1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/types.h>
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/kernel.h>
34#include <sys/sysmacros.h>
35#include <sys/kmem.h>
36#include <sys/acl.h>
37#include <sys/vnode.h>
38#include <sys/vfs.h>
39#include <sys/mntent.h>
40#include <sys/mount.h>
41#include <sys/cmn_err.h>
42#include <sys/zfs_znode.h>
43#include <sys/zfs_dir.h>
44#include <sys/zil.h>
45#include <sys/fs/zfs.h>
46#include <sys/dmu.h>
47#include <sys/dsl_prop.h>
48#include <sys/dsl_dataset.h>
49#include <sys/dsl_deleg.h>
50#include <sys/spa.h>
51#include <sys/zap.h>
52#include <sys/sa.h>
53#include <sys/sa_impl.h>
54#include <sys/varargs.h>
55#include <sys/policy.h>
56#include <sys/atomic.h>
57#include <sys/zfs_ioctl.h>
58#include <sys/zfs_ctldir.h>
59#include <sys/zfs_fuid.h>
60#include <sys/sunddi.h>
61#include <sys/dnlc.h>
62#include <sys/dmu_objset.h>
63#include <sys/spa_boot.h>
64#include <sys/jail.h>
65#include "zfs_comutil.h"
66
67struct mtx zfs_debug_mtx;
68MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
69
70SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
71
72int zfs_super_owner;
73SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
74    "File system owner can perform privileged operation on his file systems");
75
76int zfs_debug_level;
77TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
78SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
79    "Debug level");
80
81SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
82static int zfs_version_acl = ZFS_ACL_VERSION;
83SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
84    "ZFS_ACL_VERSION");
85static int zfs_version_spa = SPA_VERSION;
86SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
87    "SPA_VERSION");
88static int zfs_version_zpl = ZPL_VERSION;
89SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
90    "ZPL_VERSION");
91
92static int zfs_mount(vfs_t *vfsp);
93static int zfs_umount(vfs_t *vfsp, int fflag);
94static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
95static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
96static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
97static int zfs_sync(vfs_t *vfsp, int waitfor);
98static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
99    struct ucred **credanonp, int *numsecflavors, int **secflavors);
100static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
101static void zfs_objset_close(zfsvfs_t *zfsvfs);
102static void zfs_freevfs(vfs_t *vfsp);
103
104static struct vfsops zfs_vfsops = {
105	.vfs_mount =		zfs_mount,
106	.vfs_unmount =		zfs_umount,
107	.vfs_root =		zfs_root,
108	.vfs_statfs =		zfs_statfs,
109	.vfs_vget =		zfs_vget,
110	.vfs_sync =		zfs_sync,
111	.vfs_checkexp =		zfs_checkexp,
112	.vfs_fhtovp =		zfs_fhtovp,
113};
114
115VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
116
117/*
118 * We need to keep a count of active fs's.
119 * This is necessary to prevent our module
120 * from being unloaded after a umount -f
121 */
122static uint32_t	zfs_active_fs_count = 0;
123
124/*ARGSUSED*/
125static int
126zfs_sync(vfs_t *vfsp, int waitfor)
127{
128
129	/*
130	 * Data integrity is job one.  We don't want a compromised kernel
131	 * writing to the storage pool, so we never sync during panic.
132	 */
133	if (panicstr)
134		return (0);
135
136	if (vfsp != NULL) {
137		/*
138		 * Sync a specific filesystem.
139		 */
140		zfsvfs_t *zfsvfs = vfsp->vfs_data;
141		dsl_pool_t *dp;
142		int error;
143
144		error = vfs_stdsync(vfsp, waitfor);
145		if (error != 0)
146			return (error);
147
148		ZFS_ENTER(zfsvfs);
149		dp = dmu_objset_pool(zfsvfs->z_os);
150
151		/*
152		 * If the system is shutting down, then skip any
153		 * filesystems which may exist on a suspended pool.
154		 */
155		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
156			ZFS_EXIT(zfsvfs);
157			return (0);
158		}
159
160		if (zfsvfs->z_log != NULL)
161			zil_commit(zfsvfs->z_log, 0);
162
163		ZFS_EXIT(zfsvfs);
164	} else {
165		/*
166		 * Sync all ZFS filesystems.  This is what happens when you
167		 * run sync(1M).  Unlike other filesystems, ZFS honors the
168		 * request by waiting for all pools to commit all dirty data.
169		 */
170		spa_sync_allpools();
171	}
172
173	return (0);
174}
175
176#ifndef __FreeBSD__
177static int
178zfs_create_unique_device(dev_t *dev)
179{
180	major_t new_major;
181
182	do {
183		ASSERT3U(zfs_minor, <=, MAXMIN32);
184		minor_t start = zfs_minor;
185		do {
186			mutex_enter(&zfs_dev_mtx);
187			if (zfs_minor >= MAXMIN32) {
188				/*
189				 * If we're still using the real major
190				 * keep out of /dev/zfs and /dev/zvol minor
191				 * number space.  If we're using a getudev()'ed
192				 * major number, we can use all of its minors.
193				 */
194				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
195					zfs_minor = ZFS_MIN_MINOR;
196				else
197					zfs_minor = 0;
198			} else {
199				zfs_minor++;
200			}
201			*dev = makedevice(zfs_major, zfs_minor);
202			mutex_exit(&zfs_dev_mtx);
203		} while (vfs_devismounted(*dev) && zfs_minor != start);
204		if (zfs_minor == start) {
205			/*
206			 * We are using all ~262,000 minor numbers for the
207			 * current major number.  Create a new major number.
208			 */
209			if ((new_major = getudev()) == (major_t)-1) {
210				cmn_err(CE_WARN,
211				    "zfs_mount: Can't get unique major "
212				    "device number.");
213				return (-1);
214			}
215			mutex_enter(&zfs_dev_mtx);
216			zfs_major = new_major;
217			zfs_minor = 0;
218
219			mutex_exit(&zfs_dev_mtx);
220		} else {
221			break;
222		}
223		/* CONSTANTCONDITION */
224	} while (1);
225
226	return (0);
227}
228#endif	/* !__FreeBSD__ */
229
230static void
231atime_changed_cb(void *arg, uint64_t newval)
232{
233	zfsvfs_t *zfsvfs = arg;
234
235	if (newval == TRUE) {
236		zfsvfs->z_atime = TRUE;
237		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
238		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
239		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
240	} else {
241		zfsvfs->z_atime = FALSE;
242		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
243		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
244		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
245	}
246}
247
248static void
249xattr_changed_cb(void *arg, uint64_t newval)
250{
251	zfsvfs_t *zfsvfs = arg;
252
253	if (newval == TRUE) {
254		/* XXX locking on vfs_flag? */
255#ifdef TODO
256		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
257#endif
258		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
259		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
260	} else {
261		/* XXX locking on vfs_flag? */
262#ifdef TODO
263		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
264#endif
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
267	}
268}
269
270static void
271blksz_changed_cb(void *arg, uint64_t newval)
272{
273	zfsvfs_t *zfsvfs = arg;
274
275	if (newval < SPA_MINBLOCKSIZE ||
276	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
277		newval = SPA_MAXBLOCKSIZE;
278
279	zfsvfs->z_max_blksz = newval;
280	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
281}
282
283static void
284readonly_changed_cb(void *arg, uint64_t newval)
285{
286	zfsvfs_t *zfsvfs = arg;
287
288	if (newval) {
289		/* XXX locking on vfs_flag? */
290		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
291		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
292		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
293	} else {
294		/* XXX locking on vfs_flag? */
295		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
296		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
297		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
298	}
299}
300
301static void
302setuid_changed_cb(void *arg, uint64_t newval)
303{
304	zfsvfs_t *zfsvfs = arg;
305
306	if (newval == FALSE) {
307		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
308		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
309		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
310	} else {
311		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
312		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
313		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
314	}
315}
316
317static void
318exec_changed_cb(void *arg, uint64_t newval)
319{
320	zfsvfs_t *zfsvfs = arg;
321
322	if (newval == FALSE) {
323		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
324		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
325		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
326	} else {
327		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
328		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
329		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
330	}
331}
332
333/*
334 * The nbmand mount option can be changed at mount time.
335 * We can't allow it to be toggled on live file systems or incorrect
336 * behavior may be seen from cifs clients
337 *
338 * This property isn't registered via dsl_prop_register(), but this callback
339 * will be called when a file system is first mounted
340 */
341static void
342nbmand_changed_cb(void *arg, uint64_t newval)
343{
344	zfsvfs_t *zfsvfs = arg;
345	if (newval == FALSE) {
346		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
347		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
348	} else {
349		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
350		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
351	}
352}
353
354static void
355snapdir_changed_cb(void *arg, uint64_t newval)
356{
357	zfsvfs_t *zfsvfs = arg;
358
359	zfsvfs->z_show_ctldir = newval;
360}
361
362static void
363vscan_changed_cb(void *arg, uint64_t newval)
364{
365	zfsvfs_t *zfsvfs = arg;
366
367	zfsvfs->z_vscan = newval;
368}
369
370static void
371acl_mode_changed_cb(void *arg, uint64_t newval)
372{
373	zfsvfs_t *zfsvfs = arg;
374
375	zfsvfs->z_acl_mode = newval;
376}
377
378static void
379acl_inherit_changed_cb(void *arg, uint64_t newval)
380{
381	zfsvfs_t *zfsvfs = arg;
382
383	zfsvfs->z_acl_inherit = newval;
384}
385
386static int
387zfs_register_callbacks(vfs_t *vfsp)
388{
389	struct dsl_dataset *ds = NULL;
390	objset_t *os = NULL;
391	zfsvfs_t *zfsvfs = NULL;
392	uint64_t nbmand;
393	boolean_t readonly = B_FALSE;
394	boolean_t do_readonly = B_FALSE;
395	boolean_t setuid = B_FALSE;
396	boolean_t do_setuid = B_FALSE;
397	boolean_t exec = B_FALSE;
398	boolean_t do_exec = B_FALSE;
399#ifdef illumos
400	boolean_t devices = B_FALSE;
401	boolean_t do_devices = B_FALSE;
402#endif
403	boolean_t xattr = B_FALSE;
404	boolean_t do_xattr = B_FALSE;
405	boolean_t atime = B_FALSE;
406	boolean_t do_atime = B_FALSE;
407	int error = 0;
408
409	ASSERT(vfsp);
410	zfsvfs = vfsp->vfs_data;
411	ASSERT(zfsvfs);
412	os = zfsvfs->z_os;
413
414	/*
415	 * This function can be called for a snapshot when we update snapshot's
416	 * mount point, which isn't really supported.
417	 */
418	if (dmu_objset_is_snapshot(os))
419		return (EOPNOTSUPP);
420
421	/*
422	 * The act of registering our callbacks will destroy any mount
423	 * options we may have.  In order to enable temporary overrides
424	 * of mount options, we stash away the current values and
425	 * restore them after we register the callbacks.
426	 */
427	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
428	    !spa_writeable(dmu_objset_spa(os))) {
429		readonly = B_TRUE;
430		do_readonly = B_TRUE;
431	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
432		readonly = B_FALSE;
433		do_readonly = B_TRUE;
434	}
435	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
436		setuid = B_FALSE;
437		do_setuid = B_TRUE;
438	} else {
439		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
440			setuid = B_FALSE;
441			do_setuid = B_TRUE;
442		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
443			setuid = B_TRUE;
444			do_setuid = B_TRUE;
445		}
446	}
447	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
448		exec = B_FALSE;
449		do_exec = B_TRUE;
450	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
451		exec = B_TRUE;
452		do_exec = B_TRUE;
453	}
454	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
455		xattr = B_FALSE;
456		do_xattr = B_TRUE;
457	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
458		xattr = B_TRUE;
459		do_xattr = B_TRUE;
460	}
461	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
462		atime = B_FALSE;
463		do_atime = B_TRUE;
464	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
465		atime = B_TRUE;
466		do_atime = B_TRUE;
467	}
468
469	/*
470	 * nbmand is a special property.  It can only be changed at
471	 * mount time.
472	 *
473	 * This is weird, but it is documented to only be changeable
474	 * at mount time.
475	 */
476	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
477		nbmand = B_FALSE;
478	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
479		nbmand = B_TRUE;
480	} else {
481		char osname[MAXNAMELEN];
482
483		dmu_objset_name(os, osname);
484		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
485		    NULL)) {
486			return (error);
487		}
488	}
489
490	/*
491	 * Register property callbacks.
492	 *
493	 * It would probably be fine to just check for i/o error from
494	 * the first prop_register(), but I guess I like to go
495	 * overboard...
496	 */
497	ds = dmu_objset_ds(os);
498	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
499	error = dsl_prop_register(ds,
500	    zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
507#ifdef illumos
508	error = error ? error : dsl_prop_register(ds,
509	    zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
510#endif
511	error = error ? error : dsl_prop_register(ds,
512	    zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
513	error = error ? error : dsl_prop_register(ds,
514	    zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
515	error = error ? error : dsl_prop_register(ds,
516	    zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
517	error = error ? error : dsl_prop_register(ds,
518	    zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
519	error = error ? error : dsl_prop_register(ds,
520	    zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
521	    zfsvfs);
522	error = error ? error : dsl_prop_register(ds,
523	    zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zfsvfs);
524	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
525	if (error)
526		goto unregister;
527
528	/*
529	 * Invoke our callbacks to restore temporary mount options.
530	 */
531	if (do_readonly)
532		readonly_changed_cb(zfsvfs, readonly);
533	if (do_setuid)
534		setuid_changed_cb(zfsvfs, setuid);
535	if (do_exec)
536		exec_changed_cb(zfsvfs, exec);
537	if (do_xattr)
538		xattr_changed_cb(zfsvfs, xattr);
539	if (do_atime)
540		atime_changed_cb(zfsvfs, atime);
541
542	nbmand_changed_cb(zfsvfs, nbmand);
543
544	return (0);
545
546unregister:
547	/*
548	 * We may attempt to unregister some callbacks that are not
549	 * registered, but this is OK; it will simply return ENOMSG,
550	 * which we will ignore.
551	 */
552	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
553	    atime_changed_cb, zfsvfs);
554	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
555	    xattr_changed_cb, zfsvfs);
556	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
557	    blksz_changed_cb, zfsvfs);
558	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
559	    readonly_changed_cb, zfsvfs);
560#ifdef illumos
561	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
562	    devices_changed_cb, zfsvfs);
563#endif
564	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
565	    setuid_changed_cb, zfsvfs);
566	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
567	    exec_changed_cb, zfsvfs);
568	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
569	    snapdir_changed_cb, zfsvfs);
570	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLMODE),
571	    acl_mode_changed_cb, zfsvfs);
572	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
573	    acl_inherit_changed_cb, zfsvfs);
574	(void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
575	    vscan_changed_cb, zfsvfs);
576	return (error);
577}
578
579static int
580zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
581    uint64_t *userp, uint64_t *groupp)
582{
583	/*
584	 * Is it a valid type of object to track?
585	 */
586	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
587		return (SET_ERROR(ENOENT));
588
589	/*
590	 * If we have a NULL data pointer
591	 * then assume the id's aren't changing and
592	 * return EEXIST to the dmu to let it know to
593	 * use the same ids
594	 */
595	if (data == NULL)
596		return (SET_ERROR(EEXIST));
597
598	if (bonustype == DMU_OT_ZNODE) {
599		znode_phys_t *znp = data;
600		*userp = znp->zp_uid;
601		*groupp = znp->zp_gid;
602	} else {
603		int hdrsize;
604		sa_hdr_phys_t *sap = data;
605		sa_hdr_phys_t sa = *sap;
606		boolean_t swap = B_FALSE;
607
608		ASSERT(bonustype == DMU_OT_SA);
609
610		if (sa.sa_magic == 0) {
611			/*
612			 * This should only happen for newly created
613			 * files that haven't had the znode data filled
614			 * in yet.
615			 */
616			*userp = 0;
617			*groupp = 0;
618			return (0);
619		}
620		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
621			sa.sa_magic = SA_MAGIC;
622			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
623			swap = B_TRUE;
624		} else {
625			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
626		}
627
628		hdrsize = sa_hdrsize(&sa);
629		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
630		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
631		    SA_UID_OFFSET));
632		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
633		    SA_GID_OFFSET));
634		if (swap) {
635			*userp = BSWAP_64(*userp);
636			*groupp = BSWAP_64(*groupp);
637		}
638	}
639	return (0);
640}
641
642static void
643fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
644    char *domainbuf, int buflen, uid_t *ridp)
645{
646	uint64_t fuid;
647	const char *domain;
648
649	fuid = strtonum(fuidstr, NULL);
650
651	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
652	if (domain)
653		(void) strlcpy(domainbuf, domain, buflen);
654	else
655		domainbuf[0] = '\0';
656	*ridp = FUID_RID(fuid);
657}
658
659static uint64_t
660zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
661{
662	switch (type) {
663	case ZFS_PROP_USERUSED:
664		return (DMU_USERUSED_OBJECT);
665	case ZFS_PROP_GROUPUSED:
666		return (DMU_GROUPUSED_OBJECT);
667	case ZFS_PROP_USERQUOTA:
668		return (zfsvfs->z_userquota_obj);
669	case ZFS_PROP_GROUPQUOTA:
670		return (zfsvfs->z_groupquota_obj);
671	}
672	return (0);
673}
674
675int
676zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
677    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
678{
679	int error;
680	zap_cursor_t zc;
681	zap_attribute_t za;
682	zfs_useracct_t *buf = vbuf;
683	uint64_t obj;
684
685	if (!dmu_objset_userspace_present(zfsvfs->z_os))
686		return (SET_ERROR(ENOTSUP));
687
688	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
689	if (obj == 0) {
690		*bufsizep = 0;
691		return (0);
692	}
693
694	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
695	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
696	    zap_cursor_advance(&zc)) {
697		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
698		    *bufsizep)
699			break;
700
701		fuidstr_to_sid(zfsvfs, za.za_name,
702		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
703
704		buf->zu_space = za.za_first_integer;
705		buf++;
706	}
707	if (error == ENOENT)
708		error = 0;
709
710	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
711	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
712	*cookiep = zap_cursor_serialize(&zc);
713	zap_cursor_fini(&zc);
714	return (error);
715}
716
717/*
718 * buf must be big enough (eg, 32 bytes)
719 */
720static int
721id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
722    char *buf, boolean_t addok)
723{
724	uint64_t fuid;
725	int domainid = 0;
726
727	if (domain && domain[0]) {
728		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
729		if (domainid == -1)
730			return (SET_ERROR(ENOENT));
731	}
732	fuid = FUID_ENCODE(domainid, rid);
733	(void) sprintf(buf, "%llx", (longlong_t)fuid);
734	return (0);
735}
736
737int
738zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
739    const char *domain, uint64_t rid, uint64_t *valp)
740{
741	char buf[32];
742	int err;
743	uint64_t obj;
744
745	*valp = 0;
746
747	if (!dmu_objset_userspace_present(zfsvfs->z_os))
748		return (SET_ERROR(ENOTSUP));
749
750	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
751	if (obj == 0)
752		return (0);
753
754	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
755	if (err)
756		return (err);
757
758	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
759	if (err == ENOENT)
760		err = 0;
761	return (err);
762}
763
764int
765zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
766    const char *domain, uint64_t rid, uint64_t quota)
767{
768	char buf[32];
769	int err;
770	dmu_tx_t *tx;
771	uint64_t *objp;
772	boolean_t fuid_dirtied;
773
774	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
775		return (SET_ERROR(EINVAL));
776
777	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
778		return (SET_ERROR(ENOTSUP));
779
780	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
781	    &zfsvfs->z_groupquota_obj;
782
783	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
784	if (err)
785		return (err);
786	fuid_dirtied = zfsvfs->z_fuid_dirty;
787
788	tx = dmu_tx_create(zfsvfs->z_os);
789	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
790	if (*objp == 0) {
791		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
792		    zfs_userquota_prop_prefixes[type]);
793	}
794	if (fuid_dirtied)
795		zfs_fuid_txhold(zfsvfs, tx);
796	err = dmu_tx_assign(tx, TXG_WAIT);
797	if (err) {
798		dmu_tx_abort(tx);
799		return (err);
800	}
801
802	mutex_enter(&zfsvfs->z_lock);
803	if (*objp == 0) {
804		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
805		    DMU_OT_NONE, 0, tx);
806		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
807		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
808	}
809	mutex_exit(&zfsvfs->z_lock);
810
811	if (quota == 0) {
812		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
813		if (err == ENOENT)
814			err = 0;
815	} else {
816		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
817	}
818	ASSERT(err == 0);
819	if (fuid_dirtied)
820		zfs_fuid_sync(zfsvfs, tx);
821	dmu_tx_commit(tx);
822	return (err);
823}
824
825boolean_t
826zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
827{
828	char buf[32];
829	uint64_t used, quota, usedobj, quotaobj;
830	int err;
831
832	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
833	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
834
835	if (quotaobj == 0 || zfsvfs->z_replay)
836		return (B_FALSE);
837
838	(void) sprintf(buf, "%llx", (longlong_t)fuid);
839	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
840	if (err != 0)
841		return (B_FALSE);
842
843	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
844	if (err != 0)
845		return (B_FALSE);
846	return (used >= quota);
847}
848
849boolean_t
850zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
851{
852	uint64_t fuid;
853	uint64_t quotaobj;
854
855	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
856
857	fuid = isgroup ? zp->z_gid : zp->z_uid;
858
859	if (quotaobj == 0 || zfsvfs->z_replay)
860		return (B_FALSE);
861
862	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
863}
864
865int
866zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
867{
868	objset_t *os;
869	zfsvfs_t *zfsvfs;
870	uint64_t zval;
871	int i, error;
872	uint64_t sa_obj;
873
874	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
875
876	/*
877	 * We claim to always be readonly so we can open snapshots;
878	 * other ZPL code will prevent us from writing to snapshots.
879	 */
880	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
881	if (error) {
882		kmem_free(zfsvfs, sizeof (zfsvfs_t));
883		return (error);
884	}
885
886	/*
887	 * Initialize the zfs-specific filesystem structure.
888	 * Should probably make this a kmem cache, shuffle fields,
889	 * and just bzero up to z_hold_mtx[].
890	 */
891	zfsvfs->z_vfs = NULL;
892	zfsvfs->z_parent = zfsvfs;
893	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
894	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
895	zfsvfs->z_os = os;
896
897	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
898	if (error) {
899		goto out;
900	} else if (zfsvfs->z_version >
901	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
902		(void) printf("Can't mount a version %lld file system "
903		    "on a version %lld pool\n. Pool must be upgraded to mount "
904		    "this file system.", (u_longlong_t)zfsvfs->z_version,
905		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
906		error = SET_ERROR(ENOTSUP);
907		goto out;
908	}
909	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
910		goto out;
911	zfsvfs->z_norm = (int)zval;
912
913	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
914		goto out;
915	zfsvfs->z_utf8 = (zval != 0);
916
917	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
918		goto out;
919	zfsvfs->z_case = (uint_t)zval;
920
921	/*
922	 * Fold case on file systems that are always or sometimes case
923	 * insensitive.
924	 */
925	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
926	    zfsvfs->z_case == ZFS_CASE_MIXED)
927		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
928
929	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
930	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
931
932	if (zfsvfs->z_use_sa) {
933		/* should either have both of these objects or none */
934		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
935		    &sa_obj);
936		if (error)
937			return (error);
938	} else {
939		/*
940		 * Pre SA versions file systems should never touch
941		 * either the attribute registration or layout objects.
942		 */
943		sa_obj = 0;
944	}
945
946	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
947	    &zfsvfs->z_attr_table);
948	if (error)
949		goto out;
950
951	if (zfsvfs->z_version >= ZPL_VERSION_SA)
952		sa_register_update_callback(os, zfs_sa_upgrade);
953
954	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
955	    &zfsvfs->z_root);
956	if (error)
957		goto out;
958	ASSERT(zfsvfs->z_root != 0);
959
960	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
961	    &zfsvfs->z_unlinkedobj);
962	if (error)
963		goto out;
964
965	error = zap_lookup(os, MASTER_NODE_OBJ,
966	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
967	    8, 1, &zfsvfs->z_userquota_obj);
968	if (error && error != ENOENT)
969		goto out;
970
971	error = zap_lookup(os, MASTER_NODE_OBJ,
972	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
973	    8, 1, &zfsvfs->z_groupquota_obj);
974	if (error && error != ENOENT)
975		goto out;
976
977	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
978	    &zfsvfs->z_fuid_obj);
979	if (error && error != ENOENT)
980		goto out;
981
982	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
983	    &zfsvfs->z_shares_dir);
984	if (error && error != ENOENT)
985		goto out;
986
987	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
988	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
989	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
990	    offsetof(znode_t, z_link_node));
991	rrw_init(&zfsvfs->z_teardown_lock, B_FALSE);
992	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
993	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
994	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
995		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
996
997	*zfvp = zfsvfs;
998	return (0);
999
1000out:
1001	dmu_objset_disown(os, zfsvfs);
1002	*zfvp = NULL;
1003	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1004	return (error);
1005}
1006
1007static int
1008zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
1009{
1010	int error;
1011
1012	error = zfs_register_callbacks(zfsvfs->z_vfs);
1013	if (error)
1014		return (error);
1015
1016	/*
1017	 * Set the objset user_ptr to track its zfsvfs.
1018	 */
1019	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1020	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1021	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1022
1023	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1024
1025	/*
1026	 * If we are not mounting (ie: online recv), then we don't
1027	 * have to worry about replaying the log as we blocked all
1028	 * operations out since we closed the ZIL.
1029	 */
1030	if (mounting) {
1031		boolean_t readonly;
1032
1033		/*
1034		 * During replay we remove the read only flag to
1035		 * allow replays to succeed.
1036		 */
1037		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1038		if (readonly != 0)
1039			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1040		else
1041			zfs_unlinked_drain(zfsvfs);
1042
1043		/*
1044		 * Parse and replay the intent log.
1045		 *
1046		 * Because of ziltest, this must be done after
1047		 * zfs_unlinked_drain().  (Further note: ziltest
1048		 * doesn't use readonly mounts, where
1049		 * zfs_unlinked_drain() isn't called.)  This is because
1050		 * ziltest causes spa_sync() to think it's committed,
1051		 * but actually it is not, so the intent log contains
1052		 * many txg's worth of changes.
1053		 *
1054		 * In particular, if object N is in the unlinked set in
1055		 * the last txg to actually sync, then it could be
1056		 * actually freed in a later txg and then reallocated
1057		 * in a yet later txg.  This would write a "create
1058		 * object N" record to the intent log.  Normally, this
1059		 * would be fine because the spa_sync() would have
1060		 * written out the fact that object N is free, before
1061		 * we could write the "create object N" intent log
1062		 * record.
1063		 *
1064		 * But when we are in ziltest mode, we advance the "open
1065		 * txg" without actually spa_sync()-ing the changes to
1066		 * disk.  So we would see that object N is still
1067		 * allocated and in the unlinked set, and there is an
1068		 * intent log record saying to allocate it.
1069		 */
1070		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1071			if (zil_replay_disable) {
1072				zil_destroy(zfsvfs->z_log, B_FALSE);
1073			} else {
1074				zfsvfs->z_replay = B_TRUE;
1075				zil_replay(zfsvfs->z_os, zfsvfs,
1076				    zfs_replay_vector);
1077				zfsvfs->z_replay = B_FALSE;
1078			}
1079		}
1080		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1081	}
1082
1083	return (0);
1084}
1085
1086extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1087
1088void
1089zfsvfs_free(zfsvfs_t *zfsvfs)
1090{
1091	int i;
1092
1093	/*
1094	 * This is a barrier to prevent the filesystem from going away in
1095	 * zfs_znode_move() until we can safely ensure that the filesystem is
1096	 * not unmounted. We consider the filesystem valid before the barrier
1097	 * and invalid after the barrier.
1098	 */
1099	rw_enter(&zfsvfs_lock, RW_READER);
1100	rw_exit(&zfsvfs_lock);
1101
1102	zfs_fuid_destroy(zfsvfs);
1103
1104	mutex_destroy(&zfsvfs->z_znodes_lock);
1105	mutex_destroy(&zfsvfs->z_lock);
1106	list_destroy(&zfsvfs->z_all_znodes);
1107	rrw_destroy(&zfsvfs->z_teardown_lock);
1108	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1109	rw_destroy(&zfsvfs->z_fuid_lock);
1110	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1111		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1112	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1113}
1114
1115static void
1116zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1117{
1118	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1119	if (zfsvfs->z_vfs) {
1120		if (zfsvfs->z_use_fuids) {
1121			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1122			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1123			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1124			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1125			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1126			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1127		} else {
1128			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1129			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1130			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1131			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1132			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1133			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1134		}
1135	}
1136	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1137}
1138
1139static int
1140zfs_domount(vfs_t *vfsp, char *osname)
1141{
1142	uint64_t recordsize, fsid_guid;
1143	int error = 0;
1144	zfsvfs_t *zfsvfs;
1145	vnode_t *vp;
1146
1147	ASSERT(vfsp);
1148	ASSERT(osname);
1149
1150	error = zfsvfs_create(osname, &zfsvfs);
1151	if (error)
1152		return (error);
1153	zfsvfs->z_vfs = vfsp;
1154
1155#ifdef illumos
1156	/* Initialize the generic filesystem structure. */
1157	vfsp->vfs_bcount = 0;
1158	vfsp->vfs_data = NULL;
1159
1160	if (zfs_create_unique_device(&mount_dev) == -1) {
1161		error = SET_ERROR(ENODEV);
1162		goto out;
1163	}
1164	ASSERT(vfs_devismounted(mount_dev) == 0);
1165#endif
1166
1167	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1168	    NULL))
1169		goto out;
1170	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1171	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1172
1173	vfsp->vfs_data = zfsvfs;
1174	vfsp->mnt_flag |= MNT_LOCAL;
1175	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1176	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1177	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1178	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1179
1180	/*
1181	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1182	 * separates our fsid from any other filesystem types, and a
1183	 * 56-bit objset unique ID.  The objset unique ID is unique to
1184	 * all objsets open on this system, provided by unique_create().
1185	 * The 8-bit fs type must be put in the low bits of fsid[1]
1186	 * because that's where other Solaris filesystems put it.
1187	 */
1188	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1189	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1190	vfsp->vfs_fsid.val[0] = fsid_guid;
1191	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1192	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1193
1194	/*
1195	 * Set features for file system.
1196	 */
1197	zfs_set_fuid_feature(zfsvfs);
1198	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1199		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1200		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1201		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1202	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1203		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1204		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1205	}
1206	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1207
1208	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1209		uint64_t pval;
1210
1211		atime_changed_cb(zfsvfs, B_FALSE);
1212		readonly_changed_cb(zfsvfs, B_TRUE);
1213		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1214			goto out;
1215		xattr_changed_cb(zfsvfs, pval);
1216		zfsvfs->z_issnap = B_TRUE;
1217		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1218
1219		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1220		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1221		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1222	} else {
1223		error = zfsvfs_setup(zfsvfs, B_TRUE);
1224	}
1225
1226	vfs_mountedfrom(vfsp, osname);
1227	/* Grab extra reference. */
1228	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1229	VOP_UNLOCK(vp, 0);
1230
1231	if (!zfsvfs->z_issnap)
1232		zfsctl_create(zfsvfs);
1233out:
1234	if (error) {
1235		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1236		zfsvfs_free(zfsvfs);
1237	} else {
1238		atomic_add_32(&zfs_active_fs_count, 1);
1239	}
1240
1241	return (error);
1242}
1243
1244void
1245zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1246{
1247	objset_t *os = zfsvfs->z_os;
1248	struct dsl_dataset *ds;
1249
1250	/*
1251	 * Unregister properties.
1252	 */
1253	if (!dmu_objset_is_snapshot(os)) {
1254		ds = dmu_objset_ds(os);
1255		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1256		    zfsvfs) == 0);
1257
1258		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1259		    zfsvfs) == 0);
1260
1261		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1262		    zfsvfs) == 0);
1263
1264		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1265		    zfsvfs) == 0);
1266
1267		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1268		    zfsvfs) == 0);
1269
1270		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1271		    zfsvfs) == 0);
1272
1273		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1274		    zfsvfs) == 0);
1275
1276		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1277		    zfsvfs) == 0);
1278
1279		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1280		    acl_inherit_changed_cb, zfsvfs) == 0);
1281
1282		VERIFY(dsl_prop_unregister(ds, "vscan",
1283		    vscan_changed_cb, zfsvfs) == 0);
1284	}
1285}
1286
1287#ifdef SECLABEL
1288/*
1289 * Convert a decimal digit string to a uint64_t integer.
1290 */
1291static int
1292str_to_uint64(char *str, uint64_t *objnum)
1293{
1294	uint64_t num = 0;
1295
1296	while (*str) {
1297		if (*str < '0' || *str > '9')
1298			return (SET_ERROR(EINVAL));
1299
1300		num = num*10 + *str++ - '0';
1301	}
1302
1303	*objnum = num;
1304	return (0);
1305}
1306
1307/*
1308 * The boot path passed from the boot loader is in the form of
1309 * "rootpool-name/root-filesystem-object-number'. Convert this
1310 * string to a dataset name: "rootpool-name/root-filesystem-name".
1311 */
1312static int
1313zfs_parse_bootfs(char *bpath, char *outpath)
1314{
1315	char *slashp;
1316	uint64_t objnum;
1317	int error;
1318
1319	if (*bpath == 0 || *bpath == '/')
1320		return (SET_ERROR(EINVAL));
1321
1322	(void) strcpy(outpath, bpath);
1323
1324	slashp = strchr(bpath, '/');
1325
1326	/* if no '/', just return the pool name */
1327	if (slashp == NULL) {
1328		return (0);
1329	}
1330
1331	/* if not a number, just return the root dataset name */
1332	if (str_to_uint64(slashp+1, &objnum)) {
1333		return (0);
1334	}
1335
1336	*slashp = '\0';
1337	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1338	*slashp = '/';
1339
1340	return (error);
1341}
1342
1343/*
1344 * Check that the hex label string is appropriate for the dataset being
1345 * mounted into the global_zone proper.
1346 *
1347 * Return an error if the hex label string is not default or
1348 * admin_low/admin_high.  For admin_low labels, the corresponding
1349 * dataset must be readonly.
1350 */
1351int
1352zfs_check_global_label(const char *dsname, const char *hexsl)
1353{
1354	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1355		return (0);
1356	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1357		return (0);
1358	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1359		/* must be readonly */
1360		uint64_t rdonly;
1361
1362		if (dsl_prop_get_integer(dsname,
1363		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1364			return (SET_ERROR(EACCES));
1365		return (rdonly ? 0 : EACCES);
1366	}
1367	return (SET_ERROR(EACCES));
1368}
1369
1370/*
1371 * Determine whether the mount is allowed according to MAC check.
1372 * by comparing (where appropriate) label of the dataset against
1373 * the label of the zone being mounted into.  If the dataset has
1374 * no label, create one.
1375 *
1376 * Returns 0 if access allowed, error otherwise (e.g. EACCES)
1377 */
1378static int
1379zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1380{
1381	int		error, retv;
1382	zone_t		*mntzone = NULL;
1383	ts_label_t	*mnt_tsl;
1384	bslabel_t	*mnt_sl;
1385	bslabel_t	ds_sl;
1386	char		ds_hexsl[MAXNAMELEN];
1387
1388	retv = EACCES;				/* assume the worst */
1389
1390	/*
1391	 * Start by getting the dataset label if it exists.
1392	 */
1393	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1394	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1395	if (error)
1396		return (SET_ERROR(EACCES));
1397
1398	/*
1399	 * If labeling is NOT enabled, then disallow the mount of datasets
1400	 * which have a non-default label already.  No other label checks
1401	 * are needed.
1402	 */
1403	if (!is_system_labeled()) {
1404		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1405			return (0);
1406		return (SET_ERROR(EACCES));
1407	}
1408
1409	/*
1410	 * Get the label of the mountpoint.  If mounting into the global
1411	 * zone (i.e. mountpoint is not within an active zone and the
1412	 * zoned property is off), the label must be default or
1413	 * admin_low/admin_high only; no other checks are needed.
1414	 */
1415	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1416	if (mntzone->zone_id == GLOBAL_ZONEID) {
1417		uint64_t zoned;
1418
1419		zone_rele(mntzone);
1420
1421		if (dsl_prop_get_integer(osname,
1422		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1423			return (SET_ERROR(EACCES));
1424		if (!zoned)
1425			return (zfs_check_global_label(osname, ds_hexsl));
1426		else
1427			/*
1428			 * This is the case of a zone dataset being mounted
1429			 * initially, before the zone has been fully created;
1430			 * allow this mount into global zone.
1431			 */
1432			return (0);
1433	}
1434
1435	mnt_tsl = mntzone->zone_slabel;
1436	ASSERT(mnt_tsl != NULL);
1437	label_hold(mnt_tsl);
1438	mnt_sl = label2bslabel(mnt_tsl);
1439
1440	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1441		/*
1442		 * The dataset doesn't have a real label, so fabricate one.
1443		 */
1444		char *str = NULL;
1445
1446		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1447		    dsl_prop_set_string(osname,
1448		    zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1449		    ZPROP_SRC_LOCAL, str) == 0)
1450			retv = 0;
1451		if (str != NULL)
1452			kmem_free(str, strlen(str) + 1);
1453	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1454		/*
1455		 * Now compare labels to complete the MAC check.  If the
1456		 * labels are equal then allow access.  If the mountpoint
1457		 * label dominates the dataset label, allow readonly access.
1458		 * Otherwise, access is denied.
1459		 */
1460		if (blequal(mnt_sl, &ds_sl))
1461			retv = 0;
1462		else if (bldominates(mnt_sl, &ds_sl)) {
1463			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1464			retv = 0;
1465		}
1466	}
1467
1468	label_rele(mnt_tsl);
1469	zone_rele(mntzone);
1470	return (retv);
1471}
1472#endif	/* SECLABEL */
1473
1474#ifdef OPENSOLARIS_MOUNTROOT
1475static int
1476zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1477{
1478	int error = 0;
1479	static int zfsrootdone = 0;
1480	zfsvfs_t *zfsvfs = NULL;
1481	znode_t *zp = NULL;
1482	vnode_t *vp = NULL;
1483	char *zfs_bootfs;
1484	char *zfs_devid;
1485
1486	ASSERT(vfsp);
1487
1488	/*
1489	 * The filesystem that we mount as root is defined in the
1490	 * boot property "zfs-bootfs" with a format of
1491	 * "poolname/root-dataset-objnum".
1492	 */
1493	if (why == ROOT_INIT) {
1494		if (zfsrootdone++)
1495			return (SET_ERROR(EBUSY));
1496		/*
1497		 * the process of doing a spa_load will require the
1498		 * clock to be set before we could (for example) do
1499		 * something better by looking at the timestamp on
1500		 * an uberblock, so just set it to -1.
1501		 */
1502		clkset(-1);
1503
1504		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1505			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1506			    "bootfs name");
1507			return (SET_ERROR(EINVAL));
1508		}
1509		zfs_devid = spa_get_bootprop("diskdevid");
1510		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1511		if (zfs_devid)
1512			spa_free_bootprop(zfs_devid);
1513		if (error) {
1514			spa_free_bootprop(zfs_bootfs);
1515			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1516			    error);
1517			return (error);
1518		}
1519		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1520			spa_free_bootprop(zfs_bootfs);
1521			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1522			    error);
1523			return (error);
1524		}
1525
1526		spa_free_bootprop(zfs_bootfs);
1527
1528		if (error = vfs_lock(vfsp))
1529			return (error);
1530
1531		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1532			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1533			goto out;
1534		}
1535
1536		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1537		ASSERT(zfsvfs);
1538		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1539			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1540			goto out;
1541		}
1542
1543		vp = ZTOV(zp);
1544		mutex_enter(&vp->v_lock);
1545		vp->v_flag |= VROOT;
1546		mutex_exit(&vp->v_lock);
1547		rootvp = vp;
1548
1549		/*
1550		 * Leave rootvp held.  The root file system is never unmounted.
1551		 */
1552
1553		vfs_add((struct vnode *)0, vfsp,
1554		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1555out:
1556		vfs_unlock(vfsp);
1557		return (error);
1558	} else if (why == ROOT_REMOUNT) {
1559		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1560		vfsp->vfs_flag |= VFS_REMOUNT;
1561
1562		/* refresh mount options */
1563		zfs_unregister_callbacks(vfsp->vfs_data);
1564		return (zfs_register_callbacks(vfsp));
1565
1566	} else if (why == ROOT_UNMOUNT) {
1567		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1568		(void) zfs_sync(vfsp, 0, 0);
1569		return (0);
1570	}
1571
1572	/*
1573	 * if "why" is equal to anything else other than ROOT_INIT,
1574	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1575	 */
1576	return (SET_ERROR(ENOTSUP));
1577}
1578#endif	/* OPENSOLARIS_MOUNTROOT */
1579
1580static int
1581getpoolname(const char *osname, char *poolname)
1582{
1583	char *p;
1584
1585	p = strchr(osname, '/');
1586	if (p == NULL) {
1587		if (strlen(osname) >= MAXNAMELEN)
1588			return (ENAMETOOLONG);
1589		(void) strcpy(poolname, osname);
1590	} else {
1591		if (p - osname >= MAXNAMELEN)
1592			return (ENAMETOOLONG);
1593		(void) strncpy(poolname, osname, p - osname);
1594		poolname[p - osname] = '\0';
1595	}
1596	return (0);
1597}
1598
1599/*ARGSUSED*/
1600static int
1601zfs_mount(vfs_t *vfsp)
1602{
1603	kthread_t	*td = curthread;
1604	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1605	cred_t		*cr = td->td_ucred;
1606	char		*osname;
1607	int		error = 0;
1608	int		canwrite;
1609
1610#ifdef illumos
1611	if (mvp->v_type != VDIR)
1612		return (SET_ERROR(ENOTDIR));
1613
1614	mutex_enter(&mvp->v_lock);
1615	if ((uap->flags & MS_REMOUNT) == 0 &&
1616	    (uap->flags & MS_OVERLAY) == 0 &&
1617	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1618		mutex_exit(&mvp->v_lock);
1619		return (SET_ERROR(EBUSY));
1620	}
1621	mutex_exit(&mvp->v_lock);
1622
1623	/*
1624	 * ZFS does not support passing unparsed data in via MS_DATA.
1625	 * Users should use the MS_OPTIONSTR interface; this means
1626	 * that all option parsing is already done and the options struct
1627	 * can be interrogated.
1628	 */
1629	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1630#else
1631	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1632		return (SET_ERROR(EPERM));
1633
1634	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1635		return (SET_ERROR(EINVAL));
1636#endif	/* ! illumos */
1637
1638	/*
1639	 * If full-owner-access is enabled and delegated administration is
1640	 * turned on, we must set nosuid.
1641	 */
1642	if (zfs_super_owner &&
1643	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1644		secpolicy_fs_mount_clearopts(cr, vfsp);
1645	}
1646
1647	/*
1648	 * Check for mount privilege?
1649	 *
1650	 * If we don't have privilege then see if
1651	 * we have local permission to allow it
1652	 */
1653	error = secpolicy_fs_mount(cr, mvp, vfsp);
1654	if (error) {
1655		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1656			goto out;
1657
1658		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1659			vattr_t		vattr;
1660
1661			/*
1662			 * Make sure user is the owner of the mount point
1663			 * or has sufficient privileges.
1664			 */
1665
1666			vattr.va_mask = AT_UID;
1667
1668			vn_lock(mvp, LK_SHARED | LK_RETRY);
1669			if (VOP_GETATTR(mvp, &vattr, cr)) {
1670				VOP_UNLOCK(mvp, 0);
1671				goto out;
1672			}
1673
1674			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1675			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1676				VOP_UNLOCK(mvp, 0);
1677				goto out;
1678			}
1679			VOP_UNLOCK(mvp, 0);
1680		}
1681
1682		secpolicy_fs_mount_clearopts(cr, vfsp);
1683	}
1684
1685	/*
1686	 * Refuse to mount a filesystem if we are in a local zone and the
1687	 * dataset is not visible.
1688	 */
1689	if (!INGLOBALZONE(curthread) &&
1690	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1691		error = SET_ERROR(EPERM);
1692		goto out;
1693	}
1694
1695#ifdef SECLABEL
1696	error = zfs_mount_label_policy(vfsp, osname);
1697	if (error)
1698		goto out;
1699#endif
1700
1701	vfsp->vfs_flag |= MNT_NFS4ACLS;
1702
1703	/*
1704	 * When doing a remount, we simply refresh our temporary properties
1705	 * according to those options set in the current VFS options.
1706	 */
1707	if (vfsp->vfs_flag & MS_REMOUNT) {
1708		/* refresh mount options */
1709		zfs_unregister_callbacks(vfsp->vfs_data);
1710		error = zfs_register_callbacks(vfsp);
1711		goto out;
1712	}
1713
1714	/* Initial root mount: try hard to import the requested root pool. */
1715	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1716	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1717		char pname[MAXNAMELEN];
1718
1719		error = getpoolname(osname, pname);
1720		if (error == 0)
1721			error = spa_import_rootpool(pname);
1722		if (error)
1723			goto out;
1724	}
1725	DROP_GIANT();
1726	error = zfs_domount(vfsp, osname);
1727	PICKUP_GIANT();
1728
1729#ifdef sun
1730	/*
1731	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1732	 * disappear due to a forced unmount.
1733	 */
1734	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1735		VFS_HOLD(mvp->v_vfsp);
1736#endif	/* sun */
1737
1738out:
1739	return (error);
1740}
1741
1742static int
1743zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1744{
1745	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1746	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1747
1748	statp->f_version = STATFS_VERSION;
1749
1750	ZFS_ENTER(zfsvfs);
1751
1752	dmu_objset_space(zfsvfs->z_os,
1753	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1754
1755	/*
1756	 * The underlying storage pool actually uses multiple block sizes.
1757	 * We report the fragsize as the smallest block size we support,
1758	 * and we report our blocksize as the filesystem's maximum blocksize.
1759	 */
1760	statp->f_bsize = SPA_MINBLOCKSIZE;
1761	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1762
1763	/*
1764	 * The following report "total" blocks of various kinds in the
1765	 * file system, but reported in terms of f_frsize - the
1766	 * "fragment" size.
1767	 */
1768
1769	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1770	statp->f_bfree = availbytes / statp->f_bsize;
1771	statp->f_bavail = statp->f_bfree; /* no root reservation */
1772
1773	/*
1774	 * statvfs() should really be called statufs(), because it assumes
1775	 * static metadata.  ZFS doesn't preallocate files, so the best
1776	 * we can do is report the max that could possibly fit in f_files,
1777	 * and that minus the number actually used in f_ffree.
1778	 * For f_ffree, report the smaller of the number of object available
1779	 * and the number of blocks (each object will take at least a block).
1780	 */
1781	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1782	statp->f_files = statp->f_ffree + usedobjs;
1783
1784	/*
1785	 * We're a zfs filesystem.
1786	 */
1787	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1788
1789	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1790	    sizeof(statp->f_mntfromname));
1791	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1792	    sizeof(statp->f_mntonname));
1793
1794	statp->f_namemax = ZFS_MAXNAMELEN;
1795
1796	ZFS_EXIT(zfsvfs);
1797	return (0);
1798}
1799
1800static int
1801zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1802{
1803	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1804	znode_t *rootzp;
1805	int error;
1806
1807	ZFS_ENTER_NOERROR(zfsvfs);
1808
1809	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1810	if (error == 0)
1811		*vpp = ZTOV(rootzp);
1812
1813	ZFS_EXIT(zfsvfs);
1814
1815	if (error == 0) {
1816		error = vn_lock(*vpp, flags);
1817		if (error == 0)
1818			(*vpp)->v_vflag |= VV_ROOT;
1819	}
1820	if (error != 0)
1821		*vpp = NULL;
1822
1823	return (error);
1824}
1825
1826/*
1827 * Teardown the zfsvfs::z_os.
1828 *
1829 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1830 * and 'z_teardown_inactive_lock' held.
1831 */
1832static int
1833zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1834{
1835	znode_t	*zp;
1836
1837	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1838
1839	if (!unmounting) {
1840		/*
1841		 * We purge the parent filesystem's vfsp as the parent
1842		 * filesystem and all of its snapshots have their vnode's
1843		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1844		 * 'z_parent' is self referential for non-snapshots.
1845		 */
1846		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1847#ifdef FREEBSD_NAMECACHE
1848		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1849#endif
1850	}
1851
1852	/*
1853	 * Close the zil. NB: Can't close the zil while zfs_inactive
1854	 * threads are blocked as zil_close can call zfs_inactive.
1855	 */
1856	if (zfsvfs->z_log) {
1857		zil_close(zfsvfs->z_log);
1858		zfsvfs->z_log = NULL;
1859	}
1860
1861	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1862
1863	/*
1864	 * If we are not unmounting (ie: online recv) and someone already
1865	 * unmounted this file system while we were doing the switcheroo,
1866	 * or a reopen of z_os failed then just bail out now.
1867	 */
1868	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1869		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1870		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1871		return (SET_ERROR(EIO));
1872	}
1873
1874	/*
1875	 * At this point there are no vops active, and any new vops will
1876	 * fail with EIO since we have z_teardown_lock for writer (only
1877	 * relavent for forced unmount).
1878	 *
1879	 * Release all holds on dbufs.
1880	 */
1881	mutex_enter(&zfsvfs->z_znodes_lock);
1882	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1883	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1884		if (zp->z_sa_hdl) {
1885			ASSERT(ZTOV(zp)->v_count >= 0);
1886			zfs_znode_dmu_fini(zp);
1887		}
1888	mutex_exit(&zfsvfs->z_znodes_lock);
1889
1890	/*
1891	 * If we are unmounting, set the unmounted flag and let new vops
1892	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1893	 * other vops will fail with EIO.
1894	 */
1895	if (unmounting) {
1896		zfsvfs->z_unmounted = B_TRUE;
1897		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1898		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1899	}
1900
1901	/*
1902	 * z_os will be NULL if there was an error in attempting to reopen
1903	 * zfsvfs, so just return as the properties had already been
1904	 * unregistered and cached data had been evicted before.
1905	 */
1906	if (zfsvfs->z_os == NULL)
1907		return (0);
1908
1909	/*
1910	 * Unregister properties.
1911	 */
1912	zfs_unregister_callbacks(zfsvfs);
1913
1914	/*
1915	 * Evict cached data
1916	 */
1917	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1918	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1919		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1920	dmu_objset_evict_dbufs(zfsvfs->z_os);
1921
1922	return (0);
1923}
1924
1925/*ARGSUSED*/
1926static int
1927zfs_umount(vfs_t *vfsp, int fflag)
1928{
1929	kthread_t *td = curthread;
1930	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1931	objset_t *os;
1932	cred_t *cr = td->td_ucred;
1933	int ret;
1934
1935	ret = secpolicy_fs_unmount(cr, vfsp);
1936	if (ret) {
1937		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1938		    ZFS_DELEG_PERM_MOUNT, cr))
1939			return (ret);
1940	}
1941
1942	/*
1943	 * We purge the parent filesystem's vfsp as the parent filesystem
1944	 * and all of its snapshots have their vnode's v_vfsp set to the
1945	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1946	 * referential for non-snapshots.
1947	 */
1948	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1949
1950	/*
1951	 * Unmount any snapshots mounted under .zfs before unmounting the
1952	 * dataset itself.
1953	 */
1954	if (zfsvfs->z_ctldir != NULL) {
1955		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1956			return (ret);
1957		ret = vflush(vfsp, 0, 0, td);
1958		ASSERT(ret == EBUSY);
1959		if (!(fflag & MS_FORCE)) {
1960			if (zfsvfs->z_ctldir->v_count > 1)
1961				return (EBUSY);
1962			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1963		}
1964		zfsctl_destroy(zfsvfs);
1965		ASSERT(zfsvfs->z_ctldir == NULL);
1966	}
1967
1968	if (fflag & MS_FORCE) {
1969		/*
1970		 * Mark file system as unmounted before calling
1971		 * vflush(FORCECLOSE). This way we ensure no future vnops
1972		 * will be called and risk operating on DOOMED vnodes.
1973		 */
1974		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1975		zfsvfs->z_unmounted = B_TRUE;
1976		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1977	}
1978
1979	/*
1980	 * Flush all the files.
1981	 */
1982	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1983	if (ret != 0) {
1984		if (!zfsvfs->z_issnap) {
1985			zfsctl_create(zfsvfs);
1986			ASSERT(zfsvfs->z_ctldir != NULL);
1987		}
1988		return (ret);
1989	}
1990
1991#ifdef sun
1992	if (!(fflag & MS_FORCE)) {
1993		/*
1994		 * Check the number of active vnodes in the file system.
1995		 * Our count is maintained in the vfs structure, but the
1996		 * number is off by 1 to indicate a hold on the vfs
1997		 * structure itself.
1998		 *
1999		 * The '.zfs' directory maintains a reference of its
2000		 * own, and any active references underneath are
2001		 * reflected in the vnode count.
2002		 */
2003		if (zfsvfs->z_ctldir == NULL) {
2004			if (vfsp->vfs_count > 1)
2005				return (SET_ERROR(EBUSY));
2006		} else {
2007			if (vfsp->vfs_count > 2 ||
2008			    zfsvfs->z_ctldir->v_count > 1)
2009				return (SET_ERROR(EBUSY));
2010		}
2011	}
2012#endif
2013
2014	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
2015	os = zfsvfs->z_os;
2016
2017	/*
2018	 * z_os will be NULL if there was an error in
2019	 * attempting to reopen zfsvfs.
2020	 */
2021	if (os != NULL) {
2022		/*
2023		 * Unset the objset user_ptr.
2024		 */
2025		mutex_enter(&os->os_user_ptr_lock);
2026		dmu_objset_set_user(os, NULL);
2027		mutex_exit(&os->os_user_ptr_lock);
2028
2029		/*
2030		 * Finally release the objset
2031		 */
2032		dmu_objset_disown(os, zfsvfs);
2033	}
2034
2035	/*
2036	 * We can now safely destroy the '.zfs' directory node.
2037	 */
2038	if (zfsvfs->z_ctldir != NULL)
2039		zfsctl_destroy(zfsvfs);
2040	if (zfsvfs->z_issnap) {
2041		vnode_t *svp = vfsp->mnt_vnodecovered;
2042
2043		if (svp->v_count >= 2)
2044			VN_RELE(svp);
2045	}
2046	zfs_freevfs(vfsp);
2047
2048	return (0);
2049}
2050
2051static int
2052zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2053{
2054	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2055	znode_t		*zp;
2056	int 		err;
2057
2058	/*
2059	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2060	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2061	 * This will make NFS to switch to LOOKUP instead of using VGET.
2062	 */
2063	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR ||
2064	    (zfsvfs->z_shares_dir != 0 && ino == zfsvfs->z_shares_dir))
2065		return (EOPNOTSUPP);
2066
2067	ZFS_ENTER(zfsvfs);
2068	err = zfs_zget(zfsvfs, ino, &zp);
2069	if (err == 0 && zp->z_unlinked) {
2070		VN_RELE(ZTOV(zp));
2071		err = EINVAL;
2072	}
2073	if (err == 0)
2074		*vpp = ZTOV(zp);
2075	ZFS_EXIT(zfsvfs);
2076	if (err == 0)
2077		err = vn_lock(*vpp, flags);
2078	if (err != 0)
2079		*vpp = NULL;
2080	else
2081		(*vpp)->v_hash = ino;
2082	return (err);
2083}
2084
2085static int
2086zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2087    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2088{
2089	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2090
2091	/*
2092	 * If this is regular file system vfsp is the same as
2093	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2094	 * zfsvfs->z_parent->z_vfs represents parent file system
2095	 * which we have to use here, because only this file system
2096	 * has mnt_export configured.
2097	 */
2098	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2099	    credanonp, numsecflavors, secflavors));
2100}
2101
2102CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2103CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2104
2105static int
2106zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2107{
2108	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2109	znode_t		*zp;
2110	uint64_t	object = 0;
2111	uint64_t	fid_gen = 0;
2112	uint64_t	gen_mask;
2113	uint64_t	zp_gen;
2114	int 		i, err;
2115
2116	*vpp = NULL;
2117
2118	ZFS_ENTER(zfsvfs);
2119
2120	/*
2121	 * On FreeBSD we can get snapshot's mount point or its parent file
2122	 * system mount point depending if snapshot is already mounted or not.
2123	 */
2124	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2125		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2126		uint64_t	objsetid = 0;
2127		uint64_t	setgen = 0;
2128
2129		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2130			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2131
2132		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2133			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2134
2135		ZFS_EXIT(zfsvfs);
2136
2137		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2138		if (err)
2139			return (SET_ERROR(EINVAL));
2140		ZFS_ENTER(zfsvfs);
2141	}
2142
2143	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2144		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2145
2146		for (i = 0; i < sizeof (zfid->zf_object); i++)
2147			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2148
2149		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2150			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2151	} else {
2152		ZFS_EXIT(zfsvfs);
2153		return (SET_ERROR(EINVAL));
2154	}
2155
2156	/*
2157	 * A zero fid_gen means we are in .zfs or the .zfs/snapshot
2158	 * directory tree. If the object == zfsvfs->z_shares_dir, then
2159	 * we are in the .zfs/shares directory tree.
2160	 */
2161	if ((fid_gen == 0 &&
2162	     (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) ||
2163	    (zfsvfs->z_shares_dir != 0 && object == zfsvfs->z_shares_dir)) {
2164		*vpp = zfsvfs->z_ctldir;
2165		ASSERT(*vpp != NULL);
2166		if (object == ZFSCTL_INO_SNAPDIR) {
2167			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2168			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2169		} else if (object == zfsvfs->z_shares_dir) {
2170			VERIFY(zfsctl_root_lookup(*vpp, "shares", vpp, NULL,
2171			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2172		} else {
2173			VN_HOLD(*vpp);
2174		}
2175		ZFS_EXIT(zfsvfs);
2176		err = vn_lock(*vpp, flags);
2177		if (err != 0)
2178			*vpp = NULL;
2179		return (err);
2180	}
2181
2182	gen_mask = -1ULL >> (64 - 8 * i);
2183
2184	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2185	if (err = zfs_zget(zfsvfs, object, &zp)) {
2186		ZFS_EXIT(zfsvfs);
2187		return (err);
2188	}
2189	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2190	    sizeof (uint64_t));
2191	zp_gen = zp_gen & gen_mask;
2192	if (zp_gen == 0)
2193		zp_gen = 1;
2194	if (zp->z_unlinked || zp_gen != fid_gen) {
2195		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2196		VN_RELE(ZTOV(zp));
2197		ZFS_EXIT(zfsvfs);
2198		return (SET_ERROR(EINVAL));
2199	}
2200
2201	*vpp = ZTOV(zp);
2202	ZFS_EXIT(zfsvfs);
2203	err = vn_lock(*vpp, flags | LK_RETRY);
2204	if (err == 0)
2205		vnode_create_vobject(*vpp, zp->z_size, curthread);
2206	else
2207		*vpp = NULL;
2208	return (err);
2209}
2210
2211/*
2212 * Block out VOPs and close zfsvfs_t::z_os
2213 *
2214 * Note, if successful, then we return with the 'z_teardown_lock' and
2215 * 'z_teardown_inactive_lock' write held.  We leave ownership of the underlying
2216 * dataset and objset intact so that they can be atomically handed off during
2217 * a subsequent rollback or recv operation and the resume thereafter.
2218 */
2219int
2220zfs_suspend_fs(zfsvfs_t *zfsvfs)
2221{
2222	int error;
2223
2224	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2225		return (error);
2226
2227	return (0);
2228}
2229
2230/*
2231 * Rebuild SA and release VOPs.  Note that ownership of the underlying dataset
2232 * is an invariant across any of the operations that can be performed while the
2233 * filesystem was suspended.  Whether it succeeded or failed, the preconditions
2234 * are the same: the relevant objset and associated dataset are owned by
2235 * zfsvfs, held, and long held on entry.
2236 */
2237int
2238zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2239{
2240	int err;
2241	znode_t *zp;
2242	uint64_t sa_obj = 0;
2243
2244	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2245	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2246
2247	/*
2248	 * We already own this, so just hold and rele it to update the
2249	 * objset_t, as the one we had before may have been evicted.
2250	 */
2251	VERIFY0(dmu_objset_hold(osname, zfsvfs, &zfsvfs->z_os));
2252	VERIFY3P(zfsvfs->z_os->os_dsl_dataset->ds_owner, ==, zfsvfs);
2253	VERIFY(dsl_dataset_long_held(zfsvfs->z_os->os_dsl_dataset));
2254	dmu_objset_rele(zfsvfs->z_os, zfsvfs);
2255
2256	/*
2257	 * Make sure version hasn't changed
2258	 */
2259
2260	err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2261	    &zfsvfs->z_version);
2262
2263	if (err)
2264		goto bail;
2265
2266	err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2267	    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2268
2269	if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2270		goto bail;
2271
2272	if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2273	    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2274		goto bail;
2275
2276	if (zfsvfs->z_version >= ZPL_VERSION_SA)
2277		sa_register_update_callback(zfsvfs->z_os,
2278		    zfs_sa_upgrade);
2279
2280	VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2281
2282	zfs_set_fuid_feature(zfsvfs);
2283
2284	/*
2285	 * Attempt to re-establish all the active znodes with
2286	 * their dbufs.  If a zfs_rezget() fails, then we'll let
2287	 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2288	 * when they try to use their znode.
2289	 */
2290	mutex_enter(&zfsvfs->z_znodes_lock);
2291	for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2292	    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2293		(void) zfs_rezget(zp);
2294	}
2295	mutex_exit(&zfsvfs->z_znodes_lock);
2296
2297bail:
2298	/* release the VOPs */
2299	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2300	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2301
2302	if (err) {
2303		/*
2304		 * Since we couldn't setup the sa framework, try to force
2305		 * unmount this file system.
2306		 */
2307		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2308			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2309	}
2310	return (err);
2311}
2312
2313static void
2314zfs_freevfs(vfs_t *vfsp)
2315{
2316	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2317
2318#ifdef sun
2319	/*
2320	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2321	 * from zfs_mount().  Release it here.  If we came through
2322	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2323	 * skip the VFS_RELE for rootvfs.
2324	 */
2325	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2326		VFS_RELE(zfsvfs->z_parent->z_vfs);
2327#endif	/* sun */
2328
2329	zfsvfs_free(zfsvfs);
2330
2331	atomic_add_32(&zfs_active_fs_count, -1);
2332}
2333
2334#ifdef __i386__
2335static int desiredvnodes_backup;
2336#endif
2337
2338static void
2339zfs_vnodes_adjust(void)
2340{
2341#ifdef __i386__
2342	int newdesiredvnodes;
2343
2344	desiredvnodes_backup = desiredvnodes;
2345
2346	/*
2347	 * We calculate newdesiredvnodes the same way it is done in
2348	 * vntblinit(). If it is equal to desiredvnodes, it means that
2349	 * it wasn't tuned by the administrator and we can tune it down.
2350	 */
2351	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2352	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2353	    sizeof(struct vnode))));
2354	if (newdesiredvnodes == desiredvnodes)
2355		desiredvnodes = (3 * newdesiredvnodes) / 4;
2356#endif
2357}
2358
2359static void
2360zfs_vnodes_adjust_back(void)
2361{
2362
2363#ifdef __i386__
2364	desiredvnodes = desiredvnodes_backup;
2365#endif
2366}
2367
2368void
2369zfs_init(void)
2370{
2371
2372	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2373
2374	/*
2375	 * Initialize .zfs directory structures
2376	 */
2377	zfsctl_init();
2378
2379	/*
2380	 * Initialize znode cache, vnode ops, etc...
2381	 */
2382	zfs_znode_init();
2383
2384	/*
2385	 * Reduce number of vnodes. Originally number of vnodes is calculated
2386	 * with UFS inode in mind. We reduce it here, because it's too big for
2387	 * ZFS/i386.
2388	 */
2389	zfs_vnodes_adjust();
2390
2391	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2392}
2393
2394void
2395zfs_fini(void)
2396{
2397	zfsctl_fini();
2398	zfs_znode_fini();
2399	zfs_vnodes_adjust_back();
2400}
2401
2402int
2403zfs_busy(void)
2404{
2405	return (zfs_active_fs_count != 0);
2406}
2407
2408int
2409zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2410{
2411	int error;
2412	objset_t *os = zfsvfs->z_os;
2413	dmu_tx_t *tx;
2414
2415	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2416		return (SET_ERROR(EINVAL));
2417
2418	if (newvers < zfsvfs->z_version)
2419		return (SET_ERROR(EINVAL));
2420
2421	if (zfs_spa_version_map(newvers) >
2422	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2423		return (SET_ERROR(ENOTSUP));
2424
2425	tx = dmu_tx_create(os);
2426	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2427	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2428		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2429		    ZFS_SA_ATTRS);
2430		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2431	}
2432	error = dmu_tx_assign(tx, TXG_WAIT);
2433	if (error) {
2434		dmu_tx_abort(tx);
2435		return (error);
2436	}
2437
2438	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2439	    8, 1, &newvers, tx);
2440
2441	if (error) {
2442		dmu_tx_commit(tx);
2443		return (error);
2444	}
2445
2446	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2447		uint64_t sa_obj;
2448
2449		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2450		    SPA_VERSION_SA);
2451		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2452		    DMU_OT_NONE, 0, tx);
2453
2454		error = zap_add(os, MASTER_NODE_OBJ,
2455		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2456		ASSERT0(error);
2457
2458		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2459		sa_register_update_callback(os, zfs_sa_upgrade);
2460	}
2461
2462	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2463	    "from %llu to %llu", zfsvfs->z_version, newvers);
2464
2465	dmu_tx_commit(tx);
2466
2467	zfsvfs->z_version = newvers;
2468
2469	zfs_set_fuid_feature(zfsvfs);
2470
2471	return (0);
2472}
2473
2474/*
2475 * Read a property stored within the master node.
2476 */
2477int
2478zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2479{
2480	const char *pname;
2481	int error = ENOENT;
2482
2483	/*
2484	 * Look up the file system's value for the property.  For the
2485	 * version property, we look up a slightly different string.
2486	 */
2487	if (prop == ZFS_PROP_VERSION)
2488		pname = ZPL_VERSION_STR;
2489	else
2490		pname = zfs_prop_to_name(prop);
2491
2492	if (os != NULL)
2493		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2494
2495	if (error == ENOENT) {
2496		/* No value set, use the default value */
2497		switch (prop) {
2498		case ZFS_PROP_VERSION:
2499			*value = ZPL_VERSION;
2500			break;
2501		case ZFS_PROP_NORMALIZE:
2502		case ZFS_PROP_UTF8ONLY:
2503			*value = 0;
2504			break;
2505		case ZFS_PROP_CASE:
2506			*value = ZFS_CASE_SENSITIVE;
2507			break;
2508		default:
2509			return (error);
2510		}
2511		error = 0;
2512	}
2513	return (error);
2514}
2515
2516#ifdef _KERNEL
2517void
2518zfsvfs_update_fromname(const char *oldname, const char *newname)
2519{
2520	char tmpbuf[MAXPATHLEN];
2521	struct mount *mp;
2522	char *fromname;
2523	size_t oldlen;
2524
2525	oldlen = strlen(oldname);
2526
2527	mtx_lock(&mountlist_mtx);
2528	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2529		fromname = mp->mnt_stat.f_mntfromname;
2530		if (strcmp(fromname, oldname) == 0) {
2531			(void)strlcpy(fromname, newname,
2532			    sizeof(mp->mnt_stat.f_mntfromname));
2533			continue;
2534		}
2535		if (strncmp(fromname, oldname, oldlen) == 0 &&
2536		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2537			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2538			    newname, fromname + oldlen);
2539			(void)strlcpy(fromname, tmpbuf,
2540			    sizeof(mp->mnt_stat.f_mntfromname));
2541			continue;
2542		}
2543	}
2544	mtx_unlock(&mountlist_mtx);
2545}
2546#endif
2547