zfs_vfsops.c revision 218386
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/systm.h>
29#include <sys/kernel.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/acl.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/mntent.h>
36#include <sys/mount.h>
37#include <sys/cmn_err.h>
38#include <sys/zfs_znode.h>
39#include <sys/zfs_dir.h>
40#include <sys/zil.h>
41#include <sys/fs/zfs.h>
42#include <sys/dmu.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dataset.h>
45#include <sys/dsl_deleg.h>
46#include <sys/spa.h>
47#include <sys/zap.h>
48#include <sys/varargs.h>
49#include <sys/policy.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/zfs_ctldir.h>
53#include <sys/zfs_fuid.h>
54#include <sys/sunddi.h>
55#include <sys/dnlc.h>
56#include <sys/dmu_objset.h>
57#include <sys/spa_boot.h>
58
59struct mtx zfs_debug_mtx;
60MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
61
62SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
63
64int zfs_super_owner = 0;
65SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
66    "File system owner can perform privileged operation on his file systems");
67
68int zfs_debug_level = 0;
69TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
70SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
71    "Debug level");
72
73SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
74static int zfs_version_acl = ZFS_ACL_VERSION;
75SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
76    "ZFS_ACL_VERSION");
77static int zfs_version_dmu_backup_header = DMU_BACKUP_HEADER_VERSION;
78SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_header, CTLFLAG_RD,
79    &zfs_version_dmu_backup_header, 0, "DMU_BACKUP_HEADER_VERSION");
80static int zfs_version_dmu_backup_stream = DMU_BACKUP_STREAM_VERSION;
81SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_stream, CTLFLAG_RD,
82    &zfs_version_dmu_backup_stream, 0, "DMU_BACKUP_STREAM_VERSION");
83static int zfs_version_spa = SPA_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
85    "SPA_VERSION");
86static int zfs_version_zpl = ZPL_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
88    "ZPL_VERSION");
89
90static int zfs_mount(vfs_t *vfsp);
91static int zfs_umount(vfs_t *vfsp, int fflag);
92static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
93static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
94static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
95static int zfs_sync(vfs_t *vfsp, int waitfor);
96static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
97    struct ucred **credanonp, int *numsecflavors, int **secflavors);
98static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
99static void zfs_objset_close(zfsvfs_t *zfsvfs);
100static void zfs_freevfs(vfs_t *vfsp);
101
102static struct vfsops zfs_vfsops = {
103	.vfs_mount =		zfs_mount,
104	.vfs_unmount =		zfs_umount,
105	.vfs_root =		zfs_root,
106	.vfs_statfs =		zfs_statfs,
107	.vfs_vget =		zfs_vget,
108	.vfs_sync =		zfs_sync,
109	.vfs_checkexp =		zfs_checkexp,
110	.vfs_fhtovp =		zfs_fhtovp,
111};
112
113VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
114
115/*
116 * We need to keep a count of active fs's.
117 * This is necessary to prevent our module
118 * from being unloaded after a umount -f
119 */
120static uint32_t	zfs_active_fs_count = 0;
121
122/*ARGSUSED*/
123static int
124zfs_sync(vfs_t *vfsp, int waitfor)
125{
126
127	/*
128	 * Data integrity is job one.  We don't want a compromised kernel
129	 * writing to the storage pool, so we never sync during panic.
130	 */
131	if (panicstr)
132		return (0);
133
134	if (vfsp != NULL) {
135		/*
136		 * Sync a specific filesystem.
137		 */
138		zfsvfs_t *zfsvfs = vfsp->vfs_data;
139		dsl_pool_t *dp;
140		int error;
141
142		error = vfs_stdsync(vfsp, waitfor);
143		if (error != 0)
144			return (error);
145
146		ZFS_ENTER(zfsvfs);
147		dp = dmu_objset_pool(zfsvfs->z_os);
148
149		/*
150		 * If the system is shutting down, then skip any
151		 * filesystems which may exist on a suspended pool.
152		 */
153		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
154			ZFS_EXIT(zfsvfs);
155			return (0);
156		}
157
158		if (zfsvfs->z_log != NULL)
159			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
160		else
161			txg_wait_synced(dp, 0);
162		ZFS_EXIT(zfsvfs);
163	} else {
164		/*
165		 * Sync all ZFS filesystems.  This is what happens when you
166		 * run sync(1M).  Unlike other filesystems, ZFS honors the
167		 * request by waiting for all pools to commit all dirty data.
168		 */
169		spa_sync_allpools();
170	}
171
172	return (0);
173}
174
175static void
176atime_changed_cb(void *arg, uint64_t newval)
177{
178	zfsvfs_t *zfsvfs = arg;
179
180	if (newval == TRUE) {
181		zfsvfs->z_atime = TRUE;
182		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
183		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
184		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
185	} else {
186		zfsvfs->z_atime = FALSE;
187		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
188		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
189		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
190	}
191}
192
193static void
194xattr_changed_cb(void *arg, uint64_t newval)
195{
196	zfsvfs_t *zfsvfs = arg;
197
198	if (newval == TRUE) {
199		/* XXX locking on vfs_flag? */
200#ifdef TODO
201		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
202#endif
203		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
204		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
205	} else {
206		/* XXX locking on vfs_flag? */
207#ifdef TODO
208		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
209#endif
210		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
211		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
212	}
213}
214
215static void
216blksz_changed_cb(void *arg, uint64_t newval)
217{
218	zfsvfs_t *zfsvfs = arg;
219
220	if (newval < SPA_MINBLOCKSIZE ||
221	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
222		newval = SPA_MAXBLOCKSIZE;
223
224	zfsvfs->z_max_blksz = newval;
225	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
226}
227
228static void
229readonly_changed_cb(void *arg, uint64_t newval)
230{
231	zfsvfs_t *zfsvfs = arg;
232
233	if (newval) {
234		/* XXX locking on vfs_flag? */
235		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
236		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
237		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
238	} else {
239		/* XXX locking on vfs_flag? */
240		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
241		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
242		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
243	}
244}
245
246static void
247setuid_changed_cb(void *arg, uint64_t newval)
248{
249	zfsvfs_t *zfsvfs = arg;
250
251	if (newval == FALSE) {
252		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
253		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
254		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
255	} else {
256		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
257		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
258		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
259	}
260}
261
262static void
263exec_changed_cb(void *arg, uint64_t newval)
264{
265	zfsvfs_t *zfsvfs = arg;
266
267	if (newval == FALSE) {
268		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
269		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
270		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
271	} else {
272		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
275	}
276}
277
278/*
279 * The nbmand mount option can be changed at mount time.
280 * We can't allow it to be toggled on live file systems or incorrect
281 * behavior may be seen from cifs clients
282 *
283 * This property isn't registered via dsl_prop_register(), but this callback
284 * will be called when a file system is first mounted
285 */
286static void
287nbmand_changed_cb(void *arg, uint64_t newval)
288{
289	zfsvfs_t *zfsvfs = arg;
290	if (newval == FALSE) {
291		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
292		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
293	} else {
294		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
295		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
296	}
297}
298
299static void
300snapdir_changed_cb(void *arg, uint64_t newval)
301{
302	zfsvfs_t *zfsvfs = arg;
303
304	zfsvfs->z_show_ctldir = newval;
305}
306
307static void
308vscan_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	zfsvfs->z_vscan = newval;
313}
314
315static void
316acl_mode_changed_cb(void *arg, uint64_t newval)
317{
318	zfsvfs_t *zfsvfs = arg;
319
320	zfsvfs->z_acl_mode = newval;
321}
322
323static void
324acl_inherit_changed_cb(void *arg, uint64_t newval)
325{
326	zfsvfs_t *zfsvfs = arg;
327
328	zfsvfs->z_acl_inherit = newval;
329}
330
331static int
332zfs_register_callbacks(vfs_t *vfsp)
333{
334	struct dsl_dataset *ds = NULL;
335	objset_t *os = NULL;
336	zfsvfs_t *zfsvfs = NULL;
337	uint64_t nbmand;
338	int readonly, do_readonly = FALSE;
339	int setuid, do_setuid = FALSE;
340	int exec, do_exec = FALSE;
341	int xattr, do_xattr = FALSE;
342	int atime, do_atime = FALSE;
343	int error = 0;
344
345	ASSERT(vfsp);
346	zfsvfs = vfsp->vfs_data;
347	ASSERT(zfsvfs);
348	os = zfsvfs->z_os;
349
350	/*
351	 * This function can be called for a snapshot when we update snapshot's
352	 * mount point, which isn't really supported.
353	 */
354	if (dmu_objset_is_snapshot(os))
355		return (EOPNOTSUPP);
356
357	/*
358	 * The act of registering our callbacks will destroy any mount
359	 * options we may have.  In order to enable temporary overrides
360	 * of mount options, we stash away the current values and
361	 * restore them after we register the callbacks.
362	 */
363	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
364		readonly = B_TRUE;
365		do_readonly = B_TRUE;
366	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
367		readonly = B_FALSE;
368		do_readonly = B_TRUE;
369	}
370	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
371		setuid = B_FALSE;
372		do_setuid = B_TRUE;
373	} else {
374		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
375			setuid = B_FALSE;
376			do_setuid = B_TRUE;
377		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
378			setuid = B_TRUE;
379			do_setuid = B_TRUE;
380		}
381	}
382	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
383		exec = B_FALSE;
384		do_exec = B_TRUE;
385	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
386		exec = B_TRUE;
387		do_exec = B_TRUE;
388	}
389	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
390		xattr = B_FALSE;
391		do_xattr = B_TRUE;
392	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
393		xattr = B_TRUE;
394		do_xattr = B_TRUE;
395	}
396	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
397		atime = B_FALSE;
398		do_atime = B_TRUE;
399	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
400		atime = B_TRUE;
401		do_atime = B_TRUE;
402	}
403
404	/*
405	 * nbmand is a special property.  It can only be changed at
406	 * mount time.
407	 *
408	 * This is weird, but it is documented to only be changeable
409	 * at mount time.
410	 */
411	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
412		nbmand = B_FALSE;
413	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
414		nbmand = B_TRUE;
415	} else {
416		char osname[MAXNAMELEN];
417
418		dmu_objset_name(os, osname);
419		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
420		    NULL)) {
421			return (error);
422		}
423	}
424
425	/*
426	 * Register property callbacks.
427	 *
428	 * It would probably be fine to just check for i/o error from
429	 * the first prop_register(), but I guess I like to go
430	 * overboard...
431	 */
432	ds = dmu_objset_ds(os);
433	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
434	error = error ? error : dsl_prop_register(ds,
435	    "xattr", xattr_changed_cb, zfsvfs);
436	error = error ? error : dsl_prop_register(ds,
437	    "recordsize", blksz_changed_cb, zfsvfs);
438	error = error ? error : dsl_prop_register(ds,
439	    "readonly", readonly_changed_cb, zfsvfs);
440	error = error ? error : dsl_prop_register(ds,
441	    "setuid", setuid_changed_cb, zfsvfs);
442	error = error ? error : dsl_prop_register(ds,
443	    "exec", exec_changed_cb, zfsvfs);
444	error = error ? error : dsl_prop_register(ds,
445	    "snapdir", snapdir_changed_cb, zfsvfs);
446	error = error ? error : dsl_prop_register(ds,
447	    "aclmode", acl_mode_changed_cb, zfsvfs);
448	error = error ? error : dsl_prop_register(ds,
449	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
450	error = error ? error : dsl_prop_register(ds,
451	    "vscan", vscan_changed_cb, zfsvfs);
452	if (error)
453		goto unregister;
454
455	/*
456	 * Invoke our callbacks to restore temporary mount options.
457	 */
458	if (do_readonly)
459		readonly_changed_cb(zfsvfs, readonly);
460	if (do_setuid)
461		setuid_changed_cb(zfsvfs, setuid);
462	if (do_exec)
463		exec_changed_cb(zfsvfs, exec);
464	if (do_xattr)
465		xattr_changed_cb(zfsvfs, xattr);
466	if (do_atime)
467		atime_changed_cb(zfsvfs, atime);
468
469	nbmand_changed_cb(zfsvfs, nbmand);
470
471	return (0);
472
473unregister:
474	/*
475	 * We may attempt to unregister some callbacks that are not
476	 * registered, but this is OK; it will simply return ENOMSG,
477	 * which we will ignore.
478	 */
479	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
480	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
481	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
482	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
483	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
484	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
485	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
486	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
487	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
488	    zfsvfs);
489	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
490	return (error);
491
492}
493
494static void
495uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
496    int64_t delta, dmu_tx_t *tx)
497{
498	uint64_t used = 0;
499	char buf[32];
500	int err;
501	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
502
503	if (delta == 0)
504		return;
505
506	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
507	err = zap_lookup(os, obj, buf, 8, 1, &used);
508	ASSERT(err == 0 || err == ENOENT);
509	/* no underflow/overflow */
510	ASSERT(delta > 0 || used >= -delta);
511	ASSERT(delta < 0 || used + delta > used);
512	used += delta;
513	if (used == 0)
514		err = zap_remove(os, obj, buf, tx);
515	else
516		err = zap_update(os, obj, buf, 8, 1, &used, tx);
517	ASSERT(err == 0);
518}
519
520static void
521zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype,
522    void *oldbonus, void *newbonus,
523    uint64_t oldused, uint64_t newused, dmu_tx_t *tx)
524{
525	znode_phys_t *oldznp = oldbonus;
526	znode_phys_t *newznp = newbonus;
527
528	if (bonustype != DMU_OT_ZNODE)
529		return;
530
531	/* We charge 512 for the dnode (if it's allocated). */
532	if (oldznp->zp_gen != 0)
533		oldused += DNODE_SIZE;
534	if (newznp->zp_gen != 0)
535		newused += DNODE_SIZE;
536
537	if (oldznp->zp_uid == newznp->zp_uid) {
538		uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx);
539	} else {
540		uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx);
541		uidacct(os, B_FALSE, newznp->zp_uid, newused, tx);
542	}
543
544	if (oldznp->zp_gid == newznp->zp_gid) {
545		uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx);
546	} else {
547		uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx);
548		uidacct(os, B_TRUE, newznp->zp_gid, newused, tx);
549	}
550}
551
552static void
553fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
554    char *domainbuf, int buflen, uid_t *ridp)
555{
556	uint64_t fuid;
557	const char *domain;
558
559	fuid = strtonum(fuidstr, NULL);
560
561	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
562	if (domain)
563		(void) strlcpy(domainbuf, domain, buflen);
564	else
565		domainbuf[0] = '\0';
566	*ridp = FUID_RID(fuid);
567}
568
569static uint64_t
570zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
571{
572	switch (type) {
573	case ZFS_PROP_USERUSED:
574		return (DMU_USERUSED_OBJECT);
575	case ZFS_PROP_GROUPUSED:
576		return (DMU_GROUPUSED_OBJECT);
577	case ZFS_PROP_USERQUOTA:
578		return (zfsvfs->z_userquota_obj);
579	case ZFS_PROP_GROUPQUOTA:
580		return (zfsvfs->z_groupquota_obj);
581	}
582	return (0);
583}
584
585int
586zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
587    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
588{
589	int error;
590	zap_cursor_t zc;
591	zap_attribute_t za;
592	zfs_useracct_t *buf = vbuf;
593	uint64_t obj;
594
595	if (!dmu_objset_userspace_present(zfsvfs->z_os))
596		return (ENOTSUP);
597
598	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
599	if (obj == 0) {
600		*bufsizep = 0;
601		return (0);
602	}
603
604	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
605	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
606	    zap_cursor_advance(&zc)) {
607		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
608		    *bufsizep)
609			break;
610
611		fuidstr_to_sid(zfsvfs, za.za_name,
612		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
613
614		buf->zu_space = za.za_first_integer;
615		buf++;
616	}
617	if (error == ENOENT)
618		error = 0;
619
620	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
621	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
622	*cookiep = zap_cursor_serialize(&zc);
623	zap_cursor_fini(&zc);
624	return (error);
625}
626
627/*
628 * buf must be big enough (eg, 32 bytes)
629 */
630static int
631id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
632    char *buf, boolean_t addok)
633{
634	uint64_t fuid;
635	int domainid = 0;
636
637	if (domain && domain[0]) {
638		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
639		if (domainid == -1)
640			return (ENOENT);
641	}
642	fuid = FUID_ENCODE(domainid, rid);
643	(void) sprintf(buf, "%llx", (longlong_t)fuid);
644	return (0);
645}
646
647int
648zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
649    const char *domain, uint64_t rid, uint64_t *valp)
650{
651	char buf[32];
652	int err;
653	uint64_t obj;
654
655	*valp = 0;
656
657	if (!dmu_objset_userspace_present(zfsvfs->z_os))
658		return (ENOTSUP);
659
660	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
661	if (obj == 0)
662		return (0);
663
664	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
665	if (err)
666		return (err);
667
668	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
669	if (err == ENOENT)
670		err = 0;
671	return (err);
672}
673
674int
675zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
676    const char *domain, uint64_t rid, uint64_t quota)
677{
678	char buf[32];
679	int err;
680	dmu_tx_t *tx;
681	uint64_t *objp;
682	boolean_t fuid_dirtied;
683
684	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
685		return (EINVAL);
686
687	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
688		return (ENOTSUP);
689
690	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
691	    &zfsvfs->z_groupquota_obj;
692
693	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
694	if (err)
695		return (err);
696	fuid_dirtied = zfsvfs->z_fuid_dirty;
697
698	tx = dmu_tx_create(zfsvfs->z_os);
699	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
700	if (*objp == 0) {
701		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
702		    zfs_userquota_prop_prefixes[type]);
703	}
704	if (fuid_dirtied)
705		zfs_fuid_txhold(zfsvfs, tx);
706	err = dmu_tx_assign(tx, TXG_WAIT);
707	if (err) {
708		dmu_tx_abort(tx);
709		return (err);
710	}
711
712	mutex_enter(&zfsvfs->z_lock);
713	if (*objp == 0) {
714		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
715		    DMU_OT_NONE, 0, tx);
716		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
717		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
718	}
719	mutex_exit(&zfsvfs->z_lock);
720
721	if (quota == 0) {
722		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
723		if (err == ENOENT)
724			err = 0;
725	} else {
726		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
727	}
728	ASSERT(err == 0);
729	if (fuid_dirtied)
730		zfs_fuid_sync(zfsvfs, tx);
731	dmu_tx_commit(tx);
732	return (err);
733}
734
735boolean_t
736zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
737{
738	char buf[32];
739	uint64_t used, quota, usedobj, quotaobj;
740	int err;
741
742	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
743	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
744
745	if (quotaobj == 0 || zfsvfs->z_replay)
746		return (B_FALSE);
747
748	(void) sprintf(buf, "%llx", (longlong_t)fuid);
749	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
750	if (err != 0)
751		return (B_FALSE);
752
753	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
754	if (err != 0)
755		return (B_FALSE);
756	return (used >= quota);
757}
758
759int
760zfsvfs_create(const char *osname, int mode, zfsvfs_t **zvp)
761{
762	objset_t *os;
763	zfsvfs_t *zfsvfs;
764	uint64_t zval;
765	int i, error;
766
767	if (error = dsl_prop_get_integer(osname, "readonly", &zval, NULL))
768		return (error);
769	if (zval)
770		mode |= DS_MODE_READONLY;
771
772	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
773	if (error == EROFS) {
774		mode |= DS_MODE_READONLY;
775		error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
776	}
777	if (error)
778		return (error);
779
780	/*
781	 * Initialize the zfs-specific filesystem structure.
782	 * Should probably make this a kmem cache, shuffle fields,
783	 * and just bzero up to z_hold_mtx[].
784	 */
785	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
786	zfsvfs->z_vfs = NULL;
787	zfsvfs->z_parent = zfsvfs;
788	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
789	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
790	zfsvfs->z_os = os;
791
792	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
793	if (error) {
794		goto out;
795	} else if (zfsvfs->z_version > ZPL_VERSION) {
796		(void) printf("Mismatched versions:  File system "
797		    "is version %llu on-disk format, which is "
798		    "incompatible with this software version %lld!",
799		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
800		error = ENOTSUP;
801		goto out;
802	}
803
804	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
805		goto out;
806	zfsvfs->z_norm = (int)zval;
807
808	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
809		goto out;
810	zfsvfs->z_utf8 = (zval != 0);
811
812	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
813		goto out;
814	zfsvfs->z_case = (uint_t)zval;
815
816	/*
817	 * Fold case on file systems that are always or sometimes case
818	 * insensitive.
819	 */
820	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
821	    zfsvfs->z_case == ZFS_CASE_MIXED)
822		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
823
824	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
825
826	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
827	    &zfsvfs->z_root);
828	if (error)
829		goto out;
830	ASSERT(zfsvfs->z_root != 0);
831
832	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
833	    &zfsvfs->z_unlinkedobj);
834	if (error)
835		goto out;
836
837	error = zap_lookup(os, MASTER_NODE_OBJ,
838	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
839	    8, 1, &zfsvfs->z_userquota_obj);
840	if (error && error != ENOENT)
841		goto out;
842
843	error = zap_lookup(os, MASTER_NODE_OBJ,
844	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
845	    8, 1, &zfsvfs->z_groupquota_obj);
846	if (error && error != ENOENT)
847		goto out;
848
849	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
850	    &zfsvfs->z_fuid_obj);
851	if (error && error != ENOENT)
852		goto out;
853
854	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
855	    &zfsvfs->z_shares_dir);
856	if (error && error != ENOENT)
857		goto out;
858
859	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
860	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
861	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
862	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
863	    offsetof(znode_t, z_link_node));
864	rrw_init(&zfsvfs->z_teardown_lock);
865	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
866	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
867	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
868		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
869
870	*zvp = zfsvfs;
871	return (0);
872
873out:
874	dmu_objset_close(os);
875	*zvp = NULL;
876	kmem_free(zfsvfs, sizeof (zfsvfs_t));
877	return (error);
878}
879
880static int
881zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
882{
883	int error;
884
885	error = zfs_register_callbacks(zfsvfs->z_vfs);
886	if (error)
887		return (error);
888
889	/*
890	 * Set the objset user_ptr to track its zfsvfs.
891	 */
892	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
893	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
894	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
895
896	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
897	if (zil_disable) {
898		zil_destroy(zfsvfs->z_log, B_FALSE);
899		zfsvfs->z_log = NULL;
900	}
901
902	/*
903	 * If we are not mounting (ie: online recv), then we don't
904	 * have to worry about replaying the log as we blocked all
905	 * operations out since we closed the ZIL.
906	 */
907	if (mounting) {
908		boolean_t readonly;
909
910		/*
911		 * During replay we remove the read only flag to
912		 * allow replays to succeed.
913		 */
914		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
915		if (readonly != 0)
916			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
917		else
918			zfs_unlinked_drain(zfsvfs);
919
920		if (zfsvfs->z_log) {
921			/*
922			 * Parse and replay the intent log.
923			 *
924			 * Because of ziltest, this must be done after
925			 * zfs_unlinked_drain().  (Further note: ziltest
926			 * doesn't use readonly mounts, where
927			 * zfs_unlinked_drain() isn't called.)  This is because
928			 * ziltest causes spa_sync() to think it's committed,
929			 * but actually it is not, so the intent log contains
930			 * many txg's worth of changes.
931			 *
932			 * In particular, if object N is in the unlinked set in
933			 * the last txg to actually sync, then it could be
934			 * actually freed in a later txg and then reallocated
935			 * in a yet later txg.  This would write a "create
936			 * object N" record to the intent log.  Normally, this
937			 * would be fine because the spa_sync() would have
938			 * written out the fact that object N is free, before
939			 * we could write the "create object N" intent log
940			 * record.
941			 *
942			 * But when we are in ziltest mode, we advance the "open
943			 * txg" without actually spa_sync()-ing the changes to
944			 * disk.  So we would see that object N is still
945			 * allocated and in the unlinked set, and there is an
946			 * intent log record saying to allocate it.
947			 */
948			zfsvfs->z_replay = B_TRUE;
949			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
950			zfsvfs->z_replay = B_FALSE;
951		}
952		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
953	}
954
955	return (0);
956}
957
958extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
959
960void
961zfsvfs_free(zfsvfs_t *zfsvfs)
962{
963	int i;
964
965	/*
966	 * This is a barrier to prevent the filesystem from going away in
967	 * zfs_znode_move() until we can safely ensure that the filesystem is
968	 * not unmounted. We consider the filesystem valid before the barrier
969	 * and invalid after the barrier.
970	 */
971	rw_enter(&zfsvfs_lock, RW_READER);
972	rw_exit(&zfsvfs_lock);
973
974	zfs_fuid_destroy(zfsvfs);
975
976	mutex_destroy(&zfsvfs->z_znodes_lock);
977	mutex_destroy(&zfsvfs->z_online_recv_lock);
978	mutex_destroy(&zfsvfs->z_lock);
979	list_destroy(&zfsvfs->z_all_znodes);
980	rrw_destroy(&zfsvfs->z_teardown_lock);
981	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
982	rw_destroy(&zfsvfs->z_fuid_lock);
983	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
984		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
985	kmem_free(zfsvfs, sizeof (zfsvfs_t));
986}
987
988static void
989zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
990{
991	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
992	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
993		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
994		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
995		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
996		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
997		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
998	}
999}
1000
1001static int
1002zfs_domount(vfs_t *vfsp, char *osname)
1003{
1004	uint64_t recordsize, fsid_guid;
1005	int error = 0;
1006	zfsvfs_t *zfsvfs;
1007	vnode_t *vp;
1008
1009	ASSERT(vfsp);
1010	ASSERT(osname);
1011
1012	error = zfsvfs_create(osname, DS_MODE_OWNER, &zfsvfs);
1013	if (error)
1014		return (error);
1015	zfsvfs->z_vfs = vfsp;
1016
1017	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1018	    NULL))
1019		goto out;
1020	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1021	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1022
1023	vfsp->vfs_data = zfsvfs;
1024	vfsp->mnt_flag |= MNT_LOCAL;
1025	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1026	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1027	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1028
1029
1030	/*
1031	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1032	 * separates our fsid from any other filesystem types, and a
1033	 * 56-bit objset unique ID.  The objset unique ID is unique to
1034	 * all objsets open on this system, provided by unique_create().
1035	 * The 8-bit fs type must be put in the low bits of fsid[1]
1036	 * because that's where other Solaris filesystems put it.
1037	 */
1038	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1039	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1040	vfsp->vfs_fsid.val[0] = fsid_guid;
1041	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1042	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1043
1044	/*
1045	 * Set features for file system.
1046	 */
1047	zfs_set_fuid_feature(zfsvfs);
1048	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1049		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1050		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1051		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1052	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1053		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1054		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1055	}
1056
1057	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1058		uint64_t pval;
1059
1060		atime_changed_cb(zfsvfs, B_FALSE);
1061		readonly_changed_cb(zfsvfs, B_TRUE);
1062		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1063			goto out;
1064		xattr_changed_cb(zfsvfs, pval);
1065		zfsvfs->z_issnap = B_TRUE;
1066
1067		mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
1068		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1069		mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
1070	} else {
1071		error = zfsvfs_setup(zfsvfs, B_TRUE);
1072	}
1073
1074	vfs_mountedfrom(vfsp, osname);
1075	/* Grab extra reference. */
1076	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1077	VOP_UNLOCK(vp, 0);
1078
1079	if (!zfsvfs->z_issnap)
1080		zfsctl_create(zfsvfs);
1081out:
1082	if (error) {
1083		dmu_objset_close(zfsvfs->z_os);
1084		zfsvfs_free(zfsvfs);
1085	} else {
1086		atomic_add_32(&zfs_active_fs_count, 1);
1087	}
1088
1089	return (error);
1090}
1091
1092void
1093zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1094{
1095	objset_t *os = zfsvfs->z_os;
1096	struct dsl_dataset *ds;
1097
1098	/*
1099	 * Unregister properties.
1100	 */
1101	if (!dmu_objset_is_snapshot(os)) {
1102		ds = dmu_objset_ds(os);
1103		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1104		    zfsvfs) == 0);
1105
1106		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1107		    zfsvfs) == 0);
1108
1109		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1110		    zfsvfs) == 0);
1111
1112		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1113		    zfsvfs) == 0);
1114
1115		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1116		    zfsvfs) == 0);
1117
1118		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1119		    zfsvfs) == 0);
1120
1121		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1122		    zfsvfs) == 0);
1123
1124		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1125		    zfsvfs) == 0);
1126
1127		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1128		    acl_inherit_changed_cb, zfsvfs) == 0);
1129
1130		VERIFY(dsl_prop_unregister(ds, "vscan",
1131		    vscan_changed_cb, zfsvfs) == 0);
1132	}
1133}
1134
1135/*ARGSUSED*/
1136static int
1137zfs_mount(vfs_t *vfsp)
1138{
1139	kthread_t	*td = curthread;
1140	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1141	cred_t		*cr = td->td_ucred;
1142	char		*osname;
1143	int		error = 0;
1144	int		canwrite;
1145
1146	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1147		return (EINVAL);
1148
1149	/*
1150	 * If full-owner-access is enabled and delegated administration is
1151	 * turned on, we must set nosuid.
1152	 */
1153	if (zfs_super_owner &&
1154	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1155		secpolicy_fs_mount_clearopts(cr, vfsp);
1156	}
1157
1158	/*
1159	 * Check for mount privilege?
1160	 *
1161	 * If we don't have privilege then see if
1162	 * we have local permission to allow it
1163	 */
1164	error = secpolicy_fs_mount(cr, mvp, vfsp);
1165	if (error) {
1166		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1167			goto out;
1168
1169		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1170			vattr_t		vattr;
1171
1172			/*
1173			 * Make sure user is the owner of the mount point
1174			 * or has sufficient privileges.
1175			 */
1176
1177			vattr.va_mask = AT_UID;
1178
1179			vn_lock(mvp, LK_SHARED | LK_RETRY);
1180			if (VOP_GETATTR(mvp, &vattr, cr)) {
1181				VOP_UNLOCK(mvp, 0);
1182				goto out;
1183			}
1184
1185			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1186			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1187				VOP_UNLOCK(mvp, 0);
1188				goto out;
1189			}
1190			VOP_UNLOCK(mvp, 0);
1191		}
1192
1193		secpolicy_fs_mount_clearopts(cr, vfsp);
1194	}
1195
1196	/*
1197	 * Refuse to mount a filesystem if we are in a local zone and the
1198	 * dataset is not visible.
1199	 */
1200	if (!INGLOBALZONE(curthread) &&
1201	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1202		error = EPERM;
1203		goto out;
1204	}
1205
1206	vfsp->vfs_flag |= MNT_NFS4ACLS;
1207
1208	/*
1209	 * When doing a remount, we simply refresh our temporary properties
1210	 * according to those options set in the current VFS options.
1211	 */
1212	if (vfsp->vfs_flag & MS_REMOUNT) {
1213		/* refresh mount options */
1214		zfs_unregister_callbacks(vfsp->vfs_data);
1215		error = zfs_register_callbacks(vfsp);
1216		goto out;
1217	}
1218
1219	DROP_GIANT();
1220	error = zfs_domount(vfsp, osname);
1221	PICKUP_GIANT();
1222
1223#ifdef sun
1224	/*
1225	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1226	 * disappear due to a forced unmount.
1227	 */
1228	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1229		VFS_HOLD(mvp->v_vfsp);
1230#endif	/* sun */
1231
1232out:
1233	return (error);
1234}
1235
1236static int
1237zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1238{
1239	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1240	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1241
1242	statp->f_version = STATFS_VERSION;
1243
1244	ZFS_ENTER(zfsvfs);
1245
1246	dmu_objset_space(zfsvfs->z_os,
1247	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1248
1249	/*
1250	 * The underlying storage pool actually uses multiple block sizes.
1251	 * We report the fragsize as the smallest block size we support,
1252	 * and we report our blocksize as the filesystem's maximum blocksize.
1253	 */
1254	statp->f_bsize = SPA_MINBLOCKSIZE;
1255	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1256
1257	/*
1258	 * The following report "total" blocks of various kinds in the
1259	 * file system, but reported in terms of f_frsize - the
1260	 * "fragment" size.
1261	 */
1262
1263	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1264	statp->f_bfree = availbytes / statp->f_bsize;
1265	statp->f_bavail = statp->f_bfree; /* no root reservation */
1266
1267	/*
1268	 * statvfs() should really be called statufs(), because it assumes
1269	 * static metadata.  ZFS doesn't preallocate files, so the best
1270	 * we can do is report the max that could possibly fit in f_files,
1271	 * and that minus the number actually used in f_ffree.
1272	 * For f_ffree, report the smaller of the number of object available
1273	 * and the number of blocks (each object will take at least a block).
1274	 */
1275	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1276	statp->f_files = statp->f_ffree + usedobjs;
1277
1278	/*
1279	 * We're a zfs filesystem.
1280	 */
1281	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1282
1283	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1284	    sizeof(statp->f_mntfromname));
1285	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1286	    sizeof(statp->f_mntonname));
1287
1288	statp->f_namemax = ZFS_MAXNAMELEN;
1289
1290	ZFS_EXIT(zfsvfs);
1291	return (0);
1292}
1293
1294static int
1295zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1296{
1297	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1298	znode_t *rootzp;
1299	int error;
1300
1301	ZFS_ENTER_NOERROR(zfsvfs);
1302
1303	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1304
1305	ZFS_EXIT(zfsvfs);
1306
1307	if (error == 0) {
1308		*vpp = ZTOV(rootzp);
1309		error = vn_lock(*vpp, flags);
1310		(*vpp)->v_vflag |= VV_ROOT;
1311	}
1312
1313	return (error);
1314}
1315
1316/*
1317 * Teardown the zfsvfs::z_os.
1318 *
1319 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1320 * and 'z_teardown_inactive_lock' held.
1321 */
1322static int
1323zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1324{
1325	znode_t	*zp;
1326
1327	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1328
1329	if (!unmounting) {
1330		/*
1331		 * We purge the parent filesystem's vfsp as the parent
1332		 * filesystem and all of its snapshots have their vnode's
1333		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1334		 * 'z_parent' is self referential for non-snapshots.
1335		 */
1336		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1337#ifdef FREEBSD_NAMECACHE
1338		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1339#endif
1340	}
1341
1342	/*
1343	 * Close the zil. NB: Can't close the zil while zfs_inactive
1344	 * threads are blocked as zil_close can call zfs_inactive.
1345	 */
1346	if (zfsvfs->z_log) {
1347		zil_close(zfsvfs->z_log);
1348		zfsvfs->z_log = NULL;
1349	}
1350
1351	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1352
1353	/*
1354	 * If we are not unmounting (ie: online recv) and someone already
1355	 * unmounted this file system while we were doing the switcheroo,
1356	 * or a reopen of z_os failed then just bail out now.
1357	 */
1358	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1359		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1360		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1361		return (EIO);
1362	}
1363
1364	/*
1365	 * At this point there are no vops active, and any new vops will
1366	 * fail with EIO since we have z_teardown_lock for writer (only
1367	 * relavent for forced unmount).
1368	 *
1369	 * Release all holds on dbufs.
1370	 */
1371	mutex_enter(&zfsvfs->z_znodes_lock);
1372	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1373	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1374		if (zp->z_dbuf) {
1375			ASSERT(ZTOV(zp)->v_count >= 0);
1376			zfs_znode_dmu_fini(zp);
1377		}
1378	mutex_exit(&zfsvfs->z_znodes_lock);
1379
1380	/*
1381	 * If we are unmounting, set the unmounted flag and let new vops
1382	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1383	 * other vops will fail with EIO.
1384	 */
1385	if (unmounting) {
1386		zfsvfs->z_unmounted = B_TRUE;
1387		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1388		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1389
1390#ifdef __FreeBSD__
1391		/*
1392		 * Some znodes might not be fully reclaimed, wait for them.
1393		 */
1394		mutex_enter(&zfsvfs->z_znodes_lock);
1395		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1396			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1397			    "zteardown", 0);
1398		}
1399		mutex_exit(&zfsvfs->z_znodes_lock);
1400#endif
1401	}
1402
1403	/*
1404	 * z_os will be NULL if there was an error in attempting to reopen
1405	 * zfsvfs, so just return as the properties had already been
1406	 * unregistered and cached data had been evicted before.
1407	 */
1408	if (zfsvfs->z_os == NULL)
1409		return (0);
1410
1411	/*
1412	 * Unregister properties.
1413	 */
1414	zfs_unregister_callbacks(zfsvfs);
1415
1416	/*
1417	 * Evict cached data
1418	 */
1419	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1420		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1421		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1422	}
1423
1424	return (0);
1425}
1426
1427/*ARGSUSED*/
1428static int
1429zfs_umount(vfs_t *vfsp, int fflag)
1430{
1431	kthread_t *td = curthread;
1432	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1433	objset_t *os;
1434	cred_t *cr = td->td_ucred;
1435	int ret;
1436
1437	ret = secpolicy_fs_unmount(cr, vfsp);
1438	if (ret) {
1439		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1440		    ZFS_DELEG_PERM_MOUNT, cr))
1441			return (ret);
1442	}
1443	/*
1444	 * We purge the parent filesystem's vfsp as the parent filesystem
1445	 * and all of its snapshots have their vnode's v_vfsp set to the
1446	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1447	 * referential for non-snapshots.
1448	 */
1449	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1450
1451	/*
1452	 * Unmount any snapshots mounted under .zfs before unmounting the
1453	 * dataset itself.
1454	 */
1455	if (zfsvfs->z_ctldir != NULL) {
1456		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1457			return (ret);
1458		ret = vflush(vfsp, 0, 0, td);
1459		ASSERT(ret == EBUSY);
1460		if (!(fflag & MS_FORCE)) {
1461			if (zfsvfs->z_ctldir->v_count > 1)
1462				return (EBUSY);
1463			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1464		}
1465		zfsctl_destroy(zfsvfs);
1466		ASSERT(zfsvfs->z_ctldir == NULL);
1467	}
1468
1469	if (fflag & MS_FORCE) {
1470		/*
1471		 * Mark file system as unmounted before calling
1472		 * vflush(FORCECLOSE). This way we ensure no future vnops
1473		 * will be called and risk operating on DOOMED vnodes.
1474		 */
1475		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1476		zfsvfs->z_unmounted = B_TRUE;
1477		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1478	}
1479
1480	/*
1481	 * Flush all the files.
1482	 */
1483	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1484	if (ret != 0) {
1485		if (!zfsvfs->z_issnap) {
1486			zfsctl_create(zfsvfs);
1487			ASSERT(zfsvfs->z_ctldir != NULL);
1488		}
1489		return (ret);
1490	}
1491
1492	if (!(fflag & MS_FORCE)) {
1493		/*
1494		 * Check the number of active vnodes in the file system.
1495		 * Our count is maintained in the vfs structure, but the
1496		 * number is off by 1 to indicate a hold on the vfs
1497		 * structure itself.
1498		 *
1499		 * The '.zfs' directory maintains a reference of its
1500		 * own, and any active references underneath are
1501		 * reflected in the vnode count.
1502		 */
1503		if (zfsvfs->z_ctldir == NULL) {
1504			if (vfsp->vfs_count > 1)
1505				return (EBUSY);
1506		} else {
1507			if (vfsp->vfs_count > 2 ||
1508			    zfsvfs->z_ctldir->v_count > 1)
1509				return (EBUSY);
1510		}
1511	} else {
1512		MNT_ILOCK(vfsp);
1513		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
1514		MNT_IUNLOCK(vfsp);
1515	}
1516
1517	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1518	os = zfsvfs->z_os;
1519
1520	/*
1521	 * z_os will be NULL if there was an error in
1522	 * attempting to reopen zfsvfs.
1523	 */
1524	if (os != NULL) {
1525		/*
1526		 * Unset the objset user_ptr.
1527		 */
1528		mutex_enter(&os->os->os_user_ptr_lock);
1529		dmu_objset_set_user(os, NULL);
1530		mutex_exit(&os->os->os_user_ptr_lock);
1531
1532		/*
1533		 * Finally release the objset
1534		 */
1535		dmu_objset_close(os);
1536	}
1537
1538	/*
1539	 * We can now safely destroy the '.zfs' directory node.
1540	 */
1541	if (zfsvfs->z_ctldir != NULL)
1542		zfsctl_destroy(zfsvfs);
1543	if (zfsvfs->z_issnap) {
1544		vnode_t *svp = vfsp->mnt_vnodecovered;
1545
1546		if (svp->v_count >= 2)
1547			VN_RELE(svp);
1548	}
1549	zfs_freevfs(vfsp);
1550
1551	return (0);
1552}
1553
1554static int
1555zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1556{
1557	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1558	znode_t		*zp;
1559	int 		err;
1560
1561	/*
1562	 * zfs_zget() can't operate on virtual entries like .zfs/ or
1563	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1564	 * This will make NFS to switch to LOOKUP instead of using VGET.
1565	 */
1566	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
1567		return (EOPNOTSUPP);
1568
1569	ZFS_ENTER(zfsvfs);
1570	err = zfs_zget(zfsvfs, ino, &zp);
1571	if (err == 0 && zp->z_unlinked) {
1572		VN_RELE(ZTOV(zp));
1573		err = EINVAL;
1574	}
1575	ZFS_EXIT(zfsvfs);
1576	if (err != 0)
1577		*vpp = NULL;
1578	else {
1579		*vpp = ZTOV(zp);
1580		vn_lock(*vpp, flags);
1581	}
1582	return (err);
1583}
1584
1585static int
1586zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1587    struct ucred **credanonp, int *numsecflavors, int **secflavors)
1588{
1589	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1590
1591	/*
1592	 * If this is regular file system vfsp is the same as
1593	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1594	 * zfsvfs->z_parent->z_vfs represents parent file system
1595	 * which we have to use here, because only this file system
1596	 * has mnt_export configured.
1597	 */
1598	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1599	    credanonp, numsecflavors, secflavors));
1600}
1601
1602CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
1603CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
1604
1605static int
1606zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
1607{
1608	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1609	znode_t		*zp;
1610	uint64_t	object = 0;
1611	uint64_t	fid_gen = 0;
1612	uint64_t	gen_mask;
1613	uint64_t	zp_gen;
1614	int		i, err;
1615
1616	*vpp = NULL;
1617
1618	ZFS_ENTER(zfsvfs);
1619
1620	/*
1621	 * On FreeBSD we can get snapshot's mount point or its parent file
1622	 * system mount point depending if snapshot is already mounted or not.
1623	 */
1624	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1625		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1626		uint64_t	objsetid = 0;
1627		uint64_t	setgen = 0;
1628
1629		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1630			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1631
1632		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1633			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1634
1635		ZFS_EXIT(zfsvfs);
1636
1637		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1638		if (err)
1639			return (EINVAL);
1640		ZFS_ENTER(zfsvfs);
1641	}
1642
1643	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1644		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1645
1646		for (i = 0; i < sizeof (zfid->zf_object); i++)
1647			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1648
1649		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1650			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1651	} else {
1652		ZFS_EXIT(zfsvfs);
1653		return (EINVAL);
1654	}
1655
1656	/* A zero fid_gen means we are in the .zfs control directories */
1657	if (fid_gen == 0 &&
1658	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1659		*vpp = zfsvfs->z_ctldir;
1660		ASSERT(*vpp != NULL);
1661		if (object == ZFSCTL_INO_SNAPDIR) {
1662			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1663			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1664		} else {
1665			VN_HOLD(*vpp);
1666		}
1667		ZFS_EXIT(zfsvfs);
1668		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1669		return (0);
1670	}
1671
1672	gen_mask = -1ULL >> (64 - 8 * i);
1673
1674	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1675	if (err = zfs_zget(zfsvfs, object, &zp)) {
1676		ZFS_EXIT(zfsvfs);
1677		return (err);
1678	}
1679	zp_gen = zp->z_phys->zp_gen & gen_mask;
1680	if (zp_gen == 0)
1681		zp_gen = 1;
1682	if (zp->z_unlinked || zp_gen != fid_gen) {
1683		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1684		VN_RELE(ZTOV(zp));
1685		ZFS_EXIT(zfsvfs);
1686		return (EINVAL);
1687	}
1688
1689	ZFS_EXIT(zfsvfs);
1690
1691	*vpp = ZTOV(zp);
1692	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1693	vnode_create_vobject(*vpp, zp->z_phys->zp_size, curthread);
1694	return (0);
1695}
1696
1697/*
1698 * Block out VOPs and close zfsvfs_t::z_os
1699 *
1700 * Note, if successful, then we return with the 'z_teardown_lock' and
1701 * 'z_teardown_inactive_lock' write held.
1702 */
1703int
1704zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *modep)
1705{
1706	int error;
1707
1708	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1709		return (error);
1710
1711	*modep = zfsvfs->z_os->os_mode;
1712	if (name)
1713		dmu_objset_name(zfsvfs->z_os, name);
1714	dmu_objset_close(zfsvfs->z_os);
1715
1716	return (0);
1717}
1718
1719/*
1720 * Reopen zfsvfs_t::z_os and release VOPs.
1721 */
1722int
1723zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1724{
1725	int err;
1726
1727	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1728	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1729
1730	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1731	if (err) {
1732		zfsvfs->z_os = NULL;
1733	} else {
1734		znode_t *zp;
1735
1736		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1737
1738		/*
1739		 * Attempt to re-establish all the active znodes with
1740		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1741		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1742		 * when they try to use their znode.
1743		 */
1744		mutex_enter(&zfsvfs->z_znodes_lock);
1745		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1746		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1747			(void) zfs_rezget(zp);
1748		}
1749		mutex_exit(&zfsvfs->z_znodes_lock);
1750
1751	}
1752
1753	/* release the VOPs */
1754	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1755	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1756
1757	if (err) {
1758		/*
1759		 * Since we couldn't reopen zfsvfs::z_os, force
1760		 * unmount this file system.
1761		 */
1762		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1763			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
1764	}
1765	return (err);
1766}
1767
1768static void
1769zfs_freevfs(vfs_t *vfsp)
1770{
1771	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1772
1773#ifdef sun
1774	/*
1775	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
1776	 * from zfs_mount().  Release it here.
1777	 */
1778	if (zfsvfs->z_issnap)
1779		VFS_RELE(zfsvfs->z_parent->z_vfs);
1780#endif	/* sun */
1781
1782	zfsvfs_free(zfsvfs);
1783
1784	atomic_add_32(&zfs_active_fs_count, -1);
1785}
1786
1787#ifdef __i386__
1788static int desiredvnodes_backup;
1789#endif
1790
1791static void
1792zfs_vnodes_adjust(void)
1793{
1794#ifdef __i386__
1795	int newdesiredvnodes;
1796
1797	desiredvnodes_backup = desiredvnodes;
1798
1799	/*
1800	 * We calculate newdesiredvnodes the same way it is done in
1801	 * vntblinit(). If it is equal to desiredvnodes, it means that
1802	 * it wasn't tuned by the administrator and we can tune it down.
1803	 */
1804	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
1805	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
1806	    sizeof(struct vnode))));
1807	if (newdesiredvnodes == desiredvnodes)
1808		desiredvnodes = (3 * newdesiredvnodes) / 4;
1809#endif
1810}
1811
1812static void
1813zfs_vnodes_adjust_back(void)
1814{
1815
1816#ifdef __i386__
1817	desiredvnodes = desiredvnodes_backup;
1818#endif
1819}
1820
1821void
1822zfs_init(void)
1823{
1824
1825	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
1826
1827	/*
1828	 * Initialize znode cache, vnode ops, etc...
1829	 */
1830	zfs_znode_init();
1831
1832	/*
1833	 * Initialize .zfs directory structures
1834	 */
1835	zfsctl_init();
1836
1837	/*
1838	 * Reduce number of vnode. Originally number of vnodes is calculated
1839	 * with UFS inode in mind. We reduce it here, because it's too big for
1840	 * ZFS/i386.
1841	 */
1842	zfs_vnodes_adjust();
1843
1844	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1845}
1846
1847void
1848zfs_fini(void)
1849{
1850	zfsctl_fini();
1851	zfs_znode_fini();
1852	zfs_vnodes_adjust_back();
1853}
1854
1855int
1856zfs_busy(void)
1857{
1858	return (zfs_active_fs_count != 0);
1859}
1860
1861int
1862zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1863{
1864	int error;
1865	objset_t *os = zfsvfs->z_os;
1866	dmu_tx_t *tx;
1867
1868	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1869		return (EINVAL);
1870
1871	if (newvers < zfsvfs->z_version)
1872		return (EINVAL);
1873
1874	tx = dmu_tx_create(os);
1875	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1876	error = dmu_tx_assign(tx, TXG_WAIT);
1877	if (error) {
1878		dmu_tx_abort(tx);
1879		return (error);
1880	}
1881	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1882	    8, 1, &newvers, tx);
1883
1884	if (error) {
1885		dmu_tx_commit(tx);
1886		return (error);
1887	}
1888
1889	spa_history_internal_log(LOG_DS_UPGRADE,
1890	    dmu_objset_spa(os), tx, CRED(),
1891	    "oldver=%llu newver=%llu dataset = %llu",
1892	    zfsvfs->z_version, newvers, dmu_objset_id(os));
1893
1894	dmu_tx_commit(tx);
1895
1896	zfsvfs->z_version = newvers;
1897
1898	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
1899		zfs_set_fuid_feature(zfsvfs);
1900
1901	return (0);
1902}
1903/*
1904 * Read a property stored within the master node.
1905 */
1906int
1907zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1908{
1909	const char *pname;
1910	int error = ENOENT;
1911
1912	/*
1913	 * Look up the file system's value for the property.  For the
1914	 * version property, we look up a slightly different string.
1915	 */
1916	if (prop == ZFS_PROP_VERSION)
1917		pname = ZPL_VERSION_STR;
1918	else
1919		pname = zfs_prop_to_name(prop);
1920
1921	if (os != NULL)
1922		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1923
1924	if (error == ENOENT) {
1925		/* No value set, use the default value */
1926		switch (prop) {
1927		case ZFS_PROP_VERSION:
1928			*value = ZPL_VERSION;
1929			break;
1930		case ZFS_PROP_NORMALIZE:
1931		case ZFS_PROP_UTF8ONLY:
1932			*value = 0;
1933			break;
1934		case ZFS_PROP_CASE:
1935			*value = ZFS_CASE_SENSITIVE;
1936			break;
1937		default:
1938			return (error);
1939		}
1940		error = 0;
1941	}
1942	return (error);
1943}
1944