1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61#include <sys/module.h>
62
63#include <machine/bus.h>
64
65#include <net/if.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_types.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74#include <net80211/ieee80211_regdomain.h>
75#ifdef IEEE80211_SUPPORT_SUPERG
76#include <net80211/ieee80211_superg.h>
77#endif
78#ifdef IEEE80211_SUPPORT_TDMA
79#include <net80211/ieee80211_tdma.h>
80#endif
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94#include <dev/ath/if_ath_misc.h>
95#include <dev/ath/if_ath_tx.h>
96#include <dev/ath/if_ath_sysctl.h>
97#include <dev/ath/if_ath_keycache.h>
98#include <dev/ath/if_athdfs.h>
99
100#ifdef ATH_TX99_DIAG
101#include <dev/ath/ath_tx99/ath_tx99.h>
102#endif
103
104
105/*
106 * ATH_BCBUF determines the number of vap's that can transmit
107 * beacons and also (currently) the number of vap's that can
108 * have unique mac addresses/bssid.  When staggering beacons
109 * 4 is probably a good max as otherwise the beacons become
110 * very closely spaced and there is limited time for cab q traffic
111 * to go out.  You can burst beacons instead but that is not good
112 * for stations in power save and at some point you really want
113 * another radio (and channel).
114 *
115 * The limit on the number of mac addresses is tied to our use of
116 * the U/L bit and tracking addresses in a byte; it would be
117 * worthwhile to allow more for applications like proxy sta.
118 */
119CTASSERT(ATH_BCBUF <= 8);
120
121static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
123		    const uint8_t [IEEE80211_ADDR_LEN],
124		    const uint8_t [IEEE80211_ADDR_LEN]);
125static void	ath_vap_delete(struct ieee80211vap *);
126static void	ath_init(void *);
127static void	ath_stop_locked(struct ifnet *);
128static void	ath_stop(struct ifnet *);
129static void	ath_start(struct ifnet *);
130static int	ath_reset_vap(struct ieee80211vap *, u_long);
131static int	ath_media_change(struct ifnet *);
132static void	ath_watchdog(void *);
133static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134static void	ath_fatal_proc(void *, int);
135static void	ath_bmiss_vap(struct ieee80211vap *);
136static void	ath_bmiss_proc(void *, int);
137static void	ath_key_update_begin(struct ieee80211vap *);
138static void	ath_key_update_end(struct ieee80211vap *);
139static void	ath_update_mcast(struct ifnet *);
140static void	ath_update_promisc(struct ifnet *);
141static void	ath_mode_init(struct ath_softc *);
142static void	ath_setslottime(struct ath_softc *);
143static void	ath_updateslot(struct ifnet *);
144static int	ath_beaconq_setup(struct ath_hal *);
145static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
146static void	ath_beacon_update(struct ieee80211vap *, int item);
147static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
148static void	ath_beacon_proc(void *, int);
149static struct ath_buf *ath_beacon_generate(struct ath_softc *,
150			struct ieee80211vap *);
151static void	ath_bstuck_proc(void *, int);
152static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
153static void	ath_beacon_free(struct ath_softc *);
154static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
155static void	ath_descdma_cleanup(struct ath_softc *sc,
156			struct ath_descdma *, ath_bufhead *);
157static int	ath_desc_alloc(struct ath_softc *);
158static void	ath_desc_free(struct ath_softc *);
159static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
160			const uint8_t [IEEE80211_ADDR_LEN]);
161static void	ath_node_free(struct ieee80211_node *);
162static void	ath_node_getsignal(const struct ieee80211_node *,
163			int8_t *, int8_t *);
164static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
165static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
166			int subtype, int rssi, int nf);
167static void	ath_setdefantenna(struct ath_softc *, u_int);
168static void	ath_rx_proc(void *, int);
169static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171static int	ath_tx_setup(struct ath_softc *, int, int);
172static int	ath_wme_update(struct ieee80211com *);
173static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
174static void	ath_tx_cleanup(struct ath_softc *);
175static void	ath_tx_proc_q0(void *, int);
176static void	ath_tx_proc_q0123(void *, int);
177static void	ath_tx_proc(void *, int);
178static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
179static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180static void	ath_draintxq(struct ath_softc *);
181static void	ath_stoprecv(struct ath_softc *);
182static int	ath_startrecv(struct ath_softc *);
183static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184static void	ath_scan_start(struct ieee80211com *);
185static void	ath_scan_end(struct ieee80211com *);
186static void	ath_set_channel(struct ieee80211com *);
187static void	ath_calibrate(void *);
188static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	ath_setup_stationkey(struct ieee80211_node *);
190static void	ath_newassoc(struct ieee80211_node *, int);
191static int	ath_setregdomain(struct ieee80211com *,
192		    struct ieee80211_regdomain *, int,
193		    struct ieee80211_channel []);
194static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195		    struct ieee80211_channel []);
196static int	ath_getchannels(struct ath_softc *);
197static void	ath_led_event(struct ath_softc *, int);
198
199static int	ath_rate_setup(struct ath_softc *, u_int mode);
200static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202static void	ath_announce(struct ath_softc *);
203
204static void	ath_dfs_tasklet(void *, int);
205
206#ifdef IEEE80211_SUPPORT_TDMA
207static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
208		    u_int32_t bintval);
209static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
210		    const struct ieee80211_tdma_state *tdma);
211static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
212static void	ath_tdma_update(struct ieee80211_node *ni,
213		    const struct ieee80211_tdma_param *tdma, int);
214static void	ath_tdma_beacon_send(struct ath_softc *sc,
215		    struct ieee80211vap *vap);
216
217#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
218#define	TDMA_LPF_LEN		6
219#define	TDMA_DUMMY_MARKER	0x127
220#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
221#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
222#define	TDMA_LPF(x, y, len) \
223    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
224#define	TDMA_SAMPLE(x, y) do {					\
225	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
226} while (0)
227#define	TDMA_EP_RND(x,mul) \
228	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
229#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
230#endif /* IEEE80211_SUPPORT_TDMA */
231
232SYSCTL_DECL(_hw_ath);
233
234/* XXX validate sysctl values */
235static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
236SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
237	    0, "long chip calibration interval (secs)");
238static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
239SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
240	    0, "short chip calibration interval (msecs)");
241static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
242SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
243	    0, "reset chip calibration results (secs)");
244static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
245SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
246	    0, "ANI calibration (msecs)");
247
248static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
250	    0, "rx buffers allocated");
251TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
252static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
253SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
254	    0, "tx buffers allocated");
255TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
256
257static	int ath_bstuck_threshold = 4;		/* max missed beacons */
258SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
259	    0, "max missed beacon xmits before chip reset");
260
261static MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
262
263#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
264#define	HAL_MODE_HT40 \
265	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
266	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
267int
268ath_attach(u_int16_t devid, struct ath_softc *sc)
269{
270	struct ifnet *ifp;
271	struct ieee80211com *ic;
272	struct ath_hal *ah = NULL;
273	HAL_STATUS status;
274	int error = 0, i;
275	u_int wmodes;
276	uint8_t macaddr[IEEE80211_ADDR_LEN];
277
278	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
279
280	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
281	if (ifp == NULL) {
282		device_printf(sc->sc_dev, "can not if_alloc()\n");
283		error = ENOSPC;
284		goto bad;
285	}
286	ic = ifp->if_l2com;
287
288	/* set these up early for if_printf use */
289	if_initname(ifp, device_get_name(sc->sc_dev),
290		device_get_unit(sc->sc_dev));
291
292	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
293	if (ah == NULL) {
294		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
295			status);
296		error = ENXIO;
297		goto bad;
298	}
299	sc->sc_ah = ah;
300	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
301#ifdef	ATH_DEBUG
302	sc->sc_debug = ath_debug;
303#endif
304
305	/*
306	 * Check if the MAC has multi-rate retry support.
307	 * We do this by trying to setup a fake extended
308	 * descriptor.  MAC's that don't have support will
309	 * return false w/o doing anything.  MAC's that do
310	 * support it will return true w/o doing anything.
311	 */
312	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
313
314	/*
315	 * Check if the device has hardware counters for PHY
316	 * errors.  If so we need to enable the MIB interrupt
317	 * so we can act on stat triggers.
318	 */
319	if (ath_hal_hwphycounters(ah))
320		sc->sc_needmib = 1;
321
322	/*
323	 * Get the hardware key cache size.
324	 */
325	sc->sc_keymax = ath_hal_keycachesize(ah);
326	if (sc->sc_keymax > ATH_KEYMAX) {
327		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
328			ATH_KEYMAX, sc->sc_keymax);
329		sc->sc_keymax = ATH_KEYMAX;
330	}
331	/*
332	 * Reset the key cache since some parts do not
333	 * reset the contents on initial power up.
334	 */
335	for (i = 0; i < sc->sc_keymax; i++)
336		ath_hal_keyreset(ah, i);
337
338	/*
339	 * Collect the default channel list.
340	 */
341	error = ath_getchannels(sc);
342	if (error != 0)
343		goto bad;
344
345	/*
346	 * Setup rate tables for all potential media types.
347	 */
348	ath_rate_setup(sc, IEEE80211_MODE_11A);
349	ath_rate_setup(sc, IEEE80211_MODE_11B);
350	ath_rate_setup(sc, IEEE80211_MODE_11G);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
354	ath_rate_setup(sc, IEEE80211_MODE_11NA);
355	ath_rate_setup(sc, IEEE80211_MODE_11NG);
356	ath_rate_setup(sc, IEEE80211_MODE_HALF);
357	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
358
359	/* NB: setup here so ath_rate_update is happy */
360	ath_setcurmode(sc, IEEE80211_MODE_11A);
361
362	/*
363	 * Allocate tx+rx descriptors and populate the lists.
364	 */
365	error = ath_desc_alloc(sc);
366	if (error != 0) {
367		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
368		goto bad;
369	}
370	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
371	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
372
373	ATH_TXBUF_LOCK_INIT(sc);
374
375	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
376		taskqueue_thread_enqueue, &sc->sc_tq);
377	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
378		"%s taskq", ifp->if_xname);
379
380	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
381	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
382	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
383
384	/*
385	 * Allocate hardware transmit queues: one queue for
386	 * beacon frames and one data queue for each QoS
387	 * priority.  Note that the hal handles resetting
388	 * these queues at the needed time.
389	 *
390	 * XXX PS-Poll
391	 */
392	sc->sc_bhalq = ath_beaconq_setup(ah);
393	if (sc->sc_bhalq == (u_int) -1) {
394		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
395		error = EIO;
396		goto bad2;
397	}
398	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
399	if (sc->sc_cabq == NULL) {
400		if_printf(ifp, "unable to setup CAB xmit queue!\n");
401		error = EIO;
402		goto bad2;
403	}
404	/* NB: insure BK queue is the lowest priority h/w queue */
405	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
406		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
407			ieee80211_wme_acnames[WME_AC_BK]);
408		error = EIO;
409		goto bad2;
410	}
411	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
412	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
413	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
414		/*
415		 * Not enough hardware tx queues to properly do WME;
416		 * just punt and assign them all to the same h/w queue.
417		 * We could do a better job of this if, for example,
418		 * we allocate queues when we switch from station to
419		 * AP mode.
420		 */
421		if (sc->sc_ac2q[WME_AC_VI] != NULL)
422			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
423		if (sc->sc_ac2q[WME_AC_BE] != NULL)
424			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
425		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
426		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
427		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
428	}
429
430	/*
431	 * Special case certain configurations.  Note the
432	 * CAB queue is handled by these specially so don't
433	 * include them when checking the txq setup mask.
434	 */
435	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
436	case 0x01:
437		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
438		break;
439	case 0x0f:
440		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
441		break;
442	default:
443		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
444		break;
445	}
446
447	/*
448	 * Setup rate control.  Some rate control modules
449	 * call back to change the anntena state so expose
450	 * the necessary entry points.
451	 * XXX maybe belongs in struct ath_ratectrl?
452	 */
453	sc->sc_setdefantenna = ath_setdefantenna;
454	sc->sc_rc = ath_rate_attach(sc);
455	if (sc->sc_rc == NULL) {
456		error = EIO;
457		goto bad2;
458	}
459
460	/* Attach DFS module */
461	if (! ath_dfs_attach(sc)) {
462		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
463		error = EIO;
464		goto bad2;
465	}
466
467	/* Start DFS processing tasklet */
468	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
469
470	sc->sc_blinking = 0;
471	sc->sc_ledstate = 1;
472	sc->sc_ledon = 0;			/* low true */
473	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
474	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
475	/*
476	 * Auto-enable soft led processing for IBM cards and for
477	 * 5211 minipci cards.  Users can also manually enable/disable
478	 * support with a sysctl.
479	 */
480	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
481	if (sc->sc_softled) {
482		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
483		    HAL_GPIO_MUX_MAC_NETWORK_LED);
484		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
485	}
486
487	ifp->if_softc = sc;
488	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
489	ifp->if_start = ath_start;
490	ifp->if_ioctl = ath_ioctl;
491	ifp->if_init = ath_init;
492	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
493	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
494	IFQ_SET_READY(&ifp->if_snd);
495
496	ic->ic_ifp = ifp;
497	/* XXX not right but it's not used anywhere important */
498	ic->ic_phytype = IEEE80211_T_OFDM;
499	ic->ic_opmode = IEEE80211_M_STA;
500	ic->ic_caps =
501		  IEEE80211_C_STA		/* station mode */
502		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
503		| IEEE80211_C_HOSTAP		/* hostap mode */
504		| IEEE80211_C_MONITOR		/* monitor mode */
505		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
506		| IEEE80211_C_WDS		/* 4-address traffic works */
507		| IEEE80211_C_MBSS		/* mesh point link mode */
508		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
509		| IEEE80211_C_SHSLOT		/* short slot time supported */
510		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
511		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
512		| IEEE80211_C_TXFRAG		/* handle tx frags */
513#ifdef	ATH_ENABLE_DFS
514		| IEEE80211_C_DFS		/* Enable DFS radar detection */
515#endif
516		;
517	/*
518	 * Query the hal to figure out h/w crypto support.
519	 */
520	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
522	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
524	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
526	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
528	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
530		/*
531		 * Check if h/w does the MIC and/or whether the
532		 * separate key cache entries are required to
533		 * handle both tx+rx MIC keys.
534		 */
535		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
537		/*
538		 * If the h/w supports storing tx+rx MIC keys
539		 * in one cache slot automatically enable use.
540		 */
541		if (ath_hal_hastkipsplit(ah) ||
542		    !ath_hal_settkipsplit(ah, AH_FALSE))
543			sc->sc_splitmic = 1;
544		/*
545		 * If the h/w can do TKIP MIC together with WME then
546		 * we use it; otherwise we force the MIC to be done
547		 * in software by the net80211 layer.
548		 */
549		if (ath_hal_haswmetkipmic(ah))
550			sc->sc_wmetkipmic = 1;
551	}
552	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
553	/*
554	 * Check for multicast key search support.
555	 */
556	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
557	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
558		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
559	}
560	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561	/*
562	 * Mark key cache slots associated with global keys
563	 * as in use.  If we knew TKIP was not to be used we
564	 * could leave the +32, +64, and +32+64 slots free.
565	 */
566	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567		setbit(sc->sc_keymap, i);
568		setbit(sc->sc_keymap, i+64);
569		if (sc->sc_splitmic) {
570			setbit(sc->sc_keymap, i+32);
571			setbit(sc->sc_keymap, i+32+64);
572		}
573	}
574	/*
575	 * TPC support can be done either with a global cap or
576	 * per-packet support.  The latter is not available on
577	 * all parts.  We're a bit pedantic here as all parts
578	 * support a global cap.
579	 */
580	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581		ic->ic_caps |= IEEE80211_C_TXPMGT;
582
583	/*
584	 * Mark WME capability only if we have sufficient
585	 * hardware queues to do proper priority scheduling.
586	 */
587	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588		ic->ic_caps |= IEEE80211_C_WME;
589	/*
590	 * Check for misc other capabilities.
591	 */
592	if (ath_hal_hasbursting(ah))
593		ic->ic_caps |= IEEE80211_C_BURST;
594	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
595	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
596	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
597	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
598	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
599	if (ath_hal_hasfastframes(ah))
600		ic->ic_caps |= IEEE80211_C_FF;
601	wmodes = ath_hal_getwirelessmodes(ah);
602	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
603		ic->ic_caps |= IEEE80211_C_TURBOP;
604#ifdef IEEE80211_SUPPORT_TDMA
605	if (ath_hal_macversion(ah) > 0x78) {
606		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
607		ic->ic_tdma_update = ath_tdma_update;
608	}
609#endif
610
611	/*
612	 * The if_ath 11n support is completely not ready for normal use.
613	 * Enabling this option will likely break everything and everything.
614	 * Don't think of doing that unless you know what you're doing.
615	 */
616
617#ifdef	ATH_ENABLE_11N
618	/*
619	 * Query HT capabilities
620	 */
621	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
622	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
623		int rxs, txs;
624
625		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
626		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
627			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
628			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
629			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
630			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
631			;
632
633		/*
634		 * Enable short-GI for HT20 only if the hardware
635		 * advertises support.
636		 * Notably, anything earlier than the AR9287 doesn't.
637		 */
638		if ((ath_hal_getcapability(ah,
639		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
640		    (wmodes & HAL_MODE_HT20)) {
641			device_printf(sc->sc_dev,
642			    "[HT] enabling short-GI in 20MHz mode\n");
643			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
644		}
645
646		if (wmodes & HAL_MODE_HT40)
647			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
648			    |  IEEE80211_HTCAP_SHORTGI40;
649
650		/*
651		 * rx/tx stream is not currently used anywhere; it needs to be taken
652		 * into account when negotiating which MCS rates it'll receive and
653		 * what MCS rates are available for TX.
654		 */
655		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
656		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
657
658		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
659		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
660
661		ic->ic_txstream = txs;
662		ic->ic_rxstream = rxs;
663
664		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
665	}
666#endif
667
668	/*
669	 * Indicate we need the 802.11 header padded to a
670	 * 32-bit boundary for 4-address and QoS frames.
671	 */
672	ic->ic_flags |= IEEE80211_F_DATAPAD;
673
674	/*
675	 * Query the hal about antenna support.
676	 */
677	sc->sc_defant = ath_hal_getdefantenna(ah);
678
679	/*
680	 * Not all chips have the VEOL support we want to
681	 * use with IBSS beacons; check here for it.
682	 */
683	sc->sc_hasveol = ath_hal_hasveol(ah);
684
685	/* get mac address from hardware */
686	ath_hal_getmac(ah, macaddr);
687	if (sc->sc_hasbmask)
688		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
689
690	/* NB: used to size node table key mapping array */
691	ic->ic_max_keyix = sc->sc_keymax;
692	/* call MI attach routine. */
693	ieee80211_ifattach(ic, macaddr);
694	ic->ic_setregdomain = ath_setregdomain;
695	ic->ic_getradiocaps = ath_getradiocaps;
696	sc->sc_opmode = HAL_M_STA;
697
698	/* override default methods */
699	ic->ic_newassoc = ath_newassoc;
700	ic->ic_updateslot = ath_updateslot;
701	ic->ic_wme.wme_update = ath_wme_update;
702	ic->ic_vap_create = ath_vap_create;
703	ic->ic_vap_delete = ath_vap_delete;
704	ic->ic_raw_xmit = ath_raw_xmit;
705	ic->ic_update_mcast = ath_update_mcast;
706	ic->ic_update_promisc = ath_update_promisc;
707	ic->ic_node_alloc = ath_node_alloc;
708	sc->sc_node_free = ic->ic_node_free;
709	ic->ic_node_free = ath_node_free;
710	ic->ic_node_getsignal = ath_node_getsignal;
711	ic->ic_scan_start = ath_scan_start;
712	ic->ic_scan_end = ath_scan_end;
713	ic->ic_set_channel = ath_set_channel;
714
715	ieee80211_radiotap_attach(ic,
716	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
717		ATH_TX_RADIOTAP_PRESENT,
718	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
719		ATH_RX_RADIOTAP_PRESENT);
720
721	/*
722	 * Setup dynamic sysctl's now that country code and
723	 * regdomain are available from the hal.
724	 */
725	ath_sysctlattach(sc);
726	ath_sysctl_stats_attach(sc);
727	ath_sysctl_hal_attach(sc);
728
729	if (bootverbose)
730		ieee80211_announce(ic);
731	ath_announce(sc);
732	return 0;
733bad2:
734	ath_tx_cleanup(sc);
735	ath_desc_free(sc);
736bad:
737	if (ah)
738		ath_hal_detach(ah);
739	if (ifp != NULL)
740		if_free(ifp);
741	sc->sc_invalid = 1;
742	return error;
743}
744
745int
746ath_detach(struct ath_softc *sc)
747{
748	struct ifnet *ifp = sc->sc_ifp;
749
750	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
751		__func__, ifp->if_flags);
752
753	/*
754	 * NB: the order of these is important:
755	 * o stop the chip so no more interrupts will fire
756	 * o call the 802.11 layer before detaching the hal to
757	 *   insure callbacks into the driver to delete global
758	 *   key cache entries can be handled
759	 * o free the taskqueue which drains any pending tasks
760	 * o reclaim the tx queue data structures after calling
761	 *   the 802.11 layer as we'll get called back to reclaim
762	 *   node state and potentially want to use them
763	 * o to cleanup the tx queues the hal is called, so detach
764	 *   it last
765	 * Other than that, it's straightforward...
766	 */
767	ath_stop(ifp);
768	ieee80211_ifdetach(ifp->if_l2com);
769	taskqueue_free(sc->sc_tq);
770#ifdef ATH_TX99_DIAG
771	if (sc->sc_tx99 != NULL)
772		sc->sc_tx99->detach(sc->sc_tx99);
773#endif
774	ath_rate_detach(sc->sc_rc);
775
776	ath_dfs_detach(sc);
777	ath_desc_free(sc);
778	ath_tx_cleanup(sc);
779	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
780	if_free(ifp);
781
782	return 0;
783}
784
785/*
786 * MAC address handling for multiple BSS on the same radio.
787 * The first vap uses the MAC address from the EEPROM.  For
788 * subsequent vap's we set the U/L bit (bit 1) in the MAC
789 * address and use the next six bits as an index.
790 */
791static void
792assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
793{
794	int i;
795
796	if (clone && sc->sc_hasbmask) {
797		/* NB: we only do this if h/w supports multiple bssid */
798		for (i = 0; i < 8; i++)
799			if ((sc->sc_bssidmask & (1<<i)) == 0)
800				break;
801		if (i != 0)
802			mac[0] |= (i << 2)|0x2;
803	} else
804		i = 0;
805	sc->sc_bssidmask |= 1<<i;
806	sc->sc_hwbssidmask[0] &= ~mac[0];
807	if (i == 0)
808		sc->sc_nbssid0++;
809}
810
811static void
812reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
813{
814	int i = mac[0] >> 2;
815	uint8_t mask;
816
817	if (i != 0 || --sc->sc_nbssid0 == 0) {
818		sc->sc_bssidmask &= ~(1<<i);
819		/* recalculate bssid mask from remaining addresses */
820		mask = 0xff;
821		for (i = 1; i < 8; i++)
822			if (sc->sc_bssidmask & (1<<i))
823				mask &= ~((i<<2)|0x2);
824		sc->sc_hwbssidmask[0] |= mask;
825	}
826}
827
828/*
829 * Assign a beacon xmit slot.  We try to space out
830 * assignments so when beacons are staggered the
831 * traffic coming out of the cab q has maximal time
832 * to go out before the next beacon is scheduled.
833 */
834static int
835assign_bslot(struct ath_softc *sc)
836{
837	u_int slot, free;
838
839	free = 0;
840	for (slot = 0; slot < ATH_BCBUF; slot++)
841		if (sc->sc_bslot[slot] == NULL) {
842			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
843			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
844				return slot;
845			free = slot;
846			/* NB: keep looking for a double slot */
847		}
848	return free;
849}
850
851static struct ieee80211vap *
852ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
853    enum ieee80211_opmode opmode, int flags,
854    const uint8_t bssid[IEEE80211_ADDR_LEN],
855    const uint8_t mac0[IEEE80211_ADDR_LEN])
856{
857	struct ath_softc *sc = ic->ic_ifp->if_softc;
858	struct ath_vap *avp;
859	struct ieee80211vap *vap;
860	uint8_t mac[IEEE80211_ADDR_LEN];
861	int needbeacon, error;
862	enum ieee80211_opmode ic_opmode;
863
864	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
865	    M_80211_VAP, M_WAITOK | M_ZERO);
866	needbeacon = 0;
867	IEEE80211_ADDR_COPY(mac, mac0);
868
869	ATH_LOCK(sc);
870	ic_opmode = opmode;		/* default to opmode of new vap */
871	switch (opmode) {
872	case IEEE80211_M_STA:
873		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
874			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
875			goto bad;
876		}
877		if (sc->sc_nvaps) {
878			/*
879			 * With multiple vaps we must fall back
880			 * to s/w beacon miss handling.
881			 */
882			flags |= IEEE80211_CLONE_NOBEACONS;
883		}
884		if (flags & IEEE80211_CLONE_NOBEACONS) {
885			/*
886			 * Station mode w/o beacons are implemented w/ AP mode.
887			 */
888			ic_opmode = IEEE80211_M_HOSTAP;
889		}
890		break;
891	case IEEE80211_M_IBSS:
892		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
893			device_printf(sc->sc_dev,
894			    "only 1 ibss vap supported\n");
895			goto bad;
896		}
897		needbeacon = 1;
898		break;
899	case IEEE80211_M_AHDEMO:
900#ifdef IEEE80211_SUPPORT_TDMA
901		if (flags & IEEE80211_CLONE_TDMA) {
902			if (sc->sc_nvaps != 0) {
903				device_printf(sc->sc_dev,
904				    "only 1 tdma vap supported\n");
905				goto bad;
906			}
907			needbeacon = 1;
908			flags |= IEEE80211_CLONE_NOBEACONS;
909		}
910		/* fall thru... */
911#endif
912	case IEEE80211_M_MONITOR:
913		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
914			/*
915			 * Adopt existing mode.  Adding a monitor or ahdemo
916			 * vap to an existing configuration is of dubious
917			 * value but should be ok.
918			 */
919			/* XXX not right for monitor mode */
920			ic_opmode = ic->ic_opmode;
921		}
922		break;
923	case IEEE80211_M_HOSTAP:
924	case IEEE80211_M_MBSS:
925		needbeacon = 1;
926		break;
927	case IEEE80211_M_WDS:
928		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
929			device_printf(sc->sc_dev,
930			    "wds not supported in sta mode\n");
931			goto bad;
932		}
933		/*
934		 * Silently remove any request for a unique
935		 * bssid; WDS vap's always share the local
936		 * mac address.
937		 */
938		flags &= ~IEEE80211_CLONE_BSSID;
939		if (sc->sc_nvaps == 0)
940			ic_opmode = IEEE80211_M_HOSTAP;
941		else
942			ic_opmode = ic->ic_opmode;
943		break;
944	default:
945		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
946		goto bad;
947	}
948	/*
949	 * Check that a beacon buffer is available; the code below assumes it.
950	 */
951	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
952		device_printf(sc->sc_dev, "no beacon buffer available\n");
953		goto bad;
954	}
955
956	/* STA, AHDEMO? */
957	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
958		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
959		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
960	}
961
962	vap = &avp->av_vap;
963	/* XXX can't hold mutex across if_alloc */
964	ATH_UNLOCK(sc);
965	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
966	    bssid, mac);
967	ATH_LOCK(sc);
968	if (error != 0) {
969		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
970		    __func__, error);
971		goto bad2;
972	}
973
974	/* h/w crypto support */
975	vap->iv_key_alloc = ath_key_alloc;
976	vap->iv_key_delete = ath_key_delete;
977	vap->iv_key_set = ath_key_set;
978	vap->iv_key_update_begin = ath_key_update_begin;
979	vap->iv_key_update_end = ath_key_update_end;
980
981	/* override various methods */
982	avp->av_recv_mgmt = vap->iv_recv_mgmt;
983	vap->iv_recv_mgmt = ath_recv_mgmt;
984	vap->iv_reset = ath_reset_vap;
985	vap->iv_update_beacon = ath_beacon_update;
986	avp->av_newstate = vap->iv_newstate;
987	vap->iv_newstate = ath_newstate;
988	avp->av_bmiss = vap->iv_bmiss;
989	vap->iv_bmiss = ath_bmiss_vap;
990
991	/* Set default parameters */
992
993	/*
994	 * Anything earlier than some AR9300 series MACs don't
995	 * support a smaller MPDU density.
996	 */
997	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
998	/*
999	 * All NICs can handle the maximum size, however
1000	 * AR5416 based MACs can only TX aggregates w/ RTS
1001	 * protection when the total aggregate size is <= 8k.
1002	 * However, for now that's enforced by the TX path.
1003	 */
1004	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1005
1006	avp->av_bslot = -1;
1007	if (needbeacon) {
1008		/*
1009		 * Allocate beacon state and setup the q for buffered
1010		 * multicast frames.  We know a beacon buffer is
1011		 * available because we checked above.
1012		 */
1013		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1014		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1015		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1016			/*
1017			 * Assign the vap to a beacon xmit slot.  As above
1018			 * this cannot fail to find a free one.
1019			 */
1020			avp->av_bslot = assign_bslot(sc);
1021			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1022			    ("beacon slot %u not empty", avp->av_bslot));
1023			sc->sc_bslot[avp->av_bslot] = vap;
1024			sc->sc_nbcnvaps++;
1025		}
1026		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1027			/*
1028			 * Multple vaps are to transmit beacons and we
1029			 * have h/w support for TSF adjusting; enable
1030			 * use of staggered beacons.
1031			 */
1032			sc->sc_stagbeacons = 1;
1033		}
1034		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1035	}
1036
1037	ic->ic_opmode = ic_opmode;
1038	if (opmode != IEEE80211_M_WDS) {
1039		sc->sc_nvaps++;
1040		if (opmode == IEEE80211_M_STA)
1041			sc->sc_nstavaps++;
1042		if (opmode == IEEE80211_M_MBSS)
1043			sc->sc_nmeshvaps++;
1044	}
1045	switch (ic_opmode) {
1046	case IEEE80211_M_IBSS:
1047		sc->sc_opmode = HAL_M_IBSS;
1048		break;
1049	case IEEE80211_M_STA:
1050		sc->sc_opmode = HAL_M_STA;
1051		break;
1052	case IEEE80211_M_AHDEMO:
1053#ifdef IEEE80211_SUPPORT_TDMA
1054		if (vap->iv_caps & IEEE80211_C_TDMA) {
1055			sc->sc_tdma = 1;
1056			/* NB: disable tsf adjust */
1057			sc->sc_stagbeacons = 0;
1058		}
1059		/*
1060		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1061		 * just ap mode.
1062		 */
1063		/* fall thru... */
1064#endif
1065	case IEEE80211_M_HOSTAP:
1066	case IEEE80211_M_MBSS:
1067		sc->sc_opmode = HAL_M_HOSTAP;
1068		break;
1069	case IEEE80211_M_MONITOR:
1070		sc->sc_opmode = HAL_M_MONITOR;
1071		break;
1072	default:
1073		/* XXX should not happen */
1074		break;
1075	}
1076	if (sc->sc_hastsfadd) {
1077		/*
1078		 * Configure whether or not TSF adjust should be done.
1079		 */
1080		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1081	}
1082	if (flags & IEEE80211_CLONE_NOBEACONS) {
1083		/*
1084		 * Enable s/w beacon miss handling.
1085		 */
1086		sc->sc_swbmiss = 1;
1087	}
1088	ATH_UNLOCK(sc);
1089
1090	/* complete setup */
1091	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1092	return vap;
1093bad2:
1094	reclaim_address(sc, mac);
1095	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1096bad:
1097	free(avp, M_80211_VAP);
1098	ATH_UNLOCK(sc);
1099	return NULL;
1100}
1101
1102static void
1103ath_vap_delete(struct ieee80211vap *vap)
1104{
1105	struct ieee80211com *ic = vap->iv_ic;
1106	struct ifnet *ifp = ic->ic_ifp;
1107	struct ath_softc *sc = ifp->if_softc;
1108	struct ath_hal *ah = sc->sc_ah;
1109	struct ath_vap *avp = ATH_VAP(vap);
1110
1111	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1112		/*
1113		 * Quiesce the hardware while we remove the vap.  In
1114		 * particular we need to reclaim all references to
1115		 * the vap state by any frames pending on the tx queues.
1116		 */
1117		ath_hal_intrset(ah, 0);		/* disable interrupts */
1118		ath_draintxq(sc);		/* stop xmit side */
1119		ath_stoprecv(sc);		/* stop recv side */
1120	}
1121
1122	ieee80211_vap_detach(vap);
1123	ATH_LOCK(sc);
1124	/*
1125	 * Reclaim beacon state.  Note this must be done before
1126	 * the vap instance is reclaimed as we may have a reference
1127	 * to it in the buffer for the beacon frame.
1128	 */
1129	if (avp->av_bcbuf != NULL) {
1130		if (avp->av_bslot != -1) {
1131			sc->sc_bslot[avp->av_bslot] = NULL;
1132			sc->sc_nbcnvaps--;
1133		}
1134		ath_beacon_return(sc, avp->av_bcbuf);
1135		avp->av_bcbuf = NULL;
1136		if (sc->sc_nbcnvaps == 0) {
1137			sc->sc_stagbeacons = 0;
1138			if (sc->sc_hastsfadd)
1139				ath_hal_settsfadjust(sc->sc_ah, 0);
1140		}
1141		/*
1142		 * Reclaim any pending mcast frames for the vap.
1143		 */
1144		ath_tx_draintxq(sc, &avp->av_mcastq);
1145		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1146	}
1147	/*
1148	 * Update bookkeeping.
1149	 */
1150	if (vap->iv_opmode == IEEE80211_M_STA) {
1151		sc->sc_nstavaps--;
1152		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1153			sc->sc_swbmiss = 0;
1154	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1155	    vap->iv_opmode == IEEE80211_M_MBSS) {
1156		reclaim_address(sc, vap->iv_myaddr);
1157		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1158		if (vap->iv_opmode == IEEE80211_M_MBSS)
1159			sc->sc_nmeshvaps--;
1160	}
1161	if (vap->iv_opmode != IEEE80211_M_WDS)
1162		sc->sc_nvaps--;
1163#ifdef IEEE80211_SUPPORT_TDMA
1164	/* TDMA operation ceases when the last vap is destroyed */
1165	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1166		sc->sc_tdma = 0;
1167		sc->sc_swbmiss = 0;
1168	}
1169#endif
1170	ATH_UNLOCK(sc);
1171	free(avp, M_80211_VAP);
1172
1173	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1174		/*
1175		 * Restart rx+tx machines if still running (RUNNING will
1176		 * be reset if we just destroyed the last vap).
1177		 */
1178		if (ath_startrecv(sc) != 0)
1179			if_printf(ifp, "%s: unable to restart recv logic\n",
1180			    __func__);
1181		if (sc->sc_beacons) {		/* restart beacons */
1182#ifdef IEEE80211_SUPPORT_TDMA
1183			if (sc->sc_tdma)
1184				ath_tdma_config(sc, NULL);
1185			else
1186#endif
1187				ath_beacon_config(sc, NULL);
1188		}
1189		ath_hal_intrset(ah, sc->sc_imask);
1190	}
1191}
1192
1193void
1194ath_suspend(struct ath_softc *sc)
1195{
1196	struct ifnet *ifp = sc->sc_ifp;
1197	struct ieee80211com *ic = ifp->if_l2com;
1198
1199	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1200		__func__, ifp->if_flags);
1201
1202	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1203	if (ic->ic_opmode == IEEE80211_M_STA)
1204		ath_stop(ifp);
1205	else
1206		ieee80211_suspend_all(ic);
1207	/*
1208	 * NB: don't worry about putting the chip in low power
1209	 * mode; pci will power off our socket on suspend and
1210	 * CardBus detaches the device.
1211	 */
1212}
1213
1214/*
1215 * Reset the key cache since some parts do not reset the
1216 * contents on resume.  First we clear all entries, then
1217 * re-load keys that the 802.11 layer assumes are setup
1218 * in h/w.
1219 */
1220static void
1221ath_reset_keycache(struct ath_softc *sc)
1222{
1223	struct ifnet *ifp = sc->sc_ifp;
1224	struct ieee80211com *ic = ifp->if_l2com;
1225	struct ath_hal *ah = sc->sc_ah;
1226	int i;
1227
1228	for (i = 0; i < sc->sc_keymax; i++)
1229		ath_hal_keyreset(ah, i);
1230	ieee80211_crypto_reload_keys(ic);
1231}
1232
1233void
1234ath_resume(struct ath_softc *sc)
1235{
1236	struct ifnet *ifp = sc->sc_ifp;
1237	struct ieee80211com *ic = ifp->if_l2com;
1238	struct ath_hal *ah = sc->sc_ah;
1239	HAL_STATUS status;
1240
1241	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1242		__func__, ifp->if_flags);
1243
1244	/*
1245	 * Must reset the chip before we reload the
1246	 * keycache as we were powered down on suspend.
1247	 */
1248	ath_hal_reset(ah, sc->sc_opmode,
1249	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1250	    AH_FALSE, &status);
1251	ath_reset_keycache(sc);
1252
1253	/* Let DFS at it in case it's a DFS channel */
1254	ath_dfs_radar_enable(sc, ic->ic_curchan);
1255
1256	if (sc->sc_resume_up) {
1257		if (ic->ic_opmode == IEEE80211_M_STA) {
1258			ath_init(sc);
1259			/*
1260			 * Program the beacon registers using the last rx'd
1261			 * beacon frame and enable sync on the next beacon
1262			 * we see.  This should handle the case where we
1263			 * wakeup and find the same AP and also the case where
1264			 * we wakeup and need to roam.  For the latter we
1265			 * should get bmiss events that trigger a roam.
1266			 */
1267			ath_beacon_config(sc, NULL);
1268			sc->sc_syncbeacon = 1;
1269		} else
1270			ieee80211_resume_all(ic);
1271	}
1272	if (sc->sc_softled) {
1273		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1274		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1275		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1276	}
1277
1278	/* XXX beacons ? */
1279}
1280
1281void
1282ath_shutdown(struct ath_softc *sc)
1283{
1284	struct ifnet *ifp = sc->sc_ifp;
1285
1286	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1287		__func__, ifp->if_flags);
1288
1289	ath_stop(ifp);
1290	/* NB: no point powering down chip as we're about to reboot */
1291}
1292
1293/*
1294 * Interrupt handler.  Most of the actual processing is deferred.
1295 */
1296void
1297ath_intr(void *arg)
1298{
1299	struct ath_softc *sc = arg;
1300	struct ifnet *ifp = sc->sc_ifp;
1301	struct ath_hal *ah = sc->sc_ah;
1302	HAL_INT status = 0;
1303
1304	if (sc->sc_invalid) {
1305		/*
1306		 * The hardware is not ready/present, don't touch anything.
1307		 * Note this can happen early on if the IRQ is shared.
1308		 */
1309		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1310		return;
1311	}
1312	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1313		return;
1314	if ((ifp->if_flags & IFF_UP) == 0 ||
1315	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1316		HAL_INT status;
1317
1318		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1319			__func__, ifp->if_flags);
1320		ath_hal_getisr(ah, &status);	/* clear ISR */
1321		ath_hal_intrset(ah, 0);		/* disable further intr's */
1322		return;
1323	}
1324	/*
1325	 * Figure out the reason(s) for the interrupt.  Note
1326	 * that the hal returns a pseudo-ISR that may include
1327	 * bits we haven't explicitly enabled so we mask the
1328	 * value to insure we only process bits we requested.
1329	 */
1330	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1331	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1332	status &= sc->sc_imask;			/* discard unasked for bits */
1333
1334	/* Short-circuit un-handled interrupts */
1335	if (status == 0x0)
1336		return;
1337
1338	if (status & HAL_INT_FATAL) {
1339		sc->sc_stats.ast_hardware++;
1340		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1341		ath_fatal_proc(sc, 0);
1342	} else {
1343		if (status & HAL_INT_SWBA) {
1344			/*
1345			 * Software beacon alert--time to send a beacon.
1346			 * Handle beacon transmission directly; deferring
1347			 * this is too slow to meet timing constraints
1348			 * under load.
1349			 */
1350#ifdef IEEE80211_SUPPORT_TDMA
1351			if (sc->sc_tdma) {
1352				if (sc->sc_tdmaswba == 0) {
1353					struct ieee80211com *ic = ifp->if_l2com;
1354					struct ieee80211vap *vap =
1355					    TAILQ_FIRST(&ic->ic_vaps);
1356					ath_tdma_beacon_send(sc, vap);
1357					sc->sc_tdmaswba =
1358					    vap->iv_tdma->tdma_bintval;
1359				} else
1360					sc->sc_tdmaswba--;
1361			} else
1362#endif
1363			{
1364				ath_beacon_proc(sc, 0);
1365#ifdef IEEE80211_SUPPORT_SUPERG
1366				/*
1367				 * Schedule the rx taskq in case there's no
1368				 * traffic so any frames held on the staging
1369				 * queue are aged and potentially flushed.
1370				 */
1371				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1372#endif
1373			}
1374		}
1375		if (status & HAL_INT_RXEOL) {
1376			int imask = sc->sc_imask;
1377			/*
1378			 * NB: the hardware should re-read the link when
1379			 *     RXE bit is written, but it doesn't work at
1380			 *     least on older hardware revs.
1381			 */
1382			sc->sc_stats.ast_rxeol++;
1383			/*
1384			 * Disable RXEOL/RXORN - prevent an interrupt
1385			 * storm until the PCU logic can be reset.
1386			 * In case the interface is reset some other
1387			 * way before "sc_kickpcu" is called, don't
1388			 * modify sc_imask - that way if it is reset
1389			 * by a call to ath_reset() somehow, the
1390			 * interrupt mask will be correctly reprogrammed.
1391			 */
1392			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1393			ath_hal_intrset(ah, imask);
1394			/*
1395			 * Enqueue an RX proc, to handled whatever
1396			 * is in the RX queue.
1397			 * This will then kick the PCU.
1398			 */
1399			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1400			sc->sc_rxlink = NULL;
1401			sc->sc_kickpcu = 1;
1402		}
1403		if (status & HAL_INT_TXURN) {
1404			sc->sc_stats.ast_txurn++;
1405			/* bump tx trigger level */
1406			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1407		}
1408		if (status & HAL_INT_RX)
1409			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1410		if (status & HAL_INT_TX)
1411			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1412		if (status & HAL_INT_BMISS) {
1413			sc->sc_stats.ast_bmiss++;
1414			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1415		}
1416		if (status & HAL_INT_GTT)
1417			sc->sc_stats.ast_tx_timeout++;
1418		if (status & HAL_INT_CST)
1419			sc->sc_stats.ast_tx_cst++;
1420		if (status & HAL_INT_MIB) {
1421			sc->sc_stats.ast_mib++;
1422			/*
1423			 * Disable interrupts until we service the MIB
1424			 * interrupt; otherwise it will continue to fire.
1425			 */
1426			ath_hal_intrset(ah, 0);
1427			/*
1428			 * Let the hal handle the event.  We assume it will
1429			 * clear whatever condition caused the interrupt.
1430			 */
1431			ath_hal_mibevent(ah, &sc->sc_halstats);
1432			ath_hal_intrset(ah, sc->sc_imask);
1433		}
1434		if (status & HAL_INT_RXORN) {
1435			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1436			sc->sc_stats.ast_rxorn++;
1437		}
1438	}
1439}
1440
1441static void
1442ath_fatal_proc(void *arg, int pending)
1443{
1444	struct ath_softc *sc = arg;
1445	struct ifnet *ifp = sc->sc_ifp;
1446	u_int32_t *state;
1447	u_int32_t len;
1448	void *sp;
1449
1450	if_printf(ifp, "hardware error; resetting\n");
1451	/*
1452	 * Fatal errors are unrecoverable.  Typically these
1453	 * are caused by DMA errors.  Collect h/w state from
1454	 * the hal so we can diagnose what's going on.
1455	 */
1456	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1457		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1458		state = sp;
1459		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1460		    state[0], state[1] , state[2], state[3],
1461		    state[4], state[5]);
1462	}
1463	ath_reset(ifp);
1464}
1465
1466static void
1467ath_bmiss_vap(struct ieee80211vap *vap)
1468{
1469	/*
1470	 * Workaround phantom bmiss interrupts by sanity-checking
1471	 * the time of our last rx'd frame.  If it is within the
1472	 * beacon miss interval then ignore the interrupt.  If it's
1473	 * truly a bmiss we'll get another interrupt soon and that'll
1474	 * be dispatched up for processing.  Note this applies only
1475	 * for h/w beacon miss events.
1476	 */
1477	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1478		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1479		struct ath_softc *sc = ifp->if_softc;
1480		u_int64_t lastrx = sc->sc_lastrx;
1481		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1482		u_int bmisstimeout =
1483			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1484
1485		DPRINTF(sc, ATH_DEBUG_BEACON,
1486		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1487		    __func__, (unsigned long long) tsf,
1488		    (unsigned long long)(tsf - lastrx),
1489		    (unsigned long long) lastrx, bmisstimeout);
1490
1491		if (tsf - lastrx <= bmisstimeout) {
1492			sc->sc_stats.ast_bmiss_phantom++;
1493			return;
1494		}
1495	}
1496	ATH_VAP(vap)->av_bmiss(vap);
1497}
1498
1499static int
1500ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1501{
1502	uint32_t rsize;
1503	void *sp;
1504
1505	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1506		return 0;
1507	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1508	*hangs = *(uint32_t *)sp;
1509	return 1;
1510}
1511
1512static void
1513ath_bmiss_proc(void *arg, int pending)
1514{
1515	struct ath_softc *sc = arg;
1516	struct ifnet *ifp = sc->sc_ifp;
1517	uint32_t hangs;
1518
1519	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1520
1521	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1522		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1523		ath_reset(ifp);
1524	} else
1525		ieee80211_beacon_miss(ifp->if_l2com);
1526}
1527
1528/*
1529 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1530 * calcs together with WME.  If necessary disable the crypto
1531 * hardware and mark the 802.11 state so keys will be setup
1532 * with the MIC work done in software.
1533 */
1534static void
1535ath_settkipmic(struct ath_softc *sc)
1536{
1537	struct ifnet *ifp = sc->sc_ifp;
1538	struct ieee80211com *ic = ifp->if_l2com;
1539
1540	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1541		if (ic->ic_flags & IEEE80211_F_WME) {
1542			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1543			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1544		} else {
1545			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1546			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1547		}
1548	}
1549}
1550
1551static void
1552ath_init(void *arg)
1553{
1554	struct ath_softc *sc = (struct ath_softc *) arg;
1555	struct ifnet *ifp = sc->sc_ifp;
1556	struct ieee80211com *ic = ifp->if_l2com;
1557	struct ath_hal *ah = sc->sc_ah;
1558	HAL_STATUS status;
1559
1560	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1561		__func__, ifp->if_flags);
1562
1563	ATH_LOCK(sc);
1564	/*
1565	 * Stop anything previously setup.  This is safe
1566	 * whether this is the first time through or not.
1567	 */
1568	ath_stop_locked(ifp);
1569
1570	/*
1571	 * The basic interface to setting the hardware in a good
1572	 * state is ``reset''.  On return the hardware is known to
1573	 * be powered up and with interrupts disabled.  This must
1574	 * be followed by initialization of the appropriate bits
1575	 * and then setup of the interrupt mask.
1576	 */
1577	ath_settkipmic(sc);
1578	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1579		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1580			status);
1581		ATH_UNLOCK(sc);
1582		return;
1583	}
1584	ath_chan_change(sc, ic->ic_curchan);
1585
1586	/* Let DFS at it in case it's a DFS channel */
1587	ath_dfs_radar_enable(sc, ic->ic_curchan);
1588
1589	/*
1590	 * Likewise this is set during reset so update
1591	 * state cached in the driver.
1592	 */
1593	sc->sc_diversity = ath_hal_getdiversity(ah);
1594	sc->sc_lastlongcal = 0;
1595	sc->sc_resetcal = 1;
1596	sc->sc_lastcalreset = 0;
1597	sc->sc_lastani = 0;
1598	sc->sc_lastshortcal = 0;
1599	sc->sc_doresetcal = AH_FALSE;
1600	/*
1601	 * Beacon timers were cleared here; give ath_newstate()
1602	 * a hint that the beacon timers should be poked when
1603	 * things transition to the RUN state.
1604	 */
1605	sc->sc_beacons = 0;
1606
1607	/*
1608	 * Setup the hardware after reset: the key cache
1609	 * is filled as needed and the receive engine is
1610	 * set going.  Frame transmit is handled entirely
1611	 * in the frame output path; there's nothing to do
1612	 * here except setup the interrupt mask.
1613	 */
1614	if (ath_startrecv(sc) != 0) {
1615		if_printf(ifp, "unable to start recv logic\n");
1616		ATH_UNLOCK(sc);
1617		return;
1618	}
1619
1620	/*
1621	 * Enable interrupts.
1622	 */
1623	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1624		  | HAL_INT_RXEOL | HAL_INT_RXORN
1625		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1626	/*
1627	 * Enable MIB interrupts when there are hardware phy counters.
1628	 * Note we only do this (at the moment) for station mode.
1629	 */
1630	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1631		sc->sc_imask |= HAL_INT_MIB;
1632
1633	/* Enable global TX timeout and carrier sense timeout if available */
1634	if (ath_hal_gtxto_supported(ah))
1635		sc->sc_imask |= HAL_INT_GTT;
1636
1637	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1638		__func__, sc->sc_imask);
1639
1640	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1641	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1642	ath_hal_intrset(ah, sc->sc_imask);
1643
1644	ATH_UNLOCK(sc);
1645
1646#ifdef ATH_TX99_DIAG
1647	if (sc->sc_tx99 != NULL)
1648		sc->sc_tx99->start(sc->sc_tx99);
1649	else
1650#endif
1651	ieee80211_start_all(ic);		/* start all vap's */
1652}
1653
1654static void
1655ath_stop_locked(struct ifnet *ifp)
1656{
1657	struct ath_softc *sc = ifp->if_softc;
1658	struct ath_hal *ah = sc->sc_ah;
1659
1660	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1661		__func__, sc->sc_invalid, ifp->if_flags);
1662
1663	ATH_LOCK_ASSERT(sc);
1664	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1665		/*
1666		 * Shutdown the hardware and driver:
1667		 *    reset 802.11 state machine
1668		 *    turn off timers
1669		 *    disable interrupts
1670		 *    turn off the radio
1671		 *    clear transmit machinery
1672		 *    clear receive machinery
1673		 *    drain and release tx queues
1674		 *    reclaim beacon resources
1675		 *    power down hardware
1676		 *
1677		 * Note that some of this work is not possible if the
1678		 * hardware is gone (invalid).
1679		 */
1680#ifdef ATH_TX99_DIAG
1681		if (sc->sc_tx99 != NULL)
1682			sc->sc_tx99->stop(sc->sc_tx99);
1683#endif
1684		callout_stop(&sc->sc_wd_ch);
1685		sc->sc_wd_timer = 0;
1686		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1687		if (!sc->sc_invalid) {
1688			if (sc->sc_softled) {
1689				callout_stop(&sc->sc_ledtimer);
1690				ath_hal_gpioset(ah, sc->sc_ledpin,
1691					!sc->sc_ledon);
1692				sc->sc_blinking = 0;
1693			}
1694			ath_hal_intrset(ah, 0);
1695		}
1696		ath_draintxq(sc);
1697		if (!sc->sc_invalid) {
1698			ath_stoprecv(sc);
1699			ath_hal_phydisable(ah);
1700		} else
1701			sc->sc_rxlink = NULL;
1702		ath_beacon_free(sc);	/* XXX not needed */
1703	}
1704}
1705
1706static void
1707ath_stop(struct ifnet *ifp)
1708{
1709	struct ath_softc *sc = ifp->if_softc;
1710
1711	ATH_LOCK(sc);
1712	ath_stop_locked(ifp);
1713	ATH_UNLOCK(sc);
1714}
1715
1716/*
1717 * Reset the hardware w/o losing operational state.  This is
1718 * basically a more efficient way of doing ath_stop, ath_init,
1719 * followed by state transitions to the current 802.11
1720 * operational state.  Used to recover from various errors and
1721 * to reset or reload hardware state.
1722 */
1723int
1724ath_reset(struct ifnet *ifp)
1725{
1726	struct ath_softc *sc = ifp->if_softc;
1727	struct ieee80211com *ic = ifp->if_l2com;
1728	struct ath_hal *ah = sc->sc_ah;
1729	HAL_STATUS status;
1730
1731	ath_hal_intrset(ah, 0);		/* disable interrupts */
1732	ath_draintxq(sc);		/* stop xmit side */
1733	ath_stoprecv(sc);		/* stop recv side */
1734	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1735	/* NB: indicate channel change so we do a full reset */
1736	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1737		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1738			__func__, status);
1739	sc->sc_diversity = ath_hal_getdiversity(ah);
1740
1741	/* Let DFS at it in case it's a DFS channel */
1742	ath_dfs_radar_enable(sc, ic->ic_curchan);
1743
1744	if (ath_startrecv(sc) != 0)	/* restart recv */
1745		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1746	/*
1747	 * We may be doing a reset in response to an ioctl
1748	 * that changes the channel so update any state that
1749	 * might change as a result.
1750	 */
1751	ath_chan_change(sc, ic->ic_curchan);
1752	if (sc->sc_beacons) {		/* restart beacons */
1753#ifdef IEEE80211_SUPPORT_TDMA
1754		if (sc->sc_tdma)
1755			ath_tdma_config(sc, NULL);
1756		else
1757#endif
1758			ath_beacon_config(sc, NULL);
1759	}
1760	ath_hal_intrset(ah, sc->sc_imask);
1761
1762	ath_start(ifp);			/* restart xmit */
1763	return 0;
1764}
1765
1766static int
1767ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1768{
1769	struct ieee80211com *ic = vap->iv_ic;
1770	struct ifnet *ifp = ic->ic_ifp;
1771	struct ath_softc *sc = ifp->if_softc;
1772	struct ath_hal *ah = sc->sc_ah;
1773
1774	switch (cmd) {
1775	case IEEE80211_IOC_TXPOWER:
1776		/*
1777		 * If per-packet TPC is enabled, then we have nothing
1778		 * to do; otherwise we need to force the global limit.
1779		 * All this can happen directly; no need to reset.
1780		 */
1781		if (!ath_hal_gettpc(ah))
1782			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1783		return 0;
1784	}
1785	return ath_reset(ifp);
1786}
1787
1788struct ath_buf *
1789_ath_getbuf_locked(struct ath_softc *sc)
1790{
1791	struct ath_buf *bf;
1792
1793	ATH_TXBUF_LOCK_ASSERT(sc);
1794
1795	bf = STAILQ_FIRST(&sc->sc_txbuf);
1796	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1797		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1798	else
1799		bf = NULL;
1800	if (bf == NULL) {
1801		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1802		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1803			"out of xmit buffers" : "xmit buffer busy");
1804	}
1805	return bf;
1806}
1807
1808struct ath_buf *
1809ath_getbuf(struct ath_softc *sc)
1810{
1811	struct ath_buf *bf;
1812
1813	ATH_TXBUF_LOCK(sc);
1814	bf = _ath_getbuf_locked(sc);
1815	if (bf == NULL) {
1816		struct ifnet *ifp = sc->sc_ifp;
1817
1818		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1819		sc->sc_stats.ast_tx_qstop++;
1820		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1821	}
1822	ATH_TXBUF_UNLOCK(sc);
1823	return bf;
1824}
1825
1826static void
1827ath_start(struct ifnet *ifp)
1828{
1829	struct ath_softc *sc = ifp->if_softc;
1830	struct ieee80211_node *ni;
1831	struct ath_buf *bf;
1832	struct mbuf *m, *next;
1833	ath_bufhead frags;
1834
1835	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1836		return;
1837	for (;;) {
1838		/*
1839		 * Grab a TX buffer and associated resources.
1840		 */
1841		bf = ath_getbuf(sc);
1842		if (bf == NULL)
1843			break;
1844
1845		IFQ_DEQUEUE(&ifp->if_snd, m);
1846		if (m == NULL) {
1847			ATH_TXBUF_LOCK(sc);
1848			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1849			ATH_TXBUF_UNLOCK(sc);
1850			break;
1851		}
1852		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1853		/*
1854		 * Check for fragmentation.  If this frame
1855		 * has been broken up verify we have enough
1856		 * buffers to send all the fragments so all
1857		 * go out or none...
1858		 */
1859		STAILQ_INIT(&frags);
1860		if ((m->m_flags & M_FRAG) &&
1861		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1862			DPRINTF(sc, ATH_DEBUG_XMIT,
1863			    "%s: out of txfrag buffers\n", __func__);
1864			sc->sc_stats.ast_tx_nofrag++;
1865			ifp->if_oerrors++;
1866			ath_freetx(m);
1867			goto bad;
1868		}
1869		ifp->if_opackets++;
1870	nextfrag:
1871		/*
1872		 * Pass the frame to the h/w for transmission.
1873		 * Fragmented frames have each frag chained together
1874		 * with m_nextpkt.  We know there are sufficient ath_buf's
1875		 * to send all the frags because of work done by
1876		 * ath_txfrag_setup.  We leave m_nextpkt set while
1877		 * calling ath_tx_start so it can use it to extend the
1878		 * the tx duration to cover the subsequent frag and
1879		 * so it can reclaim all the mbufs in case of an error;
1880		 * ath_tx_start clears m_nextpkt once it commits to
1881		 * handing the frame to the hardware.
1882		 */
1883		next = m->m_nextpkt;
1884		if (ath_tx_start(sc, ni, bf, m)) {
1885	bad:
1886			ifp->if_oerrors++;
1887	reclaim:
1888			bf->bf_m = NULL;
1889			bf->bf_node = NULL;
1890			ATH_TXBUF_LOCK(sc);
1891			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1892			ath_txfrag_cleanup(sc, &frags, ni);
1893			ATH_TXBUF_UNLOCK(sc);
1894			if (ni != NULL)
1895				ieee80211_free_node(ni);
1896			continue;
1897		}
1898		if (next != NULL) {
1899			/*
1900			 * Beware of state changing between frags.
1901			 * XXX check sta power-save state?
1902			 */
1903			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1904				DPRINTF(sc, ATH_DEBUG_XMIT,
1905				    "%s: flush fragmented packet, state %s\n",
1906				    __func__,
1907				    ieee80211_state_name[ni->ni_vap->iv_state]);
1908				ath_freetx(next);
1909				goto reclaim;
1910			}
1911			m = next;
1912			bf = STAILQ_FIRST(&frags);
1913			KASSERT(bf != NULL, ("no buf for txfrag"));
1914			STAILQ_REMOVE_HEAD(&frags, bf_list);
1915			goto nextfrag;
1916		}
1917
1918		sc->sc_wd_timer = 5;
1919	}
1920}
1921
1922static int
1923ath_media_change(struct ifnet *ifp)
1924{
1925	int error = ieee80211_media_change(ifp);
1926	/* NB: only the fixed rate can change and that doesn't need a reset */
1927	return (error == ENETRESET ? 0 : error);
1928}
1929
1930/*
1931 * Block/unblock tx+rx processing while a key change is done.
1932 * We assume the caller serializes key management operations
1933 * so we only need to worry about synchronization with other
1934 * uses that originate in the driver.
1935 */
1936static void
1937ath_key_update_begin(struct ieee80211vap *vap)
1938{
1939	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1940	struct ath_softc *sc = ifp->if_softc;
1941
1942	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1943	taskqueue_block(sc->sc_tq);
1944	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1945}
1946
1947static void
1948ath_key_update_end(struct ieee80211vap *vap)
1949{
1950	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1951	struct ath_softc *sc = ifp->if_softc;
1952
1953	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1954	IF_UNLOCK(&ifp->if_snd);
1955	taskqueue_unblock(sc->sc_tq);
1956}
1957
1958/*
1959 * Calculate the receive filter according to the
1960 * operating mode and state:
1961 *
1962 * o always accept unicast, broadcast, and multicast traffic
1963 * o accept PHY error frames when hardware doesn't have MIB support
1964 *   to count and we need them for ANI (sta mode only until recently)
1965 *   and we are not scanning (ANI is disabled)
1966 *   NB: older hal's add rx filter bits out of sight and we need to
1967 *	 blindly preserve them
1968 * o probe request frames are accepted only when operating in
1969 *   hostap, adhoc, mesh, or monitor modes
1970 * o enable promiscuous mode
1971 *   - when in monitor mode
1972 *   - if interface marked PROMISC (assumes bridge setting is filtered)
1973 * o accept beacons:
1974 *   - when operating in station mode for collecting rssi data when
1975 *     the station is otherwise quiet, or
1976 *   - when operating in adhoc mode so the 802.11 layer creates
1977 *     node table entries for peers,
1978 *   - when scanning
1979 *   - when doing s/w beacon miss (e.g. for ap+sta)
1980 *   - when operating in ap mode in 11g to detect overlapping bss that
1981 *     require protection
1982 *   - when operating in mesh mode to detect neighbors
1983 * o accept control frames:
1984 *   - when in monitor mode
1985 * XXX HT protection for 11n
1986 */
1987static u_int32_t
1988ath_calcrxfilter(struct ath_softc *sc)
1989{
1990	struct ifnet *ifp = sc->sc_ifp;
1991	struct ieee80211com *ic = ifp->if_l2com;
1992	u_int32_t rfilt;
1993
1994	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1995	if (!sc->sc_needmib && !sc->sc_scanning)
1996		rfilt |= HAL_RX_FILTER_PHYERR;
1997	if (ic->ic_opmode != IEEE80211_M_STA)
1998		rfilt |= HAL_RX_FILTER_PROBEREQ;
1999	/* XXX ic->ic_monvaps != 0? */
2000	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2001		rfilt |= HAL_RX_FILTER_PROM;
2002	if (ic->ic_opmode == IEEE80211_M_STA ||
2003	    ic->ic_opmode == IEEE80211_M_IBSS ||
2004	    sc->sc_swbmiss || sc->sc_scanning)
2005		rfilt |= HAL_RX_FILTER_BEACON;
2006	/*
2007	 * NB: We don't recalculate the rx filter when
2008	 * ic_protmode changes; otherwise we could do
2009	 * this only when ic_protmode != NONE.
2010	 */
2011	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2012	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2013		rfilt |= HAL_RX_FILTER_BEACON;
2014
2015	/*
2016	 * Enable hardware PS-POLL RX only for hostap mode;
2017	 * STA mode sends PS-POLL frames but never
2018	 * receives them.
2019	 */
2020	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2021	    0, NULL) == HAL_OK &&
2022	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2023		rfilt |= HAL_RX_FILTER_PSPOLL;
2024
2025	if (sc->sc_nmeshvaps) {
2026		rfilt |= HAL_RX_FILTER_BEACON;
2027		if (sc->sc_hasbmatch)
2028			rfilt |= HAL_RX_FILTER_BSSID;
2029		else
2030			rfilt |= HAL_RX_FILTER_PROM;
2031	}
2032	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2033		rfilt |= HAL_RX_FILTER_CONTROL;
2034
2035	if (sc->sc_dodfs) {
2036		rfilt |= HAL_RX_FILTER_PHYRADAR;
2037	}
2038
2039	/*
2040	 * Enable RX of compressed BAR frames only when doing
2041	 * 802.11n. Required for A-MPDU.
2042	 */
2043	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2044		rfilt |= HAL_RX_FILTER_COMPBAR;
2045
2046	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2047	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2048	return rfilt;
2049}
2050
2051static void
2052ath_update_promisc(struct ifnet *ifp)
2053{
2054	struct ath_softc *sc = ifp->if_softc;
2055	u_int32_t rfilt;
2056
2057	/* configure rx filter */
2058	rfilt = ath_calcrxfilter(sc);
2059	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2060
2061	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2062}
2063
2064static void
2065ath_update_mcast(struct ifnet *ifp)
2066{
2067	struct ath_softc *sc = ifp->if_softc;
2068	u_int32_t mfilt[2];
2069
2070	/* calculate and install multicast filter */
2071	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2072		struct ifmultiaddr *ifma;
2073		/*
2074		 * Merge multicast addresses to form the hardware filter.
2075		 */
2076		mfilt[0] = mfilt[1] = 0;
2077		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2078		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2079			caddr_t dl;
2080			u_int32_t val;
2081			u_int8_t pos;
2082
2083			/* calculate XOR of eight 6bit values */
2084			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2085			val = LE_READ_4(dl + 0);
2086			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2087			val = LE_READ_4(dl + 3);
2088			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2089			pos &= 0x3f;
2090			mfilt[pos / 32] |= (1 << (pos % 32));
2091		}
2092		if_maddr_runlock(ifp);
2093	} else
2094		mfilt[0] = mfilt[1] = ~0;
2095	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2096	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2097		__func__, mfilt[0], mfilt[1]);
2098}
2099
2100static void
2101ath_mode_init(struct ath_softc *sc)
2102{
2103	struct ifnet *ifp = sc->sc_ifp;
2104	struct ath_hal *ah = sc->sc_ah;
2105	u_int32_t rfilt;
2106
2107	/* configure rx filter */
2108	rfilt = ath_calcrxfilter(sc);
2109	ath_hal_setrxfilter(ah, rfilt);
2110
2111	/* configure operational mode */
2112	ath_hal_setopmode(ah);
2113
2114	/* handle any link-level address change */
2115	ath_hal_setmac(ah, IF_LLADDR(ifp));
2116
2117	/* calculate and install multicast filter */
2118	ath_update_mcast(ifp);
2119}
2120
2121/*
2122 * Set the slot time based on the current setting.
2123 */
2124static void
2125ath_setslottime(struct ath_softc *sc)
2126{
2127	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2128	struct ath_hal *ah = sc->sc_ah;
2129	u_int usec;
2130
2131	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2132		usec = 13;
2133	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2134		usec = 21;
2135	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2136		/* honor short/long slot time only in 11g */
2137		/* XXX shouldn't honor on pure g or turbo g channel */
2138		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2139			usec = HAL_SLOT_TIME_9;
2140		else
2141			usec = HAL_SLOT_TIME_20;
2142	} else
2143		usec = HAL_SLOT_TIME_9;
2144
2145	DPRINTF(sc, ATH_DEBUG_RESET,
2146	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2147	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2148	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2149
2150	ath_hal_setslottime(ah, usec);
2151	sc->sc_updateslot = OK;
2152}
2153
2154/*
2155 * Callback from the 802.11 layer to update the
2156 * slot time based on the current setting.
2157 */
2158static void
2159ath_updateslot(struct ifnet *ifp)
2160{
2161	struct ath_softc *sc = ifp->if_softc;
2162	struct ieee80211com *ic = ifp->if_l2com;
2163
2164	/*
2165	 * When not coordinating the BSS, change the hardware
2166	 * immediately.  For other operation we defer the change
2167	 * until beacon updates have propagated to the stations.
2168	 */
2169	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2170	    ic->ic_opmode == IEEE80211_M_MBSS)
2171		sc->sc_updateslot = UPDATE;
2172	else
2173		ath_setslottime(sc);
2174}
2175
2176/*
2177 * Setup a h/w transmit queue for beacons.
2178 */
2179static int
2180ath_beaconq_setup(struct ath_hal *ah)
2181{
2182	HAL_TXQ_INFO qi;
2183
2184	memset(&qi, 0, sizeof(qi));
2185	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2186	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2187	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2188	/* NB: for dynamic turbo, don't enable any other interrupts */
2189	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2190	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2191}
2192
2193/*
2194 * Setup the transmit queue parameters for the beacon queue.
2195 */
2196static int
2197ath_beaconq_config(struct ath_softc *sc)
2198{
2199#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2200	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2201	struct ath_hal *ah = sc->sc_ah;
2202	HAL_TXQ_INFO qi;
2203
2204	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2205	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2206	    ic->ic_opmode == IEEE80211_M_MBSS) {
2207		/*
2208		 * Always burst out beacon and CAB traffic.
2209		 */
2210		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2211		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2212		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2213	} else {
2214		struct wmeParams *wmep =
2215			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2216		/*
2217		 * Adhoc mode; important thing is to use 2x cwmin.
2218		 */
2219		qi.tqi_aifs = wmep->wmep_aifsn;
2220		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2221		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2222	}
2223
2224	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2225		device_printf(sc->sc_dev, "unable to update parameters for "
2226			"beacon hardware queue!\n");
2227		return 0;
2228	} else {
2229		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2230		return 1;
2231	}
2232#undef ATH_EXPONENT_TO_VALUE
2233}
2234
2235/*
2236 * Allocate and setup an initial beacon frame.
2237 */
2238static int
2239ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2240{
2241	struct ieee80211vap *vap = ni->ni_vap;
2242	struct ath_vap *avp = ATH_VAP(vap);
2243	struct ath_buf *bf;
2244	struct mbuf *m;
2245	int error;
2246
2247	bf = avp->av_bcbuf;
2248	if (bf->bf_m != NULL) {
2249		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2250		m_freem(bf->bf_m);
2251		bf->bf_m = NULL;
2252	}
2253	if (bf->bf_node != NULL) {
2254		ieee80211_free_node(bf->bf_node);
2255		bf->bf_node = NULL;
2256	}
2257
2258	/*
2259	 * NB: the beacon data buffer must be 32-bit aligned;
2260	 * we assume the mbuf routines will return us something
2261	 * with this alignment (perhaps should assert).
2262	 */
2263	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2264	if (m == NULL) {
2265		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2266		sc->sc_stats.ast_be_nombuf++;
2267		return ENOMEM;
2268	}
2269	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2270				     bf->bf_segs, &bf->bf_nseg,
2271				     BUS_DMA_NOWAIT);
2272	if (error != 0) {
2273		device_printf(sc->sc_dev,
2274		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2275		    __func__, error);
2276		m_freem(m);
2277		return error;
2278	}
2279
2280	/*
2281	 * Calculate a TSF adjustment factor required for staggered
2282	 * beacons.  Note that we assume the format of the beacon
2283	 * frame leaves the tstamp field immediately following the
2284	 * header.
2285	 */
2286	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2287		uint64_t tsfadjust;
2288		struct ieee80211_frame *wh;
2289
2290		/*
2291		 * The beacon interval is in TU's; the TSF is in usecs.
2292		 * We figure out how many TU's to add to align the timestamp
2293		 * then convert to TSF units and handle byte swapping before
2294		 * inserting it in the frame.  The hardware will then add this
2295		 * each time a beacon frame is sent.  Note that we align vap's
2296		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2297		 * timestamp in one beacon interval while the others get a
2298		 * timstamp aligned to the next interval.
2299		 */
2300		tsfadjust = ni->ni_intval *
2301		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2302		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2303
2304		DPRINTF(sc, ATH_DEBUG_BEACON,
2305		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2306		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2307		    avp->av_bslot, ni->ni_intval,
2308		    (long long unsigned) le64toh(tsfadjust));
2309
2310		wh = mtod(m, struct ieee80211_frame *);
2311		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2312	}
2313	bf->bf_m = m;
2314	bf->bf_node = ieee80211_ref_node(ni);
2315
2316	return 0;
2317}
2318
2319/*
2320 * Setup the beacon frame for transmit.
2321 */
2322static void
2323ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2324{
2325#define	USE_SHPREAMBLE(_ic) \
2326	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2327		== IEEE80211_F_SHPREAMBLE)
2328	struct ieee80211_node *ni = bf->bf_node;
2329	struct ieee80211com *ic = ni->ni_ic;
2330	struct mbuf *m = bf->bf_m;
2331	struct ath_hal *ah = sc->sc_ah;
2332	struct ath_desc *ds;
2333	int flags, antenna;
2334	const HAL_RATE_TABLE *rt;
2335	u_int8_t rix, rate;
2336
2337	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2338		__func__, m, m->m_len);
2339
2340	/* setup descriptors */
2341	ds = bf->bf_desc;
2342
2343	flags = HAL_TXDESC_NOACK;
2344	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2345		ds->ds_link = bf->bf_daddr;	/* self-linked */
2346		flags |= HAL_TXDESC_VEOL;
2347		/*
2348		 * Let hardware handle antenna switching.
2349		 */
2350		antenna = sc->sc_txantenna;
2351	} else {
2352		ds->ds_link = 0;
2353		/*
2354		 * Switch antenna every 4 beacons.
2355		 * XXX assumes two antenna
2356		 */
2357		if (sc->sc_txantenna != 0)
2358			antenna = sc->sc_txantenna;
2359		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2360			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2361		else
2362			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2363	}
2364
2365	KASSERT(bf->bf_nseg == 1,
2366		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2367	ds->ds_data = bf->bf_segs[0].ds_addr;
2368	/*
2369	 * Calculate rate code.
2370	 * XXX everything at min xmit rate
2371	 */
2372	rix = 0;
2373	rt = sc->sc_currates;
2374	rate = rt->info[rix].rateCode;
2375	if (USE_SHPREAMBLE(ic))
2376		rate |= rt->info[rix].shortPreamble;
2377	ath_hal_setuptxdesc(ah, ds
2378		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2379		, sizeof(struct ieee80211_frame)/* header length */
2380		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2381		, ni->ni_txpower		/* txpower XXX */
2382		, rate, 1			/* series 0 rate/tries */
2383		, HAL_TXKEYIX_INVALID		/* no encryption */
2384		, antenna			/* antenna mode */
2385		, flags				/* no ack, veol for beacons */
2386		, 0				/* rts/cts rate */
2387		, 0				/* rts/cts duration */
2388	);
2389	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2390	ath_hal_filltxdesc(ah, ds
2391		, roundup(m->m_len, 4)		/* buffer length */
2392		, AH_TRUE			/* first segment */
2393		, AH_TRUE			/* last segment */
2394		, ds				/* first descriptor */
2395	);
2396#if 0
2397	ath_desc_swap(ds);
2398#endif
2399#undef USE_SHPREAMBLE
2400}
2401
2402static void
2403ath_beacon_update(struct ieee80211vap *vap, int item)
2404{
2405	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2406
2407	setbit(bo->bo_flags, item);
2408}
2409
2410/*
2411 * Append the contents of src to dst; both queues
2412 * are assumed to be locked.
2413 */
2414static void
2415ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2416{
2417	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2418	dst->axq_link = src->axq_link;
2419	src->axq_link = NULL;
2420	dst->axq_depth += src->axq_depth;
2421	src->axq_depth = 0;
2422}
2423
2424/*
2425 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2426 * frame contents are done as needed and the slot time is
2427 * also adjusted based on current state.
2428 */
2429static void
2430ath_beacon_proc(void *arg, int pending)
2431{
2432	struct ath_softc *sc = arg;
2433	struct ath_hal *ah = sc->sc_ah;
2434	struct ieee80211vap *vap;
2435	struct ath_buf *bf;
2436	int slot, otherant;
2437	uint32_t bfaddr;
2438
2439	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2440		__func__, pending);
2441	/*
2442	 * Check if the previous beacon has gone out.  If
2443	 * not don't try to post another, skip this period
2444	 * and wait for the next.  Missed beacons indicate
2445	 * a problem and should not occur.  If we miss too
2446	 * many consecutive beacons reset the device.
2447	 */
2448	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2449		sc->sc_bmisscount++;
2450		sc->sc_stats.ast_be_missed++;
2451		DPRINTF(sc, ATH_DEBUG_BEACON,
2452			"%s: missed %u consecutive beacons\n",
2453			__func__, sc->sc_bmisscount);
2454		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2455			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2456		return;
2457	}
2458	if (sc->sc_bmisscount != 0) {
2459		DPRINTF(sc, ATH_DEBUG_BEACON,
2460			"%s: resume beacon xmit after %u misses\n",
2461			__func__, sc->sc_bmisscount);
2462		sc->sc_bmisscount = 0;
2463	}
2464
2465	if (sc->sc_stagbeacons) {			/* staggered beacons */
2466		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2467		uint32_t tsftu;
2468
2469		tsftu = ath_hal_gettsf32(ah) >> 10;
2470		/* XXX lintval */
2471		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2472		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2473		bfaddr = 0;
2474		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2475			bf = ath_beacon_generate(sc, vap);
2476			if (bf != NULL)
2477				bfaddr = bf->bf_daddr;
2478		}
2479	} else {					/* burst'd beacons */
2480		uint32_t *bflink = &bfaddr;
2481
2482		for (slot = 0; slot < ATH_BCBUF; slot++) {
2483			vap = sc->sc_bslot[slot];
2484			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2485				bf = ath_beacon_generate(sc, vap);
2486				if (bf != NULL) {
2487					*bflink = bf->bf_daddr;
2488					bflink = &bf->bf_desc->ds_link;
2489				}
2490			}
2491		}
2492		*bflink = 0;				/* terminate list */
2493	}
2494
2495	/*
2496	 * Handle slot time change when a non-ERP station joins/leaves
2497	 * an 11g network.  The 802.11 layer notifies us via callback,
2498	 * we mark updateslot, then wait one beacon before effecting
2499	 * the change.  This gives associated stations at least one
2500	 * beacon interval to note the state change.
2501	 */
2502	/* XXX locking */
2503	if (sc->sc_updateslot == UPDATE) {
2504		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2505		sc->sc_slotupdate = slot;
2506	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2507		ath_setslottime(sc);		/* commit change to h/w */
2508
2509	/*
2510	 * Check recent per-antenna transmit statistics and flip
2511	 * the default antenna if noticeably more frames went out
2512	 * on the non-default antenna.
2513	 * XXX assumes 2 anntenae
2514	 */
2515	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2516		otherant = sc->sc_defant & 1 ? 2 : 1;
2517		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2518			ath_setdefantenna(sc, otherant);
2519		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2520	}
2521
2522	if (bfaddr != 0) {
2523		/*
2524		 * Stop any current dma and put the new frame on the queue.
2525		 * This should never fail since we check above that no frames
2526		 * are still pending on the queue.
2527		 */
2528		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2529			DPRINTF(sc, ATH_DEBUG_ANY,
2530				"%s: beacon queue %u did not stop?\n",
2531				__func__, sc->sc_bhalq);
2532		}
2533		/* NB: cabq traffic should already be queued and primed */
2534		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2535		ath_hal_txstart(ah, sc->sc_bhalq);
2536
2537		sc->sc_stats.ast_be_xmit++;
2538	}
2539}
2540
2541static struct ath_buf *
2542ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2543{
2544	struct ath_vap *avp = ATH_VAP(vap);
2545	struct ath_txq *cabq = sc->sc_cabq;
2546	struct ath_buf *bf;
2547	struct mbuf *m;
2548	int nmcastq, error;
2549
2550	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2551	    ("not running, state %d", vap->iv_state));
2552	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2553
2554	/*
2555	 * Update dynamic beacon contents.  If this returns
2556	 * non-zero then we need to remap the memory because
2557	 * the beacon frame changed size (probably because
2558	 * of the TIM bitmap).
2559	 */
2560	bf = avp->av_bcbuf;
2561	m = bf->bf_m;
2562	nmcastq = avp->av_mcastq.axq_depth;
2563	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2564		/* XXX too conservative? */
2565		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2566		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2567					     bf->bf_segs, &bf->bf_nseg,
2568					     BUS_DMA_NOWAIT);
2569		if (error != 0) {
2570			if_printf(vap->iv_ifp,
2571			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2572			    __func__, error);
2573			return NULL;
2574		}
2575	}
2576	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2577		DPRINTF(sc, ATH_DEBUG_BEACON,
2578		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2579		    __func__, nmcastq, cabq->axq_depth);
2580		sc->sc_stats.ast_cabq_busy++;
2581		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2582			/*
2583			 * CABQ traffic from a previous vap is still pending.
2584			 * We must drain the q before this beacon frame goes
2585			 * out as otherwise this vap's stations will get cab
2586			 * frames from a different vap.
2587			 * XXX could be slow causing us to miss DBA
2588			 */
2589			ath_tx_draintxq(sc, cabq);
2590		}
2591	}
2592	ath_beacon_setup(sc, bf);
2593	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2594
2595	/*
2596	 * Enable the CAB queue before the beacon queue to
2597	 * insure cab frames are triggered by this beacon.
2598	 */
2599	if (avp->av_boff.bo_tim[4] & 1) {
2600		struct ath_hal *ah = sc->sc_ah;
2601
2602		/* NB: only at DTIM */
2603		ATH_TXQ_LOCK(cabq);
2604		ATH_TXQ_LOCK(&avp->av_mcastq);
2605		if (nmcastq) {
2606			struct ath_buf *bfm;
2607
2608			/*
2609			 * Move frames from the s/w mcast q to the h/w cab q.
2610			 * XXX MORE_DATA bit
2611			 */
2612			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2613			if (cabq->axq_link != NULL) {
2614				*cabq->axq_link = bfm->bf_daddr;
2615			} else
2616				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2617					bfm->bf_daddr);
2618			ath_txqmove(cabq, &avp->av_mcastq);
2619
2620			sc->sc_stats.ast_cabq_xmit += nmcastq;
2621		}
2622		/* NB: gated by beacon so safe to start here */
2623		ath_hal_txstart(ah, cabq->axq_qnum);
2624		ATH_TXQ_UNLOCK(cabq);
2625		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2626	}
2627	return bf;
2628}
2629
2630static void
2631ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2632{
2633	struct ath_vap *avp = ATH_VAP(vap);
2634	struct ath_hal *ah = sc->sc_ah;
2635	struct ath_buf *bf;
2636	struct mbuf *m;
2637	int error;
2638
2639	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2640
2641	/*
2642	 * Update dynamic beacon contents.  If this returns
2643	 * non-zero then we need to remap the memory because
2644	 * the beacon frame changed size (probably because
2645	 * of the TIM bitmap).
2646	 */
2647	bf = avp->av_bcbuf;
2648	m = bf->bf_m;
2649	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2650		/* XXX too conservative? */
2651		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2652		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2653					     bf->bf_segs, &bf->bf_nseg,
2654					     BUS_DMA_NOWAIT);
2655		if (error != 0) {
2656			if_printf(vap->iv_ifp,
2657			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2658			    __func__, error);
2659			return;
2660		}
2661	}
2662	ath_beacon_setup(sc, bf);
2663	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2664
2665	/* NB: caller is known to have already stopped tx dma */
2666	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2667	ath_hal_txstart(ah, sc->sc_bhalq);
2668}
2669
2670/*
2671 * Reset the hardware after detecting beacons have stopped.
2672 */
2673static void
2674ath_bstuck_proc(void *arg, int pending)
2675{
2676	struct ath_softc *sc = arg;
2677	struct ifnet *ifp = sc->sc_ifp;
2678
2679	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2680		sc->sc_bmisscount);
2681	sc->sc_stats.ast_bstuck++;
2682	ath_reset(ifp);
2683}
2684
2685/*
2686 * Reclaim beacon resources and return buffer to the pool.
2687 */
2688static void
2689ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
2690{
2691
2692	if (bf->bf_m != NULL) {
2693		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2694		m_freem(bf->bf_m);
2695		bf->bf_m = NULL;
2696	}
2697	if (bf->bf_node != NULL) {
2698		ieee80211_free_node(bf->bf_node);
2699		bf->bf_node = NULL;
2700	}
2701	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
2702}
2703
2704/*
2705 * Reclaim beacon resources.
2706 */
2707static void
2708ath_beacon_free(struct ath_softc *sc)
2709{
2710	struct ath_buf *bf;
2711
2712	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2713		if (bf->bf_m != NULL) {
2714			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2715			m_freem(bf->bf_m);
2716			bf->bf_m = NULL;
2717		}
2718		if (bf->bf_node != NULL) {
2719			ieee80211_free_node(bf->bf_node);
2720			bf->bf_node = NULL;
2721		}
2722	}
2723}
2724
2725/*
2726 * Configure the beacon and sleep timers.
2727 *
2728 * When operating as an AP this resets the TSF and sets
2729 * up the hardware to notify us when we need to issue beacons.
2730 *
2731 * When operating in station mode this sets up the beacon
2732 * timers according to the timestamp of the last received
2733 * beacon and the current TSF, configures PCF and DTIM
2734 * handling, programs the sleep registers so the hardware
2735 * will wakeup in time to receive beacons, and configures
2736 * the beacon miss handling so we'll receive a BMISS
2737 * interrupt when we stop seeing beacons from the AP
2738 * we've associated with.
2739 */
2740static void
2741ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
2742{
2743#define	TSF_TO_TU(_h,_l) \
2744	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2745#define	FUDGE	2
2746	struct ath_hal *ah = sc->sc_ah;
2747	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2748	struct ieee80211_node *ni;
2749	u_int32_t nexttbtt, intval, tsftu;
2750	u_int64_t tsf;
2751
2752	if (vap == NULL)
2753		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
2754	ni = vap->iv_bss;
2755
2756	/* extract tstamp from last beacon and convert to TU */
2757	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2758			     LE_READ_4(ni->ni_tstamp.data));
2759	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2760	    ic->ic_opmode == IEEE80211_M_MBSS) {
2761		/*
2762		 * For multi-bss ap/mesh support beacons are either staggered
2763		 * evenly over N slots or burst together.  For the former
2764		 * arrange for the SWBA to be delivered for each slot.
2765		 * Slots that are not occupied will generate nothing.
2766		 */
2767		/* NB: the beacon interval is kept internally in TU's */
2768		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2769		if (sc->sc_stagbeacons)
2770			intval /= ATH_BCBUF;
2771	} else {
2772		/* NB: the beacon interval is kept internally in TU's */
2773		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2774	}
2775	if (nexttbtt == 0)		/* e.g. for ap mode */
2776		nexttbtt = intval;
2777	else if (intval)		/* NB: can be 0 for monitor mode */
2778		nexttbtt = roundup(nexttbtt, intval);
2779	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2780		__func__, nexttbtt, intval, ni->ni_intval);
2781	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
2782		HAL_BEACON_STATE bs;
2783		int dtimperiod, dtimcount;
2784		int cfpperiod, cfpcount;
2785
2786		/*
2787		 * Setup dtim and cfp parameters according to
2788		 * last beacon we received (which may be none).
2789		 */
2790		dtimperiod = ni->ni_dtim_period;
2791		if (dtimperiod <= 0)		/* NB: 0 if not known */
2792			dtimperiod = 1;
2793		dtimcount = ni->ni_dtim_count;
2794		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2795			dtimcount = 0;		/* XXX? */
2796		cfpperiod = 1;			/* NB: no PCF support yet */
2797		cfpcount = 0;
2798		/*
2799		 * Pull nexttbtt forward to reflect the current
2800		 * TSF and calculate dtim+cfp state for the result.
2801		 */
2802		tsf = ath_hal_gettsf64(ah);
2803		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2804		do {
2805			nexttbtt += intval;
2806			if (--dtimcount < 0) {
2807				dtimcount = dtimperiod - 1;
2808				if (--cfpcount < 0)
2809					cfpcount = cfpperiod - 1;
2810			}
2811		} while (nexttbtt < tsftu);
2812		memset(&bs, 0, sizeof(bs));
2813		bs.bs_intval = intval;
2814		bs.bs_nexttbtt = nexttbtt;
2815		bs.bs_dtimperiod = dtimperiod*intval;
2816		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2817		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2818		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2819		bs.bs_cfpmaxduration = 0;
2820#if 0
2821		/*
2822		 * The 802.11 layer records the offset to the DTIM
2823		 * bitmap while receiving beacons; use it here to
2824		 * enable h/w detection of our AID being marked in
2825		 * the bitmap vector (to indicate frames for us are
2826		 * pending at the AP).
2827		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2828		 * XXX enable based on h/w rev for newer chips
2829		 */
2830		bs.bs_timoffset = ni->ni_timoff;
2831#endif
2832		/*
2833		 * Calculate the number of consecutive beacons to miss
2834		 * before taking a BMISS interrupt.
2835		 * Note that we clamp the result to at most 10 beacons.
2836		 */
2837		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
2838		if (bs.bs_bmissthreshold > 10)
2839			bs.bs_bmissthreshold = 10;
2840		else if (bs.bs_bmissthreshold <= 0)
2841			bs.bs_bmissthreshold = 1;
2842
2843		/*
2844		 * Calculate sleep duration.  The configuration is
2845		 * given in ms.  We insure a multiple of the beacon
2846		 * period is used.  Also, if the sleep duration is
2847		 * greater than the DTIM period then it makes senses
2848		 * to make it a multiple of that.
2849		 *
2850		 * XXX fixed at 100ms
2851		 */
2852		bs.bs_sleepduration =
2853			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2854		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2855			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2856
2857		DPRINTF(sc, ATH_DEBUG_BEACON,
2858			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2859			, __func__
2860			, tsf, tsftu
2861			, bs.bs_intval
2862			, bs.bs_nexttbtt
2863			, bs.bs_dtimperiod
2864			, bs.bs_nextdtim
2865			, bs.bs_bmissthreshold
2866			, bs.bs_sleepduration
2867			, bs.bs_cfpperiod
2868			, bs.bs_cfpmaxduration
2869			, bs.bs_cfpnext
2870			, bs.bs_timoffset
2871		);
2872		ath_hal_intrset(ah, 0);
2873		ath_hal_beacontimers(ah, &bs);
2874		sc->sc_imask |= HAL_INT_BMISS;
2875		ath_hal_intrset(ah, sc->sc_imask);
2876	} else {
2877		ath_hal_intrset(ah, 0);
2878		if (nexttbtt == intval)
2879			intval |= HAL_BEACON_RESET_TSF;
2880		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2881			/*
2882			 * In IBSS mode enable the beacon timers but only
2883			 * enable SWBA interrupts if we need to manually
2884			 * prepare beacon frames.  Otherwise we use a
2885			 * self-linked tx descriptor and let the hardware
2886			 * deal with things.
2887			 */
2888			intval |= HAL_BEACON_ENA;
2889			if (!sc->sc_hasveol)
2890				sc->sc_imask |= HAL_INT_SWBA;
2891			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2892				/*
2893				 * Pull nexttbtt forward to reflect
2894				 * the current TSF.
2895				 */
2896				tsf = ath_hal_gettsf64(ah);
2897				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2898				do {
2899					nexttbtt += intval;
2900				} while (nexttbtt < tsftu);
2901			}
2902			ath_beaconq_config(sc);
2903		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2904		    ic->ic_opmode == IEEE80211_M_MBSS) {
2905			/*
2906			 * In AP/mesh mode we enable the beacon timers
2907			 * and SWBA interrupts to prepare beacon frames.
2908			 */
2909			intval |= HAL_BEACON_ENA;
2910			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2911			ath_beaconq_config(sc);
2912		}
2913		ath_hal_beaconinit(ah, nexttbtt, intval);
2914		sc->sc_bmisscount = 0;
2915		ath_hal_intrset(ah, sc->sc_imask);
2916		/*
2917		 * When using a self-linked beacon descriptor in
2918		 * ibss mode load it once here.
2919		 */
2920		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2921			ath_beacon_start_adhoc(sc, vap);
2922	}
2923	sc->sc_syncbeacon = 0;
2924#undef FUDGE
2925#undef TSF_TO_TU
2926}
2927
2928static void
2929ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2930{
2931	bus_addr_t *paddr = (bus_addr_t*) arg;
2932	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2933	*paddr = segs->ds_addr;
2934}
2935
2936static int
2937ath_descdma_setup(struct ath_softc *sc,
2938	struct ath_descdma *dd, ath_bufhead *head,
2939	const char *name, int nbuf, int ndesc)
2940{
2941#define	DS2PHYS(_dd, _ds) \
2942	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2943#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2944	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2945	struct ifnet *ifp = sc->sc_ifp;
2946	uint8_t *ds;
2947	struct ath_buf *bf;
2948	int i, bsize, error;
2949	int desc_len;
2950
2951	desc_len = sizeof(struct ath_desc);
2952
2953	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2954	    __func__, name, nbuf, ndesc);
2955
2956	dd->dd_name = name;
2957	dd->dd_desc_len = desc_len * nbuf * ndesc;
2958
2959	/*
2960	 * Merlin work-around:
2961	 * Descriptors that cross the 4KB boundary can't be used.
2962	 * Assume one skipped descriptor per 4KB page.
2963	 */
2964	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2965		int numdescpage = 4096 / (desc_len * ndesc);
2966		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2967	}
2968
2969	/*
2970	 * Setup DMA descriptor area.
2971	 */
2972	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2973		       PAGE_SIZE, 0,		/* alignment, bounds */
2974		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2975		       BUS_SPACE_MAXADDR,	/* highaddr */
2976		       NULL, NULL,		/* filter, filterarg */
2977		       dd->dd_desc_len,		/* maxsize */
2978		       1,			/* nsegments */
2979		       dd->dd_desc_len,		/* maxsegsize */
2980		       BUS_DMA_ALLOCNOW,	/* flags */
2981		       NULL,			/* lockfunc */
2982		       NULL,			/* lockarg */
2983		       &dd->dd_dmat);
2984	if (error != 0) {
2985		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2986		return error;
2987	}
2988
2989	/* allocate descriptors */
2990	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2991	if (error != 0) {
2992		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2993			"error %u\n", dd->dd_name, error);
2994		goto fail0;
2995	}
2996
2997	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2998				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2999				 &dd->dd_dmamap);
3000	if (error != 0) {
3001		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3002			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3003		goto fail1;
3004	}
3005
3006	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3007				dd->dd_desc, dd->dd_desc_len,
3008				ath_load_cb, &dd->dd_desc_paddr,
3009				BUS_DMA_NOWAIT);
3010	if (error != 0) {
3011		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3012			dd->dd_name, error);
3013		goto fail2;
3014	}
3015
3016	ds = (uint8_t *) dd->dd_desc;
3017	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3018	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3019	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3020
3021	/* allocate rx buffers */
3022	bsize = sizeof(struct ath_buf) * nbuf;
3023	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3024	if (bf == NULL) {
3025		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3026			dd->dd_name, bsize);
3027		goto fail3;
3028	}
3029	dd->dd_bufptr = bf;
3030
3031	STAILQ_INIT(head);
3032	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3033		bf->bf_desc = (struct ath_desc *) ds;
3034		bf->bf_daddr = DS2PHYS(dd, ds);
3035		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3036			/*
3037			 * Merlin WAR: Skip descriptor addresses which
3038			 * cause 4KB boundary crossing along any point
3039			 * in the descriptor.
3040			 */
3041			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3042			     desc_len * ndesc)) {
3043				/* Start at the next page */
3044				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3045				bf->bf_desc = (struct ath_desc *) ds;
3046				bf->bf_daddr = DS2PHYS(dd, ds);
3047			}
3048		}
3049		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3050				&bf->bf_dmamap);
3051		if (error != 0) {
3052			if_printf(ifp, "unable to create dmamap for %s "
3053				"buffer %u, error %u\n", dd->dd_name, i, error);
3054			ath_descdma_cleanup(sc, dd, head);
3055			return error;
3056		}
3057		STAILQ_INSERT_TAIL(head, bf, bf_list);
3058	}
3059	return 0;
3060fail3:
3061	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3062fail2:
3063	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3064fail1:
3065	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3066fail0:
3067	bus_dma_tag_destroy(dd->dd_dmat);
3068	memset(dd, 0, sizeof(*dd));
3069	return error;
3070#undef DS2PHYS
3071#undef ATH_DESC_4KB_BOUND_CHECK
3072}
3073
3074static void
3075ath_descdma_cleanup(struct ath_softc *sc,
3076	struct ath_descdma *dd, ath_bufhead *head)
3077{
3078	struct ath_buf *bf;
3079	struct ieee80211_node *ni;
3080
3081	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3082	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3083	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3084	bus_dma_tag_destroy(dd->dd_dmat);
3085
3086	STAILQ_FOREACH(bf, head, bf_list) {
3087		if (bf->bf_m) {
3088			m_freem(bf->bf_m);
3089			bf->bf_m = NULL;
3090		}
3091		if (bf->bf_dmamap != NULL) {
3092			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3093			bf->bf_dmamap = NULL;
3094		}
3095		ni = bf->bf_node;
3096		bf->bf_node = NULL;
3097		if (ni != NULL) {
3098			/*
3099			 * Reclaim node reference.
3100			 */
3101			ieee80211_free_node(ni);
3102		}
3103	}
3104
3105	STAILQ_INIT(head);
3106	free(dd->dd_bufptr, M_ATHDEV);
3107	memset(dd, 0, sizeof(*dd));
3108}
3109
3110static int
3111ath_desc_alloc(struct ath_softc *sc)
3112{
3113	int error;
3114
3115	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3116			"rx", ath_rxbuf, 1);
3117	if (error != 0)
3118		return error;
3119
3120	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3121			"tx", ath_txbuf, ATH_TXDESC);
3122	if (error != 0) {
3123		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3124		return error;
3125	}
3126
3127	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3128			"beacon", ATH_BCBUF, 1);
3129	if (error != 0) {
3130		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3131		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3132		return error;
3133	}
3134	return 0;
3135}
3136
3137static void
3138ath_desc_free(struct ath_softc *sc)
3139{
3140
3141	if (sc->sc_bdma.dd_desc_len != 0)
3142		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3143	if (sc->sc_txdma.dd_desc_len != 0)
3144		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3145	if (sc->sc_rxdma.dd_desc_len != 0)
3146		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3147}
3148
3149static struct ieee80211_node *
3150ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3151{
3152	struct ieee80211com *ic = vap->iv_ic;
3153	struct ath_softc *sc = ic->ic_ifp->if_softc;
3154	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3155	struct ath_node *an;
3156
3157	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3158	if (an == NULL) {
3159		/* XXX stat+msg */
3160		return NULL;
3161	}
3162	ath_rate_node_init(sc, an);
3163
3164	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3165	return &an->an_node;
3166}
3167
3168static void
3169ath_node_free(struct ieee80211_node *ni)
3170{
3171	struct ieee80211com *ic = ni->ni_ic;
3172        struct ath_softc *sc = ic->ic_ifp->if_softc;
3173
3174	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3175
3176	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3177	sc->sc_node_free(ni);
3178}
3179
3180static void
3181ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3182{
3183	struct ieee80211com *ic = ni->ni_ic;
3184	struct ath_softc *sc = ic->ic_ifp->if_softc;
3185	struct ath_hal *ah = sc->sc_ah;
3186
3187	*rssi = ic->ic_node_getrssi(ni);
3188	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3189		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3190	else
3191		*noise = -95;		/* nominally correct */
3192}
3193
3194static int
3195ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3196{
3197	struct ath_hal *ah = sc->sc_ah;
3198	int error;
3199	struct mbuf *m;
3200	struct ath_desc *ds;
3201
3202	m = bf->bf_m;
3203	if (m == NULL) {
3204		/*
3205		 * NB: by assigning a page to the rx dma buffer we
3206		 * implicitly satisfy the Atheros requirement that
3207		 * this buffer be cache-line-aligned and sized to be
3208		 * multiple of the cache line size.  Not doing this
3209		 * causes weird stuff to happen (for the 5210 at least).
3210		 */
3211		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3212		if (m == NULL) {
3213			DPRINTF(sc, ATH_DEBUG_ANY,
3214				"%s: no mbuf/cluster\n", __func__);
3215			sc->sc_stats.ast_rx_nombuf++;
3216			return ENOMEM;
3217		}
3218		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3219
3220		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3221					     bf->bf_dmamap, m,
3222					     bf->bf_segs, &bf->bf_nseg,
3223					     BUS_DMA_NOWAIT);
3224		if (error != 0) {
3225			DPRINTF(sc, ATH_DEBUG_ANY,
3226			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3227			    __func__, error);
3228			sc->sc_stats.ast_rx_busdma++;
3229			m_freem(m);
3230			return error;
3231		}
3232		KASSERT(bf->bf_nseg == 1,
3233			("multi-segment packet; nseg %u", bf->bf_nseg));
3234		bf->bf_m = m;
3235	}
3236	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3237
3238	/*
3239	 * Setup descriptors.  For receive we always terminate
3240	 * the descriptor list with a self-linked entry so we'll
3241	 * not get overrun under high load (as can happen with a
3242	 * 5212 when ANI processing enables PHY error frames).
3243	 *
3244	 * To insure the last descriptor is self-linked we create
3245	 * each descriptor as self-linked and add it to the end.  As
3246	 * each additional descriptor is added the previous self-linked
3247	 * entry is ``fixed'' naturally.  This should be safe even
3248	 * if DMA is happening.  When processing RX interrupts we
3249	 * never remove/process the last, self-linked, entry on the
3250	 * descriptor list.  This insures the hardware always has
3251	 * someplace to write a new frame.
3252	 */
3253	/*
3254	 * 11N: we can no longer afford to self link the last descriptor.
3255	 * MAC acknowledges BA status as long as it copies frames to host
3256	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3257	 * to a sender if last desc is self-linked.
3258	 */
3259	ds = bf->bf_desc;
3260	if (sc->sc_rxslink)
3261		ds->ds_link = bf->bf_daddr;	/* link to self */
3262	else
3263		ds->ds_link = 0;		/* terminate the list */
3264	ds->ds_data = bf->bf_segs[0].ds_addr;
3265	ath_hal_setuprxdesc(ah, ds
3266		, m->m_len		/* buffer size */
3267		, 0
3268	);
3269
3270	if (sc->sc_rxlink != NULL)
3271		*sc->sc_rxlink = bf->bf_daddr;
3272	sc->sc_rxlink = &ds->ds_link;
3273	return 0;
3274}
3275
3276/*
3277 * Extend 15-bit time stamp from rx descriptor to
3278 * a full 64-bit TSF using the specified TSF.
3279 */
3280static __inline u_int64_t
3281ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3282{
3283	if ((tsf & 0x7fff) < rstamp)
3284		tsf -= 0x8000;
3285
3286	return ((tsf &~ 0x7fff) | rstamp);
3287}
3288
3289/*
3290 * Extend 32-bit time stamp from rx descriptor to
3291 * a full 64-bit TSF using the specified TSF.
3292 */
3293static __inline u_int64_t
3294ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3295{
3296	u_int32_t tsf_low = tsf & 0xffffffff;
3297	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3298
3299	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3300		tsf64 -= 0x100000000ULL;
3301
3302	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3303		tsf64 += 0x100000000ULL;
3304
3305	return tsf64;
3306}
3307
3308/*
3309 * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3310 * Earlier hardware versions only wrote the low 15 bits of the
3311 * TSF into the RX descriptor; later versions (AR5416 and up)
3312 * include the 32 bit TSF value.
3313 */
3314static __inline u_int64_t
3315ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3316{
3317	if (sc->sc_rxtsf32)
3318		return ath_extend_tsf32(rstamp, tsf);
3319	else
3320		return ath_extend_tsf15(rstamp, tsf);
3321}
3322
3323/*
3324 * Intercept management frames to collect beacon rssi data
3325 * and to do ibss merges.
3326 */
3327static void
3328ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3329	int subtype, int rssi, int nf)
3330{
3331	struct ieee80211vap *vap = ni->ni_vap;
3332	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3333
3334	/*
3335	 * Call up first so subsequent work can use information
3336	 * potentially stored in the node (e.g. for ibss merge).
3337	 */
3338	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3339	switch (subtype) {
3340	case IEEE80211_FC0_SUBTYPE_BEACON:
3341		/* update rssi statistics for use by the hal */
3342		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3343		if (sc->sc_syncbeacon &&
3344		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3345			/*
3346			 * Resync beacon timers using the tsf of the beacon
3347			 * frame we just received.
3348			 */
3349			ath_beacon_config(sc, vap);
3350		}
3351		/* fall thru... */
3352	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3353		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3354		    vap->iv_state == IEEE80211_S_RUN) {
3355			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3356			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3357				ath_hal_gettsf64(sc->sc_ah));
3358			/*
3359			 * Handle ibss merge as needed; check the tsf on the
3360			 * frame before attempting the merge.  The 802.11 spec
3361			 * says the station should change it's bssid to match
3362			 * the oldest station with the same ssid, where oldest
3363			 * is determined by the tsf.  Note that hardware
3364			 * reconfiguration happens through callback to
3365			 * ath_newstate as the state machine will go from
3366			 * RUN -> RUN when this happens.
3367			 */
3368			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3369				DPRINTF(sc, ATH_DEBUG_STATE,
3370				    "ibss merge, rstamp %u tsf %ju "
3371				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3372				    (uintmax_t)ni->ni_tstamp.tsf);
3373				(void) ieee80211_ibss_merge(ni);
3374			}
3375		}
3376		break;
3377	}
3378}
3379
3380/*
3381 * Set the default antenna.
3382 */
3383static void
3384ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3385{
3386	struct ath_hal *ah = sc->sc_ah;
3387
3388	/* XXX block beacon interrupts */
3389	ath_hal_setdefantenna(ah, antenna);
3390	if (sc->sc_defant != antenna)
3391		sc->sc_stats.ast_ant_defswitch++;
3392	sc->sc_defant = antenna;
3393	sc->sc_rxotherant = 0;
3394}
3395
3396static void
3397ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3398	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3399{
3400#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3401#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3402#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3403#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3404	struct ath_softc *sc = ifp->if_softc;
3405	const HAL_RATE_TABLE *rt;
3406	uint8_t rix;
3407
3408	rt = sc->sc_currates;
3409	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3410	rix = rt->rateCodeToIndex[rs->rs_rate];
3411	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3412	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3413#ifdef AH_SUPPORT_AR5416
3414	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3415	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3416		struct ieee80211com *ic = ifp->if_l2com;
3417
3418		if ((rs->rs_flags & HAL_RX_2040) == 0)
3419			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3420		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3421			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3422		else
3423			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3424		if ((rs->rs_flags & HAL_RX_GI) == 0)
3425			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3426	}
3427#endif
3428	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3429	if (rs->rs_status & HAL_RXERR_CRC)
3430		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3431	/* XXX propagate other error flags from descriptor */
3432	sc->sc_rx_th.wr_antnoise = nf;
3433	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3434	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3435#undef CHAN_HT
3436#undef CHAN_HT20
3437#undef CHAN_HT40U
3438#undef CHAN_HT40D
3439}
3440
3441static void
3442ath_handle_micerror(struct ieee80211com *ic,
3443	struct ieee80211_frame *wh, int keyix)
3444{
3445	struct ieee80211_node *ni;
3446
3447	/* XXX recheck MIC to deal w/ chips that lie */
3448	/* XXX discard MIC errors on !data frames */
3449	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3450	if (ni != NULL) {
3451		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3452		ieee80211_free_node(ni);
3453	}
3454}
3455
3456static void
3457ath_rx_proc(void *arg, int npending)
3458{
3459#define	PA2DESC(_sc, _pa) \
3460	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3461		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3462	struct ath_softc *sc = arg;
3463	struct ath_buf *bf;
3464	struct ifnet *ifp = sc->sc_ifp;
3465	struct ieee80211com *ic = ifp->if_l2com;
3466	struct ath_hal *ah = sc->sc_ah;
3467	struct ath_desc *ds;
3468	struct ath_rx_status *rs;
3469	struct mbuf *m;
3470	struct ieee80211_node *ni;
3471	int len, type, ngood;
3472	HAL_STATUS status;
3473	int16_t nf;
3474	u_int64_t tsf;
3475
3476	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3477	ngood = 0;
3478	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3479	sc->sc_stats.ast_rx_noise = nf;
3480	tsf = ath_hal_gettsf64(ah);
3481	do {
3482		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3483		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3484			if_printf(ifp, "%s: no buffer!\n", __func__);
3485			break;
3486		} else if (bf == NULL) {
3487			/*
3488			 * End of List:
3489			 * this can happen for non-self-linked RX chains
3490			 */
3491			sc->sc_stats.ast_rx_hitqueueend++;
3492			break;
3493		}
3494		m = bf->bf_m;
3495		if (m == NULL) {		/* NB: shouldn't happen */
3496			/*
3497			 * If mbuf allocation failed previously there
3498			 * will be no mbuf; try again to re-populate it.
3499			 */
3500			/* XXX make debug msg */
3501			if_printf(ifp, "%s: no mbuf!\n", __func__);
3502			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3503			goto rx_next;
3504		}
3505		ds = bf->bf_desc;
3506		if (ds->ds_link == bf->bf_daddr) {
3507			/* NB: never process the self-linked entry at the end */
3508			sc->sc_stats.ast_rx_hitqueueend++;
3509			break;
3510		}
3511		/* XXX sync descriptor memory */
3512		/*
3513		 * Must provide the virtual address of the current
3514		 * descriptor, the physical address, and the virtual
3515		 * address of the next descriptor in the h/w chain.
3516		 * This allows the HAL to look ahead to see if the
3517		 * hardware is done with a descriptor by checking the
3518		 * done bit in the following descriptor and the address
3519		 * of the current descriptor the DMA engine is working
3520		 * on.  All this is necessary because of our use of
3521		 * a self-linked list to avoid rx overruns.
3522		 */
3523		rs = &bf->bf_status.ds_rxstat;
3524		status = ath_hal_rxprocdesc(ah, ds,
3525				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3526#ifdef ATH_DEBUG
3527		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3528			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3529#endif
3530		if (status == HAL_EINPROGRESS)
3531			break;
3532		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3533
3534		/* These aren't specifically errors */
3535		if (rs->rs_flags & HAL_RX_GI)
3536			sc->sc_stats.ast_rx_halfgi++;
3537		if (rs->rs_flags & HAL_RX_2040)
3538			sc->sc_stats.ast_rx_2040++;
3539		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3540			sc->sc_stats.ast_rx_pre_crc_err++;
3541		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3542			sc->sc_stats.ast_rx_post_crc_err++;
3543		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3544			sc->sc_stats.ast_rx_decrypt_busy_err++;
3545		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3546			sc->sc_stats.ast_rx_hi_rx_chain++;
3547
3548		if (rs->rs_status != 0) {
3549			if (rs->rs_status & HAL_RXERR_CRC)
3550				sc->sc_stats.ast_rx_crcerr++;
3551			if (rs->rs_status & HAL_RXERR_FIFO)
3552				sc->sc_stats.ast_rx_fifoerr++;
3553			if (rs->rs_status & HAL_RXERR_PHY) {
3554				sc->sc_stats.ast_rx_phyerr++;
3555				/* Process DFS radar events */
3556				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
3557				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
3558					/* Since we're touching the frame data, sync it */
3559					bus_dmamap_sync(sc->sc_dmat,
3560					    bf->bf_dmamap,
3561					    BUS_DMASYNC_POSTREAD);
3562					/* Now pass it to the radar processing code */
3563					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
3564				}
3565
3566				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3567				if (rs->rs_phyerr < 64)
3568					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3569				goto rx_error;	/* NB: don't count in ierrors */
3570			}
3571			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3572				/*
3573				 * Decrypt error.  If the error occurred
3574				 * because there was no hardware key, then
3575				 * let the frame through so the upper layers
3576				 * can process it.  This is necessary for 5210
3577				 * parts which have no way to setup a ``clear''
3578				 * key cache entry.
3579				 *
3580				 * XXX do key cache faulting
3581				 */
3582				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3583					goto rx_accept;
3584				sc->sc_stats.ast_rx_badcrypt++;
3585			}
3586			if (rs->rs_status & HAL_RXERR_MIC) {
3587				sc->sc_stats.ast_rx_badmic++;
3588				/*
3589				 * Do minimal work required to hand off
3590				 * the 802.11 header for notification.
3591				 */
3592				/* XXX frag's and qos frames */
3593				len = rs->rs_datalen;
3594				if (len >= sizeof (struct ieee80211_frame)) {
3595					bus_dmamap_sync(sc->sc_dmat,
3596					    bf->bf_dmamap,
3597					    BUS_DMASYNC_POSTREAD);
3598					ath_handle_micerror(ic,
3599					    mtod(m, struct ieee80211_frame *),
3600					    sc->sc_splitmic ?
3601						rs->rs_keyix-32 : rs->rs_keyix);
3602				}
3603			}
3604			ifp->if_ierrors++;
3605rx_error:
3606			/*
3607			 * Cleanup any pending partial frame.
3608			 */
3609			if (sc->sc_rxpending != NULL) {
3610				m_freem(sc->sc_rxpending);
3611				sc->sc_rxpending = NULL;
3612			}
3613			/*
3614			 * When a tap is present pass error frames
3615			 * that have been requested.  By default we
3616			 * pass decrypt+mic errors but others may be
3617			 * interesting (e.g. crc).
3618			 */
3619			if (ieee80211_radiotap_active(ic) &&
3620			    (rs->rs_status & sc->sc_monpass)) {
3621				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3622				    BUS_DMASYNC_POSTREAD);
3623				/* NB: bpf needs the mbuf length setup */
3624				len = rs->rs_datalen;
3625				m->m_pkthdr.len = m->m_len = len;
3626				ath_rx_tap(ifp, m, rs, tsf, nf);
3627				ieee80211_radiotap_rx_all(ic, m);
3628			}
3629			/* XXX pass MIC errors up for s/w reclaculation */
3630			goto rx_next;
3631		}
3632rx_accept:
3633		/*
3634		 * Sync and unmap the frame.  At this point we're
3635		 * committed to passing the mbuf somewhere so clear
3636		 * bf_m; this means a new mbuf must be allocated
3637		 * when the rx descriptor is setup again to receive
3638		 * another frame.
3639		 */
3640		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3641		    BUS_DMASYNC_POSTREAD);
3642		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3643		bf->bf_m = NULL;
3644
3645		len = rs->rs_datalen;
3646		m->m_len = len;
3647
3648		if (rs->rs_more) {
3649			/*
3650			 * Frame spans multiple descriptors; save
3651			 * it for the next completed descriptor, it
3652			 * will be used to construct a jumbogram.
3653			 */
3654			if (sc->sc_rxpending != NULL) {
3655				/* NB: max frame size is currently 2 clusters */
3656				sc->sc_stats.ast_rx_toobig++;
3657				m_freem(sc->sc_rxpending);
3658			}
3659			m->m_pkthdr.rcvif = ifp;
3660			m->m_pkthdr.len = len;
3661			sc->sc_rxpending = m;
3662			goto rx_next;
3663		} else if (sc->sc_rxpending != NULL) {
3664			/*
3665			 * This is the second part of a jumbogram,
3666			 * chain it to the first mbuf, adjust the
3667			 * frame length, and clear the rxpending state.
3668			 */
3669			sc->sc_rxpending->m_next = m;
3670			sc->sc_rxpending->m_pkthdr.len += len;
3671			m = sc->sc_rxpending;
3672			sc->sc_rxpending = NULL;
3673		} else {
3674			/*
3675			 * Normal single-descriptor receive; setup
3676			 * the rcvif and packet length.
3677			 */
3678			m->m_pkthdr.rcvif = ifp;
3679			m->m_pkthdr.len = len;
3680		}
3681
3682		ifp->if_ipackets++;
3683		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3684
3685		/*
3686		 * Populate the rx status block.  When there are bpf
3687		 * listeners we do the additional work to provide
3688		 * complete status.  Otherwise we fill in only the
3689		 * material required by ieee80211_input.  Note that
3690		 * noise setting is filled in above.
3691		 */
3692		if (ieee80211_radiotap_active(ic))
3693			ath_rx_tap(ifp, m, rs, tsf, nf);
3694
3695		/*
3696		 * From this point on we assume the frame is at least
3697		 * as large as ieee80211_frame_min; verify that.
3698		 */
3699		if (len < IEEE80211_MIN_LEN) {
3700			if (!ieee80211_radiotap_active(ic)) {
3701				DPRINTF(sc, ATH_DEBUG_RECV,
3702				    "%s: short packet %d\n", __func__, len);
3703				sc->sc_stats.ast_rx_tooshort++;
3704			} else {
3705				/* NB: in particular this captures ack's */
3706				ieee80211_radiotap_rx_all(ic, m);
3707			}
3708			m_freem(m);
3709			goto rx_next;
3710		}
3711
3712		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3713			const HAL_RATE_TABLE *rt = sc->sc_currates;
3714			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3715
3716			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3717			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3718		}
3719
3720		m_adj(m, -IEEE80211_CRC_LEN);
3721
3722		/*
3723		 * Locate the node for sender, track state, and then
3724		 * pass the (referenced) node up to the 802.11 layer
3725		 * for its use.
3726		 */
3727		ni = ieee80211_find_rxnode_withkey(ic,
3728			mtod(m, const struct ieee80211_frame_min *),
3729			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3730				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3731		sc->sc_lastrs = rs;
3732
3733		if (rs->rs_isaggr)
3734			sc->sc_stats.ast_rx_agg++;
3735
3736		if (ni != NULL) {
3737			/*
3738 			 * Only punt packets for ampdu reorder processing for
3739			 * 11n nodes; net80211 enforces that M_AMPDU is only
3740			 * set for 11n nodes.
3741 			 */
3742			if (ni->ni_flags & IEEE80211_NODE_HT)
3743				m->m_flags |= M_AMPDU;
3744
3745			/*
3746			 * Sending station is known, dispatch directly.
3747			 */
3748			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3749			ieee80211_free_node(ni);
3750			/*
3751			 * Arrange to update the last rx timestamp only for
3752			 * frames from our ap when operating in station mode.
3753			 * This assumes the rx key is always setup when
3754			 * associated.
3755			 */
3756			if (ic->ic_opmode == IEEE80211_M_STA &&
3757			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3758				ngood++;
3759		} else {
3760			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3761		}
3762		/*
3763		 * Track rx rssi and do any rx antenna management.
3764		 */
3765		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3766		if (sc->sc_diversity) {
3767			/*
3768			 * When using fast diversity, change the default rx
3769			 * antenna if diversity chooses the other antenna 3
3770			 * times in a row.
3771			 */
3772			if (sc->sc_defant != rs->rs_antenna) {
3773				if (++sc->sc_rxotherant >= 3)
3774					ath_setdefantenna(sc, rs->rs_antenna);
3775			} else
3776				sc->sc_rxotherant = 0;
3777		}
3778
3779		/* Newer school diversity - kite specific for now */
3780		/* XXX perhaps migrate the normal diversity code to this? */
3781		if ((ah)->ah_rxAntCombDiversity)
3782			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
3783
3784		if (sc->sc_softled) {
3785			/*
3786			 * Blink for any data frame.  Otherwise do a
3787			 * heartbeat-style blink when idle.  The latter
3788			 * is mainly for station mode where we depend on
3789			 * periodic beacon frames to trigger the poll event.
3790			 */
3791			if (type == IEEE80211_FC0_TYPE_DATA) {
3792				const HAL_RATE_TABLE *rt = sc->sc_currates;
3793				ath_led_event(sc,
3794				    rt->rateCodeToIndex[rs->rs_rate]);
3795			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3796				ath_led_event(sc, 0);
3797		}
3798rx_next:
3799		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3800	} while (ath_rxbuf_init(sc, bf) == 0);
3801
3802	/* rx signal state monitoring */
3803	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
3804	if (ngood)
3805		sc->sc_lastrx = tsf;
3806
3807	/* Queue DFS tasklet if needed */
3808	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
3809		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
3810
3811	/*
3812	 * Now that all the RX frames were handled that
3813	 * need to be handled, kick the PCU if there's
3814	 * been an RXEOL condition.
3815	 */
3816	if (sc->sc_kickpcu) {
3817		sc->sc_kickpcu = 0;
3818		ath_stoprecv(sc);
3819		sc->sc_imask |= (HAL_INT_RXEOL | HAL_INT_RXORN);
3820		if (ath_startrecv(sc) != 0) {
3821			if_printf(ifp,
3822			    "%s: couldn't restart RX after RXEOL; resetting\n",
3823			    __func__);
3824			ath_reset(ifp);
3825			return;
3826		}
3827		ath_hal_intrset(ah, sc->sc_imask);
3828	}
3829
3830	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
3831#ifdef IEEE80211_SUPPORT_SUPERG
3832		ieee80211_ff_age_all(ic, 100);
3833#endif
3834		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3835			ath_start(ifp);
3836	}
3837#undef PA2DESC
3838}
3839
3840static void
3841ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3842{
3843	txq->axq_qnum = qnum;
3844	txq->axq_ac = 0;
3845	txq->axq_depth = 0;
3846	txq->axq_intrcnt = 0;
3847	txq->axq_link = NULL;
3848	STAILQ_INIT(&txq->axq_q);
3849	ATH_TXQ_LOCK_INIT(sc, txq);
3850}
3851
3852/*
3853 * Setup a h/w transmit queue.
3854 */
3855static struct ath_txq *
3856ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3857{
3858#define	N(a)	(sizeof(a)/sizeof(a[0]))
3859	struct ath_hal *ah = sc->sc_ah;
3860	HAL_TXQ_INFO qi;
3861	int qnum;
3862
3863	memset(&qi, 0, sizeof(qi));
3864	qi.tqi_subtype = subtype;
3865	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3866	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3867	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3868	/*
3869	 * Enable interrupts only for EOL and DESC conditions.
3870	 * We mark tx descriptors to receive a DESC interrupt
3871	 * when a tx queue gets deep; otherwise waiting for the
3872	 * EOL to reap descriptors.  Note that this is done to
3873	 * reduce interrupt load and this only defers reaping
3874	 * descriptors, never transmitting frames.  Aside from
3875	 * reducing interrupts this also permits more concurrency.
3876	 * The only potential downside is if the tx queue backs
3877	 * up in which case the top half of the kernel may backup
3878	 * due to a lack of tx descriptors.
3879	 */
3880	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3881	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3882	if (qnum == -1) {
3883		/*
3884		 * NB: don't print a message, this happens
3885		 * normally on parts with too few tx queues
3886		 */
3887		return NULL;
3888	}
3889	if (qnum >= N(sc->sc_txq)) {
3890		device_printf(sc->sc_dev,
3891			"hal qnum %u out of range, max %zu!\n",
3892			qnum, N(sc->sc_txq));
3893		ath_hal_releasetxqueue(ah, qnum);
3894		return NULL;
3895	}
3896	if (!ATH_TXQ_SETUP(sc, qnum)) {
3897		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3898		sc->sc_txqsetup |= 1<<qnum;
3899	}
3900	return &sc->sc_txq[qnum];
3901#undef N
3902}
3903
3904/*
3905 * Setup a hardware data transmit queue for the specified
3906 * access control.  The hal may not support all requested
3907 * queues in which case it will return a reference to a
3908 * previously setup queue.  We record the mapping from ac's
3909 * to h/w queues for use by ath_tx_start and also track
3910 * the set of h/w queues being used to optimize work in the
3911 * transmit interrupt handler and related routines.
3912 */
3913static int
3914ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3915{
3916#define	N(a)	(sizeof(a)/sizeof(a[0]))
3917	struct ath_txq *txq;
3918
3919	if (ac >= N(sc->sc_ac2q)) {
3920		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3921			ac, N(sc->sc_ac2q));
3922		return 0;
3923	}
3924	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3925	if (txq != NULL) {
3926		txq->axq_ac = ac;
3927		sc->sc_ac2q[ac] = txq;
3928		return 1;
3929	} else
3930		return 0;
3931#undef N
3932}
3933
3934/*
3935 * Update WME parameters for a transmit queue.
3936 */
3937static int
3938ath_txq_update(struct ath_softc *sc, int ac)
3939{
3940#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3941#define	ATH_TXOP_TO_US(v)		(v<<5)
3942	struct ifnet *ifp = sc->sc_ifp;
3943	struct ieee80211com *ic = ifp->if_l2com;
3944	struct ath_txq *txq = sc->sc_ac2q[ac];
3945	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3946	struct ath_hal *ah = sc->sc_ah;
3947	HAL_TXQ_INFO qi;
3948
3949	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3950#ifdef IEEE80211_SUPPORT_TDMA
3951	if (sc->sc_tdma) {
3952		/*
3953		 * AIFS is zero so there's no pre-transmit wait.  The
3954		 * burst time defines the slot duration and is configured
3955		 * through net80211.  The QCU is setup to not do post-xmit
3956		 * back off, lockout all lower-priority QCU's, and fire
3957		 * off the DMA beacon alert timer which is setup based
3958		 * on the slot configuration.
3959		 */
3960		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3961			      | HAL_TXQ_TXERRINT_ENABLE
3962			      | HAL_TXQ_TXURNINT_ENABLE
3963			      | HAL_TXQ_TXEOLINT_ENABLE
3964			      | HAL_TXQ_DBA_GATED
3965			      | HAL_TXQ_BACKOFF_DISABLE
3966			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3967			      ;
3968		qi.tqi_aifs = 0;
3969		/* XXX +dbaprep? */
3970		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3971		qi.tqi_burstTime = qi.tqi_readyTime;
3972	} else {
3973#endif
3974		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3975			      | HAL_TXQ_TXERRINT_ENABLE
3976			      | HAL_TXQ_TXDESCINT_ENABLE
3977			      | HAL_TXQ_TXURNINT_ENABLE
3978			      ;
3979		qi.tqi_aifs = wmep->wmep_aifsn;
3980		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3981		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3982		qi.tqi_readyTime = 0;
3983		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3984#ifdef IEEE80211_SUPPORT_TDMA
3985	}
3986#endif
3987
3988	DPRINTF(sc, ATH_DEBUG_RESET,
3989	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3990	    __func__, txq->axq_qnum, qi.tqi_qflags,
3991	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3992
3993	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3994		if_printf(ifp, "unable to update hardware queue "
3995			"parameters for %s traffic!\n",
3996			ieee80211_wme_acnames[ac]);
3997		return 0;
3998	} else {
3999		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4000		return 1;
4001	}
4002#undef ATH_TXOP_TO_US
4003#undef ATH_EXPONENT_TO_VALUE
4004}
4005
4006/*
4007 * Callback from the 802.11 layer to update WME parameters.
4008 */
4009static int
4010ath_wme_update(struct ieee80211com *ic)
4011{
4012	struct ath_softc *sc = ic->ic_ifp->if_softc;
4013
4014	return !ath_txq_update(sc, WME_AC_BE) ||
4015	    !ath_txq_update(sc, WME_AC_BK) ||
4016	    !ath_txq_update(sc, WME_AC_VI) ||
4017	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4018}
4019
4020/*
4021 * Reclaim resources for a setup queue.
4022 */
4023static void
4024ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4025{
4026
4027	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4028	ATH_TXQ_LOCK_DESTROY(txq);
4029	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4030}
4031
4032/*
4033 * Reclaim all tx queue resources.
4034 */
4035static void
4036ath_tx_cleanup(struct ath_softc *sc)
4037{
4038	int i;
4039
4040	ATH_TXBUF_LOCK_DESTROY(sc);
4041	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4042		if (ATH_TXQ_SETUP(sc, i))
4043			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4044}
4045
4046/*
4047 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4048 * using the current rates in sc_rixmap.
4049 */
4050int
4051ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4052{
4053	int rix = sc->sc_rixmap[rate];
4054	/* NB: return lowest rix for invalid rate */
4055	return (rix == 0xff ? 0 : rix);
4056}
4057
4058/*
4059 * Process completed xmit descriptors from the specified queue.
4060 */
4061static int
4062ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4063{
4064	struct ath_hal *ah = sc->sc_ah;
4065	struct ifnet *ifp = sc->sc_ifp;
4066	struct ieee80211com *ic = ifp->if_l2com;
4067	struct ath_buf *bf, *last;
4068	struct ath_desc *ds, *ds0;
4069	struct ath_tx_status *ts;
4070	struct ieee80211_node *ni;
4071	struct ath_node *an;
4072	int sr, lr, pri, nacked;
4073	HAL_STATUS status;
4074
4075	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4076		__func__, txq->axq_qnum,
4077		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4078		txq->axq_link);
4079	nacked = 0;
4080	for (;;) {
4081		ATH_TXQ_LOCK(txq);
4082		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4083		bf = STAILQ_FIRST(&txq->axq_q);
4084		if (bf == NULL) {
4085			ATH_TXQ_UNLOCK(txq);
4086			break;
4087		}
4088		ds0 = &bf->bf_desc[0];
4089		ds = &bf->bf_desc[bf->bf_nseg - 1];
4090		ts = &bf->bf_status.ds_txstat;
4091		status = ath_hal_txprocdesc(ah, ds, ts);
4092#ifdef ATH_DEBUG
4093		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4094			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4095			    status == HAL_OK);
4096#endif
4097		if (status == HAL_EINPROGRESS) {
4098			ATH_TXQ_UNLOCK(txq);
4099			break;
4100		}
4101		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4102#ifdef IEEE80211_SUPPORT_TDMA
4103		if (txq->axq_depth > 0) {
4104			/*
4105			 * More frames follow.  Mark the buffer busy
4106			 * so it's not re-used while the hardware may
4107			 * still re-read the link field in the descriptor.
4108			 */
4109			bf->bf_flags |= ATH_BUF_BUSY;
4110		} else
4111#else
4112		if (txq->axq_depth == 0)
4113#endif
4114			txq->axq_link = NULL;
4115		ATH_TXQ_UNLOCK(txq);
4116
4117		ni = bf->bf_node;
4118		if (ni != NULL) {
4119			an = ATH_NODE(ni);
4120			if (ts->ts_status == 0) {
4121				u_int8_t txant = ts->ts_antenna;
4122				sc->sc_stats.ast_ant_tx[txant]++;
4123				sc->sc_ant_tx[txant]++;
4124				if (ts->ts_finaltsi != 0)
4125					sc->sc_stats.ast_tx_altrate++;
4126				pri = M_WME_GETAC(bf->bf_m);
4127				if (pri >= WME_AC_VO)
4128					ic->ic_wme.wme_hipri_traffic++;
4129				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4130					ni->ni_inact = ni->ni_inact_reload;
4131			} else {
4132				if (ts->ts_status & HAL_TXERR_XRETRY)
4133					sc->sc_stats.ast_tx_xretries++;
4134				if (ts->ts_status & HAL_TXERR_FIFO)
4135					sc->sc_stats.ast_tx_fifoerr++;
4136				if (ts->ts_status & HAL_TXERR_FILT)
4137					sc->sc_stats.ast_tx_filtered++;
4138				if (ts->ts_status & HAL_TXERR_XTXOP)
4139					sc->sc_stats.ast_tx_xtxop++;
4140				if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4141					sc->sc_stats.ast_tx_timerexpired++;
4142
4143				/* XXX HAL_TX_DATA_UNDERRUN */
4144				/* XXX HAL_TX_DELIM_UNDERRUN */
4145
4146				if (bf->bf_m->m_flags & M_FF)
4147					sc->sc_stats.ast_ff_txerr++;
4148			}
4149			/* XXX when is this valid? */
4150			if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4151				sc->sc_stats.ast_tx_desccfgerr++;
4152
4153			sr = ts->ts_shortretry;
4154			lr = ts->ts_longretry;
4155			sc->sc_stats.ast_tx_shortretry += sr;
4156			sc->sc_stats.ast_tx_longretry += lr;
4157			/*
4158			 * Hand the descriptor to the rate control algorithm.
4159			 */
4160			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4161			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4162				/*
4163				 * If frame was ack'd update statistics,
4164				 * including the last rx time used to
4165				 * workaround phantom bmiss interrupts.
4166				 */
4167				if (ts->ts_status == 0) {
4168					nacked++;
4169					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4170					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4171						ts->ts_rssi);
4172				}
4173				ath_rate_tx_complete(sc, an, bf);
4174			}
4175			/*
4176			 * Do any tx complete callback.  Note this must
4177			 * be done before releasing the node reference.
4178			 */
4179			if (bf->bf_m->m_flags & M_TXCB)
4180				ieee80211_process_callback(ni, bf->bf_m,
4181				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4182				        ts->ts_status : HAL_TXERR_XRETRY);
4183			ieee80211_free_node(ni);
4184		}
4185		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4186		    BUS_DMASYNC_POSTWRITE);
4187		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4188
4189		m_freem(bf->bf_m);
4190		bf->bf_m = NULL;
4191		bf->bf_node = NULL;
4192
4193		ATH_TXBUF_LOCK(sc);
4194		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4195		if (last != NULL)
4196			last->bf_flags &= ~ATH_BUF_BUSY;
4197		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4198		ATH_TXBUF_UNLOCK(sc);
4199	}
4200#ifdef IEEE80211_SUPPORT_SUPERG
4201	/*
4202	 * Flush fast-frame staging queue when traffic slows.
4203	 */
4204	if (txq->axq_depth <= 1)
4205		ieee80211_ff_flush(ic, txq->axq_ac);
4206#endif
4207	return nacked;
4208}
4209
4210static __inline int
4211txqactive(struct ath_hal *ah, int qnum)
4212{
4213	u_int32_t txqs = 1<<qnum;
4214	ath_hal_gettxintrtxqs(ah, &txqs);
4215	return (txqs & (1<<qnum));
4216}
4217
4218/*
4219 * Deferred processing of transmit interrupt; special-cased
4220 * for a single hardware transmit queue (e.g. 5210 and 5211).
4221 */
4222static void
4223ath_tx_proc_q0(void *arg, int npending)
4224{
4225	struct ath_softc *sc = arg;
4226	struct ifnet *ifp = sc->sc_ifp;
4227
4228	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4229		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4230	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4231		ath_tx_processq(sc, sc->sc_cabq);
4232	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4233	sc->sc_wd_timer = 0;
4234
4235	if (sc->sc_softled)
4236		ath_led_event(sc, sc->sc_txrix);
4237
4238	ath_start(ifp);
4239}
4240
4241/*
4242 * Deferred processing of transmit interrupt; special-cased
4243 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4244 */
4245static void
4246ath_tx_proc_q0123(void *arg, int npending)
4247{
4248	struct ath_softc *sc = arg;
4249	struct ifnet *ifp = sc->sc_ifp;
4250	int nacked;
4251
4252	/*
4253	 * Process each active queue.
4254	 */
4255	nacked = 0;
4256	if (txqactive(sc->sc_ah, 0))
4257		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4258	if (txqactive(sc->sc_ah, 1))
4259		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4260	if (txqactive(sc->sc_ah, 2))
4261		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4262	if (txqactive(sc->sc_ah, 3))
4263		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4264	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4265		ath_tx_processq(sc, sc->sc_cabq);
4266	if (nacked)
4267		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4268
4269	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4270	sc->sc_wd_timer = 0;
4271
4272	if (sc->sc_softled)
4273		ath_led_event(sc, sc->sc_txrix);
4274
4275	ath_start(ifp);
4276}
4277
4278/*
4279 * Deferred processing of transmit interrupt.
4280 */
4281static void
4282ath_tx_proc(void *arg, int npending)
4283{
4284	struct ath_softc *sc = arg;
4285	struct ifnet *ifp = sc->sc_ifp;
4286	int i, nacked;
4287
4288	/*
4289	 * Process each active queue.
4290	 */
4291	nacked = 0;
4292	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4293		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4294			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4295	if (nacked)
4296		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4297
4298	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4299	sc->sc_wd_timer = 0;
4300
4301	if (sc->sc_softled)
4302		ath_led_event(sc, sc->sc_txrix);
4303
4304	ath_start(ifp);
4305}
4306
4307static void
4308ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4309{
4310#ifdef ATH_DEBUG
4311	struct ath_hal *ah = sc->sc_ah;
4312#endif
4313	struct ieee80211_node *ni;
4314	struct ath_buf *bf;
4315	u_int ix;
4316
4317	/*
4318	 * NB: this assumes output has been stopped and
4319	 *     we do not need to block ath_tx_proc
4320	 */
4321	ATH_TXBUF_LOCK(sc);
4322	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4323	if (bf != NULL)
4324		bf->bf_flags &= ~ATH_BUF_BUSY;
4325	ATH_TXBUF_UNLOCK(sc);
4326	for (ix = 0;; ix++) {
4327		ATH_TXQ_LOCK(txq);
4328		bf = STAILQ_FIRST(&txq->axq_q);
4329		if (bf == NULL) {
4330			txq->axq_link = NULL;
4331			ATH_TXQ_UNLOCK(txq);
4332			break;
4333		}
4334		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4335		ATH_TXQ_UNLOCK(txq);
4336#ifdef ATH_DEBUG
4337		if (sc->sc_debug & ATH_DEBUG_RESET) {
4338			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4339
4340			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4341				ath_hal_txprocdesc(ah, bf->bf_desc,
4342				    &bf->bf_status.ds_txstat) == HAL_OK);
4343			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4344			    bf->bf_m->m_len, 0, -1);
4345		}
4346#endif /* ATH_DEBUG */
4347		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4348		ni = bf->bf_node;
4349		bf->bf_node = NULL;
4350		if (ni != NULL) {
4351			/*
4352			 * Do any callback and reclaim the node reference.
4353			 */
4354			if (bf->bf_m->m_flags & M_TXCB)
4355				ieee80211_process_callback(ni, bf->bf_m, -1);
4356			ieee80211_free_node(ni);
4357		}
4358		m_freem(bf->bf_m);
4359		bf->bf_m = NULL;
4360		bf->bf_flags &= ~ATH_BUF_BUSY;
4361
4362		ATH_TXBUF_LOCK(sc);
4363		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4364		ATH_TXBUF_UNLOCK(sc);
4365	}
4366}
4367
4368static void
4369ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4370{
4371	struct ath_hal *ah = sc->sc_ah;
4372
4373	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4374	    __func__, txq->axq_qnum,
4375	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4376	    txq->axq_link);
4377	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4378}
4379
4380/*
4381 * Drain the transmit queues and reclaim resources.
4382 */
4383static void
4384ath_draintxq(struct ath_softc *sc)
4385{
4386	struct ath_hal *ah = sc->sc_ah;
4387	struct ifnet *ifp = sc->sc_ifp;
4388	int i;
4389
4390	/* XXX return value */
4391	if (!sc->sc_invalid) {
4392		/* don't touch the hardware if marked invalid */
4393		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4394		    __func__, sc->sc_bhalq,
4395		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4396		    NULL);
4397		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4398		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4399			if (ATH_TXQ_SETUP(sc, i))
4400				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4401	}
4402	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4403		if (ATH_TXQ_SETUP(sc, i))
4404			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4405#ifdef ATH_DEBUG
4406	if (sc->sc_debug & ATH_DEBUG_RESET) {
4407		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4408		if (bf != NULL && bf->bf_m != NULL) {
4409			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4410				ath_hal_txprocdesc(ah, bf->bf_desc,
4411				    &bf->bf_status.ds_txstat) == HAL_OK);
4412			ieee80211_dump_pkt(ifp->if_l2com,
4413			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4414			    0, -1);
4415		}
4416	}
4417#endif /* ATH_DEBUG */
4418	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4419	sc->sc_wd_timer = 0;
4420}
4421
4422/*
4423 * Disable the receive h/w in preparation for a reset.
4424 */
4425static void
4426ath_stoprecv(struct ath_softc *sc)
4427{
4428#define	PA2DESC(_sc, _pa) \
4429	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4430		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4431	struct ath_hal *ah = sc->sc_ah;
4432
4433	ath_hal_stoppcurecv(ah);	/* disable PCU */
4434	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4435	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4436	DELAY(3000);			/* 3ms is long enough for 1 frame */
4437#ifdef ATH_DEBUG
4438	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4439		struct ath_buf *bf;
4440		u_int ix;
4441
4442		printf("%s: rx queue %p, link %p\n", __func__,
4443			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4444		ix = 0;
4445		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4446			struct ath_desc *ds = bf->bf_desc;
4447			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4448			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4449				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4450			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4451				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4452			ix++;
4453		}
4454	}
4455#endif
4456	if (sc->sc_rxpending != NULL) {
4457		m_freem(sc->sc_rxpending);
4458		sc->sc_rxpending = NULL;
4459	}
4460	sc->sc_rxlink = NULL;		/* just in case */
4461#undef PA2DESC
4462}
4463
4464/*
4465 * Enable the receive h/w following a reset.
4466 */
4467static int
4468ath_startrecv(struct ath_softc *sc)
4469{
4470	struct ath_hal *ah = sc->sc_ah;
4471	struct ath_buf *bf;
4472
4473	sc->sc_rxlink = NULL;
4474	sc->sc_rxpending = NULL;
4475	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4476		int error = ath_rxbuf_init(sc, bf);
4477		if (error != 0) {
4478			DPRINTF(sc, ATH_DEBUG_RECV,
4479				"%s: ath_rxbuf_init failed %d\n",
4480				__func__, error);
4481			return error;
4482		}
4483	}
4484
4485	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4486	ath_hal_putrxbuf(ah, bf->bf_daddr);
4487	ath_hal_rxena(ah);		/* enable recv descriptors */
4488	ath_mode_init(sc);		/* set filters, etc. */
4489	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4490	return 0;
4491}
4492
4493/*
4494 * Update internal state after a channel change.
4495 */
4496static void
4497ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4498{
4499	enum ieee80211_phymode mode;
4500
4501	/*
4502	 * Change channels and update the h/w rate map
4503	 * if we're switching; e.g. 11a to 11b/g.
4504	 */
4505	mode = ieee80211_chan2mode(chan);
4506	if (mode != sc->sc_curmode)
4507		ath_setcurmode(sc, mode);
4508	sc->sc_curchan = chan;
4509}
4510
4511/*
4512 * Set/change channels.  If the channel is really being changed,
4513 * it's done by resetting the chip.  To accomplish this we must
4514 * first cleanup any pending DMA, then restart stuff after a la
4515 * ath_init.
4516 */
4517static int
4518ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4519{
4520	struct ifnet *ifp = sc->sc_ifp;
4521	struct ieee80211com *ic = ifp->if_l2com;
4522	struct ath_hal *ah = sc->sc_ah;
4523
4524	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4525	    __func__, ieee80211_chan2ieee(ic, chan),
4526	    chan->ic_freq, chan->ic_flags);
4527	if (chan != sc->sc_curchan) {
4528		HAL_STATUS status;
4529		/*
4530		 * To switch channels clear any pending DMA operations;
4531		 * wait long enough for the RX fifo to drain, reset the
4532		 * hardware at the new frequency, and then re-enable
4533		 * the relevant bits of the h/w.
4534		 */
4535		ath_hal_intrset(ah, 0);		/* disable interrupts */
4536		ath_draintxq(sc);		/* clear pending tx frames */
4537		ath_stoprecv(sc);		/* turn off frame recv */
4538		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4539			if_printf(ifp, "%s: unable to reset "
4540			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4541			    __func__, ieee80211_chan2ieee(ic, chan),
4542			    chan->ic_freq, chan->ic_flags, status);
4543			return EIO;
4544		}
4545		sc->sc_diversity = ath_hal_getdiversity(ah);
4546
4547		/* Let DFS at it in case it's a DFS channel */
4548		ath_dfs_radar_enable(sc, ic->ic_curchan);
4549
4550		/*
4551		 * Re-enable rx framework.
4552		 */
4553		if (ath_startrecv(sc) != 0) {
4554			if_printf(ifp, "%s: unable to restart recv logic\n",
4555			    __func__);
4556			return EIO;
4557		}
4558
4559		/*
4560		 * Change channels and update the h/w rate map
4561		 * if we're switching; e.g. 11a to 11b/g.
4562		 */
4563		ath_chan_change(sc, chan);
4564
4565		/*
4566		 * Reset clears the beacon timers; reset them
4567		 * here if needed.
4568		 */
4569		if (sc->sc_beacons) {		/* restart beacons */
4570#ifdef IEEE80211_SUPPORT_TDMA
4571			if (sc->sc_tdma)
4572				ath_tdma_config(sc, NULL);
4573			else
4574#endif
4575			ath_beacon_config(sc, NULL);
4576		}
4577
4578		/*
4579		 * Re-enable interrupts.
4580		 */
4581		ath_hal_intrset(ah, sc->sc_imask);
4582	}
4583	return 0;
4584}
4585
4586/*
4587 * Periodically recalibrate the PHY to account
4588 * for temperature/environment changes.
4589 */
4590static void
4591ath_calibrate(void *arg)
4592{
4593	struct ath_softc *sc = arg;
4594	struct ath_hal *ah = sc->sc_ah;
4595	struct ifnet *ifp = sc->sc_ifp;
4596	struct ieee80211com *ic = ifp->if_l2com;
4597	HAL_BOOL longCal, isCalDone;
4598	HAL_BOOL aniCal, shortCal = AH_FALSE;
4599	int nextcal;
4600
4601	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4602		goto restart;
4603	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4604	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4605	if (sc->sc_doresetcal)
4606		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4607
4608	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4609	if (aniCal) {
4610		sc->sc_stats.ast_ani_cal++;
4611		sc->sc_lastani = ticks;
4612		ath_hal_ani_poll(ah, sc->sc_curchan);
4613	}
4614
4615	if (longCal) {
4616		sc->sc_stats.ast_per_cal++;
4617		sc->sc_lastlongcal = ticks;
4618		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4619			/*
4620			 * Rfgain is out of bounds, reset the chip
4621			 * to load new gain values.
4622			 */
4623			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4624				"%s: rfgain change\n", __func__);
4625			sc->sc_stats.ast_per_rfgain++;
4626			ath_reset(ifp);
4627		}
4628		/*
4629		 * If this long cal is after an idle period, then
4630		 * reset the data collection state so we start fresh.
4631		 */
4632		if (sc->sc_resetcal) {
4633			(void) ath_hal_calreset(ah, sc->sc_curchan);
4634			sc->sc_lastcalreset = ticks;
4635			sc->sc_lastshortcal = ticks;
4636			sc->sc_resetcal = 0;
4637			sc->sc_doresetcal = AH_TRUE;
4638		}
4639	}
4640
4641	/* Only call if we're doing a short/long cal, not for ANI calibration */
4642	if (shortCal || longCal) {
4643		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4644			if (longCal) {
4645				/*
4646				 * Calibrate noise floor data again in case of change.
4647				 */
4648				ath_hal_process_noisefloor(ah);
4649			}
4650		} else {
4651			DPRINTF(sc, ATH_DEBUG_ANY,
4652				"%s: calibration of channel %u failed\n",
4653				__func__, sc->sc_curchan->ic_freq);
4654			sc->sc_stats.ast_per_calfail++;
4655		}
4656		if (shortCal)
4657			sc->sc_lastshortcal = ticks;
4658	}
4659	if (!isCalDone) {
4660restart:
4661		/*
4662		 * Use a shorter interval to potentially collect multiple
4663		 * data samples required to complete calibration.  Once
4664		 * we're told the work is done we drop back to a longer
4665		 * interval between requests.  We're more aggressive doing
4666		 * work when operating as an AP to improve operation right
4667		 * after startup.
4668		 */
4669		sc->sc_lastshortcal = ticks;
4670		nextcal = ath_shortcalinterval*hz/1000;
4671		if (sc->sc_opmode != HAL_M_HOSTAP)
4672			nextcal *= 10;
4673		sc->sc_doresetcal = AH_TRUE;
4674	} else {
4675		/* nextcal should be the shortest time for next event */
4676		nextcal = ath_longcalinterval*hz;
4677		if (sc->sc_lastcalreset == 0)
4678			sc->sc_lastcalreset = sc->sc_lastlongcal;
4679		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4680			sc->sc_resetcal = 1;	/* setup reset next trip */
4681		sc->sc_doresetcal = AH_FALSE;
4682	}
4683	/* ANI calibration may occur more often than short/long/resetcal */
4684	if (ath_anicalinterval > 0)
4685		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4686
4687	if (nextcal != 0) {
4688		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4689		    __func__, nextcal, isCalDone ? "" : "!");
4690		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4691	} else {
4692		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4693		    __func__);
4694		/* NB: don't rearm timer */
4695	}
4696}
4697
4698static void
4699ath_scan_start(struct ieee80211com *ic)
4700{
4701	struct ifnet *ifp = ic->ic_ifp;
4702	struct ath_softc *sc = ifp->if_softc;
4703	struct ath_hal *ah = sc->sc_ah;
4704	u_int32_t rfilt;
4705
4706	/* XXX calibration timer? */
4707
4708	sc->sc_scanning = 1;
4709	sc->sc_syncbeacon = 0;
4710	rfilt = ath_calcrxfilter(sc);
4711	ath_hal_setrxfilter(ah, rfilt);
4712	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4713
4714	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4715		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4716}
4717
4718static void
4719ath_scan_end(struct ieee80211com *ic)
4720{
4721	struct ifnet *ifp = ic->ic_ifp;
4722	struct ath_softc *sc = ifp->if_softc;
4723	struct ath_hal *ah = sc->sc_ah;
4724	u_int32_t rfilt;
4725
4726	sc->sc_scanning = 0;
4727	rfilt = ath_calcrxfilter(sc);
4728	ath_hal_setrxfilter(ah, rfilt);
4729	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4730
4731	ath_hal_process_noisefloor(ah);
4732
4733	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4734		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4735		 sc->sc_curaid);
4736}
4737
4738static void
4739ath_set_channel(struct ieee80211com *ic)
4740{
4741	struct ifnet *ifp = ic->ic_ifp;
4742	struct ath_softc *sc = ifp->if_softc;
4743
4744	(void) ath_chan_set(sc, ic->ic_curchan);
4745	/*
4746	 * If we are returning to our bss channel then mark state
4747	 * so the next recv'd beacon's tsf will be used to sync the
4748	 * beacon timers.  Note that since we only hear beacons in
4749	 * sta/ibss mode this has no effect in other operating modes.
4750	 */
4751	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4752		sc->sc_syncbeacon = 1;
4753}
4754
4755/*
4756 * Walk the vap list and check if there any vap's in RUN state.
4757 */
4758static int
4759ath_isanyrunningvaps(struct ieee80211vap *this)
4760{
4761	struct ieee80211com *ic = this->iv_ic;
4762	struct ieee80211vap *vap;
4763
4764	IEEE80211_LOCK_ASSERT(ic);
4765
4766	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4767		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4768			return 1;
4769	}
4770	return 0;
4771}
4772
4773static int
4774ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4775{
4776	struct ieee80211com *ic = vap->iv_ic;
4777	struct ath_softc *sc = ic->ic_ifp->if_softc;
4778	struct ath_vap *avp = ATH_VAP(vap);
4779	struct ath_hal *ah = sc->sc_ah;
4780	struct ieee80211_node *ni = NULL;
4781	int i, error, stamode;
4782	u_int32_t rfilt;
4783	int csa_run_transition = 0;
4784	static const HAL_LED_STATE leds[] = {
4785	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4786	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4787	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4788	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4789	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4790	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4791	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4792	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4793	};
4794
4795	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4796		ieee80211_state_name[vap->iv_state],
4797		ieee80211_state_name[nstate]);
4798
4799	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4800		csa_run_transition = 1;
4801
4802	callout_drain(&sc->sc_cal_ch);
4803	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4804
4805	if (nstate == IEEE80211_S_SCAN) {
4806		/*
4807		 * Scanning: turn off beacon miss and don't beacon.
4808		 * Mark beacon state so when we reach RUN state we'll
4809		 * [re]setup beacons.  Unblock the task q thread so
4810		 * deferred interrupt processing is done.
4811		 */
4812		ath_hal_intrset(ah,
4813		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4814		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4815		sc->sc_beacons = 0;
4816		taskqueue_unblock(sc->sc_tq);
4817	}
4818
4819	ni = vap->iv_bss;
4820	rfilt = ath_calcrxfilter(sc);
4821	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4822		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4823		   vap->iv_opmode == IEEE80211_M_IBSS);
4824	if (stamode && nstate == IEEE80211_S_RUN) {
4825		sc->sc_curaid = ni->ni_associd;
4826		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4827		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4828	}
4829	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4830	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4831	ath_hal_setrxfilter(ah, rfilt);
4832
4833	/* XXX is this to restore keycache on resume? */
4834	if (vap->iv_opmode != IEEE80211_M_STA &&
4835	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4836		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4837			if (ath_hal_keyisvalid(ah, i))
4838				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4839	}
4840
4841	/*
4842	 * Invoke the parent method to do net80211 work.
4843	 */
4844	error = avp->av_newstate(vap, nstate, arg);
4845	if (error != 0)
4846		goto bad;
4847
4848	if (nstate == IEEE80211_S_RUN) {
4849		/* NB: collect bss node again, it may have changed */
4850		ni = vap->iv_bss;
4851
4852		DPRINTF(sc, ATH_DEBUG_STATE,
4853		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4854		    "capinfo 0x%04x chan %d\n", __func__,
4855		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4856		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4857
4858		switch (vap->iv_opmode) {
4859#ifdef IEEE80211_SUPPORT_TDMA
4860		case IEEE80211_M_AHDEMO:
4861			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4862				break;
4863			/* fall thru... */
4864#endif
4865		case IEEE80211_M_HOSTAP:
4866		case IEEE80211_M_IBSS:
4867		case IEEE80211_M_MBSS:
4868			/*
4869			 * Allocate and setup the beacon frame.
4870			 *
4871			 * Stop any previous beacon DMA.  This may be
4872			 * necessary, for example, when an ibss merge
4873			 * causes reconfiguration; there will be a state
4874			 * transition from RUN->RUN that means we may
4875			 * be called with beacon transmission active.
4876			 */
4877			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4878
4879			error = ath_beacon_alloc(sc, ni);
4880			if (error != 0)
4881				goto bad;
4882			/*
4883			 * If joining an adhoc network defer beacon timer
4884			 * configuration to the next beacon frame so we
4885			 * have a current TSF to use.  Otherwise we're
4886			 * starting an ibss/bss so there's no need to delay;
4887			 * if this is the first vap moving to RUN state, then
4888			 * beacon state needs to be [re]configured.
4889			 */
4890			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4891			    ni->ni_tstamp.tsf != 0) {
4892				sc->sc_syncbeacon = 1;
4893			} else if (!sc->sc_beacons) {
4894#ifdef IEEE80211_SUPPORT_TDMA
4895				if (vap->iv_caps & IEEE80211_C_TDMA)
4896					ath_tdma_config(sc, vap);
4897				else
4898#endif
4899					ath_beacon_config(sc, vap);
4900				sc->sc_beacons = 1;
4901			}
4902			break;
4903		case IEEE80211_M_STA:
4904			/*
4905			 * Defer beacon timer configuration to the next
4906			 * beacon frame so we have a current TSF to use
4907			 * (any TSF collected when scanning is likely old).
4908			 * However if it's due to a CSA -> RUN transition,
4909			 * force a beacon update so we pick up a lack of
4910			 * beacons from an AP in CAC and thus force a
4911			 * scan.
4912			 */
4913			sc->sc_syncbeacon = 1;
4914			if (csa_run_transition)
4915				ath_beacon_config(sc, vap);
4916			break;
4917		case IEEE80211_M_MONITOR:
4918			/*
4919			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4920			 * transitions so we must re-enable interrupts here to
4921			 * handle the case of a single monitor mode vap.
4922			 */
4923			ath_hal_intrset(ah, sc->sc_imask);
4924			break;
4925		case IEEE80211_M_WDS:
4926			break;
4927		default:
4928			break;
4929		}
4930		/*
4931		 * Let the hal process statistics collected during a
4932		 * scan so it can provide calibrated noise floor data.
4933		 */
4934		ath_hal_process_noisefloor(ah);
4935		/*
4936		 * Reset rssi stats; maybe not the best place...
4937		 */
4938		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4939		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4940		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4941		/*
4942		 * Finally, start any timers and the task q thread
4943		 * (in case we didn't go through SCAN state).
4944		 */
4945		if (ath_longcalinterval != 0) {
4946			/* start periodic recalibration timer */
4947			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4948		} else {
4949			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4950			    "%s: calibration disabled\n", __func__);
4951		}
4952		taskqueue_unblock(sc->sc_tq);
4953	} else if (nstate == IEEE80211_S_INIT) {
4954		/*
4955		 * If there are no vaps left in RUN state then
4956		 * shutdown host/driver operation:
4957		 * o disable interrupts
4958		 * o disable the task queue thread
4959		 * o mark beacon processing as stopped
4960		 */
4961		if (!ath_isanyrunningvaps(vap)) {
4962			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4963			/* disable interrupts  */
4964			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4965			taskqueue_block(sc->sc_tq);
4966			sc->sc_beacons = 0;
4967		}
4968#ifdef IEEE80211_SUPPORT_TDMA
4969		ath_hal_setcca(ah, AH_TRUE);
4970#endif
4971	}
4972bad:
4973	return error;
4974}
4975
4976/*
4977 * Allocate a key cache slot to the station so we can
4978 * setup a mapping from key index to node. The key cache
4979 * slot is needed for managing antenna state and for
4980 * compression when stations do not use crypto.  We do
4981 * it uniliaterally here; if crypto is employed this slot
4982 * will be reassigned.
4983 */
4984static void
4985ath_setup_stationkey(struct ieee80211_node *ni)
4986{
4987	struct ieee80211vap *vap = ni->ni_vap;
4988	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4989	ieee80211_keyix keyix, rxkeyix;
4990
4991	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4992		/*
4993		 * Key cache is full; we'll fall back to doing
4994		 * the more expensive lookup in software.  Note
4995		 * this also means no h/w compression.
4996		 */
4997		/* XXX msg+statistic */
4998	} else {
4999		/* XXX locking? */
5000		ni->ni_ucastkey.wk_keyix = keyix;
5001		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5002		/* NB: must mark device key to get called back on delete */
5003		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5004		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5005		/* NB: this will create a pass-thru key entry */
5006		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5007	}
5008}
5009
5010/*
5011 * Setup driver-specific state for a newly associated node.
5012 * Note that we're called also on a re-associate, the isnew
5013 * param tells us if this is the first time or not.
5014 */
5015static void
5016ath_newassoc(struct ieee80211_node *ni, int isnew)
5017{
5018	struct ath_node *an = ATH_NODE(ni);
5019	struct ieee80211vap *vap = ni->ni_vap;
5020	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5021	const struct ieee80211_txparam *tp = ni->ni_txparms;
5022
5023	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5024	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5025
5026	ath_rate_newassoc(sc, an, isnew);
5027	if (isnew &&
5028	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5029	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5030		ath_setup_stationkey(ni);
5031}
5032
5033static int
5034ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5035	int nchans, struct ieee80211_channel chans[])
5036{
5037	struct ath_softc *sc = ic->ic_ifp->if_softc;
5038	struct ath_hal *ah = sc->sc_ah;
5039	HAL_STATUS status;
5040
5041	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5042	    "%s: rd %u cc %u location %c%s\n",
5043	    __func__, reg->regdomain, reg->country, reg->location,
5044	    reg->ecm ? " ecm" : "");
5045
5046	status = ath_hal_set_channels(ah, chans, nchans,
5047	    reg->country, reg->regdomain);
5048	if (status != HAL_OK) {
5049		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5050		    __func__, status);
5051		return EINVAL;		/* XXX */
5052	}
5053
5054	return 0;
5055}
5056
5057static void
5058ath_getradiocaps(struct ieee80211com *ic,
5059	int maxchans, int *nchans, struct ieee80211_channel chans[])
5060{
5061	struct ath_softc *sc = ic->ic_ifp->if_softc;
5062	struct ath_hal *ah = sc->sc_ah;
5063
5064	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5065	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5066
5067	/* XXX check return */
5068	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5069	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5070
5071}
5072
5073static int
5074ath_getchannels(struct ath_softc *sc)
5075{
5076	struct ifnet *ifp = sc->sc_ifp;
5077	struct ieee80211com *ic = ifp->if_l2com;
5078	struct ath_hal *ah = sc->sc_ah;
5079	HAL_STATUS status;
5080
5081	/*
5082	 * Collect channel set based on EEPROM contents.
5083	 */
5084	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5085	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5086	if (status != HAL_OK) {
5087		if_printf(ifp, "%s: unable to collect channel list from hal, "
5088		    "status %d\n", __func__, status);
5089		return EINVAL;
5090	}
5091	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5092	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5093	/* XXX map Atheros sku's to net80211 SKU's */
5094	/* XXX net80211 types too small */
5095	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5096	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5097	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5098	ic->ic_regdomain.isocc[1] = ' ';
5099
5100	ic->ic_regdomain.ecm = 1;
5101	ic->ic_regdomain.location = 'I';
5102
5103	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5104	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5105	    __func__, sc->sc_eerd, sc->sc_eecc,
5106	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5107	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5108	return 0;
5109}
5110
5111static void
5112ath_led_done(void *arg)
5113{
5114	struct ath_softc *sc = arg;
5115
5116	sc->sc_blinking = 0;
5117}
5118
5119/*
5120 * Turn the LED off: flip the pin and then set a timer so no
5121 * update will happen for the specified duration.
5122 */
5123static void
5124ath_led_off(void *arg)
5125{
5126	struct ath_softc *sc = arg;
5127
5128	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5129	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5130}
5131
5132/*
5133 * Blink the LED according to the specified on/off times.
5134 */
5135static void
5136ath_led_blink(struct ath_softc *sc, int on, int off)
5137{
5138	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5139	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5140	sc->sc_blinking = 1;
5141	sc->sc_ledoff = off;
5142	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5143}
5144
5145static void
5146ath_led_event(struct ath_softc *sc, int rix)
5147{
5148	sc->sc_ledevent = ticks;	/* time of last event */
5149	if (sc->sc_blinking)		/* don't interrupt active blink */
5150		return;
5151	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5152}
5153
5154static int
5155ath_rate_setup(struct ath_softc *sc, u_int mode)
5156{
5157	struct ath_hal *ah = sc->sc_ah;
5158	const HAL_RATE_TABLE *rt;
5159
5160	switch (mode) {
5161	case IEEE80211_MODE_11A:
5162		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5163		break;
5164	case IEEE80211_MODE_HALF:
5165		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5166		break;
5167	case IEEE80211_MODE_QUARTER:
5168		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5169		break;
5170	case IEEE80211_MODE_11B:
5171		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5172		break;
5173	case IEEE80211_MODE_11G:
5174		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5175		break;
5176	case IEEE80211_MODE_TURBO_A:
5177		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5178		break;
5179	case IEEE80211_MODE_TURBO_G:
5180		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5181		break;
5182	case IEEE80211_MODE_STURBO_A:
5183		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5184		break;
5185	case IEEE80211_MODE_11NA:
5186		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5187		break;
5188	case IEEE80211_MODE_11NG:
5189		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5190		break;
5191	default:
5192		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5193			__func__, mode);
5194		return 0;
5195	}
5196	sc->sc_rates[mode] = rt;
5197	return (rt != NULL);
5198}
5199
5200static void
5201ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5202{
5203#define	N(a)	(sizeof(a)/sizeof(a[0]))
5204	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5205	static const struct {
5206		u_int		rate;		/* tx/rx 802.11 rate */
5207		u_int16_t	timeOn;		/* LED on time (ms) */
5208		u_int16_t	timeOff;	/* LED off time (ms) */
5209	} blinkrates[] = {
5210		{ 108,  40,  10 },
5211		{  96,  44,  11 },
5212		{  72,  50,  13 },
5213		{  48,  57,  14 },
5214		{  36,  67,  16 },
5215		{  24,  80,  20 },
5216		{  22, 100,  25 },
5217		{  18, 133,  34 },
5218		{  12, 160,  40 },
5219		{  10, 200,  50 },
5220		{   6, 240,  58 },
5221		{   4, 267,  66 },
5222		{   2, 400, 100 },
5223		{   0, 500, 130 },
5224		/* XXX half/quarter rates */
5225	};
5226	const HAL_RATE_TABLE *rt;
5227	int i, j;
5228
5229	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5230	rt = sc->sc_rates[mode];
5231	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5232	for (i = 0; i < rt->rateCount; i++) {
5233		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5234		if (rt->info[i].phy != IEEE80211_T_HT)
5235			sc->sc_rixmap[ieeerate] = i;
5236		else
5237			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5238	}
5239	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5240	for (i = 0; i < N(sc->sc_hwmap); i++) {
5241		if (i >= rt->rateCount) {
5242			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5243			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5244			continue;
5245		}
5246		sc->sc_hwmap[i].ieeerate =
5247			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5248		if (rt->info[i].phy == IEEE80211_T_HT)
5249			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5250		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5251		if (rt->info[i].shortPreamble ||
5252		    rt->info[i].phy == IEEE80211_T_OFDM)
5253			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5254		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5255		for (j = 0; j < N(blinkrates)-1; j++)
5256			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5257				break;
5258		/* NB: this uses the last entry if the rate isn't found */
5259		/* XXX beware of overlow */
5260		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5261		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5262	}
5263	sc->sc_currates = rt;
5264	sc->sc_curmode = mode;
5265	/*
5266	 * All protection frames are transmited at 2Mb/s for
5267	 * 11g, otherwise at 1Mb/s.
5268	 */
5269	if (mode == IEEE80211_MODE_11G)
5270		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5271	else
5272		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5273	/* NB: caller is responsible for resetting rate control state */
5274#undef N
5275}
5276
5277static void
5278ath_watchdog(void *arg)
5279{
5280	struct ath_softc *sc = arg;
5281
5282	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5283		struct ifnet *ifp = sc->sc_ifp;
5284		uint32_t hangs;
5285
5286		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5287		    hangs != 0) {
5288			if_printf(ifp, "%s hang detected (0x%x)\n",
5289			    hangs & 0xff ? "bb" : "mac", hangs);
5290		} else
5291			if_printf(ifp, "device timeout\n");
5292		ath_reset(ifp);
5293		ifp->if_oerrors++;
5294		sc->sc_stats.ast_watchdog++;
5295	}
5296	callout_schedule(&sc->sc_wd_ch, hz);
5297}
5298
5299#ifdef ATH_DIAGAPI
5300/*
5301 * Diagnostic interface to the HAL.  This is used by various
5302 * tools to do things like retrieve register contents for
5303 * debugging.  The mechanism is intentionally opaque so that
5304 * it can change frequently w/o concern for compatiblity.
5305 */
5306static int
5307ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5308{
5309	struct ath_hal *ah = sc->sc_ah;
5310	u_int id = ad->ad_id & ATH_DIAG_ID;
5311	void *indata = NULL;
5312	void *outdata = NULL;
5313	u_int32_t insize = ad->ad_in_size;
5314	u_int32_t outsize = ad->ad_out_size;
5315	int error = 0;
5316
5317	if (ad->ad_id & ATH_DIAG_IN) {
5318		/*
5319		 * Copy in data.
5320		 */
5321		indata = malloc(insize, M_TEMP, M_NOWAIT);
5322		if (indata == NULL) {
5323			error = ENOMEM;
5324			goto bad;
5325		}
5326		error = copyin(ad->ad_in_data, indata, insize);
5327		if (error)
5328			goto bad;
5329	}
5330	if (ad->ad_id & ATH_DIAG_DYN) {
5331		/*
5332		 * Allocate a buffer for the results (otherwise the HAL
5333		 * returns a pointer to a buffer where we can read the
5334		 * results).  Note that we depend on the HAL leaving this
5335		 * pointer for us to use below in reclaiming the buffer;
5336		 * may want to be more defensive.
5337		 */
5338		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5339		if (outdata == NULL) {
5340			error = ENOMEM;
5341			goto bad;
5342		}
5343	}
5344	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5345		if (outsize < ad->ad_out_size)
5346			ad->ad_out_size = outsize;
5347		if (outdata != NULL)
5348			error = copyout(outdata, ad->ad_out_data,
5349					ad->ad_out_size);
5350	} else {
5351		error = EINVAL;
5352	}
5353bad:
5354	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5355		free(indata, M_TEMP);
5356	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5357		free(outdata, M_TEMP);
5358	return error;
5359}
5360#endif /* ATH_DIAGAPI */
5361
5362static int
5363ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5364{
5365#define	IS_RUNNING(ifp) \
5366	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5367	struct ath_softc *sc = ifp->if_softc;
5368	struct ieee80211com *ic = ifp->if_l2com;
5369	struct ifreq *ifr = (struct ifreq *)data;
5370	const HAL_RATE_TABLE *rt;
5371	int error = 0;
5372
5373	switch (cmd) {
5374	case SIOCSIFFLAGS:
5375		ATH_LOCK(sc);
5376		if (IS_RUNNING(ifp)) {
5377			/*
5378			 * To avoid rescanning another access point,
5379			 * do not call ath_init() here.  Instead,
5380			 * only reflect promisc mode settings.
5381			 */
5382			ath_mode_init(sc);
5383		} else if (ifp->if_flags & IFF_UP) {
5384			/*
5385			 * Beware of being called during attach/detach
5386			 * to reset promiscuous mode.  In that case we
5387			 * will still be marked UP but not RUNNING.
5388			 * However trying to re-init the interface
5389			 * is the wrong thing to do as we've already
5390			 * torn down much of our state.  There's
5391			 * probably a better way to deal with this.
5392			 */
5393			if (!sc->sc_invalid)
5394				ath_init(sc);	/* XXX lose error */
5395		} else {
5396			ath_stop_locked(ifp);
5397#ifdef notyet
5398			/* XXX must wakeup in places like ath_vap_delete */
5399			if (!sc->sc_invalid)
5400				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5401#endif
5402		}
5403		ATH_UNLOCK(sc);
5404		break;
5405	case SIOCGIFMEDIA:
5406	case SIOCSIFMEDIA:
5407		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5408		break;
5409	case SIOCGATHSTATS:
5410		/* NB: embed these numbers to get a consistent view */
5411		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5412		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5413		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5414		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5415#ifdef IEEE80211_SUPPORT_TDMA
5416		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5417		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5418#endif
5419		rt = sc->sc_currates;
5420		sc->sc_stats.ast_tx_rate =
5421		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5422		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5423			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5424		return copyout(&sc->sc_stats,
5425		    ifr->ifr_data, sizeof (sc->sc_stats));
5426	case SIOCZATHSTATS:
5427		error = priv_check(curthread, PRIV_DRIVER);
5428		if (error == 0)
5429			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5430		break;
5431#ifdef ATH_DIAGAPI
5432	case SIOCGATHDIAG:
5433		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5434		break;
5435	case SIOCGATHPHYERR:
5436		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5437		break;
5438#endif
5439	case SIOCGIFADDR:
5440		error = ether_ioctl(ifp, cmd, data);
5441		break;
5442	default:
5443		error = EINVAL;
5444		break;
5445	}
5446	return error;
5447#undef IS_RUNNING
5448}
5449
5450/*
5451 * Announce various information on device/driver attach.
5452 */
5453static void
5454ath_announce(struct ath_softc *sc)
5455{
5456	struct ifnet *ifp = sc->sc_ifp;
5457	struct ath_hal *ah = sc->sc_ah;
5458
5459	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5460		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5461		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5462	if (bootverbose) {
5463		int i;
5464		for (i = 0; i <= WME_AC_VO; i++) {
5465			struct ath_txq *txq = sc->sc_ac2q[i];
5466			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5467				txq->axq_qnum, ieee80211_wme_acnames[i]);
5468		}
5469		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5470			sc->sc_cabq->axq_qnum);
5471		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5472	}
5473	if (ath_rxbuf != ATH_RXBUF)
5474		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5475	if (ath_txbuf != ATH_TXBUF)
5476		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5477	if (sc->sc_mcastkey && bootverbose)
5478		if_printf(ifp, "using multicast key search\n");
5479}
5480
5481#ifdef IEEE80211_SUPPORT_TDMA
5482static void
5483ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5484{
5485	struct ath_hal *ah = sc->sc_ah;
5486	HAL_BEACON_TIMERS bt;
5487
5488	bt.bt_intval = bintval | HAL_BEACON_ENA;
5489	bt.bt_nexttbtt = nexttbtt;
5490	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5491	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5492	bt.bt_nextatim = nexttbtt+1;
5493	/* Enables TBTT, DBA, SWBA timers by default */
5494	bt.bt_flags = 0;
5495	ath_hal_beaconsettimers(ah, &bt);
5496}
5497
5498/*
5499 * Calculate the beacon interval.  This is periodic in the
5500 * superframe for the bss.  We assume each station is configured
5501 * identically wrt transmit rate so the guard time we calculate
5502 * above will be the same on all stations.  Note we need to
5503 * factor in the xmit time because the hardware will schedule
5504 * a frame for transmit if the start of the frame is within
5505 * the burst time.  When we get hardware that properly kills
5506 * frames in the PCU we can reduce/eliminate the guard time.
5507 *
5508 * Roundup to 1024 is so we have 1 TU buffer in the guard time
5509 * to deal with the granularity of the nexttbtt timer.  11n MAC's
5510 * with 1us timer granularity should allow us to reduce/eliminate
5511 * this.
5512 */
5513static void
5514ath_tdma_bintvalsetup(struct ath_softc *sc,
5515	const struct ieee80211_tdma_state *tdma)
5516{
5517	/* copy from vap state (XXX check all vaps have same value?) */
5518	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5519
5520	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5521		tdma->tdma_slotcnt, 1024);
5522	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5523	if (sc->sc_tdmabintval & 1)
5524		sc->sc_tdmabintval++;
5525
5526	if (tdma->tdma_slot == 0) {
5527		/*
5528		 * Only slot 0 beacons; other slots respond.
5529		 */
5530		sc->sc_imask |= HAL_INT_SWBA;
5531		sc->sc_tdmaswba = 0;		/* beacon immediately */
5532	} else {
5533		/* XXX all vaps must be slot 0 or slot !0 */
5534		sc->sc_imask &= ~HAL_INT_SWBA;
5535	}
5536}
5537
5538/*
5539 * Max 802.11 overhead.  This assumes no 4-address frames and
5540 * the encapsulation done by ieee80211_encap (llc).  We also
5541 * include potential crypto overhead.
5542 */
5543#define	IEEE80211_MAXOVERHEAD \
5544	(sizeof(struct ieee80211_qosframe) \
5545	 + sizeof(struct llc) \
5546	 + IEEE80211_ADDR_LEN \
5547	 + IEEE80211_WEP_IVLEN \
5548	 + IEEE80211_WEP_KIDLEN \
5549	 + IEEE80211_WEP_CRCLEN \
5550	 + IEEE80211_WEP_MICLEN \
5551	 + IEEE80211_CRC_LEN)
5552
5553/*
5554 * Setup initially for tdma operation.  Start the beacon
5555 * timers and enable SWBA if we are slot 0.  Otherwise
5556 * we wait for slot 0 to arrive so we can sync up before
5557 * starting to transmit.
5558 */
5559static void
5560ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5561{
5562	struct ath_hal *ah = sc->sc_ah;
5563	struct ifnet *ifp = sc->sc_ifp;
5564	struct ieee80211com *ic = ifp->if_l2com;
5565	const struct ieee80211_txparam *tp;
5566	const struct ieee80211_tdma_state *tdma = NULL;
5567	int rix;
5568
5569	if (vap == NULL) {
5570		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5571		if (vap == NULL) {
5572			if_printf(ifp, "%s: no vaps?\n", __func__);
5573			return;
5574		}
5575	}
5576	tp = vap->iv_bss->ni_txparms;
5577	/*
5578	 * Calculate the guard time for each slot.  This is the
5579	 * time to send a maximal-size frame according to the
5580	 * fixed/lowest transmit rate.  Note that the interface
5581	 * mtu does not include the 802.11 overhead so we must
5582	 * tack that on (ath_hal_computetxtime includes the
5583	 * preamble and plcp in it's calculation).
5584	 */
5585	tdma = vap->iv_tdma;
5586	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5587		rix = ath_tx_findrix(sc, tp->ucastrate);
5588	else
5589		rix = ath_tx_findrix(sc, tp->mcastrate);
5590	/* XXX short preamble assumed */
5591	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5592		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5593
5594	ath_hal_intrset(ah, 0);
5595
5596	ath_beaconq_config(sc);			/* setup h/w beacon q */
5597	if (sc->sc_setcca)
5598		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5599	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5600	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5601		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5602	sc->sc_syncbeacon = 0;
5603
5604	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5605	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5606
5607	ath_hal_intrset(ah, sc->sc_imask);
5608
5609	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5610	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5611	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5612	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5613	    sc->sc_tdmadbaprep);
5614}
5615
5616/*
5617 * Update tdma operation.  Called from the 802.11 layer
5618 * when a beacon is received from the TDMA station operating
5619 * in the slot immediately preceding us in the bss.  Use
5620 * the rx timestamp for the beacon frame to update our
5621 * beacon timers so we follow their schedule.  Note that
5622 * by using the rx timestamp we implicitly include the
5623 * propagation delay in our schedule.
5624 */
5625static void
5626ath_tdma_update(struct ieee80211_node *ni,
5627	const struct ieee80211_tdma_param *tdma, int changed)
5628{
5629#define	TSF_TO_TU(_h,_l) \
5630	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5631#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5632	struct ieee80211vap *vap = ni->ni_vap;
5633	struct ieee80211com *ic = ni->ni_ic;
5634	struct ath_softc *sc = ic->ic_ifp->if_softc;
5635	struct ath_hal *ah = sc->sc_ah;
5636	const HAL_RATE_TABLE *rt = sc->sc_currates;
5637	u_int64_t tsf, rstamp, nextslot, nexttbtt;
5638	u_int32_t txtime, nextslottu;
5639	int32_t tudelta, tsfdelta;
5640	const struct ath_rx_status *rs;
5641	int rix;
5642
5643	sc->sc_stats.ast_tdma_update++;
5644
5645	/*
5646	 * Check for and adopt configuration changes.
5647	 */
5648	if (changed != 0) {
5649		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5650
5651		ath_tdma_bintvalsetup(sc, ts);
5652		if (changed & TDMA_UPDATE_SLOTLEN)
5653			ath_wme_update(ic);
5654
5655		DPRINTF(sc, ATH_DEBUG_TDMA,
5656		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5657		    "bintval %u TU\n", __func__,
5658		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5659		    sc->sc_tdmabintval);
5660
5661		/* XXX right? */
5662		ath_hal_intrset(ah, sc->sc_imask);
5663		/* NB: beacon timers programmed below */
5664	}
5665
5666	/* extend rx timestamp to 64 bits */
5667	rs = sc->sc_lastrs;
5668	tsf = ath_hal_gettsf64(ah);
5669	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
5670	/*
5671	 * The rx timestamp is set by the hardware on completing
5672	 * reception (at the point where the rx descriptor is DMA'd
5673	 * to the host).  To find the start of our next slot we
5674	 * must adjust this time by the time required to send
5675	 * the packet just received.
5676	 */
5677	rix = rt->rateCodeToIndex[rs->rs_rate];
5678	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5679	    rt->info[rix].shortPreamble);
5680	/* NB: << 9 is to cvt to TU and /2 */
5681	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5682	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5683
5684	/*
5685	 * Retrieve the hardware NextTBTT in usecs
5686	 * and calculate the difference between what the
5687	 * other station thinks and what we have programmed.  This
5688	 * lets us figure how to adjust our timers to match.  The
5689	 * adjustments are done by pulling the TSF forward and possibly
5690	 * rewriting the beacon timers.
5691	 */
5692	nexttbtt = ath_hal_getnexttbtt(ah);
5693	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
5694
5695	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5696	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5697	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5698
5699	if (tsfdelta < 0) {
5700		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5701		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5702		tsfdelta = -tsfdelta % 1024;
5703		nextslottu++;
5704	} else if (tsfdelta > 0) {
5705		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5706		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5707		tsfdelta = 1024 - (tsfdelta % 1024);
5708		nextslottu++;
5709	} else {
5710		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5711		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5712	}
5713	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
5714
5715	/*
5716	 * Copy sender's timetstamp into tdma ie so they can
5717	 * calculate roundtrip time.  We submit a beacon frame
5718	 * below after any timer adjustment.  The frame goes out
5719	 * at the next TBTT so the sender can calculate the
5720	 * roundtrip by inspecting the tdma ie in our beacon frame.
5721	 *
5722	 * NB: This tstamp is subtlely preserved when
5723	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5724	 *     slot position changes) because ieee80211_add_tdma
5725	 *     skips over the data.
5726	 */
5727	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5728		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5729		&ni->ni_tstamp.data, 8);
5730#if 0
5731	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5732	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
5733	    (unsigned long long) tsf, (unsigned long long) nextslot,
5734	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
5735#endif
5736	/*
5737	 * Adjust the beacon timers only when pulling them forward
5738	 * or when going back by less than the beacon interval.
5739	 * Negative jumps larger than the beacon interval seem to
5740	 * cause the timers to stop and generally cause instability.
5741	 * This basically filters out jumps due to missed beacons.
5742	 */
5743	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5744		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5745		sc->sc_stats.ast_tdma_timers++;
5746	}
5747	if (tsfdelta > 0) {
5748		ath_hal_adjusttsf(ah, tsfdelta);
5749		sc->sc_stats.ast_tdma_tsf++;
5750	}
5751	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5752#undef TU_TO_TSF
5753#undef TSF_TO_TU
5754}
5755
5756/*
5757 * Transmit a beacon frame at SWBA.  Dynamic updates
5758 * to the frame contents are done as needed.
5759 */
5760static void
5761ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5762{
5763	struct ath_hal *ah = sc->sc_ah;
5764	struct ath_buf *bf;
5765	int otherant;
5766
5767	/*
5768	 * Check if the previous beacon has gone out.  If
5769	 * not don't try to post another, skip this period
5770	 * and wait for the next.  Missed beacons indicate
5771	 * a problem and should not occur.  If we miss too
5772	 * many consecutive beacons reset the device.
5773	 */
5774	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5775		sc->sc_bmisscount++;
5776		DPRINTF(sc, ATH_DEBUG_BEACON,
5777			"%s: missed %u consecutive beacons\n",
5778			__func__, sc->sc_bmisscount);
5779		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5780			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5781		return;
5782	}
5783	if (sc->sc_bmisscount != 0) {
5784		DPRINTF(sc, ATH_DEBUG_BEACON,
5785			"%s: resume beacon xmit after %u misses\n",
5786			__func__, sc->sc_bmisscount);
5787		sc->sc_bmisscount = 0;
5788	}
5789
5790	/*
5791	 * Check recent per-antenna transmit statistics and flip
5792	 * the default antenna if noticeably more frames went out
5793	 * on the non-default antenna.
5794	 * XXX assumes 2 anntenae
5795	 */
5796	if (!sc->sc_diversity) {
5797		otherant = sc->sc_defant & 1 ? 2 : 1;
5798		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5799			ath_setdefantenna(sc, otherant);
5800		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5801	}
5802
5803	bf = ath_beacon_generate(sc, vap);
5804	if (bf != NULL) {
5805		/*
5806		 * Stop any current dma and put the new frame on the queue.
5807		 * This should never fail since we check above that no frames
5808		 * are still pending on the queue.
5809		 */
5810		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5811			DPRINTF(sc, ATH_DEBUG_ANY,
5812				"%s: beacon queue %u did not stop?\n",
5813				__func__, sc->sc_bhalq);
5814			/* NB: the HAL still stops DMA, so proceed */
5815		}
5816		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5817		ath_hal_txstart(ah, sc->sc_bhalq);
5818
5819		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5820
5821		/*
5822		 * Record local TSF for our last send for use
5823		 * in arbitrating slot collisions.
5824		 */
5825		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
5826	}
5827}
5828#endif /* IEEE80211_SUPPORT_TDMA */
5829
5830static void
5831ath_dfs_tasklet(void *p, int npending)
5832{
5833	struct ath_softc *sc = (struct ath_softc *) p;
5834	struct ifnet *ifp = sc->sc_ifp;
5835	struct ieee80211com *ic = ifp->if_l2com;
5836
5837	/*
5838	 * If previous processing has found a radar event,
5839	 * signal this to the net80211 layer to begin DFS
5840	 * processing.
5841	 */
5842	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5843		/* DFS event found, initiate channel change */
5844		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5845	}
5846}
5847
5848MODULE_VERSION(if_ath, 1);
5849MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5850