = 0; i < ((sizeof(struct dmae_command) / 4)); i++) {
1591        REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1592    }
1593
1594    REG_WR(sc, dmae_reg_go_c[idx], 1);
1595}
1596
1597uint32_t
1598bxe_dmae_opcode_add_comp(uint32_t opcode,
1599                         uint8_t  comp_type)
1600{
1601    return (opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
1602                      DMAE_COMMAND_C_TYPE_ENABLE));
1603}
1604
1605uint32_t
1606bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1607{
1608    return (opcode & ~DMAE_COMMAND_SRC_RESET);
1609}
1610
1611uint32_t
1612bxe_dmae_opcode(struct bxe_softc *sc,
1613                uint8_t          src_type,
1614                uint8_t          dst_type,
1615                uint8_t          with_comp,
1616                uint8_t          comp_type)
1617{
1618    uint32_t opcode = 0;
1619
1620    opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
1621               (dst_type << DMAE_COMMAND_DST_SHIFT));
1622
1623    opcode |= (DMAE_COMMAND_SRC_RESET | DMAE_COMMAND_DST_RESET);
1624
1625    opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1626
1627    opcode |= ((SC_VN(sc) << DMAE_COMMAND_E1HVN_SHIFT) |
1628               (SC_VN(sc) << DMAE_COMMAND_DST_VN_SHIFT));
1629
1630    opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
1631
1632#ifdef __BIG_ENDIAN
1633    opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1634#else
1635    opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1636#endif
1637
1638    if (with_comp) {
1639        opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1640    }
1641
1642    return (opcode);
1643}
1644
1645static void
1646bxe_prep_dmae_with_comp(struct bxe_softc    *sc,
1647                        struct dmae_command *dmae,
1648                        uint8_t             src_type,
1649                        uint8_t             dst_type)
1650{
1651    memset(dmae, 0, sizeof(struct dmae_command));
1652
1653    /* set the opcode */
1654    dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1655                                   TRUE, DMAE_COMP_PCI);
1656
1657    /* fill in the completion parameters */
1658    dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1659    dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1660    dmae->comp_val     = DMAE_COMP_VAL;
1661}
1662
1663/* issue a DMAE command over the init channel and wait for completion */
1664static int
1665bxe_issue_dmae_with_comp(struct bxe_softc    *sc,
1666                         struct dmae_command *dmae)
1667{
1668    uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1669    int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1670
1671    BXE_DMAE_LOCK(sc);
1672
1673    /* reset completion */
1674    *wb_comp = 0;
1675
1676    /* post the command on the channel used for initializations */
1677    bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1678
1679    /* wait for completion */
1680    DELAY(5);
1681
1682    while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1683        if (!timeout ||
1684            (sc->recovery_state != BXE_RECOVERY_DONE &&
1685             sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1686            BLOGE(sc, "DMAE timeout!\n");
1687            BXE_DMAE_UNLOCK(sc);
1688            return (DMAE_TIMEOUT);
1689        }
1690
1691        timeout--;
1692        DELAY(50);
1693    }
1694
1695    if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1696        BLOGE(sc, "DMAE PCI error!\n");
1697        BXE_DMAE_UNLOCK(sc);
1698        return (DMAE_PCI_ERROR);
1699    }
1700
1701    BXE_DMAE_UNLOCK(sc);
1702    return (0);
1703}
1704
1705void
1706bxe_read_dmae(struct bxe_softc *sc,
1707              uint32_t         src_addr,
1708              uint32_t         len32)
1709{
1710    struct dmae_command dmae;
1711    uint32_t *data;
1712    int i, rc;
1713
1714    DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1715
1716    if (!sc->dmae_ready) {
1717        data = BXE_SP(sc, wb_data[0]);
1718
1719        for (i = 0; i < len32; i++) {
1720            data[i] = (CHIP_IS_E1(sc)) ?
1721                          bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1722                          REG_RD(sc, (src_addr + (i * 4)));
1723        }
1724
1725        return;
1726    }
1727
1728    /* set opcode and fixed command fields */
1729    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1730
1731    /* fill in addresses and len */
1732    dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1733    dmae.src_addr_hi = 0;
1734    dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1735    dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1736    dmae.len         = len32;
1737
1738    /* issue the command and wait for completion */
1739    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1740        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1741    };
1742}
1743
1744void
1745bxe_write_dmae(struct bxe_softc *sc,
1746               bus_addr_t       dma_addr,
1747               uint32_t         dst_addr,
1748               uint32_t         len32)
1749{
1750    struct dmae_command dmae;
1751    int rc;
1752
1753    if (!sc->dmae_ready) {
1754        DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1755
1756        if (CHIP_IS_E1(sc)) {
1757            ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1758        } else {
1759            ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1760        }
1761
1762        return;
1763    }
1764
1765    /* set opcode and fixed command fields */
1766    bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1767
1768    /* fill in addresses and len */
1769    dmae.src_addr_lo = U64_LO(dma_addr);
1770    dmae.src_addr_hi = U64_HI(dma_addr);
1771    dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1772    dmae.dst_addr_hi = 0;
1773    dmae.len         = len32;
1774
1775    /* issue the command and wait for completion */
1776    if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1777        bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1778    }
1779}
1780
1781void
1782bxe_write_dmae_phys_len(struct bxe_softc *sc,
1783                        bus_addr_t       phys_addr,
1784                        uint32_t         addr,
1785                        uint32_t         len)
1786{
1787    int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1788    int offset = 0;
1789
1790    while (len > dmae_wr_max) {
1791        bxe_write_dmae(sc,
1792                       (phys_addr + offset), /* src DMA address */
1793                       (addr + offset),      /* dst GRC address */
1794                       dmae_wr_max);
1795        offset += (dmae_wr_max * 4);
1796        len -= dmae_wr_max;
1797    }
1798
1799    bxe_write_dmae(sc,
1800                   (phys_addr + offset), /* src DMA address */
1801                   (addr + offset),      /* dst GRC address */
1802                   len);
1803}
1804
1805void
1806bxe_set_ctx_validation(struct bxe_softc   *sc,
1807                       struct eth_context *cxt,
1808                       uint32_t           cid)
1809{
1810    /* ustorm cxt validation */
1811    cxt->ustorm_ag_context.cdu_usage =
1812        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1813            CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1814    /* xcontext validation */
1815    cxt->xstorm_ag_context.cdu_reserved =
1816        CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1817            CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1818}
1819
1820static void
1821bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1822                            uint8_t          port,
1823                            uint8_t          fw_sb_id,
1824                            uint8_t          sb_index,
1825                            uint8_t          ticks)
1826{
1827    uint32_t addr =
1828        (BAR_CSTRORM_INTMEM +
1829         CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1830
1831    REG_WR8(sc, addr, ticks);
1832
1833    BLOGD(sc, DBG_LOAD,
1834          "port %d fw_sb_id %d sb_index %d ticks %d\n",
1835          port, fw_sb_id, sb_index, ticks);
1836}
1837
1838static void
1839bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1840                            uint8_t          port,
1841                            uint16_t         fw_sb_id,
1842                            uint8_t          sb_index,
1843                            uint8_t          disable)
1844{
1845    uint32_t enable_flag =
1846        (disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1847    uint32_t addr =
1848        (BAR_CSTRORM_INTMEM +
1849         CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1850    uint8_t flags;
1851
1852    /* clear and set */
1853    flags = REG_RD8(sc, addr);
1854    flags &= ~HC_INDEX_DATA_HC_ENABLED;
1855    flags |= enable_flag;
1856    REG_WR8(sc, addr, flags);
1857
1858    BLOGD(sc, DBG_LOAD,
1859          "port %d fw_sb_id %d sb_index %d disable %d\n",
1860          port, fw_sb_id, sb_index, disable);
1861}
1862
1863void
1864bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1865                             uint8_t          fw_sb_id,
1866                             uint8_t          sb_index,
1867                             uint8_t          disable,
1868                             uint16_t         usec)
1869{
1870    int port = SC_PORT(sc);
1871    uint8_t ticks = (usec / 4); /* XXX ??? */
1872
1873    bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1874
1875    disable = (disable) ? 1 : ((usec) ? 0 : 1);
1876    bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1877}
1878
1879void
1880elink_cb_udelay(struct bxe_softc *sc,
1881                uint32_t         usecs)
1882{
1883    DELAY(usecs);
1884}
1885
1886uint32_t
1887elink_cb_reg_read(struct bxe_softc *sc,
1888                  uint32_t         reg_addr)
1889{
1890    return (REG_RD(sc, reg_addr));
1891}
1892
1893void
1894elink_cb_reg_write(struct bxe_softc *sc,
1895                   uint32_t         reg_addr,
1896                   uint32_t         val)
1897{
1898    REG_WR(sc, reg_addr, val);
1899}
1900
1901void
1902elink_cb_reg_wb_write(struct bxe_softc *sc,
1903                      uint32_t         offset,
1904                      uint32_t         *wb_write,
1905                      uint16_t         len)
1906{
1907    REG_WR_DMAE(sc, offset, wb_write, len);
1908}
1909
1910void
1911elink_cb_reg_wb_read(struct bxe_softc *sc,
1912                     uint32_t         offset,
1913                     uint32_t         *wb_write,
1914                     uint16_t         len)
1915{
1916    REG_RD_DMAE(sc, offset, wb_write, len);
1917}
1918
1919uint8_t
1920elink_cb_path_id(struct bxe_softc *sc)
1921{
1922    return (SC_PATH(sc));
1923}
1924
1925void
1926elink_cb_event_log(struct bxe_softc     *sc,
1927                   const elink_log_id_t elink_log_id,
1928                   ...)
1929{
1930    /* XXX */
1931#if 0
1932    //va_list ap;
1933    va_start(ap, elink_log_id);
1934    _XXX_(sc, lm_log_id, ap);
1935    va_end(ap);
1936#endif
1937    BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1938}
1939
1940static int
1941bxe_set_spio(struct bxe_softc *sc,
1942             int              spio,
1943             uint32_t         mode)
1944{
1945    uint32_t spio_reg;
1946
1947    /* Only 2 SPIOs are configurable */
1948    if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1949        BLOGE(sc, "Invalid SPIO 0x%x\n", spio);
1950        return (-1);
1951    }
1952
1953    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1954
1955    /* read SPIO and mask except the float bits */
1956    spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1957
1958    switch (mode) {
1959    case MISC_SPIO_OUTPUT_LOW:
1960        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1961        /* clear FLOAT and set CLR */
1962        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1963        spio_reg |=  (spio << MISC_SPIO_CLR_POS);
1964        break;
1965
1966    case MISC_SPIO_OUTPUT_HIGH:
1967        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1968        /* clear FLOAT and set SET */
1969        spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1970        spio_reg |=  (spio << MISC_SPIO_SET_POS);
1971        break;
1972
1973    case MISC_SPIO_INPUT_HI_Z:
1974        BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1975        /* set FLOAT */
1976        spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1977        break;
1978
1979    default:
1980        break;
1981    }
1982
1983    REG_WR(sc, MISC_REG_SPIO, spio_reg);
1984    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1985
1986    return (0);
1987}
1988
1989static int
1990bxe_gpio_read(struct bxe_softc *sc,
1991              int              gpio_num,
1992              uint8_t          port)
1993{
1994    /* The GPIO should be swapped if swap register is set and active */
1995    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1996                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1997    int gpio_shift = (gpio_num +
1998                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1999    uint32_t gpio_mask = (1 << gpio_shift);
2000    uint32_t gpio_reg;
2001
2002    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2003        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2004        return (-1);
2005    }
2006
2007    /* read GPIO value */
2008    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2009
2010    /* get the requested pin value */
2011    return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
2012}
2013
2014static int
2015bxe_gpio_write(struct bxe_softc *sc,
2016               int              gpio_num,
2017               uint32_t         mode,
2018               uint8_t          port)
2019{
2020    /* The GPIO should be swapped if swap register is set and active */
2021    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2022                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2023    int gpio_shift = (gpio_num +
2024                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2025    uint32_t gpio_mask = (1 << gpio_shift);
2026    uint32_t gpio_reg;
2027
2028    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2029        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2030        return (-1);
2031    }
2032
2033    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2034
2035    /* read GPIO and mask except the float bits */
2036    gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2037
2038    switch (mode) {
2039    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2040        BLOGD(sc, DBG_PHY,
2041              "Set GPIO %d (shift %d) -> output low\n",
2042              gpio_num, gpio_shift);
2043        /* clear FLOAT and set CLR */
2044        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2045        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2046        break;
2047
2048    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2049        BLOGD(sc, DBG_PHY,
2050              "Set GPIO %d (shift %d) -> output high\n",
2051              gpio_num, gpio_shift);
2052        /* clear FLOAT and set SET */
2053        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2054        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2055        break;
2056
2057    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2058        BLOGD(sc, DBG_PHY,
2059              "Set GPIO %d (shift %d) -> input\n",
2060              gpio_num, gpio_shift);
2061        /* set FLOAT */
2062        gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2063        break;
2064
2065    default:
2066        break;
2067    }
2068
2069    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2070    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2071
2072    return (0);
2073}
2074
2075static int
2076bxe_gpio_mult_write(struct bxe_softc *sc,
2077                    uint8_t          pins,
2078                    uint32_t         mode)
2079{
2080    uint32_t gpio_reg;
2081
2082    /* any port swapping should be handled by caller */
2083
2084    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2085
2086    /* read GPIO and mask except the float bits */
2087    gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2088    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2089    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2090    gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2091
2092    switch (mode) {
2093    case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2094        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2095        /* set CLR */
2096        gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2097        break;
2098
2099    case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2100        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2101        /* set SET */
2102        gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2103        break;
2104
2105    case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2106        BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2107        /* set FLOAT */
2108        gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2109        break;
2110
2111    default:
2112        BLOGE(sc, "Invalid GPIO mode assignment %d\n", mode);
2113        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2114        return (-1);
2115    }
2116
2117    REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2118    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2119
2120    return (0);
2121}
2122
2123static int
2124bxe_gpio_int_write(struct bxe_softc *sc,
2125                   int              gpio_num,
2126                   uint32_t         mode,
2127                   uint8_t          port)
2128{
2129    /* The GPIO should be swapped if swap register is set and active */
2130    int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2131                      REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2132    int gpio_shift = (gpio_num +
2133                      (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2134    uint32_t gpio_mask = (1 << gpio_shift);
2135    uint32_t gpio_reg;
2136
2137    if (gpio_num > MISC_REGISTERS_GPIO_3) {
2138        BLOGE(sc, "Invalid GPIO %d\n", gpio_num);
2139        return (-1);
2140    }
2141
2142    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2143
2144    /* read GPIO int */
2145    gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2146
2147    switch (mode) {
2148    case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2149        BLOGD(sc, DBG_PHY,
2150              "Clear GPIO INT %d (shift %d) -> output low\n",
2151              gpio_num, gpio_shift);
2152        /* clear SET and set CLR */
2153        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2154        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2155        break;
2156
2157    case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2158        BLOGD(sc, DBG_PHY,
2159              "Set GPIO INT %d (shift %d) -> output high\n",
2160              gpio_num, gpio_shift);
2161        /* clear CLR and set SET */
2162        gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2163        gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2164        break;
2165
2166    default:
2167        break;
2168    }
2169
2170    REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2171    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2172
2173    return (0);
2174}
2175
2176uint32_t
2177elink_cb_gpio_read(struct bxe_softc *sc,
2178                   uint16_t         gpio_num,
2179                   uint8_t          port)
2180{
2181    return (bxe_gpio_read(sc, gpio_num, port));
2182}
2183
2184uint8_t
2185elink_cb_gpio_write(struct bxe_softc *sc,
2186                    uint16_t         gpio_num,
2187                    uint8_t          mode, /* 0=low 1=high */
2188                    uint8_t          port)
2189{
2190    return (bxe_gpio_write(sc, gpio_num, mode, port));
2191}
2192
2193uint8_t
2194elink_cb_gpio_mult_write(struct bxe_softc *sc,
2195                         uint8_t          pins,
2196                         uint8_t          mode) /* 0=low 1=high */
2197{
2198    return (bxe_gpio_mult_write(sc, pins, mode));
2199}
2200
2201uint8_t
2202elink_cb_gpio_int_write(struct bxe_softc *sc,
2203                        uint16_t         gpio_num,
2204                        uint8_t          mode, /* 0=low 1=high */
2205                        uint8_t          port)
2206{
2207    return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2208}
2209
2210void
2211elink_cb_notify_link_changed(struct bxe_softc *sc)
2212{
2213    REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2214                (SC_FUNC(sc) * sizeof(uint32_t))), 1);
2215}
2216
2217/* send the MCP a request, block until there is a reply */
2218uint32_t
2219elink_cb_fw_command(struct bxe_softc *sc,
2220                    uint32_t         command,
2221                    uint32_t         param)
2222{
2223    int mb_idx = SC_FW_MB_IDX(sc);
2224    uint32_t seq;
2225    uint32_t rc = 0;
2226    uint32_t cnt = 1;
2227    uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2228
2229    BXE_FWMB_LOCK(sc);
2230
2231    seq = ++sc->fw_seq;
2232    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2233    SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2234
2235    BLOGD(sc, DBG_PHY,
2236          "wrote command 0x%08x to FW MB param 0x%08x\n",
2237          (command | seq), param);
2238
2239    /* Let the FW do it's magic. GIve it up to 5 seconds... */
2240    do {
2241        DELAY(delay * 1000);
2242        rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2243    } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2244
2245    BLOGD(sc, DBG_PHY,
2246          "[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2247          cnt*delay, rc, seq);
2248
2249    /* is this a reply to our command? */
2250    if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2251        rc &= FW_MSG_CODE_MASK;
2252    } else {
2253        /* Ruh-roh! */
2254        BLOGE(sc, "FW failed to respond!\n");
2255        // XXX bxe_fw_dump(sc);
2256        rc = 0;
2257    }
2258
2259    BXE_FWMB_UNLOCK(sc);
2260    return (rc);
2261}
2262
2263static uint32_t
2264bxe_fw_command(struct bxe_softc *sc,
2265               uint32_t         command,
2266               uint32_t         param)
2267{
2268    return (elink_cb_fw_command(sc, command, param));
2269}
2270
2271static void
2272__storm_memset_dma_mapping(struct bxe_softc *sc,
2273                           uint32_t         addr,
2274                           bus_addr_t       mapping)
2275{
2276    REG_WR(sc, addr, U64_LO(mapping));
2277    REG_WR(sc, (addr + 4), U64_HI(mapping));
2278}
2279
2280static void
2281storm_memset_spq_addr(struct bxe_softc *sc,
2282                      bus_addr_t       mapping,
2283                      uint16_t         abs_fid)
2284{
2285    uint32_t addr = (XSEM_REG_FAST_MEMORY +
2286                     XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2287    __storm_memset_dma_mapping(sc, addr, mapping);
2288}
2289
2290static void
2291storm_memset_vf_to_pf(struct bxe_softc *sc,
2292                      uint16_t         abs_fid,
2293                      uint16_t         pf_id)
2294{
2295    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2296    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2297    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2298    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2299}
2300
2301static void
2302storm_memset_func_en(struct bxe_softc *sc,
2303                     uint16_t         abs_fid,
2304                     uint8_t          enable)
2305{
2306    REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2307    REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2308    REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2309    REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2310}
2311
2312static void
2313storm_memset_eq_data(struct bxe_softc       *sc,
2314                     struct event_ring_data *eq_data,
2315                     uint16_t               pfid)
2316{
2317    uint32_t addr;
2318    size_t size;
2319
2320    addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2321    size = sizeof(struct event_ring_data);
2322    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2323}
2324
2325static void
2326storm_memset_eq_prod(struct bxe_softc *sc,
2327                     uint16_t         eq_prod,
2328                     uint16_t         pfid)
2329{
2330    uint32_t addr = (BAR_CSTRORM_INTMEM +
2331                     CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2332    REG_WR16(sc, addr, eq_prod);
2333}
2334
2335/*
2336 * Post a slowpath command.
2337 *
2338 * A slowpath command is used to propogate a configuration change through
2339 * the controller in a controlled manner, allowing each STORM processor and
2340 * other H/W blocks to phase in the change.  The commands sent on the
2341 * slowpath are referred to as ramrods.  Depending on the ramrod used the
2342 * completion of the ramrod will occur in different ways.  Here's a
2343 * breakdown of ramrods and how they complete:
2344 *
2345 * RAMROD_CMD_ID_ETH_PORT_SETUP
2346 *   Used to setup the leading connection on a port.  Completes on the
2347 *   Receive Completion Queue (RCQ) of that port (typically fp[0]).
2348 *
2349 * RAMROD_CMD_ID_ETH_CLIENT_SETUP
2350 *   Used to setup an additional connection on a port.  Completes on the
2351 *   RCQ of the multi-queue/RSS connection being initialized.
2352 *
2353 * RAMROD_CMD_ID_ETH_STAT_QUERY
2354 *   Used to force the storm processors to update the statistics database
2355 *   in host memory.  This ramrod is send on the leading connection CID and
2356 *   completes as an index increment of the CSTORM on the default status
2357 *   block.
2358 *
2359 * RAMROD_CMD_ID_ETH_UPDATE
2360 *   Used to update the state of the leading connection, usually to udpate
2361 *   the RSS indirection table.  Completes on the RCQ of the leading
2362 *   connection. (Not currently used under FreeBSD until OS support becomes
2363 *   available.)
2364 *
2365 * RAMROD_CMD_ID_ETH_HALT
2366 *   Used when tearing down a connection prior to driver unload.  Completes
2367 *   on the RCQ of the multi-queue/RSS connection being torn down.  Don't
2368 *   use this on the leading connection.
2369 *
2370 * RAMROD_CMD_ID_ETH_SET_MAC
2371 *   Sets the Unicast/Broadcast/Multicast used by the port.  Completes on
2372 *   the RCQ of the leading connection.
2373 *
2374 * RAMROD_CMD_ID_ETH_CFC_DEL
2375 *   Used when tearing down a conneciton prior to driver unload.  Completes
2376 *   on the RCQ of the leading connection (since the current connection
2377 *   has been completely removed from controller memory).
2378 *
2379 * RAMROD_CMD_ID_ETH_PORT_DEL
2380 *   Used to tear down the leading connection prior to driver unload,
2381 *   typically fp[0].  Completes as an index increment of the CSTORM on the
2382 *   default status block.
2383 *
2384 * RAMROD_CMD_ID_ETH_FORWARD_SETUP
2385 *   Used for connection offload.  Completes on the RCQ of the multi-queue
2386 *   RSS connection that is being offloaded.  (Not currently used under
2387 *   FreeBSD.)
2388 *
2389 * There can only be one command pending per function.
2390 *
2391 * Returns:
2392 *   0 = Success, !0 = Failure.
2393 */
2394
2395/* must be called under the spq lock */
2396static inline
2397struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2398{
2399    struct eth_spe *next_spe = sc->spq_prod_bd;
2400
2401    if (sc->spq_prod_bd == sc->spq_last_bd) {
2402        /* wrap back to the first eth_spq */
2403        sc->spq_prod_bd = sc->spq;
2404        sc->spq_prod_idx = 0;
2405    } else {
2406        sc->spq_prod_bd++;
2407        sc->spq_prod_idx++;
2408    }
2409
2410    return (next_spe);
2411}
2412
2413/* must be called under the spq lock */
2414static inline
2415void bxe_sp_prod_update(struct bxe_softc *sc)
2416{
2417    int func = SC_FUNC(sc);
2418
2419    /*
2420     * Make sure that BD data is updated before writing the producer.
2421     * BD data is written to the memory, the producer is read from the
2422     * memory, thus we need a full memory barrier to ensure the ordering.
2423     */
2424    mb();
2425
2426    REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2427             sc->spq_prod_idx);
2428
2429    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2430                      BUS_SPACE_BARRIER_WRITE);
2431}
2432
2433/**
2434 * bxe_is_contextless_ramrod - check if the current command ends on EQ
2435 *
2436 * @cmd:      command to check
2437 * @cmd_type: command type
2438 */
2439static inline
2440int bxe_is_contextless_ramrod(int cmd,
2441                              int cmd_type)
2442{
2443    if ((cmd_type == NONE_CONNECTION_TYPE) ||
2444        (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2445        (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2446        (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2447        (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2448        (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2449        (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2450        return (TRUE);
2451    } else {
2452        return (FALSE);
2453    }
2454}
2455
2456/**
2457 * bxe_sp_post - place a single command on an SP ring
2458 *
2459 * @sc:         driver handle
2460 * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
2461 * @cid:        SW CID the command is related to
2462 * @data_hi:    command private data address (high 32 bits)
2463 * @data_lo:    command private data address (low 32 bits)
2464 * @cmd_type:   command type (e.g. NONE, ETH)
2465 *
2466 * SP data is handled as if it's always an address pair, thus data fields are
2467 * not swapped to little endian in upper functions. Instead this function swaps
2468 * data as if it's two uint32 fields.
2469 */
2470int
2471bxe_sp_post(struct bxe_softc *sc,
2472            int              command,
2473            int              cid,
2474            uint32_t         data_hi,
2475            uint32_t         data_lo,
2476            int              cmd_type)
2477{
2478    struct eth_spe *spe;
2479    uint16_t type;
2480    int common;
2481
2482    common = bxe_is_contextless_ramrod(command, cmd_type);
2483
2484    BXE_SP_LOCK(sc);
2485
2486    if (common) {
2487        if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2488            BLOGE(sc, "EQ ring is full!\n");
2489            BXE_SP_UNLOCK(sc);
2490            return (-1);
2491        }
2492    } else {
2493        if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2494            BLOGE(sc, "SPQ ring is full!\n");
2495            BXE_SP_UNLOCK(sc);
2496            return (-1);
2497        }
2498    }
2499
2500    spe = bxe_sp_get_next(sc);
2501
2502    /* CID needs port number to be encoded int it */
2503    spe->hdr.conn_and_cmd_data =
2504        htole32((command << SPE_HDR_CMD_ID_SHIFT) | HW_CID(sc, cid));
2505
2506    type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
2507
2508    /* TBD: Check if it works for VFs */
2509    type |= ((SC_FUNC(sc) << SPE_HDR_FUNCTION_ID_SHIFT) &
2510             SPE_HDR_FUNCTION_ID);
2511
2512    spe->hdr.type = htole16(type);
2513
2514    spe->data.update_data_addr.hi = htole32(data_hi);
2515    spe->data.update_data_addr.lo = htole32(data_lo);
2516
2517    /*
2518     * It's ok if the actual decrement is issued towards the memory
2519     * somewhere between the lock and unlock. Thus no more explict
2520     * memory barrier is needed.
2521     */
2522    if (common) {
2523        atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2524    } else {
2525        atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2526    }
2527
2528    BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2529    BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2530          BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2531    BLOGD(sc, DBG_SP,
2532          "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2533          sc->spq_prod_idx,
2534          (uint32_t)U64_HI(sc->spq_dma.paddr),
2535          (uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2536          command,
2537          common,
2538          HW_CID(sc, cid),
2539          data_hi,
2540          data_lo,
2541          type,
2542          atomic_load_acq_long(&sc->cq_spq_left),
2543          atomic_load_acq_long(&sc->eq_spq_left));
2544
2545    bxe_sp_prod_update(sc);
2546
2547    BXE_SP_UNLOCK(sc);
2548    return (0);
2549}
2550
2551/**
2552 * bxe_debug_print_ind_table - prints the indirection table configuration.
2553 *
2554 * @sc: driver hanlde
2555 * @p:  pointer to rss configuration
2556 */
2557#if 0
2558static void
2559bxe_debug_print_ind_table(struct bxe_softc               *sc,
2560                          struct ecore_config_rss_params *p)
2561{
2562    int i;
2563
2564    BLOGD(sc, DBG_LOAD, "Setting indirection table to:\n");
2565    BLOGD(sc, DBG_LOAD, "    0x0000: ");
2566    for (i = 0; i < T_ETH_INDIRECTION_TABLE_SIZE; i++) {
2567        BLOGD(sc, DBG_LOAD, "0x%02x ", p->ind_table[i]);
2568
2569        /* Print 4 bytes in a line */
2570        if ((i + 1 < T_ETH_INDIRECTION_TABLE_SIZE) &&
2571            (((i + 1) & 0x3) == 0)) {
2572            BLOGD(sc, DBG_LOAD, "\n");
2573            BLOGD(sc, DBG_LOAD, "0x%04x: ", i + 1);
2574        }
2575    }
2576
2577    BLOGD(sc, DBG_LOAD, "\n");
2578}
2579#endif
2580
2581/*
2582 * FreeBSD Device probe function.
2583 *
2584 * Compares the device found to the driver's list of supported devices and
2585 * reports back to the bsd loader whether this is the right driver for the device.
2586 * This is the driver entry function called from the "kldload" command.
2587 *
2588 * Returns:
2589 *   BUS_PROBE_DEFAULT on success, positive value on failure.
2590 */
2591static int
2592bxe_probe(device_t dev)
2593{
2594    struct bxe_softc *sc;
2595    struct bxe_device_type *t;
2596    char *descbuf;
2597    uint16_t did, sdid, svid, vid;
2598
2599    /* Find our device structure */
2600    sc = device_get_softc(dev);
2601    sc->dev = dev;
2602    t = bxe_devs;
2603
2604    /* Get the data for the device to be probed. */
2605    vid  = pci_get_vendor(dev);
2606    did  = pci_get_device(dev);
2607    svid = pci_get_subvendor(dev);
2608    sdid = pci_get_subdevice(dev);
2609
2610    BLOGD(sc, DBG_LOAD,
2611          "%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
2612          "SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
2613
2614    /* Look through the list of known devices for a match. */
2615    while (t->bxe_name != NULL) {
2616        if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2617            ((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2618            ((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2619            descbuf = malloc(BXE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
2620            if (descbuf == NULL)
2621                return (ENOMEM);
2622
2623            /* Print out the device identity. */
2624            snprintf(descbuf, BXE_DEVDESC_MAX,
2625                     "%s (%c%d) BXE v:%s\n", t->bxe_name,
2626                     (((pci_read_config(dev, PCIR_REVID, 4) &
2627                        0xf0) >> 4) + 'A'),
2628                     (pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2629                     BXE_DRIVER_VERSION);
2630
2631            device_set_desc_copy(dev, descbuf);
2632            free(descbuf, M_TEMP);
2633            return (BUS_PROBE_DEFAULT);
2634        }
2635        t++;
2636    }
2637
2638    return (ENXIO);
2639}
2640
2641static void
2642bxe_init_mutexes(struct bxe_softc *sc)
2643{
2644#ifdef BXE_CORE_LOCK_SX
2645    snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2646             "bxe%d_core_lock", sc->unit);
2647    sx_init(&sc->core_sx, sc->core_sx_name);
2648#else
2649    snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2650             "bxe%d_core_lock", sc->unit);
2651    mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2652#endif
2653
2654    snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2655             "bxe%d_sp_lock", sc->unit);
2656    mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2657
2658    snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2659             "bxe%d_dmae_lock", sc->unit);
2660    mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2661
2662    snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2663             "bxe%d_phy_lock", sc->unit);
2664    mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2665
2666    snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2667             "bxe%d_fwmb_lock", sc->unit);
2668    mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2669
2670    snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2671             "bxe%d_print_lock", sc->unit);
2672    mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2673
2674    snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2675             "bxe%d_stats_lock", sc->unit);
2676    mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2677
2678    snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2679             "bxe%d_mcast_lock", sc->unit);
2680    mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2681}
2682
2683static void
2684bxe_release_mutexes(struct bxe_softc *sc)
2685{
2686#ifdef BXE_CORE_LOCK_SX
2687    sx_destroy(&sc->core_sx);
2688#else
2689    if (mtx_initialized(&sc->core_mtx)) {
2690        mtx_destroy(&sc->core_mtx);
2691    }
2692#endif
2693
2694    if (mtx_initialized(&sc->sp_mtx)) {
2695        mtx_destroy(&sc->sp_mtx);
2696    }
2697
2698    if (mtx_initialized(&sc->dmae_mtx)) {
2699        mtx_destroy(&sc->dmae_mtx);
2700    }
2701
2702    if (mtx_initialized(&sc->port.phy_mtx)) {
2703        mtx_destroy(&sc->port.phy_mtx);
2704    }
2705
2706    if (mtx_initialized(&sc->fwmb_mtx)) {
2707        mtx_destroy(&sc->fwmb_mtx);
2708    }
2709
2710    if (mtx_initialized(&sc->print_mtx)) {
2711        mtx_destroy(&sc->print_mtx);
2712    }
2713
2714    if (mtx_initialized(&sc->stats_mtx)) {
2715        mtx_destroy(&sc->stats_mtx);
2716    }
2717
2718    if (mtx_initialized(&sc->mcast_mtx)) {
2719        mtx_destroy(&sc->mcast_mtx);
2720    }
2721}
2722
2723static void
2724bxe_tx_disable(struct bxe_softc* sc)
2725{
2726    struct ifnet *ifp = sc->ifnet;
2727
2728    /* tell the stack the driver is stopped and TX queue is full */
2729    if (ifp != NULL) {
2730        ifp->if_drv_flags = 0;
2731    }
2732}
2733
2734static void
2735bxe_drv_pulse(struct bxe_softc *sc)
2736{
2737    SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2738             sc->fw_drv_pulse_wr_seq);
2739}
2740
2741static inline uint16_t
2742bxe_tx_avail(struct bxe_softc *sc,
2743             struct bxe_fastpath *fp)
2744{
2745    int16_t  used;
2746    uint16_t prod;
2747    uint16_t cons;
2748
2749    prod = fp->tx_bd_prod;
2750    cons = fp->tx_bd_cons;
2751
2752    used = SUB_S16(prod, cons);
2753
2754#if 0
2755    KASSERT((used < 0), ("used tx bds < 0"));
2756    KASSERT((used > sc->tx_ring_size), ("used tx bds > tx_ring_size"));
2757    KASSERT(((sc->tx_ring_size - used) > MAX_TX_AVAIL),
2758            ("invalid number of tx bds used"));
2759#endif
2760
2761    return (int16_t)(sc->tx_ring_size) - used;
2762}
2763
2764static inline int
2765bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2766{
2767    uint16_t hw_cons;
2768
2769    mb(); /* status block fields can change */
2770    hw_cons = le16toh(*fp->tx_cons_sb);
2771    return (hw_cons != fp->tx_pkt_cons);
2772}
2773
2774static inline uint8_t
2775bxe_has_tx_work(struct bxe_fastpath *fp)
2776{
2777    /* expand this for multi-cos if ever supported */
2778    return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2779}
2780
2781static inline int
2782bxe_has_rx_work(struct bxe_fastpath *fp)
2783{
2784    uint16_t rx_cq_cons_sb;
2785
2786    mb(); /* status block fields can change */
2787    rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2788    if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2789        rx_cq_cons_sb++;
2790    return (fp->rx_cq_cons != rx_cq_cons_sb);
2791}
2792
2793static void
2794bxe_sp_event(struct bxe_softc    *sc,
2795             struct bxe_fastpath *fp,
2796             union eth_rx_cqe    *rr_cqe)
2797{
2798    int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2799    int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2800    enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2801    struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2802
2803    BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2804          fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2805
2806#if 0
2807    /*
2808     * If cid is within VF range, replace the slowpath object with the
2809     * one corresponding to this VF
2810     */
2811    if ((cid >= BXE_FIRST_VF_CID) && (cid < BXE_FIRST_VF_CID + BXE_VF_CIDS)) {
2812        bxe_iov_set_queue_sp_obj(sc, cid, &q_obj);
2813    }
2814#endif
2815
2816    switch (command) {
2817    case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2818        BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2819        drv_cmd = ECORE_Q_CMD_UPDATE;
2820        break;
2821
2822    case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2823        BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2824        drv_cmd = ECORE_Q_CMD_SETUP;
2825        break;
2826
2827    case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2828        BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2829        drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2830        break;
2831
2832    case (RAMROD_CMD_ID_ETH_HALT):
2833        BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2834        drv_cmd = ECORE_Q_CMD_HALT;
2835        break;
2836
2837    case (RAMROD_CMD_ID_ETH_TERMINATE):
2838        BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2839        drv_cmd = ECORE_Q_CMD_TERMINATE;
2840        break;
2841
2842    case (RAMROD_CMD_ID_ETH_EMPTY):
2843        BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2844        drv_cmd = ECORE_Q_CMD_EMPTY;
2845        break;
2846
2847    default:
2848        BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2849              command, fp->index);
2850        return;
2851    }
2852
2853    if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2854        q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2855        /*
2856         * q_obj->complete_cmd() failure means that this was
2857         * an unexpected completion.
2858         *
2859         * In this case we don't want to increase the sc->spq_left
2860         * because apparently we haven't sent this command the first
2861         * place.
2862         */
2863        // bxe_panic(sc, ("Unexpected SP completion\n"));
2864        return;
2865    }
2866
2867#if 0
2868    /* SRIOV: reschedule any 'in_progress' operations */
2869    bxe_iov_sp_event(sc, cid, TRUE);
2870#endif
2871
2872    atomic_add_acq_long(&sc->cq_spq_left, 1);
2873
2874    BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2875          atomic_load_acq_long(&sc->cq_spq_left));
2876
2877#if 0
2878    if ((drv_cmd == ECORE_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
2879        (!!bxe_test_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state))) {
2880        /*
2881         * If Queue update ramrod is completed for last Queue in AFEX VIF set
2882         * flow, then ACK MCP at the end. Mark pending ACK to MCP bit to
2883         * prevent case that both bits are cleared. At the end of load/unload
2884         * driver checks that sp_state is cleared and this order prevents
2885         * races.
2886         */
2887        bxe_set_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK, &sc->sp_state);
2888        wmb();
2889        bxe_clear_bit(ECORE_AFEX_FCOE_Q_UPDATE_PENDING, &sc->sp_state);
2890
2891        /* schedule the sp task as MCP ack is required */
2892        bxe_schedule_sp_task(sc);
2893    }
2894#endif
2895}
2896
2897/*
2898 * The current mbuf is part of an aggregation. Move the mbuf into the TPA
2899 * aggregation queue, put an empty mbuf back onto the receive chain, and mark
2900 * the current aggregation queue as in-progress.
2901 */
2902static void
2903bxe_tpa_start(struct bxe_softc            *sc,
2904              struct bxe_fastpath         *fp,
2905              uint16_t                    queue,
2906              uint16_t                    cons,
2907              uint16_t                    prod,
2908              struct eth_fast_path_rx_cqe *cqe)
2909{
2910    struct bxe_sw_rx_bd tmp_bd;
2911    struct bxe_sw_rx_bd *rx_buf;
2912    struct eth_rx_bd *rx_bd;
2913    int max_agg_queues;
2914    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2915    uint16_t index;
2916
2917    BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2918                       "cons=%d prod=%d\n",
2919          fp->index, queue, cons, prod);
2920
2921    max_agg_queues = MAX_AGG_QS(sc);
2922
2923    KASSERT((queue < max_agg_queues),
2924            ("fp[%02d] invalid aggr queue (%d >= %d)!",
2925             fp->index, queue, max_agg_queues));
2926
2927    KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2928            ("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2929             fp->index, queue));
2930
2931    /* copy the existing mbuf and mapping from the TPA pool */
2932    tmp_bd = tpa_info->bd;
2933
2934    if (tmp_bd.m == NULL) {
2935        BLOGE(sc, "fp[%02d].tpa[%02d] mbuf not allocated!\n",
2936              fp->index, queue);
2937        /* XXX Error handling? */
2938        return;
2939    }
2940
2941    /* change the TPA queue to the start state */
2942    tpa_info->state            = BXE_TPA_STATE_START;
2943    tpa_info->placement_offset = cqe->placement_offset;
2944    tpa_info->parsing_flags    = le16toh(cqe->pars_flags.flags);
2945    tpa_info->vlan_tag         = le16toh(cqe->vlan_tag);
2946    tpa_info->len_on_bd        = le16toh(cqe->len_on_bd);
2947
2948    fp->rx_tpa_queue_used |= (1 << queue);
2949
2950    /*
2951     * If all the buffer descriptors are filled with mbufs then fill in
2952     * the current consumer index with a new BD. Else if a maximum Rx
2953     * buffer limit is imposed then fill in the next producer index.
2954     */
2955    index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2956                prod : cons;
2957
2958    /* move the received mbuf and mapping to TPA pool */
2959    tpa_info->bd = fp->rx_mbuf_chain[cons];
2960
2961    /* release any existing RX BD mbuf mappings */
2962    if (cons != index) {
2963        rx_buf = &fp->rx_mbuf_chain[cons];
2964
2965        if (rx_buf->m_map != NULL) {
2966            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2967                            BUS_DMASYNC_POSTREAD);
2968            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2969        }
2970
2971        /*
2972         * We get here when the maximum number of rx buffers is less than
2973         * RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2974         * it out here without concern of a memory leak.
2975         */
2976        fp->rx_mbuf_chain[cons].m = NULL;
2977    }
2978
2979    /* update the Rx SW BD with the mbuf info from the TPA pool */
2980    fp->rx_mbuf_chain[index] = tmp_bd;
2981
2982    /* update the Rx BD with the empty mbuf phys address from the TPA pool */
2983    rx_bd = &fp->rx_chain[index];
2984    rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2985    rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2986}
2987
2988/*
2989 * When a TPA aggregation is completed, loop through the individual mbufs
2990 * of the aggregation, combining them into a single mbuf which will be sent
2991 * up the stack. Refill all freed SGEs with mbufs as we go along.
2992 */
2993static int
2994bxe_fill_frag_mbuf(struct bxe_softc          *sc,
2995                   struct bxe_fastpath       *fp,
2996                   struct bxe_sw_tpa_info    *tpa_info,
2997                   uint16_t                  queue,
2998                   uint16_t                  pages,
2999                   struct mbuf               *m,
3000			       struct eth_end_agg_rx_cqe *cqe,
3001                   uint16_t                  cqe_idx)
3002{
3003    struct mbuf *m_frag;
3004    uint32_t frag_len, frag_size, i;
3005    uint16_t sge_idx;
3006    int rc = 0;
3007    int j;
3008
3009    frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
3010
3011    BLOGD(sc, DBG_LRO,
3012          "fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
3013          fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
3014
3015    /* make sure the aggregated frame is not too big to handle */
3016    if (pages > 8 * PAGES_PER_SGE) {
3017        BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
3018                  "pkt_len=%d len_on_bd=%d frag_size=%d\n",
3019              fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
3020              tpa_info->len_on_bd, frag_size);
3021        bxe_panic(sc, ("sge page count error\n"));
3022        return (EINVAL);
3023    }
3024
3025    /*
3026     * Scan through the scatter gather list pulling individual mbufs into a
3027     * single mbuf for the host stack.
3028     */
3029    for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
3030        sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
3031
3032        /*
3033         * Firmware gives the indices of the SGE as if the ring is an array
3034         * (meaning that the "next" element will consume 2 indices).
3035         */
3036        frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
3037
3038        BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
3039                           "sge_idx=%d frag_size=%d frag_len=%d\n",
3040              fp->index, queue, i, j, sge_idx, frag_size, frag_len);
3041
3042        m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3043
3044        /* allocate a new mbuf for the SGE */
3045        rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3046        if (rc) {
3047            /* Leave all remaining SGEs in the ring! */
3048            return (rc);
3049        }
3050
3051        /* update the fragment length */
3052        m_frag->m_len = frag_len;
3053
3054        /* concatenate the fragment to the head mbuf */
3055        m_cat(m, m_frag);
3056        fp->eth_q_stats.mbuf_alloc_sge--;
3057
3058        /* update the TPA mbuf size and remaining fragment size */
3059        m->m_pkthdr.len += frag_len;
3060        frag_size -= frag_len;
3061    }
3062
3063    BLOGD(sc, DBG_LRO,
3064          "fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
3065          fp->index, queue, frag_size);
3066
3067    return (rc);
3068}
3069
3070static inline void
3071bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
3072{
3073    int i, j;
3074
3075    for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
3076        int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
3077
3078        for (j = 0; j < 2; j++) {
3079            BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
3080            idx--;
3081        }
3082    }
3083}
3084
3085static inline void
3086bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
3087{
3088    /* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
3089    memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
3090
3091    /*
3092     * Clear the two last indices in the page to 1. These are the indices that
3093     * correspond to the "next" element, hence will never be indicated and
3094     * should be removed from the calculations.
3095     */
3096    bxe_clear_sge_mask_next_elems(fp);
3097}
3098
3099static inline void
3100bxe_update_last_max_sge(struct bxe_fastpath *fp,
3101                        uint16_t            idx)
3102{
3103    uint16_t last_max = fp->last_max_sge;
3104
3105    if (SUB_S16(idx, last_max) > 0) {
3106        fp->last_max_sge = idx;
3107    }
3108}
3109
3110static inline void
3111bxe_update_sge_prod(struct bxe_softc          *sc,
3112                    struct bxe_fastpath       *fp,
3113                    uint16_t                  sge_len,
3114                    struct eth_end_agg_rx_cqe *cqe)
3115{
3116    uint16_t last_max, last_elem, first_elem;
3117    uint16_t delta = 0;
3118    uint16_t i;
3119
3120    if (!sge_len) {
3121        return;
3122    }
3123
3124    /* first mark all used pages */
3125    for (i = 0; i < sge_len; i++) {
3126        BIT_VEC64_CLEAR_BIT(fp->sge_mask,
3127                            RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[i])));
3128    }
3129
3130    BLOGD(sc, DBG_LRO,
3131          "fp[%02d] fp_cqe->sgl[%d] = %d\n",
3132          fp->index, sge_len - 1,
3133          le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3134
3135    /* assume that the last SGE index is the biggest */
3136    bxe_update_last_max_sge(fp,
3137                            le16toh(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
3138
3139    last_max = RX_SGE(fp->last_max_sge);
3140    last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
3141    first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
3142
3143    /* if ring is not full */
3144    if (last_elem + 1 != first_elem) {
3145        last_elem++;
3146    }
3147
3148    /* now update the prod */
3149    for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3150        if (__predict_true(fp->sge_mask[i])) {
3151            break;
3152        }
3153
3154        fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3155        delta += BIT_VEC64_ELEM_SZ;
3156    }
3157
3158    if (delta > 0) {
3159        fp->rx_sge_prod += delta;
3160        /* clear page-end entries */
3161        bxe_clear_sge_mask_next_elems(fp);
3162    }
3163
3164    BLOGD(sc, DBG_LRO,
3165          "fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3166          fp->index, fp->last_max_sge, fp->rx_sge_prod);
3167}
3168
3169/*
3170 * The aggregation on the current TPA queue has completed. Pull the individual
3171 * mbuf fragments together into a single mbuf, perform all necessary checksum
3172 * calculations, and send the resuting mbuf to the stack.
3173 */
3174static void
3175bxe_tpa_stop(struct bxe_softc          *sc,
3176             struct bxe_fastpath       *fp,
3177             struct bxe_sw_tpa_info    *tpa_info,
3178             uint16_t                  queue,
3179             uint16_t                  pages,
3180			 struct eth_end_agg_rx_cqe *cqe,
3181             uint16_t                  cqe_idx)
3182{
3183    struct ifnet *ifp = sc->ifnet;
3184    struct mbuf *m;
3185    int rc = 0;
3186
3187    BLOGD(sc, DBG_LRO,
3188          "fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3189          fp->index, queue, tpa_info->placement_offset,
3190          le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3191
3192    m = tpa_info->bd.m;
3193
3194    /* allocate a replacement before modifying existing mbuf */
3195    rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3196    if (rc) {
3197        /* drop the frame and log an error */
3198        fp->eth_q_stats.rx_soft_errors++;
3199        goto bxe_tpa_stop_exit;
3200    }
3201
3202    /* we have a replacement, fixup the current mbuf */
3203    m_adj(m, tpa_info->placement_offset);
3204    m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3205
3206    /* mark the checksums valid (taken care of by the firmware) */
3207    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3208    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3209    m->m_pkthdr.csum_data = 0xffff;
3210    m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3211                               CSUM_IP_VALID   |
3212                               CSUM_DATA_VALID |
3213                               CSUM_PSEUDO_HDR);
3214
3215    /* aggregate all of the SGEs into a single mbuf */
3216    rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3217    if (rc) {
3218        /* drop the packet and log an error */
3219        fp->eth_q_stats.rx_soft_errors++;
3220        m_freem(m);
3221    } else {
3222        if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN) {
3223            m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3224            m->m_flags |= M_VLANTAG;
3225        }
3226
3227        /* assign packet to this interface interface */
3228        m->m_pkthdr.rcvif = ifp;
3229
3230#if __FreeBSD_version >= 800000
3231        /* specify what RSS queue was used for this flow */
3232        m->m_pkthdr.flowid = fp->index;
3233        m->m_flags |= M_FLOWID;
3234#endif
3235
3236        ifp->if_ipackets++;
3237        fp->eth_q_stats.rx_tpa_pkts++;
3238
3239        /* pass the frame to the stack */
3240        (*ifp->if_input)(ifp, m);
3241    }
3242
3243    /* we passed an mbuf up the stack or dropped the frame */
3244    fp->eth_q_stats.mbuf_alloc_tpa--;
3245
3246bxe_tpa_stop_exit:
3247
3248    fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3249    fp->rx_tpa_queue_used &= ~(1 << queue);
3250}
3251
3252static uint8_t
3253bxe_rxeof(struct bxe_softc    *sc,
3254          struct bxe_fastpath *fp)
3255{
3256    struct ifnet *ifp = sc->ifnet;
3257    uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3258    uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3259    int rx_pkts = 0;
3260    int rc;
3261
3262    BXE_FP_RX_LOCK(fp);
3263
3264    /* CQ "next element" is of the size of the regular element */
3265    hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3266    if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3267        hw_cq_cons++;
3268    }
3269
3270    bd_cons = fp->rx_bd_cons;
3271    bd_prod = fp->rx_bd_prod;
3272    bd_prod_fw = bd_prod;
3273    sw_cq_cons = fp->rx_cq_cons;
3274    sw_cq_prod = fp->rx_cq_prod;
3275
3276    /*
3277     * Memory barrier necessary as speculative reads of the rx
3278     * buffer can be ahead of the index in the status block
3279     */
3280    rmb();
3281
3282    BLOGD(sc, DBG_RX,
3283          "fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3284          fp->index, hw_cq_cons, sw_cq_cons);
3285
3286    while (sw_cq_cons != hw_cq_cons) {
3287        struct bxe_sw_rx_bd *rx_buf = NULL;
3288        union eth_rx_cqe *cqe;
3289        struct eth_fast_path_rx_cqe *cqe_fp;
3290        uint8_t cqe_fp_flags;
3291        enum eth_rx_cqe_type cqe_fp_type;
3292        uint16_t len, pad;
3293        struct mbuf *m = NULL;
3294
3295        comp_ring_cons = RCQ(sw_cq_cons);
3296        bd_prod = RX_BD(bd_prod);
3297        bd_cons = RX_BD(bd_cons);
3298
3299        cqe          = &fp->rcq_chain[comp_ring_cons];
3300        cqe_fp       = &cqe->fast_path_cqe;
3301        cqe_fp_flags = cqe_fp->type_error_flags;
3302        cqe_fp_type  = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3303
3304        BLOGD(sc, DBG_RX,
3305              "fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3306              "BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3307              "status=0x%x rss_hash=0x%x vlan=0x%x len=%u\n",
3308              fp->index,
3309              hw_cq_cons,
3310              sw_cq_cons,
3311              bd_prod,
3312              bd_cons,
3313              CQE_TYPE(cqe_fp_flags),
3314              cqe_fp_flags,
3315              cqe_fp->status_flags,
3316              le32toh(cqe_fp->rss_hash_result),
3317              le16toh(cqe_fp->vlan_tag),
3318              le16toh(cqe_fp->pkt_len_or_gro_seg_len));
3319
3320        /* is this a slowpath msg? */
3321        if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3322            bxe_sp_event(sc, fp, cqe);
3323            goto next_cqe;
3324        }
3325
3326        rx_buf = &fp->rx_mbuf_chain[bd_cons];
3327
3328        if (!CQE_TYPE_FAST(cqe_fp_type)) {
3329            struct bxe_sw_tpa_info *tpa_info;
3330            uint16_t frag_size, pages;
3331            uint8_t queue;
3332
3333#if 0
3334            /* sanity check */
3335            if (!fp->tpa_enable &&
3336                (CQE_TYPE_START(cqe_fp_type) || CQE_TYPE_STOP(cqe_fp_type))) {
3337                BLOGE(sc, "START/STOP packet while !tpa_enable type (0x%x)\n",
3338                      CQE_TYPE(cqe_fp_type));
3339            }
3340#endif
3341
3342            if (CQE_TYPE_START(cqe_fp_type)) {
3343                bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3344                              bd_cons, bd_prod, cqe_fp);
3345                m = NULL; /* packet not ready yet */
3346                goto next_rx;
3347            }
3348
3349            KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3350                    ("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3351
3352            queue = cqe->end_agg_cqe.queue_index;
3353            tpa_info = &fp->rx_tpa_info[queue];
3354
3355            BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3356                  fp->index, queue);
3357
3358            frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3359                         tpa_info->len_on_bd);
3360            pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3361
3362            bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3363                         &cqe->end_agg_cqe, comp_ring_cons);
3364
3365            bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe);
3366
3367            goto next_cqe;
3368        }
3369
3370        /* non TPA */
3371
3372        /* is this an error packet? */
3373        if (__predict_false(cqe_fp_flags &
3374                            ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3375            BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3376            fp->eth_q_stats.rx_soft_errors++;
3377            goto next_rx;
3378        }
3379
3380        len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3381        pad = cqe_fp->placement_offset;
3382
3383        m = rx_buf->m;
3384
3385        if (__predict_false(m == NULL)) {
3386            BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3387                  bd_cons, fp->index);
3388            goto next_rx;
3389        }
3390
3391        /* XXX double copy if packet length under a threshold */
3392
3393        /*
3394         * If all the buffer descriptors are filled with mbufs then fill in
3395         * the current consumer index with a new BD. Else if a maximum Rx
3396         * buffer limit is imposed then fill in the next producer index.
3397         */
3398        rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3399                                  (sc->max_rx_bufs != RX_BD_USABLE) ?
3400                                      bd_prod : bd_cons);
3401        if (rc != 0) {
3402            BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3403                  fp->index, rc);
3404            fp->eth_q_stats.rx_soft_errors++;
3405
3406            if (sc->max_rx_bufs != RX_BD_USABLE) {
3407                /* copy this consumer index to the producer index */
3408                memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3409                       sizeof(struct bxe_sw_rx_bd));
3410                memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3411            }
3412
3413            goto next_rx;
3414        }
3415
3416        /* current mbuf was detached from the bd */
3417        fp->eth_q_stats.mbuf_alloc_rx--;
3418
3419        /* we allocated a replacement mbuf, fixup the current one */
3420        m_adj(m, pad);
3421        m->m_pkthdr.len = m->m_len = len;
3422
3423        /* assign packet to this interface interface */
3424        m->m_pkthdr.rcvif = ifp;
3425
3426        /* assume no hardware checksum has complated */
3427        m->m_pkthdr.csum_flags = 0;
3428
3429        /* validate checksum if offload enabled */
3430        if (ifp->if_capenable & IFCAP_RXCSUM) {
3431            /* check for a valid IP frame */
3432            if (!(cqe->fast_path_cqe.status_flags &
3433                  ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3434                m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3435                if (__predict_false(cqe_fp_flags &
3436                                    ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3437                    fp->eth_q_stats.rx_hw_csum_errors++;
3438                } else {
3439                    fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3440                    m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3441                }
3442            }
3443
3444            /* check for a valid TCP/UDP frame */
3445            if (!(cqe->fast_path_cqe.status_flags &
3446                  ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3447                if (__predict_false(cqe_fp_flags &
3448                                    ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3449                    fp->eth_q_stats.rx_hw_csum_errors++;
3450                } else {
3451                    fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3452                    m->m_pkthdr.csum_data = 0xFFFF;
3453                    m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3454                                               CSUM_PSEUDO_HDR);
3455                }
3456            }
3457        }
3458
3459        /* if there is a VLAN tag then flag that info */
3460        if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_VLAN) {
3461            m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3462            m->m_flags |= M_VLANTAG;
3463        }
3464
3465#if __FreeBSD_version >= 800000
3466        /* specify what RSS queue was used for this flow */
3467        m->m_pkthdr.flowid = fp->index;
3468        m->m_flags |= M_FLOWID;
3469#endif
3470
3471next_rx:
3472
3473        bd_cons    = RX_BD_NEXT(bd_cons);
3474        bd_prod    = RX_BD_NEXT(bd_prod);
3475        bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3476
3477        /* pass the frame to the stack */
3478        if (__predict_true(m != NULL)) {
3479            ifp->if_ipackets++;
3480            rx_pkts++;
3481            (*ifp->if_input)(ifp, m);
3482        }
3483
3484next_cqe:
3485
3486        sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3487        sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3488
3489        /* limit spinning on the queue */
3490        if (rx_pkts == sc->rx_budget) {
3491            fp->eth_q_stats.rx_budget_reached++;
3492            break;
3493        }
3494    } /* while work to do */
3495
3496    fp->rx_bd_cons = bd_cons;
3497    fp->rx_bd_prod = bd_prod_fw;
3498    fp->rx_cq_cons = sw_cq_cons;
3499    fp->rx_cq_prod = sw_cq_prod;
3500
3501    /* Update producers */
3502    bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3503
3504    fp->eth_q_stats.rx_pkts += rx_pkts;
3505    fp->eth_q_stats.rx_calls++;
3506
3507    BXE_FP_RX_UNLOCK(fp);
3508
3509    return (sw_cq_cons != hw_cq_cons);
3510}
3511
3512static uint16_t
3513bxe_free_tx_pkt(struct bxe_softc    *sc,
3514                struct bxe_fastpath *fp,
3515                uint16_t            idx)
3516{
3517    struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3518    struct eth_tx_start_bd *tx_start_bd;
3519    uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3520    uint16_t new_cons;
3521    int nbd;
3522
3523    /* unmap the mbuf from non-paged memory */
3524    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3525
3526    tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3527    nbd = le16toh(tx_start_bd->nbd) - 1;
3528
3529#if 0
3530    if ((nbd - 1) > (MAX_MBUF_FRAGS + 2)) {
3531        bxe_panic(sc, ("BAD nbd!\n"));
3532    }
3533#endif
3534
3535    new_cons = (tx_buf->first_bd + nbd);
3536
3537#if 0
3538    struct eth_tx_bd *tx_data_bd;
3539
3540    /*
3541     * The following code doesn't do anything but is left here
3542     * for clarity on what the new value of new_cons skipped.
3543     */
3544
3545    /* get the next bd */
3546    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3547
3548    /* skip the parse bd */
3549    --nbd;
3550    bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3551
3552    /* skip the TSO split header bd since they have no mapping */
3553    if (tx_buf->flags & BXE_TSO_SPLIT_BD) {
3554        --nbd;
3555        bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3556    }
3557
3558    /* now free frags */
3559    while (nbd > 0) {
3560        tx_data_bd = &fp->tx_chain[bd_idx].reg_bd;
3561        if (--nbd) {
3562            bd_idx = TX_BD(TX_BD_NEXT(bd_idx));
3563        }
3564    }
3565#endif
3566
3567    /* free the mbuf */
3568    if (__predict_true(tx_buf->m != NULL)) {
3569        m_freem(tx_buf->m);
3570        fp->eth_q_stats.mbuf_alloc_tx--;
3571    } else {
3572        fp->eth_q_stats.tx_chain_lost_mbuf++;
3573    }
3574
3575    tx_buf->m = NULL;
3576    tx_buf->first_bd = 0;
3577
3578    return (new_cons);
3579}
3580
3581/* transmit timeout watchdog */
3582static int
3583bxe_watchdog(struct bxe_softc    *sc,
3584             struct bxe_fastpath *fp)
3585{
3586    BXE_FP_TX_LOCK(fp);
3587
3588    if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3589        BXE_FP_TX_UNLOCK(fp);
3590        return (0);
3591    }
3592
3593    BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3594
3595    BXE_FP_TX_UNLOCK(fp);
3596
3597    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
3598    taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
3599
3600    return (-1);
3601}
3602
3603/* processes transmit completions */
3604static uint8_t
3605bxe_txeof(struct bxe_softc    *sc,
3606          struct bxe_fastpath *fp)
3607{
3608    struct ifnet *ifp = sc->ifnet;
3609    uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3610    uint16_t tx_bd_avail;
3611
3612    BXE_FP_TX_LOCK_ASSERT(fp);
3613
3614    bd_cons = fp->tx_bd_cons;
3615    hw_cons = le16toh(*fp->tx_cons_sb);
3616    sw_cons = fp->tx_pkt_cons;
3617
3618    while (sw_cons != hw_cons) {
3619        pkt_cons = TX_BD(sw_cons);
3620
3621        BLOGD(sc, DBG_TX,
3622              "TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3623              fp->index, hw_cons, sw_cons, pkt_cons);
3624
3625        bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3626
3627        sw_cons++;
3628    }
3629
3630    fp->tx_pkt_cons = sw_cons;
3631    fp->tx_bd_cons  = bd_cons;
3632
3633    BLOGD(sc, DBG_TX,
3634          "TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3635          fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3636
3637    mb();
3638
3639    tx_bd_avail = bxe_tx_avail(sc, fp);
3640
3641    if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3642        ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3643    } else {
3644        ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3645    }
3646
3647    if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3648        /* reset the watchdog timer if there are pending transmits */
3649        fp->watchdog_timer = BXE_TX_TIMEOUT;
3650        return (TRUE);
3651    } else {
3652        /* clear watchdog when there are no pending transmits */
3653        fp->watchdog_timer = 0;
3654        return (FALSE);
3655    }
3656}
3657
3658static void
3659bxe_drain_tx_queues(struct bxe_softc *sc)
3660{
3661    struct bxe_fastpath *fp;
3662    int i, count;
3663
3664    /* wait until all TX fastpath tasks have completed */
3665    for (i = 0; i < sc->num_queues; i++) {
3666        fp = &sc->fp[i];
3667
3668        count = 1000;
3669
3670        while (bxe_has_tx_work(fp)) {
3671
3672            BXE_FP_TX_LOCK(fp);
3673            bxe_txeof(sc, fp);
3674            BXE_FP_TX_UNLOCK(fp);
3675
3676            if (count == 0) {
3677                BLOGE(sc, "Timeout waiting for fp[%d] "
3678                          "transmits to complete!\n", i);
3679                bxe_panic(sc, ("tx drain failure\n"));
3680                return;
3681            }
3682
3683            count--;
3684            DELAY(1000);
3685            rmb();
3686        }
3687    }
3688
3689    return;
3690}
3691
3692static int
3693bxe_del_all_macs(struct bxe_softc          *sc,
3694                 struct ecore_vlan_mac_obj *mac_obj,
3695                 int                       mac_type,
3696                 uint8_t                   wait_for_comp)
3697{
3698    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3699    int rc;
3700
3701    /* wait for completion of requested */
3702    if (wait_for_comp) {
3703        bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3704    }
3705
3706    /* Set the mac type of addresses we want to clear */
3707    bxe_set_bit(mac_type, &vlan_mac_flags);
3708
3709    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3710    if (rc < 0) {
3711        BLOGE(sc, "Failed to delete MACs (%d)\n", rc);
3712    }
3713
3714    return (rc);
3715}
3716
3717static int
3718bxe_fill_accept_flags(struct bxe_softc *sc,
3719                      uint32_t         rx_mode,
3720                      unsigned long    *rx_accept_flags,
3721                      unsigned long    *tx_accept_flags)
3722{
3723    /* Clear the flags first */
3724    *rx_accept_flags = 0;
3725    *tx_accept_flags = 0;
3726
3727    switch (rx_mode) {
3728    case BXE_RX_MODE_NONE:
3729        /*
3730         * 'drop all' supersedes any accept flags that may have been
3731         * passed to the function.
3732         */
3733        break;
3734
3735    case BXE_RX_MODE_NORMAL:
3736        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3737        bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3738        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3739
3740        /* internal switching mode */
3741        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3742        bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3743        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3744
3745        break;
3746
3747    case BXE_RX_MODE_ALLMULTI:
3748        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3749        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3750        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3751
3752        /* internal switching mode */
3753        bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3754        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3755        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3756
3757        break;
3758
3759    case BXE_RX_MODE_PROMISC:
3760        /*
3761         * According to deffinition of SI mode, iface in promisc mode
3762         * should receive matched and unmatched (in resolution of port)
3763         * unicast packets.
3764         */
3765        bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3766        bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3767        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3768        bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3769
3770        /* internal switching mode */
3771        bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3772        bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3773
3774        if (IS_MF_SI(sc)) {
3775            bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3776        } else {
3777            bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3778        }
3779
3780        break;
3781
3782    default:
3783        BLOGE(sc, "Unknown rx_mode (%d)\n", rx_mode);
3784        return (-1);
3785    }
3786
3787    /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3788    if (rx_mode != BXE_RX_MODE_NONE) {
3789        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3790        bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3791    }
3792
3793    return (0);
3794}
3795
3796static int
3797bxe_set_q_rx_mode(struct bxe_softc *sc,
3798                  uint8_t          cl_id,
3799                  unsigned long    rx_mode_flags,
3800                  unsigned long    rx_accept_flags,
3801                  unsigned long    tx_accept_flags,
3802                  unsigned long    ramrod_flags)
3803{
3804    struct ecore_rx_mode_ramrod_params ramrod_param;
3805    int rc;
3806
3807    memset(&ramrod_param, 0, sizeof(ramrod_param));
3808
3809    /* Prepare ramrod parameters */
3810    ramrod_param.cid = 0;
3811    ramrod_param.cl_id = cl_id;
3812    ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3813    ramrod_param.func_id = SC_FUNC(sc);
3814
3815    ramrod_param.pstate = &sc->sp_state;
3816    ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3817
3818    ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3819    ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3820
3821    bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3822
3823    ramrod_param.ramrod_flags = ramrod_flags;
3824    ramrod_param.rx_mode_flags = rx_mode_flags;
3825
3826    ramrod_param.rx_accept_flags = rx_accept_flags;
3827    ramrod_param.tx_accept_flags = tx_accept_flags;
3828
3829    rc = ecore_config_rx_mode(sc, &ramrod_param);
3830    if (rc < 0) {
3831        BLOGE(sc, "Set rx_mode %d failed\n", sc->rx_mode);
3832        return (rc);
3833    }
3834
3835    return (0);
3836}
3837
3838static int
3839bxe_set_storm_rx_mode(struct bxe_softc *sc)
3840{
3841    unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3842    unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3843    int rc;
3844
3845    rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3846                               &tx_accept_flags);
3847    if (rc) {
3848        return (rc);
3849    }
3850
3851    bxe_set_bit(RAMROD_RX, &ramrod_flags);
3852    bxe_set_bit(RAMROD_TX, &ramrod_flags);
3853
3854    /* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3855    return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3856                              rx_accept_flags, tx_accept_flags,
3857                              ramrod_flags));
3858}
3859
3860/* returns the "mcp load_code" according to global load_count array */
3861static int
3862bxe_nic_load_no_mcp(struct bxe_softc *sc)
3863{
3864    int path = SC_PATH(sc);
3865    int port = SC_PORT(sc);
3866
3867    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3868          path, load_count[path][0], load_count[path][1],
3869          load_count[path][2]);
3870    load_count[path][0]++;
3871    load_count[path][1 + port]++;
3872    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3873          path, load_count[path][0], load_count[path][1],
3874          load_count[path][2]);
3875    if (load_count[path][0] == 1) {
3876        return (FW_MSG_CODE_DRV_LOAD_COMMON);
3877    } else if (load_count[path][1 + port] == 1) {
3878        return (FW_MSG_CODE_DRV_LOAD_PORT);
3879    } else {
3880        return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3881    }
3882}
3883
3884/* returns the "mcp load_code" according to global load_count array */
3885static int
3886bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3887{
3888    int port = SC_PORT(sc);
3889    int path = SC_PATH(sc);
3890
3891    BLOGI(sc, "NO MCP - load counts[%d]      %d, %d, %d\n",
3892          path, load_count[path][0], load_count[path][1],
3893          load_count[path][2]);
3894    load_count[path][0]--;
3895    load_count[path][1 + port]--;
3896    BLOGI(sc, "NO MCP - new load counts[%d]  %d, %d, %d\n",
3897          path, load_count[path][0], load_count[path][1],
3898          load_count[path][2]);
3899    if (load_count[path][0] == 0) {
3900        return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3901    } else if (load_count[path][1 + port] == 0) {
3902        return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3903    } else {
3904        return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3905    }
3906}
3907
3908/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3909static uint32_t
3910bxe_send_unload_req(struct bxe_softc *sc,
3911                    int              unload_mode)
3912{
3913    uint32_t reset_code = 0;
3914#if 0
3915    int port = SC_PORT(sc);
3916    int path = SC_PATH(sc);
3917#endif
3918
3919    /* Select the UNLOAD request mode */
3920    if (unload_mode == UNLOAD_NORMAL) {
3921        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3922    }
3923#if 0
3924    else if (sc->flags & BXE_NO_WOL_FLAG) {
3925        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
3926    } else if (sc->wol) {
3927        uint32_t emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
3928        uint8_t *mac_addr = sc->dev->dev_addr;
3929        uint32_t val;
3930        uint16_t pmc;
3931
3932        /*
3933         * The mac address is written to entries 1-4 to
3934         * preserve entry 0 which is used by the PMF
3935         */
3936        uint8_t entry = (SC_VN(sc) + 1)*8;
3937
3938        val = (mac_addr[0] << 8) | mac_addr[1];
3939        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry, val);
3940
3941        val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3942              (mac_addr[4] << 8) | mac_addr[5];
3943        EMAC_WR(sc, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
3944
3945        /* Enable the PME and clear the status */
3946        pmc = pci_read_config(sc->dev,
3947                              (sc->devinfo.pcie_pm_cap_reg +
3948                               PCIR_POWER_STATUS),
3949                              2);
3950        pmc |= PCIM_PSTAT_PMEENABLE | PCIM_PSTAT_PME;
3951        pci_write_config(sc->dev,
3952                         (sc->devinfo.pcie_pm_cap_reg +
3953                          PCIR_POWER_STATUS),
3954                         pmc, 4);
3955
3956        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
3957    }
3958#endif
3959    else {
3960        reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3961    }
3962
3963    /* Send the request to the MCP */
3964    if (!BXE_NOMCP(sc)) {
3965        reset_code = bxe_fw_command(sc, reset_code, 0);
3966    } else {
3967        reset_code = bxe_nic_unload_no_mcp(sc);
3968    }
3969
3970    return (reset_code);
3971}
3972
3973/* send UNLOAD_DONE command to the MCP */
3974static void
3975bxe_send_unload_done(struct bxe_softc *sc,
3976                     uint8_t          keep_link)
3977{
3978    uint32_t reset_param =
3979        keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3980
3981    /* Report UNLOAD_DONE to MCP */
3982    if (!BXE_NOMCP(sc)) {
3983        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3984    }
3985}
3986
3987static int
3988bxe_func_wait_started(struct bxe_softc *sc)
3989{
3990    int tout = 50;
3991
3992    if (!sc->port.pmf) {
3993        return (0);
3994    }
3995
3996    /*
3997     * (assumption: No Attention from MCP at this stage)
3998     * PMF probably in the middle of TX disable/enable transaction
3999     * 1. Sync IRS for default SB
4000     * 2. Sync SP queue - this guarantees us that attention handling started
4001     * 3. Wait, that TX disable/enable transaction completes
4002     *
4003     * 1+2 guarantee that if DCBX attention was scheduled it already changed
4004     * pending bit of transaction from STARTED-->TX_STOPPED, if we already
4005     * received completion for the transaction the state is TX_STOPPED.
4006     * State will return to STARTED after completion of TX_STOPPED-->STARTED
4007     * transaction.
4008     */
4009
4010    /* XXX make sure default SB ISR is done */
4011    /* need a way to synchronize an irq (intr_mtx?) */
4012
4013    /* XXX flush any work queues */
4014
4015    while (ecore_func_get_state(sc, &sc->func_obj) !=
4016           ECORE_F_STATE_STARTED && tout--) {
4017        DELAY(20000);
4018    }
4019
4020    if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
4021        /*
4022         * Failed to complete the transaction in a "good way"
4023         * Force both transactions with CLR bit.
4024         */
4025        struct ecore_func_state_params func_params = { NULL };
4026
4027        BLOGE(sc, "Unexpected function state! "
4028                  "Forcing STARTED-->TX_STOPPED-->STARTED\n");
4029
4030        func_params.f_obj = &sc->func_obj;
4031        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4032
4033        /* STARTED-->TX_STOPPED */
4034        func_params.cmd = ECORE_F_CMD_TX_STOP;
4035        ecore_func_state_change(sc, &func_params);
4036
4037        /* TX_STOPPED-->STARTED */
4038        func_params.cmd = ECORE_F_CMD_TX_START;
4039        return (ecore_func_state_change(sc, &func_params));
4040    }
4041
4042    return (0);
4043}
4044
4045static int
4046bxe_stop_queue(struct bxe_softc *sc,
4047               int              index)
4048{
4049    struct bxe_fastpath *fp = &sc->fp[index];
4050    struct ecore_queue_state_params q_params = { NULL };
4051    int rc;
4052
4053    BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
4054
4055    q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
4056    /* We want to wait for completion in this context */
4057    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
4058
4059    /* Stop the primary connection: */
4060
4061    /* ...halt the connection */
4062    q_params.cmd = ECORE_Q_CMD_HALT;
4063    rc = ecore_queue_state_change(sc, &q_params);
4064    if (rc) {
4065        return (rc);
4066    }
4067
4068    /* ...terminate the connection */
4069    q_params.cmd = ECORE_Q_CMD_TERMINATE;
4070    memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
4071    q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
4072    rc = ecore_queue_state_change(sc, &q_params);
4073    if (rc) {
4074        return (rc);
4075    }
4076
4077    /* ...delete cfc entry */
4078    q_params.cmd = ECORE_Q_CMD_CFC_DEL;
4079    memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
4080    q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
4081    return (ecore_queue_state_change(sc, &q_params));
4082}
4083
4084/* wait for the outstanding SP commands */
4085static inline uint8_t
4086bxe_wait_sp_comp(struct bxe_softc *sc,
4087                 unsigned long    mask)
4088{
4089    unsigned long tmp;
4090    int tout = 5000; /* wait for 5 secs tops */
4091
4092    while (tout--) {
4093        mb();
4094        if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
4095            return (TRUE);
4096        }
4097
4098        DELAY(1000);
4099    }
4100
4101    mb();
4102
4103    tmp = atomic_load_acq_long(&sc->sp_state);
4104    if (tmp & mask) {
4105        BLOGE(sc, "Filtering completion timed out: "
4106                  "sp_state 0x%lx, mask 0x%lx\n",
4107              tmp, mask);
4108        return (FALSE);
4109    }
4110
4111    return (FALSE);
4112}
4113
4114static int
4115bxe_func_stop(struct bxe_softc *sc)
4116{
4117    struct ecore_func_state_params func_params = { NULL };
4118    int rc;
4119
4120    /* prepare parameters for function state transitions */
4121    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4122    func_params.f_obj = &sc->func_obj;
4123    func_params.cmd = ECORE_F_CMD_STOP;
4124
4125    /*
4126     * Try to stop the function the 'good way'. If it fails (in case
4127     * of a parity error during bxe_chip_cleanup()) and we are
4128     * not in a debug mode, perform a state transaction in order to
4129     * enable further HW_RESET transaction.
4130     */
4131    rc = ecore_func_state_change(sc, &func_params);
4132    if (rc) {
4133        BLOGE(sc, "FUNC_STOP ramrod failed. "
4134                  "Running a dry transaction\n");
4135        bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
4136        return (ecore_func_state_change(sc, &func_params));
4137    }
4138
4139    return (0);
4140}
4141
4142static int
4143bxe_reset_hw(struct bxe_softc *sc,
4144             uint32_t         load_code)
4145{
4146    struct ecore_func_state_params func_params = { NULL };
4147
4148    /* Prepare parameters for function state transitions */
4149    bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
4150
4151    func_params.f_obj = &sc->func_obj;
4152    func_params.cmd = ECORE_F_CMD_HW_RESET;
4153
4154    func_params.params.hw_init.load_phase = load_code;
4155
4156    return (ecore_func_state_change(sc, &func_params));
4157}
4158
4159static void
4160bxe_int_disable_sync(struct bxe_softc *sc,
4161                     int              disable_hw)
4162{
4163    if (disable_hw) {
4164        /* prevent the HW from sending interrupts */
4165        bxe_int_disable(sc);
4166    }
4167
4168    /* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4169    /* make sure all ISRs are done */
4170
4171    /* XXX make sure sp_task is not running */
4172    /* cancel and flush work queues */
4173}
4174
4175static void
4176bxe_chip_cleanup(struct bxe_softc *sc,
4177                 uint32_t         unload_mode,
4178                 uint8_t          keep_link)
4179{
4180    int port = SC_PORT(sc);
4181    struct ecore_mcast_ramrod_params rparam = { NULL };
4182    uint32_t reset_code;
4183    int i, rc = 0;
4184
4185    bxe_drain_tx_queues(sc);
4186
4187    /* give HW time to discard old tx messages */
4188    DELAY(1000);
4189
4190    /* Clean all ETH MACs */
4191    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4192    if (rc < 0) {
4193        BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4194    }
4195
4196    /* Clean up UC list  */
4197    rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4198    if (rc < 0) {
4199        BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4200    }
4201
4202    /* Disable LLH */
4203    if (!CHIP_IS_E1(sc)) {
4204        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4205    }
4206
4207    /* Set "drop all" to stop Rx */
4208
4209    /*
4210     * We need to take the BXE_MCAST_LOCK() here in order to prevent
4211     * a race between the completion code and this code.
4212     */
4213    BXE_MCAST_LOCK(sc);
4214
4215    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4216        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4217    } else {
4218        bxe_set_storm_rx_mode(sc);
4219    }
4220
4221    /* Clean up multicast configuration */
4222    rparam.mcast_obj = &sc->mcast_obj;
4223    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4224    if (rc < 0) {
4225        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4226    }
4227
4228    BXE_MCAST_UNLOCK(sc);
4229
4230    // XXX bxe_iov_chip_cleanup(sc);
4231
4232    /*
4233     * Send the UNLOAD_REQUEST to the MCP. This will return if
4234     * this function should perform FUNCTION, PORT, or COMMON HW
4235     * reset.
4236     */
4237    reset_code = bxe_send_unload_req(sc, unload_mode);
4238
4239    /*
4240     * (assumption: No Attention from MCP at this stage)
4241     * PMF probably in the middle of TX disable/enable transaction
4242     */
4243    rc = bxe_func_wait_started(sc);
4244    if (rc) {
4245        BLOGE(sc, "bxe_func_wait_started failed\n");
4246    }
4247
4248    /*
4249     * Close multi and leading connections
4250     * Completions for ramrods are collected in a synchronous way
4251     */
4252    for (i = 0; i < sc->num_queues; i++) {
4253        if (bxe_stop_queue(sc, i)) {
4254            goto unload_error;
4255        }
4256    }
4257
4258    /*
4259     * If SP settings didn't get completed so far - something
4260     * very wrong has happen.
4261     */
4262    if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4263        BLOGE(sc, "Common slow path ramrods got stuck!\n");
4264    }
4265
4266unload_error:
4267
4268    rc = bxe_func_stop(sc);
4269    if (rc) {
4270        BLOGE(sc, "Function stop failed!\n");
4271    }
4272
4273    /* disable HW interrupts */
4274    bxe_int_disable_sync(sc, TRUE);
4275
4276    /* detach interrupts */
4277    bxe_interrupt_detach(sc);
4278
4279    /* Reset the chip */
4280    rc = bxe_reset_hw(sc, reset_code);
4281    if (rc) {
4282        BLOGE(sc, "Hardware reset failed\n");
4283    }
4284
4285    /* Report UNLOAD_DONE to MCP */
4286    bxe_send_unload_done(sc, keep_link);
4287}
4288
4289static void
4290bxe_disable_close_the_gate(struct bxe_softc *sc)
4291{
4292    uint32_t val;
4293    int port = SC_PORT(sc);
4294
4295    BLOGD(sc, DBG_LOAD,
4296          "Disabling 'close the gates'\n");
4297
4298    if (CHIP_IS_E1(sc)) {
4299        uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4300                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
4301        val = REG_RD(sc, addr);
4302        val &= ~(0x300);
4303        REG_WR(sc, addr, val);
4304    } else {
4305        val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4306        val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4307                 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4308        REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4309    }
4310}
4311
4312/*
4313 * Cleans the object that have internal lists without sending
4314 * ramrods. Should be run when interrutps are disabled.
4315 */
4316static void
4317bxe_squeeze_objects(struct bxe_softc *sc)
4318{
4319    unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4320    struct ecore_mcast_ramrod_params rparam = { NULL };
4321    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4322    int rc;
4323
4324    /* Cleanup MACs' object first... */
4325
4326    /* Wait for completion of requested */
4327    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4328    /* Perform a dry cleanup */
4329    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4330
4331    /* Clean ETH primary MAC */
4332    bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4333    rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4334                             &ramrod_flags);
4335    if (rc != 0) {
4336        BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4337    }
4338
4339    /* Cleanup UC list */
4340    vlan_mac_flags = 0;
4341    bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4342    rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4343                             &ramrod_flags);
4344    if (rc != 0) {
4345        BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4346    }
4347
4348    /* Now clean mcast object... */
4349
4350    rparam.mcast_obj = &sc->mcast_obj;
4351    bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4352
4353    /* Add a DEL command... */
4354    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4355    if (rc < 0) {
4356        BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4357    }
4358
4359    /* now wait until all pending commands are cleared */
4360
4361    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4362    while (rc != 0) {
4363        if (rc < 0) {
4364            BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4365            return;
4366        }
4367
4368        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4369    }
4370}
4371
4372/* stop the controller */
4373static __noinline int
4374bxe_nic_unload(struct bxe_softc *sc,
4375               uint32_t         unload_mode,
4376               uint8_t          keep_link)
4377{
4378    uint8_t global = FALSE;
4379    uint32_t val;
4380
4381    BXE_CORE_LOCK_ASSERT(sc);
4382
4383    BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4384
4385    /* mark driver as unloaded in shmem2 */
4386    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4387        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4388        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4389                  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4390    }
4391
4392    if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4393        (sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4394        /*
4395         * We can get here if the driver has been unloaded
4396         * during parity error recovery and is either waiting for a
4397         * leader to complete or for other functions to unload and
4398         * then ifconfig down has been issued. In this case we want to
4399         * unload and let other functions to complete a recovery
4400         * process.
4401         */
4402        sc->recovery_state = BXE_RECOVERY_DONE;
4403        sc->is_leader = 0;
4404        bxe_release_leader_lock(sc);
4405        mb();
4406
4407        BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4408        BLOGE(sc, "Can't unload in closed or error state\n");
4409        return (-1);
4410    }
4411
4412    /*
4413     * Nothing to do during unload if previous bxe_nic_load()
4414     * did not completed succesfully - all resourses are released.
4415     */
4416    if ((sc->state == BXE_STATE_CLOSED) ||
4417        (sc->state == BXE_STATE_ERROR)) {
4418        return (0);
4419    }
4420
4421    sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4422    mb();
4423
4424    /* stop tx */
4425    bxe_tx_disable(sc);
4426
4427    sc->rx_mode = BXE_RX_MODE_NONE;
4428    /* XXX set rx mode ??? */
4429
4430    if (IS_PF(sc)) {
4431        /* set ALWAYS_ALIVE bit in shmem */
4432        sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4433
4434        bxe_drv_pulse(sc);
4435
4436        bxe_stats_handle(sc, STATS_EVENT_STOP);
4437        bxe_save_statistics(sc);
4438    }
4439
4440    /* wait till consumers catch up with producers in all queues */
4441    bxe_drain_tx_queues(sc);
4442
4443    /* if VF indicate to PF this function is going down (PF will delete sp
4444     * elements and clear initializations
4445     */
4446    if (IS_VF(sc)) {
4447        ; /* bxe_vfpf_close_vf(sc); */
4448    } else if (unload_mode != UNLOAD_RECOVERY) {
4449        /* if this is a normal/close unload need to clean up chip */
4450        bxe_chip_cleanup(sc, unload_mode, keep_link);
4451    } else {
4452        /* Send the UNLOAD_REQUEST to the MCP */
4453        bxe_send_unload_req(sc, unload_mode);
4454
4455        /*
4456         * Prevent transactions to host from the functions on the
4457         * engine that doesn't reset global blocks in case of global
4458         * attention once gloabl blocks are reset and gates are opened
4459         * (the engine which leader will perform the recovery
4460         * last).
4461         */
4462        if (!CHIP_IS_E1x(sc)) {
4463            bxe_pf_disable(sc);
4464        }
4465
4466        /* disable HW interrupts */
4467        bxe_int_disable_sync(sc, TRUE);
4468
4469        /* detach interrupts */
4470        bxe_interrupt_detach(sc);
4471
4472        /* Report UNLOAD_DONE to MCP */
4473        bxe_send_unload_done(sc, FALSE);
4474    }
4475
4476    /*
4477     * At this stage no more interrupts will arrive so we may safely clean
4478     * the queue'able objects here in case they failed to get cleaned so far.
4479     */
4480    if (IS_PF(sc)) {
4481        bxe_squeeze_objects(sc);
4482    }
4483
4484    /* There should be no more pending SP commands at this stage */
4485    sc->sp_state = 0;
4486
4487    sc->port.pmf = 0;
4488
4489    bxe_free_fp_buffers(sc);
4490
4491    if (IS_PF(sc)) {
4492        bxe_free_mem(sc);
4493    }
4494
4495    bxe_free_fw_stats_mem(sc);
4496
4497    sc->state = BXE_STATE_CLOSED;
4498
4499    /*
4500     * Check if there are pending parity attentions. If there are - set
4501     * RECOVERY_IN_PROGRESS.
4502     */
4503    if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4504        bxe_set_reset_in_progress(sc);
4505
4506        /* Set RESET_IS_GLOBAL if needed */
4507        if (global) {
4508            bxe_set_reset_global(sc);
4509        }
4510    }
4511
4512    /*
4513     * The last driver must disable a "close the gate" if there is no
4514     * parity attention or "process kill" pending.
4515     */
4516    if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4517        bxe_reset_is_done(sc, SC_PATH(sc))) {
4518        bxe_disable_close_the_gate(sc);
4519    }
4520
4521    BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4522
4523    return (0);
4524}
4525
4526/*
4527 * Called by the OS to set various media options (i.e. link, speed, etc.) when
4528 * the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4529 */
4530static int
4531bxe_ifmedia_update(struct ifnet *ifp)
4532{
4533    struct bxe_softc *sc = (struct bxe_softc *)ifp->if_softc;
4534    struct ifmedia *ifm;
4535
4536    ifm = &sc->ifmedia;
4537
4538    /* We only support Ethernet media type. */
4539    if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4540        return (EINVAL);
4541    }
4542
4543    switch (IFM_SUBTYPE(ifm->ifm_media)) {
4544    case IFM_AUTO:
4545         break;
4546    case IFM_10G_CX4:
4547    case IFM_10G_SR:
4548    case IFM_10G_T:
4549    case IFM_10G_TWINAX:
4550    default:
4551        /* We don't support changing the media type. */
4552        BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4553              IFM_SUBTYPE(ifm->ifm_media));
4554        return (EINVAL);
4555    }
4556
4557    return (0);
4558}
4559
4560/*
4561 * Called by the OS to get the current media status (i.e. link, speed, etc.).
4562 */
4563static void
4564bxe_ifmedia_status(struct ifnet *ifp, struct ifmediareq *ifmr)
4565{
4566    struct bxe_softc *sc = ifp->if_softc;
4567
4568    /* Report link down if the driver isn't running. */
4569    if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
4570        ifmr->ifm_active |= IFM_NONE;
4571        return;
4572    }
4573
4574    /* Setup the default interface info. */
4575    ifmr->ifm_status = IFM_AVALID;
4576    ifmr->ifm_active = IFM_ETHER;
4577
4578    if (sc->link_vars.link_up) {
4579        ifmr->ifm_status |= IFM_ACTIVE;
4580    } else {
4581        ifmr->ifm_active |= IFM_NONE;
4582        return;
4583    }
4584
4585    ifmr->ifm_active |= sc->media;
4586
4587    if (sc->link_vars.duplex == DUPLEX_FULL) {
4588        ifmr->ifm_active |= IFM_FDX;
4589    } else {
4590        ifmr->ifm_active |= IFM_HDX;
4591    }
4592}
4593
4594static int
4595bxe_ioctl_nvram(struct bxe_softc *sc,
4596                uint32_t         priv_op,
4597                struct ifreq     *ifr)
4598{
4599    struct bxe_nvram_data nvdata_base;
4600    struct bxe_nvram_data *nvdata;
4601    int len;
4602    int error = 0;
4603
4604    copyin(ifr->ifr_data, &nvdata_base, sizeof(nvdata_base));
4605
4606    len = (sizeof(struct bxe_nvram_data) +
4607           nvdata_base.len -
4608           sizeof(uint32_t));
4609
4610    if (len > sizeof(struct bxe_nvram_data)) {
4611        if ((nvdata = (struct bxe_nvram_data *)
4612                 malloc(len, M_DEVBUF,
4613                        (M_NOWAIT | M_ZERO))) == NULL) {
4614            BLOGE(sc, "BXE_IOC_RD_NVRAM malloc failed\n");
4615            return (1);
4616        }
4617        memcpy(nvdata, &nvdata_base, sizeof(struct bxe_nvram_data));
4618    } else {
4619        nvdata = &nvdata_base;
4620    }
4621
4622    if (priv_op == BXE_IOC_RD_NVRAM) {
4623        BLOGD(sc, DBG_IOCTL, "IOC_RD_NVRAM 0x%x %d\n",
4624              nvdata->offset, nvdata->len);
4625        error = bxe_nvram_read(sc,
4626                               nvdata->offset,
4627                               (uint8_t *)nvdata->value,
4628                               nvdata->len);
4629        copyout(nvdata, ifr->ifr_data, len);
4630    } else { /* BXE_IOC_WR_NVRAM */
4631        BLOGD(sc, DBG_IOCTL, "IOC_WR_NVRAM 0x%x %d\n",
4632              nvdata->offset, nvdata->len);
4633        copyin(ifr->ifr_data, nvdata, len);
4634        error = bxe_nvram_write(sc,
4635                                nvdata->offset,
4636                                (uint8_t *)nvdata->value,
4637                                nvdata->len);
4638    }
4639
4640    if (len > sizeof(struct bxe_nvram_data)) {
4641        free(nvdata, M_DEVBUF);
4642    }
4643
4644    return (error);
4645}
4646
4647static int
4648bxe_ioctl_stats_show(struct bxe_softc *sc,
4649                     uint32_t         priv_op,
4650                     struct ifreq     *ifr)
4651{
4652    const size_t str_size   = (BXE_NUM_ETH_STATS * STAT_NAME_LEN);
4653    const size_t stats_size = (BXE_NUM_ETH_STATS * sizeof(uint64_t));
4654    caddr_t p_tmp;
4655    uint32_t *offset;
4656    int i;
4657
4658    switch (priv_op)
4659    {
4660    case BXE_IOC_STATS_SHOW_NUM:
4661        memset(ifr->ifr_data, 0, sizeof(union bxe_stats_show_data));
4662        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.num =
4663            BXE_NUM_ETH_STATS;
4664        ((union bxe_stats_show_data *)ifr->ifr_data)->desc.len =
4665            STAT_NAME_LEN;
4666        return (0);
4667
4668    case BXE_IOC_STATS_SHOW_STR:
4669        memset(ifr->ifr_data, 0, str_size);
4670        p_tmp = ifr->ifr_data;
4671        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4672            strcpy(p_tmp, bxe_eth_stats_arr[i].string);
4673            p_tmp += STAT_NAME_LEN;
4674        }
4675        return (0);
4676
4677    case BXE_IOC_STATS_SHOW_CNT:
4678        memset(ifr->ifr_data, 0, stats_size);
4679        p_tmp = ifr->ifr_data;
4680        for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
4681            offset = ((uint32_t *)&sc->eth_stats +
4682                      bxe_eth_stats_arr[i].offset);
4683            switch (bxe_eth_stats_arr[i].size) {
4684            case 4:
4685                *((uint64_t *)p_tmp) = (uint64_t)*offset;
4686                break;
4687            case 8:
4688                *((uint64_t *)p_tmp) = HILO_U64(*offset, *(offset + 1));
4689                break;
4690            default:
4691                *((uint64_t *)p_tmp) = 0;
4692            }
4693            p_tmp += sizeof(uint64_t);
4694        }
4695        return (0);
4696
4697    default:
4698        return (-1);
4699    }
4700}
4701
4702static void
4703bxe_handle_chip_tq(void *context,
4704                   int  pending)
4705{
4706    struct bxe_softc *sc = (struct bxe_softc *)context;
4707    long work = atomic_load_acq_long(&sc->chip_tq_flags);
4708
4709    switch (work)
4710    {
4711    case CHIP_TQ_START:
4712        if ((sc->ifnet->if_flags & IFF_UP) &&
4713            !(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4714            /* start the interface */
4715            BLOGD(sc, DBG_LOAD, "Starting the interface...\n");
4716            BXE_CORE_LOCK(sc);
4717            bxe_init_locked(sc);
4718            BXE_CORE_UNLOCK(sc);
4719        }
4720        break;
4721
4722    case CHIP_TQ_STOP:
4723        if (!(sc->ifnet->if_flags & IFF_UP) &&
4724            (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4725            /* bring down the interface */
4726            BLOGD(sc, DBG_LOAD, "Stopping the interface...\n");
4727            bxe_periodic_stop(sc);
4728            BXE_CORE_LOCK(sc);
4729            bxe_stop_locked(sc);
4730            BXE_CORE_UNLOCK(sc);
4731        }
4732        break;
4733
4734    case CHIP_TQ_REINIT:
4735        if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
4736            /* restart the interface */
4737            BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4738            bxe_periodic_stop(sc);
4739            BXE_CORE_LOCK(sc);
4740            bxe_stop_locked(sc);
4741            bxe_init_locked(sc);
4742            BXE_CORE_UNLOCK(sc);
4743        }
4744        break;
4745
4746    default:
4747        break;
4748    }
4749}
4750
4751/*
4752 * Handles any IOCTL calls from the operating system.
4753 *
4754 * Returns:
4755 *   0 = Success, >0 Failure
4756 */
4757static int
4758bxe_ioctl(struct ifnet *ifp,
4759          u_long       command,
4760          caddr_t      data)
4761{
4762    struct bxe_softc *sc = ifp->if_softc;
4763    struct ifreq *ifr = (struct ifreq *)data;
4764    struct bxe_nvram_data *nvdata;
4765    uint32_t priv_op;
4766    int mask = 0;
4767    int reinit = 0;
4768    int error = 0;
4769
4770    int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4771    int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4772
4773    switch (command)
4774    {
4775    case SIOCSIFMTU:
4776        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4777              ifr->ifr_mtu);
4778
4779        if (sc->mtu == ifr->ifr_mtu) {
4780            /* nothing to change */
4781            break;
4782        }
4783
4784        if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4785            BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4786                  ifr->ifr_mtu, mtu_min, mtu_max);
4787            error = EINVAL;
4788            break;
4789        }
4790
4791        atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4792                             (unsigned long)ifr->ifr_mtu);
4793        atomic_store_rel_long((volatile unsigned long *)&ifp->if_mtu,
4794                              (unsigned long)ifr->ifr_mtu);
4795
4796        reinit = 1;
4797        break;
4798
4799    case SIOCSIFFLAGS:
4800        /* toggle the interface state up or down */
4801        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4802
4803        /* check if the interface is up */
4804        if (ifp->if_flags & IFF_UP) {
4805            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4806                /* set the receive mode flags */
4807                bxe_set_rx_mode(sc);
4808            } else {
4809                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_START);
4810                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4811            }
4812        } else {
4813            if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4814                atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_STOP);
4815                taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4816            }
4817        }
4818
4819        break;
4820
4821    case SIOCADDMULTI:
4822    case SIOCDELMULTI:
4823        /* add/delete multicast addresses */
4824        BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4825
4826        /* check if the interface is up */
4827        if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
4828            /* set the receive mode flags */
4829            bxe_set_rx_mode(sc);
4830        }
4831
4832        break;
4833
4834    case SIOCSIFCAP:
4835        /* find out which capabilities have changed */
4836        mask = (ifr->ifr_reqcap ^ ifp->if_capenable);
4837
4838        BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4839              mask);
4840
4841        /* toggle the LRO capabilites enable flag */
4842        if (mask & IFCAP_LRO) {
4843            ifp->if_capenable ^= IFCAP_LRO;
4844            BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4845                  (ifp->if_capenable & IFCAP_LRO) ? "ON" : "OFF");
4846            reinit = 1;
4847        }
4848
4849        /* toggle the TXCSUM checksum capabilites enable flag */
4850        if (mask & IFCAP_TXCSUM) {
4851            ifp->if_capenable ^= IFCAP_TXCSUM;
4852            BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4853                  (ifp->if_capenable & IFCAP_TXCSUM) ? "ON" : "OFF");
4854            if (ifp->if_capenable & IFCAP_TXCSUM) {
4855                ifp->if_hwassist = (CSUM_IP       |
4856                                    CSUM_TCP      |
4857                                    CSUM_UDP      |
4858                                    CSUM_TSO      |
4859                                    CSUM_TCP_IPV6 |
4860                                    CSUM_UDP_IPV6);
4861            } else {
4862                ifp->if_hwassist = 0;
4863            }
4864        }
4865
4866        /* toggle the RXCSUM checksum capabilities enable flag */
4867        if (mask & IFCAP_RXCSUM) {
4868            ifp->if_capenable ^= IFCAP_RXCSUM;
4869            BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4870                  (ifp->if_capenable & IFCAP_RXCSUM) ? "ON" : "OFF");
4871            if (ifp->if_capenable & IFCAP_RXCSUM) {
4872                ifp->if_hwassist = (CSUM_IP       |
4873                                    CSUM_TCP      |
4874                                    CSUM_UDP      |
4875                                    CSUM_TSO      |
4876                                    CSUM_TCP_IPV6 |
4877                                    CSUM_UDP_IPV6);
4878            } else {
4879                ifp->if_hwassist = 0;
4880            }
4881        }
4882
4883        /* toggle TSO4 capabilities enabled flag */
4884        if (mask & IFCAP_TSO4) {
4885            ifp->if_capenable ^= IFCAP_TSO4;
4886            BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4887                  (ifp->if_capenable & IFCAP_TSO4) ? "ON" : "OFF");
4888        }
4889
4890        /* toggle TSO6 capabilities enabled flag */
4891        if (mask & IFCAP_TSO6) {
4892            ifp->if_capenable ^= IFCAP_TSO6;
4893            BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4894                  (ifp->if_capenable & IFCAP_TSO6) ? "ON" : "OFF");
4895        }
4896
4897        /* toggle VLAN_HWTSO capabilities enabled flag */
4898        if (mask & IFCAP_VLAN_HWTSO) {
4899            ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
4900            BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4901                  (ifp->if_capenable & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4902        }
4903
4904        /* toggle VLAN_HWCSUM capabilities enabled flag */
4905        if (mask & IFCAP_VLAN_HWCSUM) {
4906            /* XXX investigate this... */
4907            BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4908            error = EINVAL;
4909        }
4910
4911        /* toggle VLAN_MTU capabilities enable flag */
4912        if (mask & IFCAP_VLAN_MTU) {
4913            /* XXX investigate this... */
4914            BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4915            error = EINVAL;
4916        }
4917
4918        /* toggle VLAN_HWTAGGING capabilities enabled flag */
4919        if (mask & IFCAP_VLAN_HWTAGGING) {
4920            /* XXX investigate this... */
4921            BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4922            error = EINVAL;
4923        }
4924
4925        /* toggle VLAN_HWFILTER capabilities enabled flag */
4926        if (mask & IFCAP_VLAN_HWFILTER) {
4927            /* XXX investigate this... */
4928            BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4929            error = EINVAL;
4930        }
4931
4932        /* XXX not yet...
4933         * IFCAP_WOL_MAGIC
4934         */
4935
4936        break;
4937
4938    case SIOCSIFMEDIA:
4939    case SIOCGIFMEDIA:
4940        /* set/get interface media */
4941        BLOGD(sc, DBG_IOCTL,
4942              "Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4943              (command & 0xff));
4944        error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4945        break;
4946
4947    case SIOCGPRIVATE_0:
4948        copyin(ifr->ifr_data, &priv_op, sizeof(priv_op));
4949
4950        switch (priv_op)
4951        {
4952        case BXE_IOC_RD_NVRAM:
4953        case BXE_IOC_WR_NVRAM:
4954            nvdata = (struct bxe_nvram_data *)ifr->ifr_data;
4955            BLOGD(sc, DBG_IOCTL,
4956                  "Received Private NVRAM ioctl addr=0x%x size=%u\n",
4957                  nvdata->offset, nvdata->len);
4958            error = bxe_ioctl_nvram(sc, priv_op, ifr);
4959            break;
4960
4961        case BXE_IOC_STATS_SHOW_NUM:
4962        case BXE_IOC_STATS_SHOW_STR:
4963        case BXE_IOC_STATS_SHOW_CNT:
4964            BLOGD(sc, DBG_IOCTL, "Received Private Stats ioctl (%d)\n",
4965                  priv_op);
4966            error = bxe_ioctl_stats_show(sc, priv_op, ifr);
4967            break;
4968
4969        default:
4970            BLOGW(sc, "Received Private Unknown ioctl (%d)\n", priv_op);
4971            error = EINVAL;
4972            break;
4973        }
4974
4975        break;
4976
4977    default:
4978        BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4979              (command & 0xff));
4980        error = ether_ioctl(ifp, command, data);
4981        break;
4982    }
4983
4984    if (reinit && (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
4985        BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4986              "Re-initializing hardware from IOCTL change\n");
4987        atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_REINIT);
4988        taskqueue_enqueue(sc->chip_tq, &sc->chip_tq_task);
4989    }
4990
4991    return (error);
4992}
4993
4994static __noinline void
4995bxe_dump_mbuf(struct bxe_softc *sc,
4996              struct mbuf      *m,
4997              uint8_t          contents)
4998{
4999    char * type;
5000    int i = 0;
5001
5002    if (!(sc->debug & DBG_MBUF)) {
5003        return;
5004    }
5005
5006    if (m == NULL) {
5007        BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
5008        return;
5009    }
5010
5011    while (m) {
5012        BLOGD(sc, DBG_MBUF,
5013              "%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
5014              i, m, m->m_len, m->m_flags,
5015              "\20\1M_EXT\2M_PKTHDR\3M_EOR\4M_RDONLY", m->m_data);
5016
5017        if (m->m_flags & M_PKTHDR) {
5018             BLOGD(sc, DBG_MBUF,
5019                   "%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
5020                   i, m->m_pkthdr.len, m->m_flags,
5021                   "\20\12M_BCAST\13M_MCAST\14M_FRAG"
5022                   "\15M_FIRSTFRAG\16M_LASTFRAG\21M_VLANTAG"
5023                   "\22M_PROMISC\23M_NOFREE",
5024                   (int)m->m_pkthdr.csum_flags,
5025                   "\20\1CSUM_IP\2CSUM_TCP\3CSUM_UDP\4CSUM_IP_FRAGS"
5026                   "\5CSUM_FRAGMENT\6CSUM_TSO\11CSUM_IP_CHECKED"
5027                   "\12CSUM_IP_VALID\13CSUM_DATA_VALID"
5028                   "\14CSUM_PSEUDO_HDR");
5029        }
5030
5031        if (m->m_flags & M_EXT) {
5032            switch (m->m_ext.ext_type) {
5033            case EXT_CLUSTER:    type = "EXT_CLUSTER";    break;
5034            case EXT_SFBUF:      type = "EXT_SFBUF";      break;
5035            case EXT_JUMBOP:     type = "EXT_JUMBOP";     break;
5036            case EXT_JUMBO9:     type = "EXT_JUMBO9";     break;
5037            case EXT_JUMBO16:    type = "EXT_JUMBO16";    break;
5038            case EXT_PACKET:     type = "EXT_PACKET";     break;
5039            case EXT_MBUF:       type = "EXT_MBUF";       break;
5040            case EXT_NET_DRV:    type = "EXT_NET_DRV";    break;
5041            case EXT_MOD_TYPE:   type = "EXT_MOD_TYPE";   break;
5042            case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
5043            case EXT_EXTREF:     type = "EXT_EXTREF";     break;
5044            default:             type = "UNKNOWN";        break;
5045            }
5046
5047            BLOGD(sc, DBG_MBUF,
5048                  "%02d: - m_ext: %p ext_size=%d type=%s\n",
5049                  i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
5050        }
5051
5052        if (contents) {
5053            bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
5054        }
5055
5056        m = m->m_next;
5057        i++;
5058    }
5059}
5060
5061/*
5062 * Checks to ensure the 13 bd sliding window is >= MSS for TSO.
5063 * Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
5064 * The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
5065 * The headers comes in a seperate bd in FreeBSD so 13-3=10.
5066 * Returns: 0 if OK to send, 1 if packet needs further defragmentation
5067 */
5068static int
5069bxe_chktso_window(struct bxe_softc  *sc,
5070                  int               nsegs,
5071                  bus_dma_segment_t *segs,
5072                  struct mbuf       *m)
5073{
5074    uint32_t num_wnds, wnd_size, wnd_sum;
5075    int32_t frag_idx, wnd_idx;
5076    unsigned short lso_mss;
5077    int defrag;
5078
5079    defrag = 0;
5080    wnd_sum = 0;
5081    wnd_size = 10;
5082    num_wnds = nsegs - wnd_size;
5083    lso_mss = htole16(m->m_pkthdr.tso_segsz);
5084
5085    /*
5086     * Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
5087     * first window sum of data while skipping the first assuming it is the
5088     * header in FreeBSD.
5089     */
5090    for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
5091        wnd_sum += htole16(segs[frag_idx].ds_len);
5092    }
5093
5094    /* check the first 10 bd window size */
5095    if (wnd_sum < lso_mss) {
5096        return (1);
5097    }
5098
5099    /* run through the windows */
5100    for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
5101        /* subtract the first mbuf->m_len of the last wndw(-header) */
5102        wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
5103        /* add the next mbuf len to the len of our new window */
5104        wnd_sum += htole16(segs[frag_idx].ds_len);
5105        if (wnd_sum < lso_mss) {
5106            return (1);
5107        }
5108    }
5109
5110    return (0);
5111}
5112
5113static uint8_t
5114bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
5115                    struct mbuf         *m,
5116                    uint32_t            *parsing_data)
5117{
5118    struct ether_vlan_header *eh = NULL;
5119    struct ip *ip4 = NULL;
5120    struct ip6_hdr *ip6 = NULL;
5121    caddr_t ip = NULL;
5122    struct tcphdr *th = NULL;
5123    int e_hlen, ip_hlen, l4_off;
5124    uint16_t proto;
5125
5126    if (m->m_pkthdr.csum_flags == CSUM_IP) {
5127        /* no L4 checksum offload needed */
5128        return (0);
5129    }
5130
5131    /* get the Ethernet header */
5132    eh = mtod(m, struct ether_vlan_header *);
5133
5134    /* handle VLAN encapsulation if present */
5135    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5136        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5137        proto  = ntohs(eh->evl_proto);
5138    } else {
5139        e_hlen = ETHER_HDR_LEN;
5140        proto  = ntohs(eh->evl_encap_proto);
5141    }
5142
5143    switch (proto) {
5144    case ETHERTYPE_IP:
5145        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5146        ip4 = (m->m_len < sizeof(struct ip)) ?
5147                  (struct ip *)m->m_next->m_data :
5148                  (struct ip *)(m->m_data + e_hlen);
5149        /* ip_hl is number of 32-bit words */
5150        ip_hlen = (ip4->ip_hl << 2);
5151        ip = (caddr_t)ip4;
5152        break;
5153    case ETHERTYPE_IPV6:
5154        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5155        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5156                  (struct ip6_hdr *)m->m_next->m_data :
5157                  (struct ip6_hdr *)(m->m_data + e_hlen);
5158        /* XXX cannot support offload with IPv6 extensions */
5159        ip_hlen = sizeof(struct ip6_hdr);
5160        ip = (caddr_t)ip6;
5161        break;
5162    default:
5163        /* We can't offload in this case... */
5164        /* XXX error stat ??? */
5165        return (0);
5166    }
5167
5168    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5169    l4_off = (e_hlen + ip_hlen);
5170
5171    *parsing_data |=
5172        (((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
5173         ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
5174
5175    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5176                                  CSUM_TSO |
5177                                  CSUM_TCP_IPV6)) {
5178        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5179        th = (struct tcphdr *)(ip + ip_hlen);
5180        /* th_off is number of 32-bit words */
5181        *parsing_data |= ((th->th_off <<
5182                           ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
5183                          ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
5184        return (l4_off + (th->th_off << 2)); /* entire header length */
5185    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5186                                         CSUM_UDP_IPV6)) {
5187        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5188        return (l4_off + sizeof(struct udphdr)); /* entire header length */
5189    } else {
5190        /* XXX error stat ??? */
5191        return (0);
5192    }
5193}
5194
5195static uint8_t
5196bxe_set_pbd_csum(struct bxe_fastpath        *fp,
5197                 struct mbuf                *m,
5198                 struct eth_tx_parse_bd_e1x *pbd)
5199{
5200    struct ether_vlan_header *eh = NULL;
5201    struct ip *ip4 = NULL;
5202    struct ip6_hdr *ip6 = NULL;
5203    caddr_t ip = NULL;
5204    struct tcphdr *th = NULL;
5205    struct udphdr *uh = NULL;
5206    int e_hlen, ip_hlen;
5207    uint16_t proto;
5208    uint8_t hlen;
5209    uint16_t tmp_csum;
5210    uint32_t *tmp_uh;
5211
5212    /* get the Ethernet header */
5213    eh = mtod(m, struct ether_vlan_header *);
5214
5215    /* handle VLAN encapsulation if present */
5216    if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
5217        e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
5218        proto  = ntohs(eh->evl_proto);
5219    } else {
5220        e_hlen = ETHER_HDR_LEN;
5221        proto  = ntohs(eh->evl_encap_proto);
5222    }
5223
5224    switch (proto) {
5225    case ETHERTYPE_IP:
5226        /* get the IP header, if mbuf len < 20 then header in next mbuf */
5227        ip4 = (m->m_len < sizeof(struct ip)) ?
5228                  (struct ip *)m->m_next->m_data :
5229                  (struct ip *)(m->m_data + e_hlen);
5230        /* ip_hl is number of 32-bit words */
5231        ip_hlen = (ip4->ip_hl << 1);
5232        ip = (caddr_t)ip4;
5233        break;
5234    case ETHERTYPE_IPV6:
5235        /* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
5236        ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
5237                  (struct ip6_hdr *)m->m_next->m_data :
5238                  (struct ip6_hdr *)(m->m_data + e_hlen);
5239        /* XXX cannot support offload with IPv6 extensions */
5240        ip_hlen = (sizeof(struct ip6_hdr) >> 1);
5241        ip = (caddr_t)ip6;
5242        break;
5243    default:
5244        /* We can't offload in this case... */
5245        /* XXX error stat ??? */
5246        return (0);
5247    }
5248
5249    hlen = (e_hlen >> 1);
5250
5251    /* note that rest of global_data is indirectly zeroed here */
5252    if (m->m_flags & M_VLANTAG) {
5253        pbd->global_data =
5254            htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
5255    } else {
5256        pbd->global_data = htole16(hlen);
5257    }
5258
5259    pbd->ip_hlen_w = ip_hlen;
5260
5261    hlen += pbd->ip_hlen_w;
5262
5263    /* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
5264
5265    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5266                                  CSUM_TSO |
5267                                  CSUM_TCP_IPV6)) {
5268        th = (struct tcphdr *)(ip + (ip_hlen << 1));
5269        /* th_off is number of 32-bit words */
5270        hlen += (uint16_t)(th->th_off << 1);
5271    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5272                                         CSUM_UDP_IPV6)) {
5273        uh = (struct udphdr *)(ip + (ip_hlen << 1));
5274        hlen += (sizeof(struct udphdr) / 2);
5275    } else {
5276        /* valid case as only CSUM_IP was set */
5277        return (0);
5278    }
5279
5280    pbd->total_hlen_w = htole16(hlen);
5281
5282    if (m->m_pkthdr.csum_flags & (CSUM_TCP |
5283                                  CSUM_TSO |
5284                                  CSUM_TCP_IPV6)) {
5285        fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
5286        pbd->tcp_pseudo_csum = ntohs(th->th_sum);
5287    } else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
5288                                         CSUM_UDP_IPV6)) {
5289        fp->eth_q_stats.tx_ofld_frames_csum_udp++;
5290
5291        /*
5292         * Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
5293         * checksums and does not know anything about the UDP header and where
5294         * the checksum field is located. It only knows about TCP. Therefore
5295         * we "lie" to the hardware for outgoing UDP packets w/ checksum
5296         * offload. Since the checksum field offset for TCP is 16 bytes and
5297         * for UDP it is 6 bytes we pass a pointer to the hardware that is 10
5298         * bytes less than the start of the UDP header. This allows the
5299         * hardware to write the checksum in the correct spot. But the
5300         * hardware will compute a checksum which includes the last 10 bytes
5301         * of the IP header. To correct this we tweak the stack computed
5302         * pseudo checksum by folding in the calculation of the inverse
5303         * checksum for those final 10 bytes of the IP header. This allows
5304         * the correct checksum to be computed by the hardware.
5305         */
5306
5307        /* set pointer 10 bytes before UDP header */
5308        tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5309
5310        /* calculate a pseudo header checksum over the first 10 bytes */
5311        tmp_csum = in_pseudo(*tmp_uh,
5312                             *(tmp_uh + 1),
5313                             *(uint16_t *)(tmp_uh + 2));
5314
5315        pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5316    }
5317
5318    return (hlen * 2); /* entire header length, number of bytes */
5319}
5320
5321static void
5322bxe_set_pbd_lso_e2(struct mbuf *m,
5323                   uint32_t    *parsing_data)
5324{
5325    *parsing_data |= ((m->m_pkthdr.tso_segsz <<
5326                       ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5327                      ETH_TX_PARSE_BD_E2_LSO_MSS);
5328
5329    /* XXX test for IPv6 with extension header... */
5330#if 0
5331    struct ip6_hdr *ip6;
5332    if (ip6 && ip6->ip6_nxt == 'some ipv6 extension header')
5333        *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
5334#endif
5335}
5336
5337static void
5338bxe_set_pbd_lso(struct mbuf                *m,
5339                struct eth_tx_parse_bd_e1x *pbd)
5340{
5341    struct ether_vlan_header *eh = NULL;
5342    struct ip *ip = NULL;
5343    struct tcphdr *th = NULL;
5344    int e_hlen;
5345
5346    /* get the Ethernet header */
5347    eh = mtod(m, struct ether_vlan_header *);
5348
5349    /* handle VLAN encapsulation if present */
5350    e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5351                 (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5352
5353    /* get the IP and TCP header, with LSO entire header in first mbuf */
5354    /* XXX assuming IPv4 */
5355    ip = (struct ip *)(m->m_data + e_hlen);
5356    th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5357
5358    pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5359    pbd->tcp_send_seq = ntohl(th->th_seq);
5360    pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5361
5362#if 1
5363        /* XXX IPv4 */
5364        pbd->ip_id = ntohs(ip->ip_id);
5365        pbd->tcp_pseudo_csum =
5366            ntohs(in_pseudo(ip->ip_src.s_addr,
5367                            ip->ip_dst.s_addr,
5368                            htons(IPPROTO_TCP)));
5369#else
5370        /* XXX IPv6 */
5371        pbd->tcp_pseudo_csum =
5372            ntohs(in_pseudo(&ip6->ip6_src,
5373                            &ip6->ip6_dst,
5374                            htons(IPPROTO_TCP)));
5375#endif
5376
5377    pbd->global_data |=
5378        htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5379}
5380
5381/*
5382 * Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5383 * visible to the controller.
5384 *
5385 * If an mbuf is submitted to this routine and cannot be given to the
5386 * controller (e.g. it has too many fragments) then the function may free
5387 * the mbuf and return to the caller.
5388 *
5389 * Returns:
5390 *   0 = Success, !0 = Failure
5391 *   Note the side effect that an mbuf may be freed if it causes a problem.
5392 */
5393static int
5394bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5395{
5396    bus_dma_segment_t segs[32];
5397    struct mbuf *m0;
5398    struct bxe_sw_tx_bd *tx_buf;
5399    struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5400    struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5401    /* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5402    struct eth_tx_bd *tx_data_bd;
5403    struct eth_tx_bd *tx_total_pkt_size_bd;
5404    struct eth_tx_start_bd *tx_start_bd;
5405    uint16_t bd_prod, pkt_prod, total_pkt_size;
5406    uint8_t mac_type;
5407    int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5408    struct bxe_softc *sc;
5409    uint16_t tx_bd_avail;
5410    struct ether_vlan_header *eh;
5411    uint32_t pbd_e2_parsing_data = 0;
5412    uint8_t hlen = 0;
5413    int tmp_bd;
5414    int i;
5415
5416    sc = fp->sc;
5417
5418    M_ASSERTPKTHDR(*m_head);
5419
5420    m0 = *m_head;
5421    rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5422    tx_start_bd = NULL;
5423    tx_data_bd = NULL;
5424    tx_total_pkt_size_bd = NULL;
5425
5426    /* get the H/W pointer for packets and BDs */
5427    pkt_prod = fp->tx_pkt_prod;
5428    bd_prod = fp->tx_bd_prod;
5429
5430    mac_type = UNICAST_ADDRESS;
5431
5432    /* map the mbuf into the next open DMAable memory */
5433    tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5434    error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5435                                    tx_buf->m_map, m0,
5436                                    segs, &nsegs, BUS_DMA_NOWAIT);
5437
5438    /* mapping errors */
5439    if(__predict_false(error != 0)) {
5440        fp->eth_q_stats.tx_dma_mapping_failure++;
5441        if (error == ENOMEM) {
5442            /* resource issue, try again later */
5443            rc = ENOMEM;
5444        } else if (error == EFBIG) {
5445            /* possibly recoverable with defragmentation */
5446            fp->eth_q_stats.mbuf_defrag_attempts++;
5447            m0 = m_defrag(*m_head, M_DONTWAIT);
5448            if (m0 == NULL) {
5449                fp->eth_q_stats.mbuf_defrag_failures++;
5450                rc = ENOBUFS;
5451            } else {
5452                /* defrag successful, try mapping again */
5453                *m_head = m0;
5454                error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5455                                                tx_buf->m_map, m0,
5456                                                segs, &nsegs, BUS_DMA_NOWAIT);
5457                if (error) {
5458                    fp->eth_q_stats.tx_dma_mapping_failure++;
5459                    rc = error;
5460                }
5461            }
5462        } else {
5463            /* unknown, unrecoverable mapping error */
5464            BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5465            bxe_dump_mbuf(sc, m0, FALSE);
5466            rc = error;
5467        }
5468
5469        goto bxe_tx_encap_continue;
5470    }
5471
5472    tx_bd_avail = bxe_tx_avail(sc, fp);
5473
5474    /* make sure there is enough room in the send queue */
5475    if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5476        /* Recoverable, try again later. */
5477        fp->eth_q_stats.tx_hw_queue_full++;
5478        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5479        rc = ENOMEM;
5480        goto bxe_tx_encap_continue;
5481    }
5482
5483    /* capture the current H/W TX chain high watermark */
5484    if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5485                        (TX_BD_USABLE - tx_bd_avail))) {
5486        fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5487    }
5488
5489    /* make sure it fits in the packet window */
5490    if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5491        /*
5492         * The mbuf may be to big for the controller to handle. If the frame
5493         * is a TSO frame we'll need to do an additional check.
5494         */
5495        if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5496            if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5497                goto bxe_tx_encap_continue; /* OK to send */
5498            } else {
5499                fp->eth_q_stats.tx_window_violation_tso++;
5500            }
5501        } else {
5502            fp->eth_q_stats.tx_window_violation_std++;
5503        }
5504
5505        /* lets try to defragment this mbuf and remap it */
5506        fp->eth_q_stats.mbuf_defrag_attempts++;
5507        bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5508
5509        m0 = m_defrag(*m_head, M_DONTWAIT);
5510        if (m0 == NULL) {
5511            fp->eth_q_stats.mbuf_defrag_failures++;
5512            /* Ugh, just drop the frame... :( */
5513            rc = ENOBUFS;
5514        } else {
5515            /* defrag successful, try mapping again */
5516            *m_head = m0;
5517            error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5518                                            tx_buf->m_map, m0,
5519                                            segs, &nsegs, BUS_DMA_NOWAIT);
5520            if (error) {
5521                fp->eth_q_stats.tx_dma_mapping_failure++;
5522                /* No sense in trying to defrag/copy chain, drop it. :( */
5523                rc = error;
5524            }
5525            else {
5526                /* if the chain is still too long then drop it */
5527                if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5528                    bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5529                    rc = ENODEV;
5530                }
5531            }
5532        }
5533    }
5534
5535bxe_tx_encap_continue:
5536
5537    /* Check for errors */
5538    if (rc) {
5539        if (rc == ENOMEM) {
5540            /* recoverable try again later  */
5541        } else {
5542            fp->eth_q_stats.tx_soft_errors++;
5543            fp->eth_q_stats.mbuf_alloc_tx--;
5544            m_freem(*m_head);
5545            *m_head = NULL;
5546        }
5547
5548        return (rc);
5549    }
5550
5551    /* set flag according to packet type (UNICAST_ADDRESS is default) */
5552    if (m0->m_flags & M_BCAST) {
5553        mac_type = BROADCAST_ADDRESS;
5554    } else if (m0->m_flags & M_MCAST) {
5555        mac_type = MULTICAST_ADDRESS;
5556    }
5557
5558    /* store the mbuf into the mbuf ring */
5559    tx_buf->m        = m0;
5560    tx_buf->first_bd = fp->tx_bd_prod;
5561    tx_buf->flags    = 0;
5562
5563    /* prepare the first transmit (start) BD for the mbuf */
5564    tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5565
5566    BLOGD(sc, DBG_TX,
5567          "sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5568          pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5569
5570    tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5571    tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5572    tx_start_bd->nbytes  = htole16(segs[0].ds_len);
5573    total_pkt_size += tx_start_bd->nbytes;
5574    tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5575
5576    tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5577
5578    /* all frames have at least Start BD + Parsing BD */
5579    nbds = nsegs + 1;
5580    tx_start_bd->nbd = htole16(nbds);
5581
5582    if (m0->m_flags & M_VLANTAG) {
5583        tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5584        tx_start_bd->bd_flags.as_bitfield |=
5585            (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5586    } else {
5587        /* vf tx, start bd must hold the ethertype for fw to enforce it */
5588        if (IS_VF(sc)) {
5589            /* map ethernet header to find type and header length */
5590            eh = mtod(m0, struct ether_vlan_header *);
5591            tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5592        } else {
5593            /* used by FW for packet accounting */
5594            tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5595#if 0
5596            /*
5597             * If NPAR-SD is active then FW should do the tagging regardless
5598             * of value of priority. Otherwise, if priority indicates this is
5599             * a control packet we need to indicate to FW to avoid tagging.
5600             */
5601            if (!IS_MF_AFEX(sc) && (mbuf priority == PRIO_CONTROL)) {
5602                SET_FLAG(tx_start_bd->general_data,
5603                         ETH_TX_START_BD_FORCE_VLAN_MODE, 1);
5604            }
5605#endif
5606        }
5607    }
5608
5609    /*
5610     * add a parsing BD from the chain. The parsing BD is always added
5611     * though it is only used for TSO and chksum
5612     */
5613    bd_prod = TX_BD_NEXT(bd_prod);
5614
5615    if (m0->m_pkthdr.csum_flags) {
5616        if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5617            fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5618            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5619        }
5620
5621        if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5622            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5623                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5624        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5625            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6   |
5626                                                  ETH_TX_BD_FLAGS_IS_UDP |
5627                                                  ETH_TX_BD_FLAGS_L4_CSUM);
5628        } else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5629                   (m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5630            tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5631        } else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5632            tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5633                                                  ETH_TX_BD_FLAGS_IS_UDP);
5634        }
5635    }
5636
5637    if (!CHIP_IS_E1x(sc)) {
5638        pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5639        memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5640
5641        if (m0->m_pkthdr.csum_flags) {
5642            hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5643        }
5644
5645#if 0
5646        /*
5647         * Add the MACs to the parsing BD if the module param was
5648         * explicitly set, if this is a vf, or in switch independent
5649         * mode.
5650         */
5651        if (sc->flags & BXE_TX_SWITCHING || IS_VF(sc) || IS_MF_SI(sc)) {
5652            eh = mtod(m0, struct ether_vlan_header *);
5653            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
5654                                &pbd_e2->data.mac_addr.src_mid,
5655                                &pbd_e2->data.mac_addr.src_lo,
5656                                eh->evl_shost);
5657            bxe_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
5658                                &pbd_e2->data.mac_addr.dst_mid,
5659                                &pbd_e2->data.mac_addr.dst_lo,
5660                                eh->evl_dhost);
5661        }
5662#endif
5663
5664        SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5665                 mac_type);
5666    } else {
5667        uint16_t global_data = 0;
5668
5669        pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5670        memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5671
5672        if (m0->m_pkthdr.csum_flags) {
5673            hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5674        }
5675
5676        SET_FLAG(global_data,
5677                 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5678        pbd_e1x->global_data |= htole16(global_data);
5679    }
5680
5681    /* setup the parsing BD with TSO specific info */
5682    if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5683        fp->eth_q_stats.tx_ofld_frames_lso++;
5684        tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5685
5686        if (__predict_false(tx_start_bd->nbytes > hlen)) {
5687            fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5688
5689            /* split the first BD into header/data making the fw job easy */
5690            nbds++;
5691            tx_start_bd->nbd = htole16(nbds);
5692            tx_start_bd->nbytes = htole16(hlen);
5693
5694            bd_prod = TX_BD_NEXT(bd_prod);
5695
5696            /* new transmit BD after the tx_parse_bd */
5697            tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5698            tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5699            tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5700            tx_data_bd->nbytes  = htole16(segs[0].ds_len - hlen);
5701            if (tx_total_pkt_size_bd == NULL) {
5702                tx_total_pkt_size_bd = tx_data_bd;
5703            }
5704
5705            BLOGD(sc, DBG_TX,
5706                  "TSO split header size is %d (%x:%x) nbds %d\n",
5707                  le16toh(tx_start_bd->nbytes),
5708                  le32toh(tx_start_bd->addr_hi),
5709                  le32toh(tx_start_bd->addr_lo),
5710                  nbds);
5711        }
5712
5713        if (!CHIP_IS_E1x(sc)) {
5714            bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5715        } else {
5716            bxe_set_pbd_lso(m0, pbd_e1x);
5717        }
5718    }
5719
5720    if (pbd_e2_parsing_data) {
5721        pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5722    }
5723
5724    /* prepare remaining BDs, start tx bd contains first seg/frag */
5725    for (i = 1; i < nsegs ; i++) {
5726        bd_prod = TX_BD_NEXT(bd_prod);
5727        tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5728        tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5729        tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5730        tx_data_bd->nbytes  = htole16(segs[i].ds_len);
5731        if (tx_total_pkt_size_bd == NULL) {
5732            tx_total_pkt_size_bd = tx_data_bd;
5733        }
5734        total_pkt_size += tx_data_bd->nbytes;
5735    }
5736
5737    BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5738
5739    if (tx_total_pkt_size_bd != NULL) {
5740        tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5741    }
5742
5743    if (__predict_false(sc->debug & DBG_TX)) {
5744        tmp_bd = tx_buf->first_bd;
5745        for (i = 0; i < nbds; i++)
5746        {
5747            if (i == 0) {
5748                BLOGD(sc, DBG_TX,
5749                      "TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5750                      "bd_flags=0x%x hdr_nbds=%d\n",
5751                      tx_start_bd,
5752                      tmp_bd,
5753                      le16toh(tx_start_bd->nbd),
5754                      le16toh(tx_start_bd->vlan_or_ethertype),
5755                      tx_start_bd->bd_flags.as_bitfield,
5756                      (tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5757            } else if (i == 1) {
5758                if (pbd_e1x) {
5759                    BLOGD(sc, DBG_TX,
5760                          "-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5761                          "ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5762                          "tcp_seq=%u total_hlen_w=%u\n",
5763                          pbd_e1x,
5764                          tmp_bd,
5765                          pbd_e1x->global_data,
5766                          pbd_e1x->ip_hlen_w,
5767                          pbd_e1x->ip_id,
5768                          pbd_e1x->lso_mss,
5769                          pbd_e1x->tcp_flags,
5770                          pbd_e1x->tcp_pseudo_csum,
5771                          pbd_e1x->tcp_send_seq,
5772                          le16toh(pbd_e1x->total_hlen_w));
5773                } else { /* if (pbd_e2) */
5774                    BLOGD(sc, DBG_TX,
5775                          "-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5776                          "src=%02x:%02x:%02x parsing_data=0x%x\n",
5777                          pbd_e2,
5778                          tmp_bd,
5779                          pbd_e2->data.mac_addr.dst_hi,
5780                          pbd_e2->data.mac_addr.dst_mid,
5781                          pbd_e2->data.mac_addr.dst_lo,
5782                          pbd_e2->data.mac_addr.src_hi,
5783                          pbd_e2->data.mac_addr.src_mid,
5784                          pbd_e2->data.mac_addr.src_lo,
5785                          pbd_e2->parsing_data);
5786                }
5787            }
5788
5789            if (i != 1) { /* skip parse db as it doesn't hold data */
5790                tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5791                BLOGD(sc, DBG_TX,
5792                      "-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5793                      tx_data_bd,
5794                      tmp_bd,
5795                      le16toh(tx_data_bd->nbytes),
5796                      le32toh(tx_data_bd->addr_hi),
5797                      le32toh(tx_data_bd->addr_lo));
5798            }
5799
5800            tmp_bd = TX_BD_NEXT(tmp_bd);
5801        }
5802    }
5803
5804    BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5805
5806    /* update TX BD producer index value for next TX */
5807    bd_prod = TX_BD_NEXT(bd_prod);
5808
5809    /*
5810     * If the chain of tx_bd's describing this frame is adjacent to or spans
5811     * an eth_tx_next_bd element then we need to increment the nbds value.
5812     */
5813    if (TX_BD_IDX(bd_prod) < nbds) {
5814        nbds++;
5815    }
5816
5817    /* don't allow reordering of writes for nbd and packets */
5818    mb();
5819
5820    fp->tx_db.data.prod += nbds;
5821
5822    /* producer points to the next free tx_bd at this point */
5823    fp->tx_pkt_prod++;
5824    fp->tx_bd_prod = bd_prod;
5825
5826    DOORBELL(sc, fp->index, fp->tx_db.raw);
5827
5828    fp->eth_q_stats.tx_pkts++;
5829
5830    /* Prevent speculative reads from getting ahead of the status block. */
5831    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5832                      0, 0, BUS_SPACE_BARRIER_READ);
5833
5834    /* Prevent speculative reads from getting ahead of the doorbell. */
5835    bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5836                      0, 0, BUS_SPACE_BARRIER_READ);
5837
5838    return (0);
5839}
5840
5841static void
5842bxe_tx_start_locked(struct bxe_softc    *sc,
5843                    struct ifnet        *ifp,
5844                    struct bxe_fastpath *fp)
5845{
5846    struct mbuf *m = NULL;
5847    int tx_count = 0;
5848    uint16_t tx_bd_avail;
5849
5850    BXE_FP_TX_LOCK_ASSERT(fp);
5851
5852    /* keep adding entries while there are frames to send */
5853    while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
5854
5855        /*
5856         * check for any frames to send
5857         * dequeue can still be NULL even if queue is not empty
5858         */
5859        IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
5860        if (__predict_false(m == NULL)) {
5861            break;
5862        }
5863
5864        /* the mbuf now belongs to us */
5865        fp->eth_q_stats.mbuf_alloc_tx++;
5866
5867        /*
5868         * Put the frame into the transmit ring. If we don't have room,
5869         * place the mbuf back at the head of the TX queue, set the
5870         * OACTIVE flag, and wait for the NIC to drain the chain.
5871         */
5872        if (__predict_false(bxe_tx_encap(fp, &m))) {
5873            fp->eth_q_stats.tx_encap_failures++;
5874            if (m != NULL) {
5875                /* mark the TX queue as full and return the frame */
5876                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
5877                IFQ_DRV_PREPEND(&ifp->if_snd, m);
5878                fp->eth_q_stats.mbuf_alloc_tx--;
5879                fp->eth_q_stats.tx_queue_xoff++;
5880            }
5881
5882            /* stop looking for more work */
5883            break;
5884        }
5885
5886        /* the frame was enqueued successfully */
5887        tx_count++;
5888
5889        /* send a copy of the frame to any BPF listeners. */
5890        BPF_MTAP(ifp, m);
5891
5892        tx_bd_avail = bxe_tx_avail(sc, fp);
5893
5894        /* handle any completions if we're running low */
5895        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5896            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5897            bxe_txeof(sc, fp);
5898            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5899                break;
5900            }
5901        }
5902    }
5903
5904    /* all TX packets were dequeued and/or the tx ring is full */
5905    if (tx_count > 0) {
5906        /* reset the TX watchdog timeout timer */
5907        fp->watchdog_timer = BXE_TX_TIMEOUT;
5908    }
5909}
5910
5911/* Legacy (non-RSS) dispatch routine */
5912static void
5913bxe_tx_start(struct ifnet *ifp)
5914{
5915    struct bxe_softc *sc;
5916    struct bxe_fastpath *fp;
5917
5918    sc = ifp->if_softc;
5919
5920    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5921        BLOGW(sc, "Interface not running, ignoring transmit request\n");
5922        return;
5923    }
5924
5925    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
5926        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
5927        return;
5928    }
5929
5930    if (!sc->link_vars.link_up) {
5931        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5932        return;
5933    }
5934
5935    fp = &sc->fp[0];
5936
5937    BXE_FP_TX_LOCK(fp);
5938    bxe_tx_start_locked(sc, ifp, fp);
5939    BXE_FP_TX_UNLOCK(fp);
5940}
5941
5942#if __FreeBSD_version >= 800000
5943
5944static int
5945bxe_tx_mq_start_locked(struct bxe_softc    *sc,
5946                       struct ifnet        *ifp,
5947                       struct bxe_fastpath *fp,
5948                       struct mbuf         *m)
5949{
5950    struct buf_ring *tx_br = fp->tx_br;
5951    struct mbuf *next;
5952    int depth, rc, tx_count;
5953    uint16_t tx_bd_avail;
5954
5955    rc = tx_count = 0;
5956
5957    if (!tx_br) {
5958        BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5959        return (EINVAL);
5960    }
5961
5962    /* fetch the depth of the driver queue */
5963    depth = drbr_inuse(ifp, tx_br);
5964    if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5965        fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5966    }
5967
5968    BXE_FP_TX_LOCK_ASSERT(fp);
5969
5970    if (m == NULL) {
5971        /* no new work, check for pending frames */
5972        next = drbr_dequeue(ifp, tx_br);
5973    } else if (drbr_needs_enqueue(ifp, tx_br)) {
5974        /* have both new and pending work, maintain packet order */
5975        rc = drbr_enqueue(ifp, tx_br, m);
5976        if (rc != 0) {
5977            fp->eth_q_stats.tx_soft_errors++;
5978            goto bxe_tx_mq_start_locked_exit;
5979        }
5980        next = drbr_dequeue(ifp, tx_br);
5981    } else {
5982        /* new work only and nothing pending */
5983        next = m;
5984    }
5985
5986    /* keep adding entries while there are frames to send */
5987    while (next != NULL) {
5988
5989        /* the mbuf now belongs to us */
5990        fp->eth_q_stats.mbuf_alloc_tx++;
5991
5992        /*
5993         * Put the frame into the transmit ring. If we don't have room,
5994         * place the mbuf back at the head of the TX queue, set the
5995         * OACTIVE flag, and wait for the NIC to drain the chain.
5996         */
5997        rc = bxe_tx_encap(fp, &next);
5998        if (__predict_false(rc != 0)) {
5999            fp->eth_q_stats.tx_encap_failures++;
6000            if (next != NULL) {
6001                /* mark the TX queue as full and save the frame */
6002                ifp->if_drv_flags |= IFF_DRV_OACTIVE;
6003                /* XXX this may reorder the frame */
6004                rc = drbr_enqueue(ifp, tx_br, next);
6005                fp->eth_q_stats.mbuf_alloc_tx--;
6006                fp->eth_q_stats.tx_frames_deferred++;
6007            }
6008
6009            /* stop looking for more work */
6010            break;
6011        }
6012
6013        /* the transmit frame was enqueued successfully */
6014        tx_count++;
6015
6016        /* send a copy of the frame to any BPF listeners */
6017        BPF_MTAP(ifp, next);
6018
6019        tx_bd_avail = bxe_tx_avail(sc, fp);
6020
6021        /* handle any completions if we're running low */
6022        if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
6023            /* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
6024            bxe_txeof(sc, fp);
6025            if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6026                break;
6027            }
6028        }
6029
6030        next = drbr_dequeue(ifp, tx_br);
6031    }
6032
6033    /* all TX packets were dequeued and/or the tx ring is full */
6034    if (tx_count > 0) {
6035        /* reset the TX watchdog timeout timer */
6036        fp->watchdog_timer = BXE_TX_TIMEOUT;
6037    }
6038
6039bxe_tx_mq_start_locked_exit:
6040
6041    return (rc);
6042}
6043
6044/* Multiqueue (TSS) dispatch routine. */
6045static int
6046bxe_tx_mq_start(struct ifnet *ifp,
6047                struct mbuf  *m)
6048{
6049    struct bxe_softc *sc = ifp->if_softc;
6050    struct bxe_fastpath *fp;
6051    int fp_index, rc;
6052
6053    fp_index = 0; /* default is the first queue */
6054
6055    /* change the queue if using flow ID */
6056    if ((m->m_flags & M_FLOWID) != 0) {
6057        fp_index = (m->m_pkthdr.flowid % sc->num_queues);
6058    }
6059
6060    fp = &sc->fp[fp_index];
6061
6062    if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
6063        BLOGW(sc, "Interface not running, ignoring transmit request\n");
6064        return (ENETDOWN);
6065    }
6066
6067    if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
6068        BLOGW(sc, "Interface TX queue is full, ignoring transmit request\n");
6069        return (EBUSY);
6070    }
6071
6072    if (!sc->link_vars.link_up) {
6073        BLOGW(sc, "Interface link is down, ignoring transmit request\n");
6074        return (ENETDOWN);
6075    }
6076
6077    /* XXX change to TRYLOCK here and if failed then schedule taskqueue */
6078
6079    BXE_FP_TX_LOCK(fp);
6080    rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
6081    BXE_FP_TX_UNLOCK(fp);
6082
6083    return (rc);
6084}
6085
6086static void
6087bxe_mq_flush(struct ifnet *ifp)
6088{
6089    struct bxe_softc *sc = ifp->if_softc;
6090    struct bxe_fastpath *fp;
6091    struct mbuf *m;
6092    int i;
6093
6094    for (i = 0; i < sc->num_queues; i++) {
6095        fp = &sc->fp[i];
6096
6097        if (fp->state != BXE_FP_STATE_OPEN) {
6098            BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
6099                  fp->index, fp->state);
6100            continue;
6101        }
6102
6103        if (fp->tx_br != NULL) {
6104            BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
6105            BXE_FP_TX_LOCK(fp);
6106            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6107                m_freem(m);
6108            }
6109            BXE_FP_TX_UNLOCK(fp);
6110        }
6111    }
6112
6113    if_qflush(ifp);
6114}
6115
6116#endif /* FreeBSD_version >= 800000 */
6117
6118static uint16_t
6119bxe_cid_ilt_lines(struct bxe_softc *sc)
6120{
6121    if (IS_SRIOV(sc)) {
6122        return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
6123    }
6124    return (L2_ILT_LINES(sc));
6125}
6126
6127static void
6128bxe_ilt_set_info(struct bxe_softc *sc)
6129{
6130    struct ilt_client_info *ilt_client;
6131    struct ecore_ilt *ilt = sc->ilt;
6132    uint16_t line = 0;
6133
6134    ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
6135    BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
6136
6137    /* CDU */
6138    ilt_client = &ilt->clients[ILT_CLIENT_CDU];
6139    ilt_client->client_num = ILT_CLIENT_CDU;
6140    ilt_client->page_size = CDU_ILT_PAGE_SZ;
6141    ilt_client->flags = ILT_CLIENT_SKIP_MEM;
6142    ilt_client->start = line;
6143    line += bxe_cid_ilt_lines(sc);
6144
6145    if (CNIC_SUPPORT(sc)) {
6146        line += CNIC_ILT_LINES;
6147    }
6148
6149    ilt_client->end = (line - 1);
6150
6151    BLOGD(sc, DBG_LOAD,
6152          "ilt client[CDU]: start %d, end %d, "
6153          "psz 0x%x, flags 0x%x, hw psz %d\n",
6154          ilt_client->start, ilt_client->end,
6155          ilt_client->page_size,
6156          ilt_client->flags,
6157          ilog2(ilt_client->page_size >> 12));
6158
6159    /* QM */
6160    if (QM_INIT(sc->qm_cid_count)) {
6161        ilt_client = &ilt->clients[ILT_CLIENT_QM];
6162        ilt_client->client_num = ILT_CLIENT_QM;
6163        ilt_client->page_size = QM_ILT_PAGE_SZ;
6164        ilt_client->flags = 0;
6165        ilt_client->start = line;
6166
6167        /* 4 bytes for each cid */
6168        line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
6169                             QM_ILT_PAGE_SZ);
6170
6171        ilt_client->end = (line - 1);
6172
6173        BLOGD(sc, DBG_LOAD,
6174              "ilt client[QM]: start %d, end %d, "
6175              "psz 0x%x, flags 0x%x, hw psz %d\n",
6176              ilt_client->start, ilt_client->end,
6177              ilt_client->page_size, ilt_client->flags,
6178              ilog2(ilt_client->page_size >> 12));
6179    }
6180
6181    if (CNIC_SUPPORT(sc)) {
6182        /* SRC */
6183        ilt_client = &ilt->clients[ILT_CLIENT_SRC];
6184        ilt_client->client_num = ILT_CLIENT_SRC;
6185        ilt_client->page_size = SRC_ILT_PAGE_SZ;
6186        ilt_client->flags = 0;
6187        ilt_client->start = line;
6188        line += SRC_ILT_LINES;
6189        ilt_client->end = (line - 1);
6190
6191        BLOGD(sc, DBG_LOAD,
6192              "ilt client[SRC]: start %d, end %d, "
6193              "psz 0x%x, flags 0x%x, hw psz %d\n",
6194              ilt_client->start, ilt_client->end,
6195              ilt_client->page_size, ilt_client->flags,
6196              ilog2(ilt_client->page_size >> 12));
6197
6198        /* TM */
6199        ilt_client = &ilt->clients[ILT_CLIENT_TM];
6200        ilt_client->client_num = ILT_CLIENT_TM;
6201        ilt_client->page_size = TM_ILT_PAGE_SZ;
6202        ilt_client->flags = 0;
6203        ilt_client->start = line;
6204        line += TM_ILT_LINES;
6205        ilt_client->end = (line - 1);
6206
6207        BLOGD(sc, DBG_LOAD,
6208              "ilt client[TM]: start %d, end %d, "
6209              "psz 0x%x, flags 0x%x, hw psz %d\n",
6210              ilt_client->start, ilt_client->end,
6211              ilt_client->page_size, ilt_client->flags,
6212              ilog2(ilt_client->page_size >> 12));
6213    }
6214
6215    KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
6216}
6217
6218static void
6219bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
6220{
6221    int i;
6222
6223    BLOGD(sc, DBG_LOAD, "mtu = %d\n", sc->mtu);
6224
6225    for (i = 0; i < sc->num_queues; i++) {
6226        /* get the Rx buffer size for RX frames */
6227        sc->fp[i].rx_buf_size =
6228            (IP_HEADER_ALIGNMENT_PADDING +
6229             ETH_OVERHEAD +
6230             sc->mtu);
6231
6232        BLOGD(sc, DBG_LOAD, "rx_buf_size for fp[%02d] = %d\n",
6233              i, sc->fp[i].rx_buf_size);
6234
6235        /* get the mbuf allocation size for RX frames */
6236        if (sc->fp[i].rx_buf_size <= MCLBYTES) {
6237            sc->fp[i].mbuf_alloc_size = MCLBYTES;
6238        } else if (sc->fp[i].rx_buf_size <= BCM_PAGE_SIZE) {
6239            sc->fp[i].mbuf_alloc_size = PAGE_SIZE;
6240        } else {
6241            sc->fp[i].mbuf_alloc_size = MJUM9BYTES;
6242        }
6243
6244        BLOGD(sc, DBG_LOAD, "mbuf_alloc_size for fp[%02d] = %d\n",
6245              i, sc->fp[i].mbuf_alloc_size);
6246    }
6247}
6248
6249static int
6250bxe_alloc_ilt_mem(struct bxe_softc *sc)
6251{
6252    int rc = 0;
6253
6254    if ((sc->ilt =
6255         (struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
6256                                    M_BXE_ILT,
6257                                    (M_NOWAIT | M_ZERO))) == NULL) {
6258        rc = 1;
6259    }
6260
6261    return (rc);
6262}
6263
6264static int
6265bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
6266{
6267    int rc = 0;
6268
6269    if ((sc->ilt->lines =
6270         (struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
6271                                    M_BXE_ILT,
6272                                    (M_NOWAIT | M_ZERO))) == NULL) {
6273        rc = 1;
6274    }
6275
6276    return (rc);
6277}
6278
6279static void
6280bxe_free_ilt_mem(struct bxe_softc *sc)
6281{
6282    if (sc->ilt != NULL) {
6283        free(sc->ilt, M_BXE_ILT);
6284        sc->ilt = NULL;
6285    }
6286}
6287
6288static void
6289bxe_free_ilt_lines_mem(struct bxe_softc *sc)
6290{
6291    if (sc->ilt->lines != NULL) {
6292        free(sc->ilt->lines, M_BXE_ILT);
6293        sc->ilt->lines = NULL;
6294    }
6295}
6296
6297static void
6298bxe_free_mem(struct bxe_softc *sc)
6299{
6300    int i;
6301
6302#if 0
6303    if (!CONFIGURE_NIC_MODE(sc)) {
6304        /* free searcher T2 table */
6305        bxe_dma_free(sc, &sc->t2);
6306    }
6307#endif
6308
6309    for (i = 0; i < L2_ILT_LINES(sc); i++) {
6310        bxe_dma_free(sc, &sc->context[i].vcxt_dma);
6311        sc->context[i].vcxt = NULL;
6312        sc->context[i].size = 0;
6313    }
6314
6315    ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
6316
6317    bxe_free_ilt_lines_mem(sc);
6318
6319#if 0
6320    bxe_iov_free_mem(sc);
6321#endif
6322}
6323
6324static int
6325bxe_alloc_mem(struct bxe_softc *sc)
6326{
6327    int context_size;
6328    int allocated;
6329    int i;
6330
6331#if 0
6332    if (!CONFIGURE_NIC_MODE(sc)) {
6333        /* allocate searcher T2 table */
6334        if (bxe_dma_alloc(sc, SRC_T2_SZ,
6335                          &sc->t2, "searcher t2 table") != 0) {
6336            return (-1);
6337        }
6338    }
6339#endif
6340
6341    /*
6342     * Allocate memory for CDU context:
6343     * This memory is allocated separately and not in the generic ILT
6344     * functions because CDU differs in few aspects:
6345     * 1. There can be multiple entities allocating memory for context -
6346     * regular L2, CNIC, and SRIOV drivers. Each separately controls
6347     * its own ILT lines.
6348     * 2. Since CDU page-size is not a single 4KB page (which is the case
6349     * for the other ILT clients), to be efficient we want to support
6350     * allocation of sub-page-size in the last entry.
6351     * 3. Context pointers are used by the driver to pass to FW / update
6352     * the context (for the other ILT clients the pointers are used just to
6353     * free the memory during unload).
6354     */
6355    context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6356    for (i = 0, allocated = 0; allocated < context_size; i++) {
6357        sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6358                                  (context_size - allocated));
6359
6360        if (bxe_dma_alloc(sc, sc->context[i].size,
6361                          &sc->context[i].vcxt_dma,
6362                          "cdu context") != 0) {
6363            bxe_free_mem(sc);
6364            return (-1);
6365        }
6366
6367        sc->context[i].vcxt =
6368            (union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6369
6370        allocated += sc->context[i].size;
6371    }
6372
6373    bxe_alloc_ilt_lines_mem(sc);
6374
6375    BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6376          sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6377    {
6378        for (i = 0; i < 4; i++) {
6379            BLOGD(sc, DBG_LOAD,
6380                  "c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6381                  i,
6382                  sc->ilt->clients[i].page_size,
6383                  sc->ilt->clients[i].start,
6384                  sc->ilt->clients[i].end,
6385                  sc->ilt->clients[i].client_num,
6386                  sc->ilt->clients[i].flags);
6387        }
6388    }
6389    if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6390        BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6391        bxe_free_mem(sc);
6392        return (-1);
6393    }
6394
6395#if 0
6396    if (bxe_iov_alloc_mem(sc)) {
6397        BLOGE(sc, "Failed to allocate memory for SRIOV\n");
6398        bxe_free_mem(sc);
6399        return (-1);
6400    }
6401#endif
6402
6403    return (0);
6404}
6405
6406static void
6407bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6408{
6409    struct bxe_softc *sc;
6410    int i;
6411
6412    sc = fp->sc;
6413
6414    if (fp->rx_mbuf_tag == NULL) {
6415        return;
6416    }
6417
6418    /* free all mbufs and unload all maps */
6419    for (i = 0; i < RX_BD_TOTAL; i++) {
6420        if (fp->rx_mbuf_chain[i].m_map != NULL) {
6421            bus_dmamap_sync(fp->rx_mbuf_tag,
6422                            fp->rx_mbuf_chain[i].m_map,
6423                            BUS_DMASYNC_POSTREAD);
6424            bus_dmamap_unload(fp->rx_mbuf_tag,
6425                              fp->rx_mbuf_chain[i].m_map);
6426        }
6427
6428        if (fp->rx_mbuf_chain[i].m != NULL) {
6429            m_freem(fp->rx_mbuf_chain[i].m);
6430            fp->rx_mbuf_chain[i].m = NULL;
6431            fp->eth_q_stats.mbuf_alloc_rx--;
6432        }
6433    }
6434}
6435
6436static void
6437bxe_free_tpa_pool(struct bxe_fastpath *fp)
6438{
6439    struct bxe_softc *sc;
6440    int i, max_agg_queues;
6441
6442    sc = fp->sc;
6443
6444    if (fp->rx_mbuf_tag == NULL) {
6445        return;
6446    }
6447
6448    max_agg_queues = MAX_AGG_QS(sc);
6449
6450    /* release all mbufs and unload all DMA maps in the TPA pool */
6451    for (i = 0; i < max_agg_queues; i++) {
6452        if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6453            bus_dmamap_sync(fp->rx_mbuf_tag,
6454                            fp->rx_tpa_info[i].bd.m_map,
6455                            BUS_DMASYNC_POSTREAD);
6456            bus_dmamap_unload(fp->rx_mbuf_tag,
6457                              fp->rx_tpa_info[i].bd.m_map);
6458        }
6459
6460        if (fp->rx_tpa_info[i].bd.m != NULL) {
6461            m_freem(fp->rx_tpa_info[i].bd.m);
6462            fp->rx_tpa_info[i].bd.m = NULL;
6463            fp->eth_q_stats.mbuf_alloc_tpa--;
6464        }
6465    }
6466}
6467
6468static void
6469bxe_free_sge_chain(struct bxe_fastpath *fp)
6470{
6471    struct bxe_softc *sc;
6472    int i;
6473
6474    sc = fp->sc;
6475
6476    if (fp->rx_sge_mbuf_tag == NULL) {
6477        return;
6478    }
6479
6480    /* rree all mbufs and unload all maps */
6481    for (i = 0; i < RX_SGE_TOTAL; i++) {
6482        if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6483            bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6484                            fp->rx_sge_mbuf_chain[i].m_map,
6485                            BUS_DMASYNC_POSTREAD);
6486            bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6487                              fp->rx_sge_mbuf_chain[i].m_map);
6488        }
6489
6490        if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6491            m_freem(fp->rx_sge_mbuf_chain[i].m);
6492            fp->rx_sge_mbuf_chain[i].m = NULL;
6493            fp->eth_q_stats.mbuf_alloc_sge--;
6494        }
6495    }
6496}
6497
6498static void
6499bxe_free_fp_buffers(struct bxe_softc *sc)
6500{
6501    struct bxe_fastpath *fp;
6502    int i;
6503
6504    for (i = 0; i < sc->num_queues; i++) {
6505        fp = &sc->fp[i];
6506
6507#if __FreeBSD_version >= 800000
6508        if (fp->tx_br != NULL) {
6509            struct mbuf *m;
6510            /* just in case bxe_mq_flush() wasn't called */
6511            while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
6512                m_freem(m);
6513            }
6514            buf_ring_free(fp->tx_br, M_DEVBUF);
6515            fp->tx_br = NULL;
6516        }
6517#endif
6518
6519        /* free all RX buffers */
6520        bxe_free_rx_bd_chain(fp);
6521        bxe_free_tpa_pool(fp);
6522        bxe_free_sge_chain(fp);
6523
6524        if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6525            BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6526                  fp->eth_q_stats.mbuf_alloc_rx);
6527        }
6528
6529        if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6530            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6531                  fp->eth_q_stats.mbuf_alloc_sge);
6532        }
6533
6534        if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6535            BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6536                  fp->eth_q_stats.mbuf_alloc_tpa);
6537        }
6538
6539        if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6540            BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6541                  fp->eth_q_stats.mbuf_alloc_tx);
6542        }
6543
6544        /* XXX verify all mbufs were reclaimed */
6545
6546        if (mtx_initialized(&fp->tx_mtx)) {
6547            mtx_destroy(&fp->tx_mtx);
6548        }
6549
6550        if (mtx_initialized(&fp->rx_mtx)) {
6551            mtx_destroy(&fp->rx_mtx);
6552        }
6553    }
6554}
6555
6556static int
6557bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6558                     uint16_t            prev_index,
6559                     uint16_t            index)
6560{
6561    struct bxe_sw_rx_bd *rx_buf;
6562    struct eth_rx_bd *rx_bd;
6563    bus_dma_segment_t segs[1];
6564    bus_dmamap_t map;
6565    struct mbuf *m;
6566    int nsegs, rc;
6567
6568    rc = 0;
6569
6570    /* allocate the new RX BD mbuf */
6571    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6572    if (__predict_false(m == NULL)) {
6573        fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6574        return (ENOBUFS);
6575    }
6576
6577    fp->eth_q_stats.mbuf_alloc_rx++;
6578
6579    /* initialize the mbuf buffer length */
6580    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6581
6582    /* map the mbuf into non-paged pool */
6583    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6584                                 fp->rx_mbuf_spare_map,
6585                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6586    if (__predict_false(rc != 0)) {
6587        fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6588        m_freem(m);
6589        fp->eth_q_stats.mbuf_alloc_rx--;
6590        return (rc);
6591    }
6592
6593    /* all mbufs must map to a single segment */
6594    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6595
6596    /* release any existing RX BD mbuf mappings */
6597
6598    if (prev_index != index) {
6599        rx_buf = &fp->rx_mbuf_chain[prev_index];
6600
6601        if (rx_buf->m_map != NULL) {
6602            bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6603                            BUS_DMASYNC_POSTREAD);
6604            bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6605        }
6606
6607        /*
6608         * We only get here from bxe_rxeof() when the maximum number
6609         * of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6610         * holds the mbuf in the prev_index so it's OK to NULL it out
6611         * here without concern of a memory leak.
6612         */
6613        fp->rx_mbuf_chain[prev_index].m = NULL;
6614    }
6615
6616    rx_buf = &fp->rx_mbuf_chain[index];
6617
6618    if (rx_buf->m_map != NULL) {
6619        bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6620                        BUS_DMASYNC_POSTREAD);
6621        bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6622    }
6623
6624    /* save the mbuf and mapping info for a future packet */
6625    map = (prev_index != index) ?
6626              fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6627    rx_buf->m_map = fp->rx_mbuf_spare_map;
6628    fp->rx_mbuf_spare_map = map;
6629    bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6630                    BUS_DMASYNC_PREREAD);
6631    rx_buf->m = m;
6632
6633    rx_bd = &fp->rx_chain[index];
6634    rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6635    rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6636
6637    return (rc);
6638}
6639
6640static int
6641bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6642                      int                 queue)
6643{
6644    struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6645    bus_dma_segment_t segs[1];
6646    bus_dmamap_t map;
6647    struct mbuf *m;
6648    int nsegs;
6649    int rc = 0;
6650
6651    /* allocate the new TPA mbuf */
6652    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6653    if (__predict_false(m == NULL)) {
6654        fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6655        return (ENOBUFS);
6656    }
6657
6658    fp->eth_q_stats.mbuf_alloc_tpa++;
6659
6660    /* initialize the mbuf buffer length */
6661    m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6662
6663    /* map the mbuf into non-paged pool */
6664    rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6665                                 fp->rx_tpa_info_mbuf_spare_map,
6666                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6667    if (__predict_false(rc != 0)) {
6668        fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6669        m_free(m);
6670        fp->eth_q_stats.mbuf_alloc_tpa--;
6671        return (rc);
6672    }
6673
6674    /* all mbufs must map to a single segment */
6675    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6676
6677    /* release any existing TPA mbuf mapping */
6678    if (tpa_info->bd.m_map != NULL) {
6679        bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6680                        BUS_DMASYNC_POSTREAD);
6681        bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6682    }
6683
6684    /* save the mbuf and mapping info for the TPA mbuf */
6685    map = tpa_info->bd.m_map;
6686    tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6687    fp->rx_tpa_info_mbuf_spare_map = map;
6688    bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6689                    BUS_DMASYNC_PREREAD);
6690    tpa_info->bd.m = m;
6691    tpa_info->seg = segs[0];
6692
6693    return (rc);
6694}
6695
6696/*
6697 * Allocate an mbuf and assign it to the receive scatter gather chain. The
6698 * caller must take care to save a copy of the existing mbuf in the SG mbuf
6699 * chain.
6700 */
6701static int
6702bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6703                      uint16_t            index)
6704{
6705    struct bxe_sw_rx_bd *sge_buf;
6706    struct eth_rx_sge *sge;
6707    bus_dma_segment_t segs[1];
6708    bus_dmamap_t map;
6709    struct mbuf *m;
6710    int nsegs;
6711    int rc = 0;
6712
6713    /* allocate a new SGE mbuf */
6714    m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6715    if (__predict_false(m == NULL)) {
6716        fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6717        return (ENOMEM);
6718    }
6719
6720    fp->eth_q_stats.mbuf_alloc_sge++;
6721
6722    /* initialize the mbuf buffer length */
6723    m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6724
6725    /* map the SGE mbuf into non-paged pool */
6726    rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6727                                 fp->rx_sge_mbuf_spare_map,
6728                                 m, segs, &nsegs, BUS_DMA_NOWAIT);
6729    if (__predict_false(rc != 0)) {
6730        fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6731        m_freem(m);
6732        fp->eth_q_stats.mbuf_alloc_sge--;
6733        return (rc);
6734    }
6735
6736    /* all mbufs must map to a single segment */
6737    KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6738
6739    sge_buf = &fp->rx_sge_mbuf_chain[index];
6740
6741    /* release any existing SGE mbuf mapping */
6742    if (sge_buf->m_map != NULL) {
6743        bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6744                        BUS_DMASYNC_POSTREAD);
6745        bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6746    }
6747
6748    /* save the mbuf and mapping info for a future packet */
6749    map = sge_buf->m_map;
6750    sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6751    fp->rx_sge_mbuf_spare_map = map;
6752    bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6753                    BUS_DMASYNC_PREREAD);
6754    sge_buf->m = m;
6755
6756    sge = &fp->rx_sge_chain[index];
6757    sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6758    sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6759
6760    return (rc);
6761}
6762
6763static __noinline int
6764bxe_alloc_fp_buffers(struct bxe_softc *sc)
6765{
6766    struct bxe_fastpath *fp;
6767    int i, j, rc = 0;
6768    int ring_prod, cqe_ring_prod;
6769    int max_agg_queues;
6770
6771    for (i = 0; i < sc->num_queues; i++) {
6772        fp = &sc->fp[i];
6773
6774#if __FreeBSD_version >= 800000
6775        fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
6776                                   M_DONTWAIT, &fp->tx_mtx);
6777        if (fp->tx_br == NULL) {
6778            BLOGE(sc, "buf_ring alloc fail for fp[%02d]\n", i);
6779            goto bxe_alloc_fp_buffers_error;
6780        }
6781#endif
6782
6783        ring_prod = cqe_ring_prod = 0;
6784        fp->rx_bd_cons = 0;
6785        fp->rx_cq_cons = 0;
6786
6787        /* allocate buffers for the RX BDs in RX BD chain */
6788        for (j = 0; j < sc->max_rx_bufs; j++) {
6789            rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6790            if (rc != 0) {
6791                BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6792                      i, rc);
6793                goto bxe_alloc_fp_buffers_error;
6794            }
6795
6796            ring_prod     = RX_BD_NEXT(ring_prod);
6797            cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6798        }
6799
6800        fp->rx_bd_prod = ring_prod;
6801        fp->rx_cq_prod = cqe_ring_prod;
6802        fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6803
6804        if (sc->ifnet->if_capenable & IFCAP_LRO) {
6805            max_agg_queues = MAX_AGG_QS(sc);
6806
6807            fp->tpa_enable = TRUE;
6808
6809            /* fill the TPA pool */
6810            for (j = 0; j < max_agg_queues; j++) {
6811                rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6812                if (rc != 0) {
6813                    BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6814                          i, j);
6815                    fp->tpa_enable = FALSE;
6816                    goto bxe_alloc_fp_buffers_error;
6817                }
6818
6819                fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6820            }
6821
6822            if (fp->tpa_enable) {
6823                /* fill the RX SGE chain */
6824                ring_prod = 0;
6825                for (j = 0; j < RX_SGE_USABLE; j++) {
6826                    rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6827                    if (rc != 0) {
6828                        BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6829                              i, ring_prod);
6830                        fp->tpa_enable = FALSE;
6831                        ring_prod = 0;
6832                        goto bxe_alloc_fp_buffers_error;
6833                    }
6834
6835                    ring_prod = RX_SGE_NEXT(ring_prod);
6836                }
6837
6838                fp->rx_sge_prod = ring_prod;
6839            }
6840        }
6841    }
6842
6843    return (0);
6844
6845bxe_alloc_fp_buffers_error:
6846
6847    /* unwind what was already allocated */
6848    bxe_free_rx_bd_chain(fp);
6849    bxe_free_tpa_pool(fp);
6850    bxe_free_sge_chain(fp);
6851
6852    return (ENOBUFS);
6853}
6854
6855static void
6856bxe_free_fw_stats_mem(struct bxe_softc *sc)
6857{
6858    bxe_dma_free(sc, &sc->fw_stats_dma);
6859
6860    sc->fw_stats_num = 0;
6861
6862    sc->fw_stats_req_size = 0;
6863    sc->fw_stats_req = NULL;
6864    sc->fw_stats_req_mapping = 0;
6865
6866    sc->fw_stats_data_size = 0;
6867    sc->fw_stats_data = NULL;
6868    sc->fw_stats_data_mapping = 0;
6869}
6870
6871static int
6872bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6873{
6874    uint8_t num_queue_stats;
6875    int num_groups;
6876
6877    /* number of queues for statistics is number of eth queues */
6878    num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6879
6880    /*
6881     * Total number of FW statistics requests =
6882     *   1 for port stats + 1 for PF stats + num of queues
6883     */
6884    sc->fw_stats_num = (2 + num_queue_stats);
6885
6886    /*
6887     * Request is built from stats_query_header and an array of
6888     * stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6889     * rules. The real number or requests is configured in the
6890     * stats_query_header.
6891     */
6892    num_groups =
6893        ((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6894         ((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6895
6896    BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6897          sc->fw_stats_num, num_groups);
6898
6899    sc->fw_stats_req_size =
6900        (sizeof(struct stats_query_header) +
6901         (num_groups * sizeof(struct stats_query_cmd_group)));
6902
6903    /*
6904     * Data for statistics requests + stats_counter.
6905     * stats_counter holds per-STORM counters that are incremented when
6906     * STORM has finished with the current request. Memory for FCoE
6907     * offloaded statistics are counted anyway, even if they will not be sent.
6908     * VF stats are not accounted for here as the data of VF stats is stored
6909     * in memory allocated by the VF, not here.
6910     */
6911    sc->fw_stats_data_size =
6912        (sizeof(struct stats_counter) +
6913         sizeof(struct per_port_stats) +
6914         sizeof(struct per_pf_stats) +
6915         /* sizeof(struct fcoe_statistics_params) + */
6916         (sizeof(struct per_queue_stats) * num_queue_stats));
6917
6918    if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6919                      &sc->fw_stats_dma, "fw stats") != 0) {
6920        bxe_free_fw_stats_mem(sc);
6921        return (-1);
6922    }
6923
6924    /* set up the shortcuts */
6925
6926    sc->fw_stats_req =
6927        (struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6928    sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6929
6930    sc->fw_stats_data =
6931        (struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6932                                     sc->fw_stats_req_size);
6933    sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6934                                 sc->fw_stats_req_size);
6935
6936    BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6937          (uintmax_t)sc->fw_stats_req_mapping);
6938
6939    BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6940          (uintmax_t)sc->fw_stats_data_mapping);
6941
6942    return (0);
6943}
6944
6945/*
6946 * Bits map:
6947 * 0-7  - Engine0 load counter.
6948 * 8-15 - Engine1 load counter.
6949 * 16   - Engine0 RESET_IN_PROGRESS bit.
6950 * 17   - Engine1 RESET_IN_PROGRESS bit.
6951 * 18   - Engine0 ONE_IS_LOADED. Set when there is at least one active
6952 *        function on the engine
6953 * 19   - Engine1 ONE_IS_LOADED.
6954 * 20   - Chip reset flow bit. When set none-leader must wait for both engines
6955 *        leader to complete (check for both RESET_IN_PROGRESS bits and not
6956 *        for just the one belonging to its engine).
6957 */
6958#define BXE_RECOVERY_GLOB_REG     MISC_REG_GENERIC_POR_1
6959#define BXE_PATH0_LOAD_CNT_MASK   0x000000ff
6960#define BXE_PATH0_LOAD_CNT_SHIFT  0
6961#define BXE_PATH1_LOAD_CNT_MASK   0x0000ff00
6962#define BXE_PATH1_LOAD_CNT_SHIFT  8
6963#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6964#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6965#define BXE_GLOBAL_RESET_BIT      0x00040000
6966
6967/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6968static void
6969bxe_set_reset_global(struct bxe_softc *sc)
6970{
6971    uint32_t val;
6972    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6973    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6974    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6975    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6976}
6977
6978/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6979static void
6980bxe_clear_reset_global(struct bxe_softc *sc)
6981{
6982    uint32_t val;
6983    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6984    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6985    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6986    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6987}
6988
6989/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6990static uint8_t
6991bxe_reset_is_global(struct bxe_softc *sc)
6992{
6993    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6994    BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6995    return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6996}
6997
6998/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6999static void
7000bxe_set_reset_done(struct bxe_softc *sc)
7001{
7002    uint32_t val;
7003    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7004                                 BXE_PATH0_RST_IN_PROG_BIT;
7005
7006    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7007
7008    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7009    /* Clear the bit */
7010    val &= ~bit;
7011    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7012
7013    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7014}
7015
7016/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
7017static void
7018bxe_set_reset_in_progress(struct bxe_softc *sc)
7019{
7020    uint32_t val;
7021    uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
7022                                 BXE_PATH0_RST_IN_PROG_BIT;
7023
7024    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7025
7026    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7027    /* Set the bit */
7028    val |= bit;
7029    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7030
7031    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7032}
7033
7034/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
7035static uint8_t
7036bxe_reset_is_done(struct bxe_softc *sc,
7037                  int              engine)
7038{
7039    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7040    uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
7041                            BXE_PATH0_RST_IN_PROG_BIT;
7042
7043    /* return false if bit is set */
7044    return (val & bit) ? FALSE : TRUE;
7045}
7046
7047/* get the load status for an engine, should be run under rtnl lock */
7048static uint8_t
7049bxe_get_load_status(struct bxe_softc *sc,
7050                    int              engine)
7051{
7052    uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
7053                             BXE_PATH0_LOAD_CNT_MASK;
7054    uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
7055                              BXE_PATH0_LOAD_CNT_SHIFT;
7056    uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7057
7058    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7059
7060    val = ((val & mask) >> shift);
7061
7062    BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
7063
7064    return (val != 0);
7065}
7066
7067/* set pf load mark */
7068/* XXX needs to be under rtnl lock */
7069static void
7070bxe_set_pf_load(struct bxe_softc *sc)
7071{
7072    uint32_t val;
7073    uint32_t val1;
7074    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7075                                  BXE_PATH0_LOAD_CNT_MASK;
7076    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7077                                   BXE_PATH0_LOAD_CNT_SHIFT;
7078
7079    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7080
7081    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7082    BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
7083
7084    /* get the current counter value */
7085    val1 = ((val & mask) >> shift);
7086
7087    /* set bit of this PF */
7088    val1 |= (1 << SC_ABS_FUNC(sc));
7089
7090    /* clear the old value */
7091    val &= ~mask;
7092
7093    /* set the new one */
7094    val |= ((val1 << shift) & mask);
7095
7096    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7097
7098    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7099}
7100
7101/* clear pf load mark */
7102/* XXX needs to be under rtnl lock */
7103static uint8_t
7104bxe_clear_pf_load(struct bxe_softc *sc)
7105{
7106    uint32_t val1, val;
7107    uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
7108                                  BXE_PATH0_LOAD_CNT_MASK;
7109    uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
7110                                   BXE_PATH0_LOAD_CNT_SHIFT;
7111
7112    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7113    val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
7114    BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
7115
7116    /* get the current counter value */
7117    val1 = (val & mask) >> shift;
7118
7119    /* clear bit of that PF */
7120    val1 &= ~(1 << SC_ABS_FUNC(sc));
7121
7122    /* clear the old value */
7123    val &= ~mask;
7124
7125    /* set the new one */
7126    val |= ((val1 << shift) & mask);
7127
7128    REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
7129    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
7130    return (val1 != 0);
7131}
7132
7133/* send load requrest to mcp and analyze response */
7134static int
7135bxe_nic_load_request(struct bxe_softc *sc,
7136                     uint32_t         *load_code)
7137{
7138    /* init fw_seq */
7139    sc->fw_seq =
7140        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
7141         DRV_MSG_SEQ_NUMBER_MASK);
7142
7143    BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
7144
7145    /* get the current FW pulse sequence */
7146    sc->fw_drv_pulse_wr_seq =
7147        (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
7148         DRV_PULSE_SEQ_MASK);
7149
7150    BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
7151          sc->fw_drv_pulse_wr_seq);
7152
7153    /* load request */
7154    (*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
7155                                  DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
7156
7157    /* if the MCP fails to respond we must abort */
7158    if (!(*load_code)) {
7159        BLOGE(sc, "MCP response failure!\n");
7160        return (-1);
7161    }
7162
7163    /* if MCP refused then must abort */
7164    if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
7165        BLOGE(sc, "MCP refused load request\n");
7166        return (-1);
7167    }
7168
7169    return (0);
7170}
7171
7172/*
7173 * Check whether another PF has already loaded FW to chip. In virtualized
7174 * environments a pf from anoth VM may have already initialized the device
7175 * including loading FW.
7176 */
7177static int
7178bxe_nic_load_analyze_req(struct bxe_softc *sc,
7179                         uint32_t         load_code)
7180{
7181    uint32_t my_fw, loaded_fw;
7182
7183    /* is another pf loaded on this engine? */
7184    if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
7185        (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
7186        /* build my FW version dword */
7187        my_fw = (BCM_5710_FW_MAJOR_VERSION +
7188                 (BCM_5710_FW_MINOR_VERSION << 8 ) +
7189                 (BCM_5710_FW_REVISION_VERSION << 16) +
7190                 (BCM_5710_FW_ENGINEERING_VERSION << 24));
7191
7192        /* read loaded FW from chip */
7193        loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
7194        BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
7195              loaded_fw, my_fw);
7196
7197        /* abort nic load if version mismatch */
7198        if (my_fw != loaded_fw) {
7199            BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
7200                  loaded_fw, my_fw);
7201            return (-1);
7202        }
7203    }
7204
7205    return (0);
7206}
7207
7208/* mark PMF if applicable */
7209static void
7210bxe_nic_load_pmf(struct bxe_softc *sc,
7211                 uint32_t         load_code)
7212{
7213    uint32_t ncsi_oem_data_addr;
7214
7215    if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
7216        (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
7217        (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
7218        /*
7219         * Barrier here for ordering between the writing to sc->port.pmf here
7220         * and reading it from the periodic task.
7221         */
7222        sc->port.pmf = 1;
7223        mb();
7224    } else {
7225        sc->port.pmf = 0;
7226    }
7227
7228    BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
7229
7230    /* XXX needed? */
7231    if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
7232        if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
7233            ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
7234            if (ncsi_oem_data_addr) {
7235                REG_WR(sc,
7236                       (ncsi_oem_data_addr +
7237                        offsetof(struct glob_ncsi_oem_data, driver_version)),
7238                       0);
7239            }
7240        }
7241    }
7242}
7243
7244static void
7245bxe_read_mf_cfg(struct bxe_softc *sc)
7246{
7247    int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
7248    int abs_func;
7249    int vn;
7250
7251    if (BXE_NOMCP(sc)) {
7252        return; /* what should be the default bvalue in this case */
7253    }
7254
7255    /*
7256     * The formula for computing the absolute function number is...
7257     * For 2 port configuration (4 functions per port):
7258     *   abs_func = 2 * vn + SC_PORT + SC_PATH
7259     * For 4 port configuration (2 functions per port):
7260     *   abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
7261     */
7262    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
7263        abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
7264        if (abs_func >= E1H_FUNC_MAX) {
7265            break;
7266        }
7267        sc->devinfo.mf_info.mf_config[vn] =
7268            MFCFG_RD(sc, func_mf_config[abs_func].config);
7269    }
7270
7271    if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
7272        FUNC_MF_CFG_FUNC_DISABLED) {
7273        BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
7274        sc->flags |= BXE_MF_FUNC_DIS;
7275    } else {
7276        BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
7277        sc->flags &= ~BXE_MF_FUNC_DIS;
7278    }
7279}
7280
7281/* acquire split MCP access lock register */
7282static int bxe_acquire_alr(struct bxe_softc *sc)
7283{
7284    uint32_t j, val;
7285
7286    for (j = 0; j < 1000; j++) {
7287        val = (1UL << 31);
7288        REG_WR(sc, GRCBASE_MCP + 0x9c, val);
7289        val = REG_RD(sc, GRCBASE_MCP + 0x9c);
7290        if (val & (1L << 31))
7291            break;
7292
7293        DELAY(5000);
7294    }
7295
7296    if (!(val & (1L << 31))) {
7297        BLOGE(sc, "Cannot acquire MCP access lock register\n");
7298        return (-1);
7299    }
7300
7301    return (0);
7302}
7303
7304/* release split MCP access lock register */
7305static void bxe_release_alr(struct bxe_softc *sc)
7306{
7307    REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
7308}
7309
7310static void
7311bxe_fan_failure(struct bxe_softc *sc)
7312{
7313    int port = SC_PORT(sc);
7314    uint32_t ext_phy_config;
7315
7316    /* mark the failure */
7317    ext_phy_config =
7318        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
7319
7320    ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
7321    ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
7322    SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
7323             ext_phy_config);
7324
7325    /* log the failure */
7326    BLOGW(sc, "Fan Failure has caused the driver to shutdown "
7327              "the card to prevent permanent damage. "
7328              "Please contact OEM Support for assistance\n");
7329
7330    /* XXX */
7331#if 1
7332    bxe_panic(sc, ("Schedule task to handle fan failure\n"));
7333#else
7334    /*
7335     * Schedule device reset (unload)
7336     * This is due to some boards consuming sufficient power when driver is
7337     * up to overheat if fan fails.
7338     */
7339    bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
7340    schedule_delayed_work(&sc->sp_rtnl_task, 0);
7341#endif
7342}
7343
7344/* this function is called upon a link interrupt */
7345static void
7346bxe_link_attn(struct bxe_softc *sc)
7347{
7348    uint32_t pause_enabled = 0;
7349    struct host_port_stats *pstats;
7350    int cmng_fns;
7351
7352    /* Make sure that we are synced with the current statistics */
7353    bxe_stats_handle(sc, STATS_EVENT_STOP);
7354
7355    elink_link_update(&sc->link_params, &sc->link_vars);
7356
7357    if (sc->link_vars.link_up) {
7358
7359        /* dropless flow control */
7360        if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
7361            pause_enabled = 0;
7362
7363            if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7364                pause_enabled = 1;
7365            }
7366
7367            REG_WR(sc,
7368                   (BAR_USTRORM_INTMEM +
7369                    USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7370                   pause_enabled);
7371        }
7372
7373        if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7374            pstats = BXE_SP(sc, port_stats);
7375            /* reset old mac stats */
7376            memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7377        }
7378
7379        if (sc->state == BXE_STATE_OPEN) {
7380            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7381        }
7382    }
7383
7384    if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7385        cmng_fns = bxe_get_cmng_fns_mode(sc);
7386
7387        if (cmng_fns != CMNG_FNS_NONE) {
7388            bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7389            storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7390        } else {
7391            /* rate shaping and fairness are disabled */
7392            BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7393        }
7394    }
7395
7396    bxe_link_report_locked(sc);
7397
7398    if (IS_MF(sc)) {
7399        ; // XXX bxe_link_sync_notify(sc);
7400    }
7401}
7402
7403static void
7404bxe_attn_int_asserted(struct bxe_softc *sc,
7405                      uint32_t         asserted)
7406{
7407    int port = SC_PORT(sc);
7408    uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7409                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
7410    uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7411                                        NIG_REG_MASK_INTERRUPT_PORT0;
7412    uint32_t aeu_mask;
7413    uint32_t nig_mask = 0;
7414    uint32_t reg_addr;
7415    uint32_t igu_acked;
7416    uint32_t cnt;
7417
7418    if (sc->attn_state & asserted) {
7419        BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7420    }
7421
7422    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7423
7424    aeu_mask = REG_RD(sc, aeu_addr);
7425
7426    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7427          aeu_mask, asserted);
7428
7429    aeu_mask &= ~(asserted & 0x3ff);
7430
7431    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7432
7433    REG_WR(sc, aeu_addr, aeu_mask);
7434
7435    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7436
7437    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7438    sc->attn_state |= asserted;
7439    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7440
7441    if (asserted & ATTN_HARD_WIRED_MASK) {
7442        if (asserted & ATTN_NIG_FOR_FUNC) {
7443
7444            BXE_PHY_LOCK(sc);
7445
7446            /* save nig interrupt mask */
7447            nig_mask = REG_RD(sc, nig_int_mask_addr);
7448
7449            /* If nig_mask is not set, no need to call the update function */
7450            if (nig_mask) {
7451                REG_WR(sc, nig_int_mask_addr, 0);
7452
7453                bxe_link_attn(sc);
7454            }
7455
7456            /* handle unicore attn? */
7457        }
7458
7459        if (asserted & ATTN_SW_TIMER_4_FUNC) {
7460            BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7461        }
7462
7463        if (asserted & GPIO_2_FUNC) {
7464            BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7465        }
7466
7467        if (asserted & GPIO_3_FUNC) {
7468            BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7469        }
7470
7471        if (asserted & GPIO_4_FUNC) {
7472            BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7473        }
7474
7475        if (port == 0) {
7476            if (asserted & ATTN_GENERAL_ATTN_1) {
7477                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7478                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7479            }
7480            if (asserted & ATTN_GENERAL_ATTN_2) {
7481                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7482                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7483            }
7484            if (asserted & ATTN_GENERAL_ATTN_3) {
7485                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7486                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7487            }
7488        } else {
7489            if (asserted & ATTN_GENERAL_ATTN_4) {
7490                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7491                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7492            }
7493            if (asserted & ATTN_GENERAL_ATTN_5) {
7494                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7495                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7496            }
7497            if (asserted & ATTN_GENERAL_ATTN_6) {
7498                BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7499                REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7500            }
7501        }
7502    } /* hardwired */
7503
7504    if (sc->devinfo.int_block == INT_BLOCK_HC) {
7505        reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7506    } else {
7507        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7508    }
7509
7510    BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7511          asserted,
7512          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7513    REG_WR(sc, reg_addr, asserted);
7514
7515    /* now set back the mask */
7516    if (asserted & ATTN_NIG_FOR_FUNC) {
7517        /*
7518         * Verify that IGU ack through BAR was written before restoring
7519         * NIG mask. This loop should exit after 2-3 iterations max.
7520         */
7521        if (sc->devinfo.int_block != INT_BLOCK_HC) {
7522            cnt = 0;
7523
7524            do {
7525                igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7526            } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7527                     (++cnt < MAX_IGU_ATTN_ACK_TO));
7528
7529            if (!igu_acked) {
7530                BLOGE(sc, "Failed to verify IGU ack on time\n");
7531            }
7532
7533            mb();
7534        }
7535
7536        REG_WR(sc, nig_int_mask_addr, nig_mask);
7537
7538        BXE_PHY_UNLOCK(sc);
7539    }
7540}
7541
7542static void
7543bxe_print_next_block(struct bxe_softc *sc,
7544                     int              idx,
7545                     const char       *blk)
7546{
7547    BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7548}
7549
7550static int
7551bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7552                              uint32_t         sig,
7553                              int              par_num,
7554                              uint8_t          print)
7555{
7556    uint32_t cur_bit = 0;
7557    int i = 0;
7558
7559    for (i = 0; sig; i++) {
7560        cur_bit = ((uint32_t)0x1 << i);
7561        if (sig & cur_bit) {
7562            switch (cur_bit) {
7563            case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7564                if (print)
7565                    bxe_print_next_block(sc, par_num++, "BRB");
7566                break;
7567            case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7568                if (print)
7569                    bxe_print_next_block(sc, par_num++, "PARSER");
7570                break;
7571            case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7572                if (print)
7573                    bxe_print_next_block(sc, par_num++, "TSDM");
7574                break;
7575            case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7576                if (print)
7577                    bxe_print_next_block(sc, par_num++, "SEARCHER");
7578                break;
7579            case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7580                if (print)
7581                    bxe_print_next_block(sc, par_num++, "TCM");
7582                break;
7583            case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7584                if (print)
7585                    bxe_print_next_block(sc, par_num++, "TSEMI");
7586                break;
7587            case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7588                if (print)
7589                    bxe_print_next_block(sc, par_num++, "XPB");
7590                break;
7591            }
7592
7593            /* Clear the bit */
7594            sig &= ~cur_bit;
7595        }
7596    }
7597
7598    return (par_num);
7599}
7600
7601static int
7602bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7603                              uint32_t         sig,
7604                              int              par_num,
7605                              uint8_t          *global,
7606                              uint8_t          print)
7607{
7608    int i = 0;
7609    uint32_t cur_bit = 0;
7610    for (i = 0; sig; i++) {
7611        cur_bit = ((uint32_t)0x1 << i);
7612        if (sig & cur_bit) {
7613            switch (cur_bit) {
7614            case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7615                if (print)
7616                    bxe_print_next_block(sc, par_num++, "PBF");
7617                break;
7618            case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7619                if (print)
7620                    bxe_print_next_block(sc, par_num++, "QM");
7621                break;
7622            case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7623                if (print)
7624                    bxe_print_next_block(sc, par_num++, "TM");
7625                break;
7626            case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7627                if (print)
7628                    bxe_print_next_block(sc, par_num++, "XSDM");
7629                break;
7630            case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7631                if (print)
7632                    bxe_print_next_block(sc, par_num++, "XCM");
7633                break;
7634            case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7635                if (print)
7636                    bxe_print_next_block(sc, par_num++, "XSEMI");
7637                break;
7638            case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7639                if (print)
7640                    bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7641                break;
7642            case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7643                if (print)
7644                    bxe_print_next_block(sc, par_num++, "NIG");
7645                break;
7646            case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7647                if (print)
7648                    bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7649                *global = TRUE;
7650                break;
7651            case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7652                if (print)
7653                    bxe_print_next_block(sc, par_num++, "DEBUG");
7654                break;
7655            case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7656                if (print)
7657                    bxe_print_next_block(sc, par_num++, "USDM");
7658                break;
7659            case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7660                if (print)
7661                    bxe_print_next_block(sc, par_num++, "UCM");
7662                break;
7663            case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7664                if (print)
7665                    bxe_print_next_block(sc, par_num++, "USEMI");
7666                break;
7667            case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7668                if (print)
7669                    bxe_print_next_block(sc, par_num++, "UPB");
7670                break;
7671            case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7672                if (print)
7673                    bxe_print_next_block(sc, par_num++, "CSDM");
7674                break;
7675            case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7676                if (print)
7677                    bxe_print_next_block(sc, par_num++, "CCM");
7678                break;
7679            }
7680
7681            /* Clear the bit */
7682            sig &= ~cur_bit;
7683        }
7684    }
7685
7686    return (par_num);
7687}
7688
7689static int
7690bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7691                              uint32_t         sig,
7692                              int              par_num,
7693                              uint8_t          print)
7694{
7695    uint32_t cur_bit = 0;
7696    int i = 0;
7697
7698    for (i = 0; sig; i++) {
7699        cur_bit = ((uint32_t)0x1 << i);
7700        if (sig & cur_bit) {
7701            switch (cur_bit) {
7702            case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7703                if (print)
7704                    bxe_print_next_block(sc, par_num++, "CSEMI");
7705                break;
7706            case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7707                if (print)
7708                    bxe_print_next_block(sc, par_num++, "PXP");
7709                break;
7710            case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7711                if (print)
7712                    bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7713                break;
7714            case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7715                if (print)
7716                    bxe_print_next_block(sc, par_num++, "CFC");
7717                break;
7718            case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7719                if (print)
7720                    bxe_print_next_block(sc, par_num++, "CDU");
7721                break;
7722            case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7723                if (print)
7724                    bxe_print_next_block(sc, par_num++, "DMAE");
7725                break;
7726            case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7727                if (print)
7728                    bxe_print_next_block(sc, par_num++, "IGU");
7729                break;
7730            case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7731                if (print)
7732                    bxe_print_next_block(sc, par_num++, "MISC");
7733                break;
7734            }
7735
7736            /* Clear the bit */
7737            sig &= ~cur_bit;
7738        }
7739    }
7740
7741    return (par_num);
7742}
7743
7744static int
7745bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7746                              uint32_t         sig,
7747                              int              par_num,
7748                              uint8_t          *global,
7749                              uint8_t          print)
7750{
7751    uint32_t cur_bit = 0;
7752    int i = 0;
7753
7754    for (i = 0; sig; i++) {
7755        cur_bit = ((uint32_t)0x1 << i);
7756        if (sig & cur_bit) {
7757            switch (cur_bit) {
7758            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7759                if (print)
7760                    bxe_print_next_block(sc, par_num++, "MCP ROM");
7761                *global = TRUE;
7762                break;
7763            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7764                if (print)
7765                    bxe_print_next_block(sc, par_num++,
7766                              "MCP UMP RX");
7767                *global = TRUE;
7768                break;
7769            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7770                if (print)
7771                    bxe_print_next_block(sc, par_num++,
7772                              "MCP UMP TX");
7773                *global = TRUE;
7774                break;
7775            case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7776                if (print)
7777                    bxe_print_next_block(sc, par_num++,
7778                              "MCP SCPAD");
7779                *global = TRUE;
7780                break;
7781            }
7782
7783            /* Clear the bit */
7784            sig &= ~cur_bit;
7785        }
7786    }
7787
7788    return (par_num);
7789}
7790
7791static int
7792bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7793                              uint32_t         sig,
7794                              int              par_num,
7795                              uint8_t          print)
7796{
7797    uint32_t cur_bit = 0;
7798    int i = 0;
7799
7800    for (i = 0; sig; i++) {
7801        cur_bit = ((uint32_t)0x1 << i);
7802        if (sig & cur_bit) {
7803            switch (cur_bit) {
7804            case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7805                if (print)
7806                    bxe_print_next_block(sc, par_num++, "PGLUE_B");
7807                break;
7808            case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7809                if (print)
7810                    bxe_print_next_block(sc, par_num++, "ATC");
7811                break;
7812            }
7813
7814            /* Clear the bit */
7815            sig &= ~cur_bit;
7816        }
7817    }
7818
7819    return (par_num);
7820}
7821
7822static uint8_t
7823bxe_parity_attn(struct bxe_softc *sc,
7824                uint8_t          *global,
7825                uint8_t          print,
7826                uint32_t         *sig)
7827{
7828    int par_num = 0;
7829
7830    if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7831        (sig[1] & HW_PRTY_ASSERT_SET_1) ||
7832        (sig[2] & HW_PRTY_ASSERT_SET_2) ||
7833        (sig[3] & HW_PRTY_ASSERT_SET_3) ||
7834        (sig[4] & HW_PRTY_ASSERT_SET_4)) {
7835        BLOGE(sc, "Parity error: HW block parity attention:\n"
7836                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7837              (uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7838              (uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7839              (uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7840              (uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7841              (uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7842
7843        if (print)
7844            BLOGI(sc, "Parity errors detected in blocks: ");
7845
7846        par_num =
7847            bxe_check_blocks_with_parity0(sc, sig[0] &
7848                                          HW_PRTY_ASSERT_SET_0,
7849                                          par_num, print);
7850        par_num =
7851            bxe_check_blocks_with_parity1(sc, sig[1] &
7852                                          HW_PRTY_ASSERT_SET_1,
7853                                          par_num, global, print);
7854        par_num =
7855            bxe_check_blocks_with_parity2(sc, sig[2] &
7856                                          HW_PRTY_ASSERT_SET_2,
7857                                          par_num, print);
7858        par_num =
7859            bxe_check_blocks_with_parity3(sc, sig[3] &
7860                                          HW_PRTY_ASSERT_SET_3,
7861                                          par_num, global, print);
7862        par_num =
7863            bxe_check_blocks_with_parity4(sc, sig[4] &
7864                                          HW_PRTY_ASSERT_SET_4,
7865                                          par_num, print);
7866
7867        if (print)
7868            BLOGI(sc, "\n");
7869
7870        return (TRUE);
7871    }
7872
7873    return (FALSE);
7874}
7875
7876static uint8_t
7877bxe_chk_parity_attn(struct bxe_softc *sc,
7878                    uint8_t          *global,
7879                    uint8_t          print)
7880{
7881    struct attn_route attn = { {0} };
7882    int port = SC_PORT(sc);
7883
7884    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7885    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7886    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7887    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7888
7889    if (!CHIP_IS_E1x(sc))
7890        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7891
7892    return (bxe_parity_attn(sc, global, print, attn.sig));
7893}
7894
7895static void
7896bxe_attn_int_deasserted4(struct bxe_softc *sc,
7897                         uint32_t         attn)
7898{
7899    uint32_t val;
7900
7901    if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7902        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7903        BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7904        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7905            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7906        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7907            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7908        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7909            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7910        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7911            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7912        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7913            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7914        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7915            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7916        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7917            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7918        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7919            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7920        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7921            BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7922    }
7923
7924    if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7925        val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7926        BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7927        if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7928            BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7929        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7930            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7931        if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7932            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7933        if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7934            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7935        if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7936            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7937        if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7938            BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7939    }
7940
7941    if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7942                AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7943        BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7944              (uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7945                                 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7946    }
7947}
7948
7949static void
7950bxe_e1h_disable(struct bxe_softc *sc)
7951{
7952    int port = SC_PORT(sc);
7953
7954    bxe_tx_disable(sc);
7955
7956    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7957}
7958
7959static void
7960bxe_e1h_enable(struct bxe_softc *sc)
7961{
7962    int port = SC_PORT(sc);
7963
7964    REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7965
7966    // XXX bxe_tx_enable(sc);
7967}
7968
7969/*
7970 * called due to MCP event (on pmf):
7971 *   reread new bandwidth configuration
7972 *   configure FW
7973 *   notify others function about the change
7974 */
7975static void
7976bxe_config_mf_bw(struct bxe_softc *sc)
7977{
7978    if (sc->link_vars.link_up) {
7979        bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7980        // XXX bxe_link_sync_notify(sc);
7981    }
7982
7983    storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7984}
7985
7986static void
7987bxe_set_mf_bw(struct bxe_softc *sc)
7988{
7989    bxe_config_mf_bw(sc);
7990    bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7991}
7992
7993static void
7994bxe_handle_eee_event(struct bxe_softc *sc)
7995{
7996    BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7997    bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7998}
7999
8000#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
8001
8002static void
8003bxe_drv_info_ether_stat(struct bxe_softc *sc)
8004{
8005    struct eth_stats_info *ether_stat =
8006        &sc->sp->drv_info_to_mcp.ether_stat;
8007
8008    strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
8009            ETH_STAT_INFO_VERSION_LEN);
8010
8011    /* XXX (+ MAC_PAD) taken from other driver... verify this is right */
8012    sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
8013                                          DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
8014                                          ether_stat->mac_local + MAC_PAD,
8015                                          MAC_PAD, ETH_ALEN);
8016
8017    ether_stat->mtu_size = sc->mtu;
8018
8019    ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
8020    if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
8021        ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
8022    }
8023
8024    // XXX ether_stat->feature_flags |= ???;
8025
8026    ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
8027
8028    ether_stat->txq_size = sc->tx_ring_size;
8029    ether_stat->rxq_size = sc->rx_ring_size;
8030}
8031
8032static void
8033bxe_handle_drv_info_req(struct bxe_softc *sc)
8034{
8035    enum drv_info_opcode op_code;
8036    uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
8037
8038    /* if drv_info version supported by MFW doesn't match - send NACK */
8039    if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
8040        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8041        return;
8042    }
8043
8044    op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
8045               DRV_INFO_CONTROL_OP_CODE_SHIFT);
8046
8047    memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
8048
8049    switch (op_code) {
8050    case ETH_STATS_OPCODE:
8051        bxe_drv_info_ether_stat(sc);
8052        break;
8053    case FCOE_STATS_OPCODE:
8054    case ISCSI_STATS_OPCODE:
8055    default:
8056        /* if op code isn't supported - send NACK */
8057        bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
8058        return;
8059    }
8060
8061    /*
8062     * If we got drv_info attn from MFW then these fields are defined in
8063     * shmem2 for sure
8064     */
8065    SHMEM2_WR(sc, drv_info_host_addr_lo,
8066              U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8067    SHMEM2_WR(sc, drv_info_host_addr_hi,
8068              U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
8069
8070    bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
8071}
8072
8073static void
8074bxe_dcc_event(struct bxe_softc *sc,
8075              uint32_t         dcc_event)
8076{
8077    BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
8078
8079    if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
8080        /*
8081         * This is the only place besides the function initialization
8082         * where the sc->flags can change so it is done without any
8083         * locks
8084         */
8085        if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
8086            BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
8087            sc->flags |= BXE_MF_FUNC_DIS;
8088            bxe_e1h_disable(sc);
8089        } else {
8090            BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
8091            sc->flags &= ~BXE_MF_FUNC_DIS;
8092            bxe_e1h_enable(sc);
8093        }
8094        dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
8095    }
8096
8097    if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
8098        bxe_config_mf_bw(sc);
8099        dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
8100    }
8101
8102    /* Report results to MCP */
8103    if (dcc_event)
8104        bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
8105    else
8106        bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
8107}
8108
8109static void
8110bxe_pmf_update(struct bxe_softc *sc)
8111{
8112    int port = SC_PORT(sc);
8113    uint32_t val;
8114
8115    sc->port.pmf = 1;
8116    BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
8117
8118    /*
8119     * We need the mb() to ensure the ordering between the writing to
8120     * sc->port.pmf here and reading it from the bxe_periodic_task().
8121     */
8122    mb();
8123
8124    /* queue a periodic task */
8125    // XXX schedule task...
8126
8127    // XXX bxe_dcbx_pmf_update(sc);
8128
8129    /* enable nig attention */
8130    val = (0xff0f | (1 << (SC_VN(sc) + 4)));
8131    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8132        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
8133        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
8134    } else if (!CHIP_IS_E1x(sc)) {
8135        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
8136        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
8137    }
8138
8139    bxe_stats_handle(sc, STATS_EVENT_PMF);
8140}
8141
8142static int
8143bxe_mc_assert(struct bxe_softc *sc)
8144{
8145    char last_idx;
8146    int i, rc = 0;
8147    uint32_t row0, row1, row2, row3;
8148
8149    /* XSTORM */
8150    last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
8151    if (last_idx)
8152        BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8153
8154    /* print the asserts */
8155    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8156
8157        row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
8158        row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
8159        row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
8160        row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
8161
8162        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8163            BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8164                  i, row3, row2, row1, row0);
8165            rc++;
8166        } else {
8167            break;
8168        }
8169    }
8170
8171    /* TSTORM */
8172    last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
8173    if (last_idx) {
8174        BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8175    }
8176
8177    /* print the asserts */
8178    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8179
8180        row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
8181        row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
8182        row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
8183        row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
8184
8185        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8186            BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8187                  i, row3, row2, row1, row0);
8188            rc++;
8189        } else {
8190            break;
8191        }
8192    }
8193
8194    /* CSTORM */
8195    last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
8196    if (last_idx) {
8197        BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8198    }
8199
8200    /* print the asserts */
8201    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8202
8203        row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
8204        row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
8205        row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
8206        row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
8207
8208        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8209            BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8210                  i, row3, row2, row1, row0);
8211            rc++;
8212        } else {
8213            break;
8214        }
8215    }
8216
8217    /* USTORM */
8218    last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
8219    if (last_idx) {
8220        BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
8221    }
8222
8223    /* print the asserts */
8224    for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
8225
8226        row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
8227        row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
8228        row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
8229        row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
8230
8231        if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
8232            BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
8233                  i, row3, row2, row1, row0);
8234            rc++;
8235        } else {
8236            break;
8237        }
8238    }
8239
8240    return (rc);
8241}
8242
8243static void
8244bxe_attn_int_deasserted3(struct bxe_softc *sc,
8245                         uint32_t         attn)
8246{
8247    int func = SC_FUNC(sc);
8248    uint32_t val;
8249
8250    if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
8251
8252        if (attn & BXE_PMF_LINK_ASSERT(sc)) {
8253
8254            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8255            bxe_read_mf_cfg(sc);
8256            sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
8257                MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
8258            val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
8259
8260            if (val & DRV_STATUS_DCC_EVENT_MASK)
8261                bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
8262
8263            if (val & DRV_STATUS_SET_MF_BW)
8264                bxe_set_mf_bw(sc);
8265
8266            if (val & DRV_STATUS_DRV_INFO_REQ)
8267                bxe_handle_drv_info_req(sc);
8268
8269#if 0
8270            if (val & DRV_STATUS_VF_DISABLED)
8271                bxe_vf_handle_flr_event(sc);
8272#endif
8273
8274            if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
8275                bxe_pmf_update(sc);
8276
8277#if 0
8278            if (sc->port.pmf &&
8279                (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
8280                (sc->dcbx_enabled > 0))
8281                /* start dcbx state machine */
8282                bxe_dcbx_set_params(sc, BXE_DCBX_STATE_NEG_RECEIVED);
8283#endif
8284
8285#if 0
8286            if (val & DRV_STATUS_AFEX_EVENT_MASK)
8287                bxe_handle_afex_cmd(sc, val & DRV_STATUS_AFEX_EVENT_MASK);
8288#endif
8289
8290            if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
8291                bxe_handle_eee_event(sc);
8292
8293            if (sc->link_vars.periodic_flags &
8294                ELINK_PERIODIC_FLAGS_LINK_EVENT) {
8295                /* sync with link */
8296                BXE_PHY_LOCK(sc);
8297                sc->link_vars.periodic_flags &=
8298                    ~ELINK_PERIODIC_FLAGS_LINK_EVENT;
8299                BXE_PHY_UNLOCK(sc);
8300                if (IS_MF(sc))
8301                    ; // XXX bxe_link_sync_notify(sc);
8302                bxe_link_report(sc);
8303            }
8304
8305            /*
8306             * Always call it here: bxe_link_report() will
8307             * prevent the link indication duplication.
8308             */
8309            bxe_link_status_update(sc);
8310
8311        } else if (attn & BXE_MC_ASSERT_BITS) {
8312
8313            BLOGE(sc, "MC assert!\n");
8314            bxe_mc_assert(sc);
8315            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
8316            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
8317            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
8318            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
8319            bxe_panic(sc, ("MC assert!\n"));
8320
8321        } else if (attn & BXE_MCP_ASSERT) {
8322
8323            BLOGE(sc, "MCP assert!\n");
8324            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
8325            // XXX bxe_fw_dump(sc);
8326
8327        } else {
8328            BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
8329        }
8330    }
8331
8332    if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
8333        BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
8334        if (attn & BXE_GRC_TIMEOUT) {
8335            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
8336            BLOGE(sc, "GRC time-out 0x%08x\n", val);
8337        }
8338        if (attn & BXE_GRC_RSV) {
8339            val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
8340            BLOGE(sc, "GRC reserved 0x%08x\n", val);
8341        }
8342        REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8343    }
8344}
8345
8346static void
8347bxe_attn_int_deasserted2(struct bxe_softc *sc,
8348                         uint32_t         attn)
8349{
8350    int port = SC_PORT(sc);
8351    int reg_offset;
8352    uint32_t val0, mask0, val1, mask1;
8353    uint32_t val;
8354
8355    if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8356        val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8357        BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8358        /* CFC error attention */
8359        if (val & 0x2) {
8360            BLOGE(sc, "FATAL error from CFC\n");
8361        }
8362    }
8363
8364    if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8365        val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8366        BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8367        /* RQ_USDMDP_FIFO_OVERFLOW */
8368        if (val & 0x18000) {
8369            BLOGE(sc, "FATAL error from PXP\n");
8370        }
8371
8372        if (!CHIP_IS_E1x(sc)) {
8373            val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8374            BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8375        }
8376    }
8377
8378#define PXP2_EOP_ERROR_BIT  PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8379#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8380
8381    if (attn & AEU_PXP2_HW_INT_BIT) {
8382        /*  CQ47854 workaround do not panic on
8383         *  PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8384         */
8385        if (!CHIP_IS_E1x(sc)) {
8386            mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8387            val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8388            mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8389            val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8390            /*
8391             * If the olny PXP2_EOP_ERROR_BIT is set in
8392             * STS0 and STS1 - clear it
8393             *
8394             * probably we lose additional attentions between
8395             * STS0 and STS_CLR0, in this case user will not
8396             * be notified about them
8397             */
8398            if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8399                !(val1 & mask1))
8400                val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8401
8402            /* print the register, since no one can restore it */
8403            BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8404
8405            /*
8406             * if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8407             * then notify
8408             */
8409            if (val0 & PXP2_EOP_ERROR_BIT) {
8410                BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8411
8412                /*
8413                 * if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8414                 * set then clear attention from PXP2 block without panic
8415                 */
8416                if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8417                    ((val1 & mask1) == 0))
8418                    attn &= ~AEU_PXP2_HW_INT_BIT;
8419            }
8420        }
8421    }
8422
8423    if (attn & HW_INTERRUT_ASSERT_SET_2) {
8424        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8425                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8426
8427        val = REG_RD(sc, reg_offset);
8428        val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8429        REG_WR(sc, reg_offset, val);
8430
8431        BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8432              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8433        bxe_panic(sc, ("HW block attention set2\n"));
8434    }
8435}
8436
8437static void
8438bxe_attn_int_deasserted1(struct bxe_softc *sc,
8439                         uint32_t         attn)
8440{
8441    int port = SC_PORT(sc);
8442    int reg_offset;
8443    uint32_t val;
8444
8445    if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8446        val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8447        BLOGE(sc, "DB hw attention 0x%08x\n", val);
8448        /* DORQ discard attention */
8449        if (val & 0x2) {
8450            BLOGE(sc, "FATAL error from DORQ\n");
8451        }
8452    }
8453
8454    if (attn & HW_INTERRUT_ASSERT_SET_1) {
8455        reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8456                             MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8457
8458        val = REG_RD(sc, reg_offset);
8459        val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8460        REG_WR(sc, reg_offset, val);
8461
8462        BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8463              (uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8464        bxe_panic(sc, ("HW block attention set1\n"));
8465    }
8466}
8467
8468static void
8469bxe_attn_int_deasserted0(struct bxe_softc *sc,
8470                         uint32_t         attn)
8471{
8472    int port = SC_PORT(sc);
8473    int reg_offset;
8474    uint32_t val;
8475
8476    reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8477                          MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8478
8479    if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8480        val = REG_RD(sc, reg_offset);
8481        val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8482        REG_WR(sc, reg_offset, val);
8483
8484        BLOGW(sc, "SPIO5 hw attention\n");
8485
8486        /* Fan failure attention */
8487        elink_hw_reset_phy(&sc->link_params);
8488        bxe_fan_failure(sc);
8489    }
8490
8491    if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8492        BXE_PHY_LOCK(sc);
8493        elink_handle_module_detect_int(&sc->link_params);
8494        BXE_PHY_UNLOCK(sc);
8495    }
8496
8497    if (attn & HW_INTERRUT_ASSERT_SET_0) {
8498        val = REG_RD(sc, reg_offset);
8499        val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8500        REG_WR(sc, reg_offset, val);
8501
8502        bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8503                       (attn & HW_INTERRUT_ASSERT_SET_0)));
8504    }
8505}
8506
8507static void
8508bxe_attn_int_deasserted(struct bxe_softc *sc,
8509                        uint32_t         deasserted)
8510{
8511    struct attn_route attn;
8512    struct attn_route *group_mask;
8513    int port = SC_PORT(sc);
8514    int index;
8515    uint32_t reg_addr;
8516    uint32_t val;
8517    uint32_t aeu_mask;
8518    uint8_t global = FALSE;
8519
8520    /*
8521     * Need to take HW lock because MCP or other port might also
8522     * try to handle this event.
8523     */
8524    bxe_acquire_alr(sc);
8525
8526    if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8527        /* XXX
8528         * In case of parity errors don't handle attentions so that
8529         * other function would "see" parity errors.
8530         */
8531        sc->recovery_state = BXE_RECOVERY_INIT;
8532        // XXX schedule a recovery task...
8533        /* disable HW interrupts */
8534        bxe_int_disable(sc);
8535        bxe_release_alr(sc);
8536        return;
8537    }
8538
8539    attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8540    attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8541    attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8542    attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8543    if (!CHIP_IS_E1x(sc)) {
8544        attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8545    } else {
8546        attn.sig[4] = 0;
8547    }
8548
8549    BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8550          attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8551
8552    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8553        if (deasserted & (1 << index)) {
8554            group_mask = &sc->attn_group[index];
8555
8556            BLOGD(sc, DBG_INTR,
8557                  "group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8558                  group_mask->sig[0], group_mask->sig[1],
8559                  group_mask->sig[2], group_mask->sig[3],
8560                  group_mask->sig[4]);
8561
8562            bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8563            bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8564            bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8565            bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8566            bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8567        }
8568    }
8569
8570    bxe_release_alr(sc);
8571
8572    if (sc->devinfo.int_block == INT_BLOCK_HC) {
8573        reg_addr = (HC_REG_COMMAND_REG + port*32 +
8574                    COMMAND_REG_ATTN_BITS_CLR);
8575    } else {
8576        reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8577    }
8578
8579    val = ~deasserted;
8580    BLOGD(sc, DBG_INTR,
8581          "about to mask 0x%08x at %s addr 0x%08x\n", val,
8582          (sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8583    REG_WR(sc, reg_addr, val);
8584
8585    if (~sc->attn_state & deasserted) {
8586        BLOGE(sc, "IGU error\n");
8587    }
8588
8589    reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8590                      MISC_REG_AEU_MASK_ATTN_FUNC_0;
8591
8592    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8593
8594    aeu_mask = REG_RD(sc, reg_addr);
8595
8596    BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8597          aeu_mask, deasserted);
8598    aeu_mask |= (deasserted & 0x3ff);
8599    BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8600
8601    REG_WR(sc, reg_addr, aeu_mask);
8602    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8603
8604    BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8605    sc->attn_state &= ~deasserted;
8606    BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8607}
8608
8609static void
8610bxe_attn_int(struct bxe_softc *sc)
8611{
8612    /* read local copy of bits */
8613    uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8614    uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8615    uint32_t attn_state = sc->attn_state;
8616
8617    /* look for changed bits */
8618    uint32_t asserted   =  attn_bits & ~attn_ack & ~attn_state;
8619    uint32_t deasserted = ~attn_bits &  attn_ack &  attn_state;
8620
8621    BLOGD(sc, DBG_INTR,
8622          "attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8623          attn_bits, attn_ack, asserted, deasserted);
8624
8625    if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8626        BLOGE(sc, "BAD attention state\n");
8627    }
8628
8629    /* handle bits that were raised */
8630    if (asserted) {
8631        bxe_attn_int_asserted(sc, asserted);
8632    }
8633
8634    if (deasserted) {
8635        bxe_attn_int_deasserted(sc, deasserted);
8636    }
8637}
8638
8639static uint16_t
8640bxe_update_dsb_idx(struct bxe_softc *sc)
8641{
8642    struct host_sp_status_block *def_sb = sc->def_sb;
8643    uint16_t rc = 0;
8644
8645    mb(); /* status block is written to by the chip */
8646
8647    if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8648        sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8649        rc |= BXE_DEF_SB_ATT_IDX;
8650    }
8651
8652    if (sc->def_idx != def_sb->sp_sb.running_index) {
8653        sc->def_idx = def_sb->sp_sb.running_index;
8654        rc |= BXE_DEF_SB_IDX;
8655    }
8656
8657    mb();
8658
8659    return (rc);
8660}
8661
8662static inline struct ecore_queue_sp_obj *
8663bxe_cid_to_q_obj(struct bxe_softc *sc,
8664                 uint32_t         cid)
8665{
8666    BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8667    return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8668}
8669
8670static void
8671bxe_handle_mcast_eqe(struct bxe_softc *sc)
8672{
8673    struct ecore_mcast_ramrod_params rparam;
8674    int rc;
8675
8676    memset(&rparam, 0, sizeof(rparam));
8677
8678    rparam.mcast_obj = &sc->mcast_obj;
8679
8680    BXE_MCAST_LOCK(sc);
8681
8682    /* clear pending state for the last command */
8683    sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8684
8685    /* if there are pending mcast commands - send them */
8686    if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8687        rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8688        if (rc < 0) {
8689            BLOGD(sc, DBG_SP,
8690                  "ERROR: Failed to send pending mcast commands (%d)\n",
8691                  rc);
8692        }
8693    }
8694
8695    BXE_MCAST_UNLOCK(sc);
8696}
8697
8698static void
8699bxe_handle_classification_eqe(struct bxe_softc      *sc,
8700                              union event_ring_elem *elem)
8701{
8702    unsigned long ramrod_flags = 0;
8703    int rc = 0;
8704    uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8705    struct ecore_vlan_mac_obj *vlan_mac_obj;
8706
8707    /* always push next commands out, don't wait here */
8708    bit_set(&ramrod_flags, RAMROD_CONT);
8709
8710    switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8711    case ECORE_FILTER_MAC_PENDING:
8712        BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8713        vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8714        break;
8715
8716    case ECORE_FILTER_MCAST_PENDING:
8717        BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8718        /*
8719         * This is only relevant for 57710 where multicast MACs are
8720         * configured as unicast MACs using the same ramrod.
8721         */
8722        bxe_handle_mcast_eqe(sc);
8723        return;
8724
8725    default:
8726        BLOGE(sc, "Unsupported classification command: %d\n",
8727              elem->message.data.eth_event.echo);
8728        return;
8729    }
8730
8731    rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8732
8733    if (rc < 0) {
8734        BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8735    } else if (rc > 0) {
8736        BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8737    }
8738}
8739
8740static void
8741bxe_handle_rx_mode_eqe(struct bxe_softc      *sc,
8742                       union event_ring_elem *elem)
8743{
8744    bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8745
8746    /* send rx_mode command again if was requested */
8747    if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8748                               &sc->sp_state)) {
8749        bxe_set_storm_rx_mode(sc);
8750    }
8751#if 0
8752    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_START_SCHED,
8753                                    &sc->sp_state)) {
8754        bxe_set_iscsi_eth_rx_mode(sc, TRUE);
8755    }
8756    else if (bxe_test_and_clear_bit(ECORE_FILTER_ISCSI_ETH_STOP_SCHED,
8757                                    &sc->sp_state)) {
8758        bxe_set_iscsi_eth_rx_mode(sc, FALSE);
8759    }
8760#endif
8761}
8762
8763static void
8764bxe_update_eq_prod(struct bxe_softc *sc,
8765                   uint16_t         prod)
8766{
8767    storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8768    wmb(); /* keep prod updates ordered */
8769}
8770
8771static void
8772bxe_eq_int(struct bxe_softc *sc)
8773{
8774    uint16_t hw_cons, sw_cons, sw_prod;
8775    union event_ring_elem *elem;
8776    uint8_t echo;
8777    uint32_t cid;
8778    uint8_t opcode;
8779    int spqe_cnt = 0;
8780    struct ecore_queue_sp_obj *q_obj;
8781    struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8782    struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8783
8784    hw_cons = le16toh(*sc->eq_cons_sb);
8785
8786    /*
8787     * The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8788     * when we get to the next-page we need to adjust so the loop
8789     * condition below will be met. The next element is the size of a
8790     * regular element and hence incrementing by 1
8791     */
8792    if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8793        hw_cons++;
8794    }
8795
8796    /*
8797     * This function may never run in parallel with itself for a
8798     * specific sc and no need for a read memory barrier here.
8799     */
8800    sw_cons = sc->eq_cons;
8801    sw_prod = sc->eq_prod;
8802
8803    BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8804          hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8805
8806    for (;
8807         sw_cons != hw_cons;
8808         sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8809
8810        elem = &sc->eq[EQ_DESC(sw_cons)];
8811
8812#if 0
8813        int rc;
8814        rc = bxe_iov_eq_sp_event(sc, elem);
8815        if (!rc) {
8816            BLOGE(sc, "bxe_iov_eq_sp_event returned %d\n", rc);
8817            goto next_spqe;
8818        }
8819#endif
8820
8821        /* elem CID originates from FW, actually LE */
8822        cid = SW_CID(elem->message.data.cfc_del_event.cid);
8823        opcode = elem->message.opcode;
8824
8825        /* handle eq element */
8826        switch (opcode) {
8827#if 0
8828        case EVENT_RING_OPCODE_VF_PF_CHANNEL:
8829            BLOGD(sc, DBG_SP, "vf/pf channel element on eq\n");
8830            bxe_vf_mbx(sc, &elem->message.data.vf_pf_event);
8831            continue;
8832#endif
8833
8834        case EVENT_RING_OPCODE_STAT_QUERY:
8835            BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8836                  sc->stats_comp++);
8837            /* nothing to do with stats comp */
8838            goto next_spqe;
8839
8840        case EVENT_RING_OPCODE_CFC_DEL:
8841            /* handle according to cid range */
8842            /* we may want to verify here that the sc state is HALTING */
8843            BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8844            q_obj = bxe_cid_to_q_obj(sc, cid);
8845            if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8846                break;
8847            }
8848            goto next_spqe;
8849
8850        case EVENT_RING_OPCODE_STOP_TRAFFIC:
8851            BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8852            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8853                break;
8854            }
8855            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8856            goto next_spqe;
8857
8858        case EVENT_RING_OPCODE_START_TRAFFIC:
8859            BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8860            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8861                break;
8862            }
8863            // XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8864            goto next_spqe;
8865
8866        case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8867            echo = elem->message.data.function_update_event.echo;
8868            if (echo == SWITCH_UPDATE) {
8869                BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8870                if (f_obj->complete_cmd(sc, f_obj,
8871                                        ECORE_F_CMD_SWITCH_UPDATE)) {
8872                    break;
8873                }
8874            }
8875            else {
8876                BLOGD(sc, DBG_SP,
8877                      "AFEX: ramrod completed FUNCTION_UPDATE\n");
8878#if 0
8879                f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_UPDATE);
8880                /*
8881                 * We will perform the queues update from the sp_core_task as
8882                 * all queue SP operations should run with CORE_LOCK.
8883                 */
8884                bxe_set_bit(BXE_SP_CORE_AFEX_F_UPDATE, &sc->sp_core_state);
8885                taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8886#endif
8887            }
8888            goto next_spqe;
8889
8890#if 0
8891        case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
8892            f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_AFEX_VIFLISTS);
8893            bxe_after_afex_vif_lists(sc, elem);
8894            goto next_spqe;
8895#endif
8896
8897        case EVENT_RING_OPCODE_FORWARD_SETUP:
8898            q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8899            if (q_obj->complete_cmd(sc, q_obj,
8900                                    ECORE_Q_CMD_SETUP_TX_ONLY)) {
8901                break;
8902            }
8903            goto next_spqe;
8904
8905        case EVENT_RING_OPCODE_FUNCTION_START:
8906            BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8907            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8908                break;
8909            }
8910            goto next_spqe;
8911
8912        case EVENT_RING_OPCODE_FUNCTION_STOP:
8913            BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8914            if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8915                break;
8916            }
8917            goto next_spqe;
8918        }
8919
8920        switch (opcode | sc->state) {
8921        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8922        case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8923            cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8924            BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8925            rss_raw->clear_pending(rss_raw);
8926            break;
8927
8928        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8929        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8930        case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8931        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8932        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8933        case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8934            BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8935            bxe_handle_classification_eqe(sc, elem);
8936            break;
8937
8938        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8939        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8940        case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8941            BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8942            bxe_handle_mcast_eqe(sc);
8943            break;
8944
8945        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8946        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8947        case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8948            BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8949            bxe_handle_rx_mode_eqe(sc, elem);
8950            break;
8951
8952        default:
8953            /* unknown event log error and continue */
8954            BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8955                  elem->message.opcode, sc->state);
8956        }
8957
8958next_spqe:
8959        spqe_cnt++;
8960    } /* for */
8961
8962    mb();
8963    atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8964
8965    sc->eq_cons = sw_cons;
8966    sc->eq_prod = sw_prod;
8967
8968    /* make sure that above mem writes were issued towards the memory */
8969    wmb();
8970
8971    /* update producer */
8972    bxe_update_eq_prod(sc, sc->eq_prod);
8973}
8974
8975static void
8976bxe_handle_sp_tq(void *context,
8977                 int  pending)
8978{
8979    struct bxe_softc *sc = (struct bxe_softc *)context;
8980    uint16_t status;
8981
8982    BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8983
8984    /* what work needs to be performed? */
8985    status = bxe_update_dsb_idx(sc);
8986
8987    BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8988
8989    /* HW attentions */
8990    if (status & BXE_DEF_SB_ATT_IDX) {
8991        BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8992        bxe_attn_int(sc);
8993        status &= ~BXE_DEF_SB_ATT_IDX;
8994    }
8995
8996    /* SP events: STAT_QUERY and others */
8997    if (status & BXE_DEF_SB_IDX) {
8998        /* handle EQ completions */
8999        BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
9000        bxe_eq_int(sc);
9001        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
9002                   le16toh(sc->def_idx), IGU_INT_NOP, 1);
9003        status &= ~BXE_DEF_SB_IDX;
9004    }
9005
9006    /* if status is non zero then something went wrong */
9007    if (__predict_false(status)) {
9008        BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
9009    }
9010
9011    /* ack status block only if something was actually handled */
9012    bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
9013               le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
9014
9015    /*
9016     * Must be called after the EQ processing (since eq leads to sriov
9017     * ramrod completion flows).
9018     * This flow may have been scheduled by the arrival of a ramrod
9019     * completion, or by the sriov code rescheduling itself.
9020     */
9021    // XXX bxe_iov_sp_task(sc);
9022
9023#if 0
9024    /* AFEX - poll to check if VIFSET_ACK should be sent to MFW */
9025    if (bxe_test_and_clear_bit(ECORE_AFEX_PENDING_VIFSET_MCP_ACK,
9026                               &sc->sp_state)) {
9027        bxe_link_report(sc);
9028        bxe_fw_command(sc, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
9029    }
9030#endif
9031}
9032
9033static void
9034bxe_handle_fp_tq(void *context,
9035                 int  pending)
9036{
9037    struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
9038    struct bxe_softc *sc = fp->sc;
9039    uint8_t more_tx = FALSE;
9040    uint8_t more_rx = FALSE;
9041
9042    BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
9043
9044    /* XXX
9045     * IFF_DRV_RUNNING state can't be checked here since we process
9046     * slowpath events on a client queue during setup. Instead
9047     * we need to add a "process/continue" flag here that the driver
9048     * can use to tell the task here not to do anything.
9049     */
9050#if 0
9051    if (!(sc->ifnet->if_drv_flags & IFF_DRV_RUNNING)) {
9052        return;
9053    }
9054#endif
9055
9056    /* update the fastpath index */
9057    bxe_update_fp_sb_idx(fp);
9058
9059    /* XXX add loop here if ever support multiple tx CoS */
9060    /* fp->txdata[cos] */
9061    if (bxe_has_tx_work(fp)) {
9062        BXE_FP_TX_LOCK(fp);
9063        more_tx = bxe_txeof(sc, fp);
9064        BXE_FP_TX_UNLOCK(fp);
9065    }
9066
9067    if (bxe_has_rx_work(fp)) {
9068        more_rx = bxe_rxeof(sc, fp);
9069    }
9070
9071    if (more_rx /*|| more_tx*/) {
9072        /* still more work to do */
9073        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9074        return;
9075    }
9076
9077    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9078               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9079}
9080
9081static void
9082bxe_task_fp(struct bxe_fastpath *fp)
9083{
9084    struct bxe_softc *sc = fp->sc;
9085    uint8_t more_tx = FALSE;
9086    uint8_t more_rx = FALSE;
9087
9088    BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
9089
9090    /* update the fastpath index */
9091    bxe_update_fp_sb_idx(fp);
9092
9093    /* XXX add loop here if ever support multiple tx CoS */
9094    /* fp->txdata[cos] */
9095    if (bxe_has_tx_work(fp)) {
9096        BXE_FP_TX_LOCK(fp);
9097        more_tx = bxe_txeof(sc, fp);
9098        BXE_FP_TX_UNLOCK(fp);
9099    }
9100
9101    if (bxe_has_rx_work(fp)) {
9102        more_rx = bxe_rxeof(sc, fp);
9103    }
9104
9105    if (more_rx /*|| more_tx*/) {
9106        /* still more work to do, bail out if this ISR and process later */
9107        taskqueue_enqueue_fast(fp->tq, &fp->tq_task);
9108        return;
9109    }
9110
9111    /*
9112     * Here we write the fastpath index taken before doing any tx or rx work.
9113     * It is very well possible other hw events occurred up to this point and
9114     * they were actually processed accordingly above. Since we're going to
9115     * write an older fastpath index, an interrupt is coming which we might
9116     * not do any work in.
9117     */
9118    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
9119               le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
9120}
9121
9122/*
9123 * Legacy interrupt entry point.
9124 *
9125 * Verifies that the controller generated the interrupt and
9126 * then calls a separate routine to handle the various
9127 * interrupt causes: link, RX, and TX.
9128 */
9129static void
9130bxe_intr_legacy(void *xsc)
9131{
9132    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9133    struct bxe_fastpath *fp;
9134    uint16_t status, mask;
9135    int i;
9136
9137    BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
9138
9139#if 0
9140    /* Don't handle any interrupts if we're not ready. */
9141    if (__predict_false(sc->intr_sem != 0)) {
9142        return;
9143    }
9144#endif
9145
9146    /*
9147     * 0 for ustorm, 1 for cstorm
9148     * the bits returned from ack_int() are 0-15
9149     * bit 0 = attention status block
9150     * bit 1 = fast path status block
9151     * a mask of 0x2 or more = tx/rx event
9152     * a mask of 1 = slow path event
9153     */
9154
9155    status = bxe_ack_int(sc);
9156
9157    /* the interrupt is not for us */
9158    if (__predict_false(status == 0)) {
9159        BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
9160        return;
9161    }
9162
9163    BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
9164
9165    FOR_EACH_ETH_QUEUE(sc, i) {
9166        fp = &sc->fp[i];
9167        mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
9168        if (status & mask) {
9169            /* acknowledge and disable further fastpath interrupts */
9170            bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9171            bxe_task_fp(fp);
9172            status &= ~mask;
9173        }
9174    }
9175
9176#if 0
9177    if (CNIC_SUPPORT(sc)) {
9178        mask = 0x2;
9179        if (status & (mask | 0x1)) {
9180            ...
9181            status &= ~mask;
9182        }
9183    }
9184#endif
9185
9186    if (__predict_false(status & 0x1)) {
9187        /* acknowledge and disable further slowpath interrupts */
9188        bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9189
9190        /* schedule slowpath handler */
9191        taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9192
9193        status &= ~0x1;
9194    }
9195
9196    if (__predict_false(status)) {
9197        BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
9198    }
9199}
9200
9201/* slowpath interrupt entry point */
9202static void
9203bxe_intr_sp(void *xsc)
9204{
9205    struct bxe_softc *sc = (struct bxe_softc *)xsc;
9206
9207    BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
9208
9209    /* acknowledge and disable further slowpath interrupts */
9210    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9211
9212    /* schedule slowpath handler */
9213    taskqueue_enqueue_fast(sc->sp_tq, &sc->sp_tq_task);
9214}
9215
9216/* fastpath interrupt entry point */
9217static void
9218bxe_intr_fp(void *xfp)
9219{
9220    struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
9221    struct bxe_softc *sc = fp->sc;
9222
9223    BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
9224
9225    BLOGD(sc, DBG_INTR,
9226          "(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
9227          curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
9228
9229#if 0
9230    /* Don't handle any interrupts if we're not ready. */
9231    if (__predict_false(sc->intr_sem != 0)) {
9232        return;
9233    }
9234#endif
9235
9236    /* acknowledge and disable further fastpath interrupts */
9237    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
9238
9239    bxe_task_fp(fp);
9240}
9241
9242/* Release all interrupts allocated by the driver. */
9243static void
9244bxe_interrupt_free(struct bxe_softc *sc)
9245{
9246    int i;
9247
9248    switch (sc->interrupt_mode) {
9249    case INTR_MODE_INTX:
9250        BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
9251        if (sc->intr[0].resource != NULL) {
9252            bus_release_resource(sc->dev,
9253                                 SYS_RES_IRQ,
9254                                 sc->intr[0].rid,
9255                                 sc->intr[0].resource);
9256        }
9257        break;
9258    case INTR_MODE_MSI:
9259        for (i = 0; i < sc->intr_count; i++) {
9260            BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
9261            if (sc->intr[i].resource && sc->intr[i].rid) {
9262                bus_release_resource(sc->dev,
9263                                     SYS_RES_IRQ,
9264                                     sc->intr[i].rid,
9265                                     sc->intr[i].resource);
9266            }
9267        }
9268        pci_release_msi(sc->dev);
9269        break;
9270    case INTR_MODE_MSIX:
9271        for (i = 0; i < sc->intr_count; i++) {
9272            BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
9273            if (sc->intr[i].resource && sc->intr[i].rid) {
9274                bus_release_resource(sc->dev,
9275                                     SYS_RES_IRQ,
9276                                     sc->intr[i].rid,
9277                                     sc->intr[i].resource);
9278            }
9279        }
9280        pci_release_msi(sc->dev);
9281        break;
9282    default:
9283        /* nothing to do as initial allocation failed */
9284        break;
9285    }
9286}
9287
9288/*
9289 * This function determines and allocates the appropriate
9290 * interrupt based on system capabilites and user request.
9291 *
9292 * The user may force a particular interrupt mode, specify
9293 * the number of receive queues, specify the method for
9294 * distribuitng received frames to receive queues, or use
9295 * the default settings which will automatically select the
9296 * best supported combination.  In addition, the OS may or
9297 * may not support certain combinations of these settings.
9298 * This routine attempts to reconcile the settings requested
9299 * by the user with the capabilites available from the system
9300 * to select the optimal combination of features.
9301 *
9302 * Returns:
9303 *   0 = Success, !0 = Failure.
9304 */
9305static int
9306bxe_interrupt_alloc(struct bxe_softc *sc)
9307{
9308    int msix_count = 0;
9309    int msi_count = 0;
9310    int num_requested = 0;
9311    int num_allocated = 0;
9312    int rid, i, j;
9313    int rc;
9314
9315    /* get the number of available MSI/MSI-X interrupts from the OS */
9316    if (sc->interrupt_mode > 0) {
9317        if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
9318            msix_count = pci_msix_count(sc->dev);
9319        }
9320
9321        if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
9322            msi_count = pci_msi_count(sc->dev);
9323        }
9324
9325        BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
9326              msi_count, msix_count);
9327    }
9328
9329    do { /* try allocating MSI-X interrupt resources (at least 2) */
9330        if (sc->interrupt_mode != INTR_MODE_MSIX) {
9331            break;
9332        }
9333
9334        if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
9335            (msix_count < 2)) {
9336            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9337            break;
9338        }
9339
9340        /* ask for the necessary number of MSI-X vectors */
9341        num_requested = min((sc->num_queues + 1), msix_count);
9342
9343        BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
9344
9345        num_allocated = num_requested;
9346        if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
9347            BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
9348            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9349            break;
9350        }
9351
9352        if (num_allocated < 2) { /* possible? */
9353            BLOGE(sc, "MSI-X allocation less than 2!\n");
9354            sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9355            pci_release_msi(sc->dev);
9356            break;
9357        }
9358
9359        BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
9360              num_requested, num_allocated);
9361
9362        /* best effort so use the number of vectors allocated to us */
9363        sc->intr_count = num_allocated;
9364        sc->num_queues = num_allocated - 1;
9365
9366        rid = 1; /* initial resource identifier */
9367
9368        /* allocate the MSI-X vectors */
9369        for (i = 0; i < num_allocated; i++) {
9370            sc->intr[i].rid = (rid + i);
9371
9372            if ((sc->intr[i].resource =
9373                 bus_alloc_resource_any(sc->dev,
9374                                        SYS_RES_IRQ,
9375                                        &sc->intr[i].rid,
9376                                        RF_ACTIVE)) == NULL) {
9377                BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
9378                      i, (rid + i));
9379
9380                for (j = (i - 1); j >= 0; j--) {
9381                    bus_release_resource(sc->dev,
9382                                         SYS_RES_IRQ,
9383                                         sc->intr[j].rid,
9384                                         sc->intr[j].resource);
9385                }
9386
9387                sc->intr_count = 0;
9388                sc->num_queues = 0;
9389                sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9390                pci_release_msi(sc->dev);
9391                break;
9392            }
9393
9394            BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9395        }
9396    } while (0);
9397
9398    do { /* try allocating MSI vector resources (at least 2) */
9399        if (sc->interrupt_mode != INTR_MODE_MSI) {
9400            break;
9401        }
9402
9403        if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9404            (msi_count < 1)) {
9405            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9406            break;
9407        }
9408
9409        /* ask for a single MSI vector */
9410        num_requested = 1;
9411
9412        BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9413
9414        num_allocated = num_requested;
9415        if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9416            BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9417            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9418            break;
9419        }
9420
9421        if (num_allocated != 1) { /* possible? */
9422            BLOGE(sc, "MSI allocation is not 1!\n");
9423            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9424            pci_release_msi(sc->dev);
9425            break;
9426        }
9427
9428        BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9429              num_requested, num_allocated);
9430
9431        /* best effort so use the number of vectors allocated to us */
9432        sc->intr_count = num_allocated;
9433        sc->num_queues = num_allocated;
9434
9435        rid = 1; /* initial resource identifier */
9436
9437        sc->intr[0].rid = rid;
9438
9439        if ((sc->intr[0].resource =
9440             bus_alloc_resource_any(sc->dev,
9441                                    SYS_RES_IRQ,
9442                                    &sc->intr[0].rid,
9443                                    RF_ACTIVE)) == NULL) {
9444            BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9445            sc->intr_count = 0;
9446            sc->num_queues = 0;
9447            sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9448            pci_release_msi(sc->dev);
9449            break;
9450        }
9451
9452        BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9453    } while (0);
9454
9455    do { /* try allocating INTx vector resources */
9456        if (sc->interrupt_mode != INTR_MODE_INTX) {
9457            break;
9458        }
9459
9460        BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9461
9462        /* only one vector for INTx */
9463        sc->intr_count = 1;
9464        sc->num_queues = 1;
9465
9466        rid = 0; /* initial resource identifier */
9467
9468        sc->intr[0].rid = rid;
9469
9470        if ((sc->intr[0].resource =
9471             bus_alloc_resource_any(sc->dev,
9472                                    SYS_RES_IRQ,
9473                                    &sc->intr[0].rid,
9474                                    (RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9475            BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9476            sc->intr_count = 0;
9477            sc->num_queues = 0;
9478            sc->interrupt_mode = -1; /* Failed! */
9479            break;
9480        }
9481
9482        BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9483    } while (0);
9484
9485    if (sc->interrupt_mode == -1) {
9486        BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9487        rc = 1;
9488    } else {
9489        BLOGD(sc, DBG_LOAD,
9490              "Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9491              sc->interrupt_mode, sc->num_queues);
9492        rc = 0;
9493    }
9494
9495    return (rc);
9496}
9497
9498static void
9499bxe_interrupt_detach(struct bxe_softc *sc)
9500{
9501    struct bxe_fastpath *fp;
9502    int i;
9503
9504    /* release interrupt resources */
9505    for (i = 0; i < sc->intr_count; i++) {
9506        if (sc->intr[i].resource && sc->intr[i].tag) {
9507            BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9508            bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9509        }
9510    }
9511
9512    for (i = 0; i < sc->num_queues; i++) {
9513        fp = &sc->fp[i];
9514        if (fp->tq) {
9515            taskqueue_drain(fp->tq, &fp->tq_task);
9516            taskqueue_free(fp->tq);
9517            fp->tq = NULL;
9518        }
9519    }
9520
9521    if (sc->rx_mode_tq) {
9522        taskqueue_drain(sc->rx_mode_tq, &sc->rx_mode_tq_task);
9523        taskqueue_free(sc->rx_mode_tq);
9524        sc->rx_mode_tq = NULL;
9525    }
9526
9527    if (sc->sp_tq) {
9528        taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9529        taskqueue_free(sc->sp_tq);
9530        sc->sp_tq = NULL;
9531    }
9532}
9533
9534/*
9535 * Enables interrupts and attach to the ISR.
9536 *
9537 * When using multiple MSI/MSI-X vectors the first vector
9538 * is used for slowpath operations while all remaining
9539 * vectors are used for fastpath operations.  If only a
9540 * single MSI/MSI-X vector is used (SINGLE_ISR) then the
9541 * ISR must look for both slowpath and fastpath completions.
9542 */
9543static int
9544bxe_interrupt_attach(struct bxe_softc *sc)
9545{
9546    struct bxe_fastpath *fp;
9547    int rc = 0;
9548    int i;
9549
9550    snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9551             "bxe%d_sp_tq", sc->unit);
9552    TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9553    sc->sp_tq = taskqueue_create_fast(sc->sp_tq_name, M_NOWAIT,
9554                                      taskqueue_thread_enqueue,
9555                                      &sc->sp_tq);
9556    taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9557                            "%s", sc->sp_tq_name);
9558
9559    snprintf(sc->rx_mode_tq_name, sizeof(sc->rx_mode_tq_name),
9560             "bxe%d_rx_mode_tq", sc->unit);
9561    TASK_INIT(&sc->rx_mode_tq_task, 0, bxe_handle_rx_mode_tq, sc);
9562    sc->rx_mode_tq = taskqueue_create_fast(sc->rx_mode_tq_name, M_NOWAIT,
9563                                           taskqueue_thread_enqueue,
9564                                           &sc->rx_mode_tq);
9565    taskqueue_start_threads(&sc->rx_mode_tq, 1, PWAIT, /* lower priority */
9566                            "%s", sc->rx_mode_tq_name);
9567
9568    for (i = 0; i < sc->num_queues; i++) {
9569        fp = &sc->fp[i];
9570        snprintf(fp->tq_name, sizeof(fp->tq_name),
9571                 "bxe%d_fp%d_tq", sc->unit, i);
9572        TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9573        fp->tq = taskqueue_create_fast(fp->tq_name, M_NOWAIT,
9574                                       taskqueue_thread_enqueue,
9575                                       &fp->tq);
9576        taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9577                                "%s", fp->tq_name);
9578    }
9579
9580    /* setup interrupt handlers */
9581    if (sc->interrupt_mode == INTR_MODE_MSIX) {
9582        BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9583
9584        /*
9585         * Setup the interrupt handler. Note that we pass the driver instance
9586         * to the interrupt handler for the slowpath.
9587         */
9588        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9589                                 (INTR_TYPE_NET | INTR_MPSAFE),
9590                                 NULL, bxe_intr_sp, sc,
9591                                 &sc->intr[0].tag)) != 0) {
9592            BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9593            goto bxe_interrupt_attach_exit;
9594        }
9595
9596        bus_describe_intr(sc->dev, sc->intr[0].resource,
9597                          sc->intr[0].tag, "sp");
9598
9599        /* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9600
9601        /* initialize the fastpath vectors (note the first was used for sp) */
9602        for (i = 0; i < sc->num_queues; i++) {
9603            fp = &sc->fp[i];
9604            BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9605
9606            /*
9607             * Setup the interrupt handler. Note that we pass the
9608             * fastpath context to the interrupt handler in this
9609             * case.
9610             */
9611            if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9612                                     (INTR_TYPE_NET | INTR_MPSAFE),
9613                                     NULL, bxe_intr_fp, fp,
9614                                     &sc->intr[i + 1].tag)) != 0) {
9615                BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9616                      (i + 1), rc);
9617                goto bxe_interrupt_attach_exit;
9618            }
9619
9620            bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9621                              sc->intr[i + 1].tag, "fp%02d", i);
9622
9623            /* bind the fastpath instance to a cpu */
9624            if (sc->num_queues > 1) {
9625                bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9626            }
9627
9628            fp->state = BXE_FP_STATE_IRQ;
9629        }
9630    } else if (sc->interrupt_mode == INTR_MODE_MSI) {
9631        BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9632
9633        /*
9634         * Setup the interrupt handler. Note that we pass the
9635         * driver instance to the interrupt handler which
9636         * will handle both the slowpath and fastpath.
9637         */
9638        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9639                                 (INTR_TYPE_NET | INTR_MPSAFE),
9640                                 NULL, bxe_intr_legacy, sc,
9641                                 &sc->intr[0].tag)) != 0) {
9642            BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9643            goto bxe_interrupt_attach_exit;
9644        }
9645
9646    } else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9647        BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9648
9649        /*
9650         * Setup the interrupt handler. Note that we pass the
9651         * driver instance to the interrupt handler which
9652         * will handle both the slowpath and fastpath.
9653         */
9654        if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9655                                 (INTR_TYPE_NET | INTR_MPSAFE),
9656                                 NULL, bxe_intr_legacy, sc,
9657                                 &sc->intr[0].tag)) != 0) {
9658            BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9659            goto bxe_interrupt_attach_exit;
9660        }
9661    }
9662
9663bxe_interrupt_attach_exit:
9664
9665    return (rc);
9666}
9667
9668static int  bxe_init_hw_common_chip(struct bxe_softc *sc);
9669static int  bxe_init_hw_common(struct bxe_softc *sc);
9670static int  bxe_init_hw_port(struct bxe_softc *sc);
9671static int  bxe_init_hw_func(struct bxe_softc *sc);
9672static void bxe_reset_common(struct bxe_softc *sc);
9673static void bxe_reset_port(struct bxe_softc *sc);
9674static void bxe_reset_func(struct bxe_softc *sc);
9675static int  bxe_gunzip_init(struct bxe_softc *sc);
9676static void bxe_gunzip_end(struct bxe_softc *sc);
9677static int  bxe_init_firmware(struct bxe_softc *sc);
9678static void bxe_release_firmware(struct bxe_softc *sc);
9679
9680static struct
9681ecore_func_sp_drv_ops bxe_func_sp_drv = {
9682    .init_hw_cmn_chip = bxe_init_hw_common_chip,
9683    .init_hw_cmn      = bxe_init_hw_common,
9684    .init_hw_port     = bxe_init_hw_port,
9685    .init_hw_func     = bxe_init_hw_func,
9686
9687    .reset_hw_cmn     = bxe_reset_common,
9688    .reset_hw_port    = bxe_reset_port,
9689    .reset_hw_func    = bxe_reset_func,
9690
9691    .gunzip_init      = bxe_gunzip_init,
9692    .gunzip_end       = bxe_gunzip_end,
9693
9694    .init_fw          = bxe_init_firmware,
9695    .release_fw       = bxe_release_firmware,
9696};
9697
9698static void
9699bxe_init_func_obj(struct bxe_softc *sc)
9700{
9701    sc->dmae_ready = 0;
9702
9703    ecore_init_func_obj(sc,
9704                        &sc->func_obj,
9705                        BXE_SP(sc, func_rdata),
9706                        BXE_SP_MAPPING(sc, func_rdata),
9707                        BXE_SP(sc, func_afex_rdata),
9708                        BXE_SP_MAPPING(sc, func_afex_rdata),
9709                        &bxe_func_sp_drv);
9710}
9711
9712static int
9713bxe_init_hw(struct bxe_softc *sc,
9714            uint32_t         load_code)
9715{
9716    struct ecore_func_state_params func_params = { NULL };
9717    int rc;
9718
9719    /* prepare the parameters for function state transitions */
9720    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9721
9722    func_params.f_obj = &sc->func_obj;
9723    func_params.cmd = ECORE_F_CMD_HW_INIT;
9724
9725    func_params.params.hw_init.load_phase = load_code;
9726
9727    /*
9728     * Via a plethora of function pointers, we will eventually reach
9729     * bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9730     */
9731    rc = ecore_func_state_change(sc, &func_params);
9732
9733    return (rc);
9734}
9735
9736static void
9737bxe_fill(struct bxe_softc *sc,
9738         uint32_t         addr,
9739         int              fill,
9740         uint32_t         len)
9741{
9742    uint32_t i;
9743
9744    if (!(len % 4) && !(addr % 4)) {
9745        for (i = 0; i < len; i += 4) {
9746            REG_WR(sc, (addr + i), fill);
9747        }
9748    } else {
9749        for (i = 0; i < len; i++) {
9750            REG_WR8(sc, (addr + i), fill);
9751        }
9752    }
9753}
9754
9755/* writes FP SP data to FW - data_size in dwords */
9756static void
9757bxe_wr_fp_sb_data(struct bxe_softc *sc,
9758                  int              fw_sb_id,
9759                  uint32_t         *sb_data_p,
9760                  uint32_t         data_size)
9761{
9762    int index;
9763
9764    for (index = 0; index < data_size; index++) {
9765        REG_WR(sc,
9766               (BAR_CSTRORM_INTMEM +
9767                CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9768                (sizeof(uint32_t) * index)),
9769               *(sb_data_p + index));
9770    }
9771}
9772
9773static void
9774bxe_zero_fp_sb(struct bxe_softc *sc,
9775               int              fw_sb_id)
9776{
9777    struct hc_status_block_data_e2 sb_data_e2;
9778    struct hc_status_block_data_e1x sb_data_e1x;
9779    uint32_t *sb_data_p;
9780    uint32_t data_size = 0;
9781
9782    if (!CHIP_IS_E1x(sc)) {
9783        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9784        sb_data_e2.common.state = SB_DISABLED;
9785        sb_data_e2.common.p_func.vf_valid = FALSE;
9786        sb_data_p = (uint32_t *)&sb_data_e2;
9787        data_size = (sizeof(struct hc_status_block_data_e2) /
9788                     sizeof(uint32_t));
9789    } else {
9790        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9791        sb_data_e1x.common.state = SB_DISABLED;
9792        sb_data_e1x.common.p_func.vf_valid = FALSE;
9793        sb_data_p = (uint32_t *)&sb_data_e1x;
9794        data_size = (sizeof(struct hc_status_block_data_e1x) /
9795                     sizeof(uint32_t));
9796    }
9797
9798    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9799
9800    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9801             0, CSTORM_STATUS_BLOCK_SIZE);
9802    bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9803             0, CSTORM_SYNC_BLOCK_SIZE);
9804}
9805
9806static void
9807bxe_wr_sp_sb_data(struct bxe_softc               *sc,
9808                  struct hc_sp_status_block_data *sp_sb_data)
9809{
9810    int i;
9811
9812    for (i = 0;
9813         i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9814         i++) {
9815        REG_WR(sc,
9816               (BAR_CSTRORM_INTMEM +
9817                CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9818                (i * sizeof(uint32_t))),
9819               *((uint32_t *)sp_sb_data + i));
9820    }
9821}
9822
9823static void
9824bxe_zero_sp_sb(struct bxe_softc *sc)
9825{
9826    struct hc_sp_status_block_data sp_sb_data;
9827
9828    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9829
9830    sp_sb_data.state           = SB_DISABLED;
9831    sp_sb_data.p_func.vf_valid = FALSE;
9832
9833    bxe_wr_sp_sb_data(sc, &sp_sb_data);
9834
9835    bxe_fill(sc,
9836             (BAR_CSTRORM_INTMEM +
9837              CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9838              0, CSTORM_SP_STATUS_BLOCK_SIZE);
9839    bxe_fill(sc,
9840             (BAR_CSTRORM_INTMEM +
9841              CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9842              0, CSTORM_SP_SYNC_BLOCK_SIZE);
9843}
9844
9845static void
9846bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9847                             int                       igu_sb_id,
9848                             int                       igu_seg_id)
9849{
9850    hc_sm->igu_sb_id      = igu_sb_id;
9851    hc_sm->igu_seg_id     = igu_seg_id;
9852    hc_sm->timer_value    = 0xFF;
9853    hc_sm->time_to_expire = 0xFFFFFFFF;
9854}
9855
9856static void
9857bxe_map_sb_state_machines(struct hc_index_data *index_data)
9858{
9859    /* zero out state machine indices */
9860
9861    /* rx indices */
9862    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9863
9864    /* tx indices */
9865    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags      &= ~HC_INDEX_DATA_SM_ID;
9866    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9867    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9868    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9869
9870    /* map indices */
9871
9872    /* rx indices */
9873    index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9874        (SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9875
9876    /* tx indices */
9877    index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9878        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9879    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9880        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9881    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9882        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9883    index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9884        (SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9885}
9886
9887static void
9888bxe_init_sb(struct bxe_softc *sc,
9889            bus_addr_t       busaddr,
9890            int              vfid,
9891            uint8_t          vf_valid,
9892            int              fw_sb_id,
9893            int              igu_sb_id)
9894{
9895    struct hc_status_block_data_e2  sb_data_e2;
9896    struct hc_status_block_data_e1x sb_data_e1x;
9897    struct hc_status_block_sm       *hc_sm_p;
9898    uint32_t *sb_data_p;
9899    int igu_seg_id;
9900    int data_size;
9901
9902    if (CHIP_INT_MODE_IS_BC(sc)) {
9903        igu_seg_id = HC_SEG_ACCESS_NORM;
9904    } else {
9905        igu_seg_id = IGU_SEG_ACCESS_NORM;
9906    }
9907
9908    bxe_zero_fp_sb(sc, fw_sb_id);
9909
9910    if (!CHIP_IS_E1x(sc)) {
9911        memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9912        sb_data_e2.common.state = SB_ENABLED;
9913        sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9914        sb_data_e2.common.p_func.vf_id = vfid;
9915        sb_data_e2.common.p_func.vf_valid = vf_valid;
9916        sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9917        sb_data_e2.common.same_igu_sb_1b = TRUE;
9918        sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9919        sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9920        hc_sm_p = sb_data_e2.common.state_machine;
9921        sb_data_p = (uint32_t *)&sb_data_e2;
9922        data_size = (sizeof(struct hc_status_block_data_e2) /
9923                     sizeof(uint32_t));
9924        bxe_map_sb_state_machines(sb_data_e2.index_data);
9925    } else {
9926        memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9927        sb_data_e1x.common.state = SB_ENABLED;
9928        sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9929        sb_data_e1x.common.p_func.vf_id = 0xff;
9930        sb_data_e1x.common.p_func.vf_valid = FALSE;
9931        sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9932        sb_data_e1x.common.same_igu_sb_1b = TRUE;
9933        sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9934        sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9935        hc_sm_p = sb_data_e1x.common.state_machine;
9936        sb_data_p = (uint32_t *)&sb_data_e1x;
9937        data_size = (sizeof(struct hc_status_block_data_e1x) /
9938                     sizeof(uint32_t));
9939        bxe_map_sb_state_machines(sb_data_e1x.index_data);
9940    }
9941
9942    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9943    bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9944
9945    BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9946
9947    /* write indices to HW - PCI guarantees endianity of regpairs */
9948    bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9949}
9950
9951static inline uint8_t
9952bxe_fp_qzone_id(struct bxe_fastpath *fp)
9953{
9954    if (CHIP_IS_E1x(fp->sc)) {
9955        return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9956    } else {
9957        return (fp->cl_id);
9958    }
9959}
9960
9961static inline uint32_t
9962bxe_rx_ustorm_prods_offset(struct bxe_softc    *sc,
9963                           struct bxe_fastpath *fp)
9964{
9965    uint32_t offset = BAR_USTRORM_INTMEM;
9966
9967#if 0
9968    if (IS_VF(sc)) {
9969        return (PXP_VF_ADDR_USDM_QUEUES_START +
9970                (sc->acquire_resp.resc.hw_qid[fp->index] *
9971                 sizeof(struct ustorm_queue_zone_data)));
9972    } else
9973#endif
9974    if (!CHIP_IS_E1x(sc)) {
9975        offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9976    } else {
9977        offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9978    }
9979
9980    return (offset);
9981}
9982
9983static void
9984bxe_init_eth_fp(struct bxe_softc *sc,
9985                int              idx)
9986{
9987    struct bxe_fastpath *fp = &sc->fp[idx];
9988    uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9989    unsigned long q_type = 0;
9990    int cos;
9991
9992    fp->sc    = sc;
9993    fp->index = idx;
9994
9995    snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
9996             "bxe%d_fp%d_tx_lock", sc->unit, idx);
9997    mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
9998
9999    snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
10000             "bxe%d_fp%d_rx_lock", sc->unit, idx);
10001    mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
10002
10003    fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
10004    fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
10005
10006    fp->cl_id = (CHIP_IS_E1x(sc)) ?
10007                    (SC_L_ID(sc) + idx) :
10008                    /* want client ID same as IGU SB ID for non-E1 */
10009                    fp->igu_sb_id;
10010    fp->cl_qzone_id = bxe_fp_qzone_id(fp);
10011
10012    /* setup sb indices */
10013    if (!CHIP_IS_E1x(sc)) {
10014        fp->sb_index_values  = fp->status_block.e2_sb->sb.index_values;
10015        fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
10016    } else {
10017        fp->sb_index_values  = fp->status_block.e1x_sb->sb.index_values;
10018        fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
10019    }
10020
10021    /* init shortcut */
10022    fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
10023
10024    fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
10025
10026    /*
10027     * XXX If multiple CoS is ever supported then each fastpath structure
10028     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
10029     */
10030    for (cos = 0; cos < sc->max_cos; cos++) {
10031        cids[cos] = idx;
10032    }
10033    fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
10034
10035    /* nothing more for a VF to do */
10036    if (IS_VF(sc)) {
10037        return;
10038    }
10039
10040    bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
10041                fp->fw_sb_id, fp->igu_sb_id);
10042
10043    bxe_update_fp_sb_idx(fp);
10044
10045    /* Configure Queue State object */
10046    bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
10047    bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
10048
10049    ecore_init_queue_obj(sc,
10050                         &sc->sp_objs[idx].q_obj,
10051                         fp->cl_id,
10052                         cids,
10053                         sc->max_cos,
10054                         SC_FUNC(sc),
10055                         BXE_SP(sc, q_rdata),
10056                         BXE_SP_MAPPING(sc, q_rdata),
10057                         q_type);
10058
10059    /* configure classification DBs */
10060    ecore_init_mac_obj(sc,
10061                       &sc->sp_objs[idx].mac_obj,
10062                       fp->cl_id,
10063                       idx,
10064                       SC_FUNC(sc),
10065                       BXE_SP(sc, mac_rdata),
10066                       BXE_SP_MAPPING(sc, mac_rdata),
10067                       ECORE_FILTER_MAC_PENDING,
10068                       &sc->sp_state,
10069                       ECORE_OBJ_TYPE_RX_TX,
10070                       &sc->macs_pool);
10071
10072    BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
10073          idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
10074}
10075
10076static inline void
10077bxe_update_rx_prod(struct bxe_softc    *sc,
10078                   struct bxe_fastpath *fp,
10079                   uint16_t            rx_bd_prod,
10080                   uint16_t            rx_cq_prod,
10081                   uint16_t            rx_sge_prod)
10082{
10083    struct ustorm_eth_rx_producers rx_prods = { 0 };
10084    uint32_t i;
10085
10086    /* update producers */
10087    rx_prods.bd_prod  = rx_bd_prod;
10088    rx_prods.cqe_prod = rx_cq_prod;
10089    rx_prods.sge_prod = rx_sge_prod;
10090
10091    /*
10092     * Make sure that the BD and SGE data is updated before updating the
10093     * producers since FW might read the BD/SGE right after the producer
10094     * is updated.
10095     * This is only applicable for weak-ordered memory model archs such
10096     * as IA-64. The following barrier is also mandatory since FW will
10097     * assumes BDs must have buffers.
10098     */
10099    wmb();
10100
10101    for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
10102        REG_WR(sc,
10103               (fp->ustorm_rx_prods_offset + (i * 4)),
10104               ((uint32_t *)&rx_prods)[i]);
10105    }
10106
10107    wmb(); /* keep prod updates ordered */
10108
10109    BLOGD(sc, DBG_RX,
10110          "RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
10111          fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
10112}
10113
10114static void
10115bxe_init_rx_rings(struct bxe_softc *sc)
10116{
10117    struct bxe_fastpath *fp;
10118    int i;
10119
10120    for (i = 0; i < sc->num_queues; i++) {
10121        fp = &sc->fp[i];
10122
10123        fp->rx_bd_cons = 0;
10124
10125        /*
10126         * Activate the BD ring...
10127         * Warning, this will generate an interrupt (to the TSTORM)
10128         * so this can only be done after the chip is initialized
10129         */
10130        bxe_update_rx_prod(sc, fp,
10131                           fp->rx_bd_prod,
10132                           fp->rx_cq_prod,
10133                           fp->rx_sge_prod);
10134
10135        if (i != 0) {
10136            continue;
10137        }
10138
10139        if (CHIP_IS_E1(sc)) {
10140            REG_WR(sc,
10141                   (BAR_USTRORM_INTMEM +
10142                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
10143                   U64_LO(fp->rcq_dma.paddr));
10144            REG_WR(sc,
10145                   (BAR_USTRORM_INTMEM +
10146                    USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
10147                   U64_HI(fp->rcq_dma.paddr));
10148        }
10149    }
10150}
10151
10152static void
10153bxe_init_tx_ring_one(struct bxe_fastpath *fp)
10154{
10155    SET_FLAG(fp->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
10156    fp->tx_db.data.zero_fill1 = 0;
10157    fp->tx_db.data.prod = 0;
10158
10159    fp->tx_pkt_prod = 0;
10160    fp->tx_pkt_cons = 0;
10161    fp->tx_bd_prod = 0;
10162    fp->tx_bd_cons = 0;
10163    fp->eth_q_stats.tx_pkts = 0;
10164}
10165
10166static inline void
10167bxe_init_tx_rings(struct bxe_softc *sc)
10168{
10169    int i;
10170
10171    for (i = 0; i < sc->num_queues; i++) {
10172#if 0
10173        uint8_t cos;
10174        for (cos = 0; cos < sc->max_cos; cos++) {
10175            bxe_init_tx_ring_one(&sc->fp[i].txdata[cos]);
10176        }
10177#else
10178        bxe_init_tx_ring_one(&sc->fp[i]);
10179#endif
10180    }
10181}
10182
10183static void
10184bxe_init_def_sb(struct bxe_softc *sc)
10185{
10186    struct host_sp_status_block *def_sb = sc->def_sb;
10187    bus_addr_t mapping = sc->def_sb_dma.paddr;
10188    int igu_sp_sb_index;
10189    int igu_seg_id;
10190    int port = SC_PORT(sc);
10191    int func = SC_FUNC(sc);
10192    int reg_offset, reg_offset_en5;
10193    uint64_t section;
10194    int index, sindex;
10195    struct hc_sp_status_block_data sp_sb_data;
10196
10197    memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
10198
10199    if (CHIP_INT_MODE_IS_BC(sc)) {
10200        igu_sp_sb_index = DEF_SB_IGU_ID;
10201        igu_seg_id = HC_SEG_ACCESS_DEF;
10202    } else {
10203        igu_sp_sb_index = sc->igu_dsb_id;
10204        igu_seg_id = IGU_SEG_ACCESS_DEF;
10205    }
10206
10207    /* attentions */
10208    section = ((uint64_t)mapping +
10209               offsetof(struct host_sp_status_block, atten_status_block));
10210    def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
10211    sc->attn_state = 0;
10212
10213    reg_offset = (port) ?
10214                     MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
10215                     MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
10216    reg_offset_en5 = (port) ?
10217                         MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
10218                         MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
10219
10220    for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
10221        /* take care of sig[0]..sig[4] */
10222        for (sindex = 0; sindex < 4; sindex++) {
10223            sc->attn_group[index].sig[sindex] =
10224                REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
10225        }
10226
10227        if (!CHIP_IS_E1x(sc)) {
10228            /*
10229             * enable5 is separate from the rest of the registers,
10230             * and the address skip is 4 and not 16 between the
10231             * different groups
10232             */
10233            sc->attn_group[index].sig[4] =
10234                REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
10235        } else {
10236            sc->attn_group[index].sig[4] = 0;
10237        }
10238    }
10239
10240    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10241        reg_offset = (port) ?
10242                         HC_REG_ATTN_MSG1_ADDR_L :
10243                         HC_REG_ATTN_MSG0_ADDR_L;
10244        REG_WR(sc, reg_offset, U64_LO(section));
10245        REG_WR(sc, (reg_offset + 4), U64_HI(section));
10246    } else if (!CHIP_IS_E1x(sc)) {
10247        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
10248        REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
10249    }
10250
10251    section = ((uint64_t)mapping +
10252               offsetof(struct host_sp_status_block, sp_sb));
10253
10254    bxe_zero_sp_sb(sc);
10255
10256    /* PCI guarantees endianity of regpair */
10257    sp_sb_data.state           = SB_ENABLED;
10258    sp_sb_data.host_sb_addr.lo = U64_LO(section);
10259    sp_sb_data.host_sb_addr.hi = U64_HI(section);
10260    sp_sb_data.igu_sb_id       = igu_sp_sb_index;
10261    sp_sb_data.igu_seg_id      = igu_seg_id;
10262    sp_sb_data.p_func.pf_id    = func;
10263    sp_sb_data.p_func.vnic_id  = SC_VN(sc);
10264    sp_sb_data.p_func.vf_id    = 0xff;
10265
10266    bxe_wr_sp_sb_data(sc, &sp_sb_data);
10267
10268    bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
10269}
10270
10271static void
10272bxe_init_sp_ring(struct bxe_softc *sc)
10273{
10274    atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
10275    sc->spq_prod_idx = 0;
10276    sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
10277    sc->spq_prod_bd = sc->spq;
10278    sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
10279}
10280
10281static void
10282bxe_init_eq_ring(struct bxe_softc *sc)
10283{
10284    union event_ring_elem *elem;
10285    int i;
10286
10287    for (i = 1; i <= NUM_EQ_PAGES; i++) {
10288        elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
10289
10290        elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
10291                                                 BCM_PAGE_SIZE *
10292                                                 (i % NUM_EQ_PAGES)));
10293        elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
10294                                                 BCM_PAGE_SIZE *
10295                                                 (i % NUM_EQ_PAGES)));
10296    }
10297
10298    sc->eq_cons    = 0;
10299    sc->eq_prod    = NUM_EQ_DESC;
10300    sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
10301
10302    atomic_store_rel_long(&sc->eq_spq_left,
10303                          (min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
10304                               NUM_EQ_DESC) - 1));
10305}
10306
10307static void
10308bxe_init_internal_common(struct bxe_softc *sc)
10309{
10310    int i;
10311
10312    if (IS_MF_SI(sc)) {
10313        /*
10314         * In switch independent mode, the TSTORM needs to accept
10315         * packets that failed classification, since approximate match
10316         * mac addresses aren't written to NIG LLH.
10317         */
10318        REG_WR8(sc,
10319                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10320                2);
10321    } else if (!CHIP_IS_E1(sc)) { /* 57710 doesn't support MF */
10322        REG_WR8(sc,
10323                (BAR_TSTRORM_INTMEM + TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET),
10324                0);
10325    }
10326
10327    /*
10328     * Zero this manually as its initialization is currently missing
10329     * in the initTool.
10330     */
10331    for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
10332        REG_WR(sc,
10333               (BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
10334               0);
10335    }
10336
10337    if (!CHIP_IS_E1x(sc)) {
10338        REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
10339                CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
10340    }
10341}
10342
10343static void
10344bxe_init_internal(struct bxe_softc *sc,
10345                  uint32_t         load_code)
10346{
10347    switch (load_code) {
10348    case FW_MSG_CODE_DRV_LOAD_COMMON:
10349    case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
10350        bxe_init_internal_common(sc);
10351        /* no break */
10352
10353    case FW_MSG_CODE_DRV_LOAD_PORT:
10354        /* nothing to do */
10355        /* no break */
10356
10357    case FW_MSG_CODE_DRV_LOAD_FUNCTION:
10358        /* internal memory per function is initialized inside bxe_pf_init */
10359        break;
10360
10361    default:
10362        BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
10363        break;
10364    }
10365}
10366
10367static void
10368storm_memset_func_cfg(struct bxe_softc                         *sc,
10369                      struct tstorm_eth_function_common_config *tcfg,
10370                      uint16_t                                  abs_fid)
10371{
10372    uint32_t addr;
10373    size_t size;
10374
10375    addr = (BAR_TSTRORM_INTMEM +
10376            TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
10377    size = sizeof(struct tstorm_eth_function_common_config);
10378    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
10379}
10380
10381static void
10382bxe_func_init(struct bxe_softc            *sc,
10383              struct bxe_func_init_params *p)
10384{
10385    struct tstorm_eth_function_common_config tcfg = { 0 };
10386
10387    if (CHIP_IS_E1x(sc)) {
10388        storm_memset_func_cfg(sc, &tcfg, p->func_id);
10389    }
10390
10391    /* Enable the function in the FW */
10392    storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
10393    storm_memset_func_en(sc, p->func_id, 1);
10394
10395    /* spq */
10396    if (p->func_flgs & FUNC_FLG_SPQ) {
10397        storm_memset_spq_addr(sc, p->spq_map, p->func_id);
10398        REG_WR(sc,
10399               (XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
10400               p->spq_prod);
10401    }
10402}
10403
10404/*
10405 * Calculates the sum of vn_min_rates.
10406 * It's needed for further normalizing of the min_rates.
10407 * Returns:
10408 *   sum of vn_min_rates.
10409 *     or
10410 *   0 - if all the min_rates are 0.
10411 * In the later case fainess algorithm should be deactivated.
10412 * If all min rates are not zero then those that are zeroes will be set to 1.
10413 */
10414static void
10415bxe_calc_vn_min(struct bxe_softc       *sc,
10416                struct cmng_init_input *input)
10417{
10418    uint32_t vn_cfg;
10419    uint32_t vn_min_rate;
10420    int all_zero = 1;
10421    int vn;
10422
10423    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10424        vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10425        vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
10426                        FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10427
10428        if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10429            /* skip hidden VNs */
10430            vn_min_rate = 0;
10431        } else if (!vn_min_rate) {
10432            /* If min rate is zero - set it to 100 */
10433            vn_min_rate = DEF_MIN_RATE;
10434        } else {
10435            all_zero = 0;
10436        }
10437
10438        input->vnic_min_rate[vn] = vn_min_rate;
10439    }
10440
10441    /* if ETS or all min rates are zeros - disable fairness */
10442    if (BXE_IS_ETS_ENABLED(sc)) {
10443        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10444        BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10445    } else if (all_zero) {
10446        input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10447        BLOGD(sc, DBG_LOAD,
10448              "Fariness disabled (all MIN values are zeroes)\n");
10449    } else {
10450        input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10451    }
10452}
10453
10454static inline uint16_t
10455bxe_extract_max_cfg(struct bxe_softc *sc,
10456                    uint32_t         mf_cfg)
10457{
10458    uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10459                        FUNC_MF_CFG_MAX_BW_SHIFT);
10460
10461    if (!max_cfg) {
10462        BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10463        max_cfg = 100;
10464    }
10465
10466    return (max_cfg);
10467}
10468
10469static void
10470bxe_calc_vn_max(struct bxe_softc       *sc,
10471                int                    vn,
10472                struct cmng_init_input *input)
10473{
10474    uint16_t vn_max_rate;
10475    uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10476    uint32_t max_cfg;
10477
10478    if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10479        vn_max_rate = 0;
10480    } else {
10481        max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10482
10483        if (IS_MF_SI(sc)) {
10484            /* max_cfg in percents of linkspeed */
10485            vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10486        } else { /* SD modes */
10487            /* max_cfg is absolute in 100Mb units */
10488            vn_max_rate = (max_cfg * 100);
10489        }
10490    }
10491
10492    BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10493
10494    input->vnic_max_rate[vn] = vn_max_rate;
10495}
10496
10497static void
10498bxe_cmng_fns_init(struct bxe_softc *sc,
10499                  uint8_t          read_cfg,
10500                  uint8_t          cmng_type)
10501{
10502    struct cmng_init_input input;
10503    int vn;
10504
10505    memset(&input, 0, sizeof(struct cmng_init_input));
10506
10507    input.port_rate = sc->link_vars.line_speed;
10508
10509    if (cmng_type == CMNG_FNS_MINMAX) {
10510        /* read mf conf from shmem */
10511        if (read_cfg) {
10512            bxe_read_mf_cfg(sc);
10513        }
10514
10515        /* get VN min rate and enable fairness if not 0 */
10516        bxe_calc_vn_min(sc, &input);
10517
10518        /* get VN max rate */
10519        if (sc->port.pmf) {
10520            for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10521                bxe_calc_vn_max(sc, vn, &input);
10522            }
10523        }
10524
10525        /* always enable rate shaping and fairness */
10526        input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10527
10528        ecore_init_cmng(&input, &sc->cmng);
10529        return;
10530    }
10531
10532    /* rate shaping and fairness are disabled */
10533    BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10534}
10535
10536static int
10537bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10538{
10539    if (CHIP_REV_IS_SLOW(sc)) {
10540        return (CMNG_FNS_NONE);
10541    }
10542
10543    if (IS_MF(sc)) {
10544        return (CMNG_FNS_MINMAX);
10545    }
10546
10547    return (CMNG_FNS_NONE);
10548}
10549
10550static void
10551storm_memset_cmng(struct bxe_softc *sc,
10552                  struct cmng_init *cmng,
10553                  uint8_t          port)
10554{
10555    int vn;
10556    int func;
10557    uint32_t addr;
10558    size_t size;
10559
10560    addr = (BAR_XSTRORM_INTMEM +
10561            XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10562    size = sizeof(struct cmng_struct_per_port);
10563    ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10564
10565    for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10566        func = func_by_vn(sc, vn);
10567
10568        addr = (BAR_XSTRORM_INTMEM +
10569                XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10570        size = sizeof(struct rate_shaping_vars_per_vn);
10571        ecore_storm_memset_struct(sc, addr, size,
10572                                  (uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10573
10574        addr = (BAR_XSTRORM_INTMEM +
10575                XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10576        size = sizeof(struct fairness_vars_per_vn);
10577        ecore_storm_memset_struct(sc, addr, size,
10578                                  (uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10579    }
10580}
10581
10582static void
10583bxe_pf_init(struct bxe_softc *sc)
10584{
10585    struct bxe_func_init_params func_init = { 0 };
10586    struct event_ring_data eq_data = { { 0 } };
10587    uint16_t flags;
10588
10589    if (!CHIP_IS_E1x(sc)) {
10590        /* reset IGU PF statistics: MSIX + ATTN */
10591        /* PF */
10592        REG_WR(sc,
10593               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10594                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10595                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10596               0);
10597        /* ATTN */
10598        REG_WR(sc,
10599               (IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10600                (BXE_IGU_STAS_MSG_VF_CNT * 4) +
10601                (BXE_IGU_STAS_MSG_PF_CNT * 4) +
10602                ((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10603               0);
10604    }
10605
10606    /* function setup flags */
10607    flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10608
10609    /*
10610     * This flag is relevant for E1x only.
10611     * E2 doesn't have a TPA configuration in a function level.
10612     */
10613    flags |= (sc->ifnet->if_capenable & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10614
10615    func_init.func_flgs = flags;
10616    func_init.pf_id     = SC_FUNC(sc);
10617    func_init.func_id   = SC_FUNC(sc);
10618    func_init.spq_map   = sc->spq_dma.paddr;
10619    func_init.spq_prod  = sc->spq_prod_idx;
10620
10621    bxe_func_init(sc, &func_init);
10622
10623    memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10624
10625    /*
10626     * Congestion management values depend on the link rate.
10627     * There is no active link so initial link rate is set to 10Gbps.
10628     * When the link comes up the congestion management values are
10629     * re-calculated according to the actual link rate.
10630     */
10631    sc->link_vars.line_speed = SPEED_10000;
10632    bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10633
10634    /* Only the PMF sets the HW */
10635    if (sc->port.pmf) {
10636        storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10637    }
10638
10639    /* init Event Queue - PCI bus guarantees correct endainity */
10640    eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10641    eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10642    eq_data.producer     = sc->eq_prod;
10643    eq_data.index_id     = HC_SP_INDEX_EQ_CONS;
10644    eq_data.sb_id        = DEF_SB_ID;
10645    storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10646}
10647
10648static void
10649bxe_hc_int_enable(struct bxe_softc *sc)
10650{
10651    int port = SC_PORT(sc);
10652    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10653    uint32_t val = REG_RD(sc, addr);
10654    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10655    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10656                           (sc->intr_count == 1)) ? TRUE : FALSE;
10657    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10658
10659    if (msix) {
10660        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10661                 HC_CONFIG_0_REG_INT_LINE_EN_0);
10662        val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10663                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10664        if (single_msix) {
10665            val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10666        }
10667    } else if (msi) {
10668        val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10669        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10670                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10671                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10672    } else {
10673        val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10674                HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10675                HC_CONFIG_0_REG_INT_LINE_EN_0 |
10676                HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10677
10678        if (!CHIP_IS_E1(sc)) {
10679            BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10680                  val, port, addr);
10681
10682            REG_WR(sc, addr, val);
10683
10684            val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10685        }
10686    }
10687
10688    if (CHIP_IS_E1(sc)) {
10689        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10690    }
10691
10692    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10693          val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10694
10695    REG_WR(sc, addr, val);
10696
10697    /* ensure that HC_CONFIG is written before leading/trailing edge config */
10698    mb();
10699
10700    if (!CHIP_IS_E1(sc)) {
10701        /* init leading/trailing edge */
10702        if (IS_MF(sc)) {
10703            val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10704            if (sc->port.pmf) {
10705                /* enable nig and gpio3 attention */
10706                val |= 0x1100;
10707            }
10708        } else {
10709            val = 0xffff;
10710        }
10711
10712        REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10713        REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10714    }
10715
10716    /* make sure that interrupts are indeed enabled from here on */
10717    mb();
10718}
10719
10720static void
10721bxe_igu_int_enable(struct bxe_softc *sc)
10722{
10723    uint32_t val;
10724    uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10725    uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10726                           (sc->intr_count == 1)) ? TRUE : FALSE;
10727    uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10728
10729    val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10730
10731    if (msix) {
10732        val &= ~(IGU_PF_CONF_INT_LINE_EN |
10733                 IGU_PF_CONF_SINGLE_ISR_EN);
10734        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10735                IGU_PF_CONF_ATTN_BIT_EN);
10736        if (single_msix) {
10737            val |= IGU_PF_CONF_SINGLE_ISR_EN;
10738        }
10739    } else if (msi) {
10740        val &= ~IGU_PF_CONF_INT_LINE_EN;
10741        val |= (IGU_PF_CONF_MSI_MSIX_EN |
10742                IGU_PF_CONF_ATTN_BIT_EN |
10743                IGU_PF_CONF_SINGLE_ISR_EN);
10744    } else {
10745        val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10746        val |= (IGU_PF_CONF_INT_LINE_EN |
10747                IGU_PF_CONF_ATTN_BIT_EN |
10748                IGU_PF_CONF_SINGLE_ISR_EN);
10749    }
10750
10751    /* clean previous status - need to configure igu prior to ack*/
10752    if ((!msix) || single_msix) {
10753        REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10754        bxe_ack_int(sc);
10755    }
10756
10757    val |= IGU_PF_CONF_FUNC_EN;
10758
10759    BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10760          val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10761
10762    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10763
10764    mb();
10765
10766    /* init leading/trailing edge */
10767    if (IS_MF(sc)) {
10768        val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10769        if (sc->port.pmf) {
10770            /* enable nig and gpio3 attention */
10771            val |= 0x1100;
10772        }
10773    } else {
10774        val = 0xffff;
10775    }
10776
10777    REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10778    REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10779
10780    /* make sure that interrupts are indeed enabled from here on */
10781    mb();
10782}
10783
10784static void
10785bxe_int_enable(struct bxe_softc *sc)
10786{
10787    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10788        bxe_hc_int_enable(sc);
10789    } else {
10790        bxe_igu_int_enable(sc);
10791    }
10792}
10793
10794static void
10795bxe_hc_int_disable(struct bxe_softc *sc)
10796{
10797    int port = SC_PORT(sc);
10798    uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10799    uint32_t val = REG_RD(sc, addr);
10800
10801    /*
10802     * In E1 we must use only PCI configuration space to disable MSI/MSIX
10803     * capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10804     * block
10805     */
10806    if (CHIP_IS_E1(sc)) {
10807        /*
10808         * Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10809         * to prevent from HC sending interrupts after we exit the function
10810         */
10811        REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10812
10813        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10814                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10815                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10816    } else {
10817        val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10818                 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10819                 HC_CONFIG_0_REG_INT_LINE_EN_0 |
10820                 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10821    }
10822
10823    BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10824
10825    /* flush all outstanding writes */
10826    mb();
10827
10828    REG_WR(sc, addr, val);
10829    if (REG_RD(sc, addr) != val) {
10830        BLOGE(sc, "proper val not read from HC IGU!\n");
10831    }
10832}
10833
10834static void
10835bxe_igu_int_disable(struct bxe_softc *sc)
10836{
10837    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10838
10839    val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10840             IGU_PF_CONF_INT_LINE_EN |
10841             IGU_PF_CONF_ATTN_BIT_EN);
10842
10843    BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10844
10845    /* flush all outstanding writes */
10846    mb();
10847
10848    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10849    if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10850        BLOGE(sc, "proper val not read from IGU!\n");
10851    }
10852}
10853
10854static void
10855bxe_int_disable(struct bxe_softc *sc)
10856{
10857    if (sc->devinfo.int_block == INT_BLOCK_HC) {
10858        bxe_hc_int_disable(sc);
10859    } else {
10860        bxe_igu_int_disable(sc);
10861    }
10862}
10863
10864static void
10865bxe_nic_init(struct bxe_softc *sc,
10866             int              load_code)
10867{
10868    int i;
10869
10870    for (i = 0; i < sc->num_queues; i++) {
10871        bxe_init_eth_fp(sc, i);
10872    }
10873
10874    rmb(); /* ensure status block indices were read */
10875
10876    bxe_init_rx_rings(sc);
10877    bxe_init_tx_rings(sc);
10878
10879    if (IS_VF(sc)) {
10880        return;
10881    }
10882
10883    /* initialize MOD_ABS interrupts */
10884    elink_init_mod_abs_int(sc, &sc->link_vars,
10885                           sc->devinfo.chip_id,
10886                           sc->devinfo.shmem_base,
10887                           sc->devinfo.shmem2_base,
10888                           SC_PORT(sc));
10889
10890    bxe_init_def_sb(sc);
10891    bxe_update_dsb_idx(sc);
10892    bxe_init_sp_ring(sc);
10893    bxe_init_eq_ring(sc);
10894    bxe_init_internal(sc, load_code);
10895    bxe_pf_init(sc);
10896    bxe_stats_init(sc);
10897
10898    /* flush all before enabling interrupts */
10899    mb();
10900
10901    bxe_int_enable(sc);
10902
10903    /* check for SPIO5 */
10904    bxe_attn_int_deasserted0(sc,
10905                             REG_RD(sc,
10906                                    (MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10907                                     SC_PORT(sc)*4)) &
10908                             AEU_INPUTS_ATTN_BITS_SPIO5);
10909}
10910
10911static inline void
10912bxe_init_objs(struct bxe_softc *sc)
10913{
10914    /* mcast rules must be added to tx if tx switching is enabled */
10915    ecore_obj_type o_type =
10916        (sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10917                                         ECORE_OBJ_TYPE_RX;
10918
10919    /* RX_MODE controlling object */
10920    ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10921
10922    /* multicast configuration controlling object */
10923    ecore_init_mcast_obj(sc,
10924                         &sc->mcast_obj,
10925                         sc->fp[0].cl_id,
10926                         sc->fp[0].index,
10927                         SC_FUNC(sc),
10928                         SC_FUNC(sc),
10929                         BXE_SP(sc, mcast_rdata),
10930                         BXE_SP_MAPPING(sc, mcast_rdata),
10931                         ECORE_FILTER_MCAST_PENDING,
10932                         &sc->sp_state,
10933                         o_type);
10934
10935    /* Setup CAM credit pools */
10936    ecore_init_mac_credit_pool(sc,
10937                               &sc->macs_pool,
10938                               SC_FUNC(sc),
10939                               CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10940                                                 VNICS_PER_PATH(sc));
10941
10942    ecore_init_vlan_credit_pool(sc,
10943                                &sc->vlans_pool,
10944                                SC_ABS_FUNC(sc) >> 1,
10945                                CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10946                                                  VNICS_PER_PATH(sc));
10947
10948    /* RSS configuration object */
10949    ecore_init_rss_config_obj(sc,
10950                              &sc->rss_conf_obj,
10951                              sc->fp[0].cl_id,
10952                              sc->fp[0].index,
10953                              SC_FUNC(sc),
10954                              SC_FUNC(sc),
10955                              BXE_SP(sc, rss_rdata),
10956                              BXE_SP_MAPPING(sc, rss_rdata),
10957                              ECORE_FILTER_RSS_CONF_PENDING,
10958                              &sc->sp_state, ECORE_OBJ_TYPE_RX);
10959}
10960
10961/*
10962 * Initialize the function. This must be called before sending CLIENT_SETUP
10963 * for the first client.
10964 */
10965static inline int
10966bxe_func_start(struct bxe_softc *sc)
10967{
10968    struct ecore_func_state_params func_params = { NULL };
10969    struct ecore_func_start_params *start_params = &func_params.params.start;
10970
10971    /* Prepare parameters for function state transitions */
10972    bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10973
10974    func_params.f_obj = &sc->func_obj;
10975    func_params.cmd = ECORE_F_CMD_START;
10976
10977    /* Function parameters */
10978    start_params->mf_mode     = sc->devinfo.mf_info.mf_mode;
10979    start_params->sd_vlan_tag = OVLAN(sc);
10980
10981    if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10982        start_params->network_cos_mode = STATIC_COS;
10983    } else { /* CHIP_IS_E1X */
10984        start_params->network_cos_mode = FW_WRR;
10985    }
10986
10987    start_params->gre_tunnel_mode = 0;
10988    start_params->gre_tunnel_rss  = 0;
10989
10990    return (ecore_func_state_change(sc, &func_params));
10991}
10992
10993static int
10994bxe_set_power_state(struct bxe_softc *sc,
10995                    uint8_t          state)
10996{
10997    uint16_t pmcsr;
10998
10999    /* If there is no power capability, silently succeed */
11000    if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
11001        BLOGW(sc, "No power capability\n");
11002        return (0);
11003    }
11004
11005    pmcsr = pci_read_config(sc->dev,
11006                            (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11007                            2);
11008
11009    switch (state) {
11010    case PCI_PM_D0:
11011        pci_write_config(sc->dev,
11012                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11013                         ((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
11014
11015        if (pmcsr & PCIM_PSTAT_DMASK) {
11016            /* delay required during transition out of D3hot */
11017            DELAY(20000);
11018        }
11019
11020        break;
11021
11022    case PCI_PM_D3hot:
11023        /* XXX if there are other clients above don't shut down the power */
11024
11025        /* don't shut down the power for emulation and FPGA */
11026        if (CHIP_REV_IS_SLOW(sc)) {
11027            return (0);
11028        }
11029
11030        pmcsr &= ~PCIM_PSTAT_DMASK;
11031        pmcsr |= PCIM_PSTAT_D3;
11032
11033        if (sc->wol) {
11034            pmcsr |= PCIM_PSTAT_PMEENABLE;
11035        }
11036
11037        pci_write_config(sc->dev,
11038                         (sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
11039                         pmcsr, 4);
11040
11041        /*
11042         * No more memory access after this point until device is brought back
11043         * to D0 state.
11044         */
11045        break;
11046
11047    default:
11048        BLOGE(sc, "Can't support PCI power state = %d\n", state);
11049        return (-1);
11050    }
11051
11052    return (0);
11053}
11054
11055
11056/* return true if succeeded to acquire the lock */
11057static uint8_t
11058bxe_trylock_hw_lock(struct bxe_softc *sc,
11059                    uint32_t         resource)
11060{
11061    uint32_t lock_status;
11062    uint32_t resource_bit = (1 << resource);
11063    int func = SC_FUNC(sc);
11064    uint32_t hw_lock_control_reg;
11065
11066    BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
11067
11068    /* Validating that the resource is within range */
11069    if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
11070        BLOGD(sc, DBG_LOAD,
11071              "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
11072              resource, HW_LOCK_MAX_RESOURCE_VALUE);
11073        return (FALSE);
11074    }
11075
11076    if (func <= 5) {
11077        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
11078    } else {
11079        hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
11080    }
11081
11082    /* try to acquire the lock */
11083    REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
11084    lock_status = REG_RD(sc, hw_lock_control_reg);
11085    if (lock_status & resource_bit) {
11086        return (TRUE);
11087    }
11088
11089    BLOGE(sc, "Failed to get a resource lock 0x%x\n", resource);
11090
11091    return (FALSE);
11092}
11093
11094/*
11095 * Get the recovery leader resource id according to the engine this function
11096 * belongs to. Currently only only 2 engines is supported.
11097 */
11098static int
11099bxe_get_leader_lock_resource(struct bxe_softc *sc)
11100{
11101    if (SC_PATH(sc)) {
11102        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
11103    } else {
11104        return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
11105    }
11106}
11107
11108/* try to acquire a leader lock for current engine */
11109static uint8_t
11110bxe_trylock_leader_lock(struct bxe_softc *sc)
11111{
11112    return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11113}
11114
11115static int
11116bxe_release_leader_lock(struct bxe_softc *sc)
11117{
11118    return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
11119}
11120
11121/* close gates #2, #3 and #4 */
11122static void
11123bxe_set_234_gates(struct bxe_softc *sc,
11124                  uint8_t          close)
11125{
11126    uint32_t val;
11127
11128    /* gates #2 and #4a are closed/opened for "not E1" only */
11129    if (!CHIP_IS_E1(sc)) {
11130        /* #4 */
11131        REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
11132        /* #2 */
11133        REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
11134    }
11135
11136    /* #3 */
11137    if (CHIP_IS_E1x(sc)) {
11138        /* prevent interrupts from HC on both ports */
11139        val = REG_RD(sc, HC_REG_CONFIG_1);
11140        REG_WR(sc, HC_REG_CONFIG_1,
11141               (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
11142               (val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
11143
11144        val = REG_RD(sc, HC_REG_CONFIG_0);
11145        REG_WR(sc, HC_REG_CONFIG_0,
11146               (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
11147               (val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
11148    } else {
11149        /* Prevent incomming interrupts in IGU */
11150        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
11151
11152        REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
11153               (!close) ?
11154               (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
11155               (val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
11156    }
11157
11158    BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
11159          close ? "closing" : "opening");
11160
11161    wmb();
11162}
11163
11164/* poll for pending writes bit, it should get cleared in no more than 1s */
11165static int
11166bxe_er_poll_igu_vq(struct bxe_softc *sc)
11167{
11168    uint32_t cnt = 1000;
11169    uint32_t pend_bits = 0;
11170
11171    do {
11172        pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
11173
11174        if (pend_bits == 0) {
11175            break;
11176        }
11177
11178        DELAY(1000);
11179    } while (--cnt > 0);
11180
11181    if (cnt == 0) {
11182        BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
11183        return (-1);
11184    }
11185
11186    return (0);
11187}
11188
11189#define SHARED_MF_CLP_MAGIC  0x80000000 /* 'magic' bit */
11190
11191static void
11192bxe_clp_reset_prep(struct bxe_softc *sc,
11193                   uint32_t         *magic_val)
11194{
11195    /* Do some magic... */
11196    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11197    *magic_val = val & SHARED_MF_CLP_MAGIC;
11198    MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
11199}
11200
11201/* restore the value of the 'magic' bit */
11202static void
11203bxe_clp_reset_done(struct bxe_softc *sc,
11204                   uint32_t         magic_val)
11205{
11206    /* Restore the 'magic' bit value... */
11207    uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
11208    MFCFG_WR(sc, shared_mf_config.clp_mb,
11209              (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
11210}
11211
11212/* prepare for MCP reset, takes care of CLP configurations */
11213static void
11214bxe_reset_mcp_prep(struct bxe_softc *sc,
11215                   uint32_t         *magic_val)
11216{
11217    uint32_t shmem;
11218    uint32_t validity_offset;
11219
11220    /* set `magic' bit in order to save MF config */
11221    if (!CHIP_IS_E1(sc)) {
11222        bxe_clp_reset_prep(sc, magic_val);
11223    }
11224
11225    /* get shmem offset */
11226    shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11227    validity_offset =
11228        offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
11229
11230    /* Clear validity map flags */
11231    if (shmem > 0) {
11232        REG_WR(sc, shmem + validity_offset, 0);
11233    }
11234}
11235
11236#define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
11237#define MCP_ONE_TIMEOUT  100    /* 100 ms */
11238
11239static void
11240bxe_mcp_wait_one(struct bxe_softc *sc)
11241{
11242    /* special handling for emulation and FPGA (10 times longer) */
11243    if (CHIP_REV_IS_SLOW(sc)) {
11244        DELAY((MCP_ONE_TIMEOUT*10) * 1000);
11245    } else {
11246        DELAY((MCP_ONE_TIMEOUT) * 1000);
11247    }
11248}
11249
11250/* initialize shmem_base and waits for validity signature to appear */
11251static int
11252bxe_init_shmem(struct bxe_softc *sc)
11253{
11254    int cnt = 0;
11255    uint32_t val = 0;
11256
11257    do {
11258        sc->devinfo.shmem_base     =
11259        sc->link_params.shmem_base =
11260            REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
11261
11262        if (sc->devinfo.shmem_base) {
11263            val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
11264            if (val & SHR_MEM_VALIDITY_MB)
11265                return (0);
11266        }
11267
11268        bxe_mcp_wait_one(sc);
11269
11270    } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
11271
11272    BLOGE(sc, "BAD MCP validity signature\n");
11273
11274    return (-1);
11275}
11276
11277static int
11278bxe_reset_mcp_comp(struct bxe_softc *sc,
11279                   uint32_t         magic_val)
11280{
11281    int rc = bxe_init_shmem(sc);
11282
11283    /* Restore the `magic' bit value */
11284    if (!CHIP_IS_E1(sc)) {
11285        bxe_clp_reset_done(sc, magic_val);
11286    }
11287
11288    return (rc);
11289}
11290
11291static void
11292bxe_pxp_prep(struct bxe_softc *sc)
11293{
11294    if (!CHIP_IS_E1(sc)) {
11295        REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
11296        REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
11297        wmb();
11298    }
11299}
11300
11301/*
11302 * Reset the whole chip except for:
11303 *      - PCIE core
11304 *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
11305 *      - IGU
11306 *      - MISC (including AEU)
11307 *      - GRC
11308 *      - RBCN, RBCP
11309 */
11310static void
11311bxe_process_kill_chip_reset(struct bxe_softc *sc,
11312                            uint8_t          global)
11313{
11314    uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
11315    uint32_t global_bits2, stay_reset2;
11316
11317    /*
11318     * Bits that have to be set in reset_mask2 if we want to reset 'global'
11319     * (per chip) blocks.
11320     */
11321    global_bits2 =
11322        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
11323        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
11324
11325    /*
11326     * Don't reset the following blocks.
11327     * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
11328     *            reset, as in 4 port device they might still be owned
11329     *            by the MCP (there is only one leader per path).
11330     */
11331    not_reset_mask1 =
11332        MISC_REGISTERS_RESET_REG_1_RST_HC |
11333        MISC_REGISTERS_RESET_REG_1_RST_PXPV |
11334        MISC_REGISTERS_RESET_REG_1_RST_PXP;
11335
11336    not_reset_mask2 =
11337        MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
11338        MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
11339        MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
11340        MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
11341        MISC_REGISTERS_RESET_REG_2_RST_RBCN |
11342        MISC_REGISTERS_RESET_REG_2_RST_GRC  |
11343        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
11344        MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
11345        MISC_REGISTERS_RESET_REG_2_RST_ATC |
11346        MISC_REGISTERS_RESET_REG_2_PGLC |
11347        MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
11348        MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
11349        MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
11350        MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
11351        MISC_REGISTERS_RESET_REG_2_UMAC0 |
11352        MISC_REGISTERS_RESET_REG_2_UMAC1;
11353
11354    /*
11355     * Keep the following blocks in reset:
11356     *  - all xxMACs are handled by the elink code.
11357     */
11358    stay_reset2 =
11359        MISC_REGISTERS_RESET_REG_2_XMAC |
11360        MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
11361
11362    /* Full reset masks according to the chip */
11363    reset_mask1 = 0xffffffff;
11364
11365    if (CHIP_IS_E1(sc))
11366        reset_mask2 = 0xffff;
11367    else if (CHIP_IS_E1H(sc))
11368        reset_mask2 = 0x1ffff;
11369    else if (CHIP_IS_E2(sc))
11370        reset_mask2 = 0xfffff;
11371    else /* CHIP_IS_E3 */
11372        reset_mask2 = 0x3ffffff;
11373
11374    /* Don't reset global blocks unless we need to */
11375    if (!global)
11376        reset_mask2 &= ~global_bits2;
11377
11378    /*
11379     * In case of attention in the QM, we need to reset PXP
11380     * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
11381     * because otherwise QM reset would release 'close the gates' shortly
11382     * before resetting the PXP, then the PSWRQ would send a write
11383     * request to PGLUE. Then when PXP is reset, PGLUE would try to
11384     * read the payload data from PSWWR, but PSWWR would not
11385     * respond. The write queue in PGLUE would stuck, dmae commands
11386     * would not return. Therefore it's important to reset the second
11387     * reset register (containing the
11388     * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
11389     * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
11390     * bit).
11391     */
11392    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
11393           reset_mask2 & (~not_reset_mask2));
11394
11395    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
11396           reset_mask1 & (~not_reset_mask1));
11397
11398    mb();
11399    wmb();
11400
11401    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
11402           reset_mask2 & (~stay_reset2));
11403
11404    mb();
11405    wmb();
11406
11407    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
11408    wmb();
11409}
11410
11411static int
11412bxe_process_kill(struct bxe_softc *sc,
11413                 uint8_t          global)
11414{
11415    int cnt = 1000;
11416    uint32_t val = 0;
11417    uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
11418    uint32_t tags_63_32 = 0;
11419
11420    /* Empty the Tetris buffer, wait for 1s */
11421    do {
11422        sr_cnt  = REG_RD(sc, PXP2_REG_RD_SR_CNT);
11423        blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11424        port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11425        port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11426        pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11427        if (CHIP_IS_E3(sc)) {
11428            tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11429        }
11430
11431        if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11432            ((port_is_idle_0 & 0x1) == 0x1) &&
11433            ((port_is_idle_1 & 0x1) == 0x1) &&
11434            (pgl_exp_rom2 == 0xffffffff) &&
11435            (!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11436            break;
11437        DELAY(1000);
11438    } while (cnt-- > 0);
11439
11440    if (cnt <= 0) {
11441        BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11442                  "are still outstanding read requests after 1s! "
11443                  "sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11444                  "port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11445              sr_cnt, blk_cnt, port_is_idle_0,
11446              port_is_idle_1, pgl_exp_rom2);
11447        return (-1);
11448    }
11449
11450    mb();
11451
11452    /* Close gates #2, #3 and #4 */
11453    bxe_set_234_gates(sc, TRUE);
11454
11455    /* Poll for IGU VQs for 57712 and newer chips */
11456    if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11457        return (-1);
11458    }
11459
11460    /* XXX indicate that "process kill" is in progress to MCP */
11461
11462    /* clear "unprepared" bit */
11463    REG_WR(sc, MISC_REG_UNPREPARED, 0);
11464    mb();
11465
11466    /* Make sure all is written to the chip before the reset */
11467    wmb();
11468
11469    /*
11470     * Wait for 1ms to empty GLUE and PCI-E core queues,
11471     * PSWHST, GRC and PSWRD Tetris buffer.
11472     */
11473    DELAY(1000);
11474
11475    /* Prepare to chip reset: */
11476    /* MCP */
11477    if (global) {
11478        bxe_reset_mcp_prep(sc, &val);
11479    }
11480
11481    /* PXP */
11482    bxe_pxp_prep(sc);
11483    mb();
11484
11485    /* reset the chip */
11486    bxe_process_kill_chip_reset(sc, global);
11487    mb();
11488
11489    /* Recover after reset: */
11490    /* MCP */
11491    if (global && bxe_reset_mcp_comp(sc, val)) {
11492        return (-1);
11493    }
11494
11495    /* XXX add resetting the NO_MCP mode DB here */
11496
11497    /* Open the gates #2, #3 and #4 */
11498    bxe_set_234_gates(sc, FALSE);
11499
11500    /* XXX
11501     * IGU/AEU preparation bring back the AEU/IGU to a reset state
11502     * re-enable attentions
11503     */
11504
11505    return (0);
11506}
11507
11508static int
11509bxe_leader_reset(struct bxe_softc *sc)
11510{
11511    int rc = 0;
11512    uint8_t global = bxe_reset_is_global(sc);
11513    uint32_t load_code;
11514
11515    /*
11516     * If not going to reset MCP, load "fake" driver to reset HW while
11517     * driver is owner of the HW.
11518     */
11519    if (!global && !BXE_NOMCP(sc)) {
11520        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11521                                   DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11522        if (!load_code) {
11523            BLOGE(sc, "MCP response failure, aborting\n");
11524            rc = -1;
11525            goto exit_leader_reset;
11526        }
11527
11528        if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11529            (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11530            BLOGE(sc, "MCP unexpected response, aborting\n");
11531            rc = -1;
11532            goto exit_leader_reset2;
11533        }
11534
11535        load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11536        if (!load_code) {
11537            BLOGE(sc, "MCP response failure, aborting\n");
11538            rc = -1;
11539            goto exit_leader_reset2;
11540        }
11541    }
11542
11543    /* try to recover after the failure */
11544    if (bxe_process_kill(sc, global)) {
11545        BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11546        rc = -1;
11547        goto exit_leader_reset2;
11548    }
11549
11550    /*
11551     * Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11552     * state.
11553     */
11554    bxe_set_reset_done(sc);
11555    if (global) {
11556        bxe_clear_reset_global(sc);
11557    }
11558
11559exit_leader_reset2:
11560
11561    /* unload "fake driver" if it was loaded */
11562    if (!global && !BXE_NOMCP(sc)) {
11563        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11564        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11565    }
11566
11567exit_leader_reset:
11568
11569    sc->is_leader = 0;
11570    bxe_release_leader_lock(sc);
11571
11572    mb();
11573    return (rc);
11574}
11575
11576/*
11577 * prepare INIT transition, parameters configured:
11578 *   - HC configuration
11579 *   - Queue's CDU context
11580 */
11581static void
11582bxe_pf_q_prep_init(struct bxe_softc               *sc,
11583                   struct bxe_fastpath            *fp,
11584                   struct ecore_queue_init_params *init_params)
11585{
11586    uint8_t cos;
11587    int cxt_index, cxt_offset;
11588
11589    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11590    bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11591
11592    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11593    bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11594
11595    /* HC rate */
11596    init_params->rx.hc_rate =
11597        sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11598    init_params->tx.hc_rate =
11599        sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11600
11601    /* FW SB ID */
11602    init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11603
11604    /* CQ index among the SB indices */
11605    init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11606    init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11607
11608    /* set maximum number of COSs supported by this queue */
11609    init_params->max_cos = sc->max_cos;
11610
11611    BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11612          fp->index, init_params->max_cos);
11613
11614    /* set the context pointers queue object */
11615    for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11616        /* XXX change index/cid here if ever support multiple tx CoS */
11617        /* fp->txdata[cos]->cid */
11618        cxt_index = fp->index / ILT_PAGE_CIDS;
11619        cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11620        init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11621    }
11622}
11623
11624/* set flags that are common for the Tx-only and not normal connections */
11625static unsigned long
11626bxe_get_common_flags(struct bxe_softc    *sc,
11627                     struct bxe_fastpath *fp,
11628                     uint8_t             zero_stats)
11629{
11630    unsigned long flags = 0;
11631
11632    /* PF driver will always initialize the Queue to an ACTIVE state */
11633    bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11634
11635    /*
11636     * tx only connections collect statistics (on the same index as the
11637     * parent connection). The statistics are zeroed when the parent
11638     * connection is initialized.
11639     */
11640
11641    bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11642    if (zero_stats) {
11643        bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11644    }
11645
11646    /*
11647     * tx only connections can support tx-switching, though their
11648     * CoS-ness doesn't survive the loopback
11649     */
11650    if (sc->flags & BXE_TX_SWITCHING) {
11651        bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11652    }
11653
11654    bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11655
11656    return (flags);
11657}
11658
11659static unsigned long
11660bxe_get_q_flags(struct bxe_softc    *sc,
11661                struct bxe_fastpath *fp,
11662                uint8_t             leading)
11663{
11664    unsigned long flags = 0;
11665
11666    if (IS_MF_SD(sc)) {
11667        bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11668    }
11669
11670    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11671        bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11672        bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11673#if 0
11674        if (fp->mode == TPA_MODE_GRO)
11675            __set_bit(ECORE_Q_FLG_TPA_GRO, &flags);
11676#endif
11677    }
11678
11679    if (leading) {
11680        bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11681        bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11682    }
11683
11684    bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11685
11686#if 0
11687    /* configure silent vlan removal */
11688    if (IS_MF_AFEX(sc)) {
11689        bxe_set_bit(ECORE_Q_FLG_SILENT_VLAN_REM, &flags);
11690    }
11691#endif
11692
11693    /* merge with common flags */
11694    return (flags | bxe_get_common_flags(sc, fp, TRUE));
11695}
11696
11697static void
11698bxe_pf_q_prep_general(struct bxe_softc                  *sc,
11699                      struct bxe_fastpath               *fp,
11700                      struct ecore_general_setup_params *gen_init,
11701                      uint8_t                           cos)
11702{
11703    gen_init->stat_id = bxe_stats_id(fp);
11704    gen_init->spcl_id = fp->cl_id;
11705    gen_init->mtu = sc->mtu;
11706    gen_init->cos = cos;
11707}
11708
11709static void
11710bxe_pf_rx_q_prep(struct bxe_softc              *sc,
11711                 struct bxe_fastpath           *fp,
11712                 struct rxq_pause_params       *pause,
11713                 struct ecore_rxq_setup_params *rxq_init)
11714{
11715    uint8_t max_sge = 0;
11716    uint16_t sge_sz = 0;
11717    uint16_t tpa_agg_size = 0;
11718
11719    if (sc->ifnet->if_capenable & IFCAP_LRO) {
11720        pause->sge_th_lo = SGE_TH_LO(sc);
11721        pause->sge_th_hi = SGE_TH_HI(sc);
11722
11723        /* validate SGE ring has enough to cross high threshold */
11724        if (sc->dropless_fc &&
11725            (pause->sge_th_hi + FW_PREFETCH_CNT) >
11726            (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11727            BLOGW(sc, "sge ring threshold limit\n");
11728        }
11729
11730        /* minimum max_aggregation_size is 2*MTU (two full buffers) */
11731        tpa_agg_size = (2 * sc->mtu);
11732        if (tpa_agg_size < sc->max_aggregation_size) {
11733            tpa_agg_size = sc->max_aggregation_size;
11734        }
11735
11736        max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11737        max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11738                   (~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11739        sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11740    }
11741
11742    /* pause - not for e1 */
11743    if (!CHIP_IS_E1(sc)) {
11744        pause->bd_th_lo = BD_TH_LO(sc);
11745        pause->bd_th_hi = BD_TH_HI(sc);
11746
11747        pause->rcq_th_lo = RCQ_TH_LO(sc);
11748        pause->rcq_th_hi = RCQ_TH_HI(sc);
11749
11750        /* validate rings have enough entries to cross high thresholds */
11751        if (sc->dropless_fc &&
11752            pause->bd_th_hi + FW_PREFETCH_CNT >
11753            sc->rx_ring_size) {
11754            BLOGW(sc, "rx bd ring threshold limit\n");
11755        }
11756
11757        if (sc->dropless_fc &&
11758            pause->rcq_th_hi + FW_PREFETCH_CNT >
11759            RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11760            BLOGW(sc, "rcq ring threshold limit\n");
11761        }
11762
11763        pause->pri_map = 1;
11764    }
11765
11766    /* rxq setup */
11767    rxq_init->dscr_map   = fp->rx_dma.paddr;
11768    rxq_init->sge_map    = fp->rx_sge_dma.paddr;
11769    rxq_init->rcq_map    = fp->rcq_dma.paddr;
11770    rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11771
11772    /*
11773     * This should be a maximum number of data bytes that may be
11774     * placed on the BD (not including paddings).
11775     */
11776    rxq_init->buf_sz = (fp->rx_buf_size -
11777                        IP_HEADER_ALIGNMENT_PADDING);
11778
11779    rxq_init->cl_qzone_id     = fp->cl_qzone_id;
11780    rxq_init->tpa_agg_sz      = tpa_agg_size;
11781    rxq_init->sge_buf_sz      = sge_sz;
11782    rxq_init->max_sges_pkt    = max_sge;
11783    rxq_init->rss_engine_id   = SC_FUNC(sc);
11784    rxq_init->mcast_engine_id = SC_FUNC(sc);
11785
11786    /*
11787     * Maximum number or simultaneous TPA aggregation for this Queue.
11788     * For PF Clients it should be the maximum available number.
11789     * VF driver(s) may want to define it to a smaller value.
11790     */
11791    rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11792
11793    rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11794    rxq_init->fw_sb_id = fp->fw_sb_id;
11795
11796    rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11797
11798    /*
11799     * configure silent vlan removal
11800     * if multi function mode is afex, then mask default vlan
11801     */
11802    if (IS_MF_AFEX(sc)) {
11803        rxq_init->silent_removal_value =
11804            sc->devinfo.mf_info.afex_def_vlan_tag;
11805        rxq_init->silent_removal_mask = EVL_VLID_MASK;
11806    }
11807}
11808
11809static void
11810bxe_pf_tx_q_prep(struct bxe_softc              *sc,
11811                 struct bxe_fastpath           *fp,
11812                 struct ecore_txq_setup_params *txq_init,
11813                 uint8_t                       cos)
11814{
11815    /*
11816     * XXX If multiple CoS is ever supported then each fastpath structure
11817     * will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11818     * fp->txdata[cos]->tx_dma.paddr;
11819     */
11820    txq_init->dscr_map     = fp->tx_dma.paddr;
11821    txq_init->sb_cq_index  = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11822    txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11823    txq_init->fw_sb_id     = fp->fw_sb_id;
11824
11825    /*
11826     * set the TSS leading client id for TX classfication to the
11827     * leading RSS client id
11828     */
11829    txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11830}
11831
11832/*
11833 * This function performs 2 steps in a queue state machine:
11834 *   1) RESET->INIT
11835 *   2) INIT->SETUP
11836 */
11837static int
11838bxe_setup_queue(struct bxe_softc    *sc,
11839                struct bxe_fastpath *fp,
11840                uint8_t             leading)
11841{
11842    struct ecore_queue_state_params q_params = { NULL };
11843    struct ecore_queue_setup_params *setup_params =
11844                        &q_params.params.setup;
11845#if 0
11846    struct ecore_queue_setup_tx_only_params *tx_only_params =
11847                        &q_params.params.tx_only;
11848    uint8_t tx_index;
11849#endif
11850    int rc;
11851
11852    BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11853
11854    bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11855
11856    q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11857
11858    /* we want to wait for completion in this context */
11859    bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11860
11861    /* prepare the INIT parameters */
11862    bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11863
11864    /* Set the command */
11865    q_params.cmd = ECORE_Q_CMD_INIT;
11866
11867    /* Change the state to INIT */
11868    rc = ecore_queue_state_change(sc, &q_params);
11869    if (rc) {
11870        BLOGE(sc, "Queue(%d) INIT failed\n", fp->index);
11871        return (rc);
11872    }
11873
11874    BLOGD(sc, DBG_LOAD, "init complete\n");
11875
11876    /* now move the Queue to the SETUP state */
11877    memset(setup_params, 0, sizeof(*setup_params));
11878
11879    /* set Queue flags */
11880    setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11881
11882    /* set general SETUP parameters */
11883    bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11884                          FIRST_TX_COS_INDEX);
11885
11886    bxe_pf_rx_q_prep(sc, fp,
11887                     &setup_params->pause_params,
11888                     &setup_params->rxq_params);
11889
11890    bxe_pf_tx_q_prep(sc, fp,
11891                     &setup_params->txq_params,
11892                     FIRST_TX_COS_INDEX);
11893
11894    /* Set the command */
11895    q_params.cmd = ECORE_Q_CMD_SETUP;
11896
11897    /* change the state to SETUP */
11898    rc = ecore_queue_state_change(sc, &q_params);
11899    if (rc) {
11900        BLOGE(sc, "Queue(%d) SETUP failed\n", fp->index);
11901        return (rc);
11902    }
11903
11904#if 0
11905    /* loop through the relevant tx-only indices */
11906    for (tx_index = FIRST_TX_ONLY_COS_INDEX;
11907         tx_index < sc->max_cos;
11908         tx_index++) {
11909        /* prepare and send tx-only ramrod*/
11910        rc = bxe_setup_tx_only(sc, fp, &q_params,
11911                               tx_only_params, tx_index, leading);
11912        if (rc) {
11913            BLOGE(sc, "Queue(%d.%d) TX_ONLY_SETUP failed\n",
11914                  fp->index, tx_index);
11915            return (rc);
11916        }
11917    }
11918#endif
11919
11920    return (rc);
11921}
11922
11923static int
11924bxe_setup_leading(struct bxe_softc *sc)
11925{
11926    return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11927}
11928
11929static int
11930bxe_config_rss_pf(struct bxe_softc            *sc,
11931                  struct ecore_rss_config_obj *rss_obj,
11932                  uint8_t                     config_hash)
11933{
11934    struct ecore_config_rss_params params = { NULL };
11935    int i;
11936
11937    /*
11938     * Although RSS is meaningless when there is a single HW queue we
11939     * still need it enabled in order to have HW Rx hash generated.
11940     */
11941
11942    params.rss_obj = rss_obj;
11943
11944    bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11945
11946    bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11947
11948    /* RSS configuration */
11949    bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11950    bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11951    bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11952    bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11953    if (rss_obj->udp_rss_v4) {
11954        bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11955    }
11956    if (rss_obj->udp_rss_v6) {
11957        bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11958    }
11959
11960    /* Hash bits */
11961    params.rss_result_mask = MULTI_MASK;
11962
11963    memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11964
11965    if (config_hash) {
11966        /* RSS keys */
11967        for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11968            params.rss_key[i] = arc4random();
11969        }
11970
11971        bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11972    }
11973
11974    return (ecore_config_rss(sc, &params));
11975}
11976
11977static int
11978bxe_config_rss_eth(struct bxe_softc *sc,
11979                   uint8_t          config_hash)
11980{
11981    return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11982}
11983
11984static int
11985bxe_init_rss_pf(struct bxe_softc *sc)
11986{
11987    uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11988    int i;
11989
11990    /*
11991     * Prepare the initial contents of the indirection table if
11992     * RSS is enabled
11993     */
11994    for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11995        sc->rss_conf_obj.ind_table[i] =
11996            (sc->fp->cl_id + (i % num_eth_queues));
11997    }
11998
11999    if (sc->udp_rss) {
12000        sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
12001    }
12002
12003    /*
12004     * For 57710 and 57711 SEARCHER configuration (rss_keys) is
12005     * per-port, so if explicit configuration is needed, do it only
12006     * for a PMF.
12007     *
12008     * For 57712 and newer it's a per-function configuration.
12009     */
12010    return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
12011}
12012
12013static int
12014bxe_set_mac_one(struct bxe_softc          *sc,
12015                uint8_t                   *mac,
12016                struct ecore_vlan_mac_obj *obj,
12017                uint8_t                   set,
12018                int                       mac_type,
12019                unsigned long             *ramrod_flags)
12020{
12021    struct ecore_vlan_mac_ramrod_params ramrod_param;
12022    int rc;
12023
12024    memset(&ramrod_param, 0, sizeof(ramrod_param));
12025
12026    /* fill in general parameters */
12027    ramrod_param.vlan_mac_obj = obj;
12028    ramrod_param.ramrod_flags = *ramrod_flags;
12029
12030    /* fill a user request section if needed */
12031    if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
12032        memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
12033
12034        bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
12035
12036        /* Set the command: ADD or DEL */
12037        ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
12038                                            ECORE_VLAN_MAC_DEL;
12039    }
12040
12041    rc = ecore_config_vlan_mac(sc, &ramrod_param);
12042
12043    if (rc == ECORE_EXISTS) {
12044        BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12045        /* do not treat adding same MAC as error */
12046        rc = 0;
12047    } else if (rc < 0) {
12048        BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
12049    }
12050
12051    return (rc);
12052}
12053
12054static int
12055bxe_set_eth_mac(struct bxe_softc *sc,
12056                uint8_t          set)
12057{
12058    unsigned long ramrod_flags = 0;
12059
12060    BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
12061
12062    bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12063
12064    /* Eth MAC is set on RSS leading client (fp[0]) */
12065    return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
12066                            &sc->sp_objs->mac_obj,
12067                            set, ECORE_ETH_MAC, &ramrod_flags));
12068}
12069
12070#if 0
12071static void
12072bxe_update_max_mf_config(struct bxe_softc *sc,
12073                         uint32_t         value)
12074{
12075    /* load old values */
12076    uint32_t mf_cfg = sc->devinfo.mf_info.mf_config[SC_VN(sc)];
12077
12078    if (value != bxe_extract_max_cfg(sc, mf_cfg)) {
12079        /* leave all but MAX value */
12080        mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
12081
12082        /* set new MAX value */
12083        mf_cfg |= ((value << FUNC_MF_CFG_MAX_BW_SHIFT) &
12084                   FUNC_MF_CFG_MAX_BW_MASK);
12085
12086        bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
12087    }
12088}
12089#endif
12090
12091static int
12092bxe_get_cur_phy_idx(struct bxe_softc *sc)
12093{
12094    uint32_t sel_phy_idx = 0;
12095
12096    if (sc->link_params.num_phys <= 1) {
12097        return (ELINK_INT_PHY);
12098    }
12099
12100    if (sc->link_vars.link_up) {
12101        sel_phy_idx = ELINK_EXT_PHY1;
12102        /* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
12103        if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
12104            (sc->link_params.phy[ELINK_EXT_PHY2].supported &
12105             ELINK_SUPPORTED_FIBRE))
12106            sel_phy_idx = ELINK_EXT_PHY2;
12107    } else {
12108        switch (elink_phy_selection(&sc->link_params)) {
12109        case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
12110        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
12111        case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
12112               sel_phy_idx = ELINK_EXT_PHY1;
12113               break;
12114        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
12115        case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
12116               sel_phy_idx = ELINK_EXT_PHY2;
12117               break;
12118        }
12119    }
12120
12121    return (sel_phy_idx);
12122}
12123
12124static int
12125bxe_get_link_cfg_idx(struct bxe_softc *sc)
12126{
12127    uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
12128
12129    /*
12130     * The selected activated PHY is always after swapping (in case PHY
12131     * swapping is enabled). So when swapping is enabled, we need to reverse
12132     * the configuration
12133     */
12134
12135    if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
12136        if (sel_phy_idx == ELINK_EXT_PHY1)
12137            sel_phy_idx = ELINK_EXT_PHY2;
12138        else if (sel_phy_idx == ELINK_EXT_PHY2)
12139            sel_phy_idx = ELINK_EXT_PHY1;
12140    }
12141
12142    return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
12143}
12144
12145static void
12146bxe_set_requested_fc(struct bxe_softc *sc)
12147{
12148    /*
12149     * Initialize link parameters structure variables
12150     * It is recommended to turn off RX FC for jumbo frames
12151     * for better performance
12152     */
12153    if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
12154        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
12155    } else {
12156        sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
12157    }
12158}
12159
12160static void
12161bxe_calc_fc_adv(struct bxe_softc *sc)
12162{
12163    uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
12164    switch (sc->link_vars.ieee_fc &
12165            MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
12166    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
12167    default:
12168        sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
12169                                           ADVERTISED_Pause);
12170        break;
12171
12172    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
12173        sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
12174                                          ADVERTISED_Pause);
12175        break;
12176
12177    case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
12178        sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
12179        break;
12180    }
12181}
12182
12183static uint16_t
12184bxe_get_mf_speed(struct bxe_softc *sc)
12185{
12186    uint16_t line_speed = sc->link_vars.line_speed;
12187    if (IS_MF(sc)) {
12188        uint16_t maxCfg =
12189            bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
12190
12191        /* calculate the current MAX line speed limit for the MF devices */
12192        if (IS_MF_SI(sc)) {
12193            line_speed = (line_speed * maxCfg) / 100;
12194        } else { /* SD mode */
12195            uint16_t vn_max_rate = maxCfg * 100;
12196
12197            if (vn_max_rate < line_speed) {
12198                line_speed = vn_max_rate;
12199            }
12200        }
12201    }
12202
12203    return (line_speed);
12204}
12205
12206static void
12207bxe_fill_report_data(struct bxe_softc            *sc,
12208                     struct bxe_link_report_data *data)
12209{
12210    uint16_t line_speed = bxe_get_mf_speed(sc);
12211
12212    memset(data, 0, sizeof(*data));
12213
12214    /* fill the report data with the effective line speed */
12215    data->line_speed = line_speed;
12216
12217    /* Link is down */
12218    if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
12219        bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
12220    }
12221
12222    /* Full DUPLEX */
12223    if (sc->link_vars.duplex == DUPLEX_FULL) {
12224        bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
12225    }
12226
12227    /* Rx Flow Control is ON */
12228    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
12229        bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
12230    }
12231
12232    /* Tx Flow Control is ON */
12233    if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
12234        bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
12235    }
12236}
12237
12238/* report link status to OS, should be called under phy_lock */
12239static void
12240bxe_link_report_locked(struct bxe_softc *sc)
12241{
12242    struct bxe_link_report_data cur_data;
12243
12244    /* reread mf_cfg */
12245    if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
12246        bxe_read_mf_cfg(sc);
12247    }
12248
12249    /* Read the current link report info */
12250    bxe_fill_report_data(sc, &cur_data);
12251
12252    /* Don't report link down or exactly the same link status twice */
12253    if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
12254        (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12255                      &sc->last_reported_link.link_report_flags) &&
12256         bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12257                      &cur_data.link_report_flags))) {
12258        return;
12259    }
12260
12261    sc->link_cnt++;
12262
12263    /* report new link params and remember the state for the next time */
12264    memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
12265
12266    if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
12267                     &cur_data.link_report_flags)) {
12268        if_link_state_change(sc->ifnet, LINK_STATE_DOWN);
12269        BLOGI(sc, "NIC Link is Down\n");
12270    } else {
12271        const char *duplex;
12272        const char *flow;
12273
12274        if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
12275                                   &cur_data.link_report_flags)) {
12276            duplex = "full";
12277        } else {
12278            duplex = "half";
12279        }
12280
12281        /*
12282         * Handle the FC at the end so that only these flags would be
12283         * possibly set. This way we may easily check if there is no FC
12284         * enabled.
12285         */
12286        if (cur_data.link_report_flags) {
12287            if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12288                             &cur_data.link_report_flags) &&
12289                bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12290                             &cur_data.link_report_flags)) {
12291                flow = "ON - receive & transmit";
12292            } else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12293                                    &cur_data.link_report_flags) &&
12294                       !bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12295                                     &cur_data.link_report_flags)) {
12296                flow = "ON - receive";
12297            } else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
12298                                     &cur_data.link_report_flags) &&
12299                       bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
12300                                    &cur_data.link_report_flags)) {
12301                flow = "ON - transmit";
12302            } else {
12303                flow = "none"; /* possible? */
12304            }
12305        } else {
12306            flow = "none";
12307        }
12308
12309        if_link_state_change(sc->ifnet, LINK_STATE_UP);
12310        BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
12311              cur_data.line_speed, duplex, flow);
12312    }
12313}
12314
12315static void
12316bxe_link_report(struct bxe_softc *sc)
12317{
12318    BXE_PHY_LOCK(sc);
12319    bxe_link_report_locked(sc);
12320    BXE_PHY_UNLOCK(sc);
12321}
12322
12323static void
12324bxe_link_status_update(struct bxe_softc *sc)
12325{
12326    if (sc->state != BXE_STATE_OPEN) {
12327        return;
12328    }
12329
12330#if 0
12331    /* read updated dcb configuration */
12332    if (IS_PF(sc))
12333        bxe_dcbx_pmf_update(sc);
12334#endif
12335
12336    if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
12337        elink_link_status_update(&sc->link_params, &sc->link_vars);
12338    } else {
12339        sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
12340                                  ELINK_SUPPORTED_10baseT_Full |
12341                                  ELINK_SUPPORTED_100baseT_Half |
12342                                  ELINK_SUPPORTED_100baseT_Full |
12343                                  ELINK_SUPPORTED_1000baseT_Full |
12344                                  ELINK_SUPPORTED_2500baseX_Full |
12345                                  ELINK_SUPPORTED_10000baseT_Full |
12346                                  ELINK_SUPPORTED_TP |
12347                                  ELINK_SUPPORTED_FIBRE |
12348                                  ELINK_SUPPORTED_Autoneg |
12349                                  ELINK_SUPPORTED_Pause |
12350                                  ELINK_SUPPORTED_Asym_Pause);
12351        sc->port.advertising[0] = sc->port.supported[0];
12352
12353        sc->link_params.sc                = sc;
12354        sc->link_params.port              = SC_PORT(sc);
12355        sc->link_params.req_duplex[0]     = DUPLEX_FULL;
12356        sc->link_params.req_flow_ctrl[0]  = ELINK_FLOW_CTRL_NONE;
12357        sc->link_params.req_line_speed[0] = SPEED_10000;
12358        sc->link_params.speed_cap_mask[0] = 0x7f0000;
12359        sc->link_params.switch_cfg        = ELINK_SWITCH_CFG_10G;
12360
12361        if (CHIP_REV_IS_FPGA(sc)) {
12362            sc->link_vars.mac_type    = ELINK_MAC_TYPE_EMAC;
12363            sc->link_vars.line_speed  = ELINK_SPEED_1000;
12364            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12365                                         LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
12366        } else {
12367            sc->link_vars.mac_type    = ELINK_MAC_TYPE_BMAC;
12368            sc->link_vars.line_speed  = ELINK_SPEED_10000;
12369            sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
12370                                         LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
12371        }
12372
12373        sc->link_vars.link_up = 1;
12374
12375        sc->link_vars.duplex    = DUPLEX_FULL;
12376        sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
12377
12378        if (IS_PF(sc)) {
12379            REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
12380            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12381            bxe_link_report(sc);
12382        }
12383    }
12384
12385    if (IS_PF(sc)) {
12386        if (sc->link_vars.link_up) {
12387            bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12388        } else {
12389            bxe_stats_handle(sc, STATS_EVENT_STOP);
12390        }
12391        bxe_link_report(sc);
12392    } else {
12393        bxe_link_report(sc);
12394        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12395    }
12396}
12397
12398static int
12399bxe_initial_phy_init(struct bxe_softc *sc,
12400                     int              load_mode)
12401{
12402    int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
12403    uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
12404    struct elink_params *lp = &sc->link_params;
12405
12406    bxe_set_requested_fc(sc);
12407
12408    if (CHIP_REV_IS_SLOW(sc)) {
12409        uint32_t bond = CHIP_BOND_ID(sc);
12410        uint32_t feat = 0;
12411
12412        if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
12413            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12414        } else if (bond & 0x4) {
12415            if (CHIP_IS_E3(sc)) {
12416                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
12417            } else {
12418                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
12419            }
12420        } else if (bond & 0x8) {
12421            if (CHIP_IS_E3(sc)) {
12422                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
12423            } else {
12424                feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12425            }
12426        }
12427
12428        /* disable EMAC for E3 and above */
12429        if (bond & 0x2) {
12430            feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
12431        }
12432
12433        sc->link_params.feature_config_flags |= feat;
12434    }
12435
12436    BXE_PHY_LOCK(sc);
12437
12438    if (load_mode == LOAD_DIAG) {
12439        lp->loopback_mode = ELINK_LOOPBACK_XGXS;
12440        /* Prefer doing PHY loopback at 10G speed, if possible */
12441        if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
12442            if (lp->speed_cap_mask[cfg_idx] &
12443                PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
12444                lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
12445            } else {
12446                lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
12447            }
12448        }
12449    }
12450
12451    if (load_mode == LOAD_LOOPBACK_EXT) {
12452        lp->loopback_mode = ELINK_LOOPBACK_EXT;
12453    }
12454
12455    rc = elink_phy_init(&sc->link_params, &sc->link_vars);
12456
12457    BXE_PHY_UNLOCK(sc);
12458
12459    bxe_calc_fc_adv(sc);
12460
12461    if (sc->link_vars.link_up) {
12462        bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
12463        bxe_link_report(sc);
12464    }
12465
12466    if (!CHIP_REV_IS_SLOW(sc)) {
12467        bxe_periodic_start(sc);
12468    }
12469
12470    sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
12471    return (rc);
12472}
12473
12474/* must be called under IF_ADDR_LOCK */
12475static int
12476bxe_init_mcast_macs_list(struct bxe_softc                 *sc,
12477                         struct ecore_mcast_ramrod_params *p)
12478{
12479    struct ifnet *ifp = sc->ifnet;
12480    int mc_count = 0;
12481    struct ifmultiaddr *ifma;
12482    struct ecore_mcast_list_elem *mc_mac;
12483
12484    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12485        if (ifma->ifma_addr->sa_family != AF_LINK) {
12486            continue;
12487        }
12488
12489        mc_count++;
12490    }
12491
12492    ECORE_LIST_INIT(&p->mcast_list);
12493    p->mcast_list_len = 0;
12494
12495    if (!mc_count) {
12496        return (0);
12497    }
12498
12499    mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12500                    (M_NOWAIT | M_ZERO));
12501    if (!mc_mac) {
12502        BLOGE(sc, "Failed to allocate temp mcast list\n");
12503        return (-1);
12504    }
12505
12506    TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
12507        if (ifma->ifma_addr->sa_family != AF_LINK) {
12508            continue;
12509        }
12510
12511        mc_mac->mac = (uint8_t *)LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
12512        ECORE_LIST_PUSH_TAIL(&mc_mac->link, &p->mcast_list);
12513
12514        BLOGD(sc, DBG_LOAD,
12515              "Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X\n",
12516              mc_mac->mac[0], mc_mac->mac[1], mc_mac->mac[2],
12517              mc_mac->mac[3], mc_mac->mac[4], mc_mac->mac[5]);
12518
12519        mc_mac++;
12520    }
12521
12522    p->mcast_list_len = mc_count;
12523
12524    return (0);
12525}
12526
12527static void
12528bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12529{
12530    struct ecore_mcast_list_elem *mc_mac =
12531        ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12532                               struct ecore_mcast_list_elem,
12533                               link);
12534
12535    if (mc_mac) {
12536        /* only a single free as all mc_macs are in the same heap array */
12537        free(mc_mac, M_DEVBUF);
12538    }
12539}
12540
12541static int
12542bxe_set_mc_list(struct bxe_softc *sc)
12543{
12544    struct ecore_mcast_ramrod_params rparam = { NULL };
12545    int rc = 0;
12546
12547    rparam.mcast_obj = &sc->mcast_obj;
12548
12549    BXE_MCAST_LOCK(sc);
12550
12551    /* first, clear all configured multicast MACs */
12552    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12553    if (rc < 0) {
12554        BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12555        return (rc);
12556    }
12557
12558    /* configure a new MACs list */
12559    rc = bxe_init_mcast_macs_list(sc, &rparam);
12560    if (rc) {
12561        BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12562        BXE_MCAST_UNLOCK(sc);
12563        return (rc);
12564    }
12565
12566    /* Now add the new MACs */
12567    rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12568    if (rc < 0) {
12569        BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12570    }
12571
12572    bxe_free_mcast_macs_list(&rparam);
12573
12574    BXE_MCAST_UNLOCK(sc);
12575
12576    return (rc);
12577}
12578
12579static int
12580bxe_set_uc_list(struct bxe_softc *sc)
12581{
12582    struct ifnet *ifp = sc->ifnet;
12583    struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12584    struct ifaddr *ifa;
12585    unsigned long ramrod_flags = 0;
12586    int rc;
12587
12588#if __FreeBSD_version < 800000
12589    IF_ADDR_LOCK(ifp);
12590#else
12591    if_addr_rlock(ifp);
12592#endif
12593
12594    /* first schedule a cleanup up of old configuration */
12595    rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12596    if (rc < 0) {
12597        BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12598#if __FreeBSD_version < 800000
12599        IF_ADDR_UNLOCK(ifp);
12600#else
12601        if_addr_runlock(ifp);
12602#endif
12603        return (rc);
12604    }
12605
12606    ifa = ifp->if_addr;
12607    while (ifa) {
12608        if (ifa->ifa_addr->sa_family != AF_LINK) {
12609            ifa = TAILQ_NEXT(ifa, ifa_link);
12610            continue;
12611        }
12612
12613        rc = bxe_set_mac_one(sc, (uint8_t *)LLADDR((struct sockaddr_dl *)ifa->ifa_addr),
12614                             mac_obj, TRUE, ECORE_UC_LIST_MAC, &ramrod_flags);
12615        if (rc == -EEXIST) {
12616            BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12617            /* do not treat adding same MAC as an error */
12618            rc = 0;
12619        } else if (rc < 0) {
12620            BLOGE(sc, "Failed to schedule ADD operations (%d)\n", rc);
12621#if __FreeBSD_version < 800000
12622            IF_ADDR_UNLOCK(ifp);
12623#else
12624            if_addr_runlock(ifp);
12625#endif
12626            return (rc);
12627        }
12628
12629        ifa = TAILQ_NEXT(ifa, ifa_link);
12630    }
12631
12632#if __FreeBSD_version < 800000
12633    IF_ADDR_UNLOCK(ifp);
12634#else
12635    if_addr_runlock(ifp);
12636#endif
12637
12638    /* Execute the pending commands */
12639    bit_set(&ramrod_flags, RAMROD_CONT);
12640    return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12641                            ECORE_UC_LIST_MAC, &ramrod_flags));
12642}
12643
12644static void
12645bxe_handle_rx_mode_tq(void *context,
12646                      int  pending)
12647{
12648    struct bxe_softc *sc = (struct bxe_softc *)context;
12649    struct ifnet *ifp = sc->ifnet;
12650    uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12651
12652    BXE_CORE_LOCK(sc);
12653
12654    if (sc->state != BXE_STATE_OPEN) {
12655        BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12656        BXE_CORE_UNLOCK(sc);
12657        return;
12658    }
12659
12660    BLOGD(sc, DBG_SP, "ifp->if_flags=0x%x\n", ifp->if_flags);
12661
12662    if (ifp->if_flags & IFF_PROMISC) {
12663        rx_mode = BXE_RX_MODE_PROMISC;
12664    } else if ((ifp->if_flags & IFF_ALLMULTI) ||
12665               ((ifp->if_amcount > BXE_MAX_MULTICAST) &&
12666                CHIP_IS_E1(sc))) {
12667        rx_mode = BXE_RX_MODE_ALLMULTI;
12668    } else {
12669        if (IS_PF(sc)) {
12670            /* some multicasts */
12671            if (bxe_set_mc_list(sc) < 0) {
12672                rx_mode = BXE_RX_MODE_ALLMULTI;
12673            }
12674            if (bxe_set_uc_list(sc) < 0) {
12675                rx_mode = BXE_RX_MODE_PROMISC;
12676            }
12677        }
12678#if 0
12679        else {
12680            /*
12681             * Configuring mcast to a VF involves sleeping (when we
12682             * wait for the PF's response). Since this function is
12683             * called from a non sleepable context we must schedule
12684             * a work item for this purpose
12685             */
12686            bxe_set_bit(BXE_SP_RTNL_VFPF_MCAST, &sc->sp_rtnl_state);
12687            schedule_delayed_work(&sc->sp_rtnl_task, 0);
12688        }
12689#endif
12690    }
12691
12692    sc->rx_mode = rx_mode;
12693
12694    /* schedule the rx_mode command */
12695    if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12696        BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12697        bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12698        BXE_CORE_UNLOCK(sc);
12699        return;
12700    }
12701
12702    if (IS_PF(sc)) {
12703        bxe_set_storm_rx_mode(sc);
12704    }
12705#if 0
12706    else {
12707        /*
12708         * Configuring mcast to a VF involves sleeping (when we
12709         * wait for the PF's response). Since this function is
12710         * called from a non sleepable context we must schedule
12711         * a work item for this purpose
12712         */
12713        bxe_set_bit(BXE_SP_RTNL_VFPF_STORM_RX_MODE, &sc->sp_rtnl_state);
12714        schedule_delayed_work(&sc->sp_rtnl_task, 0);
12715    }
12716#endif
12717
12718    BXE_CORE_UNLOCK(sc);
12719}
12720
12721static void
12722bxe_set_rx_mode(struct bxe_softc *sc)
12723{
12724    taskqueue_enqueue(sc->rx_mode_tq, &sc->rx_mode_tq_task);
12725}
12726
12727/* update flags in shmem */
12728static void
12729bxe_update_drv_flags(struct bxe_softc *sc,
12730                     uint32_t         flags,
12731                     uint32_t         set)
12732{
12733    uint32_t drv_flags;
12734
12735    if (SHMEM2_HAS(sc, drv_flags)) {
12736        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12737        drv_flags = SHMEM2_RD(sc, drv_flags);
12738
12739        if (set) {
12740            SET_FLAGS(drv_flags, flags);
12741        } else {
12742            RESET_FLAGS(drv_flags, flags);
12743        }
12744
12745        SHMEM2_WR(sc, drv_flags, drv_flags);
12746        BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12747
12748        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12749    }
12750}
12751
12752/* periodic timer callout routine, only runs when the interface is up */
12753
12754static void
12755bxe_periodic_callout_func(void *xsc)
12756{
12757    struct bxe_softc *sc = (struct bxe_softc *)xsc;
12758    int i;
12759
12760    if (!BXE_CORE_TRYLOCK(sc)) {
12761        /* just bail and try again next time */
12762
12763        if ((sc->state == BXE_STATE_OPEN) &&
12764            (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12765            /* schedule the next periodic callout */
12766            callout_reset(&sc->periodic_callout, hz,
12767                          bxe_periodic_callout_func, sc);
12768        }
12769
12770        return;
12771    }
12772
12773    if ((sc->state != BXE_STATE_OPEN) ||
12774        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12775        BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12776        BXE_CORE_UNLOCK(sc);
12777        return;
12778    }
12779
12780    /* Check for TX timeouts on any fastpath. */
12781    FOR_EACH_QUEUE(sc, i) {
12782        if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12783            /* Ruh-Roh, chip was reset! */
12784            break;
12785        }
12786    }
12787
12788    if (!CHIP_REV_IS_SLOW(sc)) {
12789        /*
12790         * This barrier is needed to ensure the ordering between the writing
12791         * to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12792         * the reading here.
12793         */
12794        mb();
12795        if (sc->port.pmf) {
12796            BXE_PHY_LOCK(sc);
12797            elink_period_func(&sc->link_params, &sc->link_vars);
12798            BXE_PHY_UNLOCK(sc);
12799        }
12800    }
12801
12802    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12803        int mb_idx = SC_FW_MB_IDX(sc);
12804        uint32_t drv_pulse;
12805        uint32_t mcp_pulse;
12806
12807        ++sc->fw_drv_pulse_wr_seq;
12808        sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12809
12810        drv_pulse = sc->fw_drv_pulse_wr_seq;
12811        bxe_drv_pulse(sc);
12812
12813        mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12814                     MCP_PULSE_SEQ_MASK);
12815
12816        /*
12817         * The delta between driver pulse and mcp response should
12818         * be 1 (before mcp response) or 0 (after mcp response).
12819         */
12820        if ((drv_pulse != mcp_pulse) &&
12821            (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12822            /* someone lost a heartbeat... */
12823            BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12824                  drv_pulse, mcp_pulse);
12825        }
12826    }
12827
12828    /* state is BXE_STATE_OPEN */
12829    bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12830
12831#if 0
12832    /* sample VF bulletin board for new posts from PF */
12833    if (IS_VF(sc)) {
12834        bxe_sample_bulletin(sc);
12835    }
12836#endif
12837
12838    BXE_CORE_UNLOCK(sc);
12839
12840    if ((sc->state == BXE_STATE_OPEN) &&
12841        (atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12842        /* schedule the next periodic callout */
12843        callout_reset(&sc->periodic_callout, hz,
12844                      bxe_periodic_callout_func, sc);
12845    }
12846}
12847
12848static void
12849bxe_periodic_start(struct bxe_softc *sc)
12850{
12851    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12852    callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12853}
12854
12855static void
12856bxe_periodic_stop(struct bxe_softc *sc)
12857{
12858    atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12859    callout_drain(&sc->periodic_callout);
12860}
12861
12862/* start the controller */
12863static __noinline int
12864bxe_nic_load(struct bxe_softc *sc,
12865             int              load_mode)
12866{
12867    uint32_t val;
12868    int load_code = 0;
12869    int i, rc = 0;
12870
12871    BXE_CORE_LOCK_ASSERT(sc);
12872
12873    BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12874
12875    sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12876
12877    if (IS_PF(sc)) {
12878        /* must be called before memory allocation and HW init */
12879        bxe_ilt_set_info(sc);
12880    }
12881
12882    sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12883
12884    bxe_set_fp_rx_buf_size(sc);
12885
12886    if (bxe_alloc_fp_buffers(sc) != 0) {
12887        BLOGE(sc, "Failed to allocate fastpath memory\n");
12888        sc->state = BXE_STATE_CLOSED;
12889        rc = ENOMEM;
12890        goto bxe_nic_load_error0;
12891    }
12892
12893    if (bxe_alloc_mem(sc) != 0) {
12894        sc->state = BXE_STATE_CLOSED;
12895        rc = ENOMEM;
12896        goto bxe_nic_load_error0;
12897    }
12898
12899    if (bxe_alloc_fw_stats_mem(sc) != 0) {
12900        sc->state = BXE_STATE_CLOSED;
12901        rc = ENOMEM;
12902        goto bxe_nic_load_error0;
12903    }
12904
12905    if (IS_PF(sc)) {
12906        /* set pf load just before approaching the MCP */
12907        bxe_set_pf_load(sc);
12908
12909        /* if MCP exists send load request and analyze response */
12910        if (!BXE_NOMCP(sc)) {
12911            /* attempt to load pf */
12912            if (bxe_nic_load_request(sc, &load_code) != 0) {
12913                sc->state = BXE_STATE_CLOSED;
12914                rc = ENXIO;
12915                goto bxe_nic_load_error1;
12916            }
12917
12918            /* what did the MCP say? */
12919            if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12920                bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12921                sc->state = BXE_STATE_CLOSED;
12922                rc = ENXIO;
12923                goto bxe_nic_load_error2;
12924            }
12925        } else {
12926            BLOGI(sc, "Device has no MCP!\n");
12927            load_code = bxe_nic_load_no_mcp(sc);
12928        }
12929
12930        /* mark PMF if applicable */
12931        bxe_nic_load_pmf(sc, load_code);
12932
12933        /* Init Function state controlling object */
12934        bxe_init_func_obj(sc);
12935
12936        /* Initialize HW */
12937        if (bxe_init_hw(sc, load_code) != 0) {
12938            BLOGE(sc, "HW init failed\n");
12939            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12940            sc->state = BXE_STATE_CLOSED;
12941            rc = ENXIO;
12942            goto bxe_nic_load_error2;
12943        }
12944    }
12945
12946    /* attach interrupts */
12947    if (bxe_interrupt_attach(sc) != 0) {
12948        sc->state = BXE_STATE_CLOSED;
12949        rc = ENXIO;
12950        goto bxe_nic_load_error2;
12951    }
12952
12953    bxe_nic_init(sc, load_code);
12954
12955    /* Init per-function objects */
12956    if (IS_PF(sc)) {
12957        bxe_init_objs(sc);
12958        // XXX bxe_iov_nic_init(sc);
12959
12960        /* set AFEX default VLAN tag to an invalid value */
12961        sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12962        // XXX bxe_nic_load_afex_dcc(sc, load_code);
12963
12964        sc->state = BXE_STATE_OPENING_WAITING_PORT;
12965        rc = bxe_func_start(sc);
12966        if (rc) {
12967            BLOGE(sc, "Function start failed!\n");
12968            bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12969            sc->state = BXE_STATE_ERROR;
12970            goto bxe_nic_load_error3;
12971        }
12972
12973        /* send LOAD_DONE command to MCP */
12974        if (!BXE_NOMCP(sc)) {
12975            load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12976            if (!load_code) {
12977                BLOGE(sc, "MCP response failure, aborting\n");
12978                sc->state = BXE_STATE_ERROR;
12979                rc = ENXIO;
12980                goto bxe_nic_load_error3;
12981            }
12982        }
12983
12984        rc = bxe_setup_leading(sc);
12985        if (rc) {
12986            BLOGE(sc, "Setup leading failed!\n");
12987            sc->state = BXE_STATE_ERROR;
12988            goto bxe_nic_load_error3;
12989        }
12990
12991        FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12992            rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12993            if (rc) {
12994                BLOGE(sc, "Queue(%d) setup failed\n", i);
12995                sc->state = BXE_STATE_ERROR;
12996                goto bxe_nic_load_error3;
12997            }
12998        }
12999
13000        rc = bxe_init_rss_pf(sc);
13001        if (rc) {
13002            BLOGE(sc, "PF RSS init failed\n");
13003            sc->state = BXE_STATE_ERROR;
13004            goto bxe_nic_load_error3;
13005        }
13006    }
13007    /* XXX VF */
13008#if 0
13009    else { /* VF */
13010        FOR_EACH_ETH_QUEUE(sc, i) {
13011            rc = bxe_vfpf_setup_q(sc, i);
13012            if (rc) {
13013                BLOGE(sc, "Queue(%d) setup failed\n", i);
13014                sc->state = BXE_STATE_ERROR;
13015                goto bxe_nic_load_error3;
13016            }
13017        }
13018    }
13019#endif
13020
13021    /* now when Clients are configured we are ready to work */
13022    sc->state = BXE_STATE_OPEN;
13023
13024    /* Configure a ucast MAC */
13025    if (IS_PF(sc)) {
13026        rc = bxe_set_eth_mac(sc, TRUE);
13027    }
13028#if 0
13029    else { /* IS_VF(sc) */
13030        rc = bxe_vfpf_set_mac(sc);
13031    }
13032#endif
13033    if (rc) {
13034        BLOGE(sc, "Setting Ethernet MAC failed\n");
13035        sc->state = BXE_STATE_ERROR;
13036        goto bxe_nic_load_error3;
13037    }
13038
13039#if 0
13040    if (IS_PF(sc) && sc->pending_max) {
13041        /* for AFEX */
13042        bxe_update_max_mf_config(sc, sc->pending_max);
13043        sc->pending_max = 0;
13044    }
13045#endif
13046
13047    if (sc->port.pmf) {
13048        rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
13049        if (rc) {
13050            sc->state = BXE_STATE_ERROR;
13051            goto bxe_nic_load_error3;
13052        }
13053    }
13054
13055    sc->link_params.feature_config_flags &=
13056        ~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
13057
13058    /* start fast path */
13059
13060    /* Initialize Rx filter */
13061    bxe_set_rx_mode(sc);
13062
13063    /* start the Tx */
13064    switch (/* XXX load_mode */LOAD_OPEN) {
13065    case LOAD_NORMAL:
13066    case LOAD_OPEN:
13067        break;
13068
13069    case LOAD_DIAG:
13070    case LOAD_LOOPBACK_EXT:
13071        sc->state = BXE_STATE_DIAG;
13072        break;
13073
13074    default:
13075        break;
13076    }
13077
13078    if (sc->port.pmf) {
13079        bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
13080    } else {
13081        bxe_link_status_update(sc);
13082    }
13083
13084    /* start the periodic timer callout */
13085    bxe_periodic_start(sc);
13086
13087    if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
13088        /* mark driver is loaded in shmem2 */
13089        val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
13090        SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
13091                  (val |
13092                   DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
13093                   DRV_FLAGS_CAPABILITIES_LOADED_L2));
13094    }
13095
13096    /* wait for all pending SP commands to complete */
13097    if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
13098        BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
13099        bxe_periodic_stop(sc);
13100        bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
13101        return (ENXIO);
13102    }
13103
13104#if 0
13105    /* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
13106    if (sc->port.pmf && (sc->state != BXE_STATE_DIAG)) {
13107        bxe_dcbx_init(sc, FALSE);
13108    }
13109#endif
13110
13111    /* Tell the stack the driver is running! */
13112    sc->ifnet->if_drv_flags = IFF_DRV_RUNNING;
13113
13114    BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
13115
13116    return (0);
13117
13118bxe_nic_load_error3:
13119
13120    if (IS_PF(sc)) {
13121        bxe_int_disable_sync(sc, 1);
13122
13123        /* clean out queued objects */
13124        bxe_squeeze_objects(sc);
13125    }
13126
13127    bxe_interrupt_detach(sc);
13128
13129bxe_nic_load_error2:
13130
13131    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
13132        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
13133        bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
13134    }
13135
13136    sc->port.pmf = 0;
13137
13138bxe_nic_load_error1:
13139
13140    /* clear pf_load status, as it was already set */
13141    if (IS_PF(sc)) {
13142        bxe_clear_pf_load(sc);
13143    }
13144
13145bxe_nic_load_error0:
13146
13147    bxe_free_fw_stats_mem(sc);
13148    bxe_free_fp_buffers(sc);
13149    bxe_free_mem(sc);
13150
13151    return (rc);
13152}
13153
13154static int
13155bxe_init_locked(struct bxe_softc *sc)
13156{
13157    int other_engine = SC_PATH(sc) ? 0 : 1;
13158    uint8_t other_load_status, load_status;
13159    uint8_t global = FALSE;
13160    int rc;
13161
13162    BXE_CORE_LOCK_ASSERT(sc);
13163
13164    /* check if the driver is already running */
13165    if (sc->ifnet->if_drv_flags & IFF_DRV_RUNNING) {
13166        BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
13167        return (0);
13168    }
13169
13170    bxe_set_power_state(sc, PCI_PM_D0);
13171
13172    /*
13173     * If parity occurred during the unload, then attentions and/or
13174     * RECOVERY_IN_PROGRES may still be set. If so we want the first function
13175     * loaded on the current engine to complete the recovery. Parity recovery
13176     * is only relevant for PF driver.
13177     */
13178    if (IS_PF(sc)) {
13179        other_load_status = bxe_get_load_status(sc, other_engine);
13180        load_status = bxe_get_load_status(sc, SC_PATH(sc));
13181
13182        if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
13183            bxe_chk_parity_attn(sc, &global, TRUE)) {
13184            do {
13185                /*
13186                 * If there are attentions and they are in global blocks, set
13187                 * the GLOBAL_RESET bit regardless whether it will be this
13188                 * function that will complete the recovery or not.
13189                 */
13190                if (global) {
13191                    bxe_set_reset_global(sc);
13192                }
13193
13194                /*
13195                 * Only the first function on the current engine should try
13196                 * to recover in open. In case of attentions in global blocks
13197                 * only the first in the chip should try to recover.
13198                 */
13199                if ((!load_status && (!global || !other_load_status)) &&
13200                    bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
13201                    BLOGI(sc, "Recovered during init\n");
13202                    break;
13203                }
13204
13205                /* recovery has failed... */
13206                bxe_set_power_state(sc, PCI_PM_D3hot);
13207                sc->recovery_state = BXE_RECOVERY_FAILED;
13208
13209                BLOGE(sc, "Recovery flow hasn't properly "
13210                          "completed yet, try again later. "
13211                          "If you still see this message after a "
13212                          "few retries then power cycle is required.\n");
13213
13214                rc = ENXIO;
13215                goto bxe_init_locked_done;
13216            } while (0);
13217        }
13218    }
13219
13220    sc->recovery_state = BXE_RECOVERY_DONE;
13221
13222    rc = bxe_nic_load(sc, LOAD_OPEN);
13223
13224bxe_init_locked_done:
13225
13226    if (rc) {
13227        /* Tell the stack the driver is NOT running! */
13228        BLOGE(sc, "Initialization failed, "
13229                  "stack notified driver is NOT running!\n");
13230        sc->ifnet->if_drv_flags &= ~IFF_DRV_RUNNING;
13231    }
13232
13233    return (rc);
13234}
13235
13236static int
13237bxe_stop_locked(struct bxe_softc *sc)
13238{
13239    BXE_CORE_LOCK_ASSERT(sc);
13240    return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
13241}
13242
13243/*
13244 * Handles controller initialization when called from an unlocked routine.
13245 * ifconfig calls this function.
13246 *
13247 * Returns:
13248 *   void
13249 */
13250static void
13251bxe_init(void *xsc)
13252{
13253    struct bxe_softc *sc = (struct bxe_softc *)xsc;
13254
13255    BXE_CORE_LOCK(sc);
13256    bxe_init_locked(sc);
13257    BXE_CORE_UNLOCK(sc);
13258}
13259
13260static int
13261bxe_init_ifnet(struct bxe_softc *sc)
13262{
13263    struct ifnet *ifp;
13264
13265    /* ifconfig entrypoint for media type/status reporting */
13266    ifmedia_init(&sc->ifmedia, IFM_IMASK,
13267                 bxe_ifmedia_update,
13268                 bxe_ifmedia_status);
13269
13270    /* set the default interface values */
13271    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
13272    ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
13273    ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
13274
13275    sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
13276
13277    /* allocate the ifnet structure */
13278    if ((ifp = if_alloc(IFT_ETHER)) == NULL) {
13279        BLOGE(sc, "Interface allocation failed!\n");
13280        return (ENXIO);
13281    }
13282
13283    ifp->if_softc = sc;
13284    if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
13285    ifp->if_flags = (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
13286    ifp->if_ioctl = bxe_ioctl;
13287    ifp->if_start = bxe_tx_start;
13288#if __FreeBSD_version >= 800000
13289    ifp->if_transmit = bxe_tx_mq_start;
13290    ifp->if_qflush = bxe_mq_flush;
13291#endif
13292#ifdef FreeBSD8_0
13293    ifp->if_timer = 0;
13294#endif
13295    ifp->if_init = bxe_init;
13296    ifp->if_mtu = sc->mtu;
13297    ifp->if_hwassist = (CSUM_IP       |
13298                        CSUM_TCP      |
13299                        CSUM_UDP      |
13300                        CSUM_TSO      |
13301                        CSUM_TCP_IPV6 |
13302                        CSUM_UDP_IPV6);
13303    ifp->if_capabilities =
13304#if __FreeBSD_version < 700000
13305        (IFCAP_VLAN_MTU       |
13306         IFCAP_VLAN_HWTAGGING |
13307         IFCAP_HWCSUM         |
13308         IFCAP_JUMBO_MTU      |
13309         IFCAP_LRO);
13310#else
13311        (IFCAP_VLAN_MTU       |
13312         IFCAP_VLAN_HWTAGGING |
13313         IFCAP_VLAN_HWTSO     |
13314         IFCAP_VLAN_HWFILTER  |
13315         IFCAP_VLAN_HWCSUM    |
13316         IFCAP_HWCSUM         |
13317         IFCAP_JUMBO_MTU      |
13318         IFCAP_LRO            |
13319         IFCAP_TSO4           |
13320         IFCAP_TSO6           |
13321         IFCAP_WOL_MAGIC);
13322#endif
13323    ifp->if_capenable = ifp->if_capabilities;
13324    ifp->if_capenable &= ~IFCAP_WOL_MAGIC; /* XXX not yet... */
13325#if __FreeBSD_version < 1000025
13326    ifp->if_baudrate = 1000000000;
13327#else
13328    if_initbaudrate(ifp, IF_Gbps(10));
13329#endif
13330    ifp->if_snd.ifq_drv_maxlen = sc->tx_ring_size;
13331
13332    IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
13333    IFQ_SET_READY(&ifp->if_snd);
13334
13335    sc->ifnet = ifp;
13336
13337    /* attach to the Ethernet interface list */
13338    ether_ifattach(ifp, sc->link_params.mac_addr);
13339
13340    return (0);
13341}
13342
13343static void
13344bxe_deallocate_bars(struct bxe_softc *sc)
13345{
13346    int i;
13347
13348    for (i = 0; i < MAX_BARS; i++) {
13349        if (sc->bar[i].resource != NULL) {
13350            bus_release_resource(sc->dev,
13351                                 SYS_RES_MEMORY,
13352                                 sc->bar[i].rid,
13353                                 sc->bar[i].resource);
13354            BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13355                  i, PCIR_BAR(i));
13356        }
13357    }
13358}
13359
13360static int
13361bxe_allocate_bars(struct bxe_softc *sc)
13362{
13363    u_int flags;
13364    int i;
13365
13366    memset(sc->bar, 0, sizeof(sc->bar));
13367
13368    for (i = 0; i < MAX_BARS; i++) {
13369
13370        /* memory resources reside at BARs 0, 2, 4 */
13371        /* Run `pciconf -lb` to see mappings */
13372        if ((i != 0) && (i != 2) && (i != 4)) {
13373            continue;
13374        }
13375
13376        sc->bar[i].rid = PCIR_BAR(i);
13377
13378        flags = RF_ACTIVE;
13379        if (i == 0) {
13380            flags |= RF_SHAREABLE;
13381        }
13382
13383        if ((sc->bar[i].resource =
13384             bus_alloc_resource_any(sc->dev,
13385                                    SYS_RES_MEMORY,
13386                                    &sc->bar[i].rid,
13387                                    flags)) == NULL) {
13388#if 0
13389            /* BAR4 doesn't exist for E1 */
13390            BLOGE(sc, "PCI BAR%d [%02x] memory allocation failed\n",
13391                  i, PCIR_BAR(i));
13392#endif
13393            return (0);
13394        }
13395
13396        sc->bar[i].tag    = rman_get_bustag(sc->bar[i].resource);
13397        sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13398        sc->bar[i].kva    = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13399
13400        BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %p-%p (%ld) -> %p\n",
13401              i, PCIR_BAR(i),
13402              (void *)rman_get_start(sc->bar[i].resource),
13403              (void *)rman_get_end(sc->bar[i].resource),
13404              rman_get_size(sc->bar[i].resource),
13405              (void *)sc->bar[i].kva);
13406    }
13407
13408    return (0);
13409}
13410
13411static void
13412bxe_get_function_num(struct bxe_softc *sc)
13413{
13414    uint32_t val = 0;
13415
13416    /*
13417     * Read the ME register to get the function number. The ME register
13418     * holds the relative-function number and absolute-function number. The
13419     * absolute-function number appears only in E2 and above. Before that
13420     * these bits always contained zero, therefore we cannot blindly use them.
13421     */
13422
13423    val = REG_RD(sc, BAR_ME_REGISTER);
13424
13425    sc->pfunc_rel =
13426        (uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13427    sc->path_id =
13428        (uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13429
13430    if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13431        sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13432    } else {
13433        sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13434    }
13435
13436    BLOGD(sc, DBG_LOAD,
13437          "Relative function %d, Absolute function %d, Path %d\n",
13438          sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13439}
13440
13441static uint32_t
13442bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13443{
13444    uint32_t shmem2_size;
13445    uint32_t offset;
13446    uint32_t mf_cfg_offset_value;
13447
13448    /* Non 57712 */
13449    offset = (SHMEM_RD(sc, func_mb) +
13450              (MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13451
13452    /* 57712 plus */
13453    if (sc->devinfo.shmem2_base != 0) {
13454        shmem2_size = SHMEM2_RD(sc, size);
13455        if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13456            mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13457            if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13458                offset = mf_cfg_offset_value;
13459            }
13460        }
13461    }
13462
13463    return (offset);
13464}
13465
13466static uint32_t
13467bxe_pcie_capability_read(struct bxe_softc *sc,
13468                         int    reg,
13469                         int    width)
13470{
13471    int pcie_reg;
13472
13473    /* ensure PCIe capability is enabled */
13474    if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13475        if (pcie_reg != 0) {
13476            BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13477            return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13478        }
13479    }
13480
13481    BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13482
13483    return (0);
13484}
13485
13486static uint8_t
13487bxe_is_pcie_pending(struct bxe_softc *sc)
13488{
13489    return (bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_STA, 2) &
13490            PCIM_EXP_STA_TRANSACTION_PND);
13491}
13492
13493/*
13494 * Walk the PCI capabiites list for the device to find what features are
13495 * supported. These capabilites may be enabled/disabled by firmware so it's
13496 * best to walk the list rather than make assumptions.
13497 */
13498static void
13499bxe_probe_pci_caps(struct bxe_softc *sc)
13500{
13501    uint16_t link_status;
13502    int reg;
13503
13504    /* check if PCI Power Management is enabled */
13505    if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13506        if (reg != 0) {
13507            BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13508
13509            sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13510            sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13511        }
13512    }
13513
13514    link_status = bxe_pcie_capability_read(sc, PCIR_EXPRESS_LINK_STA, 2);
13515
13516    /* handle PCIe 2.0 workarounds for 57710 */
13517    if (CHIP_IS_E1(sc)) {
13518        /* workaround for 57710 errata E4_57710_27462 */
13519        sc->devinfo.pcie_link_speed =
13520            (REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13521
13522        /* workaround for 57710 errata E4_57710_27488 */
13523        sc->devinfo.pcie_link_width =
13524            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13525        if (sc->devinfo.pcie_link_speed > 1) {
13526            sc->devinfo.pcie_link_width =
13527                ((link_status & PCIM_LINK_STA_WIDTH) >> 4) >> 1;
13528        }
13529    } else {
13530        sc->devinfo.pcie_link_speed =
13531            (link_status & PCIM_LINK_STA_SPEED);
13532        sc->devinfo.pcie_link_width =
13533            ((link_status & PCIM_LINK_STA_WIDTH) >> 4);
13534    }
13535
13536    BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13537          sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13538
13539    sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13540    sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13541
13542    /* check if MSI capability is enabled */
13543    if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13544        if (reg != 0) {
13545            BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13546
13547            sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13548            sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13549        }
13550    }
13551
13552    /* check if MSI-X capability is enabled */
13553    if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13554        if (reg != 0) {
13555            BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13556
13557            sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13558            sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13559        }
13560    }
13561}
13562
13563static int
13564bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13565{
13566    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13567    uint32_t val;
13568
13569    /* get the outer vlan if we're in switch-dependent mode */
13570
13571    val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13572    mf_info->ext_id = (uint16_t)val;
13573
13574    mf_info->multi_vnics_mode = 1;
13575
13576    if (!VALID_OVLAN(mf_info->ext_id)) {
13577        BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13578        return (1);
13579    }
13580
13581    /* get the capabilities */
13582    if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13583        FUNC_MF_CFG_PROTOCOL_ISCSI) {
13584        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13585    } else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13586               FUNC_MF_CFG_PROTOCOL_FCOE) {
13587        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13588    } else {
13589        mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13590    }
13591
13592    mf_info->vnics_per_port =
13593        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13594
13595    return (0);
13596}
13597
13598static uint32_t
13599bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13600{
13601    uint32_t retval = 0;
13602    uint32_t val;
13603
13604    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13605
13606    if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13607        if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13608            retval |= MF_PROTO_SUPPORT_ETHERNET;
13609        }
13610        if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13611            retval |= MF_PROTO_SUPPORT_ISCSI;
13612        }
13613        if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13614            retval |= MF_PROTO_SUPPORT_FCOE;
13615        }
13616    }
13617
13618    return (retval);
13619}
13620
13621static int
13622bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13623{
13624    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13625    uint32_t val;
13626
13627    /*
13628     * There is no outer vlan if we're in switch-independent mode.
13629     * If the mac is valid then assume multi-function.
13630     */
13631
13632    val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13633
13634    mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13635
13636    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13637
13638    mf_info->vnics_per_port =
13639        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13640
13641    return (0);
13642}
13643
13644static int
13645bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13646{
13647    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13648    uint32_t e1hov_tag;
13649    uint32_t func_config;
13650    uint32_t niv_config;
13651
13652    mf_info->multi_vnics_mode = 1;
13653
13654    e1hov_tag   = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13655    func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13656    niv_config  = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13657
13658    mf_info->ext_id =
13659        (uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13660                   FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13661
13662    mf_info->default_vlan =
13663        (uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13664                   FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13665
13666    mf_info->niv_allowed_priorities =
13667        (uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13668                  FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13669
13670    mf_info->niv_default_cos =
13671        (uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13672                  FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13673
13674    mf_info->afex_vlan_mode =
13675        ((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13676         FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13677
13678    mf_info->niv_mba_enabled =
13679        ((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13680         FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13681
13682    mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13683
13684    mf_info->vnics_per_port =
13685        (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13686
13687    return (0);
13688}
13689
13690static int
13691bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13692{
13693    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13694    uint32_t mf_cfg1;
13695    uint32_t mf_cfg2;
13696    uint32_t ovlan1;
13697    uint32_t ovlan2;
13698    uint8_t i, j;
13699
13700    BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13701          SC_PORT(sc));
13702    BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13703          mf_info->mf_config[SC_VN(sc)]);
13704    BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13705          mf_info->multi_vnics_mode);
13706    BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13707          mf_info->vnics_per_port);
13708    BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13709          mf_info->ext_id);
13710    BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13711          mf_info->min_bw[0], mf_info->min_bw[1],
13712          mf_info->min_bw[2], mf_info->min_bw[3]);
13713    BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13714          mf_info->max_bw[0], mf_info->max_bw[1],
13715          mf_info->max_bw[2], mf_info->max_bw[3]);
13716    BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13717          sc->mac_addr_str);
13718
13719    /* various MF mode sanity checks... */
13720
13721    if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13722        BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13723              SC_PORT(sc));
13724        return (1);
13725    }
13726
13727    if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13728        BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13729              mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13730        return (1);
13731    }
13732
13733    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13734        /* vnic id > 0 must have valid ovlan in switch-dependent mode */
13735        if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13736            BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13737                  SC_VN(sc), OVLAN(sc));
13738            return (1);
13739        }
13740
13741        if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13742            BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13743                  mf_info->multi_vnics_mode, OVLAN(sc));
13744            return (1);
13745        }
13746
13747        /*
13748         * Verify all functions are either MF or SF mode. If MF, make sure
13749         * sure that all non-hidden functions have a valid ovlan. If SF,
13750         * make sure that all non-hidden functions have an invalid ovlan.
13751         */
13752        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13753            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13754            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13755            if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13756                (((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13757                 ((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13758                BLOGE(sc, "mf_mode=SD function %d MF config "
13759                          "mismatch, multi_vnics_mode=%d ovlan=%d\n",
13760                      i, mf_info->multi_vnics_mode, ovlan1);
13761                return (1);
13762            }
13763        }
13764
13765        /* Verify all funcs on the same port each have a different ovlan. */
13766        FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13767            mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13768            ovlan1  = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13769            /* iterate from the next function on the port to the max func */
13770            for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13771                mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13772                ovlan2  = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13773                if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13774                    VALID_OVLAN(ovlan1) &&
13775                    !(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13776                    VALID_OVLAN(ovlan2) &&
13777                    (ovlan1 == ovlan2)) {
13778                    BLOGE(sc, "mf_mode=SD functions %d and %d "
13779                              "have the same ovlan (%d)\n",
13780                          i, j, ovlan1);
13781                    return (1);
13782                }
13783            }
13784        }
13785    } /* MULTI_FUNCTION_SD */
13786
13787    return (0);
13788}
13789
13790static int
13791bxe_get_mf_cfg_info(struct bxe_softc *sc)
13792{
13793    struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13794    uint32_t val, mac_upper;
13795    uint8_t i, vnic;
13796
13797    /* initialize mf_info defaults */
13798    mf_info->vnics_per_port   = 1;
13799    mf_info->multi_vnics_mode = FALSE;
13800    mf_info->path_has_ovlan   = FALSE;
13801    mf_info->mf_mode          = SINGLE_FUNCTION;
13802
13803    if (!CHIP_IS_MF_CAP(sc)) {
13804        return (0);
13805    }
13806
13807    if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13808        BLOGE(sc, "Invalid mf_cfg_base!\n");
13809        return (1);
13810    }
13811
13812    /* get the MF mode (switch dependent / independent / single-function) */
13813
13814    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13815
13816    switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13817    {
13818    case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13819
13820        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13821
13822        /* check for legal upper mac bytes */
13823        if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13824            mf_info->mf_mode = MULTI_FUNCTION_SI;
13825        } else {
13826            BLOGE(sc, "Invalid config for Switch Independent mode\n");
13827        }
13828
13829        break;
13830
13831    case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13832    case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13833
13834        /* get outer vlan configuration */
13835        val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13836
13837        if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13838            FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13839            mf_info->mf_mode = MULTI_FUNCTION_SD;
13840        } else {
13841            BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13842        }
13843
13844        break;
13845
13846    case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13847
13848        /* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13849        return (0);
13850
13851    case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13852
13853        /*
13854         * Mark MF mode as NIV if MCP version includes NPAR-SD support
13855         * and the MAC address is valid.
13856         */
13857        mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13858
13859        if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13860            (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13861            mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13862        } else {
13863            BLOGE(sc, "Invalid config for AFEX mode\n");
13864        }
13865
13866        break;
13867
13868    default:
13869
13870        BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13871              (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13872
13873        return (1);
13874    }
13875
13876    /* set path mf_mode (which could be different than function mf_mode) */
13877    if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13878        mf_info->path_has_ovlan = TRUE;
13879    } else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13880        /*
13881         * Decide on path multi vnics mode. If we're not in MF mode and in
13882         * 4-port mode, this is good enough to check vnic-0 of the other port
13883         * on the same path
13884         */
13885        if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13886            uint8_t other_port = !(PORT_ID(sc) & 1);
13887            uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13888
13889            val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13890
13891            mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13892        }
13893    }
13894
13895    if (mf_info->mf_mode == SINGLE_FUNCTION) {
13896        /* invalid MF config */
13897        if (SC_VN(sc) >= 1) {
13898            BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13899            return (1);
13900        }
13901
13902        return (0);
13903    }
13904
13905    /* get the MF configuration */
13906    mf_info->mf_config[SC_VN(sc)] =
13907        MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13908
13909    switch(mf_info->mf_mode)
13910    {
13911    case MULTI_FUNCTION_SD:
13912
13913        bxe_get_shmem_mf_cfg_info_sd(sc);
13914        break;
13915
13916    case MULTI_FUNCTION_SI:
13917
13918        bxe_get_shmem_mf_cfg_info_si(sc);
13919        break;
13920
13921    case MULTI_FUNCTION_AFEX:
13922
13923        bxe_get_shmem_mf_cfg_info_niv(sc);
13924        break;
13925
13926    default:
13927
13928        BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13929              mf_info->mf_mode);
13930        return (1);
13931    }
13932
13933    /* get the congestion management parameters */
13934
13935    vnic = 0;
13936    FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13937        /* get min/max bw */
13938        val = MFCFG_RD(sc, func_mf_config[i].config);
13939        mf_info->min_bw[vnic] =
13940            ((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13941        mf_info->max_bw[vnic] =
13942            ((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13943        vnic++;
13944    }
13945
13946    return (bxe_check_valid_mf_cfg(sc));
13947}
13948
13949static int
13950bxe_get_shmem_info(struct bxe_softc *sc)
13951{
13952    int port;
13953    uint32_t mac_hi, mac_lo, val;
13954
13955    port = SC_PORT(sc);
13956    mac_hi = mac_lo = 0;
13957
13958    sc->link_params.sc   = sc;
13959    sc->link_params.port = port;
13960
13961    /* get the hardware config info */
13962    sc->devinfo.hw_config =
13963        SHMEM_RD(sc, dev_info.shared_hw_config.config);
13964    sc->devinfo.hw_config2 =
13965        SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13966
13967    sc->link_params.hw_led_mode =
13968        ((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13969         SHARED_HW_CFG_LED_MODE_SHIFT);
13970
13971    /* get the port feature config */
13972    sc->port.config =
13973        SHMEM_RD(sc, dev_info.port_feature_config[port].config),
13974
13975    /* get the link params */
13976    sc->link_params.speed_cap_mask[0] =
13977        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13978    sc->link_params.speed_cap_mask[1] =
13979        SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13980
13981    /* get the lane config */
13982    sc->link_params.lane_config =
13983        SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13984
13985    /* get the link config */
13986    val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13987    sc->port.link_config[ELINK_INT_PHY] = val;
13988    sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13989    sc->port.link_config[ELINK_EXT_PHY1] =
13990        SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13991
13992    /* get the override preemphasis flag and enable it or turn it off */
13993    val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13994    if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13995        sc->link_params.feature_config_flags |=
13996            ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13997    } else {
13998        sc->link_params.feature_config_flags &=
13999            ~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
14000    }
14001
14002    /* get the initial value of the link params */
14003    sc->link_params.multi_phy_config =
14004        SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
14005
14006    /* get external phy info */
14007    sc->port.ext_phy_config =
14008        SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
14009
14010    /* get the multifunction configuration */
14011    bxe_get_mf_cfg_info(sc);
14012
14013    /* get the mac address */
14014    if (IS_MF(sc)) {
14015        mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
14016        mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
14017    } else {
14018        mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
14019        mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
14020    }
14021
14022    if ((mac_lo == 0) && (mac_hi == 0)) {
14023        *sc->mac_addr_str = 0;
14024        BLOGE(sc, "No Ethernet address programmed!\n");
14025    } else {
14026        sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
14027        sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
14028        sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
14029        sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
14030        sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
14031        sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
14032        snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
14033                 "%02x:%02x:%02x:%02x:%02x:%02x",
14034                 sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
14035                 sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
14036                 sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
14037        BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
14038    }
14039
14040#if 0
14041    if (!IS_MF(sc) &&
14042        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14043         PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE)) {
14044        sc->flags |= BXE_NO_ISCSI;
14045    }
14046    if (!IS_MF(sc) &&
14047        ((sc->port.config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
14048         PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI)) {
14049        sc->flags |= BXE_NO_FCOE_FLAG;
14050    }
14051#endif
14052
14053    return (0);
14054}
14055
14056static void
14057bxe_get_tunable_params(struct bxe_softc *sc)
14058{
14059    /* sanity checks */
14060
14061    if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
14062        (bxe_interrupt_mode != INTR_MODE_MSI)  &&
14063        (bxe_interrupt_mode != INTR_MODE_MSIX)) {
14064        BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
14065        bxe_interrupt_mode = INTR_MODE_MSIX;
14066    }
14067
14068    if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
14069        BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
14070        bxe_queue_count = 0;
14071    }
14072
14073    if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
14074        if (bxe_max_rx_bufs == 0) {
14075            bxe_max_rx_bufs = RX_BD_USABLE;
14076        } else {
14077            BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
14078            bxe_max_rx_bufs = 2048;
14079        }
14080    }
14081
14082    if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
14083        BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
14084        bxe_hc_rx_ticks = 25;
14085    }
14086
14087    if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
14088        BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
14089        bxe_hc_tx_ticks = 50;
14090    }
14091
14092    if (bxe_max_aggregation_size == 0) {
14093        bxe_max_aggregation_size = TPA_AGG_SIZE;
14094    }
14095
14096    if (bxe_max_aggregation_size > 0xffff) {
14097        BLOGW(sc, "invalid max_aggregation_size (%d)\n",
14098              bxe_max_aggregation_size);
14099        bxe_max_aggregation_size = TPA_AGG_SIZE;
14100    }
14101
14102    if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
14103        BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
14104        bxe_mrrs = -1;
14105    }
14106
14107    if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
14108        BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
14109        bxe_autogreeen = 0;
14110    }
14111
14112    if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
14113        BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
14114        bxe_udp_rss = 0;
14115    }
14116
14117    /* pull in user settings */
14118
14119    sc->interrupt_mode       = bxe_interrupt_mode;
14120    sc->max_rx_bufs          = bxe_max_rx_bufs;
14121    sc->hc_rx_ticks          = bxe_hc_rx_ticks;
14122    sc->hc_tx_ticks          = bxe_hc_tx_ticks;
14123    sc->max_aggregation_size = bxe_max_aggregation_size;
14124    sc->mrrs                 = bxe_mrrs;
14125    sc->autogreeen           = bxe_autogreeen;
14126    sc->udp_rss              = bxe_udp_rss;
14127
14128    if (bxe_interrupt_mode == INTR_MODE_INTX) {
14129        sc->num_queues = 1;
14130    } else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
14131        sc->num_queues =
14132            min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
14133                MAX_RSS_CHAINS);
14134        if (sc->num_queues > mp_ncpus) {
14135            sc->num_queues = mp_ncpus;
14136        }
14137    }
14138
14139    BLOGD(sc, DBG_LOAD,
14140          "User Config: "
14141          "debug=0x%lx "
14142          "interrupt_mode=%d "
14143          "queue_count=%d "
14144          "hc_rx_ticks=%d "
14145          "hc_tx_ticks=%d "
14146          "rx_budget=%d "
14147          "max_aggregation_size=%d "
14148          "mrrs=%d "
14149          "autogreeen=%d "
14150          "udp_rss=%d\n",
14151          bxe_debug,
14152          sc->interrupt_mode,
14153          sc->num_queues,
14154          sc->hc_rx_ticks,
14155          sc->hc_tx_ticks,
14156          bxe_rx_budget,
14157          sc->max_aggregation_size,
14158          sc->mrrs,
14159          sc->autogreeen,
14160          sc->udp_rss);
14161}
14162
14163static void
14164bxe_media_detect(struct bxe_softc *sc)
14165{
14166    uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
14167    switch (sc->link_params.phy[phy_idx].media_type) {
14168    case ELINK_ETH_PHY_SFPP_10G_FIBER:
14169    case ELINK_ETH_PHY_XFP_FIBER:
14170        BLOGI(sc, "Found 10Gb Fiber media.\n");
14171        sc->media = IFM_10G_SR;
14172        break;
14173    case ELINK_ETH_PHY_SFP_1G_FIBER:
14174        BLOGI(sc, "Found 1Gb Fiber media.\n");
14175        sc->media = IFM_1000_SX;
14176        break;
14177    case ELINK_ETH_PHY_KR:
14178    case ELINK_ETH_PHY_CX4:
14179        BLOGI(sc, "Found 10GBase-CX4 media.\n");
14180        sc->media = IFM_10G_CX4;
14181        break;
14182    case ELINK_ETH_PHY_DA_TWINAX:
14183        BLOGI(sc, "Found 10Gb Twinax media.\n");
14184        sc->media = IFM_10G_TWINAX;
14185        break;
14186    case ELINK_ETH_PHY_BASE_T:
14187        if (sc->link_params.speed_cap_mask[0] &
14188            PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
14189            BLOGI(sc, "Found 10GBase-T media.\n");
14190            sc->media = IFM_10G_T;
14191        } else {
14192            BLOGI(sc, "Found 1000Base-T media.\n");
14193            sc->media = IFM_1000_T;
14194        }
14195        break;
14196    case ELINK_ETH_PHY_NOT_PRESENT:
14197        BLOGI(sc, "Media not present.\n");
14198        sc->media = 0;
14199        break;
14200    case ELINK_ETH_PHY_UNSPECIFIED:
14201    default:
14202        BLOGI(sc, "Unknown media!\n");
14203        sc->media = 0;
14204        break;
14205    }
14206}
14207
14208#define GET_FIELD(value, fname)                     \
14209    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
14210#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
14211#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
14212
14213static int
14214bxe_get_igu_cam_info(struct bxe_softc *sc)
14215{
14216    int pfid = SC_FUNC(sc);
14217    int igu_sb_id;
14218    uint32_t val;
14219    uint8_t fid, igu_sb_cnt = 0;
14220
14221    sc->igu_base_sb = 0xff;
14222
14223    if (CHIP_INT_MODE_IS_BC(sc)) {
14224        int vn = SC_VN(sc);
14225        igu_sb_cnt = sc->igu_sb_cnt;
14226        sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
14227                           FP_SB_MAX_E1x);
14228        sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
14229                          (CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
14230        return (0);
14231    }
14232
14233    /* IGU in normal mode - read CAM */
14234    for (igu_sb_id = 0;
14235         igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
14236         igu_sb_id++) {
14237        val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
14238        if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
14239            continue;
14240        }
14241        fid = IGU_FID(val);
14242        if ((fid & IGU_FID_ENCODE_IS_PF)) {
14243            if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
14244                continue;
14245            }
14246            if (IGU_VEC(val) == 0) {
14247                /* default status block */
14248                sc->igu_dsb_id = igu_sb_id;
14249            } else {
14250                if (sc->igu_base_sb == 0xff) {
14251                    sc->igu_base_sb = igu_sb_id;
14252                }
14253                igu_sb_cnt++;
14254            }
14255        }
14256    }
14257
14258    /*
14259     * Due to new PF resource allocation by MFW T7.4 and above, it's optional
14260     * that number of CAM entries will not be equal to the value advertised in
14261     * PCI. Driver should use the minimal value of both as the actual status
14262     * block count
14263     */
14264    sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
14265
14266    if (igu_sb_cnt == 0) {
14267        BLOGE(sc, "CAM configuration error\n");
14268        return (-1);
14269    }
14270
14271    return (0);
14272}
14273
14274/*
14275 * Gather various information from the device config space, the device itself,
14276 * shmem, and the user input.
14277 */
14278static int
14279bxe_get_device_info(struct bxe_softc *sc)
14280{
14281    uint32_t val;
14282    int rc;
14283
14284    /* Get the data for the device */
14285    sc->devinfo.vendor_id    = pci_get_vendor(sc->dev);
14286    sc->devinfo.device_id    = pci_get_device(sc->dev);
14287    sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
14288    sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
14289
14290    /* get the chip revision (chip metal comes from pci config space) */
14291    sc->devinfo.chip_id     =
14292    sc->link_params.chip_id =
14293        (((REG_RD(sc, MISC_REG_CHIP_NUM)                   & 0xffff) << 16) |
14294         ((REG_RD(sc, MISC_REG_CHIP_REV)                   & 0xf)    << 12) |
14295         (((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf)    << 4)  |
14296         ((REG_RD(sc, MISC_REG_BOND_ID)                    & 0xf)    << 0));
14297
14298    /* force 57811 according to MISC register */
14299    if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
14300        if (CHIP_IS_57810(sc)) {
14301            sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
14302                                   (sc->devinfo.chip_id & 0x0000ffff));
14303        } else if (CHIP_IS_57810_MF(sc)) {
14304            sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
14305                                   (sc->devinfo.chip_id & 0x0000ffff));
14306        }
14307        sc->devinfo.chip_id |= 0x1;
14308    }
14309
14310    BLOGD(sc, DBG_LOAD,
14311          "chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
14312          sc->devinfo.chip_id,
14313          ((sc->devinfo.chip_id >> 16) & 0xffff),
14314          ((sc->devinfo.chip_id >> 12) & 0xf),
14315          ((sc->devinfo.chip_id >>  4) & 0xff),
14316          ((sc->devinfo.chip_id >>  0) & 0xf));
14317
14318    val = (REG_RD(sc, 0x2874) & 0x55);
14319    if ((sc->devinfo.chip_id & 0x1) ||
14320        (CHIP_IS_E1(sc) && val) ||
14321        (CHIP_IS_E1H(sc) && (val == 0x55))) {
14322        sc->flags |= BXE_ONE_PORT_FLAG;
14323        BLOGD(sc, DBG_LOAD, "single port device\n");
14324    }
14325
14326    /* set the doorbell size */
14327    sc->doorbell_size = (1 << BXE_DB_SHIFT);
14328
14329    /* determine whether the device is in 2 port or 4 port mode */
14330    sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14331    if (CHIP_IS_E2E3(sc)) {
14332        /*
14333         * Read port4mode_en_ovwr[0]:
14334         *   If 1, four port mode is in port4mode_en_ovwr[1].
14335         *   If 0, four port mode is in port4mode_en[0].
14336         */
14337        val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14338        if (val & 1) {
14339            val = ((val >> 1) & 1);
14340        } else {
14341            val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14342        }
14343
14344        sc->devinfo.chip_port_mode =
14345            (val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14346
14347        BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14348    }
14349
14350    /* get the function and path info for the device */
14351    bxe_get_function_num(sc);
14352
14353    /* get the shared memory base address */
14354    sc->devinfo.shmem_base     =
14355    sc->link_params.shmem_base =
14356        REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14357    sc->devinfo.shmem2_base =
14358        REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14359                                  MISC_REG_GENERIC_CR_0));
14360
14361    BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14362          sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14363
14364    if (!sc->devinfo.shmem_base) {
14365        /* this should ONLY prevent upcoming shmem reads */
14366        BLOGI(sc, "MCP not active\n");
14367        sc->flags |= BXE_NO_MCP_FLAG;
14368        return (0);
14369    }
14370
14371    /* make sure the shared memory contents are valid */
14372    val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14373    if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14374        (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14375        BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14376        return (0);
14377    }
14378    BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14379
14380    /* get the bootcode version */
14381    sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14382    snprintf(sc->devinfo.bc_ver_str,
14383             sizeof(sc->devinfo.bc_ver_str),
14384             "%d.%d.%d",
14385             ((sc->devinfo.bc_ver >> 24) & 0xff),
14386             ((sc->devinfo.bc_ver >> 16) & 0xff),
14387             ((sc->devinfo.bc_ver >>  8) & 0xff));
14388    BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14389
14390    /* get the bootcode shmem address */
14391    sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14392    BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14393
14394    /* clean indirect addresses as they're not used */
14395    pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14396    if (IS_PF(sc)) {
14397        REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14398        REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14399        REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14400        REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14401        if (CHIP_IS_E1x(sc)) {
14402            REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14403            REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14404            REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14405            REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14406        }
14407
14408        /*
14409         * Enable internal target-read (in case we are probed after PF
14410         * FLR). Must be done prior to any BAR read access. Only for
14411         * 57712 and up
14412         */
14413        if (!CHIP_IS_E1x(sc)) {
14414            REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14415        }
14416    }
14417
14418    /* get the nvram size */
14419    val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14420    sc->devinfo.flash_size =
14421        (NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14422    BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14423
14424    /* get PCI capabilites */
14425    bxe_probe_pci_caps(sc);
14426
14427    bxe_set_power_state(sc, PCI_PM_D0);
14428
14429    /* get various configuration parameters from shmem */
14430    bxe_get_shmem_info(sc);
14431
14432    if (sc->devinfo.pcie_msix_cap_reg != 0) {
14433        val = pci_read_config(sc->dev,
14434                              (sc->devinfo.pcie_msix_cap_reg +
14435                               PCIR_MSIX_CTRL),
14436                              2);
14437        sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14438    } else {
14439        sc->igu_sb_cnt = 1;
14440    }
14441
14442    sc->igu_base_addr = BAR_IGU_INTMEM;
14443
14444    /* initialize IGU parameters */
14445    if (CHIP_IS_E1x(sc)) {
14446        sc->devinfo.int_block = INT_BLOCK_HC;
14447        sc->igu_dsb_id = DEF_SB_IGU_ID;
14448        sc->igu_base_sb = 0;
14449    } else {
14450        sc->devinfo.int_block = INT_BLOCK_IGU;
14451
14452        /* do not allow device reset during IGU info preocessing */
14453        bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14454
14455        val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14456
14457        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14458            int tout = 5000;
14459
14460            BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14461
14462            val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14463            REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14464            REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14465
14466            while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14467                tout--;
14468                DELAY(1000);
14469            }
14470
14471            if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14472                BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14473                bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14474                return (-1);
14475            }
14476        }
14477
14478        if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14479            BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14480            sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14481        } else {
14482            BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14483        }
14484
14485        rc = bxe_get_igu_cam_info(sc);
14486
14487        bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14488
14489        if (rc) {
14490            return (rc);
14491        }
14492    }
14493
14494    /*
14495     * Get base FW non-default (fast path) status block ID. This value is
14496     * used to initialize the fw_sb_id saved on the fp/queue structure to
14497     * determine the id used by the FW.
14498     */
14499    if (CHIP_IS_E1x(sc)) {
14500        sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14501    } else {
14502        /*
14503         * 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14504         * the same queue are indicated on the same IGU SB). So we prefer
14505         * FW and IGU SBs to be the same value.
14506         */
14507        sc->base_fw_ndsb = sc->igu_base_sb;
14508    }
14509
14510    BLOGD(sc, DBG_LOAD,
14511          "igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14512          sc->igu_dsb_id, sc->igu_base_sb,
14513          sc->igu_sb_cnt, sc->base_fw_ndsb);
14514
14515    elink_phy_probe(&sc->link_params);
14516
14517    return (0);
14518}
14519
14520static void
14521bxe_link_settings_supported(struct bxe_softc *sc,
14522                            uint32_t         switch_cfg)
14523{
14524    uint32_t cfg_size = 0;
14525    uint32_t idx;
14526    uint8_t port = SC_PORT(sc);
14527
14528    /* aggregation of supported attributes of all external phys */
14529    sc->port.supported[0] = 0;
14530    sc->port.supported[1] = 0;
14531
14532    switch (sc->link_params.num_phys) {
14533    case 1:
14534        sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14535        cfg_size = 1;
14536        break;
14537    case 2:
14538        sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14539        cfg_size = 1;
14540        break;
14541    case 3:
14542        if (sc->link_params.multi_phy_config &
14543            PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14544            sc->port.supported[1] =
14545                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14546            sc->port.supported[0] =
14547                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14548        } else {
14549            sc->port.supported[0] =
14550                sc->link_params.phy[ELINK_EXT_PHY1].supported;
14551            sc->port.supported[1] =
14552                sc->link_params.phy[ELINK_EXT_PHY2].supported;
14553        }
14554        cfg_size = 2;
14555        break;
14556    }
14557
14558    if (!(sc->port.supported[0] || sc->port.supported[1])) {
14559        BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14560              SHMEM_RD(sc,
14561                       dev_info.port_hw_config[port].external_phy_config),
14562              SHMEM_RD(sc,
14563                       dev_info.port_hw_config[port].external_phy_config2));
14564        return;
14565    }
14566
14567    if (CHIP_IS_E3(sc))
14568        sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14569    else {
14570        switch (switch_cfg) {
14571        case ELINK_SWITCH_CFG_1G:
14572            sc->port.phy_addr =
14573                REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14574            break;
14575        case ELINK_SWITCH_CFG_10G:
14576            sc->port.phy_addr =
14577                REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14578            break;
14579        default:
14580            BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14581                  sc->port.link_config[0]);
14582            return;
14583        }
14584    }
14585
14586    BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14587
14588    /* mask what we support according to speed_cap_mask per configuration */
14589    for (idx = 0; idx < cfg_size; idx++) {
14590        if (!(sc->link_params.speed_cap_mask[idx] &
14591              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14592            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14593        }
14594
14595        if (!(sc->link_params.speed_cap_mask[idx] &
14596              PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14597            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14598        }
14599
14600        if (!(sc->link_params.speed_cap_mask[idx] &
14601              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14602            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14603        }
14604
14605        if (!(sc->link_params.speed_cap_mask[idx] &
14606              PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14607            sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14608        }
14609
14610        if (!(sc->link_params.speed_cap_mask[idx] &
14611              PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14612            sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14613        }
14614
14615        if (!(sc->link_params.speed_cap_mask[idx] &
14616              PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14617            sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14618        }
14619
14620        if (!(sc->link_params.speed_cap_mask[idx] &
14621              PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14622            sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14623        }
14624
14625        if (!(sc->link_params.speed_cap_mask[idx] &
14626              PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14627            sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14628        }
14629    }
14630
14631    BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14632          sc->port.supported[0], sc->port.supported[1]);
14633}
14634
14635static void
14636bxe_link_settings_requested(struct bxe_softc *sc)
14637{
14638    uint32_t link_config;
14639    uint32_t idx;
14640    uint32_t cfg_size = 0;
14641
14642    sc->port.advertising[0] = 0;
14643    sc->port.advertising[1] = 0;
14644
14645    switch (sc->link_params.num_phys) {
14646    case 1:
14647    case 2:
14648        cfg_size = 1;
14649        break;
14650    case 3:
14651        cfg_size = 2;
14652        break;
14653    }
14654
14655    for (idx = 0; idx < cfg_size; idx++) {
14656        sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14657        link_config = sc->port.link_config[idx];
14658
14659        switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14660        case PORT_FEATURE_LINK_SPEED_AUTO:
14661            if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14662                sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14663                sc->port.advertising[idx] |= sc->port.supported[idx];
14664                if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14665                    PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14666                    sc->port.advertising[idx] |=
14667                        (ELINK_SUPPORTED_100baseT_Half |
14668                         ELINK_SUPPORTED_100baseT_Full);
14669            } else {
14670                /* force 10G, no AN */
14671                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14672                sc->port.advertising[idx] |=
14673                    (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14674                continue;
14675            }
14676            break;
14677
14678        case PORT_FEATURE_LINK_SPEED_10M_FULL:
14679            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14680                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14681                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14682                                              ADVERTISED_TP);
14683            } else {
14684                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14685                          "speed_cap_mask=0x%08x\n",
14686                      link_config, sc->link_params.speed_cap_mask[idx]);
14687                return;
14688            }
14689            break;
14690
14691        case PORT_FEATURE_LINK_SPEED_10M_HALF:
14692            if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14693                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14694                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14695                sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14696                                              ADVERTISED_TP);
14697            } else {
14698                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14699                          "speed_cap_mask=0x%08x\n",
14700                      link_config, sc->link_params.speed_cap_mask[idx]);
14701                return;
14702            }
14703            break;
14704
14705        case PORT_FEATURE_LINK_SPEED_100M_FULL:
14706            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14707                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14708                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14709                                              ADVERTISED_TP);
14710            } else {
14711                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14712                          "speed_cap_mask=0x%08x\n",
14713                      link_config, sc->link_params.speed_cap_mask[idx]);
14714                return;
14715            }
14716            break;
14717
14718        case PORT_FEATURE_LINK_SPEED_100M_HALF:
14719            if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14720                sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14721                sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14722                sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14723                                              ADVERTISED_TP);
14724            } else {
14725                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14726                          "speed_cap_mask=0x%08x\n",
14727                      link_config, sc->link_params.speed_cap_mask[idx]);
14728                return;
14729            }
14730            break;
14731
14732        case PORT_FEATURE_LINK_SPEED_1G:
14733            if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14734                sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14735                sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14736                                              ADVERTISED_TP);
14737            } else {
14738                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14739                          "speed_cap_mask=0x%08x\n",
14740                      link_config, sc->link_params.speed_cap_mask[idx]);
14741                return;
14742            }
14743            break;
14744
14745        case PORT_FEATURE_LINK_SPEED_2_5G:
14746            if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14747                sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14748                sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14749                                              ADVERTISED_TP);
14750            } else {
14751                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14752                          "speed_cap_mask=0x%08x\n",
14753                      link_config, sc->link_params.speed_cap_mask[idx]);
14754                return;
14755            }
14756            break;
14757
14758        case PORT_FEATURE_LINK_SPEED_10G_CX4:
14759            if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14760                sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14761                sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14762                                              ADVERTISED_FIBRE);
14763            } else {
14764                BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14765                          "speed_cap_mask=0x%08x\n",
14766                      link_config, sc->link_params.speed_cap_mask[idx]);
14767                return;
14768            }
14769            break;
14770
14771        case PORT_FEATURE_LINK_SPEED_20G:
14772            sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14773            break;
14774
14775        default:
14776            BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14777                      "speed_cap_mask=0x%08x\n",
14778                  link_config, sc->link_params.speed_cap_mask[idx]);
14779            sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14780            sc->port.advertising[idx] = sc->port.supported[idx];
14781            break;
14782        }
14783
14784        sc->link_params.req_flow_ctrl[idx] =
14785            (link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14786
14787        if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14788            if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14789                sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14790            } else {
14791                bxe_set_requested_fc(sc);
14792            }
14793        }
14794
14795        BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14796                            "req_flow_ctrl=0x%x advertising=0x%x\n",
14797              sc->link_params.req_line_speed[idx],
14798              sc->link_params.req_duplex[idx],
14799              sc->link_params.req_flow_ctrl[idx],
14800              sc->port.advertising[idx]);
14801    }
14802}
14803
14804static void
14805bxe_get_phy_info(struct bxe_softc *sc)
14806{
14807    uint8_t port = SC_PORT(sc);
14808    uint32_t config = sc->port.config;
14809    uint32_t eee_mode;
14810
14811    /* shmem data already read in bxe_get_shmem_info() */
14812
14813    BLOGD(sc, DBG_LOAD, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14814                        "link_config0=0x%08x\n",
14815               sc->link_params.lane_config,
14816               sc->link_params.speed_cap_mask[0],
14817               sc->port.link_config[0]);
14818
14819    bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14820    bxe_link_settings_requested(sc);
14821
14822    if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14823        sc->link_params.feature_config_flags |=
14824            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14825    } else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14826        sc->link_params.feature_config_flags &=
14827            ~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14828    } else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14829        sc->link_params.feature_config_flags |=
14830            ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14831    }
14832
14833    /* configure link feature according to nvram value */
14834    eee_mode =
14835        (((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14836          PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14837         PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14838    if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14839        sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14840                                    ELINK_EEE_MODE_ENABLE_LPI |
14841                                    ELINK_EEE_MODE_OUTPUT_TIME);
14842    } else {
14843        sc->link_params.eee_mode = 0;
14844    }
14845
14846    /* get the media type */
14847    bxe_media_detect(sc);
14848}
14849
14850static void
14851bxe_get_params(struct bxe_softc *sc)
14852{
14853    /* get user tunable params */
14854    bxe_get_tunable_params(sc);
14855
14856    /* select the RX and TX ring sizes */
14857    sc->tx_ring_size = TX_BD_USABLE;
14858    sc->rx_ring_size = RX_BD_USABLE;
14859
14860    /* XXX disable WoL */
14861    sc->wol = 0;
14862}
14863
14864static void
14865bxe_set_modes_bitmap(struct bxe_softc *sc)
14866{
14867    uint32_t flags = 0;
14868
14869    if (CHIP_REV_IS_FPGA(sc)) {
14870        SET_FLAGS(flags, MODE_FPGA);
14871    } else if (CHIP_REV_IS_EMUL(sc)) {
14872        SET_FLAGS(flags, MODE_EMUL);
14873    } else {
14874        SET_FLAGS(flags, MODE_ASIC);
14875    }
14876
14877    if (CHIP_IS_MODE_4_PORT(sc)) {
14878        SET_FLAGS(flags, MODE_PORT4);
14879    } else {
14880        SET_FLAGS(flags, MODE_PORT2);
14881    }
14882
14883    if (CHIP_IS_E2(sc)) {
14884        SET_FLAGS(flags, MODE_E2);
14885    } else if (CHIP_IS_E3(sc)) {
14886        SET_FLAGS(flags, MODE_E3);
14887        if (CHIP_REV(sc) == CHIP_REV_Ax) {
14888            SET_FLAGS(flags, MODE_E3_A0);
14889        } else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14890            SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14891        }
14892    }
14893
14894    if (IS_MF(sc)) {
14895        SET_FLAGS(flags, MODE_MF);
14896        switch (sc->devinfo.mf_info.mf_mode) {
14897        case MULTI_FUNCTION_SD:
14898            SET_FLAGS(flags, MODE_MF_SD);
14899            break;
14900        case MULTI_FUNCTION_SI:
14901            SET_FLAGS(flags, MODE_MF_SI);
14902            break;
14903        case MULTI_FUNCTION_AFEX:
14904            SET_FLAGS(flags, MODE_MF_AFEX);
14905            break;
14906        }
14907    } else {
14908        SET_FLAGS(flags, MODE_SF);
14909    }
14910
14911#if defined(__LITTLE_ENDIAN)
14912    SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14913#else /* __BIG_ENDIAN */
14914    SET_FLAGS(flags, MODE_BIG_ENDIAN);
14915#endif
14916
14917    INIT_MODE_FLAGS(sc) = flags;
14918}
14919
14920static int
14921bxe_alloc_hsi_mem(struct bxe_softc *sc)
14922{
14923    struct bxe_fastpath *fp;
14924    bus_addr_t busaddr;
14925    int max_agg_queues;
14926    int max_segments;
14927    bus_size_t max_size;
14928    bus_size_t max_seg_size;
14929    char buf[32];
14930    int rc;
14931    int i, j;
14932
14933    /* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14934
14935    /* allocate the parent bus DMA tag */
14936    rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14937                            1,                        /* alignment */
14938                            0,                        /* boundary limit */
14939                            BUS_SPACE_MAXADDR,        /* restricted low */
14940                            BUS_SPACE_MAXADDR,        /* restricted hi */
14941                            NULL,                     /* addr filter() */
14942                            NULL,                     /* addr filter() arg */
14943                            BUS_SPACE_MAXSIZE_32BIT,  /* max map size */
14944                            BUS_SPACE_UNRESTRICTED,   /* num discontinuous */
14945                            BUS_SPACE_MAXSIZE_32BIT,  /* max seg size */
14946                            0,                        /* flags */
14947                            NULL,                     /* lock() */
14948                            NULL,                     /* lock() arg */
14949                            &sc->parent_dma_tag);     /* returned dma tag */
14950    if (rc != 0) {
14951        BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14952        return (1);
14953    }
14954
14955    /************************/
14956    /* DEFAULT STATUS BLOCK */
14957    /************************/
14958
14959    if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14960                      &sc->def_sb_dma, "default status block") != 0) {
14961        /* XXX */
14962        bus_dma_tag_destroy(sc->parent_dma_tag);
14963        return (1);
14964    }
14965
14966    sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14967
14968    /***************/
14969    /* EVENT QUEUE */
14970    /***************/
14971
14972    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14973                      &sc->eq_dma, "event queue") != 0) {
14974        /* XXX */
14975        bxe_dma_free(sc, &sc->def_sb_dma);
14976        sc->def_sb = NULL;
14977        bus_dma_tag_destroy(sc->parent_dma_tag);
14978        return (1);
14979    }
14980
14981    sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14982
14983    /*************/
14984    /* SLOW PATH */
14985    /*************/
14986
14987    if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14988                      &sc->sp_dma, "slow path") != 0) {
14989        /* XXX */
14990        bxe_dma_free(sc, &sc->eq_dma);
14991        sc->eq = NULL;
14992        bxe_dma_free(sc, &sc->def_sb_dma);
14993        sc->def_sb = NULL;
14994        bus_dma_tag_destroy(sc->parent_dma_tag);
14995        return (1);
14996    }
14997
14998    sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14999
15000    /*******************/
15001    /* SLOW PATH QUEUE */
15002    /*******************/
15003
15004    if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
15005                      &sc->spq_dma, "slow path queue") != 0) {
15006        /* XXX */
15007        bxe_dma_free(sc, &sc->sp_dma);
15008        sc->sp = NULL;
15009        bxe_dma_free(sc, &sc->eq_dma);
15010        sc->eq = NULL;
15011        bxe_dma_free(sc, &sc->def_sb_dma);
15012        sc->def_sb = NULL;
15013        bus_dma_tag_destroy(sc->parent_dma_tag);
15014        return (1);
15015    }
15016
15017    sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
15018
15019    /***************************/
15020    /* FW DECOMPRESSION BUFFER */
15021    /***************************/
15022
15023    if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
15024                      "fw decompression buffer") != 0) {
15025        /* XXX */
15026        bxe_dma_free(sc, &sc->spq_dma);
15027        sc->spq = NULL;
15028        bxe_dma_free(sc, &sc->sp_dma);
15029        sc->sp = NULL;
15030        bxe_dma_free(sc, &sc->eq_dma);
15031        sc->eq = NULL;
15032        bxe_dma_free(sc, &sc->def_sb_dma);
15033        sc->def_sb = NULL;
15034        bus_dma_tag_destroy(sc->parent_dma_tag);
15035        return (1);
15036    }
15037
15038    sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
15039
15040    if ((sc->gz_strm =
15041         malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
15042        /* XXX */
15043        bxe_dma_free(sc, &sc->gz_buf_dma);
15044        sc->gz_buf = NULL;
15045        bxe_dma_free(sc, &sc->spq_dma);
15046        sc->spq = NULL;
15047        bxe_dma_free(sc, &sc->sp_dma);
15048        sc->sp = NULL;
15049        bxe_dma_free(sc, &sc->eq_dma);
15050        sc->eq = NULL;
15051        bxe_dma_free(sc, &sc->def_sb_dma);
15052        sc->def_sb = NULL;
15053        bus_dma_tag_destroy(sc->parent_dma_tag);
15054        return (1);
15055    }
15056
15057    /*************/
15058    /* FASTPATHS */
15059    /*************/
15060
15061    /* allocate DMA memory for each fastpath structure */
15062    for (i = 0; i < sc->num_queues; i++) {
15063        fp = &sc->fp[i];
15064        fp->sc    = sc;
15065        fp->index = i;
15066
15067        /*******************/
15068        /* FP STATUS BLOCK */
15069        /*******************/
15070
15071        snprintf(buf, sizeof(buf), "fp %d status block", i);
15072        if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
15073                          &fp->sb_dma, buf) != 0) {
15074            /* XXX unwind and free previous fastpath allocations */
15075            BLOGE(sc, "Failed to alloc %s\n", buf);
15076            return (1);
15077        } else {
15078            if (CHIP_IS_E2E3(sc)) {
15079                fp->status_block.e2_sb =
15080                    (struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
15081            } else {
15082                fp->status_block.e1x_sb =
15083                    (struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
15084            }
15085        }
15086
15087        /******************/
15088        /* FP TX BD CHAIN */
15089        /******************/
15090
15091        snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
15092        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
15093                          &fp->tx_dma, buf) != 0) {
15094            /* XXX unwind and free previous fastpath allocations */
15095            BLOGE(sc, "Failed to alloc %s\n", buf);
15096            return (1);
15097        } else {
15098            fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
15099        }
15100
15101        /* link together the tx bd chain pages */
15102        for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
15103            /* index into the tx bd chain array to last entry per page */
15104            struct eth_tx_next_bd *tx_next_bd =
15105                &fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
15106            /* point to the next page and wrap from last page */
15107            busaddr = (fp->tx_dma.paddr +
15108                       (BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
15109            tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
15110            tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
15111        }
15112
15113        /******************/
15114        /* FP RX BD CHAIN */
15115        /******************/
15116
15117        snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
15118        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
15119                          &fp->rx_dma, buf) != 0) {
15120            /* XXX unwind and free previous fastpath allocations */
15121            BLOGE(sc, "Failed to alloc %s\n", buf);
15122            return (1);
15123        } else {
15124            fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
15125        }
15126
15127        /* link together the rx bd chain pages */
15128        for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
15129            /* index into the rx bd chain array to last entry per page */
15130            struct eth_rx_bd *rx_bd =
15131                &fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
15132            /* point to the next page and wrap from last page */
15133            busaddr = (fp->rx_dma.paddr +
15134                       (BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
15135            rx_bd->addr_hi = htole32(U64_HI(busaddr));
15136            rx_bd->addr_lo = htole32(U64_LO(busaddr));
15137        }
15138
15139        /*******************/
15140        /* FP RX RCQ CHAIN */
15141        /*******************/
15142
15143        snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
15144        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
15145                          &fp->rcq_dma, buf) != 0) {
15146            /* XXX unwind and free previous fastpath allocations */
15147            BLOGE(sc, "Failed to alloc %s\n", buf);
15148            return (1);
15149        } else {
15150            fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
15151        }
15152
15153        /* link together the rcq chain pages */
15154        for (j = 1; j <= RCQ_NUM_PAGES; j++) {
15155            /* index into the rcq chain array to last entry per page */
15156            struct eth_rx_cqe_next_page *rx_cqe_next =
15157                (struct eth_rx_cqe_next_page *)
15158                &fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
15159            /* point to the next page and wrap from last page */
15160            busaddr = (fp->rcq_dma.paddr +
15161                       (BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
15162            rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
15163            rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
15164        }
15165
15166        /*******************/
15167        /* FP RX SGE CHAIN */
15168        /*******************/
15169
15170        snprintf(buf, sizeof(buf), "fp %d sge chain", i);
15171        if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
15172                          &fp->rx_sge_dma, buf) != 0) {
15173            /* XXX unwind and free previous fastpath allocations */
15174            BLOGE(sc, "Failed to alloc %s\n", buf);
15175            return (1);
15176        } else {
15177            fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
15178        }
15179
15180        /* link together the sge chain pages */
15181        for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
15182            /* index into the rcq chain array to last entry per page */
15183            struct eth_rx_sge *rx_sge =
15184                &fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
15185            /* point to the next page and wrap from last page */
15186            busaddr = (fp->rx_sge_dma.paddr +
15187                       (BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
15188            rx_sge->addr_hi = htole32(U64_HI(busaddr));
15189            rx_sge->addr_lo = htole32(U64_LO(busaddr));
15190        }
15191
15192        /***********************/
15193        /* FP TX MBUF DMA MAPS */
15194        /***********************/
15195
15196        /* set required sizes before mapping to conserve resources */
15197        if (sc->ifnet->if_capenable & (IFCAP_TSO4 | IFCAP_TSO6)) {
15198            max_size     = BXE_TSO_MAX_SIZE;
15199            max_segments = BXE_TSO_MAX_SEGMENTS;
15200            max_seg_size = BXE_TSO_MAX_SEG_SIZE;
15201        } else {
15202            max_size     = (MCLBYTES * BXE_MAX_SEGMENTS);
15203            max_segments = BXE_MAX_SEGMENTS;
15204            max_seg_size = MCLBYTES;
15205        }
15206
15207        /* create a dma tag for the tx mbufs */
15208        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15209                                1,                  /* alignment */
15210                                0,                  /* boundary limit */
15211                                BUS_SPACE_MAXADDR,  /* restricted low */
15212                                BUS_SPACE_MAXADDR,  /* restricted hi */
15213                                NULL,               /* addr filter() */
15214                                NULL,               /* addr filter() arg */
15215                                max_size,           /* max map size */
15216                                max_segments,       /* num discontinuous */
15217                                max_seg_size,       /* max seg size */
15218                                0,                  /* flags */
15219                                NULL,               /* lock() */
15220                                NULL,               /* lock() arg */
15221                                &fp->tx_mbuf_tag);  /* returned dma tag */
15222        if (rc != 0) {
15223            /* XXX unwind and free previous fastpath allocations */
15224            BLOGE(sc, "Failed to create dma tag for "
15225                      "'fp %d tx mbufs' (%d)\n",
15226                  i, rc);
15227            return (1);
15228        }
15229
15230        /* create dma maps for each of the tx mbuf clusters */
15231        for (j = 0; j < TX_BD_TOTAL; j++) {
15232            if (bus_dmamap_create(fp->tx_mbuf_tag,
15233                                  BUS_DMA_NOWAIT,
15234                                  &fp->tx_mbuf_chain[j].m_map)) {
15235                /* XXX unwind and free previous fastpath allocations */
15236                BLOGE(sc, "Failed to create dma map for "
15237                          "'fp %d tx mbuf %d' (%d)\n",
15238                      i, j, rc);
15239                return (1);
15240            }
15241        }
15242
15243        /***********************/
15244        /* FP RX MBUF DMA MAPS */
15245        /***********************/
15246
15247        /* create a dma tag for the rx mbufs */
15248        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15249                                1,                  /* alignment */
15250                                0,                  /* boundary limit */
15251                                BUS_SPACE_MAXADDR,  /* restricted low */
15252                                BUS_SPACE_MAXADDR,  /* restricted hi */
15253                                NULL,               /* addr filter() */
15254                                NULL,               /* addr filter() arg */
15255                                MJUM9BYTES,         /* max map size */
15256                                1,                  /* num discontinuous */
15257                                MJUM9BYTES,         /* max seg size */
15258                                0,                  /* flags */
15259                                NULL,               /* lock() */
15260                                NULL,               /* lock() arg */
15261                                &fp->rx_mbuf_tag);  /* returned dma tag */
15262        if (rc != 0) {
15263            /* XXX unwind and free previous fastpath allocations */
15264            BLOGE(sc, "Failed to create dma tag for "
15265                      "'fp %d rx mbufs' (%d)\n",
15266                  i, rc);
15267            return (1);
15268        }
15269
15270        /* create dma maps for each of the rx mbuf clusters */
15271        for (j = 0; j < RX_BD_TOTAL; j++) {
15272            if (bus_dmamap_create(fp->rx_mbuf_tag,
15273                                  BUS_DMA_NOWAIT,
15274                                  &fp->rx_mbuf_chain[j].m_map)) {
15275                /* XXX unwind and free previous fastpath allocations */
15276                BLOGE(sc, "Failed to create dma map for "
15277                          "'fp %d rx mbuf %d' (%d)\n",
15278                      i, j, rc);
15279                return (1);
15280            }
15281        }
15282
15283        /* create dma map for the spare rx mbuf cluster */
15284        if (bus_dmamap_create(fp->rx_mbuf_tag,
15285                              BUS_DMA_NOWAIT,
15286                              &fp->rx_mbuf_spare_map)) {
15287            /* XXX unwind and free previous fastpath allocations */
15288            BLOGE(sc, "Failed to create dma map for "
15289                      "'fp %d spare rx mbuf' (%d)\n",
15290                  i, rc);
15291            return (1);
15292        }
15293
15294        /***************************/
15295        /* FP RX SGE MBUF DMA MAPS */
15296        /***************************/
15297
15298        /* create a dma tag for the rx sge mbufs */
15299        rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
15300                                1,                  /* alignment */
15301                                0,                  /* boundary limit */
15302                                BUS_SPACE_MAXADDR,  /* restricted low */
15303                                BUS_SPACE_MAXADDR,  /* restricted hi */
15304                                NULL,               /* addr filter() */
15305                                NULL,               /* addr filter() arg */
15306                                BCM_PAGE_SIZE,      /* max map size */
15307                                1,                  /* num discontinuous */
15308                                BCM_PAGE_SIZE,      /* max seg size */
15309                                0,                  /* flags */
15310                                NULL,               /* lock() */
15311                                NULL,               /* lock() arg */
15312                                &fp->rx_sge_mbuf_tag); /* returned dma tag */
15313        if (rc != 0) {
15314            /* XXX unwind and free previous fastpath allocations */
15315            BLOGE(sc, "Failed to create dma tag for "
15316                      "'fp %d rx sge mbufs' (%d)\n",
15317                  i, rc);
15318            return (1);
15319        }
15320
15321        /* create dma maps for the rx sge mbuf clusters */
15322        for (j = 0; j < RX_SGE_TOTAL; j++) {
15323            if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15324                                  BUS_DMA_NOWAIT,
15325                                  &fp->rx_sge_mbuf_chain[j].m_map)) {
15326                /* XXX unwind and free previous fastpath allocations */
15327                BLOGE(sc, "Failed to create dma map for "
15328                          "'fp %d rx sge mbuf %d' (%d)\n",
15329                      i, j, rc);
15330                return (1);
15331            }
15332        }
15333
15334        /* create dma map for the spare rx sge mbuf cluster */
15335        if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15336                              BUS_DMA_NOWAIT,
15337                              &fp->rx_sge_mbuf_spare_map)) {
15338            /* XXX unwind and free previous fastpath allocations */
15339            BLOGE(sc, "Failed to create dma map for "
15340                      "'fp %d spare rx sge mbuf' (%d)\n",
15341                  i, rc);
15342            return (1);
15343        }
15344
15345        /***************************/
15346        /* FP RX TPA MBUF DMA MAPS */
15347        /***************************/
15348
15349        /* create dma maps for the rx tpa mbuf clusters */
15350        max_agg_queues = MAX_AGG_QS(sc);
15351
15352        for (j = 0; j < max_agg_queues; j++) {
15353            if (bus_dmamap_create(fp->rx_mbuf_tag,
15354                                  BUS_DMA_NOWAIT,
15355                                  &fp->rx_tpa_info[j].bd.m_map)) {
15356                /* XXX unwind and free previous fastpath allocations */
15357                BLOGE(sc, "Failed to create dma map for "
15358                          "'fp %d rx tpa mbuf %d' (%d)\n",
15359                      i, j, rc);
15360                return (1);
15361            }
15362        }
15363
15364        /* create dma map for the spare rx tpa mbuf cluster */
15365        if (bus_dmamap_create(fp->rx_mbuf_tag,
15366                              BUS_DMA_NOWAIT,
15367                              &fp->rx_tpa_info_mbuf_spare_map)) {
15368            /* XXX unwind and free previous fastpath allocations */
15369            BLOGE(sc, "Failed to create dma map for "
15370                      "'fp %d spare rx tpa mbuf' (%d)\n",
15371                  i, rc);
15372            return (1);
15373        }
15374
15375        bxe_init_sge_ring_bit_mask(fp);
15376    }
15377
15378    return (0);
15379}
15380
15381static void
15382bxe_free_hsi_mem(struct bxe_softc *sc)
15383{
15384    struct bxe_fastpath *fp;
15385    int max_agg_queues;
15386    int i, j;
15387
15388    if (sc->parent_dma_tag == NULL) {
15389        return; /* assume nothing was allocated */
15390    }
15391
15392    for (i = 0; i < sc->num_queues; i++) {
15393        fp = &sc->fp[i];
15394
15395        /*******************/
15396        /* FP STATUS BLOCK */
15397        /*******************/
15398
15399        bxe_dma_free(sc, &fp->sb_dma);
15400        memset(&fp->status_block, 0, sizeof(fp->status_block));
15401
15402        /******************/
15403        /* FP TX BD CHAIN */
15404        /******************/
15405
15406        bxe_dma_free(sc, &fp->tx_dma);
15407        fp->tx_chain = NULL;
15408
15409        /******************/
15410        /* FP RX BD CHAIN */
15411        /******************/
15412
15413        bxe_dma_free(sc, &fp->rx_dma);
15414        fp->rx_chain = NULL;
15415
15416        /*******************/
15417        /* FP RX RCQ CHAIN */
15418        /*******************/
15419
15420        bxe_dma_free(sc, &fp->rcq_dma);
15421        fp->rcq_chain = NULL;
15422
15423        /*******************/
15424        /* FP RX SGE CHAIN */
15425        /*******************/
15426
15427        bxe_dma_free(sc, &fp->rx_sge_dma);
15428        fp->rx_sge_chain = NULL;
15429
15430        /***********************/
15431        /* FP TX MBUF DMA MAPS */
15432        /***********************/
15433
15434        if (fp->tx_mbuf_tag != NULL) {
15435            for (j = 0; j < TX_BD_TOTAL; j++) {
15436                if (fp->tx_mbuf_chain[j].m_map != NULL) {
15437                    bus_dmamap_unload(fp->tx_mbuf_tag,
15438                                      fp->tx_mbuf_chain[j].m_map);
15439                    bus_dmamap_destroy(fp->tx_mbuf_tag,
15440                                       fp->tx_mbuf_chain[j].m_map);
15441                }
15442            }
15443
15444            bus_dma_tag_destroy(fp->tx_mbuf_tag);
15445            fp->tx_mbuf_tag = NULL;
15446        }
15447
15448        /***********************/
15449        /* FP RX MBUF DMA MAPS */
15450        /***********************/
15451
15452        if (fp->rx_mbuf_tag != NULL) {
15453            for (j = 0; j < RX_BD_TOTAL; j++) {
15454                if (fp->rx_mbuf_chain[j].m_map != NULL) {
15455                    bus_dmamap_unload(fp->rx_mbuf_tag,
15456                                      fp->rx_mbuf_chain[j].m_map);
15457                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15458                                       fp->rx_mbuf_chain[j].m_map);
15459                }
15460            }
15461
15462            if (fp->rx_mbuf_spare_map != NULL) {
15463                bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15464                bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15465            }
15466
15467            /***************************/
15468            /* FP RX TPA MBUF DMA MAPS */
15469            /***************************/
15470
15471            max_agg_queues = MAX_AGG_QS(sc);
15472
15473            for (j = 0; j < max_agg_queues; j++) {
15474                if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15475                    bus_dmamap_unload(fp->rx_mbuf_tag,
15476                                      fp->rx_tpa_info[j].bd.m_map);
15477                    bus_dmamap_destroy(fp->rx_mbuf_tag,
15478                                       fp->rx_tpa_info[j].bd.m_map);
15479                }
15480            }
15481
15482            if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15483                bus_dmamap_unload(fp->rx_mbuf_tag,
15484                                  fp->rx_tpa_info_mbuf_spare_map);
15485                bus_dmamap_destroy(fp->rx_mbuf_tag,
15486                                   fp->rx_tpa_info_mbuf_spare_map);
15487            }
15488
15489            bus_dma_tag_destroy(fp->rx_mbuf_tag);
15490            fp->rx_mbuf_tag = NULL;
15491        }
15492
15493        /***************************/
15494        /* FP RX SGE MBUF DMA MAPS */
15495        /***************************/
15496
15497        if (fp->rx_sge_mbuf_tag != NULL) {
15498            for (j = 0; j < RX_SGE_TOTAL; j++) {
15499                if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15500                    bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15501                                      fp->rx_sge_mbuf_chain[j].m_map);
15502                    bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15503                                       fp->rx_sge_mbuf_chain[j].m_map);
15504                }
15505            }
15506
15507            if (fp->rx_sge_mbuf_spare_map != NULL) {
15508                bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15509                                  fp->rx_sge_mbuf_spare_map);
15510                bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15511                                   fp->rx_sge_mbuf_spare_map);
15512            }
15513
15514            bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15515            fp->rx_sge_mbuf_tag = NULL;
15516        }
15517    }
15518
15519    /***************************/
15520    /* FW DECOMPRESSION BUFFER */
15521    /***************************/
15522
15523    bxe_dma_free(sc, &sc->gz_buf_dma);
15524    sc->gz_buf = NULL;
15525    free(sc->gz_strm, M_DEVBUF);
15526    sc->gz_strm = NULL;
15527
15528    /*******************/
15529    /* SLOW PATH QUEUE */
15530    /*******************/
15531
15532    bxe_dma_free(sc, &sc->spq_dma);
15533    sc->spq = NULL;
15534
15535    /*************/
15536    /* SLOW PATH */
15537    /*************/
15538
15539    bxe_dma_free(sc, &sc->sp_dma);
15540    sc->sp = NULL;
15541
15542    /***************/
15543    /* EVENT QUEUE */
15544    /***************/
15545
15546    bxe_dma_free(sc, &sc->eq_dma);
15547    sc->eq = NULL;
15548
15549    /************************/
15550    /* DEFAULT STATUS BLOCK */
15551    /************************/
15552
15553    bxe_dma_free(sc, &sc->def_sb_dma);
15554    sc->def_sb = NULL;
15555
15556    bus_dma_tag_destroy(sc->parent_dma_tag);
15557    sc->parent_dma_tag = NULL;
15558}
15559
15560/*
15561 * Previous driver DMAE transaction may have occurred when pre-boot stage
15562 * ended and boot began. This would invalidate the addresses of the
15563 * transaction, resulting in was-error bit set in the PCI causing all
15564 * hw-to-host PCIe transactions to timeout. If this happened we want to clear
15565 * the interrupt which detected this from the pglueb and the was-done bit
15566 */
15567static void
15568bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15569{
15570    uint32_t val;
15571
15572    if (!CHIP_IS_E1x(sc)) {
15573        val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15574        if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15575            BLOGD(sc, DBG_LOAD,
15576                  "Clearing 'was-error' bit that was set in pglueb");
15577            REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15578        }
15579    }
15580}
15581
15582static int
15583bxe_prev_mcp_done(struct bxe_softc *sc)
15584{
15585    uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15586                                 DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15587    if (!rc) {
15588        BLOGE(sc, "MCP response failure, aborting\n");
15589        return (-1);
15590    }
15591
15592    return (0);
15593}
15594
15595static struct bxe_prev_list_node *
15596bxe_prev_path_get_entry(struct bxe_softc *sc)
15597{
15598    struct bxe_prev_list_node *tmp;
15599
15600    LIST_FOREACH(tmp, &bxe_prev_list, node) {
15601        if ((sc->pcie_bus == tmp->bus) &&
15602            (sc->pcie_device == tmp->slot) &&
15603            (SC_PATH(sc) == tmp->path)) {
15604            return (tmp);
15605        }
15606    }
15607
15608    return (NULL);
15609}
15610
15611static uint8_t
15612bxe_prev_is_path_marked(struct bxe_softc *sc)
15613{
15614    struct bxe_prev_list_node *tmp;
15615    int rc = FALSE;
15616
15617    mtx_lock(&bxe_prev_mtx);
15618
15619    tmp = bxe_prev_path_get_entry(sc);
15620    if (tmp) {
15621        if (tmp->aer) {
15622            BLOGD(sc, DBG_LOAD,
15623                  "Path %d/%d/%d was marked by AER\n",
15624                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15625        } else {
15626            rc = TRUE;
15627            BLOGD(sc, DBG_LOAD,
15628                  "Path %d/%d/%d was already cleaned from previous drivers\n",
15629                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15630        }
15631    }
15632
15633    mtx_unlock(&bxe_prev_mtx);
15634
15635    return (rc);
15636}
15637
15638static int
15639bxe_prev_mark_path(struct bxe_softc *sc,
15640                   uint8_t          after_undi)
15641{
15642    struct bxe_prev_list_node *tmp;
15643
15644    mtx_lock(&bxe_prev_mtx);
15645
15646    /* Check whether the entry for this path already exists */
15647    tmp = bxe_prev_path_get_entry(sc);
15648    if (tmp) {
15649        if (!tmp->aer) {
15650            BLOGD(sc, DBG_LOAD,
15651                  "Re-marking AER in path %d/%d/%d\n",
15652                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15653        } else {
15654            BLOGD(sc, DBG_LOAD,
15655                  "Removing AER indication from path %d/%d/%d\n",
15656                  sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15657            tmp->aer = 0;
15658        }
15659
15660        mtx_unlock(&bxe_prev_mtx);
15661        return (0);
15662    }
15663
15664    mtx_unlock(&bxe_prev_mtx);
15665
15666    /* Create an entry for this path and add it */
15667    tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15668                 (M_NOWAIT | M_ZERO));
15669    if (!tmp) {
15670        BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15671        return (-1);
15672    }
15673
15674    tmp->bus  = sc->pcie_bus;
15675    tmp->slot = sc->pcie_device;
15676    tmp->path = SC_PATH(sc);
15677    tmp->aer  = 0;
15678    tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15679
15680    mtx_lock(&bxe_prev_mtx);
15681
15682    BLOGD(sc, DBG_LOAD,
15683          "Marked path %d/%d/%d - finished previous unload\n",
15684          sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15685    LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15686
15687    mtx_unlock(&bxe_prev_mtx);
15688
15689    return (0);
15690}
15691
15692static int
15693bxe_do_flr(struct bxe_softc *sc)
15694{
15695    int i;
15696
15697    /* only E2 and onwards support FLR */
15698    if (CHIP_IS_E1x(sc)) {
15699        BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15700        return (-1);
15701    }
15702
15703    /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15704    if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15705        BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15706              sc->devinfo.bc_ver);
15707        return (-1);
15708    }
15709
15710    /* Wait for Transaction Pending bit clean */
15711    for (i = 0; i < 4; i++) {
15712        if (i) {
15713            DELAY(((1 << (i - 1)) * 100) * 1000);
15714        }
15715
15716        if (!bxe_is_pcie_pending(sc)) {
15717            goto clear;
15718        }
15719    }
15720
15721    BLOGE(sc, "PCIE transaction is not cleared, "
15722              "proceeding with reset anyway\n");
15723
15724clear:
15725
15726    BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15727    bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15728
15729    return (0);
15730}
15731
15732struct bxe_mac_vals {
15733    uint32_t xmac_addr;
15734    uint32_t xmac_val;
15735    uint32_t emac_addr;
15736    uint32_t emac_val;
15737    uint32_t umac_addr;
15738    uint32_t umac_val;
15739    uint32_t bmac_addr;
15740    uint32_t bmac_val[2];
15741};
15742
15743static void
15744bxe_prev_unload_close_mac(struct bxe_softc *sc,
15745                          struct bxe_mac_vals *vals)
15746{
15747    uint32_t val, base_addr, offset, mask, reset_reg;
15748    uint8_t mac_stopped = FALSE;
15749    uint8_t port = SC_PORT(sc);
15750    uint32_t wb_data[2];
15751
15752    /* reset addresses as they also mark which values were changed */
15753    vals->bmac_addr = 0;
15754    vals->umac_addr = 0;
15755    vals->xmac_addr = 0;
15756    vals->emac_addr = 0;
15757
15758    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15759
15760    if (!CHIP_IS_E3(sc)) {
15761        val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15762        mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15763        if ((mask & reset_reg) && val) {
15764            BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15765            base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15766                                    : NIG_REG_INGRESS_BMAC0_MEM;
15767            offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15768                                    : BIGMAC_REGISTER_BMAC_CONTROL;
15769
15770            /*
15771             * use rd/wr since we cannot use dmae. This is safe
15772             * since MCP won't access the bus due to the request
15773             * to unload, and no function on the path can be
15774             * loaded at this time.
15775             */
15776            wb_data[0] = REG_RD(sc, base_addr + offset);
15777            wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15778            vals->bmac_addr = base_addr + offset;
15779            vals->bmac_val[0] = wb_data[0];
15780            vals->bmac_val[1] = wb_data[1];
15781            wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15782            REG_WR(sc, vals->bmac_addr, wb_data[0]);
15783            REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15784        }
15785
15786        BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15787        vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15788        vals->emac_val = REG_RD(sc, vals->emac_addr);
15789        REG_WR(sc, vals->emac_addr, 0);
15790        mac_stopped = TRUE;
15791    } else {
15792        if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15793            BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15794            base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15795            val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15796            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15797            REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15798            vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15799            vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15800            REG_WR(sc, vals->xmac_addr, 0);
15801            mac_stopped = TRUE;
15802        }
15803
15804        mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15805        if (mask & reset_reg) {
15806            BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15807            base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15808            vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15809            vals->umac_val = REG_RD(sc, vals->umac_addr);
15810            REG_WR(sc, vals->umac_addr, 0);
15811            mac_stopped = TRUE;
15812        }
15813    }
15814
15815    if (mac_stopped) {
15816        DELAY(20000);
15817    }
15818}
15819
15820#define BXE_PREV_UNDI_PROD_ADDR(p)  (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15821#define BXE_PREV_UNDI_RCQ(val)      ((val) & 0xffff)
15822#define BXE_PREV_UNDI_BD(val)       ((val) >> 16 & 0xffff)
15823#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15824
15825static void
15826bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15827                         uint8_t          port,
15828                         uint8_t          inc)
15829{
15830    uint16_t rcq, bd;
15831    uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15832
15833    rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15834    bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15835
15836    tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15837    REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15838
15839    BLOGD(sc, DBG_LOAD,
15840          "UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15841          port, bd, rcq);
15842}
15843
15844static int
15845bxe_prev_unload_common(struct bxe_softc *sc)
15846{
15847    uint32_t reset_reg, tmp_reg = 0, rc;
15848    uint8_t prev_undi = FALSE;
15849    struct bxe_mac_vals mac_vals;
15850    uint32_t timer_count = 1000;
15851    uint32_t prev_brb;
15852
15853    /*
15854     * It is possible a previous function received 'common' answer,
15855     * but hasn't loaded yet, therefore creating a scenario of
15856     * multiple functions receiving 'common' on the same path.
15857     */
15858    BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15859
15860    memset(&mac_vals, 0, sizeof(mac_vals));
15861
15862    if (bxe_prev_is_path_marked(sc)) {
15863        return (bxe_prev_mcp_done(sc));
15864    }
15865
15866    reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15867
15868    /* Reset should be performed after BRB is emptied */
15869    if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15870        /* Close the MAC Rx to prevent BRB from filling up */
15871        bxe_prev_unload_close_mac(sc, &mac_vals);
15872
15873        /* close LLH filters towards the BRB */
15874        elink_set_rx_filter(&sc->link_params, 0);
15875
15876        /*
15877         * Check if the UNDI driver was previously loaded.
15878         * UNDI driver initializes CID offset for normal bell to 0x7
15879         */
15880        if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15881            tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15882            if (tmp_reg == 0x7) {
15883                BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15884                prev_undi = TRUE;
15885                /* clear the UNDI indication */
15886                REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15887                /* clear possible idle check errors */
15888                REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15889            }
15890        }
15891
15892        /* wait until BRB is empty */
15893        tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15894        while (timer_count) {
15895            prev_brb = tmp_reg;
15896
15897            tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15898            if (!tmp_reg) {
15899                break;
15900            }
15901
15902            BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15903
15904            /* reset timer as long as BRB actually gets emptied */
15905            if (prev_brb > tmp_reg) {
15906                timer_count = 1000;
15907            } else {
15908                timer_count--;
15909            }
15910
15911            /* If UNDI resides in memory, manually increment it */
15912            if (prev_undi) {
15913                bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15914            }
15915
15916            DELAY(10);
15917        }
15918
15919        if (!timer_count) {
15920            BLOGE(sc, "Failed to empty BRB\n");
15921        }
15922    }
15923
15924    /* No packets are in the pipeline, path is ready for reset */
15925    bxe_reset_common(sc);
15926
15927    if (mac_vals.xmac_addr) {
15928        REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15929    }
15930    if (mac_vals.umac_addr) {
15931        REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15932    }
15933    if (mac_vals.emac_addr) {
15934        REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15935    }
15936    if (mac_vals.bmac_addr) {
15937        REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15938        REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15939    }
15940
15941    rc = bxe_prev_mark_path(sc, prev_undi);
15942    if (rc) {
15943        bxe_prev_mcp_done(sc);
15944        return (rc);
15945    }
15946
15947    return (bxe_prev_mcp_done(sc));
15948}
15949
15950static int
15951bxe_prev_unload_uncommon(struct bxe_softc *sc)
15952{
15953    int rc;
15954
15955    BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15956
15957    /* Test if previous unload process was already finished for this path */
15958    if (bxe_prev_is_path_marked(sc)) {
15959        return (bxe_prev_mcp_done(sc));
15960    }
15961
15962    BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15963
15964    /*
15965     * If function has FLR capabilities, and existing FW version matches
15966     * the one required, then FLR will be sufficient to clean any residue
15967     * left by previous driver
15968     */
15969    rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15970    if (!rc) {
15971        /* fw version is good */
15972        BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15973        rc = bxe_do_flr(sc);
15974    }
15975
15976    if (!rc) {
15977        /* FLR was performed */
15978        BLOGD(sc, DBG_LOAD, "FLR successful\n");
15979        return (0);
15980    }
15981
15982    BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15983
15984    /* Close the MCP request, return failure*/
15985    rc = bxe_prev_mcp_done(sc);
15986    if (!rc) {
15987        rc = BXE_PREV_WAIT_NEEDED;
15988    }
15989
15990    return (rc);
15991}
15992
15993static int
15994bxe_prev_unload(struct bxe_softc *sc)
15995{
15996    int time_counter = 10;
15997    uint32_t fw, hw_lock_reg, hw_lock_val;
15998    uint32_t rc = 0;
15999
16000    /*
16001     * Clear HW from errors which may have resulted from an interrupted
16002     * DMAE transaction.
16003     */
16004    bxe_prev_interrupted_dmae(sc);
16005
16006    /* Release previously held locks */
16007    hw_lock_reg =
16008        (SC_FUNC(sc) <= 5) ?
16009            (MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
16010            (MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
16011
16012    hw_lock_val = (REG_RD(sc, hw_lock_reg));
16013    if (hw_lock_val) {
16014        if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
16015            BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
16016            REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
16017                   (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
16018        }
16019        BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
16020        REG_WR(sc, hw_lock_reg, 0xffffffff);
16021    } else {
16022        BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
16023    }
16024
16025    if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
16026        BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
16027        REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
16028    }
16029
16030    do {
16031        /* Lock MCP using an unload request */
16032        fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
16033        if (!fw) {
16034            BLOGE(sc, "MCP response failure, aborting\n");
16035            rc = -1;
16036            break;
16037        }
16038
16039        if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
16040            rc = bxe_prev_unload_common(sc);
16041            break;
16042        }
16043
16044        /* non-common reply from MCP night require looping */
16045        rc = bxe_prev_unload_uncommon(sc);
16046        if (rc != BXE_PREV_WAIT_NEEDED) {
16047            break;
16048        }
16049
16050        DELAY(20000);
16051    } while (--time_counter);
16052
16053    if (!time_counter || rc) {
16054        BLOGE(sc, "Failed to unload previous driver!\n");
16055        rc = -1;
16056    }
16057
16058    return (rc);
16059}
16060
16061void
16062bxe_dcbx_set_state(struct bxe_softc *sc,
16063                   uint8_t          dcb_on,
16064                   uint32_t         dcbx_enabled)
16065{
16066    if (!CHIP_IS_E1x(sc)) {
16067        sc->dcb_state = dcb_on;
16068        sc->dcbx_enabled = dcbx_enabled;
16069    } else {
16070        sc->dcb_state = FALSE;
16071        sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
16072    }
16073    BLOGD(sc, DBG_LOAD,
16074          "DCB state [%s:%s]\n",
16075          dcb_on ? "ON" : "OFF",
16076          (dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
16077          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
16078          (dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
16079          "on-chip with negotiation" : "invalid");
16080}
16081
16082/* must be called after sriov-enable */
16083static int
16084bxe_set_qm_cid_count(struct bxe_softc *sc)
16085{
16086    int cid_count = BXE_L2_MAX_CID(sc);
16087
16088    if (IS_SRIOV(sc)) {
16089        cid_count += BXE_VF_CIDS;
16090    }
16091
16092    if (CNIC_SUPPORT(sc)) {
16093        cid_count += CNIC_CID_MAX;
16094    }
16095
16096    return (roundup(cid_count, QM_CID_ROUND));
16097}
16098
16099static void
16100bxe_init_multi_cos(struct bxe_softc *sc)
16101{
16102    int pri, cos;
16103
16104    uint32_t pri_map = 0; /* XXX change to user config */
16105
16106    for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
16107        cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
16108        if (cos < sc->max_cos) {
16109            sc->prio_to_cos[pri] = cos;
16110        } else {
16111            BLOGW(sc, "Invalid COS %d for priority %d "
16112                      "(max COS is %d), setting to 0\n",
16113                  cos, pri, (sc->max_cos - 1));
16114            sc->prio_to_cos[pri] = 0;
16115        }
16116    }
16117}
16118
16119static int
16120bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
16121{
16122    struct bxe_softc *sc;
16123    int error, result;
16124
16125    result = 0;
16126    error = sysctl_handle_int(oidp, &result, 0, req);
16127
16128    if (error || !req->newptr) {
16129        return (error);
16130    }
16131
16132    if (result == 1) {
16133        sc = (struct bxe_softc *)arg1;
16134        BLOGI(sc, "... dumping driver state ...\n");
16135        /* XXX */
16136    }
16137
16138    return (error);
16139}
16140
16141static int
16142bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
16143{
16144    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16145    uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
16146    uint32_t *offset;
16147    uint64_t value = 0;
16148    int index = (int)arg2;
16149
16150    if (index >= BXE_NUM_ETH_STATS) {
16151        BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
16152        return (-1);
16153    }
16154
16155    offset = (eth_stats + bxe_eth_stats_arr[index].offset);
16156
16157    switch (bxe_eth_stats_arr[index].size) {
16158    case 4:
16159        value = (uint64_t)*offset;
16160        break;
16161    case 8:
16162        value = HILO_U64(*offset, *(offset + 1));
16163        break;
16164    default:
16165        BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
16166              index, bxe_eth_stats_arr[index].size);
16167        return (-1);
16168    }
16169
16170    return (sysctl_handle_64(oidp, &value, 0, req));
16171}
16172
16173static int
16174bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
16175{
16176    struct bxe_softc *sc = (struct bxe_softc *)arg1;
16177    uint32_t *eth_stats;
16178    uint32_t *offset;
16179    uint64_t value = 0;
16180    uint32_t q_stat = (uint32_t)arg2;
16181    uint32_t fp_index = ((q_stat >> 16) & 0xffff);
16182    uint32_t index = (q_stat & 0xffff);
16183
16184    eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
16185
16186    if (index >= BXE_NUM_ETH_Q_STATS) {
16187        BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
16188        return (-1);
16189    }
16190
16191    offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
16192
16193    switch (bxe_eth_q_stats_arr[index].size) {
16194    case 4:
16195        value = (uint64_t)*offset;
16196        break;
16197    case 8:
16198        value = HILO_U64(*offset, *(offset + 1));
16199        break;
16200    default:
16201        BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
16202              index, bxe_eth_q_stats_arr[index].size);
16203        return (-1);
16204    }
16205
16206    return (sysctl_handle_64(oidp, &value, 0, req));
16207}
16208
16209static void
16210bxe_add_sysctls(struct bxe_softc *sc)
16211{
16212    struct sysctl_ctx_list *ctx;
16213    struct sysctl_oid_list *children;
16214    struct sysctl_oid *queue_top, *queue;
16215    struct sysctl_oid_list *queue_top_children, *queue_children;
16216    char queue_num_buf[32];
16217    uint32_t q_stat;
16218    int i, j;
16219
16220    ctx = device_get_sysctl_ctx(sc->dev);
16221    children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
16222
16223    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
16224                      CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
16225                      "version");
16226
16227    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16228                      CTLFLAG_RD, &sc->devinfo.bc_ver_str, 0,
16229                      "bootcode version");
16230
16231    snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
16232             BCM_5710_FW_MAJOR_VERSION,
16233             BCM_5710_FW_MINOR_VERSION,
16234             BCM_5710_FW_REVISION_VERSION,
16235             BCM_5710_FW_ENGINEERING_VERSION);
16236    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16237                      CTLFLAG_RD, &sc->fw_ver_str, 0,
16238                      "firmware version");
16239
16240    snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16241        ((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION)     ? "Single"  :
16242         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD)   ? "MF-SD"   :
16243         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI)   ? "MF-SI"   :
16244         (sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16245                                                                "Unknown"));
16246    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16247                      CTLFLAG_RD, &sc->mf_mode_str, 0,
16248                      "multifunction mode");
16249
16250    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16251                    CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16252                    "multifunction vnics per port");
16253
16254    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16255                      CTLFLAG_RD, &sc->mac_addr_str, 0,
16256                      "mac address");
16257
16258    snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16259        ((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16260         (sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16261         (sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16262                                              "???GT/s"),
16263        sc->devinfo.pcie_link_width);
16264    SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16265                      CTLFLAG_RD, &sc->pci_link_str, 0,
16266                      "pci link status");
16267
16268    sc->debug = bxe_debug;
16269    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "debug",
16270                    CTLFLAG_RW, &sc->debug, 0,
16271                    "debug logging mode");
16272
16273    sc->rx_budget = bxe_rx_budget;
16274    SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16275                    CTLFLAG_RW, &sc->rx_budget, 0,
16276                    "rx processing budget");
16277
16278    SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16279                    CTLTYPE_UINT | CTLFLAG_RW, sc, 0,
16280                    bxe_sysctl_state, "IU", "dump driver state");
16281
16282    for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16283        SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16284                        bxe_eth_stats_arr[i].string,
16285                        CTLTYPE_U64 | CTLFLAG_RD, sc, i,
16286                        bxe_sysctl_eth_stat, "LU",
16287                        bxe_eth_stats_arr[i].string);
16288    }
16289
16290    /* add a new parent node for all queues "dev.bxe.#.queue" */
16291    queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16292                                CTLFLAG_RD, NULL, "queue");
16293    queue_top_children = SYSCTL_CHILDREN(queue_top);
16294
16295    for (i = 0; i < sc->num_queues; i++) {
16296        /* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16297        snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16298        queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16299                                queue_num_buf, CTLFLAG_RD, NULL,
16300                                "single queue");
16301        queue_children = SYSCTL_CHILDREN(queue);
16302
16303        for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16304            q_stat = ((i << 16) | j);
16305            SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16306                            bxe_eth_q_stats_arr[j].string,
16307                            CTLTYPE_U64 | CTLFLAG_RD, sc, q_stat,
16308                            bxe_sysctl_eth_q_stat, "LU",
16309                            bxe_eth_q_stats_arr[j].string);
16310        }
16311    }
16312}
16313
16314/*
16315 * Device attach function.
16316 *
16317 * Allocates device resources, performs secondary chip identification, and
16318 * initializes driver instance variables. This function is called from driver
16319 * load after a successful probe.
16320 *
16321 * Returns:
16322 *   0 = Success, >0 = Failure
16323 */
16324static int
16325bxe_attach(device_t dev)
16326{
16327    struct bxe_softc *sc;
16328
16329    sc = device_get_softc(dev);
16330
16331    BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16332
16333    sc->state = BXE_STATE_CLOSED;
16334
16335    sc->dev  = dev;
16336    sc->unit = device_get_unit(dev);
16337
16338    BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16339
16340    sc->pcie_bus    = pci_get_bus(dev);
16341    sc->pcie_device = pci_get_slot(dev);
16342    sc->pcie_func   = pci_get_function(dev);
16343
16344    /* enable bus master capability */
16345    pci_enable_busmaster(dev);
16346
16347    /* get the BARs */
16348    if (bxe_allocate_bars(sc) != 0) {
16349        return (ENXIO);
16350    }
16351
16352    /* initialize the mutexes */
16353    bxe_init_mutexes(sc);
16354
16355    /* prepare the periodic callout */
16356    callout_init(&sc->periodic_callout, 0);
16357
16358    /* prepare the chip taskqueue */
16359    sc->chip_tq_flags = CHIP_TQ_NONE;
16360    snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16361             "bxe%d_chip_tq", sc->unit);
16362    TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16363    sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16364                                   taskqueue_thread_enqueue,
16365                                   &sc->chip_tq);
16366    taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16367                            "%s", sc->chip_tq_name);
16368
16369    /* get device info and set params */
16370    if (bxe_get_device_info(sc) != 0) {
16371        BLOGE(sc, "getting device info\n");
16372        bxe_deallocate_bars(sc);
16373        pci_disable_busmaster(dev);
16374        return (ENXIO);
16375    }
16376
16377    /* get final misc params */
16378    bxe_get_params(sc);
16379
16380    /* set the default MTU (changed via ifconfig) */
16381    sc->mtu = ETHERMTU;
16382
16383    bxe_set_modes_bitmap(sc);
16384
16385    /* XXX
16386     * If in AFEX mode and the function is configured for FCoE
16387     * then bail... no L2 allowed.
16388     */
16389
16390    /* get phy settings from shmem and 'and' against admin settings */
16391    bxe_get_phy_info(sc);
16392
16393    /* initialize the FreeBSD ifnet interface */
16394    if (bxe_init_ifnet(sc) != 0) {
16395        bxe_release_mutexes(sc);
16396        bxe_deallocate_bars(sc);
16397        pci_disable_busmaster(dev);
16398        return (ENXIO);
16399    }
16400
16401    /* allocate device interrupts */
16402    if (bxe_interrupt_alloc(sc) != 0) {
16403        if (sc->ifnet != NULL) {
16404            ether_ifdetach(sc->ifnet);
16405        }
16406        ifmedia_removeall(&sc->ifmedia);
16407        bxe_release_mutexes(sc);
16408        bxe_deallocate_bars(sc);
16409        pci_disable_busmaster(dev);
16410        return (ENXIO);
16411    }
16412
16413    /* allocate ilt */
16414    if (bxe_alloc_ilt_mem(sc) != 0) {
16415        bxe_interrupt_free(sc);
16416        if (sc->ifnet != NULL) {
16417            ether_ifdetach(sc->ifnet);
16418        }
16419        ifmedia_removeall(&sc->ifmedia);
16420        bxe_release_mutexes(sc);
16421        bxe_deallocate_bars(sc);
16422        pci_disable_busmaster(dev);
16423        return (ENXIO);
16424    }
16425
16426    /* allocate the host hardware/software hsi structures */
16427    if (bxe_alloc_hsi_mem(sc) != 0) {
16428        bxe_free_ilt_mem(sc);
16429        bxe_interrupt_free(sc);
16430        if (sc->ifnet != NULL) {
16431            ether_ifdetach(sc->ifnet);
16432        }
16433        ifmedia_removeall(&sc->ifmedia);
16434        bxe_release_mutexes(sc);
16435        bxe_deallocate_bars(sc);
16436        pci_disable_busmaster(dev);
16437        return (ENXIO);
16438    }
16439
16440    /* need to reset chip if UNDI was active */
16441    if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16442        /* init fw_seq */
16443        sc->fw_seq =
16444            (SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16445             DRV_MSG_SEQ_NUMBER_MASK);
16446        BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16447        bxe_prev_unload(sc);
16448    }
16449
16450#if 1
16451    /* XXX */
16452    bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16453#else
16454    if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16455        SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16456        SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16457        SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16458        bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16459        bxe_dcbx_init_params(sc);
16460    } else {
16461        bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16462    }
16463#endif
16464
16465    /* calculate qm_cid_count */
16466    sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16467    BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16468
16469    sc->max_cos = 1;
16470    bxe_init_multi_cos(sc);
16471
16472    bxe_add_sysctls(sc);
16473
16474    return (0);
16475}
16476
16477/*
16478 * Device detach function.
16479 *
16480 * Stops the controller, resets the controller, and releases resources.
16481 *
16482 * Returns:
16483 *   0 = Success, >0 = Failure
16484 */
16485static int
16486bxe_detach(device_t dev)
16487{
16488    struct bxe_softc *sc;
16489    struct ifnet *ifp;
16490
16491    sc = device_get_softc(dev);
16492
16493    BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16494
16495    ifp = sc->ifnet;
16496    if (ifp != NULL && ifp->if_vlantrunk != NULL) {
16497        BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16498        return(EBUSY);
16499    }
16500
16501    /* stop the periodic callout */
16502    bxe_periodic_stop(sc);
16503
16504    /* stop the chip taskqueue */
16505    atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16506    if (sc->chip_tq) {
16507        taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16508        taskqueue_free(sc->chip_tq);
16509        sc->chip_tq = NULL;
16510    }
16511
16512    /* stop and reset the controller if it was open */
16513    if (sc->state != BXE_STATE_CLOSED) {
16514        BXE_CORE_LOCK(sc);
16515        bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16516        BXE_CORE_UNLOCK(sc);
16517    }
16518
16519    /* release the network interface */
16520    if (ifp != NULL) {
16521        ether_ifdetach(ifp);
16522    }
16523    ifmedia_removeall(&sc->ifmedia);
16524
16525    /* XXX do the following based on driver state... */
16526
16527    /* free the host hardware/software hsi structures */
16528    bxe_free_hsi_mem(sc);
16529
16530    /* free ilt */
16531    bxe_free_ilt_mem(sc);
16532
16533    /* release the interrupts */
16534    bxe_interrupt_free(sc);
16535
16536    /* Release the mutexes*/
16537    bxe_release_mutexes(sc);
16538
16539    /* Release the PCIe BAR mapped memory */
16540    bxe_deallocate_bars(sc);
16541
16542    /* Release the FreeBSD interface. */
16543    if (sc->ifnet != NULL) {
16544        if_free(sc->ifnet);
16545    }
16546
16547    pci_disable_busmaster(dev);
16548
16549    return (0);
16550}
16551
16552/*
16553 * Device shutdown function.
16554 *
16555 * Stops and resets the controller.
16556 *
16557 * Returns:
16558 *   Nothing
16559 */
16560static int
16561bxe_shutdown(device_t dev)
16562{
16563    struct bxe_softc *sc;
16564
16565    sc = device_get_softc(dev);
16566
16567    BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16568
16569    /* stop the periodic callout */
16570    bxe_periodic_stop(sc);
16571
16572    BXE_CORE_LOCK(sc);
16573    bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16574    BXE_CORE_UNLOCK(sc);
16575
16576    return (0);
16577}
16578
16579void
16580bxe_igu_ack_sb(struct bxe_softc *sc,
16581               uint8_t          igu_sb_id,
16582               uint8_t          segment,
16583               uint16_t         index,
16584               uint8_t          op,
16585               uint8_t          update)
16586{
16587    uint32_t igu_addr = sc->igu_base_addr;
16588    igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16589    bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16590}
16591
16592static void
16593bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16594                     uint8_t          func,
16595                     uint8_t          idu_sb_id,
16596                     uint8_t          is_pf)
16597{
16598    uint32_t data, ctl, cnt = 100;
16599    uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16600    uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16601    uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16602    uint32_t sb_bit =  1 << (idu_sb_id%32);
16603    uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16604    uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16605
16606    /* Not supported in BC mode */
16607    if (CHIP_INT_MODE_IS_BC(sc)) {
16608        return;
16609    }
16610
16611    data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16612             IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16613            IGU_REGULAR_CLEANUP_SET |
16614            IGU_REGULAR_BCLEANUP);
16615
16616    ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16617           (func_encode << IGU_CTRL_REG_FID_SHIFT) |
16618           (IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16619
16620    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16621            data, igu_addr_data);
16622    REG_WR(sc, igu_addr_data, data);
16623
16624    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16625                      BUS_SPACE_BARRIER_WRITE);
16626    mb();
16627
16628    BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16629            ctl, igu_addr_ctl);
16630    REG_WR(sc, igu_addr_ctl, ctl);
16631
16632    bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16633                      BUS_SPACE_BARRIER_WRITE);
16634    mb();
16635
16636    /* wait for clean up to finish */
16637    while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16638        DELAY(20000);
16639    }
16640
16641    if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16642        BLOGD(sc, DBG_LOAD,
16643              "Unable to finish IGU cleanup: "
16644              "idu_sb_id %d offset %d bit %d (cnt %d)\n",
16645              idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16646    }
16647}
16648
16649static void
16650bxe_igu_clear_sb(struct bxe_softc *sc,
16651                 uint8_t          idu_sb_id)
16652{
16653    bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16654}
16655
16656
16657
16658
16659
16660
16661
16662/*******************/
16663/* ECORE CALLBACKS */
16664/*******************/
16665
16666static void
16667bxe_reset_common(struct bxe_softc *sc)
16668{
16669    uint32_t val = 0x1400;
16670
16671    /* reset_common */
16672    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16673
16674    if (CHIP_IS_E3(sc)) {
16675        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16676        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16677    }
16678
16679    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16680}
16681
16682static void
16683bxe_common_init_phy(struct bxe_softc *sc)
16684{
16685    uint32_t shmem_base[2];
16686    uint32_t shmem2_base[2];
16687
16688    /* Avoid common init in case MFW supports LFA */
16689    if (SHMEM2_RD(sc, size) >
16690        (uint32_t)offsetof(struct shmem2_region,
16691                           lfa_host_addr[SC_PORT(sc)])) {
16692        return;
16693    }
16694
16695    shmem_base[0]  = sc->devinfo.shmem_base;
16696    shmem2_base[0] = sc->devinfo.shmem2_base;
16697
16698    if (!CHIP_IS_E1x(sc)) {
16699        shmem_base[1]  = SHMEM2_RD(sc, other_shmem_base_addr);
16700        shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16701    }
16702
16703    BXE_PHY_LOCK(sc);
16704    elink_common_init_phy(sc, shmem_base, shmem2_base,
16705                          sc->devinfo.chip_id, 0);
16706    BXE_PHY_UNLOCK(sc);
16707}
16708
16709static void
16710bxe_pf_disable(struct bxe_softc *sc)
16711{
16712    uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16713
16714    val &= ~IGU_PF_CONF_FUNC_EN;
16715
16716    REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16717    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16718    REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16719}
16720
16721static void
16722bxe_init_pxp(struct bxe_softc *sc)
16723{
16724    uint16_t devctl;
16725    int r_order, w_order;
16726
16727    devctl = bxe_pcie_capability_read(sc, PCIR_EXPRESS_DEVICE_CTL, 2);
16728
16729    BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16730
16731    w_order = ((devctl & PCIM_EXP_CTL_MAX_PAYLOAD) >> 5);
16732
16733    if (sc->mrrs == -1) {
16734        r_order = ((devctl & PCIM_EXP_CTL_MAX_READ_REQUEST) >> 12);
16735    } else {
16736        BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16737        r_order = sc->mrrs;
16738    }
16739
16740    ecore_init_pxp_arb(sc, r_order, w_order);
16741}
16742
16743static uint32_t
16744bxe_get_pretend_reg(struct bxe_softc *sc)
16745{
16746    uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16747    uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16748    return (base + (SC_ABS_FUNC(sc)) * stride);
16749}
16750
16751/*
16752 * Called only on E1H or E2.
16753 * When pretending to be PF, the pretend value is the function number 0..7.
16754 * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16755 * combination.
16756 */
16757static int
16758bxe_pretend_func(struct bxe_softc *sc,
16759                 uint16_t         pretend_func_val)
16760{
16761    uint32_t pretend_reg;
16762
16763    if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16764        return (-1);
16765    }
16766
16767    /* get my own pretend register */
16768    pretend_reg = bxe_get_pretend_reg(sc);
16769    REG_WR(sc, pretend_reg, pretend_func_val);
16770    REG_RD(sc, pretend_reg);
16771    return (0);
16772}
16773
16774static void
16775bxe_iov_init_dmae(struct bxe_softc *sc)
16776{
16777    return;
16778#if 0
16779    BLOGD(sc, DBG_LOAD, "SRIOV is %s\n", IS_SRIOV(sc) ? "ON" : "OFF");
16780
16781    if (!IS_SRIOV(sc)) {
16782        return;
16783    }
16784
16785    REG_WR(sc, DMAE_REG_BACKWARD_COMP_EN, 0);
16786#endif
16787}
16788
16789#if 0
16790static int
16791bxe_iov_init_ilt(struct bxe_softc *sc,
16792                 uint16_t         line)
16793{
16794    return (line);
16795#if 0
16796    int i;
16797    struct ecore_ilt* ilt = sc->ilt;
16798
16799    if (!IS_SRIOV(sc)) {
16800        return (line);
16801    }
16802
16803    /* set vfs ilt lines */
16804    for (i = 0; i < BXE_VF_CIDS/ILT_PAGE_CIDS ; i++) {
16805        struct hw_dma *hw_cxt = SC_VF_CXT_PAGE(sc,i);
16806        ilt->lines[line+i].page = hw_cxt->addr;
16807        ilt->lines[line+i].page_mapping = hw_cxt->mapping;
16808        ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
16809    }
16810    return (line+i);
16811#endif
16812}
16813#endif
16814
16815static void
16816bxe_iov_init_dq(struct bxe_softc *sc)
16817{
16818    return;
16819#if 0
16820    if (!IS_SRIOV(sc)) {
16821        return;
16822    }
16823
16824    /* Set the DQ such that the CID reflect the abs_vfid */
16825    REG_WR(sc, DORQ_REG_VF_NORM_VF_BASE, 0);
16826    REG_WR(sc, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
16827
16828    /*
16829     * Set VFs starting CID. If its > 0 the preceding CIDs are belong to
16830     * the PF L2 queues
16831     */
16832    REG_WR(sc, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
16833
16834    /* The VF window size is the log2 of the max number of CIDs per VF */
16835    REG_WR(sc, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
16836
16837    /*
16838     * The VF doorbell size  0 - *B, 4 - 128B. We set it here to match
16839     * the Pf doorbell size although the 2 are independent.
16840     */
16841    REG_WR(sc, DORQ_REG_VF_NORM_CID_OFST,
16842           BNX2X_DB_SHIFT - BNX2X_DB_MIN_SHIFT);
16843
16844    /*
16845     * No security checks for now -
16846     * configure single rule (out of 16) mask = 0x1, value = 0x0,
16847     * CID range 0 - 0x1ffff
16848     */
16849    REG_WR(sc, DORQ_REG_VF_TYPE_MASK_0, 1);
16850    REG_WR(sc, DORQ_REG_VF_TYPE_VALUE_0, 0);
16851    REG_WR(sc, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
16852    REG_WR(sc, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
16853
16854    /* set the number of VF alllowed doorbells to the full DQ range */
16855    REG_WR(sc, DORQ_REG_VF_NORM_MAX_CID_COUNT, 0x20000);
16856
16857    /* set the VF doorbell threshold */
16858    REG_WR(sc, DORQ_REG_VF_USAGE_CT_LIMIT, 4);
16859#endif
16860}
16861
16862/* send a NIG loopback debug packet */
16863static void
16864bxe_lb_pckt(struct bxe_softc *sc)
16865{
16866    uint32_t wb_write[3];
16867
16868    /* Ethernet source and destination addresses */
16869    wb_write[0] = 0x55555555;
16870    wb_write[1] = 0x55555555;
16871    wb_write[2] = 0x20;     /* SOP */
16872    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16873
16874    /* NON-IP protocol */
16875    wb_write[0] = 0x09000000;
16876    wb_write[1] = 0x55555555;
16877    wb_write[2] = 0x10;     /* EOP, eop_bvalid = 0 */
16878    REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16879}
16880
16881/*
16882 * Some of the internal memories are not directly readable from the driver.
16883 * To test them we send debug packets.
16884 */
16885static int
16886bxe_int_mem_test(struct bxe_softc *sc)
16887{
16888    int factor;
16889    int count, i;
16890    uint32_t val = 0;
16891
16892    if (CHIP_REV_IS_FPGA(sc)) {
16893        factor = 120;
16894    } else if (CHIP_REV_IS_EMUL(sc)) {
16895        factor = 200;
16896    } else {
16897        factor = 1;
16898    }
16899
16900    /* disable inputs of parser neighbor blocks */
16901    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16902    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16903    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16904    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16905
16906    /*  write 0 to parser credits for CFC search request */
16907    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16908
16909    /* send Ethernet packet */
16910    bxe_lb_pckt(sc);
16911
16912    /* TODO do i reset NIG statistic? */
16913    /* Wait until NIG register shows 1 packet of size 0x10 */
16914    count = 1000 * factor;
16915    while (count) {
16916        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16917        val = *BXE_SP(sc, wb_data[0]);
16918        if (val == 0x10) {
16919            break;
16920        }
16921
16922        DELAY(10000);
16923        count--;
16924    }
16925
16926    if (val != 0x10) {
16927        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16928        return (-1);
16929    }
16930
16931    /* wait until PRS register shows 1 packet */
16932    count = (1000 * factor);
16933    while (count) {
16934        val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16935        if (val == 1) {
16936            break;
16937        }
16938
16939        DELAY(10000);
16940        count--;
16941    }
16942
16943    if (val != 0x1) {
16944        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16945        return (-2);
16946    }
16947
16948    /* Reset and init BRB, PRS */
16949    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16950    DELAY(50000);
16951    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16952    DELAY(50000);
16953    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16954    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16955
16956    /* Disable inputs of parser neighbor blocks */
16957    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16958    REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16959    REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16960    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16961
16962    /* Write 0 to parser credits for CFC search request */
16963    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16964
16965    /* send 10 Ethernet packets */
16966    for (i = 0; i < 10; i++) {
16967        bxe_lb_pckt(sc);
16968    }
16969
16970    /* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16971    count = (1000 * factor);
16972    while (count) {
16973        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16974        val = *BXE_SP(sc, wb_data[0]);
16975        if (val == 0xb0) {
16976            break;
16977        }
16978
16979        DELAY(10000);
16980        count--;
16981    }
16982
16983    if (val != 0xb0) {
16984        BLOGE(sc, "NIG timeout val=0x%x\n", val);
16985        return (-3);
16986    }
16987
16988    /* Wait until PRS register shows 2 packets */
16989    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16990    if (val != 2) {
16991        BLOGE(sc, "PRS timeout val=0x%x\n", val);
16992    }
16993
16994    /* Write 1 to parser credits for CFC search request */
16995    REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16996
16997    /* Wait until PRS register shows 3 packets */
16998    DELAY(10000 * factor);
16999
17000    /* Wait until NIG register shows 1 packet of size 0x10 */
17001    val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
17002    if (val != 3) {
17003        BLOGE(sc, "PRS timeout val=0x%x\n", val);
17004    }
17005
17006    /* clear NIG EOP FIFO */
17007    for (i = 0; i < 11; i++) {
17008        REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
17009    }
17010
17011    val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
17012    if (val != 1) {
17013        BLOGE(sc, "clear of NIG failed\n");
17014        return (-4);
17015    }
17016
17017    /* Reset and init BRB, PRS, NIG */
17018    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
17019    DELAY(50000);
17020    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
17021    DELAY(50000);
17022    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17023    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17024    if (!CNIC_SUPPORT(sc)) {
17025        /* set NIC mode */
17026        REG_WR(sc, PRS_REG_NIC_MODE, 1);
17027    }
17028
17029    /* Enable inputs of parser neighbor blocks */
17030    REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
17031    REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
17032    REG_WR(sc, CFC_REG_DEBUG0, 0x0);
17033    REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
17034
17035    return (0);
17036}
17037
17038static void
17039bxe_setup_fan_failure_detection(struct bxe_softc *sc)
17040{
17041    int is_required;
17042    uint32_t val;
17043    int port;
17044
17045    is_required = 0;
17046    val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
17047           SHARED_HW_CFG_FAN_FAILURE_MASK);
17048
17049    if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
17050        is_required = 1;
17051    }
17052    /*
17053     * The fan failure mechanism is usually related to the PHY type since
17054     * the power consumption of the board is affected by the PHY. Currently,
17055     * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
17056     */
17057    else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
17058        for (port = PORT_0; port < PORT_MAX; port++) {
17059            is_required |= elink_fan_failure_det_req(sc,
17060                                                     sc->devinfo.shmem_base,
17061                                                     sc->devinfo.shmem2_base,
17062                                                     port);
17063        }
17064    }
17065
17066    BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
17067
17068    if (is_required == 0) {
17069        return;
17070    }
17071
17072    /* Fan failure is indicated by SPIO 5 */
17073    bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
17074
17075    /* set to active low mode */
17076    val = REG_RD(sc, MISC_REG_SPIO_INT);
17077    val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
17078    REG_WR(sc, MISC_REG_SPIO_INT, val);
17079
17080    /* enable interrupt to signal the IGU */
17081    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17082    val |= MISC_SPIO_SPIO5;
17083    REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
17084}
17085
17086static void
17087bxe_enable_blocks_attention(struct bxe_softc *sc)
17088{
17089    uint32_t val;
17090
17091    REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17092    if (!CHIP_IS_E1x(sc)) {
17093        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
17094    } else {
17095        REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
17096    }
17097    REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17098    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17099    /*
17100     * mask read length error interrupts in brb for parser
17101     * (parsing unit and 'checksum and crc' unit)
17102     * these errors are legal (PU reads fixed length and CAC can cause
17103     * read length error on truncated packets)
17104     */
17105    REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
17106    REG_WR(sc, QM_REG_QM_INT_MASK, 0);
17107    REG_WR(sc, TM_REG_TM_INT_MASK, 0);
17108    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
17109    REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
17110    REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
17111/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
17112/*      REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
17113    REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
17114    REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
17115    REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
17116/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
17117/*      REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
17118    REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
17119    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
17120    REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
17121    REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
17122/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
17123/*      REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
17124
17125    val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
17126           PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
17127           PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
17128    if (!CHIP_IS_E1x(sc)) {
17129        val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
17130                PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
17131    }
17132    REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
17133
17134    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
17135    REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
17136    REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
17137/*      REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
17138
17139    if (!CHIP_IS_E1x(sc)) {
17140        /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
17141        REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
17142    }
17143
17144    REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
17145    REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
17146/*      REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
17147    REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18);     /* bit 3,4 masked */
17148}
17149
17150/**
17151 * bxe_init_hw_common - initialize the HW at the COMMON phase.
17152 *
17153 * @sc:     driver handle
17154 */
17155static int
17156bxe_init_hw_common(struct bxe_softc *sc)
17157{
17158    uint8_t abs_func_id;
17159    uint32_t val;
17160
17161    BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
17162          SC_ABS_FUNC(sc));
17163
17164    /*
17165     * take the RESET lock to protect undi_unload flow from accessing
17166     * registers while we are resetting the chip
17167     */
17168    bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17169
17170    bxe_reset_common(sc);
17171
17172    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17173
17174    val = 0xfffc;
17175    if (CHIP_IS_E3(sc)) {
17176        val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17177        val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17178    }
17179
17180    REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17181
17182    bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17183
17184    ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17185    BLOGD(sc, DBG_LOAD, "after misc block init\n");
17186
17187    if (!CHIP_IS_E1x(sc)) {
17188        /*
17189         * 4-port mode or 2-port mode we need to turn off master-enable for
17190         * everyone. After that we turn it back on for self. So, we disregard
17191         * multi-function, and always disable all functions on the given path,
17192         * this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17193         */
17194        for (abs_func_id = SC_PATH(sc);
17195             abs_func_id < (E2_FUNC_MAX * 2);
17196             abs_func_id += 2) {
17197            if (abs_func_id == SC_ABS_FUNC(sc)) {
17198                REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17199                continue;
17200            }
17201
17202            bxe_pretend_func(sc, abs_func_id);
17203
17204            /* clear pf enable */
17205            bxe_pf_disable(sc);
17206
17207            bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17208        }
17209    }
17210
17211    BLOGD(sc, DBG_LOAD, "after pf disable\n");
17212
17213    ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17214
17215    if (CHIP_IS_E1(sc)) {
17216        /*
17217         * enable HW interrupt from PXP on USDM overflow
17218         * bit 16 on INT_MASK_0
17219         */
17220        REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17221    }
17222
17223    ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17224    bxe_init_pxp(sc);
17225
17226#ifdef __BIG_ENDIAN
17227    REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17228    REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17229    REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17230    REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17231    REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17232    /* make sure this value is 0 */
17233    REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17234
17235    //REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17236    REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17237    REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17238    REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17239    REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17240#endif
17241
17242    ecore_ilt_init_page_size(sc, INITOP_SET);
17243
17244    if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17245        REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17246    }
17247
17248    /* let the HW do it's magic... */
17249    DELAY(100000);
17250
17251    /* finish PXP init */
17252    val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17253    if (val != 1) {
17254        BLOGE(sc, "PXP2 CFG failed\n");
17255        return (-1);
17256    }
17257    val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17258    if (val != 1) {
17259        BLOGE(sc, "PXP2 RD_INIT failed\n");
17260        return (-1);
17261    }
17262
17263    BLOGD(sc, DBG_LOAD, "after pxp init\n");
17264
17265    /*
17266     * Timer bug workaround for E2 only. We need to set the entire ILT to have
17267     * entries with value "0" and valid bit on. This needs to be done by the
17268     * first PF that is loaded in a path (i.e. common phase)
17269     */
17270    if (!CHIP_IS_E1x(sc)) {
17271/*
17272 * In E2 there is a bug in the timers block that can cause function 6 / 7
17273 * (i.e. vnic3) to start even if it is marked as "scan-off".
17274 * This occurs when a different function (func2,3) is being marked
17275 * as "scan-off". Real-life scenario for example: if a driver is being
17276 * load-unloaded while func6,7 are down. This will cause the timer to access
17277 * the ilt, translate to a logical address and send a request to read/write.
17278 * Since the ilt for the function that is down is not valid, this will cause
17279 * a translation error which is unrecoverable.
17280 * The Workaround is intended to make sure that when this happens nothing
17281 * fatal will occur. The workaround:
17282 *  1.  First PF driver which loads on a path will:
17283 *      a.  After taking the chip out of reset, by using pretend,
17284 *          it will write "0" to the following registers of
17285 *          the other vnics.
17286 *          REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17287 *          REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17288 *          REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17289 *          And for itself it will write '1' to
17290 *          PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17291 *          dmae-operations (writing to pram for example.)
17292 *          note: can be done for only function 6,7 but cleaner this
17293 *            way.
17294 *      b.  Write zero+valid to the entire ILT.
17295 *      c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
17296 *          VNIC3 (of that port). The range allocated will be the
17297 *          entire ILT. This is needed to prevent  ILT range error.
17298 *  2.  Any PF driver load flow:
17299 *      a.  ILT update with the physical addresses of the allocated
17300 *          logical pages.
17301 *      b.  Wait 20msec. - note that this timeout is needed to make
17302 *          sure there are no requests in one of the PXP internal
17303 *          queues with "old" ILT addresses.
17304 *      c.  PF enable in the PGLC.
17305 *      d.  Clear the was_error of the PF in the PGLC. (could have
17306 *          occurred while driver was down)
17307 *      e.  PF enable in the CFC (WEAK + STRONG)
17308 *      f.  Timers scan enable
17309 *  3.  PF driver unload flow:
17310 *      a.  Clear the Timers scan_en.
17311 *      b.  Polling for scan_on=0 for that PF.
17312 *      c.  Clear the PF enable bit in the PXP.
17313 *      d.  Clear the PF enable in the CFC (WEAK + STRONG)
17314 *      e.  Write zero+valid to all ILT entries (The valid bit must
17315 *          stay set)
17316 *      f.  If this is VNIC 3 of a port then also init
17317 *          first_timers_ilt_entry to zero and last_timers_ilt_entry
17318 *          to the last enrty in the ILT.
17319 *
17320 *      Notes:
17321 *      Currently the PF error in the PGLC is non recoverable.
17322 *      In the future the there will be a recovery routine for this error.
17323 *      Currently attention is masked.
17324 *      Having an MCP lock on the load/unload process does not guarantee that
17325 *      there is no Timer disable during Func6/7 enable. This is because the
17326 *      Timers scan is currently being cleared by the MCP on FLR.
17327 *      Step 2.d can be done only for PF6/7 and the driver can also check if
17328 *      there is error before clearing it. But the flow above is simpler and
17329 *      more general.
17330 *      All ILT entries are written by zero+valid and not just PF6/7
17331 *      ILT entries since in the future the ILT entries allocation for
17332 *      PF-s might be dynamic.
17333 */
17334        struct ilt_client_info ilt_cli;
17335        struct ecore_ilt ilt;
17336
17337        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17338        memset(&ilt, 0, sizeof(struct ecore_ilt));
17339
17340        /* initialize dummy TM client */
17341        ilt_cli.start      = 0;
17342        ilt_cli.end        = ILT_NUM_PAGE_ENTRIES - 1;
17343        ilt_cli.client_num = ILT_CLIENT_TM;
17344
17345        /*
17346         * Step 1: set zeroes to all ilt page entries with valid bit on
17347         * Step 2: set the timers first/last ilt entry to point
17348         * to the entire range to prevent ILT range error for 3rd/4th
17349         * vnic (this code assumes existence of the vnic)
17350         *
17351         * both steps performed by call to ecore_ilt_client_init_op()
17352         * with dummy TM client
17353         *
17354         * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17355         * and his brother are split registers
17356         */
17357
17358        bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17359        ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17360        bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17361
17362        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17363        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17364        REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17365    }
17366
17367    REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17368    REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17369
17370    if (!CHIP_IS_E1x(sc)) {
17371        int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17372                     (CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17373
17374        ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17375        ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17376
17377        /* let the HW do it's magic... */
17378        do {
17379            DELAY(200000);
17380            val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17381        } while (factor-- && (val != 1));
17382
17383        if (val != 1) {
17384            BLOGE(sc, "ATC_INIT failed\n");
17385            return (-1);
17386        }
17387    }
17388
17389    BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17390
17391    ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17392
17393    bxe_iov_init_dmae(sc);
17394
17395    /* clean the DMAE memory */
17396    sc->dmae_ready = 1;
17397    ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17398
17399    ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17400
17401    ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17402
17403    ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17404
17405    ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17406
17407    bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17408    bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17409    bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17410    bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17411
17412    ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17413
17414    /* QM queues pointers table */
17415    ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17416
17417    /* soft reset pulse */
17418    REG_WR(sc, QM_REG_SOFT_RESET, 1);
17419    REG_WR(sc, QM_REG_SOFT_RESET, 0);
17420
17421    if (CNIC_SUPPORT(sc))
17422        ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17423
17424    ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17425    REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17426    if (!CHIP_REV_IS_SLOW(sc)) {
17427        /* enable hw interrupt from doorbell Q */
17428        REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17429    }
17430
17431    ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17432
17433    ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17434    REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17435
17436    if (!CHIP_IS_E1(sc)) {
17437        REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17438    }
17439
17440    if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17441        if (IS_MF_AFEX(sc)) {
17442            /*
17443             * configure that AFEX and VLAN headers must be
17444             * received in AFEX mode
17445             */
17446            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17447            REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17448            REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17449            REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17450            REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17451        } else {
17452            /*
17453             * Bit-map indicating which L2 hdrs may appear
17454             * after the basic Ethernet header
17455             */
17456            REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17457                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17458        }
17459    }
17460
17461    ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17462    ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17463    ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17464    ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17465
17466    if (!CHIP_IS_E1x(sc)) {
17467        /* reset VFC memories */
17468        REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17469               VFC_MEMORIES_RST_REG_CAM_RST |
17470               VFC_MEMORIES_RST_REG_RAM_RST);
17471        REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17472               VFC_MEMORIES_RST_REG_CAM_RST |
17473               VFC_MEMORIES_RST_REG_RAM_RST);
17474
17475        DELAY(20000);
17476    }
17477
17478    ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17479    ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17480    ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17481    ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17482
17483    /* sync semi rtc */
17484    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17485           0x80000000);
17486    REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17487           0x80000000);
17488
17489    ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17490    ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17491    ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17492
17493    if (!CHIP_IS_E1x(sc)) {
17494        if (IS_MF_AFEX(sc)) {
17495            /*
17496             * configure that AFEX and VLAN headers must be
17497             * sent in AFEX mode
17498             */
17499            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17500            REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17501            REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17502            REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17503            REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17504        } else {
17505            REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17506                   sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17507        }
17508    }
17509
17510    REG_WR(sc, SRC_REG_SOFT_RST, 1);
17511
17512    ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17513
17514    if (CNIC_SUPPORT(sc)) {
17515        REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17516        REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17517        REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17518        REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17519        REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17520        REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17521        REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17522        REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17523        REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17524        REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17525    }
17526    REG_WR(sc, SRC_REG_SOFT_RST, 0);
17527
17528    if (sizeof(union cdu_context) != 1024) {
17529        /* we currently assume that a context is 1024 bytes */
17530        BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17531              (long)sizeof(union cdu_context));
17532    }
17533
17534    ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17535    val = (4 << 24) + (0 << 12) + 1024;
17536    REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17537
17538    ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17539
17540    REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17541    /* enable context validation interrupt from CFC */
17542    REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17543
17544    /* set the thresholds to prevent CFC/CDU race */
17545    REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17546    ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17547
17548    if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17549        REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17550    }
17551
17552    ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17553    ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17554
17555    /* Reset PCIE errors for debug */
17556    REG_WR(sc, 0x2814, 0xffffffff);
17557    REG_WR(sc, 0x3820, 0xffffffff);
17558
17559    if (!CHIP_IS_E1x(sc)) {
17560        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17561               (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17562                PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17563        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17564               (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17565                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17566                PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17567        REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17568               (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17569                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17570                PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17571    }
17572
17573    ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17574
17575    if (!CHIP_IS_E1(sc)) {
17576        /* in E3 this done in per-port section */
17577        if (!CHIP_IS_E3(sc))
17578            REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17579    }
17580
17581    if (CHIP_IS_E1H(sc)) {
17582        /* not applicable for E2 (and above ...) */
17583        REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17584    }
17585
17586    if (CHIP_REV_IS_SLOW(sc)) {
17587        DELAY(200000);
17588    }
17589
17590    /* finish CFC init */
17591    val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17592    if (val != 1) {
17593        BLOGE(sc, "CFC LL_INIT failed\n");
17594        return (-1);
17595    }
17596    val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17597    if (val != 1) {
17598        BLOGE(sc, "CFC AC_INIT failed\n");
17599        return (-1);
17600    }
17601    val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17602    if (val != 1) {
17603        BLOGE(sc, "CFC CAM_INIT failed\n");
17604        return (-1);
17605    }
17606    REG_WR(sc, CFC_REG_DEBUG0, 0);
17607
17608    if (CHIP_IS_E1(sc)) {
17609        /* read NIG statistic to see if this is our first up since powerup */
17610        bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17611        val = *BXE_SP(sc, wb_data[0]);
17612
17613        /* do internal memory self test */
17614        if ((val == 0) && bxe_int_mem_test(sc)) {
17615            BLOGE(sc, "internal mem self test failed\n");
17616            return (-1);
17617        }
17618    }
17619
17620    bxe_setup_fan_failure_detection(sc);
17621
17622    /* clear PXP2 attentions */
17623    REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17624
17625    bxe_enable_blocks_attention(sc);
17626
17627    if (!CHIP_REV_IS_SLOW(sc)) {
17628        ecore_enable_blocks_parity(sc);
17629    }
17630
17631    if (!BXE_NOMCP(sc)) {
17632        if (CHIP_IS_E1x(sc)) {
17633            bxe_common_init_phy(sc);
17634        }
17635    }
17636
17637    return (0);
17638}
17639
17640/**
17641 * bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17642 *
17643 * @sc:     driver handle
17644 */
17645static int
17646bxe_init_hw_common_chip(struct bxe_softc *sc)
17647{
17648    int rc = bxe_init_hw_common(sc);
17649
17650    if (rc) {
17651        return (rc);
17652    }
17653
17654    /* In E2 2-PORT mode, same ext phy is used for the two paths */
17655    if (!BXE_NOMCP(sc)) {
17656        bxe_common_init_phy(sc);
17657    }
17658
17659    return (0);
17660}
17661
17662static int
17663bxe_init_hw_port(struct bxe_softc *sc)
17664{
17665    int port = SC_PORT(sc);
17666    int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17667    uint32_t low, high;
17668    uint32_t val;
17669
17670    BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17671
17672    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17673
17674    ecore_init_block(sc, BLOCK_MISC, init_phase);
17675    ecore_init_block(sc, BLOCK_PXP, init_phase);
17676    ecore_init_block(sc, BLOCK_PXP2, init_phase);
17677
17678    /*
17679     * Timers bug workaround: disables the pf_master bit in pglue at
17680     * common phase, we need to enable it here before any dmae access are
17681     * attempted. Therefore we manually added the enable-master to the
17682     * port phase (it also happens in the function phase)
17683     */
17684    if (!CHIP_IS_E1x(sc)) {
17685        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17686    }
17687
17688    ecore_init_block(sc, BLOCK_ATC, init_phase);
17689    ecore_init_block(sc, BLOCK_DMAE, init_phase);
17690    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17691    ecore_init_block(sc, BLOCK_QM, init_phase);
17692
17693    ecore_init_block(sc, BLOCK_TCM, init_phase);
17694    ecore_init_block(sc, BLOCK_UCM, init_phase);
17695    ecore_init_block(sc, BLOCK_CCM, init_phase);
17696    ecore_init_block(sc, BLOCK_XCM, init_phase);
17697
17698    /* QM cid (connection) count */
17699    ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17700
17701    if (CNIC_SUPPORT(sc)) {
17702        ecore_init_block(sc, BLOCK_TM, init_phase);
17703        REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17704        REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17705    }
17706
17707    ecore_init_block(sc, BLOCK_DORQ, init_phase);
17708
17709    ecore_init_block(sc, BLOCK_BRB1, init_phase);
17710
17711    if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17712        if (IS_MF(sc)) {
17713            low = (BXE_ONE_PORT(sc) ? 160 : 246);
17714        } else if (sc->mtu > 4096) {
17715            if (BXE_ONE_PORT(sc)) {
17716                low = 160;
17717            } else {
17718                val = sc->mtu;
17719                /* (24*1024 + val*4)/256 */
17720                low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17721            }
17722        } else {
17723            low = (BXE_ONE_PORT(sc) ? 80 : 160);
17724        }
17725        high = (low + 56); /* 14*1024/256 */
17726        REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17727        REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17728    }
17729
17730    if (CHIP_IS_MODE_4_PORT(sc)) {
17731        REG_WR(sc, SC_PORT(sc) ?
17732               BRB1_REG_MAC_GUARANTIED_1 :
17733               BRB1_REG_MAC_GUARANTIED_0, 40);
17734    }
17735
17736    ecore_init_block(sc, BLOCK_PRS, init_phase);
17737    if (CHIP_IS_E3B0(sc)) {
17738        if (IS_MF_AFEX(sc)) {
17739            /* configure headers for AFEX mode */
17740            REG_WR(sc, SC_PORT(sc) ?
17741                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17742                   PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17743            REG_WR(sc, SC_PORT(sc) ?
17744                   PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17745                   PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17746            REG_WR(sc, SC_PORT(sc) ?
17747                   PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17748                   PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17749        } else {
17750            /* Ovlan exists only if we are in multi-function +
17751             * switch-dependent mode, in switch-independent there
17752             * is no ovlan headers
17753             */
17754            REG_WR(sc, SC_PORT(sc) ?
17755                   PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17756                   PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17757                   (sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17758        }
17759    }
17760
17761    ecore_init_block(sc, BLOCK_TSDM, init_phase);
17762    ecore_init_block(sc, BLOCK_CSDM, init_phase);
17763    ecore_init_block(sc, BLOCK_USDM, init_phase);
17764    ecore_init_block(sc, BLOCK_XSDM, init_phase);
17765
17766    ecore_init_block(sc, BLOCK_TSEM, init_phase);
17767    ecore_init_block(sc, BLOCK_USEM, init_phase);
17768    ecore_init_block(sc, BLOCK_CSEM, init_phase);
17769    ecore_init_block(sc, BLOCK_XSEM, init_phase);
17770
17771    ecore_init_block(sc, BLOCK_UPB, init_phase);
17772    ecore_init_block(sc, BLOCK_XPB, init_phase);
17773
17774    ecore_init_block(sc, BLOCK_PBF, init_phase);
17775
17776    if (CHIP_IS_E1x(sc)) {
17777        /* configure PBF to work without PAUSE mtu 9000 */
17778        REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17779
17780        /* update threshold */
17781        REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17782        /* update init credit */
17783        REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17784
17785        /* probe changes */
17786        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17787        DELAY(50);
17788        REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17789    }
17790
17791    if (CNIC_SUPPORT(sc)) {
17792        ecore_init_block(sc, BLOCK_SRC, init_phase);
17793    }
17794
17795    ecore_init_block(sc, BLOCK_CDU, init_phase);
17796    ecore_init_block(sc, BLOCK_CFC, init_phase);
17797
17798    if (CHIP_IS_E1(sc)) {
17799        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17800        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17801    }
17802    ecore_init_block(sc, BLOCK_HC, init_phase);
17803
17804    ecore_init_block(sc, BLOCK_IGU, init_phase);
17805
17806    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17807    /* init aeu_mask_attn_func_0/1:
17808     *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17809     *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17810     *             bits 4-7 are used for "per vn group attention" */
17811    val = IS_MF(sc) ? 0xF7 : 0x7;
17812    /* Enable DCBX attention for all but E1 */
17813    val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17814    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17815
17816    ecore_init_block(sc, BLOCK_NIG, init_phase);
17817
17818    if (!CHIP_IS_E1x(sc)) {
17819        /* Bit-map indicating which L2 hdrs may appear after the
17820         * basic Ethernet header
17821         */
17822        if (IS_MF_AFEX(sc)) {
17823            REG_WR(sc, SC_PORT(sc) ?
17824                   NIG_REG_P1_HDRS_AFTER_BASIC :
17825                   NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17826        } else {
17827            REG_WR(sc, SC_PORT(sc) ?
17828                   NIG_REG_P1_HDRS_AFTER_BASIC :
17829                   NIG_REG_P0_HDRS_AFTER_BASIC,
17830                   IS_MF_SD(sc) ? 7 : 6);
17831        }
17832
17833        if (CHIP_IS_E3(sc)) {
17834            REG_WR(sc, SC_PORT(sc) ?
17835                   NIG_REG_LLH1_MF_MODE :
17836                   NIG_REG_LLH_MF_MODE, IS_MF(sc));
17837        }
17838    }
17839    if (!CHIP_IS_E3(sc)) {
17840        REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17841    }
17842
17843    if (!CHIP_IS_E1(sc)) {
17844        /* 0x2 disable mf_ov, 0x1 enable */
17845        REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17846               (IS_MF_SD(sc) ? 0x1 : 0x2));
17847
17848        if (!CHIP_IS_E1x(sc)) {
17849            val = 0;
17850            switch (sc->devinfo.mf_info.mf_mode) {
17851            case MULTI_FUNCTION_SD:
17852                val = 1;
17853                break;
17854            case MULTI_FUNCTION_SI:
17855            case MULTI_FUNCTION_AFEX:
17856                val = 2;
17857                break;
17858            }
17859
17860            REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17861                        NIG_REG_LLH0_CLS_TYPE), val);
17862        }
17863        REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17864        REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17865        REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17866    }
17867
17868    /* If SPIO5 is set to generate interrupts, enable it for this port */
17869    val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17870    if (val & MISC_SPIO_SPIO5) {
17871        uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17872                                    MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17873        val = REG_RD(sc, reg_addr);
17874        val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17875        REG_WR(sc, reg_addr, val);
17876    }
17877
17878    return (0);
17879}
17880
17881static uint32_t
17882bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17883                       uint32_t         reg,
17884                       uint32_t         expected,
17885                       uint32_t         poll_count)
17886{
17887    uint32_t cur_cnt = poll_count;
17888    uint32_t val;
17889
17890    while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17891        DELAY(FLR_WAIT_INTERVAL);
17892    }
17893
17894    return (val);
17895}
17896
17897static int
17898bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17899                              uint32_t         reg,
17900                              char             *msg,
17901                              uint32_t         poll_cnt)
17902{
17903    uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17904
17905    if (val != 0) {
17906        BLOGE(sc, "%s usage count=%d\n", msg, val);
17907        return (1);
17908    }
17909
17910    return (0);
17911}
17912
17913/* Common routines with VF FLR cleanup */
17914static uint32_t
17915bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17916{
17917    /* adjust polling timeout */
17918    if (CHIP_REV_IS_EMUL(sc)) {
17919        return (FLR_POLL_CNT * 2000);
17920    }
17921
17922    if (CHIP_REV_IS_FPGA(sc)) {
17923        return (FLR_POLL_CNT * 120);
17924    }
17925
17926    return (FLR_POLL_CNT);
17927}
17928
17929static int
17930bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17931                           uint32_t         poll_cnt)
17932{
17933    /* wait for CFC PF usage-counter to zero (includes all the VFs) */
17934    if (bxe_flr_clnup_poll_hw_counter(sc,
17935                                      CFC_REG_NUM_LCIDS_INSIDE_PF,
17936                                      "CFC PF usage counter timed out",
17937                                      poll_cnt)) {
17938        return (1);
17939    }
17940
17941    /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17942    if (bxe_flr_clnup_poll_hw_counter(sc,
17943                                      DORQ_REG_PF_USAGE_CNT,
17944                                      "DQ PF usage counter timed out",
17945                                      poll_cnt)) {
17946        return (1);
17947    }
17948
17949    /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17950    if (bxe_flr_clnup_poll_hw_counter(sc,
17951                                      QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17952                                      "QM PF usage counter timed out",
17953                                      poll_cnt)) {
17954        return (1);
17955    }
17956
17957    /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17958    if (bxe_flr_clnup_poll_hw_counter(sc,
17959                                      TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17960                                      "Timers VNIC usage counter timed out",
17961                                      poll_cnt)) {
17962        return (1);
17963    }
17964
17965    if (bxe_flr_clnup_poll_hw_counter(sc,
17966                                      TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17967                                      "Timers NUM_SCANS usage counter timed out",
17968                                      poll_cnt)) {
17969        return (1);
17970    }
17971
17972    /* Wait DMAE PF usage counter to zero */
17973    if (bxe_flr_clnup_poll_hw_counter(sc,
17974                                      dmae_reg_go_c[INIT_DMAE_C(sc)],
17975                                      "DMAE dommand register timed out",
17976                                      poll_cnt)) {
17977        return (1);
17978    }
17979
17980    return (0);
17981}
17982
17983#define OP_GEN_PARAM(param)                                            \
17984    (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17985#define OP_GEN_TYPE(type)                                           \
17986    (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17987#define OP_GEN_AGG_VECT(index)                                             \
17988    (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17989
17990static int
17991bxe_send_final_clnup(struct bxe_softc *sc,
17992                     uint8_t          clnup_func,
17993                     uint32_t         poll_cnt)
17994{
17995    uint32_t op_gen_command = 0;
17996    uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17997                          CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17998    int ret = 0;
17999
18000    if (REG_RD(sc, comp_addr)) {
18001        BLOGE(sc, "Cleanup complete was not 0 before sending\n");
18002        return (1);
18003    }
18004
18005    op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
18006    op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
18007    op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
18008    op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
18009
18010    BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
18011    REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
18012
18013    if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
18014        BLOGE(sc, "FW final cleanup did not succeed\n");
18015        BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
18016              (REG_RD(sc, comp_addr)));
18017        bxe_panic(sc, ("FLR cleanup failed\n"));
18018        return (1);
18019    }
18020
18021    /* Zero completion for nxt FLR */
18022    REG_WR(sc, comp_addr, 0);
18023
18024    return (ret);
18025}
18026
18027static void
18028bxe_pbf_pN_buf_flushed(struct bxe_softc       *sc,
18029                       struct pbf_pN_buf_regs *regs,
18030                       uint32_t               poll_count)
18031{
18032    uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
18033    uint32_t cur_cnt = poll_count;
18034
18035    crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
18036    crd = crd_start = REG_RD(sc, regs->crd);
18037    init_crd = REG_RD(sc, regs->init_crd);
18038
18039    BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
18040    BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
18041    BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
18042
18043    while ((crd != init_crd) &&
18044           ((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
18045            (init_crd - crd_start))) {
18046        if (cur_cnt--) {
18047            DELAY(FLR_WAIT_INTERVAL);
18048            crd = REG_RD(sc, regs->crd);
18049            crd_freed = REG_RD(sc, regs->crd_freed);
18050        } else {
18051            BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
18052            BLOGD(sc, DBG_LOAD, "CREDIT[%d]      : c:%x\n", regs->pN, crd);
18053            BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
18054            break;
18055        }
18056    }
18057
18058    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
18059          poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18060}
18061
18062static void
18063bxe_pbf_pN_cmd_flushed(struct bxe_softc       *sc,
18064                       struct pbf_pN_cmd_regs *regs,
18065                       uint32_t               poll_count)
18066{
18067    uint32_t occup, to_free, freed, freed_start;
18068    uint32_t cur_cnt = poll_count;
18069
18070    occup = to_free = REG_RD(sc, regs->lines_occup);
18071    freed = freed_start = REG_RD(sc, regs->lines_freed);
18072
18073    BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18074    BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18075
18076    while (occup &&
18077           ((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
18078        if (cur_cnt--) {
18079            DELAY(FLR_WAIT_INTERVAL);
18080            occup = REG_RD(sc, regs->lines_occup);
18081            freed = REG_RD(sc, regs->lines_freed);
18082        } else {
18083            BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
18084            BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
18085            BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
18086            break;
18087        }
18088    }
18089
18090    BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
18091          poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
18092}
18093
18094static void
18095bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
18096{
18097    struct pbf_pN_cmd_regs cmd_regs[] = {
18098        {0, (CHIP_IS_E3B0(sc)) ?
18099            PBF_REG_TQ_OCCUPANCY_Q0 :
18100            PBF_REG_P0_TQ_OCCUPANCY,
18101            (CHIP_IS_E3B0(sc)) ?
18102            PBF_REG_TQ_LINES_FREED_CNT_Q0 :
18103            PBF_REG_P0_TQ_LINES_FREED_CNT},
18104        {1, (CHIP_IS_E3B0(sc)) ?
18105            PBF_REG_TQ_OCCUPANCY_Q1 :
18106            PBF_REG_P1_TQ_OCCUPANCY,
18107            (CHIP_IS_E3B0(sc)) ?
18108            PBF_REG_TQ_LINES_FREED_CNT_Q1 :
18109            PBF_REG_P1_TQ_LINES_FREED_CNT},
18110        {4, (CHIP_IS_E3B0(sc)) ?
18111            PBF_REG_TQ_OCCUPANCY_LB_Q :
18112            PBF_REG_P4_TQ_OCCUPANCY,
18113            (CHIP_IS_E3B0(sc)) ?
18114            PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
18115            PBF_REG_P4_TQ_LINES_FREED_CNT}
18116    };
18117
18118    struct pbf_pN_buf_regs buf_regs[] = {
18119        {0, (CHIP_IS_E3B0(sc)) ?
18120            PBF_REG_INIT_CRD_Q0 :
18121            PBF_REG_P0_INIT_CRD ,
18122            (CHIP_IS_E3B0(sc)) ?
18123            PBF_REG_CREDIT_Q0 :
18124            PBF_REG_P0_CREDIT,
18125            (CHIP_IS_E3B0(sc)) ?
18126            PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
18127            PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
18128        {1, (CHIP_IS_E3B0(sc)) ?
18129            PBF_REG_INIT_CRD_Q1 :
18130            PBF_REG_P1_INIT_CRD,
18131            (CHIP_IS_E3B0(sc)) ?
18132            PBF_REG_CREDIT_Q1 :
18133            PBF_REG_P1_CREDIT,
18134            (CHIP_IS_E3B0(sc)) ?
18135            PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
18136            PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
18137        {4, (CHIP_IS_E3B0(sc)) ?
18138            PBF_REG_INIT_CRD_LB_Q :
18139            PBF_REG_P4_INIT_CRD,
18140            (CHIP_IS_E3B0(sc)) ?
18141            PBF_REG_CREDIT_LB_Q :
18142            PBF_REG_P4_CREDIT,
18143            (CHIP_IS_E3B0(sc)) ?
18144            PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
18145            PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
18146    };
18147
18148    int i;
18149
18150    /* Verify the command queues are flushed P0, P1, P4 */
18151    for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
18152        bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
18153    }
18154
18155    /* Verify the transmission buffers are flushed P0, P1, P4 */
18156    for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
18157        bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
18158    }
18159}
18160
18161static void
18162bxe_hw_enable_status(struct bxe_softc *sc)
18163{
18164    uint32_t val;
18165
18166    val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
18167    BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
18168
18169    val = REG_RD(sc, PBF_REG_DISABLE_PF);
18170    BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18171
18172    val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18173    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18174
18175    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18176    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18177
18178    val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18179    BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18180
18181    val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18182    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18183
18184    val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18185    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18186
18187    val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18188    BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18189}
18190
18191static int
18192bxe_pf_flr_clnup(struct bxe_softc *sc)
18193{
18194    uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18195
18196    BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18197
18198    /* Re-enable PF target read access */
18199    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18200
18201    /* Poll HW usage counters */
18202    BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18203    if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18204        return (-1);
18205    }
18206
18207    /* Zero the igu 'trailing edge' and 'leading edge' */
18208
18209    /* Send the FW cleanup command */
18210    if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18211        return (-1);
18212    }
18213
18214    /* ATC cleanup */
18215
18216    /* Verify TX hw is flushed */
18217    bxe_tx_hw_flushed(sc, poll_cnt);
18218
18219    /* Wait 100ms (not adjusted according to platform) */
18220    DELAY(100000);
18221
18222    /* Verify no pending pci transactions */
18223    if (bxe_is_pcie_pending(sc)) {
18224        BLOGE(sc, "PCIE Transactions still pending\n");
18225    }
18226
18227    /* Debug */
18228    bxe_hw_enable_status(sc);
18229
18230    /*
18231     * Master enable - Due to WB DMAE writes performed before this
18232     * register is re-initialized as part of the regular function init
18233     */
18234    REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18235
18236    return (0);
18237}
18238
18239#if 0
18240static void
18241bxe_init_searcher(struct bxe_softc *sc)
18242{
18243    int port = SC_PORT(sc);
18244    ecore_src_init_t2(sc, sc->t2, sc->t2_mapping, SRC_CONN_NUM);
18245    /* T1 hash bits value determines the T1 number of entries */
18246    REG_WR(sc, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
18247}
18248#endif
18249
18250static int
18251bxe_init_hw_func(struct bxe_softc *sc)
18252{
18253    int port = SC_PORT(sc);
18254    int func = SC_FUNC(sc);
18255    int init_phase = PHASE_PF0 + func;
18256    struct ecore_ilt *ilt = sc->ilt;
18257    uint16_t cdu_ilt_start;
18258    uint32_t addr, val;
18259    uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18260    int i, main_mem_width, rc;
18261
18262    BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18263
18264    /* FLR cleanup */
18265    if (!CHIP_IS_E1x(sc)) {
18266        rc = bxe_pf_flr_clnup(sc);
18267        if (rc) {
18268            BLOGE(sc, "FLR cleanup failed!\n");
18269            // XXX bxe_fw_dump(sc);
18270            // XXX bxe_idle_chk(sc);
18271            return (rc);
18272        }
18273    }
18274
18275    /* set MSI reconfigure capability */
18276    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18277        addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18278        val = REG_RD(sc, addr);
18279        val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18280        REG_WR(sc, addr, val);
18281    }
18282
18283    ecore_init_block(sc, BLOCK_PXP, init_phase);
18284    ecore_init_block(sc, BLOCK_PXP2, init_phase);
18285
18286    ilt = sc->ilt;
18287    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18288
18289#if 0
18290    if (IS_SRIOV(sc)) {
18291        cdu_ilt_start += BXE_FIRST_VF_CID/ILT_PAGE_CIDS;
18292    }
18293    cdu_ilt_start = bxe_iov_init_ilt(sc, cdu_ilt_start);
18294
18295#if (BXE_FIRST_VF_CID > 0)
18296    /*
18297     * If BXE_FIRST_VF_CID > 0 then the PF L2 cids precedes
18298     * those of the VFs, so start line should be reset
18299     */
18300    cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18301#endif
18302#endif
18303
18304    for (i = 0; i < L2_ILT_LINES(sc); i++) {
18305        ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18306        ilt->lines[cdu_ilt_start + i].page_mapping =
18307            sc->context[i].vcxt_dma.paddr;
18308        ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18309    }
18310    ecore_ilt_init_op(sc, INITOP_SET);
18311
18312#if 0
18313    if (!CONFIGURE_NIC_MODE(sc)) {
18314        bxe_init_searcher(sc);
18315        REG_WR(sc, PRS_REG_NIC_MODE, 0);
18316        BLOGD(sc, DBG_LOAD, "NIC MODE disabled\n");
18317    } else
18318#endif
18319    {
18320        /* Set NIC mode */
18321        REG_WR(sc, PRS_REG_NIC_MODE, 1);
18322        BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18323    }
18324
18325    if (!CHIP_IS_E1x(sc)) {
18326        uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18327
18328        /* Turn on a single ISR mode in IGU if driver is going to use
18329         * INT#x or MSI
18330         */
18331        if (sc->interrupt_mode != INTR_MODE_MSIX) {
18332            pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18333        }
18334
18335        /*
18336         * Timers workaround bug: function init part.
18337         * Need to wait 20msec after initializing ILT,
18338         * needed to make sure there are no requests in
18339         * one of the PXP internal queues with "old" ILT addresses
18340         */
18341        DELAY(20000);
18342
18343        /*
18344         * Master enable - Due to WB DMAE writes performed before this
18345         * register is re-initialized as part of the regular function
18346         * init
18347         */
18348        REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18349        /* Enable the function in IGU */
18350        REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18351    }
18352
18353    sc->dmae_ready = 1;
18354
18355    ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18356
18357    if (!CHIP_IS_E1x(sc))
18358        REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18359
18360    ecore_init_block(sc, BLOCK_ATC, init_phase);
18361    ecore_init_block(sc, BLOCK_DMAE, init_phase);
18362    ecore_init_block(sc, BLOCK_NIG, init_phase);
18363    ecore_init_block(sc, BLOCK_SRC, init_phase);
18364    ecore_init_block(sc, BLOCK_MISC, init_phase);
18365    ecore_init_block(sc, BLOCK_TCM, init_phase);
18366    ecore_init_block(sc, BLOCK_UCM, init_phase);
18367    ecore_init_block(sc, BLOCK_CCM, init_phase);
18368    ecore_init_block(sc, BLOCK_XCM, init_phase);
18369    ecore_init_block(sc, BLOCK_TSEM, init_phase);
18370    ecore_init_block(sc, BLOCK_USEM, init_phase);
18371    ecore_init_block(sc, BLOCK_CSEM, init_phase);
18372    ecore_init_block(sc, BLOCK_XSEM, init_phase);
18373
18374    if (!CHIP_IS_E1x(sc))
18375        REG_WR(sc, QM_REG_PF_EN, 1);
18376
18377    if (!CHIP_IS_E1x(sc)) {
18378        REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18379        REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18380        REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18381        REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18382    }
18383    ecore_init_block(sc, BLOCK_QM, init_phase);
18384
18385    ecore_init_block(sc, BLOCK_TM, init_phase);
18386    ecore_init_block(sc, BLOCK_DORQ, init_phase);
18387
18388    bxe_iov_init_dq(sc);
18389
18390    ecore_init_block(sc, BLOCK_BRB1, init_phase);
18391    ecore_init_block(sc, BLOCK_PRS, init_phase);
18392    ecore_init_block(sc, BLOCK_TSDM, init_phase);
18393    ecore_init_block(sc, BLOCK_CSDM, init_phase);
18394    ecore_init_block(sc, BLOCK_USDM, init_phase);
18395    ecore_init_block(sc, BLOCK_XSDM, init_phase);
18396    ecore_init_block(sc, BLOCK_UPB, init_phase);
18397    ecore_init_block(sc, BLOCK_XPB, init_phase);
18398    ecore_init_block(sc, BLOCK_PBF, init_phase);
18399    if (!CHIP_IS_E1x(sc))
18400        REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18401
18402    ecore_init_block(sc, BLOCK_CDU, init_phase);
18403
18404    ecore_init_block(sc, BLOCK_CFC, init_phase);
18405
18406    if (!CHIP_IS_E1x(sc))
18407        REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18408
18409    if (IS_MF(sc)) {
18410        REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18411        REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18412    }
18413
18414    ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18415
18416    /* HC init per function */
18417    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18418        if (CHIP_IS_E1H(sc)) {
18419            REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18420
18421            REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18422            REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18423        }
18424        ecore_init_block(sc, BLOCK_HC, init_phase);
18425
18426    } else {
18427        int num_segs, sb_idx, prod_offset;
18428
18429        REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18430
18431        if (!CHIP_IS_E1x(sc)) {
18432            REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18433            REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18434        }
18435
18436        ecore_init_block(sc, BLOCK_IGU, init_phase);
18437
18438        if (!CHIP_IS_E1x(sc)) {
18439            int dsb_idx = 0;
18440            /**
18441             * Producer memory:
18442             * E2 mode: address 0-135 match to the mapping memory;
18443             * 136 - PF0 default prod; 137 - PF1 default prod;
18444             * 138 - PF2 default prod; 139 - PF3 default prod;
18445             * 140 - PF0 attn prod;    141 - PF1 attn prod;
18446             * 142 - PF2 attn prod;    143 - PF3 attn prod;
18447             * 144-147 reserved.
18448             *
18449             * E1.5 mode - In backward compatible mode;
18450             * for non default SB; each even line in the memory
18451             * holds the U producer and each odd line hold
18452             * the C producer. The first 128 producers are for
18453             * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18454             * producers are for the DSB for each PF.
18455             * Each PF has five segments: (the order inside each
18456             * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18457             * 132-135 C prods; 136-139 X prods; 140-143 T prods;
18458             * 144-147 attn prods;
18459             */
18460            /* non-default-status-blocks */
18461            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18462                IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18463            for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18464                prod_offset = (sc->igu_base_sb + sb_idx) *
18465                    num_segs;
18466
18467                for (i = 0; i < num_segs; i++) {
18468                    addr = IGU_REG_PROD_CONS_MEMORY +
18469                            (prod_offset + i) * 4;
18470                    REG_WR(sc, addr, 0);
18471                }
18472                /* send consumer update with value 0 */
18473                bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18474                           USTORM_ID, 0, IGU_INT_NOP, 1);
18475                bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18476            }
18477
18478            /* default-status-blocks */
18479            num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18480                IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18481
18482            if (CHIP_IS_MODE_4_PORT(sc))
18483                dsb_idx = SC_FUNC(sc);
18484            else
18485                dsb_idx = SC_VN(sc);
18486
18487            prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18488                       IGU_BC_BASE_DSB_PROD + dsb_idx :
18489                       IGU_NORM_BASE_DSB_PROD + dsb_idx);
18490
18491            /*
18492             * igu prods come in chunks of E1HVN_MAX (4) -
18493             * does not matters what is the current chip mode
18494             */
18495            for (i = 0; i < (num_segs * E1HVN_MAX);
18496                 i += E1HVN_MAX) {
18497                addr = IGU_REG_PROD_CONS_MEMORY +
18498                            (prod_offset + i)*4;
18499                REG_WR(sc, addr, 0);
18500            }
18501            /* send consumer update with 0 */
18502            if (CHIP_INT_MODE_IS_BC(sc)) {
18503                bxe_ack_sb(sc, sc->igu_dsb_id,
18504                           USTORM_ID, 0, IGU_INT_NOP, 1);
18505                bxe_ack_sb(sc, sc->igu_dsb_id,
18506                           CSTORM_ID, 0, IGU_INT_NOP, 1);
18507                bxe_ack_sb(sc, sc->igu_dsb_id,
18508                           XSTORM_ID, 0, IGU_INT_NOP, 1);
18509                bxe_ack_sb(sc, sc->igu_dsb_id,
18510                           TSTORM_ID, 0, IGU_INT_NOP, 1);
18511                bxe_ack_sb(sc, sc->igu_dsb_id,
18512                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18513            } else {
18514                bxe_ack_sb(sc, sc->igu_dsb_id,
18515                           USTORM_ID, 0, IGU_INT_NOP, 1);
18516                bxe_ack_sb(sc, sc->igu_dsb_id,
18517                           ATTENTION_ID, 0, IGU_INT_NOP, 1);
18518            }
18519            bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18520
18521            /* !!! these should become driver const once
18522               rf-tool supports split-68 const */
18523            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18524            REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18525            REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18526            REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18527            REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18528            REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18529        }
18530    }
18531
18532    /* Reset PCIE errors for debug */
18533    REG_WR(sc, 0x2114, 0xffffffff);
18534    REG_WR(sc, 0x2120, 0xffffffff);
18535
18536    if (CHIP_IS_E1x(sc)) {
18537        main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18538        main_mem_base = HC_REG_MAIN_MEMORY +
18539                SC_PORT(sc) * (main_mem_size * 4);
18540        main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18541        main_mem_width = 8;
18542
18543        val = REG_RD(sc, main_mem_prty_clr);
18544        if (val) {
18545            BLOGD(sc, DBG_LOAD,
18546                  "Parity errors in HC block during function init (0x%x)!\n",
18547                  val);
18548        }
18549
18550        /* Clear "false" parity errors in MSI-X table */
18551        for (i = main_mem_base;
18552             i < main_mem_base + main_mem_size * 4;
18553             i += main_mem_width) {
18554            bxe_read_dmae(sc, i, main_mem_width / 4);
18555            bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18556                           i, main_mem_width / 4);
18557        }
18558        /* Clear HC parity attention */
18559        REG_RD(sc, main_mem_prty_clr);
18560    }
18561
18562#if 1
18563    /* Enable STORMs SP logging */
18564    REG_WR8(sc, BAR_USTRORM_INTMEM +
18565           USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18566    REG_WR8(sc, BAR_TSTRORM_INTMEM +
18567           TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18568    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18569           CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18570    REG_WR8(sc, BAR_XSTRORM_INTMEM +
18571           XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18572#endif
18573
18574    elink_phy_probe(&sc->link_params);
18575
18576    return (0);
18577}
18578
18579static void
18580bxe_link_reset(struct bxe_softc *sc)
18581{
18582    if (!BXE_NOMCP(sc)) {
18583        BXE_PHY_LOCK(sc);
18584        elink_lfa_reset(&sc->link_params, &sc->link_vars);
18585        BXE_PHY_UNLOCK(sc);
18586    } else {
18587        if (!CHIP_REV_IS_SLOW(sc)) {
18588            BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18589        }
18590    }
18591}
18592
18593static void
18594bxe_reset_port(struct bxe_softc *sc)
18595{
18596    int port = SC_PORT(sc);
18597    uint32_t val;
18598
18599    /* reset physical Link */
18600    bxe_link_reset(sc);
18601
18602    REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18603
18604    /* Do not rcv packets to BRB */
18605    REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18606    /* Do not direct rcv packets that are not for MCP to the BRB */
18607    REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18608               NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18609
18610    /* Configure AEU */
18611    REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18612
18613    DELAY(100000);
18614
18615    /* Check for BRB port occupancy */
18616    val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18617    if (val) {
18618        BLOGD(sc, DBG_LOAD,
18619              "BRB1 is not empty, %d blocks are occupied\n", val);
18620    }
18621
18622    /* TODO: Close Doorbell port? */
18623}
18624
18625static void
18626bxe_ilt_wr(struct bxe_softc *sc,
18627           uint32_t         index,
18628           bus_addr_t       addr)
18629{
18630    int reg;
18631    uint32_t wb_write[2];
18632
18633    if (CHIP_IS_E1(sc)) {
18634        reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18635    } else {
18636        reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18637    }
18638
18639    wb_write[0] = ONCHIP_ADDR1(addr);
18640    wb_write[1] = ONCHIP_ADDR2(addr);
18641    REG_WR_DMAE(sc, reg, wb_write, 2);
18642}
18643
18644static void
18645bxe_clear_func_ilt(struct bxe_softc *sc,
18646                   uint32_t         func)
18647{
18648    uint32_t i, base = FUNC_ILT_BASE(func);
18649    for (i = base; i < base + ILT_PER_FUNC; i++) {
18650        bxe_ilt_wr(sc, i, 0);
18651    }
18652}
18653
18654static void
18655bxe_reset_func(struct bxe_softc *sc)
18656{
18657    struct bxe_fastpath *fp;
18658    int port = SC_PORT(sc);
18659    int func = SC_FUNC(sc);
18660    int i;
18661
18662    /* Disable the function in the FW */
18663    REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18664    REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18665    REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18666    REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18667
18668    /* FP SBs */
18669    FOR_EACH_ETH_QUEUE(sc, i) {
18670        fp = &sc->fp[i];
18671        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18672                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18673                SB_DISABLED);
18674    }
18675
18676#if 0
18677    if (CNIC_LOADED(sc)) {
18678        /* CNIC SB */
18679        REG_WR8(sc, BAR_CSTRORM_INTMEM +
18680                CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
18681                (bxe_cnic_fw_sb_id(sc)), SB_DISABLED);
18682    }
18683#endif
18684
18685    /* SP SB */
18686    REG_WR8(sc, BAR_CSTRORM_INTMEM +
18687            CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18688            SB_DISABLED);
18689
18690    for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18691        REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18692    }
18693
18694    /* Configure IGU */
18695    if (sc->devinfo.int_block == INT_BLOCK_HC) {
18696        REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18697        REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18698    } else {
18699        REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18700        REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18701    }
18702
18703    if (CNIC_LOADED(sc)) {
18704        /* Disable Timer scan */
18705        REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18706        /*
18707         * Wait for at least 10ms and up to 2 second for the timers
18708         * scan to complete
18709         */
18710        for (i = 0; i < 200; i++) {
18711            DELAY(10000);
18712            if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18713                break;
18714        }
18715    }
18716
18717    /* Clear ILT */
18718    bxe_clear_func_ilt(sc, func);
18719
18720    /*
18721     * Timers workaround bug for E2: if this is vnic-3,
18722     * we need to set the entire ilt range for this timers.
18723     */
18724    if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18725        struct ilt_client_info ilt_cli;
18726        /* use dummy TM client */
18727        memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18728        ilt_cli.start = 0;
18729        ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18730        ilt_cli.client_num = ILT_CLIENT_TM;
18731
18732        ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18733    }
18734
18735    /* this assumes that reset_port() called before reset_func()*/
18736    if (!CHIP_IS_E1x(sc)) {
18737        bxe_pf_disable(sc);
18738    }
18739
18740    sc->dmae_ready = 0;
18741}
18742
18743static int
18744bxe_gunzip_init(struct bxe_softc *sc)
18745{
18746    return (0);
18747}
18748
18749static void
18750bxe_gunzip_end(struct bxe_softc *sc)
18751{
18752    return;
18753}
18754
18755static int
18756bxe_init_firmware(struct bxe_softc *sc)
18757{
18758    if (CHIP_IS_E1(sc)) {
18759        ecore_init_e1_firmware(sc);
18760        sc->iro_array = e1_iro_arr;
18761    } else if (CHIP_IS_E1H(sc)) {
18762        ecore_init_e1h_firmware(sc);
18763        sc->iro_array = e1h_iro_arr;
18764    } else if (!CHIP_IS_E1x(sc)) {
18765        ecore_init_e2_firmware(sc);
18766        sc->iro_array = e2_iro_arr;
18767    } else {
18768        BLOGE(sc, "Unsupported chip revision\n");
18769        return (-1);
18770    }
18771
18772    return (0);
18773}
18774
18775static void
18776bxe_release_firmware(struct bxe_softc *sc)
18777{
18778    /* Do nothing */
18779    return;
18780}
18781
18782static int
18783ecore_gunzip(struct bxe_softc *sc,
18784             const uint8_t    *zbuf,
18785             int              len)
18786{
18787    /* XXX : Implement... */
18788    BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18789    return (FALSE);
18790}
18791
18792static void
18793ecore_reg_wr_ind(struct bxe_softc *sc,
18794                 uint32_t         addr,
18795                 uint32_t         val)
18796{
18797    bxe_reg_wr_ind(sc, addr, val);
18798}
18799
18800static void
18801ecore_write_dmae_phys_len(struct bxe_softc *sc,
18802                          bus_addr_t       phys_addr,
18803                          uint32_t         addr,
18804                          uint32_t         len)
18805{
18806    bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18807}
18808
18809void
18810ecore_storm_memset_struct(struct bxe_softc *sc,
18811                          uint32_t         addr,
18812                          size_t           size,
18813                          uint32_t         *data)
18814{
18815    uint8_t i;
18816    for (i = 0; i < size/4; i++) {
18817        REG_WR(sc, addr + (i * 4), data[i]);
18818    }
18819}
18820
18821