zfs_vfsops.c revision 243493
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysmacros.h>
34#include <sys/kmem.h>
35#include <sys/acl.h>
36#include <sys/vnode.h>
37#include <sys/vfs.h>
38#include <sys/mntent.h>
39#include <sys/mount.h>
40#include <sys/cmn_err.h>
41#include <sys/zfs_znode.h>
42#include <sys/zfs_dir.h>
43#include <sys/zil.h>
44#include <sys/fs/zfs.h>
45#include <sys/dmu.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_dataset.h>
48#include <sys/dsl_deleg.h>
49#include <sys/spa.h>
50#include <sys/zap.h>
51#include <sys/sa.h>
52#include <sys/varargs.h>
53#include <sys/policy.h>
54#include <sys/atomic.h>
55#include <sys/zfs_ioctl.h>
56#include <sys/zfs_ctldir.h>
57#include <sys/zfs_fuid.h>
58#include <sys/sunddi.h>
59#include <sys/dnlc.h>
60#include <sys/dmu_objset.h>
61#include <sys/spa_boot.h>
62#include <sys/sa.h>
63#include <sys/jail.h>
64#include "zfs_comutil.h"
65
66struct mtx zfs_debug_mtx;
67MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
68
69SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
70
71int zfs_super_owner;
72SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
73    "File system owner can perform privileged operation on his file systems");
74
75int zfs_debug_level;
76TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
77SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
78    "Debug level");
79
80SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
81static int zfs_version_acl = ZFS_ACL_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
83    "ZFS_ACL_VERSION");
84static int zfs_version_spa = SPA_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
86    "SPA_VERSION");
87static int zfs_version_zpl = ZPL_VERSION;
88SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
89    "ZPL_VERSION");
90
91static int zfs_mount(vfs_t *vfsp);
92static int zfs_umount(vfs_t *vfsp, int fflag);
93static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
94static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
95static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
96static int zfs_sync(vfs_t *vfsp, int waitfor);
97static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
98    struct ucred **credanonp, int *numsecflavors, int **secflavors);
99static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
100static void zfs_objset_close(zfsvfs_t *zfsvfs);
101static void zfs_freevfs(vfs_t *vfsp);
102
103static struct vfsops zfs_vfsops = {
104	.vfs_mount =		zfs_mount,
105	.vfs_unmount =		zfs_umount,
106	.vfs_root =		zfs_root,
107	.vfs_statfs =		zfs_statfs,
108	.vfs_vget =		zfs_vget,
109	.vfs_sync =		zfs_sync,
110	.vfs_checkexp =		zfs_checkexp,
111	.vfs_fhtovp =		zfs_fhtovp,
112};
113
114VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
115
116/*
117 * We need to keep a count of active fs's.
118 * This is necessary to prevent our module
119 * from being unloaded after a umount -f
120 */
121static uint32_t	zfs_active_fs_count = 0;
122
123/*ARGSUSED*/
124static int
125zfs_sync(vfs_t *vfsp, int waitfor)
126{
127
128	/*
129	 * Data integrity is job one.  We don't want a compromised kernel
130	 * writing to the storage pool, so we never sync during panic.
131	 */
132	if (panicstr)
133		return (0);
134
135	if (vfsp != NULL) {
136		/*
137		 * Sync a specific filesystem.
138		 */
139		zfsvfs_t *zfsvfs = vfsp->vfs_data;
140		dsl_pool_t *dp;
141		int error;
142
143		error = vfs_stdsync(vfsp, waitfor);
144		if (error != 0)
145			return (error);
146
147		ZFS_ENTER(zfsvfs);
148		dp = dmu_objset_pool(zfsvfs->z_os);
149
150		/*
151		 * If the system is shutting down, then skip any
152		 * filesystems which may exist on a suspended pool.
153		 */
154		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
155			ZFS_EXIT(zfsvfs);
156			return (0);
157		}
158
159		if (zfsvfs->z_log != NULL)
160			zil_commit(zfsvfs->z_log, 0);
161
162		ZFS_EXIT(zfsvfs);
163	} else {
164		/*
165		 * Sync all ZFS filesystems.  This is what happens when you
166		 * run sync(1M).  Unlike other filesystems, ZFS honors the
167		 * request by waiting for all pools to commit all dirty data.
168		 */
169		spa_sync_allpools();
170	}
171
172	return (0);
173}
174
175#ifndef __FreeBSD__
176static int
177zfs_create_unique_device(dev_t *dev)
178{
179	major_t new_major;
180
181	do {
182		ASSERT3U(zfs_minor, <=, MAXMIN32);
183		minor_t start = zfs_minor;
184		do {
185			mutex_enter(&zfs_dev_mtx);
186			if (zfs_minor >= MAXMIN32) {
187				/*
188				 * If we're still using the real major
189				 * keep out of /dev/zfs and /dev/zvol minor
190				 * number space.  If we're using a getudev()'ed
191				 * major number, we can use all of its minors.
192				 */
193				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
194					zfs_minor = ZFS_MIN_MINOR;
195				else
196					zfs_minor = 0;
197			} else {
198				zfs_minor++;
199			}
200			*dev = makedevice(zfs_major, zfs_minor);
201			mutex_exit(&zfs_dev_mtx);
202		} while (vfs_devismounted(*dev) && zfs_minor != start);
203		if (zfs_minor == start) {
204			/*
205			 * We are using all ~262,000 minor numbers for the
206			 * current major number.  Create a new major number.
207			 */
208			if ((new_major = getudev()) == (major_t)-1) {
209				cmn_err(CE_WARN,
210				    "zfs_mount: Can't get unique major "
211				    "device number.");
212				return (-1);
213			}
214			mutex_enter(&zfs_dev_mtx);
215			zfs_major = new_major;
216			zfs_minor = 0;
217
218			mutex_exit(&zfs_dev_mtx);
219		} else {
220			break;
221		}
222		/* CONSTANTCONDITION */
223	} while (1);
224
225	return (0);
226}
227#endif	/* !__FreeBSD__ */
228
229static void
230atime_changed_cb(void *arg, uint64_t newval)
231{
232	zfsvfs_t *zfsvfs = arg;
233
234	if (newval == TRUE) {
235		zfsvfs->z_atime = TRUE;
236		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
237		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
238		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
239	} else {
240		zfsvfs->z_atime = FALSE;
241		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
242		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
243		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
244	}
245}
246
247static void
248xattr_changed_cb(void *arg, uint64_t newval)
249{
250	zfsvfs_t *zfsvfs = arg;
251
252	if (newval == TRUE) {
253		/* XXX locking on vfs_flag? */
254#ifdef TODO
255		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
256#endif
257		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259	} else {
260		/* XXX locking on vfs_flag? */
261#ifdef TODO
262		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
263#endif
264		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
265		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
266	}
267}
268
269static void
270blksz_changed_cb(void *arg, uint64_t newval)
271{
272	zfsvfs_t *zfsvfs = arg;
273
274	if (newval < SPA_MINBLOCKSIZE ||
275	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
276		newval = SPA_MAXBLOCKSIZE;
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	int readonly, do_readonly = B_FALSE;
393	int setuid, do_setuid = B_FALSE;
394	int exec, do_exec = B_FALSE;
395	int xattr, do_xattr = B_FALSE;
396	int atime, do_atime = B_FALSE;
397	int error = 0;
398
399	ASSERT(vfsp);
400	zfsvfs = vfsp->vfs_data;
401	ASSERT(zfsvfs);
402	os = zfsvfs->z_os;
403
404	/*
405	 * This function can be called for a snapshot when we update snapshot's
406	 * mount point, which isn't really supported.
407	 */
408	if (dmu_objset_is_snapshot(os))
409		return (EOPNOTSUPP);
410
411	/*
412	 * The act of registering our callbacks will destroy any mount
413	 * options we may have.  In order to enable temporary overrides
414	 * of mount options, we stash away the current values and
415	 * restore them after we register the callbacks.
416	 */
417	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
418	    !spa_writeable(dmu_objset_spa(os))) {
419		readonly = B_TRUE;
420		do_readonly = B_TRUE;
421	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
422		readonly = B_FALSE;
423		do_readonly = B_TRUE;
424	}
425	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
426		setuid = B_FALSE;
427		do_setuid = B_TRUE;
428	} else {
429		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
430			setuid = B_FALSE;
431			do_setuid = B_TRUE;
432		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
433			setuid = B_TRUE;
434			do_setuid = B_TRUE;
435		}
436	}
437	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
438		exec = B_FALSE;
439		do_exec = B_TRUE;
440	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
441		exec = B_TRUE;
442		do_exec = B_TRUE;
443	}
444	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
445		xattr = B_FALSE;
446		do_xattr = B_TRUE;
447	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
448		xattr = B_TRUE;
449		do_xattr = B_TRUE;
450	}
451	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
452		atime = B_FALSE;
453		do_atime = B_TRUE;
454	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
455		atime = B_TRUE;
456		do_atime = B_TRUE;
457	}
458
459	/*
460	 * nbmand is a special property.  It can only be changed at
461	 * mount time.
462	 *
463	 * This is weird, but it is documented to only be changeable
464	 * at mount time.
465	 */
466	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
467		nbmand = B_FALSE;
468	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
469		nbmand = B_TRUE;
470	} else {
471		char osname[MAXNAMELEN];
472
473		dmu_objset_name(os, osname);
474		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
475		    NULL)) {
476			return (error);
477		}
478	}
479
480	/*
481	 * Register property callbacks.
482	 *
483	 * It would probably be fine to just check for i/o error from
484	 * the first prop_register(), but I guess I like to go
485	 * overboard...
486	 */
487	ds = dmu_objset_ds(os);
488	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
489	error = error ? error : dsl_prop_register(ds,
490	    "xattr", xattr_changed_cb, zfsvfs);
491	error = error ? error : dsl_prop_register(ds,
492	    "recordsize", blksz_changed_cb, zfsvfs);
493	error = error ? error : dsl_prop_register(ds,
494	    "readonly", readonly_changed_cb, zfsvfs);
495	error = error ? error : dsl_prop_register(ds,
496	    "setuid", setuid_changed_cb, zfsvfs);
497	error = error ? error : dsl_prop_register(ds,
498	    "exec", exec_changed_cb, zfsvfs);
499	error = error ? error : dsl_prop_register(ds,
500	    "snapdir", snapdir_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    "aclmode", acl_mode_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    "vscan", vscan_changed_cb, zfsvfs);
507	if (error)
508		goto unregister;
509
510	/*
511	 * Invoke our callbacks to restore temporary mount options.
512	 */
513	if (do_readonly)
514		readonly_changed_cb(zfsvfs, readonly);
515	if (do_setuid)
516		setuid_changed_cb(zfsvfs, setuid);
517	if (do_exec)
518		exec_changed_cb(zfsvfs, exec);
519	if (do_xattr)
520		xattr_changed_cb(zfsvfs, xattr);
521	if (do_atime)
522		atime_changed_cb(zfsvfs, atime);
523
524	nbmand_changed_cb(zfsvfs, nbmand);
525
526	return (0);
527
528unregister:
529	/*
530	 * We may attempt to unregister some callbacks that are not
531	 * registered, but this is OK; it will simply return ENOMSG,
532	 * which we will ignore.
533	 */
534	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
535	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
536	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
537	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
538	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
539	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
540	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
541	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
542	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
543	    zfsvfs);
544	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
545	return (error);
546
547}
548
549static int
550zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
551    uint64_t *userp, uint64_t *groupp)
552{
553	znode_phys_t *znp = data;
554	int error = 0;
555
556	/*
557	 * Is it a valid type of object to track?
558	 */
559	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
560		return (ENOENT);
561
562	/*
563	 * If we have a NULL data pointer
564	 * then assume the id's aren't changing and
565	 * return EEXIST to the dmu to let it know to
566	 * use the same ids
567	 */
568	if (data == NULL)
569		return (EEXIST);
570
571	if (bonustype == DMU_OT_ZNODE) {
572		*userp = znp->zp_uid;
573		*groupp = znp->zp_gid;
574	} else {
575		int hdrsize;
576
577		ASSERT(bonustype == DMU_OT_SA);
578		hdrsize = sa_hdrsize(data);
579
580		if (hdrsize != 0) {
581			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
582			    SA_UID_OFFSET));
583			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
584			    SA_GID_OFFSET));
585		} else {
586			/*
587			 * This should only happen for newly created
588			 * files that haven't had the znode data filled
589			 * in yet.
590			 */
591			*userp = 0;
592			*groupp = 0;
593		}
594	}
595	return (error);
596}
597
598static void
599fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
600    char *domainbuf, int buflen, uid_t *ridp)
601{
602	uint64_t fuid;
603	const char *domain;
604
605	fuid = strtonum(fuidstr, NULL);
606
607	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
608	if (domain)
609		(void) strlcpy(domainbuf, domain, buflen);
610	else
611		domainbuf[0] = '\0';
612	*ridp = FUID_RID(fuid);
613}
614
615static uint64_t
616zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
617{
618	switch (type) {
619	case ZFS_PROP_USERUSED:
620		return (DMU_USERUSED_OBJECT);
621	case ZFS_PROP_GROUPUSED:
622		return (DMU_GROUPUSED_OBJECT);
623	case ZFS_PROP_USERQUOTA:
624		return (zfsvfs->z_userquota_obj);
625	case ZFS_PROP_GROUPQUOTA:
626		return (zfsvfs->z_groupquota_obj);
627	}
628	return (0);
629}
630
631int
632zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
633    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
634{
635	int error;
636	zap_cursor_t zc;
637	zap_attribute_t za;
638	zfs_useracct_t *buf = vbuf;
639	uint64_t obj;
640
641	if (!dmu_objset_userspace_present(zfsvfs->z_os))
642		return (ENOTSUP);
643
644	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
645	if (obj == 0) {
646		*bufsizep = 0;
647		return (0);
648	}
649
650	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
651	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
652	    zap_cursor_advance(&zc)) {
653		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
654		    *bufsizep)
655			break;
656
657		fuidstr_to_sid(zfsvfs, za.za_name,
658		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
659
660		buf->zu_space = za.za_first_integer;
661		buf++;
662	}
663	if (error == ENOENT)
664		error = 0;
665
666	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
667	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
668	*cookiep = zap_cursor_serialize(&zc);
669	zap_cursor_fini(&zc);
670	return (error);
671}
672
673/*
674 * buf must be big enough (eg, 32 bytes)
675 */
676static int
677id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
678    char *buf, boolean_t addok)
679{
680	uint64_t fuid;
681	int domainid = 0;
682
683	if (domain && domain[0]) {
684		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
685		if (domainid == -1)
686			return (ENOENT);
687	}
688	fuid = FUID_ENCODE(domainid, rid);
689	(void) sprintf(buf, "%llx", (longlong_t)fuid);
690	return (0);
691}
692
693int
694zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
695    const char *domain, uint64_t rid, uint64_t *valp)
696{
697	char buf[32];
698	int err;
699	uint64_t obj;
700
701	*valp = 0;
702
703	if (!dmu_objset_userspace_present(zfsvfs->z_os))
704		return (ENOTSUP);
705
706	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
707	if (obj == 0)
708		return (0);
709
710	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
711	if (err)
712		return (err);
713
714	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
715	if (err == ENOENT)
716		err = 0;
717	return (err);
718}
719
720int
721zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722    const char *domain, uint64_t rid, uint64_t quota)
723{
724	char buf[32];
725	int err;
726	dmu_tx_t *tx;
727	uint64_t *objp;
728	boolean_t fuid_dirtied;
729
730	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
731		return (EINVAL);
732
733	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
734		return (ENOTSUP);
735
736	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
737	    &zfsvfs->z_groupquota_obj;
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
740	if (err)
741		return (err);
742	fuid_dirtied = zfsvfs->z_fuid_dirty;
743
744	tx = dmu_tx_create(zfsvfs->z_os);
745	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
746	if (*objp == 0) {
747		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
748		    zfs_userquota_prop_prefixes[type]);
749	}
750	if (fuid_dirtied)
751		zfs_fuid_txhold(zfsvfs, tx);
752	err = dmu_tx_assign(tx, TXG_WAIT);
753	if (err) {
754		dmu_tx_abort(tx);
755		return (err);
756	}
757
758	mutex_enter(&zfsvfs->z_lock);
759	if (*objp == 0) {
760		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
761		    DMU_OT_NONE, 0, tx);
762		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
763		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
764	}
765	mutex_exit(&zfsvfs->z_lock);
766
767	if (quota == 0) {
768		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
769		if (err == ENOENT)
770			err = 0;
771	} else {
772		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
773	}
774	ASSERT(err == 0);
775	if (fuid_dirtied)
776		zfs_fuid_sync(zfsvfs, tx);
777	dmu_tx_commit(tx);
778	return (err);
779}
780
781boolean_t
782zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
783{
784	char buf[32];
785	uint64_t used, quota, usedobj, quotaobj;
786	int err;
787
788	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
789	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
790
791	if (quotaobj == 0 || zfsvfs->z_replay)
792		return (B_FALSE);
793
794	(void) sprintf(buf, "%llx", (longlong_t)fuid);
795	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
796	if (err != 0)
797		return (B_FALSE);
798
799	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
800	if (err != 0)
801		return (B_FALSE);
802	return (used >= quota);
803}
804
805boolean_t
806zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
807{
808	uint64_t fuid;
809	uint64_t quotaobj;
810
811	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
812
813	fuid = isgroup ? zp->z_gid : zp->z_uid;
814
815	if (quotaobj == 0 || zfsvfs->z_replay)
816		return (B_FALSE);
817
818	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
819}
820
821int
822zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
823{
824	objset_t *os;
825	zfsvfs_t *zfsvfs;
826	uint64_t zval;
827	int i, error;
828	uint64_t sa_obj;
829
830	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
831
832	/*
833	 * We claim to always be readonly so we can open snapshots;
834	 * other ZPL code will prevent us from writing to snapshots.
835	 */
836	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
837	if (error) {
838		kmem_free(zfsvfs, sizeof (zfsvfs_t));
839		return (error);
840	}
841
842	/*
843	 * Initialize the zfs-specific filesystem structure.
844	 * Should probably make this a kmem cache, shuffle fields,
845	 * and just bzero up to z_hold_mtx[].
846	 */
847	zfsvfs->z_vfs = NULL;
848	zfsvfs->z_parent = zfsvfs;
849	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
850	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
851	zfsvfs->z_os = os;
852
853	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
854	if (error) {
855		goto out;
856	} else if (zfsvfs->z_version >
857	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
858		(void) printf("Can't mount a version %lld file system "
859		    "on a version %lld pool\n. Pool must be upgraded to mount "
860		    "this file system.", (u_longlong_t)zfsvfs->z_version,
861		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
862		error = ENOTSUP;
863		goto out;
864	}
865	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
866		goto out;
867	zfsvfs->z_norm = (int)zval;
868
869	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
870		goto out;
871	zfsvfs->z_utf8 = (zval != 0);
872
873	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
874		goto out;
875	zfsvfs->z_case = (uint_t)zval;
876
877	/*
878	 * Fold case on file systems that are always or sometimes case
879	 * insensitive.
880	 */
881	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
882	    zfsvfs->z_case == ZFS_CASE_MIXED)
883		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
884
885	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
886	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
887
888	if (zfsvfs->z_use_sa) {
889		/* should either have both of these objects or none */
890		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
891		    &sa_obj);
892		if (error)
893			return (error);
894	} else {
895		/*
896		 * Pre SA versions file systems should never touch
897		 * either the attribute registration or layout objects.
898		 */
899		sa_obj = 0;
900	}
901
902	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
903	    &zfsvfs->z_attr_table);
904	if (error)
905		goto out;
906
907	if (zfsvfs->z_version >= ZPL_VERSION_SA)
908		sa_register_update_callback(os, zfs_sa_upgrade);
909
910	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
911	    &zfsvfs->z_root);
912	if (error)
913		goto out;
914	ASSERT(zfsvfs->z_root != 0);
915
916	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
917	    &zfsvfs->z_unlinkedobj);
918	if (error)
919		goto out;
920
921	error = zap_lookup(os, MASTER_NODE_OBJ,
922	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
923	    8, 1, &zfsvfs->z_userquota_obj);
924	if (error && error != ENOENT)
925		goto out;
926
927	error = zap_lookup(os, MASTER_NODE_OBJ,
928	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
929	    8, 1, &zfsvfs->z_groupquota_obj);
930	if (error && error != ENOENT)
931		goto out;
932
933	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
934	    &zfsvfs->z_fuid_obj);
935	if (error && error != ENOENT)
936		goto out;
937
938	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
939	    &zfsvfs->z_shares_dir);
940	if (error && error != ENOENT)
941		goto out;
942
943	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
944	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
945	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
946	    offsetof(znode_t, z_link_node));
947	rrw_init(&zfsvfs->z_teardown_lock);
948	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
949	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
950	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
951		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
952
953	*zfvp = zfsvfs;
954	return (0);
955
956out:
957	dmu_objset_disown(os, zfsvfs);
958	*zfvp = NULL;
959	kmem_free(zfsvfs, sizeof (zfsvfs_t));
960	return (error);
961}
962
963static int
964zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
965{
966	int error;
967
968	error = zfs_register_callbacks(zfsvfs->z_vfs);
969	if (error)
970		return (error);
971
972	/*
973	 * Set the objset user_ptr to track its zfsvfs.
974	 */
975	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
976	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
977	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
978
979	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
980
981	/*
982	 * If we are not mounting (ie: online recv), then we don't
983	 * have to worry about replaying the log as we blocked all
984	 * operations out since we closed the ZIL.
985	 */
986	if (mounting) {
987		boolean_t readonly;
988
989		/*
990		 * During replay we remove the read only flag to
991		 * allow replays to succeed.
992		 */
993		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
994		if (readonly != 0)
995			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
996		else
997			zfs_unlinked_drain(zfsvfs);
998
999		/*
1000		 * Parse and replay the intent log.
1001		 *
1002		 * Because of ziltest, this must be done after
1003		 * zfs_unlinked_drain().  (Further note: ziltest
1004		 * doesn't use readonly mounts, where
1005		 * zfs_unlinked_drain() isn't called.)  This is because
1006		 * ziltest causes spa_sync() to think it's committed,
1007		 * but actually it is not, so the intent log contains
1008		 * many txg's worth of changes.
1009		 *
1010		 * In particular, if object N is in the unlinked set in
1011		 * the last txg to actually sync, then it could be
1012		 * actually freed in a later txg and then reallocated
1013		 * in a yet later txg.  This would write a "create
1014		 * object N" record to the intent log.  Normally, this
1015		 * would be fine because the spa_sync() would have
1016		 * written out the fact that object N is free, before
1017		 * we could write the "create object N" intent log
1018		 * record.
1019		 *
1020		 * But when we are in ziltest mode, we advance the "open
1021		 * txg" without actually spa_sync()-ing the changes to
1022		 * disk.  So we would see that object N is still
1023		 * allocated and in the unlinked set, and there is an
1024		 * intent log record saying to allocate it.
1025		 */
1026		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1027			if (zil_replay_disable) {
1028				zil_destroy(zfsvfs->z_log, B_FALSE);
1029			} else {
1030				zfsvfs->z_replay = B_TRUE;
1031				zil_replay(zfsvfs->z_os, zfsvfs,
1032				    zfs_replay_vector);
1033				zfsvfs->z_replay = B_FALSE;
1034			}
1035		}
1036		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1037	}
1038
1039	return (0);
1040}
1041
1042extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1043
1044void
1045zfsvfs_free(zfsvfs_t *zfsvfs)
1046{
1047	int i;
1048
1049	/*
1050	 * This is a barrier to prevent the filesystem from going away in
1051	 * zfs_znode_move() until we can safely ensure that the filesystem is
1052	 * not unmounted. We consider the filesystem valid before the barrier
1053	 * and invalid after the barrier.
1054	 */
1055	rw_enter(&zfsvfs_lock, RW_READER);
1056	rw_exit(&zfsvfs_lock);
1057
1058	zfs_fuid_destroy(zfsvfs);
1059
1060	mutex_destroy(&zfsvfs->z_znodes_lock);
1061	mutex_destroy(&zfsvfs->z_lock);
1062	list_destroy(&zfsvfs->z_all_znodes);
1063	rrw_destroy(&zfsvfs->z_teardown_lock);
1064	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1065	rw_destroy(&zfsvfs->z_fuid_lock);
1066	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1067		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1068	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1069}
1070
1071static void
1072zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1073{
1074	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1075	if (zfsvfs->z_vfs) {
1076		if (zfsvfs->z_use_fuids) {
1077			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1078			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1079			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1080			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1081			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1082			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1083		} else {
1084			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1085			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1086			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1087			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1088			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1089			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1090		}
1091	}
1092	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1093}
1094
1095static int
1096zfs_domount(vfs_t *vfsp, char *osname)
1097{
1098	uint64_t recordsize, fsid_guid;
1099	int error = 0;
1100	zfsvfs_t *zfsvfs;
1101	vnode_t *vp;
1102
1103	ASSERT(vfsp);
1104	ASSERT(osname);
1105
1106	error = zfsvfs_create(osname, &zfsvfs);
1107	if (error)
1108		return (error);
1109	zfsvfs->z_vfs = vfsp;
1110
1111	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1112	    NULL))
1113		goto out;
1114	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1115	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1116
1117	vfsp->vfs_data = zfsvfs;
1118	vfsp->mnt_flag |= MNT_LOCAL;
1119	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1120	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1121	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1122	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1123
1124	/*
1125	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1126	 * separates our fsid from any other filesystem types, and a
1127	 * 56-bit objset unique ID.  The objset unique ID is unique to
1128	 * all objsets open on this system, provided by unique_create().
1129	 * The 8-bit fs type must be put in the low bits of fsid[1]
1130	 * because that's where other Solaris filesystems put it.
1131	 */
1132	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1133	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1134	vfsp->vfs_fsid.val[0] = fsid_guid;
1135	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1136	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1137
1138	/*
1139	 * Set features for file system.
1140	 */
1141	zfs_set_fuid_feature(zfsvfs);
1142	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1143		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1144		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1145		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1146	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1147		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1148		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1149	}
1150	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1151
1152	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1153		uint64_t pval;
1154
1155		atime_changed_cb(zfsvfs, B_FALSE);
1156		readonly_changed_cb(zfsvfs, B_TRUE);
1157		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1158			goto out;
1159		xattr_changed_cb(zfsvfs, pval);
1160		zfsvfs->z_issnap = B_TRUE;
1161		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1162
1163		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1164		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1165		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1166	} else {
1167		error = zfsvfs_setup(zfsvfs, B_TRUE);
1168	}
1169
1170	vfs_mountedfrom(vfsp, osname);
1171	/* Grab extra reference. */
1172	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1173	VOP_UNLOCK(vp, 0);
1174
1175	if (!zfsvfs->z_issnap)
1176		zfsctl_create(zfsvfs);
1177out:
1178	if (error) {
1179		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1180		zfsvfs_free(zfsvfs);
1181	} else {
1182		atomic_add_32(&zfs_active_fs_count, 1);
1183	}
1184
1185	return (error);
1186}
1187
1188void
1189zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1190{
1191	objset_t *os = zfsvfs->z_os;
1192	struct dsl_dataset *ds;
1193
1194	/*
1195	 * Unregister properties.
1196	 */
1197	if (!dmu_objset_is_snapshot(os)) {
1198		ds = dmu_objset_ds(os);
1199		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1200		    zfsvfs) == 0);
1201
1202		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1203		    zfsvfs) == 0);
1204
1205		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1206		    zfsvfs) == 0);
1207
1208		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1209		    zfsvfs) == 0);
1210
1211		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1212		    zfsvfs) == 0);
1213
1214		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1215		    zfsvfs) == 0);
1216
1217		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1218		    zfsvfs) == 0);
1219
1220		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1221		    zfsvfs) == 0);
1222
1223		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1224		    acl_inherit_changed_cb, zfsvfs) == 0);
1225
1226		VERIFY(dsl_prop_unregister(ds, "vscan",
1227		    vscan_changed_cb, zfsvfs) == 0);
1228	}
1229}
1230
1231#ifdef SECLABEL
1232/*
1233 * Convert a decimal digit string to a uint64_t integer.
1234 */
1235static int
1236str_to_uint64(char *str, uint64_t *objnum)
1237{
1238	uint64_t num = 0;
1239
1240	while (*str) {
1241		if (*str < '0' || *str > '9')
1242			return (EINVAL);
1243
1244		num = num*10 + *str++ - '0';
1245	}
1246
1247	*objnum = num;
1248	return (0);
1249}
1250
1251/*
1252 * The boot path passed from the boot loader is in the form of
1253 * "rootpool-name/root-filesystem-object-number'. Convert this
1254 * string to a dataset name: "rootpool-name/root-filesystem-name".
1255 */
1256static int
1257zfs_parse_bootfs(char *bpath, char *outpath)
1258{
1259	char *slashp;
1260	uint64_t objnum;
1261	int error;
1262
1263	if (*bpath == 0 || *bpath == '/')
1264		return (EINVAL);
1265
1266	(void) strcpy(outpath, bpath);
1267
1268	slashp = strchr(bpath, '/');
1269
1270	/* if no '/', just return the pool name */
1271	if (slashp == NULL) {
1272		return (0);
1273	}
1274
1275	/* if not a number, just return the root dataset name */
1276	if (str_to_uint64(slashp+1, &objnum)) {
1277		return (0);
1278	}
1279
1280	*slashp = '\0';
1281	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1282	*slashp = '/';
1283
1284	return (error);
1285}
1286
1287/*
1288 * zfs_check_global_label:
1289 *	Check that the hex label string is appropriate for the dataset
1290 *	being mounted into the global_zone proper.
1291 *
1292 *	Return an error if the hex label string is not default or
1293 *	admin_low/admin_high.  For admin_low labels, the corresponding
1294 *	dataset must be readonly.
1295 */
1296int
1297zfs_check_global_label(const char *dsname, const char *hexsl)
1298{
1299	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1300		return (0);
1301	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1302		return (0);
1303	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1304		/* must be readonly */
1305		uint64_t rdonly;
1306
1307		if (dsl_prop_get_integer(dsname,
1308		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1309			return (EACCES);
1310		return (rdonly ? 0 : EACCES);
1311	}
1312	return (EACCES);
1313}
1314
1315/*
1316 * zfs_mount_label_policy:
1317 *	Determine whether the mount is allowed according to MAC check.
1318 *	by comparing (where appropriate) label of the dataset against
1319 *	the label of the zone being mounted into.  If the dataset has
1320 *	no label, create one.
1321 *
1322 *	Returns:
1323 *		 0 :	access allowed
1324 *		>0 :	error code, such as EACCES
1325 */
1326static int
1327zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1328{
1329	int		error, retv;
1330	zone_t		*mntzone = NULL;
1331	ts_label_t	*mnt_tsl;
1332	bslabel_t	*mnt_sl;
1333	bslabel_t	ds_sl;
1334	char		ds_hexsl[MAXNAMELEN];
1335
1336	retv = EACCES;				/* assume the worst */
1337
1338	/*
1339	 * Start by getting the dataset label if it exists.
1340	 */
1341	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1342	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1343	if (error)
1344		return (EACCES);
1345
1346	/*
1347	 * If labeling is NOT enabled, then disallow the mount of datasets
1348	 * which have a non-default label already.  No other label checks
1349	 * are needed.
1350	 */
1351	if (!is_system_labeled()) {
1352		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1353			return (0);
1354		return (EACCES);
1355	}
1356
1357	/*
1358	 * Get the label of the mountpoint.  If mounting into the global
1359	 * zone (i.e. mountpoint is not within an active zone and the
1360	 * zoned property is off), the label must be default or
1361	 * admin_low/admin_high only; no other checks are needed.
1362	 */
1363	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1364	if (mntzone->zone_id == GLOBAL_ZONEID) {
1365		uint64_t zoned;
1366
1367		zone_rele(mntzone);
1368
1369		if (dsl_prop_get_integer(osname,
1370		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1371			return (EACCES);
1372		if (!zoned)
1373			return (zfs_check_global_label(osname, ds_hexsl));
1374		else
1375			/*
1376			 * This is the case of a zone dataset being mounted
1377			 * initially, before the zone has been fully created;
1378			 * allow this mount into global zone.
1379			 */
1380			return (0);
1381	}
1382
1383	mnt_tsl = mntzone->zone_slabel;
1384	ASSERT(mnt_tsl != NULL);
1385	label_hold(mnt_tsl);
1386	mnt_sl = label2bslabel(mnt_tsl);
1387
1388	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1389		/*
1390		 * The dataset doesn't have a real label, so fabricate one.
1391		 */
1392		char *str = NULL;
1393
1394		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1395		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1396		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1397			retv = 0;
1398		if (str != NULL)
1399			kmem_free(str, strlen(str) + 1);
1400	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1401		/*
1402		 * Now compare labels to complete the MAC check.  If the
1403		 * labels are equal then allow access.  If the mountpoint
1404		 * label dominates the dataset label, allow readonly access.
1405		 * Otherwise, access is denied.
1406		 */
1407		if (blequal(mnt_sl, &ds_sl))
1408			retv = 0;
1409		else if (bldominates(mnt_sl, &ds_sl)) {
1410			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1411			retv = 0;
1412		}
1413	}
1414
1415	label_rele(mnt_tsl);
1416	zone_rele(mntzone);
1417	return (retv);
1418}
1419#endif	/* SECLABEL */
1420
1421#ifdef OPENSOLARIS_MOUNTROOT
1422static int
1423zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1424{
1425	int error = 0;
1426	static int zfsrootdone = 0;
1427	zfsvfs_t *zfsvfs = NULL;
1428	znode_t *zp = NULL;
1429	vnode_t *vp = NULL;
1430	char *zfs_bootfs;
1431	char *zfs_devid;
1432
1433	ASSERT(vfsp);
1434
1435	/*
1436	 * The filesystem that we mount as root is defined in the
1437	 * boot property "zfs-bootfs" with a format of
1438	 * "poolname/root-dataset-objnum".
1439	 */
1440	if (why == ROOT_INIT) {
1441		if (zfsrootdone++)
1442			return (EBUSY);
1443		/*
1444		 * the process of doing a spa_load will require the
1445		 * clock to be set before we could (for example) do
1446		 * something better by looking at the timestamp on
1447		 * an uberblock, so just set it to -1.
1448		 */
1449		clkset(-1);
1450
1451		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1452			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1453			    "bootfs name");
1454			return (EINVAL);
1455		}
1456		zfs_devid = spa_get_bootprop("diskdevid");
1457		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1458		if (zfs_devid)
1459			spa_free_bootprop(zfs_devid);
1460		if (error) {
1461			spa_free_bootprop(zfs_bootfs);
1462			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1463			    error);
1464			return (error);
1465		}
1466		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1467			spa_free_bootprop(zfs_bootfs);
1468			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1469			    error);
1470			return (error);
1471		}
1472
1473		spa_free_bootprop(zfs_bootfs);
1474
1475		if (error = vfs_lock(vfsp))
1476			return (error);
1477
1478		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1479			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1480			goto out;
1481		}
1482
1483		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1484		ASSERT(zfsvfs);
1485		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1486			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1487			goto out;
1488		}
1489
1490		vp = ZTOV(zp);
1491		mutex_enter(&vp->v_lock);
1492		vp->v_flag |= VROOT;
1493		mutex_exit(&vp->v_lock);
1494		rootvp = vp;
1495
1496		/*
1497		 * Leave rootvp held.  The root file system is never unmounted.
1498		 */
1499
1500		vfs_add((struct vnode *)0, vfsp,
1501		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1502out:
1503		vfs_unlock(vfsp);
1504		return (error);
1505	} else if (why == ROOT_REMOUNT) {
1506		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1507		vfsp->vfs_flag |= VFS_REMOUNT;
1508
1509		/* refresh mount options */
1510		zfs_unregister_callbacks(vfsp->vfs_data);
1511		return (zfs_register_callbacks(vfsp));
1512
1513	} else if (why == ROOT_UNMOUNT) {
1514		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1515		(void) zfs_sync(vfsp, 0, 0);
1516		return (0);
1517	}
1518
1519	/*
1520	 * if "why" is equal to anything else other than ROOT_INIT,
1521	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1522	 */
1523	return (ENOTSUP);
1524}
1525#endif	/* OPENSOLARIS_MOUNTROOT */
1526
1527static int
1528getpoolname(const char *osname, char *poolname)
1529{
1530	char *p;
1531
1532	p = strchr(osname, '/');
1533	if (p == NULL) {
1534		if (strlen(osname) >= MAXNAMELEN)
1535			return (ENAMETOOLONG);
1536		(void) strcpy(poolname, osname);
1537	} else {
1538		if (p - osname >= MAXNAMELEN)
1539			return (ENAMETOOLONG);
1540		(void) strncpy(poolname, osname, p - osname);
1541		poolname[p - osname] = '\0';
1542	}
1543	return (0);
1544}
1545
1546/*ARGSUSED*/
1547static int
1548zfs_mount(vfs_t *vfsp)
1549{
1550	kthread_t	*td = curthread;
1551	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1552	cred_t		*cr = td->td_ucred;
1553	char		*osname;
1554	int		error = 0;
1555	int		canwrite;
1556
1557	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1558		return (EPERM);
1559
1560	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1561		return (EINVAL);
1562
1563	/*
1564	 * If full-owner-access is enabled and delegated administration is
1565	 * turned on, we must set nosuid.
1566	 */
1567	if (zfs_super_owner &&
1568	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1569		secpolicy_fs_mount_clearopts(cr, vfsp);
1570	}
1571
1572	/*
1573	 * Check for mount privilege?
1574	 *
1575	 * If we don't have privilege then see if
1576	 * we have local permission to allow it
1577	 */
1578	error = secpolicy_fs_mount(cr, mvp, vfsp);
1579	if (error) {
1580		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1581			goto out;
1582
1583		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1584			vattr_t		vattr;
1585
1586			/*
1587			 * Make sure user is the owner of the mount point
1588			 * or has sufficient privileges.
1589			 */
1590
1591			vattr.va_mask = AT_UID;
1592
1593			vn_lock(mvp, LK_SHARED | LK_RETRY);
1594			if (VOP_GETATTR(mvp, &vattr, cr)) {
1595				VOP_UNLOCK(mvp, 0);
1596				goto out;
1597			}
1598
1599			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1600			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1601				VOP_UNLOCK(mvp, 0);
1602				goto out;
1603			}
1604			VOP_UNLOCK(mvp, 0);
1605		}
1606
1607		secpolicy_fs_mount_clearopts(cr, vfsp);
1608	}
1609
1610	/*
1611	 * Refuse to mount a filesystem if we are in a local zone and the
1612	 * dataset is not visible.
1613	 */
1614	if (!INGLOBALZONE(curthread) &&
1615	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1616		error = EPERM;
1617		goto out;
1618	}
1619
1620#ifdef SECLABEL
1621	error = zfs_mount_label_policy(vfsp, osname);
1622	if (error)
1623		goto out;
1624#endif
1625
1626	vfsp->vfs_flag |= MNT_NFS4ACLS;
1627
1628	/*
1629	 * When doing a remount, we simply refresh our temporary properties
1630	 * according to those options set in the current VFS options.
1631	 */
1632	if (vfsp->vfs_flag & MS_REMOUNT) {
1633		/* refresh mount options */
1634		zfs_unregister_callbacks(vfsp->vfs_data);
1635		error = zfs_register_callbacks(vfsp);
1636		goto out;
1637	}
1638
1639	/* Initial root mount: try hard to import the requested root pool. */
1640	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1641	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1642		char pname[MAXNAMELEN];
1643		spa_t *spa;
1644		int prefer_cache;
1645
1646		error = getpoolname(osname, pname);
1647		if (error)
1648			goto out;
1649
1650		prefer_cache = 1;
1651		TUNABLE_INT_FETCH("vfs.zfs.rootpool.prefer_cached_config",
1652		    &prefer_cache);
1653		mutex_enter(&spa_namespace_lock);
1654		spa = spa_lookup(pname);
1655		mutex_exit(&spa_namespace_lock);
1656		if (!prefer_cache || spa == NULL) {
1657			error = spa_import_rootpool(pname);
1658			if (error)
1659				goto out;
1660		}
1661	}
1662	DROP_GIANT();
1663	error = zfs_domount(vfsp, osname);
1664	PICKUP_GIANT();
1665
1666#ifdef sun
1667	/*
1668	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1669	 * disappear due to a forced unmount.
1670	 */
1671	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1672		VFS_HOLD(mvp->v_vfsp);
1673#endif	/* sun */
1674
1675out:
1676	return (error);
1677}
1678
1679static int
1680zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1681{
1682	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1683	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1684
1685	statp->f_version = STATFS_VERSION;
1686
1687	ZFS_ENTER(zfsvfs);
1688
1689	dmu_objset_space(zfsvfs->z_os,
1690	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1691
1692	/*
1693	 * The underlying storage pool actually uses multiple block sizes.
1694	 * We report the fragsize as the smallest block size we support,
1695	 * and we report our blocksize as the filesystem's maximum blocksize.
1696	 */
1697	statp->f_bsize = SPA_MINBLOCKSIZE;
1698	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1699
1700	/*
1701	 * The following report "total" blocks of various kinds in the
1702	 * file system, but reported in terms of f_frsize - the
1703	 * "fragment" size.
1704	 */
1705
1706	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1707	statp->f_bfree = availbytes / statp->f_bsize;
1708	statp->f_bavail = statp->f_bfree; /* no root reservation */
1709
1710	/*
1711	 * statvfs() should really be called statufs(), because it assumes
1712	 * static metadata.  ZFS doesn't preallocate files, so the best
1713	 * we can do is report the max that could possibly fit in f_files,
1714	 * and that minus the number actually used in f_ffree.
1715	 * For f_ffree, report the smaller of the number of object available
1716	 * and the number of blocks (each object will take at least a block).
1717	 */
1718	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1719	statp->f_files = statp->f_ffree + usedobjs;
1720
1721	/*
1722	 * We're a zfs filesystem.
1723	 */
1724	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1725
1726	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1727	    sizeof(statp->f_mntfromname));
1728	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1729	    sizeof(statp->f_mntonname));
1730
1731	statp->f_namemax = ZFS_MAXNAMELEN;
1732
1733	ZFS_EXIT(zfsvfs);
1734	return (0);
1735}
1736
1737int
1738zfs_vnode_lock(vnode_t *vp, int flags)
1739{
1740	int error;
1741
1742	ASSERT(vp != NULL);
1743
1744	error = vn_lock(vp, flags);
1745	return (error);
1746}
1747
1748static int
1749zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1750{
1751	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1752	znode_t *rootzp;
1753	int error;
1754
1755	ZFS_ENTER_NOERROR(zfsvfs);
1756
1757	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1758	if (error == 0)
1759		*vpp = ZTOV(rootzp);
1760
1761	ZFS_EXIT(zfsvfs);
1762
1763	if (error == 0) {
1764		error = zfs_vnode_lock(*vpp, flags);
1765		if (error == 0)
1766			(*vpp)->v_vflag |= VV_ROOT;
1767	}
1768	if (error != 0)
1769		*vpp = NULL;
1770
1771	return (error);
1772}
1773
1774/*
1775 * Teardown the zfsvfs::z_os.
1776 *
1777 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1778 * and 'z_teardown_inactive_lock' held.
1779 */
1780static int
1781zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1782{
1783	znode_t	*zp;
1784
1785	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1786
1787	if (!unmounting) {
1788		/*
1789		 * We purge the parent filesystem's vfsp as the parent
1790		 * filesystem and all of its snapshots have their vnode's
1791		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1792		 * 'z_parent' is self referential for non-snapshots.
1793		 */
1794		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1795#ifdef FREEBSD_NAMECACHE
1796		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1797#endif
1798	}
1799
1800	/*
1801	 * Close the zil. NB: Can't close the zil while zfs_inactive
1802	 * threads are blocked as zil_close can call zfs_inactive.
1803	 */
1804	if (zfsvfs->z_log) {
1805		zil_close(zfsvfs->z_log);
1806		zfsvfs->z_log = NULL;
1807	}
1808
1809	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1810
1811	/*
1812	 * If we are not unmounting (ie: online recv) and someone already
1813	 * unmounted this file system while we were doing the switcheroo,
1814	 * or a reopen of z_os failed then just bail out now.
1815	 */
1816	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1817		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1818		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1819		return (EIO);
1820	}
1821
1822	/*
1823	 * At this point there are no vops active, and any new vops will
1824	 * fail with EIO since we have z_teardown_lock for writer (only
1825	 * relavent for forced unmount).
1826	 *
1827	 * Release all holds on dbufs.
1828	 */
1829	mutex_enter(&zfsvfs->z_znodes_lock);
1830	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1831	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1832		if (zp->z_sa_hdl) {
1833			ASSERT(ZTOV(zp)->v_count >= 0);
1834			zfs_znode_dmu_fini(zp);
1835		}
1836	mutex_exit(&zfsvfs->z_znodes_lock);
1837
1838	/*
1839	 * If we are unmounting, set the unmounted flag and let new vops
1840	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1841	 * other vops will fail with EIO.
1842	 */
1843	if (unmounting) {
1844		zfsvfs->z_unmounted = B_TRUE;
1845		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1846		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1847
1848#ifdef __FreeBSD__
1849		/*
1850		 * Some znodes might not be fully reclaimed, wait for them.
1851		 */
1852		mutex_enter(&zfsvfs->z_znodes_lock);
1853		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1854			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1855			    "zteardown", 0);
1856		}
1857		mutex_exit(&zfsvfs->z_znodes_lock);
1858#endif
1859	}
1860
1861	/*
1862	 * z_os will be NULL if there was an error in attempting to reopen
1863	 * zfsvfs, so just return as the properties had already been
1864	 * unregistered and cached data had been evicted before.
1865	 */
1866	if (zfsvfs->z_os == NULL)
1867		return (0);
1868
1869	/*
1870	 * Unregister properties.
1871	 */
1872	zfs_unregister_callbacks(zfsvfs);
1873
1874	/*
1875	 * Evict cached data
1876	 */
1877	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1878		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1879			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1880	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1881
1882	return (0);
1883}
1884
1885/*ARGSUSED*/
1886static int
1887zfs_umount(vfs_t *vfsp, int fflag)
1888{
1889	kthread_t *td = curthread;
1890	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1891	objset_t *os;
1892	cred_t *cr = td->td_ucred;
1893	int ret;
1894
1895	ret = secpolicy_fs_unmount(cr, vfsp);
1896	if (ret) {
1897		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1898		    ZFS_DELEG_PERM_MOUNT, cr))
1899			return (ret);
1900	}
1901
1902	/*
1903	 * We purge the parent filesystem's vfsp as the parent filesystem
1904	 * and all of its snapshots have their vnode's v_vfsp set to the
1905	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1906	 * referential for non-snapshots.
1907	 */
1908	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1909
1910	/*
1911	 * Unmount any snapshots mounted under .zfs before unmounting the
1912	 * dataset itself.
1913	 */
1914	if (zfsvfs->z_ctldir != NULL) {
1915		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1916			return (ret);
1917		ret = vflush(vfsp, 0, 0, td);
1918		ASSERT(ret == EBUSY);
1919		if (!(fflag & MS_FORCE)) {
1920			if (zfsvfs->z_ctldir->v_count > 1)
1921				return (EBUSY);
1922			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1923		}
1924		zfsctl_destroy(zfsvfs);
1925		ASSERT(zfsvfs->z_ctldir == NULL);
1926	}
1927
1928	if (fflag & MS_FORCE) {
1929		/*
1930		 * Mark file system as unmounted before calling
1931		 * vflush(FORCECLOSE). This way we ensure no future vnops
1932		 * will be called and risk operating on DOOMED vnodes.
1933		 */
1934		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1935		zfsvfs->z_unmounted = B_TRUE;
1936		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1937	}
1938
1939	/*
1940	 * Flush all the files.
1941	 */
1942	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1943	if (ret != 0) {
1944		if (!zfsvfs->z_issnap) {
1945			zfsctl_create(zfsvfs);
1946			ASSERT(zfsvfs->z_ctldir != NULL);
1947		}
1948		return (ret);
1949	}
1950
1951	if (!(fflag & MS_FORCE)) {
1952		/*
1953		 * Check the number of active vnodes in the file system.
1954		 * Our count is maintained in the vfs structure, but the
1955		 * number is off by 1 to indicate a hold on the vfs
1956		 * structure itself.
1957		 *
1958		 * The '.zfs' directory maintains a reference of its
1959		 * own, and any active references underneath are
1960		 * reflected in the vnode count.
1961		 */
1962		if (zfsvfs->z_ctldir == NULL) {
1963			if (vfsp->vfs_count > 1)
1964				return (EBUSY);
1965		} else {
1966			if (vfsp->vfs_count > 2 ||
1967			    zfsvfs->z_ctldir->v_count > 1)
1968				return (EBUSY);
1969		}
1970	}
1971
1972	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1973	os = zfsvfs->z_os;
1974
1975	/*
1976	 * z_os will be NULL if there was an error in
1977	 * attempting to reopen zfsvfs.
1978	 */
1979	if (os != NULL) {
1980		/*
1981		 * Unset the objset user_ptr.
1982		 */
1983		mutex_enter(&os->os_user_ptr_lock);
1984		dmu_objset_set_user(os, NULL);
1985		mutex_exit(&os->os_user_ptr_lock);
1986
1987		/*
1988		 * Finally release the objset
1989		 */
1990		dmu_objset_disown(os, zfsvfs);
1991	}
1992
1993	/*
1994	 * We can now safely destroy the '.zfs' directory node.
1995	 */
1996	if (zfsvfs->z_ctldir != NULL)
1997		zfsctl_destroy(zfsvfs);
1998	if (zfsvfs->z_issnap) {
1999		vnode_t *svp = vfsp->mnt_vnodecovered;
2000
2001		if (svp->v_count >= 2)
2002			VN_RELE(svp);
2003	}
2004	zfs_freevfs(vfsp);
2005
2006	return (0);
2007}
2008
2009static int
2010zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2011{
2012	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2013	znode_t		*zp;
2014	int 		err;
2015
2016	/*
2017	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2018	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2019	 * This will make NFS to switch to LOOKUP instead of using VGET.
2020	 */
2021	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
2022		return (EOPNOTSUPP);
2023
2024	ZFS_ENTER(zfsvfs);
2025	err = zfs_zget(zfsvfs, ino, &zp);
2026	if (err == 0 && zp->z_unlinked) {
2027		VN_RELE(ZTOV(zp));
2028		err = EINVAL;
2029	}
2030	if (err == 0)
2031		*vpp = ZTOV(zp);
2032	ZFS_EXIT(zfsvfs);
2033	if (err == 0)
2034		err = zfs_vnode_lock(*vpp, flags);
2035	if (err != 0)
2036		*vpp = NULL;
2037	return (err);
2038}
2039
2040static int
2041zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2042    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2043{
2044	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2045
2046	/*
2047	 * If this is regular file system vfsp is the same as
2048	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2049	 * zfsvfs->z_parent->z_vfs represents parent file system
2050	 * which we have to use here, because only this file system
2051	 * has mnt_export configured.
2052	 */
2053	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2054	    credanonp, numsecflavors, secflavors));
2055}
2056
2057CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2058CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2059
2060static int
2061zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2062{
2063	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2064	znode_t		*zp;
2065	uint64_t	object = 0;
2066	uint64_t	fid_gen = 0;
2067	uint64_t	gen_mask;
2068	uint64_t	zp_gen;
2069	int 		i, err;
2070
2071	*vpp = NULL;
2072
2073	ZFS_ENTER(zfsvfs);
2074
2075	/*
2076	 * On FreeBSD we can get snapshot's mount point or its parent file
2077	 * system mount point depending if snapshot is already mounted or not.
2078	 */
2079	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2080		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2081		uint64_t	objsetid = 0;
2082		uint64_t	setgen = 0;
2083
2084		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2085			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2086
2087		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2088			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2089
2090		ZFS_EXIT(zfsvfs);
2091
2092		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2093		if (err)
2094			return (EINVAL);
2095		ZFS_ENTER(zfsvfs);
2096	}
2097
2098	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2099		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2100
2101		for (i = 0; i < sizeof (zfid->zf_object); i++)
2102			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2103
2104		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2105			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2106	} else {
2107		ZFS_EXIT(zfsvfs);
2108		return (EINVAL);
2109	}
2110
2111	/* A zero fid_gen means we are in the .zfs control directories */
2112	if (fid_gen == 0 &&
2113	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2114		*vpp = zfsvfs->z_ctldir;
2115		ASSERT(*vpp != NULL);
2116		if (object == ZFSCTL_INO_SNAPDIR) {
2117			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2118			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2119		} else {
2120			VN_HOLD(*vpp);
2121		}
2122		ZFS_EXIT(zfsvfs);
2123		err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2124		if (err != 0)
2125			*vpp = NULL;
2126		return (err);
2127	}
2128
2129	gen_mask = -1ULL >> (64 - 8 * i);
2130
2131	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2132	if (err = zfs_zget(zfsvfs, object, &zp)) {
2133		ZFS_EXIT(zfsvfs);
2134		return (err);
2135	}
2136	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2137	    sizeof (uint64_t));
2138	zp_gen = zp_gen & gen_mask;
2139	if (zp_gen == 0)
2140		zp_gen = 1;
2141	if (zp->z_unlinked || zp_gen != fid_gen) {
2142		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2143		VN_RELE(ZTOV(zp));
2144		ZFS_EXIT(zfsvfs);
2145		return (EINVAL);
2146	}
2147
2148	*vpp = ZTOV(zp);
2149	ZFS_EXIT(zfsvfs);
2150	err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2151	if (err == 0)
2152		vnode_create_vobject(*vpp, zp->z_size, curthread);
2153	else
2154		*vpp = NULL;
2155	return (err);
2156}
2157
2158/*
2159 * Block out VOPs and close zfsvfs_t::z_os
2160 *
2161 * Note, if successful, then we return with the 'z_teardown_lock' and
2162 * 'z_teardown_inactive_lock' write held.
2163 */
2164int
2165zfs_suspend_fs(zfsvfs_t *zfsvfs)
2166{
2167	int error;
2168
2169	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2170		return (error);
2171	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2172
2173	return (0);
2174}
2175
2176/*
2177 * Reopen zfsvfs_t::z_os and release VOPs.
2178 */
2179int
2180zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2181{
2182	int err;
2183
2184	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2185	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2186
2187	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2188	    &zfsvfs->z_os);
2189	if (err) {
2190		zfsvfs->z_os = NULL;
2191	} else {
2192		znode_t *zp;
2193		uint64_t sa_obj = 0;
2194
2195		/*
2196		 * Make sure version hasn't changed
2197		 */
2198
2199		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2200		    &zfsvfs->z_version);
2201
2202		if (err)
2203			goto bail;
2204
2205		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2206		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2207
2208		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2209			goto bail;
2210
2211		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2212		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2213			goto bail;
2214
2215		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2216			sa_register_update_callback(zfsvfs->z_os,
2217			    zfs_sa_upgrade);
2218
2219		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2220
2221		zfs_set_fuid_feature(zfsvfs);
2222
2223		/*
2224		 * Attempt to re-establish all the active znodes with
2225		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2226		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2227		 * when they try to use their znode.
2228		 */
2229		mutex_enter(&zfsvfs->z_znodes_lock);
2230		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2231		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2232			(void) zfs_rezget(zp);
2233		}
2234		mutex_exit(&zfsvfs->z_znodes_lock);
2235	}
2236
2237bail:
2238	/* release the VOPs */
2239	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2240	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2241
2242	if (err) {
2243		/*
2244		 * Since we couldn't reopen zfsvfs::z_os, or
2245		 * setup the sa framework force unmount this file system.
2246		 */
2247		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2248			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2249	}
2250	return (err);
2251}
2252
2253static void
2254zfs_freevfs(vfs_t *vfsp)
2255{
2256	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2257
2258#ifdef sun
2259	/*
2260	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2261	 * from zfs_mount().  Release it here.  If we came through
2262	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2263	 * skip the VFS_RELE for rootvfs.
2264	 */
2265	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2266		VFS_RELE(zfsvfs->z_parent->z_vfs);
2267#endif	/* sun */
2268
2269	zfsvfs_free(zfsvfs);
2270
2271	atomic_add_32(&zfs_active_fs_count, -1);
2272}
2273
2274#ifdef __i386__
2275static int desiredvnodes_backup;
2276#endif
2277
2278static void
2279zfs_vnodes_adjust(void)
2280{
2281#ifdef __i386__
2282	int newdesiredvnodes;
2283
2284	desiredvnodes_backup = desiredvnodes;
2285
2286	/*
2287	 * We calculate newdesiredvnodes the same way it is done in
2288	 * vntblinit(). If it is equal to desiredvnodes, it means that
2289	 * it wasn't tuned by the administrator and we can tune it down.
2290	 */
2291	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2292	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2293	    sizeof(struct vnode))));
2294	if (newdesiredvnodes == desiredvnodes)
2295		desiredvnodes = (3 * newdesiredvnodes) / 4;
2296#endif
2297}
2298
2299static void
2300zfs_vnodes_adjust_back(void)
2301{
2302
2303#ifdef __i386__
2304	desiredvnodes = desiredvnodes_backup;
2305#endif
2306}
2307
2308void
2309zfs_init(void)
2310{
2311
2312	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
2313
2314	/*
2315	 * Initialize .zfs directory structures
2316	 */
2317	zfsctl_init();
2318
2319	/*
2320	 * Initialize znode cache, vnode ops, etc...
2321	 */
2322	zfs_znode_init();
2323
2324	/*
2325	 * Reduce number of vnodes. Originally number of vnodes is calculated
2326	 * with UFS inode in mind. We reduce it here, because it's too big for
2327	 * ZFS/i386.
2328	 */
2329	zfs_vnodes_adjust();
2330
2331	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2332}
2333
2334void
2335zfs_fini(void)
2336{
2337	zfsctl_fini();
2338	zfs_znode_fini();
2339	zfs_vnodes_adjust_back();
2340}
2341
2342int
2343zfs_busy(void)
2344{
2345	return (zfs_active_fs_count != 0);
2346}
2347
2348int
2349zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2350{
2351	int error;
2352	objset_t *os = zfsvfs->z_os;
2353	dmu_tx_t *tx;
2354
2355	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2356		return (EINVAL);
2357
2358	if (newvers < zfsvfs->z_version)
2359		return (EINVAL);
2360
2361	if (zfs_spa_version_map(newvers) >
2362	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2363		return (ENOTSUP);
2364
2365	tx = dmu_tx_create(os);
2366	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2367	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2368		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2369		    ZFS_SA_ATTRS);
2370		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2371	}
2372	error = dmu_tx_assign(tx, TXG_WAIT);
2373	if (error) {
2374		dmu_tx_abort(tx);
2375		return (error);
2376	}
2377
2378	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2379	    8, 1, &newvers, tx);
2380
2381	if (error) {
2382		dmu_tx_commit(tx);
2383		return (error);
2384	}
2385
2386	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2387		uint64_t sa_obj;
2388
2389		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2390		    SPA_VERSION_SA);
2391		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2392		    DMU_OT_NONE, 0, tx);
2393
2394		error = zap_add(os, MASTER_NODE_OBJ,
2395		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2396		ASSERT3U(error, ==, 0);
2397
2398		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2399		sa_register_update_callback(os, zfs_sa_upgrade);
2400	}
2401
2402	spa_history_log_internal(LOG_DS_UPGRADE,
2403	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2404	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2405
2406	dmu_tx_commit(tx);
2407
2408	zfsvfs->z_version = newvers;
2409
2410	zfs_set_fuid_feature(zfsvfs);
2411
2412	return (0);
2413}
2414
2415/*
2416 * Read a property stored within the master node.
2417 */
2418int
2419zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2420{
2421	const char *pname;
2422	int error = ENOENT;
2423
2424	/*
2425	 * Look up the file system's value for the property.  For the
2426	 * version property, we look up a slightly different string.
2427	 */
2428	if (prop == ZFS_PROP_VERSION)
2429		pname = ZPL_VERSION_STR;
2430	else
2431		pname = zfs_prop_to_name(prop);
2432
2433	if (os != NULL)
2434		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2435
2436	if (error == ENOENT) {
2437		/* No value set, use the default value */
2438		switch (prop) {
2439		case ZFS_PROP_VERSION:
2440			*value = ZPL_VERSION;
2441			break;
2442		case ZFS_PROP_NORMALIZE:
2443		case ZFS_PROP_UTF8ONLY:
2444			*value = 0;
2445			break;
2446		case ZFS_PROP_CASE:
2447			*value = ZFS_CASE_SENSITIVE;
2448			break;
2449		default:
2450			return (error);
2451		}
2452		error = 0;
2453	}
2454	return (error);
2455}
2456
2457#ifdef _KERNEL
2458void
2459zfsvfs_update_fromname(const char *oldname, const char *newname)
2460{
2461	char tmpbuf[MAXPATHLEN];
2462	struct mount *mp;
2463	char *fromname;
2464	size_t oldlen;
2465
2466	oldlen = strlen(oldname);
2467
2468	mtx_lock(&mountlist_mtx);
2469	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2470		fromname = mp->mnt_stat.f_mntfromname;
2471		if (strcmp(fromname, oldname) == 0) {
2472			(void)strlcpy(fromname, newname,
2473			    sizeof(mp->mnt_stat.f_mntfromname));
2474			continue;
2475		}
2476		if (strncmp(fromname, oldname, oldlen) == 0 &&
2477		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2478			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2479			    newname, fromname + oldlen);
2480			(void)strlcpy(fromname, tmpbuf,
2481			    sizeof(mp->mnt_stat.f_mntfromname));
2482			continue;
2483		}
2484	}
2485	mtx_unlock(&mountlist_mtx);
2486}
2487#endif
2488