1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ah_eeprom_v3.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#define AH_5212_5111
31#include "ar5212/ar5212.ini"
32
33#define	N(a)	(sizeof(a)/sizeof(a[0]))
34
35struct ar5111State {
36	RF_HAL_FUNCS	base;		/* public state, must be first */
37	uint16_t	pcdacTable[PWR_TABLE_SIZE];
38
39	uint32_t	Bank0Data[N(ar5212Bank0_5111)];
40	uint32_t	Bank1Data[N(ar5212Bank1_5111)];
41	uint32_t	Bank2Data[N(ar5212Bank2_5111)];
42	uint32_t	Bank3Data[N(ar5212Bank3_5111)];
43	uint32_t	Bank6Data[N(ar5212Bank6_5111)];
44	uint32_t	Bank7Data[N(ar5212Bank7_5111)];
45};
46#define	AR5111(ah)	((struct ar5111State *) AH5212(ah)->ah_rfHal)
47
48static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49		const PCDACS_EEPROM *pSrcStruct);
50static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51		const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53		const PCDACS_EEPROM *pSrcStruct,
54		uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55
56extern void ar5212GetLowerUpperValues(uint16_t value,
57		const uint16_t *pList, uint16_t listSize,
58		uint16_t *pLowerValue, uint16_t *pUpperValue);
59extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60		uint32_t numBits, uint32_t firstBit, uint32_t column);
61
62static void
63ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64	int writes)
65{
66	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67	HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69}
70
71/*
72 * Take the MHz channel value and set the Channel value
73 *
74 * ASSUMES: Writes enabled to analog bus
75 */
76static HAL_BOOL
77ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
78{
79#define CI_2GHZ_INDEX_CORRECTION 19
80	uint16_t freq = ath_hal_gethwchannel(ah, chan);
81	uint32_t refClk, reg32, data2111;
82	int16_t chan5111, chanIEEE;
83
84	/*
85	 * Structure to hold 11b tuning information for 5111/2111
86	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
87	 */
88	typedef struct {
89		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
90		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
91		uint16_t	channel5111;	/* 11a channel for 5111 */
92	} CHAN_INFO_2GHZ;
93
94	static const CHAN_INFO_2GHZ chan2GHzData[] = {
95		{ 1, 0x46, 96  },	/* 2312 -19 */
96		{ 1, 0x46, 97  },	/* 2317 -18 */
97		{ 1, 0x46, 98  },	/* 2322 -17 */
98		{ 1, 0x46, 99  },	/* 2327 -16 */
99		{ 1, 0x46, 100 },	/* 2332 -15 */
100		{ 1, 0x46, 101 },	/* 2337 -14 */
101		{ 1, 0x46, 102 },	/* 2342 -13 */
102		{ 1, 0x46, 103 },	/* 2347 -12 */
103		{ 1, 0x46, 104 },	/* 2352 -11 */
104		{ 1, 0x46, 105 },	/* 2357 -10 */
105		{ 1, 0x46, 106 },	/* 2362  -9 */
106		{ 1, 0x46, 107 },	/* 2367  -8 */
107		{ 1, 0x46, 108 },	/* 2372  -7 */
108		/* index -6 to 0 are pad to make this a nolookup table */
109		{ 1, 0x46, 116 },	/*       -6 */
110		{ 1, 0x46, 116 },	/*       -5 */
111		{ 1, 0x46, 116 },	/*       -4 */
112		{ 1, 0x46, 116 },	/*       -3 */
113		{ 1, 0x46, 116 },	/*       -2 */
114		{ 1, 0x46, 116 },	/*       -1 */
115		{ 1, 0x46, 116 },	/*        0 */
116		{ 1, 0x46, 116 },	/* 2412   1 */
117		{ 1, 0x46, 117 },	/* 2417   2 */
118		{ 1, 0x46, 118 },	/* 2422   3 */
119		{ 1, 0x46, 119 },	/* 2427   4 */
120		{ 1, 0x46, 120 },	/* 2432   5 */
121		{ 1, 0x46, 121 },	/* 2437   6 */
122		{ 1, 0x46, 122 },	/* 2442   7 */
123		{ 1, 0x46, 123 },	/* 2447   8 */
124		{ 1, 0x46, 124 },	/* 2452   9 */
125		{ 1, 0x46, 125 },	/* 2457  10 */
126		{ 1, 0x46, 126 },	/* 2462  11 */
127		{ 1, 0x46, 127 },	/* 2467  12 */
128		{ 1, 0x46, 128 },	/* 2472  13 */
129		{ 1, 0x44, 124 },	/* 2484  14 */
130		{ 1, 0x46, 136 },	/* 2512  15 */
131		{ 1, 0x46, 140 },	/* 2532  16 */
132		{ 1, 0x46, 144 },	/* 2552  17 */
133		{ 1, 0x46, 148 },	/* 2572  18 */
134		{ 1, 0x46, 152 },	/* 2592  19 */
135		{ 1, 0x46, 156 },	/* 2612  20 */
136		{ 1, 0x46, 160 },	/* 2632  21 */
137		{ 1, 0x46, 164 },	/* 2652  22 */
138		{ 1, 0x46, 168 },	/* 2672  23 */
139		{ 1, 0x46, 172 },	/* 2692  24 */
140		{ 1, 0x46, 176 },	/* 2712  25 */
141		{ 1, 0x46, 180 } 	/* 2732  26 */
142	};
143
144	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
145
146	chanIEEE = chan->ic_ieee;
147	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
148		const CHAN_INFO_2GHZ* ci =
149			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
150		uint32_t txctl;
151
152		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
153				<< 5)
154			 | (ci->refClkSel << 4);
155		chan5111 = ci->channel5111;
156		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
157		if (freq == 2484) {
158			/* Enable channel spreading for channel 14 */
159			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
160				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
161		} else {
162			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
163				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
164		}
165	} else {
166		chan5111 = chanIEEE;	/* no conversion needed */
167		data2111 = 0;
168	}
169
170	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
171	if (chan5111 >= 145 || (chan5111 & 0x1)) {
172		reg32  = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
173		refClk = 1;
174	} else {
175		reg32  = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
176		refClk = 0;
177	}
178
179	reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
180	OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
181	reg32 >>= 8;
182	OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
183
184	AH_PRIVATE(ah)->ah_curchan = chan;
185	return AH_TRUE;
186#undef CI_2GHZ_INDEX_CORRECTION
187}
188
189/*
190 * Return a reference to the requested RF Bank.
191 */
192static uint32_t *
193ar5111GetRfBank(struct ath_hal *ah, int bank)
194{
195	struct ar5111State *priv = AR5111(ah);
196
197	HALASSERT(priv != AH_NULL);
198	switch (bank) {
199	case 0: return priv->Bank0Data;
200	case 1: return priv->Bank1Data;
201	case 2: return priv->Bank2Data;
202	case 3: return priv->Bank3Data;
203	case 6: return priv->Bank6Data;
204	case 7: return priv->Bank7Data;
205	}
206	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
207	    __func__, bank);
208	return AH_NULL;
209}
210
211/*
212 * Reads EEPROM header info from device structure and programs
213 * all rf registers
214 *
215 * REQUIRES: Access to the analog rf device
216 */
217static HAL_BOOL
218ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
219	uint16_t modesIndex, uint16_t *rfXpdGain)
220{
221	uint16_t freq = ath_hal_gethwchannel(ah, chan);
222	struct ath_hal_5212 *ahp = AH5212(ah);
223	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
224	uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
225	uint16_t tempOB, tempDB;
226	uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
227	int i, regWrites = 0;
228
229	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
230	    __func__, chan->ic_freq, chan->ic_flags, modesIndex);
231
232	/* Setup rf parameters */
233	switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
234	case IEEE80211_CHAN_A:
235		if (4000 < freq && freq < 5260) {
236			tempOB = ee->ee_ob1;
237			tempDB = ee->ee_db1;
238		} else if (5260 <= freq && freq < 5500) {
239			tempOB = ee->ee_ob2;
240			tempDB = ee->ee_db2;
241		} else if (5500 <= freq && freq < 5725) {
242			tempOB = ee->ee_ob3;
243			tempDB = ee->ee_db3;
244		} else if (freq >= 5725) {
245			tempOB = ee->ee_ob4;
246			tempDB = ee->ee_db4;
247		} else {
248			/* XXX when does this happen??? */
249			tempOB = tempDB = 0;
250		}
251		ob2GHz = db2GHz = 0;
252
253		rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
254		rfPloSel = ee->ee_xpd[headerInfo11A];
255		rfPwdXpd = !ee->ee_xpd[headerInfo11A];
256		gainI = ee->ee_gainI[headerInfo11A];
257		break;
258	case IEEE80211_CHAN_B:
259		tempOB = ee->ee_obFor24;
260		tempDB = ee->ee_dbFor24;
261		ob2GHz = ee->ee_ob2GHz[0];
262		db2GHz = ee->ee_db2GHz[0];
263
264		rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
265		rfPloSel = ee->ee_xpd[headerInfo11B];
266		rfPwdXpd = !ee->ee_xpd[headerInfo11B];
267		gainI = ee->ee_gainI[headerInfo11B];
268		break;
269	case IEEE80211_CHAN_G:
270	case IEEE80211_CHAN_PUREG:	/* NB: really 108G */
271		tempOB = ee->ee_obFor24g;
272		tempDB = ee->ee_dbFor24g;
273		ob2GHz = ee->ee_ob2GHz[1];
274		db2GHz = ee->ee_db2GHz[1];
275
276		rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
277		rfPloSel = ee->ee_xpd[headerInfo11G];
278		rfPwdXpd = !ee->ee_xpd[headerInfo11G];
279		gainI = ee->ee_gainI[headerInfo11G];
280		break;
281	default:
282		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
283		    __func__, chan->ic_flags);
284		return AH_FALSE;
285	}
286
287	HALASSERT(1 <= tempOB && tempOB <= 5);
288	HALASSERT(1 <= tempDB && tempDB <= 5);
289
290	/* Bank 0 Write */
291	for (i = 0; i < N(ar5212Bank0_5111); i++)
292		rfReg[i] = ar5212Bank0_5111[i][modesIndex];
293	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
294		ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
295		ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
296	}
297	HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
298
299	/* Bank 1 Write */
300	HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
301
302	/* Bank 2 Write */
303	HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
304
305	/* Bank 3 Write */
306	HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
307
308	/* Bank 6 Write */
309	for (i = 0; i < N(ar5212Bank6_5111); i++)
310		rfReg[i] = ar5212Bank6_5111[i][modesIndex];
311	if (IEEE80211_IS_CHAN_A(chan)) {	/* NB: CHANNEL_A | CHANNEL_T */
312		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
313		ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
314	}
315	ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
316	ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
317	/* Set 5212 OB & DB */
318	ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
319	ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
320	HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
321
322	/* Bank 7 Write */
323	for (i = 0; i < N(ar5212Bank7_5111); i++)
324		rfReg[i] = ar5212Bank7_5111[i][modesIndex];
325	ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
326	ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
327
328	if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
329        	uint32_t	rfWaitI, rfWaitS, rfMaxTime;
330
331        	rfWaitS = 0x1f;
332        	rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ?  0x10 : 0x1f;
333        	rfMaxTime = 3;
334        	ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
335        	ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
336        	ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
337
338	}
339
340	HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
341
342	/* Now that we have reprogrammed rfgain value, clear the flag. */
343	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
344
345	return AH_TRUE;
346}
347
348/*
349 * Returns interpolated or the scaled up interpolated value
350 */
351static uint16_t
352interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
353	uint16_t targetLeft, uint16_t targetRight)
354{
355	uint16_t rv;
356	int16_t lRatio;
357
358	/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
359	if ((targetLeft * targetRight) == 0)
360		return 0;
361
362	if (srcRight != srcLeft) {
363		/*
364		 * Note the ratio always need to be scaled,
365		 * since it will be a fraction.
366		 */
367		lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
368		if (lRatio < 0) {
369		    /* Return as Left target if value would be negative */
370		    rv = targetLeft;
371		} else if (lRatio > EEP_SCALE) {
372		    /* Return as Right target if Ratio is greater than 100% (SCALE) */
373		    rv = targetRight;
374		} else {
375			rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
376					targetLeft) / EEP_SCALE;
377		}
378	} else {
379		rv = targetLeft;
380	}
381	return rv;
382}
383
384/*
385 * Read the transmit power levels from the structures taken from EEPROM
386 * Interpolate read transmit power values for this channel
387 * Organize the transmit power values into a table for writing into the hardware
388 */
389static HAL_BOOL
390ar5111SetPowerTable(struct ath_hal *ah,
391	int16_t *pMinPower, int16_t *pMaxPower,
392	const struct ieee80211_channel *chan,
393	uint16_t *rfXpdGain)
394{
395	uint16_t freq = ath_hal_gethwchannel(ah, chan);
396	struct ath_hal_5212 *ahp = AH5212(ah);
397	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
398	FULL_PCDAC_STRUCT pcdacStruct;
399	int i, j;
400
401	uint16_t     *pPcdacValues;
402	int16_t      *pScaledUpDbm;
403	int16_t      minScaledPwr;
404	int16_t      maxScaledPwr;
405	int16_t      pwr;
406	uint16_t     pcdacMin = 0;
407	uint16_t     pcdacMax = PCDAC_STOP;
408	uint16_t     pcdacTableIndex;
409	uint16_t     scaledPcdac;
410	PCDACS_EEPROM *pSrcStruct;
411	PCDACS_EEPROM eepromPcdacs;
412
413	/* setup the pcdac struct to point to the correct info, based on mode */
414	switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
415	case IEEE80211_CHAN_A:
416	case IEEE80211_CHAN_ST:
417		eepromPcdacs.numChannels     = ee->ee_numChannels11a;
418		eepromPcdacs.pChannelList    = ee->ee_channels11a;
419		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
420		break;
421	case IEEE80211_CHAN_B:
422		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
423		eepromPcdacs.pChannelList    = ee->ee_channels11b;
424		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
425		break;
426	case IEEE80211_CHAN_G:
427	case IEEE80211_CHAN_108G:
428		eepromPcdacs.numChannels     = ee->ee_numChannels2_4;
429		eepromPcdacs.pChannelList    = ee->ee_channels11g;
430		eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
431		break;
432	default:
433		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
434		    __func__, chan->ic_flags);
435		return AH_FALSE;
436	}
437
438	pSrcStruct = &eepromPcdacs;
439
440	OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
441	pPcdacValues = pcdacStruct.PcdacValues;
442	pScaledUpDbm = pcdacStruct.PwrValues;
443
444	/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
445	for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
446		pPcdacValues[j] = i;
447
448	pcdacStruct.numPcdacValues = j;
449	pcdacStruct.pcdacMin = PCDAC_START;
450	pcdacStruct.pcdacMax = PCDAC_STOP;
451
452	/* Fill out the power values for this channel */
453	for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
454		pScaledUpDbm[j] = ar5212GetScaledPower(freq,
455			pPcdacValues[j], pSrcStruct);
456
457	/* Now scale the pcdac values to fit in the 64 entry power table */
458	minScaledPwr = pScaledUpDbm[0];
459	maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
460
461	/* find minimum and make monotonic */
462	for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
463		if (minScaledPwr >= pScaledUpDbm[j]) {
464			minScaledPwr = pScaledUpDbm[j];
465			pcdacMin = j;
466		}
467		/*
468		 * Make the full_hsh monotonically increasing otherwise
469		 * interpolation algorithm will get fooled gotta start
470		 * working from the top, hence i = 63 - j.
471		 */
472		i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
473		if (i == 0)
474			break;
475		if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
476			/*
477			 * It could be a glitch, so make the power for
478			 * this pcdac the same as the power from the
479			 * next highest pcdac.
480			 */
481			pScaledUpDbm[i - 1] = pScaledUpDbm[i];
482		}
483	}
484
485	for (j = 0; j < pcdacStruct.numPcdacValues; j++)
486		if (maxScaledPwr < pScaledUpDbm[j]) {
487			maxScaledPwr = pScaledUpDbm[j];
488			pcdacMax = j;
489		}
490
491	/* Find the first power level with a pcdac */
492	pwr = (uint16_t)(PWR_STEP *
493		((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
494
495	/* Write all the first pcdac entries based off the pcdacMin */
496	pcdacTableIndex = 0;
497	for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
498		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
499		ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
500	}
501
502	i = 0;
503	while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
504	    pcdacTableIndex < PWR_TABLE_SIZE) {
505		pwr += PWR_STEP;
506		/* stop if dbM > max_power_possible */
507		while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
508		       (pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
509			i++;
510		/* scale by 2 and add 1 to enable round up or down as needed */
511		scaledPcdac = (uint16_t)(interpolate(pwr,
512			pScaledUpDbm[i], pScaledUpDbm[i + 1],
513			(uint16_t)(pPcdacValues[i] * 2),
514			(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
515
516		HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
517		ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
518		if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
519			ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
520		pcdacTableIndex++;
521	}
522
523	/* Write all the last pcdac entries based off the last valid pcdac */
524	while (pcdacTableIndex < PWR_TABLE_SIZE) {
525		ahp->ah_pcdacTable[pcdacTableIndex] =
526			ahp->ah_pcdacTable[pcdacTableIndex - 1];
527		pcdacTableIndex++;
528	}
529
530	/* No power table adjustment for 5111 */
531	ahp->ah_txPowerIndexOffset = 0;
532
533	return AH_TRUE;
534}
535
536/*
537 * Get or interpolate the pcdac value from the calibrated data.
538 */
539static uint16_t
540ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
541	const PCDACS_EEPROM *pSrcStruct)
542{
543	uint16_t powerValue;
544	uint16_t lFreq, rFreq;		/* left and right frequency values */
545	uint16_t llPcdac, ulPcdac;	/* lower and upper left pcdac values */
546	uint16_t lrPcdac, urPcdac;	/* lower and upper right pcdac values */
547	uint16_t lPwr, uPwr;		/* lower and upper temp pwr values */
548	uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
549
550	if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
551		/* value was copied from srcStruct */
552		return powerValue;
553	}
554
555	ar5212GetLowerUpperValues(channel,
556		pSrcStruct->pChannelList, pSrcStruct->numChannels,
557		&lFreq, &rFreq);
558	ar5212GetLowerUpperPcdacs(pcdacValue,
559		lFreq, pSrcStruct, &llPcdac, &ulPcdac);
560	ar5212GetLowerUpperPcdacs(pcdacValue,
561		rFreq, pSrcStruct, &lrPcdac, &urPcdac);
562
563	/* get the power index for the pcdac value */
564	ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
565	ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
566	lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
567
568	ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
569	ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
570	rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
571
572	return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
573}
574
575/*
576 * Find the value from the calibrated source data struct
577 */
578static HAL_BOOL
579ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
580	const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
581{
582	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
583	int i;
584
585	for (i = 0; i < pSrcStruct->numChannels; i++ ) {
586		if (pChannelData->channelValue == channel) {
587			const uint16_t* pPcdac = pChannelData->PcdacValues;
588			int j;
589
590			for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
591				if (*pPcdac == pcdacValue) {
592					*powerValue = pChannelData->PwrValues[j];
593					return AH_TRUE;
594				}
595				pPcdac++;
596			}
597		}
598		pChannelData++;
599	}
600	return AH_FALSE;
601}
602
603/*
604 * Get the upper and lower pcdac given the channel and the pcdac
605 * used in the search
606 */
607static void
608ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
609	const PCDACS_EEPROM *pSrcStruct,
610	uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
611{
612	const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
613	int i;
614
615	/* Find the channel information */
616	for (i = 0; i < pSrcStruct->numChannels; i++) {
617		if (pChannelData->channelValue == channel)
618			break;
619		pChannelData++;
620	}
621	ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
622		      pChannelData->numPcdacValues,
623		      pLowerPcdac, pUpperPcdac);
624}
625
626static HAL_BOOL
627ar5111GetChannelMaxMinPower(struct ath_hal *ah,
628	const struct ieee80211_channel *chan,
629	int16_t *maxPow, int16_t *minPow)
630{
631	/* XXX - Get 5111 power limits! */
632	/* NB: caller will cope */
633	return AH_FALSE;
634}
635
636/*
637 * Adjust NF based on statistical values for 5GHz frequencies.
638 */
639static int16_t
640ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
641{
642	static const struct {
643		uint16_t freqLow;
644		int16_t	  adjust;
645	} adjust5111[] = {
646		{ 5790,	6 },	/* NB: ordered high -> low */
647		{ 5730, 4 },
648		{ 5690, 3 },
649		{ 5660, 2 },
650		{ 5610, 1 },
651		{ 5530, 0 },
652		{ 5450, 0 },
653		{ 5379, 1 },
654		{ 5209, 3 },
655		{ 3000, 5 },
656		{    0, 0 },
657	};
658	int i;
659
660	for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
661		;
662	return adjust5111[i].adjust;
663}
664
665/*
666 * Free memory for analog bank scratch buffers
667 */
668static void
669ar5111RfDetach(struct ath_hal *ah)
670{
671	struct ath_hal_5212 *ahp = AH5212(ah);
672
673	HALASSERT(ahp->ah_rfHal != AH_NULL);
674	ath_hal_free(ahp->ah_rfHal);
675	ahp->ah_rfHal = AH_NULL;
676}
677
678/*
679 * Allocate memory for analog bank scratch buffers
680 * Scratch Buffer will be reinitialized every reset so no need to zero now
681 */
682static HAL_BOOL
683ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
684{
685	struct ath_hal_5212 *ahp = AH5212(ah);
686	struct ar5111State *priv;
687
688	HALASSERT(ah->ah_magic == AR5212_MAGIC);
689
690	HALASSERT(ahp->ah_rfHal == AH_NULL);
691	priv = ath_hal_malloc(sizeof(struct ar5111State));
692	if (priv == AH_NULL) {
693		HALDEBUG(ah, HAL_DEBUG_ANY,
694		    "%s: cannot allocate private state\n", __func__);
695		*status = HAL_ENOMEM;		/* XXX */
696		return AH_FALSE;
697	}
698	priv->base.rfDetach		= ar5111RfDetach;
699	priv->base.writeRegs		= ar5111WriteRegs;
700	priv->base.getRfBank		= ar5111GetRfBank;
701	priv->base.setChannel		= ar5111SetChannel;
702	priv->base.setRfRegs		= ar5111SetRfRegs;
703	priv->base.setPowerTable	= ar5111SetPowerTable;
704	priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
705	priv->base.getNfAdjust		= ar5111GetNfAdjust;
706
707	ahp->ah_pcdacTable = priv->pcdacTable;
708	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
709	ahp->ah_rfHal = &priv->base;
710
711	return AH_TRUE;
712}
713
714static HAL_BOOL
715ar5111Probe(struct ath_hal *ah)
716{
717	return IS_RAD5111(ah);
718}
719AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
720