zfs_vfsops.c revision 224174
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25/* Portions Copyright 2010 Robert Milkowski */
26
27#include <sys/types.h>
28#include <sys/param.h>
29#include <sys/systm.h>
30#include <sys/kernel.h>
31#include <sys/sysmacros.h>
32#include <sys/kmem.h>
33#include <sys/acl.h>
34#include <sys/vnode.h>
35#include <sys/vfs.h>
36#include <sys/mntent.h>
37#include <sys/mount.h>
38#include <sys/cmn_err.h>
39#include <sys/zfs_znode.h>
40#include <sys/zfs_dir.h>
41#include <sys/zil.h>
42#include <sys/fs/zfs.h>
43#include <sys/dmu.h>
44#include <sys/dsl_prop.h>
45#include <sys/dsl_dataset.h>
46#include <sys/dsl_deleg.h>
47#include <sys/spa.h>
48#include <sys/zap.h>
49#include <sys/sa.h>
50#include <sys/varargs.h>
51#include <sys/policy.h>
52#include <sys/atomic.h>
53#include <sys/zfs_ioctl.h>
54#include <sys/zfs_ctldir.h>
55#include <sys/zfs_fuid.h>
56#include <sys/sunddi.h>
57#include <sys/dnlc.h>
58#include <sys/dmu_objset.h>
59#include <sys/spa_boot.h>
60#include <sys/sa.h>
61#include "zfs_comutil.h"
62
63struct mtx zfs_debug_mtx;
64MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
65
66SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
67
68int zfs_super_owner;
69SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
70    "File system owner can perform privileged operation on his file systems");
71
72int zfs_debug_level;
73TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
75    "Debug level");
76
77SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
78static int zfs_version_acl = ZFS_ACL_VERSION;
79SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
80    "ZFS_ACL_VERSION");
81static int zfs_version_spa = SPA_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
83    "SPA_VERSION");
84static int zfs_version_zpl = ZPL_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
86    "ZPL_VERSION");
87
88static int zfs_mount(vfs_t *vfsp);
89static int zfs_umount(vfs_t *vfsp, int fflag);
90static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
91static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
92static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
93static int zfs_sync(vfs_t *vfsp, int waitfor);
94static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
95    struct ucred **credanonp, int *numsecflavors, int **secflavors);
96static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
97static void zfs_objset_close(zfsvfs_t *zfsvfs);
98static void zfs_freevfs(vfs_t *vfsp);
99
100static struct vfsops zfs_vfsops = {
101	.vfs_mount =		zfs_mount,
102	.vfs_unmount =		zfs_umount,
103	.vfs_root =		zfs_root,
104	.vfs_statfs =		zfs_statfs,
105	.vfs_vget =		zfs_vget,
106	.vfs_sync =		zfs_sync,
107	.vfs_checkexp =		zfs_checkexp,
108	.vfs_fhtovp =		zfs_fhtovp,
109};
110
111VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
112
113/*
114 * We need to keep a count of active fs's.
115 * This is necessary to prevent our module
116 * from being unloaded after a umount -f
117 */
118static uint32_t	zfs_active_fs_count = 0;
119
120/*ARGSUSED*/
121static int
122zfs_sync(vfs_t *vfsp, int waitfor)
123{
124
125	/*
126	 * Data integrity is job one.  We don't want a compromised kernel
127	 * writing to the storage pool, so we never sync during panic.
128	 */
129	if (panicstr)
130		return (0);
131
132	if (vfsp != NULL) {
133		/*
134		 * Sync a specific filesystem.
135		 */
136		zfsvfs_t *zfsvfs = vfsp->vfs_data;
137		dsl_pool_t *dp;
138		int error;
139
140		error = vfs_stdsync(vfsp, waitfor);
141		if (error != 0)
142			return (error);
143
144		ZFS_ENTER(zfsvfs);
145		dp = dmu_objset_pool(zfsvfs->z_os);
146
147		/*
148		 * If the system is shutting down, then skip any
149		 * filesystems which may exist on a suspended pool.
150		 */
151		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
152			ZFS_EXIT(zfsvfs);
153			return (0);
154		}
155
156		if (zfsvfs->z_log != NULL)
157			zil_commit(zfsvfs->z_log, 0);
158
159		ZFS_EXIT(zfsvfs);
160	} else {
161		/*
162		 * Sync all ZFS filesystems.  This is what happens when you
163		 * run sync(1M).  Unlike other filesystems, ZFS honors the
164		 * request by waiting for all pools to commit all dirty data.
165		 */
166		spa_sync_allpools();
167	}
168
169	return (0);
170}
171
172#ifndef __FreeBSD__
173static int
174zfs_create_unique_device(dev_t *dev)
175{
176	major_t new_major;
177
178	do {
179		ASSERT3U(zfs_minor, <=, MAXMIN32);
180		minor_t start = zfs_minor;
181		do {
182			mutex_enter(&zfs_dev_mtx);
183			if (zfs_minor >= MAXMIN32) {
184				/*
185				 * If we're still using the real major
186				 * keep out of /dev/zfs and /dev/zvol minor
187				 * number space.  If we're using a getudev()'ed
188				 * major number, we can use all of its minors.
189				 */
190				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
191					zfs_minor = ZFS_MIN_MINOR;
192				else
193					zfs_minor = 0;
194			} else {
195				zfs_minor++;
196			}
197			*dev = makedevice(zfs_major, zfs_minor);
198			mutex_exit(&zfs_dev_mtx);
199		} while (vfs_devismounted(*dev) && zfs_minor != start);
200		if (zfs_minor == start) {
201			/*
202			 * We are using all ~262,000 minor numbers for the
203			 * current major number.  Create a new major number.
204			 */
205			if ((new_major = getudev()) == (major_t)-1) {
206				cmn_err(CE_WARN,
207				    "zfs_mount: Can't get unique major "
208				    "device number.");
209				return (-1);
210			}
211			mutex_enter(&zfs_dev_mtx);
212			zfs_major = new_major;
213			zfs_minor = 0;
214
215			mutex_exit(&zfs_dev_mtx);
216		} else {
217			break;
218		}
219		/* CONSTANTCONDITION */
220	} while (1);
221
222	return (0);
223}
224#endif	/* !__FreeBSD__ */
225
226static void
227atime_changed_cb(void *arg, uint64_t newval)
228{
229	zfsvfs_t *zfsvfs = arg;
230
231	if (newval == TRUE) {
232		zfsvfs->z_atime = TRUE;
233		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
234		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
235		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
236	} else {
237		zfsvfs->z_atime = FALSE;
238		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
239		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
240		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
241	}
242}
243
244static void
245xattr_changed_cb(void *arg, uint64_t newval)
246{
247	zfsvfs_t *zfsvfs = arg;
248
249	if (newval == TRUE) {
250		/* XXX locking on vfs_flag? */
251#ifdef TODO
252		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
253#endif
254		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
255		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
256	} else {
257		/* XXX locking on vfs_flag? */
258#ifdef TODO
259		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
260#endif
261		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
262		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
263	}
264}
265
266static void
267blksz_changed_cb(void *arg, uint64_t newval)
268{
269	zfsvfs_t *zfsvfs = arg;
270
271	if (newval < SPA_MINBLOCKSIZE ||
272	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
273		newval = SPA_MAXBLOCKSIZE;
274
275	zfsvfs->z_max_blksz = newval;
276	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
277}
278
279static void
280readonly_changed_cb(void *arg, uint64_t newval)
281{
282	zfsvfs_t *zfsvfs = arg;
283
284	if (newval) {
285		/* XXX locking on vfs_flag? */
286		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
287		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
288		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
289	} else {
290		/* XXX locking on vfs_flag? */
291		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
292		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
293		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
294	}
295}
296
297static void
298setuid_changed_cb(void *arg, uint64_t newval)
299{
300	zfsvfs_t *zfsvfs = arg;
301
302	if (newval == FALSE) {
303		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
304		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
305		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
306	} else {
307		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
308		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
309		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
310	}
311}
312
313static void
314exec_changed_cb(void *arg, uint64_t newval)
315{
316	zfsvfs_t *zfsvfs = arg;
317
318	if (newval == FALSE) {
319		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
320		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
321		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
322	} else {
323		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
324		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
325		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
326	}
327}
328
329/*
330 * The nbmand mount option can be changed at mount time.
331 * We can't allow it to be toggled on live file systems or incorrect
332 * behavior may be seen from cifs clients
333 *
334 * This property isn't registered via dsl_prop_register(), but this callback
335 * will be called when a file system is first mounted
336 */
337static void
338nbmand_changed_cb(void *arg, uint64_t newval)
339{
340	zfsvfs_t *zfsvfs = arg;
341	if (newval == FALSE) {
342		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
343		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
344	} else {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
347	}
348}
349
350static void
351snapdir_changed_cb(void *arg, uint64_t newval)
352{
353	zfsvfs_t *zfsvfs = arg;
354
355	zfsvfs->z_show_ctldir = newval;
356}
357
358static void
359vscan_changed_cb(void *arg, uint64_t newval)
360{
361	zfsvfs_t *zfsvfs = arg;
362
363	zfsvfs->z_vscan = newval;
364}
365
366static void
367acl_mode_changed_cb(void *arg, uint64_t newval)
368{
369	zfsvfs_t *zfsvfs = arg;
370
371	zfsvfs->z_acl_mode = newval;
372}
373
374static void
375acl_inherit_changed_cb(void *arg, uint64_t newval)
376{
377	zfsvfs_t *zfsvfs = arg;
378
379	zfsvfs->z_acl_inherit = newval;
380}
381
382static int
383zfs_register_callbacks(vfs_t *vfsp)
384{
385	struct dsl_dataset *ds = NULL;
386	objset_t *os = NULL;
387	zfsvfs_t *zfsvfs = NULL;
388	uint64_t nbmand;
389	int readonly, do_readonly = B_FALSE;
390	int setuid, do_setuid = B_FALSE;
391	int exec, do_exec = B_FALSE;
392	int xattr, do_xattr = B_FALSE;
393	int atime, do_atime = B_FALSE;
394	int error = 0;
395
396	ASSERT(vfsp);
397	zfsvfs = vfsp->vfs_data;
398	ASSERT(zfsvfs);
399	os = zfsvfs->z_os;
400
401	/*
402	 * This function can be called for a snapshot when we update snapshot's
403	 * mount point, which isn't really supported.
404	 */
405	if (dmu_objset_is_snapshot(os))
406		return (EOPNOTSUPP);
407
408	/*
409	 * The act of registering our callbacks will destroy any mount
410	 * options we may have.  In order to enable temporary overrides
411	 * of mount options, we stash away the current values and
412	 * restore them after we register the callbacks.
413	 */
414	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
415	    !spa_writeable(dmu_objset_spa(os))) {
416		readonly = B_TRUE;
417		do_readonly = B_TRUE;
418	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
419		readonly = B_FALSE;
420		do_readonly = B_TRUE;
421	}
422	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
423		setuid = B_FALSE;
424		do_setuid = B_TRUE;
425	} else {
426		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
427			setuid = B_FALSE;
428			do_setuid = B_TRUE;
429		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
430			setuid = B_TRUE;
431			do_setuid = B_TRUE;
432		}
433	}
434	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
435		exec = B_FALSE;
436		do_exec = B_TRUE;
437	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
438		exec = B_TRUE;
439		do_exec = B_TRUE;
440	}
441	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
442		xattr = B_FALSE;
443		do_xattr = B_TRUE;
444	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
445		xattr = B_TRUE;
446		do_xattr = B_TRUE;
447	}
448	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
449		atime = B_FALSE;
450		do_atime = B_TRUE;
451	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
452		atime = B_TRUE;
453		do_atime = B_TRUE;
454	}
455
456	/*
457	 * nbmand is a special property.  It can only be changed at
458	 * mount time.
459	 *
460	 * This is weird, but it is documented to only be changeable
461	 * at mount time.
462	 */
463	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
464		nbmand = B_FALSE;
465	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
466		nbmand = B_TRUE;
467	} else {
468		char osname[MAXNAMELEN];
469
470		dmu_objset_name(os, osname);
471		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
472		    NULL)) {
473			return (error);
474		}
475	}
476
477	/*
478	 * Register property callbacks.
479	 *
480	 * It would probably be fine to just check for i/o error from
481	 * the first prop_register(), but I guess I like to go
482	 * overboard...
483	 */
484	ds = dmu_objset_ds(os);
485	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
486	error = error ? error : dsl_prop_register(ds,
487	    "xattr", xattr_changed_cb, zfsvfs);
488	error = error ? error : dsl_prop_register(ds,
489	    "recordsize", blksz_changed_cb, zfsvfs);
490	error = error ? error : dsl_prop_register(ds,
491	    "readonly", readonly_changed_cb, zfsvfs);
492	error = error ? error : dsl_prop_register(ds,
493	    "setuid", setuid_changed_cb, zfsvfs);
494	error = error ? error : dsl_prop_register(ds,
495	    "exec", exec_changed_cb, zfsvfs);
496	error = error ? error : dsl_prop_register(ds,
497	    "snapdir", snapdir_changed_cb, zfsvfs);
498	error = error ? error : dsl_prop_register(ds,
499	    "aclmode", acl_mode_changed_cb, zfsvfs);
500	error = error ? error : dsl_prop_register(ds,
501	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
502	error = error ? error : dsl_prop_register(ds,
503	    "vscan", vscan_changed_cb, zfsvfs);
504	if (error)
505		goto unregister;
506
507	/*
508	 * Invoke our callbacks to restore temporary mount options.
509	 */
510	if (do_readonly)
511		readonly_changed_cb(zfsvfs, readonly);
512	if (do_setuid)
513		setuid_changed_cb(zfsvfs, setuid);
514	if (do_exec)
515		exec_changed_cb(zfsvfs, exec);
516	if (do_xattr)
517		xattr_changed_cb(zfsvfs, xattr);
518	if (do_atime)
519		atime_changed_cb(zfsvfs, atime);
520
521	nbmand_changed_cb(zfsvfs, nbmand);
522
523	return (0);
524
525unregister:
526	/*
527	 * We may attempt to unregister some callbacks that are not
528	 * registered, but this is OK; it will simply return ENOMSG,
529	 * which we will ignore.
530	 */
531	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
532	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
533	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
534	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
535	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
536	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
537	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
538	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
539	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
540	    zfsvfs);
541	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
542	return (error);
543
544}
545
546static int
547zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
548    uint64_t *userp, uint64_t *groupp)
549{
550	znode_phys_t *znp = data;
551	int error = 0;
552
553	/*
554	 * Is it a valid type of object to track?
555	 */
556	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
557		return (ENOENT);
558
559	/*
560	 * If we have a NULL data pointer
561	 * then assume the id's aren't changing and
562	 * return EEXIST to the dmu to let it know to
563	 * use the same ids
564	 */
565	if (data == NULL)
566		return (EEXIST);
567
568	if (bonustype == DMU_OT_ZNODE) {
569		*userp = znp->zp_uid;
570		*groupp = znp->zp_gid;
571	} else {
572		int hdrsize;
573
574		ASSERT(bonustype == DMU_OT_SA);
575		hdrsize = sa_hdrsize(data);
576
577		if (hdrsize != 0) {
578			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
579			    SA_UID_OFFSET));
580			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
581			    SA_GID_OFFSET));
582		} else {
583			/*
584			 * This should only happen for newly created
585			 * files that haven't had the znode data filled
586			 * in yet.
587			 */
588			*userp = 0;
589			*groupp = 0;
590		}
591	}
592	return (error);
593}
594
595static void
596fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
597    char *domainbuf, int buflen, uid_t *ridp)
598{
599	uint64_t fuid;
600	const char *domain;
601
602	fuid = strtonum(fuidstr, NULL);
603
604	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
605	if (domain)
606		(void) strlcpy(domainbuf, domain, buflen);
607	else
608		domainbuf[0] = '\0';
609	*ridp = FUID_RID(fuid);
610}
611
612static uint64_t
613zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
614{
615	switch (type) {
616	case ZFS_PROP_USERUSED:
617		return (DMU_USERUSED_OBJECT);
618	case ZFS_PROP_GROUPUSED:
619		return (DMU_GROUPUSED_OBJECT);
620	case ZFS_PROP_USERQUOTA:
621		return (zfsvfs->z_userquota_obj);
622	case ZFS_PROP_GROUPQUOTA:
623		return (zfsvfs->z_groupquota_obj);
624	}
625	return (0);
626}
627
628int
629zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
630    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
631{
632	int error;
633	zap_cursor_t zc;
634	zap_attribute_t za;
635	zfs_useracct_t *buf = vbuf;
636	uint64_t obj;
637
638	if (!dmu_objset_userspace_present(zfsvfs->z_os))
639		return (ENOTSUP);
640
641	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
642	if (obj == 0) {
643		*bufsizep = 0;
644		return (0);
645	}
646
647	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
648	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
649	    zap_cursor_advance(&zc)) {
650		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
651		    *bufsizep)
652			break;
653
654		fuidstr_to_sid(zfsvfs, za.za_name,
655		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
656
657		buf->zu_space = za.za_first_integer;
658		buf++;
659	}
660	if (error == ENOENT)
661		error = 0;
662
663	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
664	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
665	*cookiep = zap_cursor_serialize(&zc);
666	zap_cursor_fini(&zc);
667	return (error);
668}
669
670/*
671 * buf must be big enough (eg, 32 bytes)
672 */
673static int
674id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
675    char *buf, boolean_t addok)
676{
677	uint64_t fuid;
678	int domainid = 0;
679
680	if (domain && domain[0]) {
681		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
682		if (domainid == -1)
683			return (ENOENT);
684	}
685	fuid = FUID_ENCODE(domainid, rid);
686	(void) sprintf(buf, "%llx", (longlong_t)fuid);
687	return (0);
688}
689
690int
691zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
692    const char *domain, uint64_t rid, uint64_t *valp)
693{
694	char buf[32];
695	int err;
696	uint64_t obj;
697
698	*valp = 0;
699
700	if (!dmu_objset_userspace_present(zfsvfs->z_os))
701		return (ENOTSUP);
702
703	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
704	if (obj == 0)
705		return (0);
706
707	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
708	if (err)
709		return (err);
710
711	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
712	if (err == ENOENT)
713		err = 0;
714	return (err);
715}
716
717int
718zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
719    const char *domain, uint64_t rid, uint64_t quota)
720{
721	char buf[32];
722	int err;
723	dmu_tx_t *tx;
724	uint64_t *objp;
725	boolean_t fuid_dirtied;
726
727	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
728		return (EINVAL);
729
730	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
731		return (ENOTSUP);
732
733	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
734	    &zfsvfs->z_groupquota_obj;
735
736	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
737	if (err)
738		return (err);
739	fuid_dirtied = zfsvfs->z_fuid_dirty;
740
741	tx = dmu_tx_create(zfsvfs->z_os);
742	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
743	if (*objp == 0) {
744		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
745		    zfs_userquota_prop_prefixes[type]);
746	}
747	if (fuid_dirtied)
748		zfs_fuid_txhold(zfsvfs, tx);
749	err = dmu_tx_assign(tx, TXG_WAIT);
750	if (err) {
751		dmu_tx_abort(tx);
752		return (err);
753	}
754
755	mutex_enter(&zfsvfs->z_lock);
756	if (*objp == 0) {
757		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
758		    DMU_OT_NONE, 0, tx);
759		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
760		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
761	}
762	mutex_exit(&zfsvfs->z_lock);
763
764	if (quota == 0) {
765		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
766		if (err == ENOENT)
767			err = 0;
768	} else {
769		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
770	}
771	ASSERT(err == 0);
772	if (fuid_dirtied)
773		zfs_fuid_sync(zfsvfs, tx);
774	dmu_tx_commit(tx);
775	return (err);
776}
777
778boolean_t
779zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
780{
781	char buf[32];
782	uint64_t used, quota, usedobj, quotaobj;
783	int err;
784
785	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
786	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
787
788	if (quotaobj == 0 || zfsvfs->z_replay)
789		return (B_FALSE);
790
791	(void) sprintf(buf, "%llx", (longlong_t)fuid);
792	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
793	if (err != 0)
794		return (B_FALSE);
795
796	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
797	if (err != 0)
798		return (B_FALSE);
799	return (used >= quota);
800}
801
802boolean_t
803zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
804{
805	uint64_t fuid;
806	uint64_t quotaobj;
807
808	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
809
810	fuid = isgroup ? zp->z_gid : zp->z_uid;
811
812	if (quotaobj == 0 || zfsvfs->z_replay)
813		return (B_FALSE);
814
815	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
816}
817
818int
819zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
820{
821	objset_t *os;
822	zfsvfs_t *zfsvfs;
823	uint64_t zval;
824	int i, error;
825	uint64_t sa_obj;
826
827	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
828
829	/*
830	 * We claim to always be readonly so we can open snapshots;
831	 * other ZPL code will prevent us from writing to snapshots.
832	 */
833	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
834	if (error) {
835		kmem_free(zfsvfs, sizeof (zfsvfs_t));
836		return (error);
837	}
838
839	/*
840	 * Initialize the zfs-specific filesystem structure.
841	 * Should probably make this a kmem cache, shuffle fields,
842	 * and just bzero up to z_hold_mtx[].
843	 */
844	zfsvfs->z_vfs = NULL;
845	zfsvfs->z_parent = zfsvfs;
846	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
847	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
848	zfsvfs->z_os = os;
849
850	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
851	if (error) {
852		goto out;
853	} else if (zfsvfs->z_version >
854	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
855		(void) printf("Can't mount a version %lld file system "
856		    "on a version %lld pool\n. Pool must be upgraded to mount "
857		    "this file system.", (u_longlong_t)zfsvfs->z_version,
858		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
859		error = ENOTSUP;
860		goto out;
861	}
862	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
863		goto out;
864	zfsvfs->z_norm = (int)zval;
865
866	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
867		goto out;
868	zfsvfs->z_utf8 = (zval != 0);
869
870	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
871		goto out;
872	zfsvfs->z_case = (uint_t)zval;
873
874	/*
875	 * Fold case on file systems that are always or sometimes case
876	 * insensitive.
877	 */
878	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
879	    zfsvfs->z_case == ZFS_CASE_MIXED)
880		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
881
882	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
883	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
884
885	if (zfsvfs->z_use_sa) {
886		/* should either have both of these objects or none */
887		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
888		    &sa_obj);
889		if (error)
890			return (error);
891	} else {
892		/*
893		 * Pre SA versions file systems should never touch
894		 * either the attribute registration or layout objects.
895		 */
896		sa_obj = 0;
897	}
898
899	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
900	    &zfsvfs->z_attr_table);
901	if (error)
902		goto out;
903
904	if (zfsvfs->z_version >= ZPL_VERSION_SA)
905		sa_register_update_callback(os, zfs_sa_upgrade);
906
907	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
908	    &zfsvfs->z_root);
909	if (error)
910		goto out;
911	ASSERT(zfsvfs->z_root != 0);
912
913	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
914	    &zfsvfs->z_unlinkedobj);
915	if (error)
916		goto out;
917
918	error = zap_lookup(os, MASTER_NODE_OBJ,
919	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
920	    8, 1, &zfsvfs->z_userquota_obj);
921	if (error && error != ENOENT)
922		goto out;
923
924	error = zap_lookup(os, MASTER_NODE_OBJ,
925	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
926	    8, 1, &zfsvfs->z_groupquota_obj);
927	if (error && error != ENOENT)
928		goto out;
929
930	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
931	    &zfsvfs->z_fuid_obj);
932	if (error && error != ENOENT)
933		goto out;
934
935	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
936	    &zfsvfs->z_shares_dir);
937	if (error && error != ENOENT)
938		goto out;
939
940	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
941	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
942	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
943	    offsetof(znode_t, z_link_node));
944	rrw_init(&zfsvfs->z_teardown_lock);
945	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
946	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
947	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
948		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
949
950	*zfvp = zfsvfs;
951	return (0);
952
953out:
954	dmu_objset_disown(os, zfsvfs);
955	*zfvp = NULL;
956	kmem_free(zfsvfs, sizeof (zfsvfs_t));
957	return (error);
958}
959
960static int
961zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
962{
963	int error;
964
965	error = zfs_register_callbacks(zfsvfs->z_vfs);
966	if (error)
967		return (error);
968
969	/*
970	 * Set the objset user_ptr to track its zfsvfs.
971	 */
972	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
973	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
974	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
975
976	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
977
978	/*
979	 * If we are not mounting (ie: online recv), then we don't
980	 * have to worry about replaying the log as we blocked all
981	 * operations out since we closed the ZIL.
982	 */
983	if (mounting) {
984		boolean_t readonly;
985
986		/*
987		 * During replay we remove the read only flag to
988		 * allow replays to succeed.
989		 */
990		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
991		if (readonly != 0)
992			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
993		else
994			zfs_unlinked_drain(zfsvfs);
995
996		/*
997		 * Parse and replay the intent log.
998		 *
999		 * Because of ziltest, this must be done after
1000		 * zfs_unlinked_drain().  (Further note: ziltest
1001		 * doesn't use readonly mounts, where
1002		 * zfs_unlinked_drain() isn't called.)  This is because
1003		 * ziltest causes spa_sync() to think it's committed,
1004		 * but actually it is not, so the intent log contains
1005		 * many txg's worth of changes.
1006		 *
1007		 * In particular, if object N is in the unlinked set in
1008		 * the last txg to actually sync, then it could be
1009		 * actually freed in a later txg and then reallocated
1010		 * in a yet later txg.  This would write a "create
1011		 * object N" record to the intent log.  Normally, this
1012		 * would be fine because the spa_sync() would have
1013		 * written out the fact that object N is free, before
1014		 * we could write the "create object N" intent log
1015		 * record.
1016		 *
1017		 * But when we are in ziltest mode, we advance the "open
1018		 * txg" without actually spa_sync()-ing the changes to
1019		 * disk.  So we would see that object N is still
1020		 * allocated and in the unlinked set, and there is an
1021		 * intent log record saying to allocate it.
1022		 */
1023		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1024			if (zil_replay_disable) {
1025				zil_destroy(zfsvfs->z_log, B_FALSE);
1026			} else {
1027				zfsvfs->z_replay = B_TRUE;
1028				zil_replay(zfsvfs->z_os, zfsvfs,
1029				    zfs_replay_vector);
1030				zfsvfs->z_replay = B_FALSE;
1031			}
1032		}
1033		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1034	}
1035
1036	return (0);
1037}
1038
1039extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1040
1041void
1042zfsvfs_free(zfsvfs_t *zfsvfs)
1043{
1044	int i;
1045
1046	/*
1047	 * This is a barrier to prevent the filesystem from going away in
1048	 * zfs_znode_move() until we can safely ensure that the filesystem is
1049	 * not unmounted. We consider the filesystem valid before the barrier
1050	 * and invalid after the barrier.
1051	 */
1052	rw_enter(&zfsvfs_lock, RW_READER);
1053	rw_exit(&zfsvfs_lock);
1054
1055	zfs_fuid_destroy(zfsvfs);
1056
1057	mutex_destroy(&zfsvfs->z_znodes_lock);
1058	mutex_destroy(&zfsvfs->z_lock);
1059	list_destroy(&zfsvfs->z_all_znodes);
1060	rrw_destroy(&zfsvfs->z_teardown_lock);
1061	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1062	rw_destroy(&zfsvfs->z_fuid_lock);
1063	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1064		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1065	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1066}
1067
1068static void
1069zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1070{
1071	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1072	if (zfsvfs->z_vfs) {
1073		if (zfsvfs->z_use_fuids) {
1074			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1075			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1076			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1077			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1078			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1079			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1080		} else {
1081			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1082			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1083			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1084			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1085			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1086			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1087		}
1088	}
1089	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1090}
1091
1092static int
1093zfs_domount(vfs_t *vfsp, char *osname)
1094{
1095	uint64_t recordsize, fsid_guid;
1096	int error = 0;
1097	zfsvfs_t *zfsvfs;
1098	vnode_t *vp;
1099
1100	ASSERT(vfsp);
1101	ASSERT(osname);
1102
1103	error = zfsvfs_create(osname, &zfsvfs);
1104	if (error)
1105		return (error);
1106	zfsvfs->z_vfs = vfsp;
1107
1108	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1109	    NULL))
1110		goto out;
1111	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1112	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1113
1114	vfsp->vfs_data = zfsvfs;
1115	vfsp->mnt_flag |= MNT_LOCAL;
1116	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1117	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1118	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1119
1120	/*
1121	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1122	 * separates our fsid from any other filesystem types, and a
1123	 * 56-bit objset unique ID.  The objset unique ID is unique to
1124	 * all objsets open on this system, provided by unique_create().
1125	 * The 8-bit fs type must be put in the low bits of fsid[1]
1126	 * because that's where other Solaris filesystems put it.
1127	 */
1128	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1129	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1130	vfsp->vfs_fsid.val[0] = fsid_guid;
1131	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1132	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1133
1134	/*
1135	 * Set features for file system.
1136	 */
1137	zfs_set_fuid_feature(zfsvfs);
1138	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1139		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1140		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1141		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1142	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1143		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1144		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1145	}
1146	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1147
1148	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1149		uint64_t pval;
1150
1151		atime_changed_cb(zfsvfs, B_FALSE);
1152		readonly_changed_cb(zfsvfs, B_TRUE);
1153		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1154			goto out;
1155		xattr_changed_cb(zfsvfs, pval);
1156		zfsvfs->z_issnap = B_TRUE;
1157		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1158
1159		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1160		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1161		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1162	} else {
1163		error = zfsvfs_setup(zfsvfs, B_TRUE);
1164	}
1165
1166	vfs_mountedfrom(vfsp, osname);
1167	/* Grab extra reference. */
1168	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1169	VOP_UNLOCK(vp, 0);
1170
1171	if (!zfsvfs->z_issnap)
1172		zfsctl_create(zfsvfs);
1173out:
1174	if (error) {
1175		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1176		zfsvfs_free(zfsvfs);
1177	} else {
1178		atomic_add_32(&zfs_active_fs_count, 1);
1179	}
1180
1181	return (error);
1182}
1183
1184void
1185zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1186{
1187	objset_t *os = zfsvfs->z_os;
1188	struct dsl_dataset *ds;
1189
1190	/*
1191	 * Unregister properties.
1192	 */
1193	if (!dmu_objset_is_snapshot(os)) {
1194		ds = dmu_objset_ds(os);
1195		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1196		    zfsvfs) == 0);
1197
1198		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1199		    zfsvfs) == 0);
1200
1201		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1202		    zfsvfs) == 0);
1203
1204		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1205		    zfsvfs) == 0);
1206
1207		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1208		    zfsvfs) == 0);
1209
1210		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1211		    zfsvfs) == 0);
1212
1213		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1214		    zfsvfs) == 0);
1215
1216		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1217		    zfsvfs) == 0);
1218
1219		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1220		    acl_inherit_changed_cb, zfsvfs) == 0);
1221
1222		VERIFY(dsl_prop_unregister(ds, "vscan",
1223		    vscan_changed_cb, zfsvfs) == 0);
1224	}
1225}
1226
1227#ifdef SECLABEL
1228/*
1229 * Convert a decimal digit string to a uint64_t integer.
1230 */
1231static int
1232str_to_uint64(char *str, uint64_t *objnum)
1233{
1234	uint64_t num = 0;
1235
1236	while (*str) {
1237		if (*str < '0' || *str > '9')
1238			return (EINVAL);
1239
1240		num = num*10 + *str++ - '0';
1241	}
1242
1243	*objnum = num;
1244	return (0);
1245}
1246
1247/*
1248 * The boot path passed from the boot loader is in the form of
1249 * "rootpool-name/root-filesystem-object-number'. Convert this
1250 * string to a dataset name: "rootpool-name/root-filesystem-name".
1251 */
1252static int
1253zfs_parse_bootfs(char *bpath, char *outpath)
1254{
1255	char *slashp;
1256	uint64_t objnum;
1257	int error;
1258
1259	if (*bpath == 0 || *bpath == '/')
1260		return (EINVAL);
1261
1262	(void) strcpy(outpath, bpath);
1263
1264	slashp = strchr(bpath, '/');
1265
1266	/* if no '/', just return the pool name */
1267	if (slashp == NULL) {
1268		return (0);
1269	}
1270
1271	/* if not a number, just return the root dataset name */
1272	if (str_to_uint64(slashp+1, &objnum)) {
1273		return (0);
1274	}
1275
1276	*slashp = '\0';
1277	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1278	*slashp = '/';
1279
1280	return (error);
1281}
1282
1283/*
1284 * zfs_check_global_label:
1285 *	Check that the hex label string is appropriate for the dataset
1286 *	being mounted into the global_zone proper.
1287 *
1288 *	Return an error if the hex label string is not default or
1289 *	admin_low/admin_high.  For admin_low labels, the corresponding
1290 *	dataset must be readonly.
1291 */
1292int
1293zfs_check_global_label(const char *dsname, const char *hexsl)
1294{
1295	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1296		return (0);
1297	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1298		return (0);
1299	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1300		/* must be readonly */
1301		uint64_t rdonly;
1302
1303		if (dsl_prop_get_integer(dsname,
1304		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1305			return (EACCES);
1306		return (rdonly ? 0 : EACCES);
1307	}
1308	return (EACCES);
1309}
1310
1311/*
1312 * zfs_mount_label_policy:
1313 *	Determine whether the mount is allowed according to MAC check.
1314 *	by comparing (where appropriate) label of the dataset against
1315 *	the label of the zone being mounted into.  If the dataset has
1316 *	no label, create one.
1317 *
1318 *	Returns:
1319 *		 0 :	access allowed
1320 *		>0 :	error code, such as EACCES
1321 */
1322static int
1323zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1324{
1325	int		error, retv;
1326	zone_t		*mntzone = NULL;
1327	ts_label_t	*mnt_tsl;
1328	bslabel_t	*mnt_sl;
1329	bslabel_t	ds_sl;
1330	char		ds_hexsl[MAXNAMELEN];
1331
1332	retv = EACCES;				/* assume the worst */
1333
1334	/*
1335	 * Start by getting the dataset label if it exists.
1336	 */
1337	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1338	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1339	if (error)
1340		return (EACCES);
1341
1342	/*
1343	 * If labeling is NOT enabled, then disallow the mount of datasets
1344	 * which have a non-default label already.  No other label checks
1345	 * are needed.
1346	 */
1347	if (!is_system_labeled()) {
1348		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1349			return (0);
1350		return (EACCES);
1351	}
1352
1353	/*
1354	 * Get the label of the mountpoint.  If mounting into the global
1355	 * zone (i.e. mountpoint is not within an active zone and the
1356	 * zoned property is off), the label must be default or
1357	 * admin_low/admin_high only; no other checks are needed.
1358	 */
1359	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1360	if (mntzone->zone_id == GLOBAL_ZONEID) {
1361		uint64_t zoned;
1362
1363		zone_rele(mntzone);
1364
1365		if (dsl_prop_get_integer(osname,
1366		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1367			return (EACCES);
1368		if (!zoned)
1369			return (zfs_check_global_label(osname, ds_hexsl));
1370		else
1371			/*
1372			 * This is the case of a zone dataset being mounted
1373			 * initially, before the zone has been fully created;
1374			 * allow this mount into global zone.
1375			 */
1376			return (0);
1377	}
1378
1379	mnt_tsl = mntzone->zone_slabel;
1380	ASSERT(mnt_tsl != NULL);
1381	label_hold(mnt_tsl);
1382	mnt_sl = label2bslabel(mnt_tsl);
1383
1384	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1385		/*
1386		 * The dataset doesn't have a real label, so fabricate one.
1387		 */
1388		char *str = NULL;
1389
1390		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1391		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1392		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1393			retv = 0;
1394		if (str != NULL)
1395			kmem_free(str, strlen(str) + 1);
1396	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1397		/*
1398		 * Now compare labels to complete the MAC check.  If the
1399		 * labels are equal then allow access.  If the mountpoint
1400		 * label dominates the dataset label, allow readonly access.
1401		 * Otherwise, access is denied.
1402		 */
1403		if (blequal(mnt_sl, &ds_sl))
1404			retv = 0;
1405		else if (bldominates(mnt_sl, &ds_sl)) {
1406			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1407			retv = 0;
1408		}
1409	}
1410
1411	label_rele(mnt_tsl);
1412	zone_rele(mntzone);
1413	return (retv);
1414}
1415#endif	/* SECLABEL */
1416
1417#ifdef OPENSOLARIS_MOUNTROOT
1418static int
1419zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1420{
1421	int error = 0;
1422	static int zfsrootdone = 0;
1423	zfsvfs_t *zfsvfs = NULL;
1424	znode_t *zp = NULL;
1425	vnode_t *vp = NULL;
1426	char *zfs_bootfs;
1427	char *zfs_devid;
1428
1429	ASSERT(vfsp);
1430
1431	/*
1432	 * The filesystem that we mount as root is defined in the
1433	 * boot property "zfs-bootfs" with a format of
1434	 * "poolname/root-dataset-objnum".
1435	 */
1436	if (why == ROOT_INIT) {
1437		if (zfsrootdone++)
1438			return (EBUSY);
1439		/*
1440		 * the process of doing a spa_load will require the
1441		 * clock to be set before we could (for example) do
1442		 * something better by looking at the timestamp on
1443		 * an uberblock, so just set it to -1.
1444		 */
1445		clkset(-1);
1446
1447		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1448			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1449			    "bootfs name");
1450			return (EINVAL);
1451		}
1452		zfs_devid = spa_get_bootprop("diskdevid");
1453		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1454		if (zfs_devid)
1455			spa_free_bootprop(zfs_devid);
1456		if (error) {
1457			spa_free_bootprop(zfs_bootfs);
1458			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1459			    error);
1460			return (error);
1461		}
1462		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1463			spa_free_bootprop(zfs_bootfs);
1464			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1465			    error);
1466			return (error);
1467		}
1468
1469		spa_free_bootprop(zfs_bootfs);
1470
1471		if (error = vfs_lock(vfsp))
1472			return (error);
1473
1474		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1475			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1476			goto out;
1477		}
1478
1479		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1480		ASSERT(zfsvfs);
1481		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1482			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1483			goto out;
1484		}
1485
1486		vp = ZTOV(zp);
1487		mutex_enter(&vp->v_lock);
1488		vp->v_flag |= VROOT;
1489		mutex_exit(&vp->v_lock);
1490		rootvp = vp;
1491
1492		/*
1493		 * Leave rootvp held.  The root file system is never unmounted.
1494		 */
1495
1496		vfs_add((struct vnode *)0, vfsp,
1497		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1498out:
1499		vfs_unlock(vfsp);
1500		return (error);
1501	} else if (why == ROOT_REMOUNT) {
1502		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1503		vfsp->vfs_flag |= VFS_REMOUNT;
1504
1505		/* refresh mount options */
1506		zfs_unregister_callbacks(vfsp->vfs_data);
1507		return (zfs_register_callbacks(vfsp));
1508
1509	} else if (why == ROOT_UNMOUNT) {
1510		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1511		(void) zfs_sync(vfsp, 0, 0);
1512		return (0);
1513	}
1514
1515	/*
1516	 * if "why" is equal to anything else other than ROOT_INIT,
1517	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1518	 */
1519	return (ENOTSUP);
1520}
1521#endif	/* OPENSOLARIS_MOUNTROOT */
1522
1523/*ARGSUSED*/
1524static int
1525zfs_mount(vfs_t *vfsp)
1526{
1527	kthread_t	*td = curthread;
1528	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1529	cred_t		*cr = td->td_ucred;
1530	char		*osname;
1531	int		error = 0;
1532	int		canwrite;
1533
1534	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1535		return (EINVAL);
1536
1537	/*
1538	 * If full-owner-access is enabled and delegated administration is
1539	 * turned on, we must set nosuid.
1540	 */
1541	if (zfs_super_owner &&
1542	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1543		secpolicy_fs_mount_clearopts(cr, vfsp);
1544	}
1545
1546	/*
1547	 * Check for mount privilege?
1548	 *
1549	 * If we don't have privilege then see if
1550	 * we have local permission to allow it
1551	 */
1552	error = secpolicy_fs_mount(cr, mvp, vfsp);
1553	if (error) {
1554		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1555			goto out;
1556
1557		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1558			vattr_t		vattr;
1559
1560			/*
1561			 * Make sure user is the owner of the mount point
1562			 * or has sufficient privileges.
1563			 */
1564
1565			vattr.va_mask = AT_UID;
1566
1567			vn_lock(mvp, LK_SHARED | LK_RETRY);
1568			if (VOP_GETATTR(mvp, &vattr, cr)) {
1569				VOP_UNLOCK(mvp, 0);
1570				goto out;
1571			}
1572
1573			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1574			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1575				VOP_UNLOCK(mvp, 0);
1576				goto out;
1577			}
1578			VOP_UNLOCK(mvp, 0);
1579		}
1580
1581		secpolicy_fs_mount_clearopts(cr, vfsp);
1582	}
1583
1584	/*
1585	 * Refuse to mount a filesystem if we are in a local zone and the
1586	 * dataset is not visible.
1587	 */
1588	if (!INGLOBALZONE(curthread) &&
1589	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1590		error = EPERM;
1591		goto out;
1592	}
1593
1594#ifdef SECLABEL
1595	error = zfs_mount_label_policy(vfsp, osname);
1596	if (error)
1597		goto out;
1598#endif
1599
1600	vfsp->vfs_flag |= MNT_NFS4ACLS;
1601
1602	/*
1603	 * When doing a remount, we simply refresh our temporary properties
1604	 * according to those options set in the current VFS options.
1605	 */
1606	if (vfsp->vfs_flag & MS_REMOUNT) {
1607		/* refresh mount options */
1608		zfs_unregister_callbacks(vfsp->vfs_data);
1609		error = zfs_register_callbacks(vfsp);
1610		goto out;
1611	}
1612
1613	DROP_GIANT();
1614	error = zfs_domount(vfsp, osname);
1615	PICKUP_GIANT();
1616
1617#ifdef sun
1618	/*
1619	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1620	 * disappear due to a forced unmount.
1621	 */
1622	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1623		VFS_HOLD(mvp->v_vfsp);
1624#endif	/* sun */
1625
1626out:
1627	return (error);
1628}
1629
1630static int
1631zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1632{
1633	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1634	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1635
1636	statp->f_version = STATFS_VERSION;
1637
1638	ZFS_ENTER(zfsvfs);
1639
1640	dmu_objset_space(zfsvfs->z_os,
1641	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1642
1643	/*
1644	 * The underlying storage pool actually uses multiple block sizes.
1645	 * We report the fragsize as the smallest block size we support,
1646	 * and we report our blocksize as the filesystem's maximum blocksize.
1647	 */
1648	statp->f_bsize = SPA_MINBLOCKSIZE;
1649	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1650
1651	/*
1652	 * The following report "total" blocks of various kinds in the
1653	 * file system, but reported in terms of f_frsize - the
1654	 * "fragment" size.
1655	 */
1656
1657	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1658	statp->f_bfree = availbytes / statp->f_bsize;
1659	statp->f_bavail = statp->f_bfree; /* no root reservation */
1660
1661	/*
1662	 * statvfs() should really be called statufs(), because it assumes
1663	 * static metadata.  ZFS doesn't preallocate files, so the best
1664	 * we can do is report the max that could possibly fit in f_files,
1665	 * and that minus the number actually used in f_ffree.
1666	 * For f_ffree, report the smaller of the number of object available
1667	 * and the number of blocks (each object will take at least a block).
1668	 */
1669	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1670	statp->f_files = statp->f_ffree + usedobjs;
1671
1672	/*
1673	 * We're a zfs filesystem.
1674	 */
1675	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1676
1677	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1678	    sizeof(statp->f_mntfromname));
1679	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1680	    sizeof(statp->f_mntonname));
1681
1682	statp->f_namemax = ZFS_MAXNAMELEN;
1683
1684	ZFS_EXIT(zfsvfs);
1685	return (0);
1686}
1687
1688int
1689zfs_vnode_lock(vnode_t *vp, int flags)
1690{
1691	int error;
1692
1693	ASSERT(vp != NULL);
1694
1695	/*
1696	 * Check if the file system wasn't forcibly unmounted in the meantime.
1697	 */
1698	error = vn_lock(vp, flags);
1699	if (error == 0 && (vp->v_iflag & VI_DOOMED) != 0) {
1700		VOP_UNLOCK(vp, 0);
1701		error = ENOENT;
1702	}
1703
1704	return (error);
1705}
1706
1707static int
1708zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1709{
1710	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1711	znode_t *rootzp;
1712	int error;
1713
1714	ZFS_ENTER_NOERROR(zfsvfs);
1715
1716	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1717	if (error == 0)
1718		*vpp = ZTOV(rootzp);
1719
1720	ZFS_EXIT(zfsvfs);
1721
1722	if (error == 0) {
1723		error = zfs_vnode_lock(*vpp, flags);
1724		if (error == 0)
1725			(*vpp)->v_vflag |= VV_ROOT;
1726	}
1727	if (error != 0)
1728		*vpp = NULL;
1729
1730	return (error);
1731}
1732
1733/*
1734 * Teardown the zfsvfs::z_os.
1735 *
1736 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1737 * and 'z_teardown_inactive_lock' held.
1738 */
1739static int
1740zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1741{
1742	znode_t	*zp;
1743
1744	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1745
1746	if (!unmounting) {
1747		/*
1748		 * We purge the parent filesystem's vfsp as the parent
1749		 * filesystem and all of its snapshots have their vnode's
1750		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1751		 * 'z_parent' is self referential for non-snapshots.
1752		 */
1753		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1754#ifdef FREEBSD_NAMECACHE
1755		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1756#endif
1757	}
1758
1759	/*
1760	 * Close the zil. NB: Can't close the zil while zfs_inactive
1761	 * threads are blocked as zil_close can call zfs_inactive.
1762	 */
1763	if (zfsvfs->z_log) {
1764		zil_close(zfsvfs->z_log);
1765		zfsvfs->z_log = NULL;
1766	}
1767
1768	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1769
1770	/*
1771	 * If we are not unmounting (ie: online recv) and someone already
1772	 * unmounted this file system while we were doing the switcheroo,
1773	 * or a reopen of z_os failed then just bail out now.
1774	 */
1775	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1776		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1777		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1778		return (EIO);
1779	}
1780
1781	/*
1782	 * At this point there are no vops active, and any new vops will
1783	 * fail with EIO since we have z_teardown_lock for writer (only
1784	 * relavent for forced unmount).
1785	 *
1786	 * Release all holds on dbufs.
1787	 */
1788	mutex_enter(&zfsvfs->z_znodes_lock);
1789	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1790	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1791		if (zp->z_sa_hdl) {
1792			ASSERT(ZTOV(zp)->v_count >= 0);
1793			zfs_znode_dmu_fini(zp);
1794		}
1795	mutex_exit(&zfsvfs->z_znodes_lock);
1796
1797	/*
1798	 * If we are unmounting, set the unmounted flag and let new vops
1799	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1800	 * other vops will fail with EIO.
1801	 */
1802	if (unmounting) {
1803		zfsvfs->z_unmounted = B_TRUE;
1804		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1805		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1806
1807#ifdef __FreeBSD__
1808		/*
1809		 * Some znodes might not be fully reclaimed, wait for them.
1810		 */
1811		mutex_enter(&zfsvfs->z_znodes_lock);
1812		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1813			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1814			    "zteardown", 0);
1815		}
1816		mutex_exit(&zfsvfs->z_znodes_lock);
1817#endif
1818	}
1819
1820	/*
1821	 * z_os will be NULL if there was an error in attempting to reopen
1822	 * zfsvfs, so just return as the properties had already been
1823	 * unregistered and cached data had been evicted before.
1824	 */
1825	if (zfsvfs->z_os == NULL)
1826		return (0);
1827
1828	/*
1829	 * Unregister properties.
1830	 */
1831	zfs_unregister_callbacks(zfsvfs);
1832
1833	/*
1834	 * Evict cached data
1835	 */
1836	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1837		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1838			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1839	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1840
1841	return (0);
1842}
1843
1844/*ARGSUSED*/
1845static int
1846zfs_umount(vfs_t *vfsp, int fflag)
1847{
1848	kthread_t *td = curthread;
1849	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1850	objset_t *os;
1851	cred_t *cr = td->td_ucred;
1852	int ret;
1853
1854	ret = secpolicy_fs_unmount(cr, vfsp);
1855	if (ret) {
1856		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1857		    ZFS_DELEG_PERM_MOUNT, cr))
1858			return (ret);
1859	}
1860
1861	/*
1862	 * We purge the parent filesystem's vfsp as the parent filesystem
1863	 * and all of its snapshots have their vnode's v_vfsp set to the
1864	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1865	 * referential for non-snapshots.
1866	 */
1867	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1868
1869	/*
1870	 * Unmount any snapshots mounted under .zfs before unmounting the
1871	 * dataset itself.
1872	 */
1873	if (zfsvfs->z_ctldir != NULL) {
1874		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1875			return (ret);
1876		ret = vflush(vfsp, 0, 0, td);
1877		ASSERT(ret == EBUSY);
1878		if (!(fflag & MS_FORCE)) {
1879			if (zfsvfs->z_ctldir->v_count > 1)
1880				return (EBUSY);
1881			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1882		}
1883		zfsctl_destroy(zfsvfs);
1884		ASSERT(zfsvfs->z_ctldir == NULL);
1885	}
1886
1887	if (fflag & MS_FORCE) {
1888		/*
1889		 * Mark file system as unmounted before calling
1890		 * vflush(FORCECLOSE). This way we ensure no future vnops
1891		 * will be called and risk operating on DOOMED vnodes.
1892		 */
1893		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1894		zfsvfs->z_unmounted = B_TRUE;
1895		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1896	}
1897
1898	/*
1899	 * Flush all the files.
1900	 */
1901	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1902	if (ret != 0) {
1903		if (!zfsvfs->z_issnap) {
1904			zfsctl_create(zfsvfs);
1905			ASSERT(zfsvfs->z_ctldir != NULL);
1906		}
1907		return (ret);
1908	}
1909
1910	if (!(fflag & MS_FORCE)) {
1911		/*
1912		 * Check the number of active vnodes in the file system.
1913		 * Our count is maintained in the vfs structure, but the
1914		 * number is off by 1 to indicate a hold on the vfs
1915		 * structure itself.
1916		 *
1917		 * The '.zfs' directory maintains a reference of its
1918		 * own, and any active references underneath are
1919		 * reflected in the vnode count.
1920		 */
1921		if (zfsvfs->z_ctldir == NULL) {
1922			if (vfsp->vfs_count > 1)
1923				return (EBUSY);
1924		} else {
1925			if (vfsp->vfs_count > 2 ||
1926			    zfsvfs->z_ctldir->v_count > 1)
1927				return (EBUSY);
1928		}
1929	} else {
1930		MNT_ILOCK(vfsp);
1931		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
1932		MNT_IUNLOCK(vfsp);
1933	}
1934
1935	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1936	os = zfsvfs->z_os;
1937
1938	/*
1939	 * z_os will be NULL if there was an error in
1940	 * attempting to reopen zfsvfs.
1941	 */
1942	if (os != NULL) {
1943		/*
1944		 * Unset the objset user_ptr.
1945		 */
1946		mutex_enter(&os->os_user_ptr_lock);
1947		dmu_objset_set_user(os, NULL);
1948		mutex_exit(&os->os_user_ptr_lock);
1949
1950		/*
1951		 * Finally release the objset
1952		 */
1953		dmu_objset_disown(os, zfsvfs);
1954	}
1955
1956	/*
1957	 * We can now safely destroy the '.zfs' directory node.
1958	 */
1959	if (zfsvfs->z_ctldir != NULL)
1960		zfsctl_destroy(zfsvfs);
1961	if (zfsvfs->z_issnap) {
1962		vnode_t *svp = vfsp->mnt_vnodecovered;
1963
1964		if (svp->v_count >= 2)
1965			VN_RELE(svp);
1966	}
1967	zfs_freevfs(vfsp);
1968
1969	return (0);
1970}
1971
1972static int
1973zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1974{
1975	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1976	znode_t		*zp;
1977	int 		err;
1978
1979	/*
1980	 * zfs_zget() can't operate on virtual entries like .zfs/ or
1981	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1982	 * This will make NFS to switch to LOOKUP instead of using VGET.
1983	 */
1984	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
1985		return (EOPNOTSUPP);
1986
1987	ZFS_ENTER(zfsvfs);
1988	err = zfs_zget(zfsvfs, ino, &zp);
1989	if (err == 0 && zp->z_unlinked) {
1990		VN_RELE(ZTOV(zp));
1991		err = EINVAL;
1992	}
1993	if (err == 0)
1994		*vpp = ZTOV(zp);
1995	ZFS_EXIT(zfsvfs);
1996	if (err == 0)
1997		err = zfs_vnode_lock(*vpp, flags);
1998	if (err != 0)
1999		*vpp = NULL;
2000	return (err);
2001}
2002
2003static int
2004zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2005    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2006{
2007	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2008
2009	/*
2010	 * If this is regular file system vfsp is the same as
2011	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2012	 * zfsvfs->z_parent->z_vfs represents parent file system
2013	 * which we have to use here, because only this file system
2014	 * has mnt_export configured.
2015	 */
2016	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2017	    credanonp, numsecflavors, secflavors));
2018}
2019
2020CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2021CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2022
2023static int
2024zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2025{
2026	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2027	znode_t		*zp;
2028	uint64_t	object = 0;
2029	uint64_t	fid_gen = 0;
2030	uint64_t	gen_mask;
2031	uint64_t	zp_gen;
2032	int 		i, err;
2033
2034	*vpp = NULL;
2035
2036	ZFS_ENTER(zfsvfs);
2037
2038	/*
2039	 * On FreeBSD we can get snapshot's mount point or its parent file
2040	 * system mount point depending if snapshot is already mounted or not.
2041	 */
2042	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2043		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2044		uint64_t	objsetid = 0;
2045		uint64_t	setgen = 0;
2046
2047		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2048			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2049
2050		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2051			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2052
2053		ZFS_EXIT(zfsvfs);
2054
2055		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2056		if (err)
2057			return (EINVAL);
2058		ZFS_ENTER(zfsvfs);
2059	}
2060
2061	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2062		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2063
2064		for (i = 0; i < sizeof (zfid->zf_object); i++)
2065			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2066
2067		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2068			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2069	} else {
2070		ZFS_EXIT(zfsvfs);
2071		return (EINVAL);
2072	}
2073
2074	/* A zero fid_gen means we are in the .zfs control directories */
2075	if (fid_gen == 0 &&
2076	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2077		*vpp = zfsvfs->z_ctldir;
2078		ASSERT(*vpp != NULL);
2079		if (object == ZFSCTL_INO_SNAPDIR) {
2080			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2081			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2082		} else {
2083			VN_HOLD(*vpp);
2084		}
2085		ZFS_EXIT(zfsvfs);
2086		err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2087		if (err != 0)
2088			*vpp = NULL;
2089		return (err);
2090	}
2091
2092	gen_mask = -1ULL >> (64 - 8 * i);
2093
2094	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2095	if (err = zfs_zget(zfsvfs, object, &zp)) {
2096		ZFS_EXIT(zfsvfs);
2097		return (err);
2098	}
2099	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2100	    sizeof (uint64_t));
2101	zp_gen = zp_gen & gen_mask;
2102	if (zp_gen == 0)
2103		zp_gen = 1;
2104	if (zp->z_unlinked || zp_gen != fid_gen) {
2105		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2106		VN_RELE(ZTOV(zp));
2107		ZFS_EXIT(zfsvfs);
2108		return (EINVAL);
2109	}
2110
2111	*vpp = ZTOV(zp);
2112	ZFS_EXIT(zfsvfs);
2113	err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2114	if (err == 0)
2115		vnode_create_vobject(*vpp, zp->z_size, curthread);
2116	else
2117		*vpp = NULL;
2118	return (err);
2119}
2120
2121/*
2122 * Block out VOPs and close zfsvfs_t::z_os
2123 *
2124 * Note, if successful, then we return with the 'z_teardown_lock' and
2125 * 'z_teardown_inactive_lock' write held.
2126 */
2127int
2128zfs_suspend_fs(zfsvfs_t *zfsvfs)
2129{
2130	int error;
2131
2132	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2133		return (error);
2134	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2135
2136	return (0);
2137}
2138
2139/*
2140 * Reopen zfsvfs_t::z_os and release VOPs.
2141 */
2142int
2143zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2144{
2145	int err;
2146
2147	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2148	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2149
2150	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2151	    &zfsvfs->z_os);
2152	if (err) {
2153		zfsvfs->z_os = NULL;
2154	} else {
2155		znode_t *zp;
2156		uint64_t sa_obj = 0;
2157
2158		/*
2159		 * Make sure version hasn't changed
2160		 */
2161
2162		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2163		    &zfsvfs->z_version);
2164
2165		if (err)
2166			goto bail;
2167
2168		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2169		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2170
2171		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2172			goto bail;
2173
2174		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2175		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2176			goto bail;
2177
2178		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2179			sa_register_update_callback(zfsvfs->z_os,
2180			    zfs_sa_upgrade);
2181
2182		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2183
2184		zfs_set_fuid_feature(zfsvfs);
2185
2186		/*
2187		 * Attempt to re-establish all the active znodes with
2188		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2189		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2190		 * when they try to use their znode.
2191		 */
2192		mutex_enter(&zfsvfs->z_znodes_lock);
2193		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2194		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2195			(void) zfs_rezget(zp);
2196		}
2197		mutex_exit(&zfsvfs->z_znodes_lock);
2198	}
2199
2200bail:
2201	/* release the VOPs */
2202	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2203	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2204
2205	if (err) {
2206		/*
2207		 * Since we couldn't reopen zfsvfs::z_os, or
2208		 * setup the sa framework force unmount this file system.
2209		 */
2210		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2211			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2212	}
2213	return (err);
2214}
2215
2216static void
2217zfs_freevfs(vfs_t *vfsp)
2218{
2219	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2220
2221#ifdef sun
2222	/*
2223	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2224	 * from zfs_mount().  Release it here.  If we came through
2225	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2226	 * skip the VFS_RELE for rootvfs.
2227	 */
2228	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2229		VFS_RELE(zfsvfs->z_parent->z_vfs);
2230#endif	/* sun */
2231
2232	zfsvfs_free(zfsvfs);
2233
2234	atomic_add_32(&zfs_active_fs_count, -1);
2235}
2236
2237#ifdef __i386__
2238static int desiredvnodes_backup;
2239#endif
2240
2241static void
2242zfs_vnodes_adjust(void)
2243{
2244#ifdef __i386__
2245	int newdesiredvnodes;
2246
2247	desiredvnodes_backup = desiredvnodes;
2248
2249	/*
2250	 * We calculate newdesiredvnodes the same way it is done in
2251	 * vntblinit(). If it is equal to desiredvnodes, it means that
2252	 * it wasn't tuned by the administrator and we can tune it down.
2253	 */
2254	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2255	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2256	    sizeof(struct vnode))));
2257	if (newdesiredvnodes == desiredvnodes)
2258		desiredvnodes = (3 * newdesiredvnodes) / 4;
2259#endif
2260}
2261
2262static void
2263zfs_vnodes_adjust_back(void)
2264{
2265
2266#ifdef __i386__
2267	desiredvnodes = desiredvnodes_backup;
2268#endif
2269}
2270
2271void
2272zfs_init(void)
2273{
2274
2275	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
2276
2277	/*
2278	 * Initialize .zfs directory structures
2279	 */
2280	zfsctl_init();
2281
2282	/*
2283	 * Initialize znode cache, vnode ops, etc...
2284	 */
2285	zfs_znode_init();
2286
2287	/*
2288	 * Reduce number of vnodes. Originally number of vnodes is calculated
2289	 * with UFS inode in mind. We reduce it here, because it's too big for
2290	 * ZFS/i386.
2291	 */
2292	zfs_vnodes_adjust();
2293
2294	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2295}
2296
2297void
2298zfs_fini(void)
2299{
2300	zfsctl_fini();
2301	zfs_znode_fini();
2302	zfs_vnodes_adjust_back();
2303}
2304
2305int
2306zfs_busy(void)
2307{
2308	return (zfs_active_fs_count != 0);
2309}
2310
2311int
2312zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2313{
2314	int error;
2315	objset_t *os = zfsvfs->z_os;
2316	dmu_tx_t *tx;
2317
2318	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2319		return (EINVAL);
2320
2321	if (newvers < zfsvfs->z_version)
2322		return (EINVAL);
2323
2324	if (zfs_spa_version_map(newvers) >
2325	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2326		return (ENOTSUP);
2327
2328	tx = dmu_tx_create(os);
2329	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2330	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2331		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2332		    ZFS_SA_ATTRS);
2333		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2334	}
2335	error = dmu_tx_assign(tx, TXG_WAIT);
2336	if (error) {
2337		dmu_tx_abort(tx);
2338		return (error);
2339	}
2340
2341	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2342	    8, 1, &newvers, tx);
2343
2344	if (error) {
2345		dmu_tx_commit(tx);
2346		return (error);
2347	}
2348
2349	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2350		uint64_t sa_obj;
2351
2352		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2353		    SPA_VERSION_SA);
2354		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2355		    DMU_OT_NONE, 0, tx);
2356
2357		error = zap_add(os, MASTER_NODE_OBJ,
2358		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2359		ASSERT3U(error, ==, 0);
2360
2361		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2362		sa_register_update_callback(os, zfs_sa_upgrade);
2363	}
2364
2365	spa_history_log_internal(LOG_DS_UPGRADE,
2366	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2367	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2368
2369	dmu_tx_commit(tx);
2370
2371	zfsvfs->z_version = newvers;
2372
2373	zfs_set_fuid_feature(zfsvfs);
2374
2375	return (0);
2376}
2377
2378/*
2379 * Read a property stored within the master node.
2380 */
2381int
2382zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2383{
2384	const char *pname;
2385	int error = ENOENT;
2386
2387	/*
2388	 * Look up the file system's value for the property.  For the
2389	 * version property, we look up a slightly different string.
2390	 */
2391	if (prop == ZFS_PROP_VERSION)
2392		pname = ZPL_VERSION_STR;
2393	else
2394		pname = zfs_prop_to_name(prop);
2395
2396	if (os != NULL)
2397		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2398
2399	if (error == ENOENT) {
2400		/* No value set, use the default value */
2401		switch (prop) {
2402		case ZFS_PROP_VERSION:
2403			*value = ZPL_VERSION;
2404			break;
2405		case ZFS_PROP_NORMALIZE:
2406		case ZFS_PROP_UTF8ONLY:
2407			*value = 0;
2408			break;
2409		case ZFS_PROP_CASE:
2410			*value = ZFS_CASE_SENSITIVE;
2411			break;
2412		default:
2413			return (error);
2414		}
2415		error = 0;
2416	}
2417	return (error);
2418}
2419