zfs_vfsops.c revision 243486
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysmacros.h>
34#include <sys/kmem.h>
35#include <sys/acl.h>
36#include <sys/vnode.h>
37#include <sys/vfs.h>
38#include <sys/mntent.h>
39#include <sys/mount.h>
40#include <sys/cmn_err.h>
41#include <sys/zfs_znode.h>
42#include <sys/zfs_dir.h>
43#include <sys/zil.h>
44#include <sys/fs/zfs.h>
45#include <sys/dmu.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_dataset.h>
48#include <sys/dsl_deleg.h>
49#include <sys/spa.h>
50#include <sys/zap.h>
51#include <sys/sa.h>
52#include <sys/varargs.h>
53#include <sys/policy.h>
54#include <sys/atomic.h>
55#include <sys/zfs_ioctl.h>
56#include <sys/zfs_ctldir.h>
57#include <sys/zfs_fuid.h>
58#include <sys/sunddi.h>
59#include <sys/dnlc.h>
60#include <sys/dmu_objset.h>
61#include <sys/spa_boot.h>
62#include <sys/sa.h>
63#include <sys/jail.h>
64#include "zfs_comutil.h"
65
66struct mtx zfs_debug_mtx;
67MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
68
69SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
70
71int zfs_super_owner;
72SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
73    "File system owner can perform privileged operation on his file systems");
74
75int zfs_debug_level;
76TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
77SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
78    "Debug level");
79
80SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
81static int zfs_version_acl = ZFS_ACL_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
83    "ZFS_ACL_VERSION");
84static int zfs_version_spa = SPA_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
86    "SPA_VERSION");
87static int zfs_version_zpl = ZPL_VERSION;
88SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
89    "ZPL_VERSION");
90
91static int zfs_mount(vfs_t *vfsp);
92static int zfs_umount(vfs_t *vfsp, int fflag);
93static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
94static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
95static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
96static int zfs_sync(vfs_t *vfsp, int waitfor);
97static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
98    struct ucred **credanonp, int *numsecflavors, int **secflavors);
99static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
100static void zfs_objset_close(zfsvfs_t *zfsvfs);
101static void zfs_freevfs(vfs_t *vfsp);
102
103static struct vfsops zfs_vfsops = {
104	.vfs_mount =		zfs_mount,
105	.vfs_unmount =		zfs_umount,
106	.vfs_root =		zfs_root,
107	.vfs_statfs =		zfs_statfs,
108	.vfs_vget =		zfs_vget,
109	.vfs_sync =		zfs_sync,
110	.vfs_checkexp =		zfs_checkexp,
111	.vfs_fhtovp =		zfs_fhtovp,
112};
113
114VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
115
116/*
117 * We need to keep a count of active fs's.
118 * This is necessary to prevent our module
119 * from being unloaded after a umount -f
120 */
121static uint32_t	zfs_active_fs_count = 0;
122
123/*ARGSUSED*/
124static int
125zfs_sync(vfs_t *vfsp, int waitfor)
126{
127
128	/*
129	 * Data integrity is job one.  We don't want a compromised kernel
130	 * writing to the storage pool, so we never sync during panic.
131	 */
132	if (panicstr)
133		return (0);
134
135	if (vfsp != NULL) {
136		/*
137		 * Sync a specific filesystem.
138		 */
139		zfsvfs_t *zfsvfs = vfsp->vfs_data;
140		dsl_pool_t *dp;
141		int error;
142
143		error = vfs_stdsync(vfsp, waitfor);
144		if (error != 0)
145			return (error);
146
147		ZFS_ENTER(zfsvfs);
148		dp = dmu_objset_pool(zfsvfs->z_os);
149
150		/*
151		 * If the system is shutting down, then skip any
152		 * filesystems which may exist on a suspended pool.
153		 */
154		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
155			ZFS_EXIT(zfsvfs);
156			return (0);
157		}
158
159		if (zfsvfs->z_log != NULL)
160			zil_commit(zfsvfs->z_log, 0);
161
162		ZFS_EXIT(zfsvfs);
163	} else {
164		/*
165		 * Sync all ZFS filesystems.  This is what happens when you
166		 * run sync(1M).  Unlike other filesystems, ZFS honors the
167		 * request by waiting for all pools to commit all dirty data.
168		 */
169		spa_sync_allpools();
170	}
171
172	return (0);
173}
174
175#ifndef __FreeBSD__
176static int
177zfs_create_unique_device(dev_t *dev)
178{
179	major_t new_major;
180
181	do {
182		ASSERT3U(zfs_minor, <=, MAXMIN32);
183		minor_t start = zfs_minor;
184		do {
185			mutex_enter(&zfs_dev_mtx);
186			if (zfs_minor >= MAXMIN32) {
187				/*
188				 * If we're still using the real major
189				 * keep out of /dev/zfs and /dev/zvol minor
190				 * number space.  If we're using a getudev()'ed
191				 * major number, we can use all of its minors.
192				 */
193				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
194					zfs_minor = ZFS_MIN_MINOR;
195				else
196					zfs_minor = 0;
197			} else {
198				zfs_minor++;
199			}
200			*dev = makedevice(zfs_major, zfs_minor);
201			mutex_exit(&zfs_dev_mtx);
202		} while (vfs_devismounted(*dev) && zfs_minor != start);
203		if (zfs_minor == start) {
204			/*
205			 * We are using all ~262,000 minor numbers for the
206			 * current major number.  Create a new major number.
207			 */
208			if ((new_major = getudev()) == (major_t)-1) {
209				cmn_err(CE_WARN,
210				    "zfs_mount: Can't get unique major "
211				    "device number.");
212				return (-1);
213			}
214			mutex_enter(&zfs_dev_mtx);
215			zfs_major = new_major;
216			zfs_minor = 0;
217
218			mutex_exit(&zfs_dev_mtx);
219		} else {
220			break;
221		}
222		/* CONSTANTCONDITION */
223	} while (1);
224
225	return (0);
226}
227#endif	/* !__FreeBSD__ */
228
229static void
230atime_changed_cb(void *arg, uint64_t newval)
231{
232	zfsvfs_t *zfsvfs = arg;
233
234	if (newval == TRUE) {
235		zfsvfs->z_atime = TRUE;
236		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
237		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
238		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
239	} else {
240		zfsvfs->z_atime = FALSE;
241		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
242		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
243		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
244	}
245}
246
247static void
248xattr_changed_cb(void *arg, uint64_t newval)
249{
250	zfsvfs_t *zfsvfs = arg;
251
252	if (newval == TRUE) {
253		/* XXX locking on vfs_flag? */
254#ifdef TODO
255		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
256#endif
257		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259	} else {
260		/* XXX locking on vfs_flag? */
261#ifdef TODO
262		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
263#endif
264		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
265		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
266	}
267}
268
269static void
270blksz_changed_cb(void *arg, uint64_t newval)
271{
272	zfsvfs_t *zfsvfs = arg;
273
274	if (newval < SPA_MINBLOCKSIZE ||
275	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
276		newval = SPA_MAXBLOCKSIZE;
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	int readonly, do_readonly = B_FALSE;
393	int setuid, do_setuid = B_FALSE;
394	int exec, do_exec = B_FALSE;
395	int xattr, do_xattr = B_FALSE;
396	int atime, do_atime = B_FALSE;
397	int error = 0;
398
399	ASSERT(vfsp);
400	zfsvfs = vfsp->vfs_data;
401	ASSERT(zfsvfs);
402	os = zfsvfs->z_os;
403
404	/*
405	 * This function can be called for a snapshot when we update snapshot's
406	 * mount point, which isn't really supported.
407	 */
408	if (dmu_objset_is_snapshot(os))
409		return (EOPNOTSUPP);
410
411	/*
412	 * The act of registering our callbacks will destroy any mount
413	 * options we may have.  In order to enable temporary overrides
414	 * of mount options, we stash away the current values and
415	 * restore them after we register the callbacks.
416	 */
417	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
418	    !spa_writeable(dmu_objset_spa(os))) {
419		readonly = B_TRUE;
420		do_readonly = B_TRUE;
421	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
422		readonly = B_FALSE;
423		do_readonly = B_TRUE;
424	}
425	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
426		setuid = B_FALSE;
427		do_setuid = B_TRUE;
428	} else {
429		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
430			setuid = B_FALSE;
431			do_setuid = B_TRUE;
432		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
433			setuid = B_TRUE;
434			do_setuid = B_TRUE;
435		}
436	}
437	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
438		exec = B_FALSE;
439		do_exec = B_TRUE;
440	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
441		exec = B_TRUE;
442		do_exec = B_TRUE;
443	}
444	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
445		xattr = B_FALSE;
446		do_xattr = B_TRUE;
447	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
448		xattr = B_TRUE;
449		do_xattr = B_TRUE;
450	}
451	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
452		atime = B_FALSE;
453		do_atime = B_TRUE;
454	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
455		atime = B_TRUE;
456		do_atime = B_TRUE;
457	}
458
459	/*
460	 * nbmand is a special property.  It can only be changed at
461	 * mount time.
462	 *
463	 * This is weird, but it is documented to only be changeable
464	 * at mount time.
465	 */
466	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
467		nbmand = B_FALSE;
468	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
469		nbmand = B_TRUE;
470	} else {
471		char osname[MAXNAMELEN];
472
473		dmu_objset_name(os, osname);
474		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
475		    NULL)) {
476			return (error);
477		}
478	}
479
480	/*
481	 * Register property callbacks.
482	 *
483	 * It would probably be fine to just check for i/o error from
484	 * the first prop_register(), but I guess I like to go
485	 * overboard...
486	 */
487	ds = dmu_objset_ds(os);
488	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
489	error = error ? error : dsl_prop_register(ds,
490	    "xattr", xattr_changed_cb, zfsvfs);
491	error = error ? error : dsl_prop_register(ds,
492	    "recordsize", blksz_changed_cb, zfsvfs);
493	error = error ? error : dsl_prop_register(ds,
494	    "readonly", readonly_changed_cb, zfsvfs);
495	error = error ? error : dsl_prop_register(ds,
496	    "setuid", setuid_changed_cb, zfsvfs);
497	error = error ? error : dsl_prop_register(ds,
498	    "exec", exec_changed_cb, zfsvfs);
499	error = error ? error : dsl_prop_register(ds,
500	    "snapdir", snapdir_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    "aclmode", acl_mode_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    "vscan", vscan_changed_cb, zfsvfs);
507	if (error)
508		goto unregister;
509
510	/*
511	 * Invoke our callbacks to restore temporary mount options.
512	 */
513	if (do_readonly)
514		readonly_changed_cb(zfsvfs, readonly);
515	if (do_setuid)
516		setuid_changed_cb(zfsvfs, setuid);
517	if (do_exec)
518		exec_changed_cb(zfsvfs, exec);
519	if (do_xattr)
520		xattr_changed_cb(zfsvfs, xattr);
521	if (do_atime)
522		atime_changed_cb(zfsvfs, atime);
523
524	nbmand_changed_cb(zfsvfs, nbmand);
525
526	return (0);
527
528unregister:
529	/*
530	 * We may attempt to unregister some callbacks that are not
531	 * registered, but this is OK; it will simply return ENOMSG,
532	 * which we will ignore.
533	 */
534	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
535	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
536	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
537	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
538	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
539	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
540	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
541	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
542	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
543	    zfsvfs);
544	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
545	return (error);
546
547}
548
549static int
550zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
551    uint64_t *userp, uint64_t *groupp)
552{
553	znode_phys_t *znp = data;
554	int error = 0;
555
556	/*
557	 * Is it a valid type of object to track?
558	 */
559	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
560		return (ENOENT);
561
562	/*
563	 * If we have a NULL data pointer
564	 * then assume the id's aren't changing and
565	 * return EEXIST to the dmu to let it know to
566	 * use the same ids
567	 */
568	if (data == NULL)
569		return (EEXIST);
570
571	if (bonustype == DMU_OT_ZNODE) {
572		*userp = znp->zp_uid;
573		*groupp = znp->zp_gid;
574	} else {
575		int hdrsize;
576
577		ASSERT(bonustype == DMU_OT_SA);
578		hdrsize = sa_hdrsize(data);
579
580		if (hdrsize != 0) {
581			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
582			    SA_UID_OFFSET));
583			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
584			    SA_GID_OFFSET));
585		} else {
586			/*
587			 * This should only happen for newly created
588			 * files that haven't had the znode data filled
589			 * in yet.
590			 */
591			*userp = 0;
592			*groupp = 0;
593		}
594	}
595	return (error);
596}
597
598static void
599fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
600    char *domainbuf, int buflen, uid_t *ridp)
601{
602	uint64_t fuid;
603	const char *domain;
604
605	fuid = strtonum(fuidstr, NULL);
606
607	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
608	if (domain)
609		(void) strlcpy(domainbuf, domain, buflen);
610	else
611		domainbuf[0] = '\0';
612	*ridp = FUID_RID(fuid);
613}
614
615static uint64_t
616zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
617{
618	switch (type) {
619	case ZFS_PROP_USERUSED:
620		return (DMU_USERUSED_OBJECT);
621	case ZFS_PROP_GROUPUSED:
622		return (DMU_GROUPUSED_OBJECT);
623	case ZFS_PROP_USERQUOTA:
624		return (zfsvfs->z_userquota_obj);
625	case ZFS_PROP_GROUPQUOTA:
626		return (zfsvfs->z_groupquota_obj);
627	}
628	return (0);
629}
630
631int
632zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
633    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
634{
635	int error;
636	zap_cursor_t zc;
637	zap_attribute_t za;
638	zfs_useracct_t *buf = vbuf;
639	uint64_t obj;
640
641	if (!dmu_objset_userspace_present(zfsvfs->z_os))
642		return (ENOTSUP);
643
644	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
645	if (obj == 0) {
646		*bufsizep = 0;
647		return (0);
648	}
649
650	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
651	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
652	    zap_cursor_advance(&zc)) {
653		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
654		    *bufsizep)
655			break;
656
657		fuidstr_to_sid(zfsvfs, za.za_name,
658		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
659
660		buf->zu_space = za.za_first_integer;
661		buf++;
662	}
663	if (error == ENOENT)
664		error = 0;
665
666	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
667	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
668	*cookiep = zap_cursor_serialize(&zc);
669	zap_cursor_fini(&zc);
670	return (error);
671}
672
673/*
674 * buf must be big enough (eg, 32 bytes)
675 */
676static int
677id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
678    char *buf, boolean_t addok)
679{
680	uint64_t fuid;
681	int domainid = 0;
682
683	if (domain && domain[0]) {
684		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
685		if (domainid == -1)
686			return (ENOENT);
687	}
688	fuid = FUID_ENCODE(domainid, rid);
689	(void) sprintf(buf, "%llx", (longlong_t)fuid);
690	return (0);
691}
692
693int
694zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
695    const char *domain, uint64_t rid, uint64_t *valp)
696{
697	char buf[32];
698	int err;
699	uint64_t obj;
700
701	*valp = 0;
702
703	if (!dmu_objset_userspace_present(zfsvfs->z_os))
704		return (ENOTSUP);
705
706	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
707	if (obj == 0)
708		return (0);
709
710	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
711	if (err)
712		return (err);
713
714	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
715	if (err == ENOENT)
716		err = 0;
717	return (err);
718}
719
720int
721zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722    const char *domain, uint64_t rid, uint64_t quota)
723{
724	char buf[32];
725	int err;
726	dmu_tx_t *tx;
727	uint64_t *objp;
728	boolean_t fuid_dirtied;
729
730	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
731		return (EINVAL);
732
733	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
734		return (ENOTSUP);
735
736	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
737	    &zfsvfs->z_groupquota_obj;
738
739	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
740	if (err)
741		return (err);
742	fuid_dirtied = zfsvfs->z_fuid_dirty;
743
744	tx = dmu_tx_create(zfsvfs->z_os);
745	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
746	if (*objp == 0) {
747		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
748		    zfs_userquota_prop_prefixes[type]);
749	}
750	if (fuid_dirtied)
751		zfs_fuid_txhold(zfsvfs, tx);
752	err = dmu_tx_assign(tx, TXG_WAIT);
753	if (err) {
754		dmu_tx_abort(tx);
755		return (err);
756	}
757
758	mutex_enter(&zfsvfs->z_lock);
759	if (*objp == 0) {
760		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
761		    DMU_OT_NONE, 0, tx);
762		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
763		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
764	}
765	mutex_exit(&zfsvfs->z_lock);
766
767	if (quota == 0) {
768		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
769		if (err == ENOENT)
770			err = 0;
771	} else {
772		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
773	}
774	ASSERT(err == 0);
775	if (fuid_dirtied)
776		zfs_fuid_sync(zfsvfs, tx);
777	dmu_tx_commit(tx);
778	return (err);
779}
780
781boolean_t
782zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
783{
784	char buf[32];
785	uint64_t used, quota, usedobj, quotaobj;
786	int err;
787
788	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
789	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
790
791	if (quotaobj == 0 || zfsvfs->z_replay)
792		return (B_FALSE);
793
794	(void) sprintf(buf, "%llx", (longlong_t)fuid);
795	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
796	if (err != 0)
797		return (B_FALSE);
798
799	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
800	if (err != 0)
801		return (B_FALSE);
802	return (used >= quota);
803}
804
805boolean_t
806zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
807{
808	uint64_t fuid;
809	uint64_t quotaobj;
810
811	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
812
813	fuid = isgroup ? zp->z_gid : zp->z_uid;
814
815	if (quotaobj == 0 || zfsvfs->z_replay)
816		return (B_FALSE);
817
818	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
819}
820
821int
822zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
823{
824	objset_t *os;
825	zfsvfs_t *zfsvfs;
826	uint64_t zval;
827	int i, error;
828	uint64_t sa_obj;
829
830	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
831
832	/*
833	 * We claim to always be readonly so we can open snapshots;
834	 * other ZPL code will prevent us from writing to snapshots.
835	 */
836	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
837	if (error) {
838		kmem_free(zfsvfs, sizeof (zfsvfs_t));
839		return (error);
840	}
841
842	/*
843	 * Initialize the zfs-specific filesystem structure.
844	 * Should probably make this a kmem cache, shuffle fields,
845	 * and just bzero up to z_hold_mtx[].
846	 */
847	zfsvfs->z_vfs = NULL;
848	zfsvfs->z_parent = zfsvfs;
849	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
850	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
851	zfsvfs->z_os = os;
852
853	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
854	if (error) {
855		goto out;
856	} else if (zfsvfs->z_version >
857	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
858		(void) printf("Can't mount a version %lld file system "
859		    "on a version %lld pool\n. Pool must be upgraded to mount "
860		    "this file system.", (u_longlong_t)zfsvfs->z_version,
861		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
862		error = ENOTSUP;
863		goto out;
864	}
865	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
866		goto out;
867	zfsvfs->z_norm = (int)zval;
868
869	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
870		goto out;
871	zfsvfs->z_utf8 = (zval != 0);
872
873	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
874		goto out;
875	zfsvfs->z_case = (uint_t)zval;
876
877	/*
878	 * Fold case on file systems that are always or sometimes case
879	 * insensitive.
880	 */
881	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
882	    zfsvfs->z_case == ZFS_CASE_MIXED)
883		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
884
885	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
886	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
887
888	if (zfsvfs->z_use_sa) {
889		/* should either have both of these objects or none */
890		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
891		    &sa_obj);
892		if (error)
893			return (error);
894	} else {
895		/*
896		 * Pre SA versions file systems should never touch
897		 * either the attribute registration or layout objects.
898		 */
899		sa_obj = 0;
900	}
901
902	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
903	    &zfsvfs->z_attr_table);
904	if (error)
905		goto out;
906
907	if (zfsvfs->z_version >= ZPL_VERSION_SA)
908		sa_register_update_callback(os, zfs_sa_upgrade);
909
910	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
911	    &zfsvfs->z_root);
912	if (error)
913		goto out;
914	ASSERT(zfsvfs->z_root != 0);
915
916	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
917	    &zfsvfs->z_unlinkedobj);
918	if (error)
919		goto out;
920
921	error = zap_lookup(os, MASTER_NODE_OBJ,
922	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
923	    8, 1, &zfsvfs->z_userquota_obj);
924	if (error && error != ENOENT)
925		goto out;
926
927	error = zap_lookup(os, MASTER_NODE_OBJ,
928	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
929	    8, 1, &zfsvfs->z_groupquota_obj);
930	if (error && error != ENOENT)
931		goto out;
932
933	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
934	    &zfsvfs->z_fuid_obj);
935	if (error && error != ENOENT)
936		goto out;
937
938	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
939	    &zfsvfs->z_shares_dir);
940	if (error && error != ENOENT)
941		goto out;
942
943	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
944	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
945	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
946	    offsetof(znode_t, z_link_node));
947	rrw_init(&zfsvfs->z_teardown_lock);
948	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
949	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
950	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
951		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
952
953	*zfvp = zfsvfs;
954	return (0);
955
956out:
957	dmu_objset_disown(os, zfsvfs);
958	*zfvp = NULL;
959	kmem_free(zfsvfs, sizeof (zfsvfs_t));
960	return (error);
961}
962
963static int
964zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
965{
966	int error;
967
968	error = zfs_register_callbacks(zfsvfs->z_vfs);
969	if (error)
970		return (error);
971
972	/*
973	 * Set the objset user_ptr to track its zfsvfs.
974	 */
975	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
976	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
977	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
978
979	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
980
981	/*
982	 * If we are not mounting (ie: online recv), then we don't
983	 * have to worry about replaying the log as we blocked all
984	 * operations out since we closed the ZIL.
985	 */
986	if (mounting) {
987		boolean_t readonly;
988
989		/*
990		 * During replay we remove the read only flag to
991		 * allow replays to succeed.
992		 */
993		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
994		if (readonly != 0)
995			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
996		else
997			zfs_unlinked_drain(zfsvfs);
998
999		/*
1000		 * Parse and replay the intent log.
1001		 *
1002		 * Because of ziltest, this must be done after
1003		 * zfs_unlinked_drain().  (Further note: ziltest
1004		 * doesn't use readonly mounts, where
1005		 * zfs_unlinked_drain() isn't called.)  This is because
1006		 * ziltest causes spa_sync() to think it's committed,
1007		 * but actually it is not, so the intent log contains
1008		 * many txg's worth of changes.
1009		 *
1010		 * In particular, if object N is in the unlinked set in
1011		 * the last txg to actually sync, then it could be
1012		 * actually freed in a later txg and then reallocated
1013		 * in a yet later txg.  This would write a "create
1014		 * object N" record to the intent log.  Normally, this
1015		 * would be fine because the spa_sync() would have
1016		 * written out the fact that object N is free, before
1017		 * we could write the "create object N" intent log
1018		 * record.
1019		 *
1020		 * But when we are in ziltest mode, we advance the "open
1021		 * txg" without actually spa_sync()-ing the changes to
1022		 * disk.  So we would see that object N is still
1023		 * allocated and in the unlinked set, and there is an
1024		 * intent log record saying to allocate it.
1025		 */
1026		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1027			if (zil_replay_disable) {
1028				zil_destroy(zfsvfs->z_log, B_FALSE);
1029			} else {
1030				zfsvfs->z_replay = B_TRUE;
1031				zil_replay(zfsvfs->z_os, zfsvfs,
1032				    zfs_replay_vector);
1033				zfsvfs->z_replay = B_FALSE;
1034			}
1035		}
1036		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1037	}
1038
1039	return (0);
1040}
1041
1042extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1043
1044void
1045zfsvfs_free(zfsvfs_t *zfsvfs)
1046{
1047	int i;
1048
1049	/*
1050	 * This is a barrier to prevent the filesystem from going away in
1051	 * zfs_znode_move() until we can safely ensure that the filesystem is
1052	 * not unmounted. We consider the filesystem valid before the barrier
1053	 * and invalid after the barrier.
1054	 */
1055	rw_enter(&zfsvfs_lock, RW_READER);
1056	rw_exit(&zfsvfs_lock);
1057
1058	zfs_fuid_destroy(zfsvfs);
1059
1060	mutex_destroy(&zfsvfs->z_znodes_lock);
1061	mutex_destroy(&zfsvfs->z_lock);
1062	list_destroy(&zfsvfs->z_all_znodes);
1063	rrw_destroy(&zfsvfs->z_teardown_lock);
1064	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1065	rw_destroy(&zfsvfs->z_fuid_lock);
1066	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1067		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1068	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1069}
1070
1071static void
1072zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1073{
1074	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1075	if (zfsvfs->z_vfs) {
1076		if (zfsvfs->z_use_fuids) {
1077			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1078			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1079			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1080			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1081			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1082			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1083		} else {
1084			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1085			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1086			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1087			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1088			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1089			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1090		}
1091	}
1092	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1093}
1094
1095static int
1096zfs_domount(vfs_t *vfsp, char *osname)
1097{
1098	uint64_t recordsize, fsid_guid;
1099	int error = 0;
1100	zfsvfs_t *zfsvfs;
1101	vnode_t *vp;
1102
1103	ASSERT(vfsp);
1104	ASSERT(osname);
1105
1106	error = zfsvfs_create(osname, &zfsvfs);
1107	if (error)
1108		return (error);
1109	zfsvfs->z_vfs = vfsp;
1110
1111	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1112	    NULL))
1113		goto out;
1114	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1115	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1116
1117	vfsp->vfs_data = zfsvfs;
1118	vfsp->mnt_flag |= MNT_LOCAL;
1119	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1120	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1121	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1122
1123	/*
1124	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1125	 * separates our fsid from any other filesystem types, and a
1126	 * 56-bit objset unique ID.  The objset unique ID is unique to
1127	 * all objsets open on this system, provided by unique_create().
1128	 * The 8-bit fs type must be put in the low bits of fsid[1]
1129	 * because that's where other Solaris filesystems put it.
1130	 */
1131	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1132	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1133	vfsp->vfs_fsid.val[0] = fsid_guid;
1134	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1135	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1136
1137	/*
1138	 * Set features for file system.
1139	 */
1140	zfs_set_fuid_feature(zfsvfs);
1141	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1142		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1143		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1144		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1145	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1146		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1147		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1148	}
1149	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1150
1151	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1152		uint64_t pval;
1153
1154		atime_changed_cb(zfsvfs, B_FALSE);
1155		readonly_changed_cb(zfsvfs, B_TRUE);
1156		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1157			goto out;
1158		xattr_changed_cb(zfsvfs, pval);
1159		zfsvfs->z_issnap = B_TRUE;
1160		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1161
1162		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1163		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1164		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1165	} else {
1166		error = zfsvfs_setup(zfsvfs, B_TRUE);
1167	}
1168
1169	vfs_mountedfrom(vfsp, osname);
1170	/* Grab extra reference. */
1171	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1172	VOP_UNLOCK(vp, 0);
1173
1174	if (!zfsvfs->z_issnap)
1175		zfsctl_create(zfsvfs);
1176out:
1177	if (error) {
1178		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1179		zfsvfs_free(zfsvfs);
1180	} else {
1181		atomic_add_32(&zfs_active_fs_count, 1);
1182	}
1183
1184	return (error);
1185}
1186
1187void
1188zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1189{
1190	objset_t *os = zfsvfs->z_os;
1191	struct dsl_dataset *ds;
1192
1193	/*
1194	 * Unregister properties.
1195	 */
1196	if (!dmu_objset_is_snapshot(os)) {
1197		ds = dmu_objset_ds(os);
1198		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1199		    zfsvfs) == 0);
1200
1201		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1202		    zfsvfs) == 0);
1203
1204		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1205		    zfsvfs) == 0);
1206
1207		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1208		    zfsvfs) == 0);
1209
1210		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1211		    zfsvfs) == 0);
1212
1213		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1214		    zfsvfs) == 0);
1215
1216		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1217		    zfsvfs) == 0);
1218
1219		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1220		    zfsvfs) == 0);
1221
1222		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1223		    acl_inherit_changed_cb, zfsvfs) == 0);
1224
1225		VERIFY(dsl_prop_unregister(ds, "vscan",
1226		    vscan_changed_cb, zfsvfs) == 0);
1227	}
1228}
1229
1230#ifdef SECLABEL
1231/*
1232 * Convert a decimal digit string to a uint64_t integer.
1233 */
1234static int
1235str_to_uint64(char *str, uint64_t *objnum)
1236{
1237	uint64_t num = 0;
1238
1239	while (*str) {
1240		if (*str < '0' || *str > '9')
1241			return (EINVAL);
1242
1243		num = num*10 + *str++ - '0';
1244	}
1245
1246	*objnum = num;
1247	return (0);
1248}
1249
1250/*
1251 * The boot path passed from the boot loader is in the form of
1252 * "rootpool-name/root-filesystem-object-number'. Convert this
1253 * string to a dataset name: "rootpool-name/root-filesystem-name".
1254 */
1255static int
1256zfs_parse_bootfs(char *bpath, char *outpath)
1257{
1258	char *slashp;
1259	uint64_t objnum;
1260	int error;
1261
1262	if (*bpath == 0 || *bpath == '/')
1263		return (EINVAL);
1264
1265	(void) strcpy(outpath, bpath);
1266
1267	slashp = strchr(bpath, '/');
1268
1269	/* if no '/', just return the pool name */
1270	if (slashp == NULL) {
1271		return (0);
1272	}
1273
1274	/* if not a number, just return the root dataset name */
1275	if (str_to_uint64(slashp+1, &objnum)) {
1276		return (0);
1277	}
1278
1279	*slashp = '\0';
1280	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1281	*slashp = '/';
1282
1283	return (error);
1284}
1285
1286/*
1287 * zfs_check_global_label:
1288 *	Check that the hex label string is appropriate for the dataset
1289 *	being mounted into the global_zone proper.
1290 *
1291 *	Return an error if the hex label string is not default or
1292 *	admin_low/admin_high.  For admin_low labels, the corresponding
1293 *	dataset must be readonly.
1294 */
1295int
1296zfs_check_global_label(const char *dsname, const char *hexsl)
1297{
1298	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1299		return (0);
1300	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1301		return (0);
1302	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1303		/* must be readonly */
1304		uint64_t rdonly;
1305
1306		if (dsl_prop_get_integer(dsname,
1307		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1308			return (EACCES);
1309		return (rdonly ? 0 : EACCES);
1310	}
1311	return (EACCES);
1312}
1313
1314/*
1315 * zfs_mount_label_policy:
1316 *	Determine whether the mount is allowed according to MAC check.
1317 *	by comparing (where appropriate) label of the dataset against
1318 *	the label of the zone being mounted into.  If the dataset has
1319 *	no label, create one.
1320 *
1321 *	Returns:
1322 *		 0 :	access allowed
1323 *		>0 :	error code, such as EACCES
1324 */
1325static int
1326zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1327{
1328	int		error, retv;
1329	zone_t		*mntzone = NULL;
1330	ts_label_t	*mnt_tsl;
1331	bslabel_t	*mnt_sl;
1332	bslabel_t	ds_sl;
1333	char		ds_hexsl[MAXNAMELEN];
1334
1335	retv = EACCES;				/* assume the worst */
1336
1337	/*
1338	 * Start by getting the dataset label if it exists.
1339	 */
1340	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1341	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1342	if (error)
1343		return (EACCES);
1344
1345	/*
1346	 * If labeling is NOT enabled, then disallow the mount of datasets
1347	 * which have a non-default label already.  No other label checks
1348	 * are needed.
1349	 */
1350	if (!is_system_labeled()) {
1351		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1352			return (0);
1353		return (EACCES);
1354	}
1355
1356	/*
1357	 * Get the label of the mountpoint.  If mounting into the global
1358	 * zone (i.e. mountpoint is not within an active zone and the
1359	 * zoned property is off), the label must be default or
1360	 * admin_low/admin_high only; no other checks are needed.
1361	 */
1362	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1363	if (mntzone->zone_id == GLOBAL_ZONEID) {
1364		uint64_t zoned;
1365
1366		zone_rele(mntzone);
1367
1368		if (dsl_prop_get_integer(osname,
1369		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1370			return (EACCES);
1371		if (!zoned)
1372			return (zfs_check_global_label(osname, ds_hexsl));
1373		else
1374			/*
1375			 * This is the case of a zone dataset being mounted
1376			 * initially, before the zone has been fully created;
1377			 * allow this mount into global zone.
1378			 */
1379			return (0);
1380	}
1381
1382	mnt_tsl = mntzone->zone_slabel;
1383	ASSERT(mnt_tsl != NULL);
1384	label_hold(mnt_tsl);
1385	mnt_sl = label2bslabel(mnt_tsl);
1386
1387	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1388		/*
1389		 * The dataset doesn't have a real label, so fabricate one.
1390		 */
1391		char *str = NULL;
1392
1393		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1394		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1395		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1396			retv = 0;
1397		if (str != NULL)
1398			kmem_free(str, strlen(str) + 1);
1399	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1400		/*
1401		 * Now compare labels to complete the MAC check.  If the
1402		 * labels are equal then allow access.  If the mountpoint
1403		 * label dominates the dataset label, allow readonly access.
1404		 * Otherwise, access is denied.
1405		 */
1406		if (blequal(mnt_sl, &ds_sl))
1407			retv = 0;
1408		else if (bldominates(mnt_sl, &ds_sl)) {
1409			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1410			retv = 0;
1411		}
1412	}
1413
1414	label_rele(mnt_tsl);
1415	zone_rele(mntzone);
1416	return (retv);
1417}
1418#endif	/* SECLABEL */
1419
1420#ifdef OPENSOLARIS_MOUNTROOT
1421static int
1422zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1423{
1424	int error = 0;
1425	static int zfsrootdone = 0;
1426	zfsvfs_t *zfsvfs = NULL;
1427	znode_t *zp = NULL;
1428	vnode_t *vp = NULL;
1429	char *zfs_bootfs;
1430	char *zfs_devid;
1431
1432	ASSERT(vfsp);
1433
1434	/*
1435	 * The filesystem that we mount as root is defined in the
1436	 * boot property "zfs-bootfs" with a format of
1437	 * "poolname/root-dataset-objnum".
1438	 */
1439	if (why == ROOT_INIT) {
1440		if (zfsrootdone++)
1441			return (EBUSY);
1442		/*
1443		 * the process of doing a spa_load will require the
1444		 * clock to be set before we could (for example) do
1445		 * something better by looking at the timestamp on
1446		 * an uberblock, so just set it to -1.
1447		 */
1448		clkset(-1);
1449
1450		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1451			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1452			    "bootfs name");
1453			return (EINVAL);
1454		}
1455		zfs_devid = spa_get_bootprop("diskdevid");
1456		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1457		if (zfs_devid)
1458			spa_free_bootprop(zfs_devid);
1459		if (error) {
1460			spa_free_bootprop(zfs_bootfs);
1461			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1462			    error);
1463			return (error);
1464		}
1465		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1466			spa_free_bootprop(zfs_bootfs);
1467			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1468			    error);
1469			return (error);
1470		}
1471
1472		spa_free_bootprop(zfs_bootfs);
1473
1474		if (error = vfs_lock(vfsp))
1475			return (error);
1476
1477		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1478			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1479			goto out;
1480		}
1481
1482		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1483		ASSERT(zfsvfs);
1484		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1485			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1486			goto out;
1487		}
1488
1489		vp = ZTOV(zp);
1490		mutex_enter(&vp->v_lock);
1491		vp->v_flag |= VROOT;
1492		mutex_exit(&vp->v_lock);
1493		rootvp = vp;
1494
1495		/*
1496		 * Leave rootvp held.  The root file system is never unmounted.
1497		 */
1498
1499		vfs_add((struct vnode *)0, vfsp,
1500		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1501out:
1502		vfs_unlock(vfsp);
1503		return (error);
1504	} else if (why == ROOT_REMOUNT) {
1505		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1506		vfsp->vfs_flag |= VFS_REMOUNT;
1507
1508		/* refresh mount options */
1509		zfs_unregister_callbacks(vfsp->vfs_data);
1510		return (zfs_register_callbacks(vfsp));
1511
1512	} else if (why == ROOT_UNMOUNT) {
1513		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1514		(void) zfs_sync(vfsp, 0, 0);
1515		return (0);
1516	}
1517
1518	/*
1519	 * if "why" is equal to anything else other than ROOT_INIT,
1520	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1521	 */
1522	return (ENOTSUP);
1523}
1524#endif	/* OPENSOLARIS_MOUNTROOT */
1525
1526static int
1527getpoolname(const char *osname, char *poolname)
1528{
1529	char *p;
1530
1531	p = strchr(osname, '/');
1532	if (p == NULL) {
1533		if (strlen(osname) >= MAXNAMELEN)
1534			return (ENAMETOOLONG);
1535		(void) strcpy(poolname, osname);
1536	} else {
1537		if (p - osname >= MAXNAMELEN)
1538			return (ENAMETOOLONG);
1539		(void) strncpy(poolname, osname, p - osname);
1540		poolname[p - osname] = '\0';
1541	}
1542	return (0);
1543}
1544
1545/*ARGSUSED*/
1546static int
1547zfs_mount(vfs_t *vfsp)
1548{
1549	kthread_t	*td = curthread;
1550	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1551	cred_t		*cr = td->td_ucred;
1552	char		*osname;
1553	int		error = 0;
1554	int		canwrite;
1555
1556	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1557		return (EPERM);
1558
1559	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1560		return (EINVAL);
1561
1562	/*
1563	 * If full-owner-access is enabled and delegated administration is
1564	 * turned on, we must set nosuid.
1565	 */
1566	if (zfs_super_owner &&
1567	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1568		secpolicy_fs_mount_clearopts(cr, vfsp);
1569	}
1570
1571	/*
1572	 * Check for mount privilege?
1573	 *
1574	 * If we don't have privilege then see if
1575	 * we have local permission to allow it
1576	 */
1577	error = secpolicy_fs_mount(cr, mvp, vfsp);
1578	if (error) {
1579		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1580			goto out;
1581
1582		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1583			vattr_t		vattr;
1584
1585			/*
1586			 * Make sure user is the owner of the mount point
1587			 * or has sufficient privileges.
1588			 */
1589
1590			vattr.va_mask = AT_UID;
1591
1592			vn_lock(mvp, LK_SHARED | LK_RETRY);
1593			if (VOP_GETATTR(mvp, &vattr, cr)) {
1594				VOP_UNLOCK(mvp, 0);
1595				goto out;
1596			}
1597
1598			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1599			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1600				VOP_UNLOCK(mvp, 0);
1601				goto out;
1602			}
1603			VOP_UNLOCK(mvp, 0);
1604		}
1605
1606		secpolicy_fs_mount_clearopts(cr, vfsp);
1607	}
1608
1609	/*
1610	 * Refuse to mount a filesystem if we are in a local zone and the
1611	 * dataset is not visible.
1612	 */
1613	if (!INGLOBALZONE(curthread) &&
1614	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1615		error = EPERM;
1616		goto out;
1617	}
1618
1619#ifdef SECLABEL
1620	error = zfs_mount_label_policy(vfsp, osname);
1621	if (error)
1622		goto out;
1623#endif
1624
1625	vfsp->vfs_flag |= MNT_NFS4ACLS;
1626
1627	/*
1628	 * When doing a remount, we simply refresh our temporary properties
1629	 * according to those options set in the current VFS options.
1630	 */
1631	if (vfsp->vfs_flag & MS_REMOUNT) {
1632		/* refresh mount options */
1633		zfs_unregister_callbacks(vfsp->vfs_data);
1634		error = zfs_register_callbacks(vfsp);
1635		goto out;
1636	}
1637
1638	/* Initial root mount: try hard to import the requested root pool. */
1639	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1640	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1641		char pname[MAXNAMELEN];
1642		spa_t *spa;
1643		int prefer_cache;
1644
1645		error = getpoolname(osname, pname);
1646		if (error)
1647			goto out;
1648
1649		prefer_cache = 1;
1650		TUNABLE_INT_FETCH("vfs.zfs.rootpool.prefer_cached_config",
1651		    &prefer_cache);
1652		mutex_enter(&spa_namespace_lock);
1653		spa = spa_lookup(pname);
1654		mutex_exit(&spa_namespace_lock);
1655		if (!prefer_cache || spa == NULL) {
1656			error = spa_import_rootpool(pname);
1657			if (error)
1658				goto out;
1659		}
1660	}
1661	DROP_GIANT();
1662	error = zfs_domount(vfsp, osname);
1663	PICKUP_GIANT();
1664
1665#ifdef sun
1666	/*
1667	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1668	 * disappear due to a forced unmount.
1669	 */
1670	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1671		VFS_HOLD(mvp->v_vfsp);
1672#endif	/* sun */
1673
1674out:
1675	return (error);
1676}
1677
1678static int
1679zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1680{
1681	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1682	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1683
1684	statp->f_version = STATFS_VERSION;
1685
1686	ZFS_ENTER(zfsvfs);
1687
1688	dmu_objset_space(zfsvfs->z_os,
1689	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1690
1691	/*
1692	 * The underlying storage pool actually uses multiple block sizes.
1693	 * We report the fragsize as the smallest block size we support,
1694	 * and we report our blocksize as the filesystem's maximum blocksize.
1695	 */
1696	statp->f_bsize = SPA_MINBLOCKSIZE;
1697	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1698
1699	/*
1700	 * The following report "total" blocks of various kinds in the
1701	 * file system, but reported in terms of f_frsize - the
1702	 * "fragment" size.
1703	 */
1704
1705	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1706	statp->f_bfree = availbytes / statp->f_bsize;
1707	statp->f_bavail = statp->f_bfree; /* no root reservation */
1708
1709	/*
1710	 * statvfs() should really be called statufs(), because it assumes
1711	 * static metadata.  ZFS doesn't preallocate files, so the best
1712	 * we can do is report the max that could possibly fit in f_files,
1713	 * and that minus the number actually used in f_ffree.
1714	 * For f_ffree, report the smaller of the number of object available
1715	 * and the number of blocks (each object will take at least a block).
1716	 */
1717	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1718	statp->f_files = statp->f_ffree + usedobjs;
1719
1720	/*
1721	 * We're a zfs filesystem.
1722	 */
1723	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1724
1725	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1726	    sizeof(statp->f_mntfromname));
1727	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1728	    sizeof(statp->f_mntonname));
1729
1730	statp->f_namemax = ZFS_MAXNAMELEN;
1731
1732	ZFS_EXIT(zfsvfs);
1733	return (0);
1734}
1735
1736int
1737zfs_vnode_lock(vnode_t *vp, int flags)
1738{
1739	int error;
1740
1741	ASSERT(vp != NULL);
1742
1743	error = vn_lock(vp, flags);
1744	return (error);
1745}
1746
1747static int
1748zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1749{
1750	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1751	znode_t *rootzp;
1752	int error;
1753
1754	ZFS_ENTER_NOERROR(zfsvfs);
1755
1756	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1757	if (error == 0)
1758		*vpp = ZTOV(rootzp);
1759
1760	ZFS_EXIT(zfsvfs);
1761
1762	if (error == 0) {
1763		error = zfs_vnode_lock(*vpp, flags);
1764		if (error == 0)
1765			(*vpp)->v_vflag |= VV_ROOT;
1766	}
1767	if (error != 0)
1768		*vpp = NULL;
1769
1770	return (error);
1771}
1772
1773/*
1774 * Teardown the zfsvfs::z_os.
1775 *
1776 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1777 * and 'z_teardown_inactive_lock' held.
1778 */
1779static int
1780zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1781{
1782	znode_t	*zp;
1783
1784	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1785
1786	if (!unmounting) {
1787		/*
1788		 * We purge the parent filesystem's vfsp as the parent
1789		 * filesystem and all of its snapshots have their vnode's
1790		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1791		 * 'z_parent' is self referential for non-snapshots.
1792		 */
1793		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1794#ifdef FREEBSD_NAMECACHE
1795		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1796#endif
1797	}
1798
1799	/*
1800	 * Close the zil. NB: Can't close the zil while zfs_inactive
1801	 * threads are blocked as zil_close can call zfs_inactive.
1802	 */
1803	if (zfsvfs->z_log) {
1804		zil_close(zfsvfs->z_log);
1805		zfsvfs->z_log = NULL;
1806	}
1807
1808	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1809
1810	/*
1811	 * If we are not unmounting (ie: online recv) and someone already
1812	 * unmounted this file system while we were doing the switcheroo,
1813	 * or a reopen of z_os failed then just bail out now.
1814	 */
1815	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1816		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1817		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1818		return (EIO);
1819	}
1820
1821	/*
1822	 * At this point there are no vops active, and any new vops will
1823	 * fail with EIO since we have z_teardown_lock for writer (only
1824	 * relavent for forced unmount).
1825	 *
1826	 * Release all holds on dbufs.
1827	 */
1828	mutex_enter(&zfsvfs->z_znodes_lock);
1829	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1830	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1831		if (zp->z_sa_hdl) {
1832			ASSERT(ZTOV(zp)->v_count >= 0);
1833			zfs_znode_dmu_fini(zp);
1834		}
1835	mutex_exit(&zfsvfs->z_znodes_lock);
1836
1837	/*
1838	 * If we are unmounting, set the unmounted flag and let new vops
1839	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1840	 * other vops will fail with EIO.
1841	 */
1842	if (unmounting) {
1843		zfsvfs->z_unmounted = B_TRUE;
1844		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1845		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1846
1847#ifdef __FreeBSD__
1848		/*
1849		 * Some znodes might not be fully reclaimed, wait for them.
1850		 */
1851		mutex_enter(&zfsvfs->z_znodes_lock);
1852		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1853			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1854			    "zteardown", 0);
1855		}
1856		mutex_exit(&zfsvfs->z_znodes_lock);
1857#endif
1858	}
1859
1860	/*
1861	 * z_os will be NULL if there was an error in attempting to reopen
1862	 * zfsvfs, so just return as the properties had already been
1863	 * unregistered and cached data had been evicted before.
1864	 */
1865	if (zfsvfs->z_os == NULL)
1866		return (0);
1867
1868	/*
1869	 * Unregister properties.
1870	 */
1871	zfs_unregister_callbacks(zfsvfs);
1872
1873	/*
1874	 * Evict cached data
1875	 */
1876	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1877		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1878			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1879	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1880
1881	return (0);
1882}
1883
1884/*ARGSUSED*/
1885static int
1886zfs_umount(vfs_t *vfsp, int fflag)
1887{
1888	kthread_t *td = curthread;
1889	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1890	objset_t *os;
1891	cred_t *cr = td->td_ucred;
1892	int ret;
1893
1894	ret = secpolicy_fs_unmount(cr, vfsp);
1895	if (ret) {
1896		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1897		    ZFS_DELEG_PERM_MOUNT, cr))
1898			return (ret);
1899	}
1900
1901	/*
1902	 * We purge the parent filesystem's vfsp as the parent filesystem
1903	 * and all of its snapshots have their vnode's v_vfsp set to the
1904	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1905	 * referential for non-snapshots.
1906	 */
1907	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1908
1909	/*
1910	 * Unmount any snapshots mounted under .zfs before unmounting the
1911	 * dataset itself.
1912	 */
1913	if (zfsvfs->z_ctldir != NULL) {
1914		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1915			return (ret);
1916		ret = vflush(vfsp, 0, 0, td);
1917		ASSERT(ret == EBUSY);
1918		if (!(fflag & MS_FORCE)) {
1919			if (zfsvfs->z_ctldir->v_count > 1)
1920				return (EBUSY);
1921			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1922		}
1923		zfsctl_destroy(zfsvfs);
1924		ASSERT(zfsvfs->z_ctldir == NULL);
1925	}
1926
1927	if (fflag & MS_FORCE) {
1928		/*
1929		 * Mark file system as unmounted before calling
1930		 * vflush(FORCECLOSE). This way we ensure no future vnops
1931		 * will be called and risk operating on DOOMED vnodes.
1932		 */
1933		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1934		zfsvfs->z_unmounted = B_TRUE;
1935		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1936	}
1937
1938	/*
1939	 * Flush all the files.
1940	 */
1941	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1942	if (ret != 0) {
1943		if (!zfsvfs->z_issnap) {
1944			zfsctl_create(zfsvfs);
1945			ASSERT(zfsvfs->z_ctldir != NULL);
1946		}
1947		return (ret);
1948	}
1949
1950	if (!(fflag & MS_FORCE)) {
1951		/*
1952		 * Check the number of active vnodes in the file system.
1953		 * Our count is maintained in the vfs structure, but the
1954		 * number is off by 1 to indicate a hold on the vfs
1955		 * structure itself.
1956		 *
1957		 * The '.zfs' directory maintains a reference of its
1958		 * own, and any active references underneath are
1959		 * reflected in the vnode count.
1960		 */
1961		if (zfsvfs->z_ctldir == NULL) {
1962			if (vfsp->vfs_count > 1)
1963				return (EBUSY);
1964		} else {
1965			if (vfsp->vfs_count > 2 ||
1966			    zfsvfs->z_ctldir->v_count > 1)
1967				return (EBUSY);
1968		}
1969	}
1970
1971	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1972	os = zfsvfs->z_os;
1973
1974	/*
1975	 * z_os will be NULL if there was an error in
1976	 * attempting to reopen zfsvfs.
1977	 */
1978	if (os != NULL) {
1979		/*
1980		 * Unset the objset user_ptr.
1981		 */
1982		mutex_enter(&os->os_user_ptr_lock);
1983		dmu_objset_set_user(os, NULL);
1984		mutex_exit(&os->os_user_ptr_lock);
1985
1986		/*
1987		 * Finally release the objset
1988		 */
1989		dmu_objset_disown(os, zfsvfs);
1990	}
1991
1992	/*
1993	 * We can now safely destroy the '.zfs' directory node.
1994	 */
1995	if (zfsvfs->z_ctldir != NULL)
1996		zfsctl_destroy(zfsvfs);
1997	if (zfsvfs->z_issnap) {
1998		vnode_t *svp = vfsp->mnt_vnodecovered;
1999
2000		if (svp->v_count >= 2)
2001			VN_RELE(svp);
2002	}
2003	zfs_freevfs(vfsp);
2004
2005	return (0);
2006}
2007
2008static int
2009zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2010{
2011	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2012	znode_t		*zp;
2013	int 		err;
2014
2015	/*
2016	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2017	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2018	 * This will make NFS to switch to LOOKUP instead of using VGET.
2019	 */
2020	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
2021		return (EOPNOTSUPP);
2022
2023	ZFS_ENTER(zfsvfs);
2024	err = zfs_zget(zfsvfs, ino, &zp);
2025	if (err == 0 && zp->z_unlinked) {
2026		VN_RELE(ZTOV(zp));
2027		err = EINVAL;
2028	}
2029	if (err == 0)
2030		*vpp = ZTOV(zp);
2031	ZFS_EXIT(zfsvfs);
2032	if (err == 0)
2033		err = zfs_vnode_lock(*vpp, flags);
2034	if (err != 0)
2035		*vpp = NULL;
2036	return (err);
2037}
2038
2039static int
2040zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2041    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2042{
2043	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2044
2045	/*
2046	 * If this is regular file system vfsp is the same as
2047	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2048	 * zfsvfs->z_parent->z_vfs represents parent file system
2049	 * which we have to use here, because only this file system
2050	 * has mnt_export configured.
2051	 */
2052	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2053	    credanonp, numsecflavors, secflavors));
2054}
2055
2056CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2057CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2058
2059static int
2060zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2061{
2062	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2063	znode_t		*zp;
2064	uint64_t	object = 0;
2065	uint64_t	fid_gen = 0;
2066	uint64_t	gen_mask;
2067	uint64_t	zp_gen;
2068	int 		i, err;
2069
2070	*vpp = NULL;
2071
2072	ZFS_ENTER(zfsvfs);
2073
2074	/*
2075	 * On FreeBSD we can get snapshot's mount point or its parent file
2076	 * system mount point depending if snapshot is already mounted or not.
2077	 */
2078	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2079		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2080		uint64_t	objsetid = 0;
2081		uint64_t	setgen = 0;
2082
2083		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2084			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2085
2086		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2087			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2088
2089		ZFS_EXIT(zfsvfs);
2090
2091		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2092		if (err)
2093			return (EINVAL);
2094		ZFS_ENTER(zfsvfs);
2095	}
2096
2097	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2098		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2099
2100		for (i = 0; i < sizeof (zfid->zf_object); i++)
2101			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2102
2103		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2104			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2105	} else {
2106		ZFS_EXIT(zfsvfs);
2107		return (EINVAL);
2108	}
2109
2110	/* A zero fid_gen means we are in the .zfs control directories */
2111	if (fid_gen == 0 &&
2112	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2113		*vpp = zfsvfs->z_ctldir;
2114		ASSERT(*vpp != NULL);
2115		if (object == ZFSCTL_INO_SNAPDIR) {
2116			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2117			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2118		} else {
2119			VN_HOLD(*vpp);
2120		}
2121		ZFS_EXIT(zfsvfs);
2122		err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2123		if (err != 0)
2124			*vpp = NULL;
2125		return (err);
2126	}
2127
2128	gen_mask = -1ULL >> (64 - 8 * i);
2129
2130	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2131	if (err = zfs_zget(zfsvfs, object, &zp)) {
2132		ZFS_EXIT(zfsvfs);
2133		return (err);
2134	}
2135	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2136	    sizeof (uint64_t));
2137	zp_gen = zp_gen & gen_mask;
2138	if (zp_gen == 0)
2139		zp_gen = 1;
2140	if (zp->z_unlinked || zp_gen != fid_gen) {
2141		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2142		VN_RELE(ZTOV(zp));
2143		ZFS_EXIT(zfsvfs);
2144		return (EINVAL);
2145	}
2146
2147	*vpp = ZTOV(zp);
2148	ZFS_EXIT(zfsvfs);
2149	err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2150	if (err == 0)
2151		vnode_create_vobject(*vpp, zp->z_size, curthread);
2152	else
2153		*vpp = NULL;
2154	return (err);
2155}
2156
2157/*
2158 * Block out VOPs and close zfsvfs_t::z_os
2159 *
2160 * Note, if successful, then we return with the 'z_teardown_lock' and
2161 * 'z_teardown_inactive_lock' write held.
2162 */
2163int
2164zfs_suspend_fs(zfsvfs_t *zfsvfs)
2165{
2166	int error;
2167
2168	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2169		return (error);
2170	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2171
2172	return (0);
2173}
2174
2175/*
2176 * Reopen zfsvfs_t::z_os and release VOPs.
2177 */
2178int
2179zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2180{
2181	int err;
2182
2183	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2184	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2185
2186	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2187	    &zfsvfs->z_os);
2188	if (err) {
2189		zfsvfs->z_os = NULL;
2190	} else {
2191		znode_t *zp;
2192		uint64_t sa_obj = 0;
2193
2194		/*
2195		 * Make sure version hasn't changed
2196		 */
2197
2198		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2199		    &zfsvfs->z_version);
2200
2201		if (err)
2202			goto bail;
2203
2204		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2205		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2206
2207		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2208			goto bail;
2209
2210		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2211		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2212			goto bail;
2213
2214		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2215			sa_register_update_callback(zfsvfs->z_os,
2216			    zfs_sa_upgrade);
2217
2218		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2219
2220		zfs_set_fuid_feature(zfsvfs);
2221
2222		/*
2223		 * Attempt to re-establish all the active znodes with
2224		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2225		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2226		 * when they try to use their znode.
2227		 */
2228		mutex_enter(&zfsvfs->z_znodes_lock);
2229		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2230		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2231			(void) zfs_rezget(zp);
2232		}
2233		mutex_exit(&zfsvfs->z_znodes_lock);
2234	}
2235
2236bail:
2237	/* release the VOPs */
2238	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2239	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2240
2241	if (err) {
2242		/*
2243		 * Since we couldn't reopen zfsvfs::z_os, or
2244		 * setup the sa framework force unmount this file system.
2245		 */
2246		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2247			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2248	}
2249	return (err);
2250}
2251
2252static void
2253zfs_freevfs(vfs_t *vfsp)
2254{
2255	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2256
2257#ifdef sun
2258	/*
2259	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2260	 * from zfs_mount().  Release it here.  If we came through
2261	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2262	 * skip the VFS_RELE for rootvfs.
2263	 */
2264	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2265		VFS_RELE(zfsvfs->z_parent->z_vfs);
2266#endif	/* sun */
2267
2268	zfsvfs_free(zfsvfs);
2269
2270	atomic_add_32(&zfs_active_fs_count, -1);
2271}
2272
2273#ifdef __i386__
2274static int desiredvnodes_backup;
2275#endif
2276
2277static void
2278zfs_vnodes_adjust(void)
2279{
2280#ifdef __i386__
2281	int newdesiredvnodes;
2282
2283	desiredvnodes_backup = desiredvnodes;
2284
2285	/*
2286	 * We calculate newdesiredvnodes the same way it is done in
2287	 * vntblinit(). If it is equal to desiredvnodes, it means that
2288	 * it wasn't tuned by the administrator and we can tune it down.
2289	 */
2290	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2291	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2292	    sizeof(struct vnode))));
2293	if (newdesiredvnodes == desiredvnodes)
2294		desiredvnodes = (3 * newdesiredvnodes) / 4;
2295#endif
2296}
2297
2298static void
2299zfs_vnodes_adjust_back(void)
2300{
2301
2302#ifdef __i386__
2303	desiredvnodes = desiredvnodes_backup;
2304#endif
2305}
2306
2307void
2308zfs_init(void)
2309{
2310
2311	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
2312
2313	/*
2314	 * Initialize .zfs directory structures
2315	 */
2316	zfsctl_init();
2317
2318	/*
2319	 * Initialize znode cache, vnode ops, etc...
2320	 */
2321	zfs_znode_init();
2322
2323	/*
2324	 * Reduce number of vnodes. Originally number of vnodes is calculated
2325	 * with UFS inode in mind. We reduce it here, because it's too big for
2326	 * ZFS/i386.
2327	 */
2328	zfs_vnodes_adjust();
2329
2330	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2331}
2332
2333void
2334zfs_fini(void)
2335{
2336	zfsctl_fini();
2337	zfs_znode_fini();
2338	zfs_vnodes_adjust_back();
2339}
2340
2341int
2342zfs_busy(void)
2343{
2344	return (zfs_active_fs_count != 0);
2345}
2346
2347int
2348zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2349{
2350	int error;
2351	objset_t *os = zfsvfs->z_os;
2352	dmu_tx_t *tx;
2353
2354	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2355		return (EINVAL);
2356
2357	if (newvers < zfsvfs->z_version)
2358		return (EINVAL);
2359
2360	if (zfs_spa_version_map(newvers) >
2361	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2362		return (ENOTSUP);
2363
2364	tx = dmu_tx_create(os);
2365	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2366	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2367		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2368		    ZFS_SA_ATTRS);
2369		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2370	}
2371	error = dmu_tx_assign(tx, TXG_WAIT);
2372	if (error) {
2373		dmu_tx_abort(tx);
2374		return (error);
2375	}
2376
2377	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2378	    8, 1, &newvers, tx);
2379
2380	if (error) {
2381		dmu_tx_commit(tx);
2382		return (error);
2383	}
2384
2385	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2386		uint64_t sa_obj;
2387
2388		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2389		    SPA_VERSION_SA);
2390		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2391		    DMU_OT_NONE, 0, tx);
2392
2393		error = zap_add(os, MASTER_NODE_OBJ,
2394		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2395		ASSERT3U(error, ==, 0);
2396
2397		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2398		sa_register_update_callback(os, zfs_sa_upgrade);
2399	}
2400
2401	spa_history_log_internal(LOG_DS_UPGRADE,
2402	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2403	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2404
2405	dmu_tx_commit(tx);
2406
2407	zfsvfs->z_version = newvers;
2408
2409	zfs_set_fuid_feature(zfsvfs);
2410
2411	return (0);
2412}
2413
2414/*
2415 * Read a property stored within the master node.
2416 */
2417int
2418zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2419{
2420	const char *pname;
2421	int error = ENOENT;
2422
2423	/*
2424	 * Look up the file system's value for the property.  For the
2425	 * version property, we look up a slightly different string.
2426	 */
2427	if (prop == ZFS_PROP_VERSION)
2428		pname = ZPL_VERSION_STR;
2429	else
2430		pname = zfs_prop_to_name(prop);
2431
2432	if (os != NULL)
2433		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2434
2435	if (error == ENOENT) {
2436		/* No value set, use the default value */
2437		switch (prop) {
2438		case ZFS_PROP_VERSION:
2439			*value = ZPL_VERSION;
2440			break;
2441		case ZFS_PROP_NORMALIZE:
2442		case ZFS_PROP_UTF8ONLY:
2443			*value = 0;
2444			break;
2445		case ZFS_PROP_CASE:
2446			*value = ZFS_CASE_SENSITIVE;
2447			break;
2448		default:
2449			return (error);
2450		}
2451		error = 0;
2452	}
2453	return (error);
2454}
2455
2456#ifdef _KERNEL
2457void
2458zfsvfs_update_fromname(const char *oldname, const char *newname)
2459{
2460	char tmpbuf[MAXPATHLEN];
2461	struct mount *mp;
2462	char *fromname;
2463	size_t oldlen;
2464
2465	oldlen = strlen(oldname);
2466
2467	mtx_lock(&mountlist_mtx);
2468	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2469		fromname = mp->mnt_stat.f_mntfromname;
2470		if (strcmp(fromname, oldname) == 0) {
2471			(void)strlcpy(fromname, newname,
2472			    sizeof(mp->mnt_stat.f_mntfromname));
2473			continue;
2474		}
2475		if (strncmp(fromname, oldname, oldlen) == 0 &&
2476		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2477			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2478			    newname, fromname + oldlen);
2479			(void)strlcpy(fromname, tmpbuf,
2480			    sizeof(mp->mnt_stat.f_mntfromname));
2481			continue;
2482		}
2483	}
2484	mtx_unlock(&mountlist_mtx);
2485}
2486#endif
2487