1/***********************license start***************
2 * Copyright (c) 2003-2010  Cavium Networks (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Networks nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM  NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41
42
43
44
45
46/**
47 * @file
48 *
49 * Configuration functions for low latency memory.
50 *
51 * <hr>$Revision: 52372 $<hr>
52 */
53#include "cvmx-config.h"
54#include "cvmx.h"
55#include "cvmx-llm.h"
56#include "cvmx-sysinfo.h"
57#include "cvmx-csr-db.h"
58
59#define	MIN(a,b) (((a)<(b))?(a):(b))
60
61typedef struct
62{
63    uint32_t dfa_memcfg0_base;
64    uint32_t dfa_memcfg1_base;
65    uint32_t mrs_dat_p0bunk0;
66    uint32_t mrs_dat_p0bunk1;
67    uint32_t mrs_dat_p1bunk0;
68    uint32_t mrs_dat_p1bunk1;
69    uint8_t  p0_ena;
70    uint8_t  p1_ena;
71    uint8_t  bunkport;
72} rldram_csr_config_t;
73
74
75
76
77
78int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr);
79
80
81void print_rld_cfg(rldram_csr_config_t *cfg_ptr);
82void write_rld_cfg(rldram_csr_config_t *cfg_ptr);
83static void cn31xx_dfa_memory_init(void);
84
85static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str);
86
87
88
89#ifndef CVMX_LLM_NUM_PORTS
90#warning WARNING: default CVMX_LLM_NUM_PORTS used.  Defaults deprecated, please set in executive-config.h
91#define CVMX_LLM_NUM_PORTS 1
92#endif
93
94
95#if (CVMX_LLM_NUM_PORTS != 1) && (CVMX_LLM_NUM_PORTS != 2)
96#error "Invalid CVMX_LLM_NUM_PORTS value: must be 1 or 2\n"
97#endif
98
99int cvmx_llm_initialize()
100{
101    if (cvmx_llm_initialize_desc(NULL) < 0)
102        return -1;
103
104    return 0;
105}
106
107
108int cvmx_llm_get_default_descriptor(llm_descriptor_t *llm_desc_ptr)
109{
110    cvmx_sysinfo_t *sys_ptr;
111    sys_ptr = cvmx_sysinfo_get();
112
113    if (!llm_desc_ptr)
114        return -1;
115
116    memset(llm_desc_ptr, 0, sizeof(llm_descriptor_t));
117
118    llm_desc_ptr->cpu_hz = cvmx_clock_get_rate(CVMX_CLOCK_CORE);
119
120    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT3000)
121    { // N3K->RLD0 Address Swizzle
122        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
123        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
124        // N3K->RLD1 Address Swizzle
125        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
126        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
127        /* NOTE: The ebt3000 has a strange RLDRAM configuration for validation purposes.  It is not recommended to have
128        ** different amounts of memory on different ports as that renders some memory unusable */
129        llm_desc_ptr->rld0_bunks = 2;
130        llm_desc_ptr->rld1_bunks = 2;
131        llm_desc_ptr->rld0_mbytes = 128;          // RLD0: 4x 32Mx9
132        llm_desc_ptr->rld1_mbytes = 64;           // RLD1: 2x 16Mx18
133    }
134    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBT5800)
135    {
136        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
137        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
138        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
139        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
140        llm_desc_ptr->rld0_bunks = 2;
141        llm_desc_ptr->rld1_bunks = 2;
142        llm_desc_ptr->rld0_mbytes = 128;
143        llm_desc_ptr->rld1_mbytes = 128;
144        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
145    }
146    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3000)
147    {
148        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
149        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
150        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
151        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
152        llm_desc_ptr->rld0_bunks = 2;
153        llm_desc_ptr->rld1_bunks = 2;
154        llm_desc_ptr->rld0_mbytes = 128;
155        llm_desc_ptr->rld1_mbytes = 128;
156    }
157    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NAC38)
158    {
159        if (sys_ptr->board_rev_major == 1 && sys_ptr->board_rev_minor == 0)
160        {
161            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
162            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
163            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
164            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 00 08 07 06 05 04 13 02 01 03 09 18 17 16 15 14 10 12 11 19");
165            llm_desc_ptr->rld0_bunks = 2;
166            llm_desc_ptr->rld1_bunks = 2;
167            llm_desc_ptr->rld0_mbytes = 128;
168            llm_desc_ptr->rld1_mbytes = 128;
169        }
170        else
171        {   /* Asus new recommendation  */
172            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 09 11 04 06 05 08 15 20 16 18 12 13 00 01 07 02 19 17 10 14 03");
173            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 09 00 01 07 02 19 17 10 14 03 13 04 06 05 08 15 20 16 18 12");
174            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 08 13 14 00 04 12 16 11 19 10 07 02 01 05 03 06 17 18 20 09 15");
175            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 13 08 01 05 03 06 17 18 20 09 15 02 14 00 04 12 16 11 19 10 07");
176            llm_desc_ptr->rld0_bunks = 2;
177            llm_desc_ptr->rld1_bunks = 2;
178            llm_desc_ptr->rld0_mbytes = 128;
179            llm_desc_ptr->rld1_mbytes = 128;
180        }
181    }
182    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_THUNDER)
183    {
184
185        if (sys_ptr->board_rev_major >= 4)
186        {
187            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 13 11 01 02 07 19 03 18 10 12 20 06 04 08 17 05 14 16 00 09 15");
188            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 11 13 04 08 17 05 14 16 00 09 15 06 01 02 07 19 03 18 10 12 20");
189            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 02 19 18 17 16 09 14 13 20 11 10 01 08 03 06 15 04 07 05 12 00");
190            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 02 08 03 06 15 04 07 05 12 00 01 18 17 16 09 14 13 20 11 10");
191        }
192        else
193        {
194            strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
195            strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
196            strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
197            strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
198        }
199
200        llm_desc_ptr->rld0_bunks = 2;
201        llm_desc_ptr->rld1_bunks = 2;
202        llm_desc_ptr->rld0_mbytes = 128;
203        llm_desc_ptr->rld1_mbytes = 128;
204    }
205    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_NICPRO2)
206    {
207        strcpy(llm_desc_ptr->addr_rld0_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
208        strcpy(llm_desc_ptr->addr_rld0_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
209        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
210        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 19 20 08 07 06 05 04 03 02 01 00 09 18 17 16 15 14 13 12 11 10");
211        llm_desc_ptr->rld0_bunks = 2;
212        llm_desc_ptr->rld1_bunks = 2;
213        llm_desc_ptr->rld0_mbytes = 256;
214        llm_desc_ptr->rld1_mbytes = 256;
215        llm_desc_ptr->max_rld_clock_mhz = 400;  /* CN58XX needs a max clock speed for selecting optimal divisor */
216    }
217    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
218    {
219        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory */
220        llm_desc_ptr->rld0_bunks = 1;
221        llm_desc_ptr->rld0_mbytes = 256;
222    }
223    else if (sys_ptr->board_type == CVMX_BOARD_TYPE_KBP)
224    {
225        strcpy(llm_desc_ptr->addr_rld0_fb_str, "");
226        strcpy(llm_desc_ptr->addr_rld0_bb_str, "");
227        llm_desc_ptr->rld0_bunks = 0;
228        llm_desc_ptr->rld0_mbytes = 0;
229        strcpy(llm_desc_ptr->addr_rld1_fb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
230        strcpy(llm_desc_ptr->addr_rld1_bb_str, "22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00");
231        llm_desc_ptr->rld1_bunks = 2;
232        llm_desc_ptr->rld1_mbytes = 64;
233    }
234    else
235    {
236        cvmx_dprintf("No default LLM configuration available for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);
237        return -1;
238    }
239
240    return(0);
241}
242
243int cvmx_llm_initialize_desc(llm_descriptor_t *llm_desc_ptr)
244{
245    cvmx_sysinfo_t *sys_ptr;
246    sys_ptr = cvmx_sysinfo_get();
247    llm_descriptor_t default_llm_desc;
248
249    memset(&default_llm_desc, 0, sizeof(default_llm_desc));
250    if (sys_ptr->board_type == CVMX_BOARD_TYPE_SIM)
251    {
252        cvmx_dprintf("Skipping llm configuration for simulator.\n");
253        return 0;
254    }
255
256    if (sys_ptr->board_type == CVMX_BOARD_TYPE_EBH3100)
257    {
258        /* CN31xx DFA memory is DDR based, so it is completely different from the CN38XX DFA memory
259        ** config descriptors are not supported yet.*/
260        cvmx_dprintf("Warning: preliminary DFA memory configuration\n");
261        cn31xx_dfa_memory_init();
262        return(256*1024*1024);
263    }
264
265    /* If no descriptor passed, generate default descriptor based on board type.
266    ** Fail if no default available for given board type
267    */
268    if (!llm_desc_ptr)
269    {
270        /* Get default descriptor */
271        if (0 > cvmx_llm_get_default_descriptor(&default_llm_desc))
272            return -1;
273
274        /* Disable second port depending on CVMX config */
275        if (CVMX_LLM_NUM_PORTS == 1)
276	  default_llm_desc.rld0_bunks = 0;        // For single port: Force RLD0(P1) to appear EMPTY
277
278        cvmx_dprintf("Using default LLM configuration for board %s (%d)\n", cvmx_board_type_to_string(sys_ptr->board_type),  sys_ptr->board_type);
279
280        llm_desc_ptr = &default_llm_desc;
281    }
282
283
284
285    rldram_csr_config_t ebt3000_rld_cfg;
286    if (!rld_csr_config_generate(llm_desc_ptr, &ebt3000_rld_cfg))
287    {
288        cvmx_dprintf("Configuring %d llm port(s).\n", !!llm_desc_ptr->rld0_bunks + !!llm_desc_ptr->rld1_bunks);
289        write_rld_cfg(&ebt3000_rld_cfg);
290    }
291    else
292    {
293        cvmx_dprintf("Error creating rldram configuration\n");
294        return(-1);
295    }
296
297    /* Compute how much memory is configured
298    ** Memory is interleaved, so if one port has more than the other some memory is not usable */
299
300    /* If both ports are enabled, handle the case where one port has more than the other.
301    ** This is an unusual and not recommended configuration that exists on the ebt3000 board */
302    if (!!llm_desc_ptr->rld0_bunks && !!llm_desc_ptr->rld1_bunks)
303        llm_desc_ptr->rld0_mbytes = llm_desc_ptr->rld1_mbytes = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
304
305    return(((!!llm_desc_ptr->rld0_bunks) * llm_desc_ptr->rld0_mbytes
306          + (!!llm_desc_ptr->rld1_bunks) * llm_desc_ptr->rld1_mbytes) * 1024*1024);
307}
308
309//======================
310// SUPPORT FUNCTIONS:
311//======================
312//======================================================================
313// Extracts srcvec[srcbitpos] and places it in return int (bit[0])
314int bit_extract ( int srcvec,         // source word (to extract)
315                  int srcbitpos       // source bit position
316                )
317{
318    return(((1 << srcbitpos) & srcvec) >> srcbitpos);
319}
320//======================================================================
321// Inserts srcvec[0] into dstvec[dstbitpos] (without affecting other bits)
322int bit_insert ( int srcvec,           // srcvec[0] = bit to be inserted
323                 int dstbitpos,        // Bit position to insert into returned int
324                 int dstvec            // dstvec (destination vector)
325               )
326{
327    return((srcvec << dstbitpos) | dstvec);      // Shift bit to insert into bit position/OR with accumulated number
328}
329//======================================================================
330
331int rld_csr_config_generate(llm_descriptor_t *llm_desc_ptr, rldram_csr_config_t *cfg_ptr)
332{
333    char *addr_rld0_fb_str;
334    char *addr_rld0_bb_str;
335    char *addr_rld1_fb_str;
336    char *addr_rld1_bb_str;
337    int eclk_ps;
338    int mtype = 0;                           // MTYPE (0: RLDRAM/1: FCRAM
339    int trcmin = 20;                         // tRC(min) - from RLDRAM data sheet
340    int trc_cyc;                             // TRC(cyc)
341    int trc_mod;
342    int trl_cyc;                             // TRL(cyc)
343    int twl_cyc;                             // TWL(cyc)
344    int tmrsc_cyc = 6;                       // tMRSC(cyc)  [2-7]
345    int mclk_ps;                             // DFA Memory Clock(in ps) = 2x eclk
346    int rldcfg = 99;                         // RLDRAM-II CFG (1,2,3)
347    int mrs_odt = 0;                         // RLDRAM MRS A[9]=ODT (default)
348    int mrs_impmatch = 0;                    // RLDRAM MRS A[8]=Impedance Matching (default)
349    int mrs_dllrst = 1;                      // RLDRAM MRS A[7]=DLL Reset (default)
350    uint32_t mrs_dat;
351    int mrs_dat_p0bunk0 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk0)
352    int mrs_dat_p0bunk1 = 0;                 // MRS Register Data After Address Map (for Port0 Bunk1)
353    int mrs_dat_p1bunk0 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk0)
354    int mrs_dat_p1bunk1 = 0;                 // MRS Register Data After Address Map (for Port1 Bunk1)
355    int p0_ena = 0;                          // DFA Port#0 Enabled
356    int p1_ena = 0;                          // DFA Port#1 Enabled
357    int memport = 0;                       // Memory(MB) per Port [MAX=512]
358    int membunk;                             // Memory(MB) per Bunk
359    int bunkport = 0;                        // Bunks/Port [1/2]
360    int pbunk = 0;                               // Physical Bunk(or Rank) encoding for address bit
361    int tref_ms = 32;                        // tREF(ms) (RLDRAM-II overall device refresh interval
362    int trefi_ns;                            // tREFI(ns) = tREF(ns)/#rows/bank
363    int rows = 8;                            // #rows/bank (K) typically 8K
364    int ref512int;
365    int ref512mod;
366    int tskw_cyc = 0;
367    int fprch = 1;
368    int bprch = 0;
369    int dfa_memcfg0_base = 0;
370    int dfa_memcfg1_base = 0;
371    int tbl = 1;                             // tBL (1: 2-burst /2: 4-burst)
372    int rw_dly;
373    int wr_dly;
374    int r2r = 1;
375    int sil_lat = 1;
376    int clkdiv = 2;  /* CN38XX is fixed at 2, CN58XX supports 2,3,4 */
377    int clkdiv_enc = 0x0;  /* Encoded clock divisor, only used for CN58XX */
378
379    if (!llm_desc_ptr)
380        return -1;
381
382    /* Setup variables from descriptor */
383
384    addr_rld0_fb_str = llm_desc_ptr->addr_rld0_fb_str;
385    addr_rld0_bb_str = llm_desc_ptr->addr_rld0_bb_str;
386    addr_rld1_fb_str = llm_desc_ptr->addr_rld1_fb_str;
387    addr_rld1_bb_str = llm_desc_ptr->addr_rld1_bb_str;
388
389    p0_ena = !!llm_desc_ptr->rld1_bunks;        // NOTE: P0 == RLD1
390    p1_ena = !!llm_desc_ptr->rld0_bunks;        // NOTE: P1 == RLD0
391
392    // Massage the code, so that if the user had imbalanced memory per-port (or imbalanced bunks/port), we
393    // at least try to configure 'workable' memory.
394    if (p0_ena && p1_ena)  // IF BOTH PORTS Enabled (imbalanced memory), select smaller of BOTH
395    {
396        memport = MIN(llm_desc_ptr->rld0_mbytes, llm_desc_ptr->rld1_mbytes);
397        bunkport = MIN(llm_desc_ptr->rld0_bunks, llm_desc_ptr->rld1_bunks);
398    }
399    else if (p0_ena) // P0=RLD1 Enabled
400    {
401        memport = llm_desc_ptr->rld1_mbytes;
402        bunkport = llm_desc_ptr->rld1_bunks;
403    }
404    else if (p1_ena) // P1=RLD0 Enabled
405    {
406        memport = llm_desc_ptr->rld0_mbytes;
407        bunkport = llm_desc_ptr->rld0_bunks;
408    }
409    else
410        return -1;
411
412    uint32_t eclk_mhz = llm_desc_ptr->cpu_hz/1000000;
413
414
415
416    /* Tweak skew based on cpu clock */
417    if (eclk_mhz <= 367)
418    {
419        tskw_cyc = 0;
420    }
421    else
422    {
423        tskw_cyc = 1;
424    }
425
426    /* Determine clock divider ratio (only required for CN58XX) */
427    if (OCTEON_IS_MODEL(OCTEON_CN58XX))
428    {
429        uint32_t max_llm_clock_mhz = llm_desc_ptr->max_rld_clock_mhz;
430        if (!max_llm_clock_mhz)
431        {
432            max_llm_clock_mhz = 400;  /* Default to 400 MHz */
433            cvmx_dprintf("Warning, using default max_rld_clock_mhz of: %lu MHz\n", (unsigned long)max_llm_clock_mhz);
434        }
435
436        /* Compute the divisor, and round up */
437        clkdiv = eclk_mhz/max_llm_clock_mhz;
438        if (clkdiv * max_llm_clock_mhz < eclk_mhz)
439            clkdiv++;
440
441        if (clkdiv > 4)
442        {
443            cvmx_dprintf("ERROR: CN58XX LLM clock divisor out of range\n");
444            goto TERMINATE;
445        }
446        if (clkdiv < 2)
447            clkdiv = 2;
448
449        cvmx_dprintf("Using llm clock divisor: %d, llm clock is: %lu MHz\n", clkdiv, (unsigned long)eclk_mhz/clkdiv);
450        /* Translate divisor into bit encoding for register */
451        /* 0 -> div 2
452        ** 1 -> reserved
453        ** 2 -> div 3
454        ** 3 -> div 4
455        */
456        if (clkdiv == 2)
457            clkdiv_enc = 0;
458        else
459            clkdiv_enc = clkdiv - 1;
460
461    /* Odd divisor needs sil_lat to be 2 */
462        if (clkdiv == 0x3)
463            sil_lat = 2;
464
465        /* Increment tskw for high clock speeds */
466        if ((unsigned long)eclk_mhz/clkdiv >= 375)
467            tskw_cyc += 1;
468    }
469
470    eclk_ps = (1000000+(eclk_mhz-1)) / eclk_mhz;  // round up if nonzero remainder
471    //=======================================================================
472
473    //=======================================================================
474    // Now, Query User for DFA Memory Type
475    if (mtype != 0)
476    {
477        goto TERMINATE;         // Complete this code for FCRAM usage on N3K-P2
478    }
479    //=======================================================================
480    // Query what the tRC(min) value is from the data sheets
481    //=======================================================================
482    // Now determine the Best CFG based on Memory clock(ps) and tRCmin(ns)
483    mclk_ps = eclk_ps * clkdiv;
484    trc_cyc = ((trcmin * 1000)/mclk_ps);
485    trc_mod = ((trcmin * 1000) % mclk_ps);
486    // If remainder exists, bump up to the next integer multiple
487    if (trc_mod != 0)
488    {
489        trc_cyc = trc_cyc + 1;
490    }
491    // If tRC is now ODD, then bump it to the next EVEN integer (RLDRAM-II does not support odd tRC values at this time).
492    if (trc_cyc & 1)
493    {
494        trc_cyc = trc_cyc + 1;           // Bump it to an even #
495    }
496    // RLDRAM CFG Range Check: If the computed trc_cyc is less than 4, then set it to min CFG1 [tRC=4]
497    if (trc_cyc < 4)
498    {
499        trc_cyc = 4;             // If computed trc_cyc < 4 then clamp to 4
500    }
501    else if (trc_cyc > 8)
502    {    // If the computed trc_cyc > 8, then report an error (because RLDRAM cannot support a tRC>8
503        goto TERMINATE;
504    }
505    // Assuming all is ok(up to here)
506    // At this point the tRC_cyc has been clamped  between 4 and 8 (and is even), So it can only be 4,6,8 which are
507    // the RLDRAM valid CFG range values.
508    trl_cyc = trc_cyc;                 // tRL = tRC (for RLDRAM=II)
509    twl_cyc = trl_cyc + 1;             // tWL = tRL + 1 (for RLDRAM-II)
510    // NOTE: RLDRAM-II (as of 4/25/05) only have 3 supported CFG encodings:
511    if (trc_cyc == 4)
512    {
513        rldcfg = 1;           // CFG #1 (tRL=4/tRC=4/tWL=5)
514    }
515    else if (trc_cyc == 6)
516    {
517        rldcfg = 2;           // CFG #2 (tRL=6/tRC=6/tWL=7)
518    }
519    else if (trc_cyc == 8)
520    {
521        rldcfg = 3;           // CFG #3 (tRL=8/tRC=8/tWL=9)
522    }
523    else
524    {
525        goto TERMINATE;
526    }
527    //=======================================================================
528    mrs_dat = ( (mrs_odt << 9) | (mrs_impmatch << 8) | (mrs_dllrst << 7) | rldcfg );
529    //=======================================================================
530    // If there is only a single bunk, then skip over address mapping queries (which are not required)
531    if (bunkport == 1)
532    {
533        goto CALC_PBUNK;
534    }
535
536    /* Process the address mappings */
537    /* Note that that RLD0 pins corresponds to Port#1, and
538    **                RLD1 pins corresponds to Port#0.
539    */
540    mrs_dat_p1bunk0 = process_address_map_str(mrs_dat, addr_rld0_fb_str);
541    mrs_dat_p1bunk1 = process_address_map_str(mrs_dat, addr_rld0_bb_str);
542    mrs_dat_p0bunk0 = process_address_map_str(mrs_dat, addr_rld1_fb_str);
543    mrs_dat_p0bunk1 = process_address_map_str(mrs_dat, addr_rld1_bb_str);
544
545
546    //=======================================================================
547    CALC_PBUNK:
548    // Determine the PBUNK field (based on Memory/Bunk)
549    // This determines the addr bit used to distinguish when crossing a bunk.
550    // NOTE: For RLDRAM, the bunk bit is extracted from 'a' programmably selected high
551    // order addr bit. [linear address per-bunk]
552    if (bunkport == 2)
553    {
554        membunk = (memport / 2);
555    }
556    else
557    {
558        membunk = memport;
559    }
560    if (membunk == 16)
561    {       // 16MB/bunk MA[19]
562        pbunk = 0;
563    }
564    else if (membunk == 32)
565    {  // 32MB/bunk MA[20]
566        pbunk = 1;
567    }
568    else if (membunk == 64)
569    {  // 64MB/bunk MA[21]
570        pbunk = 2;
571    }
572    else if (membunk == 128)
573    { // 128MB/bunk MA[22]
574        pbunk = 3;
575    }
576    else if (membunk == 256)
577    { // 256MB/bunk MA[23]
578        pbunk = 4;
579    }
580    else if (membunk == 512)
581    { // 512MB/bunk
582    }
583    //=======================================================================
584    //=======================================================================
585    //=======================================================================
586    // Now determine N3K REFINT
587    trefi_ns = (tref_ms * 1000 * 1000) / (rows * 1024);
588    ref512int = ((trefi_ns * 1000) / (eclk_ps * 512));
589    ref512mod = ((trefi_ns * 1000) % (eclk_ps * 512));
590    //=======================================================================
591    // Ask about tSKW
592#if 0
593    if (tskw_ps ==  0)
594    {
595        tskw_cyc = 0;
596    }
597    else
598    { // CEILING function
599        tskw_cyc = (tskw_ps / eclk_ps);
600        tskw_mod = (tskw_ps % eclk_ps);
601        if (tskw_mod != 0)
602        {  // If there's a remainder - then bump to next (+1)
603            tskw_cyc = tskw_cyc + 1;
604        }
605    }
606#endif
607    if (tskw_cyc > 3)
608    {
609        goto TERMINATE;
610    }
611
612    tbl = 1;        // BLEN=2 (ALWAYs for RLDRAM)
613    //=======================================================================
614    // RW_DLY = (ROUND_UP{[[(TRL+TBL)*2 + tSKW + BPRCH] + 1] / 2}) - tWL
615    rw_dly = ((((trl_cyc + tbl) * 2 + tskw_cyc + bprch) + 1) / 2);
616    if (rw_dly & 1)
617    { // If it's ODD then round up
618        rw_dly = rw_dly + 1;
619    }
620    rw_dly = rw_dly - twl_cyc +1 ;
621    if (rw_dly < 0)
622    { // range check - is it positive
623        goto TERMINATE;
624    }
625    //=======================================================================
626    // WR_DLY = (ROUND_UP[[(tWL + tBL)*2 - tSKW + FPRCH] / 2]) - tRL
627    wr_dly = (((twl_cyc + tbl) * 2 - tskw_cyc + fprch) / 2);
628    if (wr_dly & 1)
629    { // If it's ODD then round up
630        wr_dly = wr_dly + 1;
631    }
632    wr_dly = wr_dly - trl_cyc + 1;
633    if (wr_dly < 0)
634    { // range check - is it positive
635        goto TERMINATE;
636    }
637
638
639    dfa_memcfg0_base = 0;
640    dfa_memcfg0_base = ( p0_ena |
641                         (p1_ena << 1) |
642                         (mtype << 3) |
643                         (sil_lat << 4) |
644                         (rw_dly << 6) |
645                         (wr_dly << 10) |
646                         (fprch << 14) |
647                         (bprch << 16) |
648                         (0 << 18) |         // BLEN=0(2-burst for RLDRAM)
649                         (pbunk << 19) |
650                         (r2r << 22) |       // R2R=1
651    			 (clkdiv_enc << 28 )
652                       );
653
654
655    dfa_memcfg1_base = 0;
656    dfa_memcfg1_base = ( ref512int |
657                         (tskw_cyc << 4) |
658                         (trl_cyc << 8) |
659                         (twl_cyc << 12) |
660                         (trc_cyc << 16) |
661                         (tmrsc_cyc << 20)
662                       );
663
664
665
666
667    cfg_ptr->dfa_memcfg0_base = dfa_memcfg0_base;
668    cfg_ptr->dfa_memcfg1_base = dfa_memcfg1_base;
669    cfg_ptr->mrs_dat_p0bunk0 =  mrs_dat_p0bunk0;
670    cfg_ptr->mrs_dat_p1bunk0 =  mrs_dat_p1bunk0;
671    cfg_ptr->mrs_dat_p0bunk1 =  mrs_dat_p0bunk1;
672    cfg_ptr->mrs_dat_p1bunk1 =  mrs_dat_p1bunk1;
673    cfg_ptr->p0_ena =           p0_ena;
674    cfg_ptr->p1_ena =           p1_ena;
675    cfg_ptr->bunkport =         bunkport;
676    //=======================================================================
677
678    return(0);
679    TERMINATE:
680    return(-1);
681
682}
683
684
685
686static uint32_t process_address_map_str(uint32_t mrs_dat, char *addr_str)
687{
688    int count = 0;
689    int amap [23];
690    uint32_t new_mrs_dat = 0;
691
692//    cvmx_dprintf("mrs_dat: 0x%x, str: %x\n", mrs_dat, addr_str);
693    char *charptr = strtok(addr_str," ");
694    while ((charptr != NULL) & (count <= 22))
695    {
696        amap[22-count] = atoi(charptr);         // Assign the AMAP Array
697        charptr = strtok(NULL," ");             // Get Next char string (which represents next addr bit mapping)
698        count++;
699    }
700    // Now do the bit swap of MRSDAT (based on address mapping)
701    uint32_t mrsdat_bit;
702    for (count=0;count<=22;count++)
703    {
704        mrsdat_bit = bit_extract(mrs_dat, count);
705        new_mrs_dat = bit_insert(mrsdat_bit, amap[count], new_mrs_dat);
706    }
707
708    return new_mrs_dat;
709}
710
711
712//#define PRINT_LLM_CONFIG
713#ifdef PRINT_LLM_CONFIG
714#define ll_printf printf
715#else
716#define ll_printf(...)
717#define cvmx_csr_db_decode(...)
718#endif
719
720static void cn31xx_dfa_memory_init(void)
721{
722    if (OCTEON_IS_MODEL(OCTEON_CN31XX))
723    {
724        cvmx_dfa_ddr2_cfg_t  dfaCfg;
725        cvmx_dfa_eclkcfg_t   dfaEcklCfg;
726        cvmx_dfa_ddr2_addr_t dfaAddr;
727        cvmx_dfa_ddr2_tmg_t  dfaTmg;
728        cvmx_dfa_ddr2_pll_t  dfaPll;
729        int mem_freq_hz = 533*1000000;
730        int ref_freq_hz = cvmx_sysinfo_get()->dfa_ref_clock_hz;
731        if (!ref_freq_hz)
732            ref_freq_hz = 33*1000000;
733
734        cvmx_dprintf ("Configuring DFA memory for %d MHz operation.\n",mem_freq_hz/1000000);
735
736          /* Turn on the DFA memory port. */
737        dfaCfg.u64 = cvmx_read_csr (CVMX_DFA_DDR2_CFG);
738        dfaCfg.s.prtena = 1;
739        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
740
741          /* Start the PLL alignment sequence */
742        dfaPll.u64 = 0;
743        dfaPll.s.pll_ratio  = mem_freq_hz/ref_freq_hz         /*400Mhz / 33MHz*/;
744        dfaPll.s.pll_div2   = 1              /*400 - 1 */;
745        dfaPll.s.pll_bypass = 0;
746        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
747
748        dfaPll.s.pll_init = 1;
749        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
750
751        cvmx_wait (RLD_INIT_DELAY); //want 150uS
752        dfaPll.s.qdll_ena = 1;
753        cvmx_write_csr (CVMX_DFA_DDR2_PLL, dfaPll.u64);
754
755        cvmx_wait (RLD_INIT_DELAY); //want 10us
756        dfaEcklCfg.u64 = 0;
757        dfaEcklCfg.s.dfa_frstn = 1;
758        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
759
760          /* Configure the DFA Memory */
761        dfaCfg.s.silo_hc = 1 /*400 - 1 */;
762        dfaCfg.s.silo_qc = 0 /*400 - 0 */;
763        dfaCfg.s.tskw    = 1 /*400 - 1 */;
764        dfaCfg.s.ref_int = 0x820 /*533 - 0x820  400 - 0x618*/;
765        dfaCfg.s.trfc    = 0x1A  /*533 - 0x23   400 - 0x1A*/;
766        dfaCfg.s.fprch   = 0; /* 1 more conservative*/
767        dfaCfg.s.bprch   = 0; /* 1 */
768        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
769
770        dfaEcklCfg.u64 = cvmx_read_csr (CVMX_DFA_ECLKCFG);
771        dfaEcklCfg.s.maxbnk = 1;
772        cvmx_write_csr (CVMX_DFA_ECLKCFG, dfaEcklCfg.u64);
773
774        dfaAddr.u64 = cvmx_read_csr (CVMX_DFA_DDR2_ADDR);
775        dfaAddr.s.num_cols    = 0x1;
776        dfaAddr.s.num_colrows = 0x2;
777        dfaAddr.s.num_rnks    = 0x1;
778        cvmx_write_csr (CVMX_DFA_DDR2_ADDR, dfaAddr.u64);
779
780        dfaTmg.u64 =  cvmx_read_csr (CVMX_DFA_DDR2_TMG);
781        dfaTmg.s.ddr2t    = 0;
782        dfaTmg.s.tmrd     = 0x2;
783        dfaTmg.s.caslat   = 0x4 /*400 - 0x3, 500 - 0x4*/;
784        dfaTmg.s.pocas    = 0;
785        dfaTmg.s.addlat   = 0;
786        dfaTmg.s.trcd     = 4   /*400 - 3, 500 - 4*/;
787        dfaTmg.s.trrd     = 2;
788        dfaTmg.s.tras     = 0xB /*400 - 8, 500 - 0xB*/;
789        dfaTmg.s.trp      = 4   /*400 - 3, 500 - 4*/;
790        dfaTmg.s.twr      = 4   /*400 - 3, 500 - 4*/;
791        dfaTmg.s.twtr     = 2   /*400 - 2 */;
792        dfaTmg.s.tfaw     = 0xE /*400 - 0xA, 500 - 0xE*/;
793        dfaTmg.s.r2r_slot = 0;
794        dfaTmg.s.dic      = 0;  /*400 - 0 */
795        dfaTmg.s.dqsn_ena = 0;
796        dfaTmg.s.odt_rtt  = 0;
797        cvmx_write_csr (CVMX_DFA_DDR2_TMG, dfaTmg.u64);
798
799          /* Turn on the DDR2 interface and wait a bit for the hardware to setup. */
800        dfaCfg.s.init = 1;
801        cvmx_write_csr (CVMX_DFA_DDR2_CFG, dfaCfg.u64);
802        cvmx_wait(RLD_INIT_DELAY); // want at least 64K cycles
803    }
804}
805
806void write_rld_cfg(rldram_csr_config_t *cfg_ptr)
807{
808    cvmx_dfa_memcfg0_t    memcfg0;
809    cvmx_dfa_memcfg2_t    memcfg2;
810
811    memcfg0.u64 = cfg_ptr->dfa_memcfg0_base;
812
813    if ((OCTEON_IS_MODEL(OCTEON_CN38XX) || OCTEON_IS_MODEL(OCTEON_CN58XX)))
814    {
815        uint32_t dfa_memcfg0;
816
817        if (OCTEON_IS_MODEL (OCTEON_CN58XX)) {
818	      // Set RLDQK90_RST and RDLCK_RST to reset all three DLLs.
819	    memcfg0.s.rldck_rst    = 1;
820	    memcfg0.s.rldqck90_rst = 1;
821            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
822            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  clk/qk90 reset\n", (uint32_t) memcfg0.u64);
823            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
824
825	      // Clear RDLCK_RST while asserting RLDQK90_RST to bring RLDCK DLL out of reset.
826	    memcfg0.s.rldck_rst    = 0;
827	    memcfg0.s.rldqck90_rst = 1;
828            cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
829            cvmx_wait(4000000);  /* Wait  */
830            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  qk90 reset\n", (uint32_t) memcfg0.u64);
831            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
832
833	      // Clear both RDLCK90_RST and RLDQK90_RST to bring the RLDQK90 DLL out of reset.
834	    memcfg0.s.rldck_rst    = 0;
835	    memcfg0.s.rldqck90_rst = 0;
836	    cvmx_write_csr(CVMX_DFA_MEMCFG0, memcfg0.u64);
837            cvmx_wait(4000000);  /* Wait  */
838            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  DLL out of reset\n", (uint32_t) memcfg0.u64);
839            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), memcfg0.u64);
840	}
841
842        //=======================================================================
843        // Now print out the sequence of events:
844        cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
845        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  port enables\n", cfg_ptr->dfa_memcfg0_base);
846        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
847        cvmx_wait(4000000);  /* Wait  */
848
849        cvmx_write_csr(CVMX_DFA_MEMCFG1, cfg_ptr->dfa_memcfg1_base);
850        ll_printf("CVMX_DFA_MEMCFG1: 0x%08x\n", cfg_ptr->dfa_memcfg1_base);
851        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG1 & ~(1ull<<63), cfg_ptr->dfa_memcfg1_base);
852
853        if (cfg_ptr->p0_ena ==1)
854        {
855            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk0);
856            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk0);
857            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk0);
858
859            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
860                            (1 << 23) |   // P0_INIT
861                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
862                          );
863
864            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
865            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
866            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
867            cvmx_wait(RLD_INIT_DELAY);
868            ll_printf("Delay.....\n");
869            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
870            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
871            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
872        }
873
874        if (cfg_ptr->p1_ena ==1)
875        {
876            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk0);
877            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk0);
878            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk0);
879
880            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
881                            (1 << 24) |   // P1_INIT
882                            (1 << 25)     // BUNK_INIT[1:0]=Bunk#0
883                          );
884            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
885            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
886            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
887            cvmx_wait(RLD_INIT_DELAY);
888            ll_printf("Delay.....\n");
889            cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
890            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  back to base\n", cfg_ptr->dfa_memcfg0_base);
891            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
892	}
893
894        // P0 Bunk#1
895        if ((cfg_ptr->p0_ena ==1) && (cfg_ptr->bunkport == 2))
896        {
897            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p0bunk1);
898            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p0_ena memrld\n", cfg_ptr->mrs_dat_p0bunk1);
899            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p0bunk1);
900
901            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
902                            (1 << 23) |   // P0_INIT
903                            (2 << 25)     // BUNK_INIT[1:0]=Bunk#1
904                          );
905            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
906            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p0_init/bunk_init\n", dfa_memcfg0);
907            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
908            cvmx_wait(RLD_INIT_DELAY);
909            ll_printf("Delay.....\n");
910
911            if (cfg_ptr->p1_ena == 1)
912            { // Re-arm Px_INIT if P1-B1 init is required
913                cvmx_write_csr(CVMX_DFA_MEMCFG0, cfg_ptr->dfa_memcfg0_base);
914                ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  px_init rearm\n", cfg_ptr->dfa_memcfg0_base);
915                cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), cfg_ptr->dfa_memcfg0_base);
916            }
917        }
918
919        if ((cfg_ptr->p1_ena == 1) && (cfg_ptr->bunkport == 2))
920        {
921            cvmx_write_csr(CVMX_DFA_MEMRLD,  cfg_ptr->mrs_dat_p1bunk1);
922            ll_printf("CVMX_DFA_MEMRLD : 0x%08x  p1_ena memrld\n", cfg_ptr->mrs_dat_p1bunk1);
923            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMRLD & ~(1ull<<63), cfg_ptr->mrs_dat_p1bunk1);
924
925            dfa_memcfg0 = ( cfg_ptr->dfa_memcfg0_base |
926                            (1 << 24) |   // P1_INIT
927                            (2 << 25)     // BUNK_INIT[1:0]=10
928                          );
929            cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
930            ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  p1_init/bunk_init\n", dfa_memcfg0);
931            cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
932        }
933        cvmx_wait(4000000);  // 1/100S, 0.01S, 10mS
934        ll_printf("Delay.....\n");
935
936          /* Enable bunks */
937        dfa_memcfg0 = cfg_ptr->dfa_memcfg0_base |((cfg_ptr->bunkport >= 1) << 25) | ((cfg_ptr->bunkport == 2) << 26);
938        cvmx_write_csr(CVMX_DFA_MEMCFG0, dfa_memcfg0);
939        ll_printf("CVMX_DFA_MEMCFG0: 0x%08x  enable bunks\n", dfa_memcfg0);
940        cvmx_csr_db_decode(cvmx_get_proc_id(), CVMX_DFA_MEMCFG0 & ~(1ull<<63), dfa_memcfg0);
941        cvmx_wait(RLD_INIT_DELAY);
942        ll_printf("Delay.....\n");
943
944          /* Issue a Silo reset by toggling SILRST in memcfg2. */
945        memcfg2.u64 = cvmx_read_csr (CVMX_DFA_MEMCFG2);
946        memcfg2.s.silrst = 1;
947	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
948        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset start\n", (uint32_t) memcfg2.u64);
949        memcfg2.s.silrst = 0;
950	cvmx_write_csr (CVMX_DFA_MEMCFG2, memcfg2.u64);
951        ll_printf("CVMX_DFA_MEMCFG2: 0x%08x  silo reset done\n", (uint32_t) memcfg2.u64);
952    }
953}
954
955