zfs_vfsops.c revision 211855
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/systm.h>
29#include <sys/kernel.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/acl.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/mntent.h>
36#include <sys/mount.h>
37#include <sys/cmn_err.h>
38#include <sys/zfs_znode.h>
39#include <sys/zfs_dir.h>
40#include <sys/zil.h>
41#include <sys/fs/zfs.h>
42#include <sys/dmu.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dataset.h>
45#include <sys/dsl_deleg.h>
46#include <sys/spa.h>
47#include <sys/zap.h>
48#include <sys/varargs.h>
49#include <sys/policy.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/zfs_ctldir.h>
53#include <sys/zfs_fuid.h>
54#include <sys/sunddi.h>
55#include <sys/dnlc.h>
56#include <sys/dmu_objset.h>
57#include <sys/spa_boot.h>
58
59struct mtx zfs_debug_mtx;
60MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
61
62SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
63
64int zfs_super_owner = 0;
65SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
66    "File system owner can perform privileged operation on his file systems");
67
68int zfs_debug_level = 0;
69TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
70SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
71    "Debug level");
72
73SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
74static int zfs_version_acl = ZFS_ACL_VERSION;
75SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
76    "ZFS_ACL_VERSION");
77static int zfs_version_dmu_backup_header = DMU_BACKUP_HEADER_VERSION;
78SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_header, CTLFLAG_RD,
79    &zfs_version_dmu_backup_header, 0, "DMU_BACKUP_HEADER_VERSION");
80static int zfs_version_dmu_backup_stream = DMU_BACKUP_STREAM_VERSION;
81SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_stream, CTLFLAG_RD,
82    &zfs_version_dmu_backup_stream, 0, "DMU_BACKUP_STREAM_VERSION");
83static int zfs_version_spa = SPA_VERSION;
84SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
85    "SPA_VERSION");
86static int zfs_version_zpl = ZPL_VERSION;
87SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
88    "ZPL_VERSION");
89
90static int zfs_mount(vfs_t *vfsp);
91static int zfs_umount(vfs_t *vfsp, int fflag);
92static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
93static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
94static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
95static int zfs_sync(vfs_t *vfsp, int waitfor);
96static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
97    struct ucred **credanonp, int *numsecflavors, int **secflavors);
98static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
99static void zfs_objset_close(zfsvfs_t *zfsvfs);
100static void zfs_freevfs(vfs_t *vfsp);
101
102static struct vfsops zfs_vfsops = {
103	.vfs_mount =		zfs_mount,
104	.vfs_unmount =		zfs_umount,
105	.vfs_root =		zfs_root,
106	.vfs_statfs =		zfs_statfs,
107	.vfs_vget =		zfs_vget,
108	.vfs_sync =		zfs_sync,
109	.vfs_checkexp =		zfs_checkexp,
110	.vfs_fhtovp =		zfs_fhtovp,
111};
112
113VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
114
115/*
116 * We need to keep a count of active fs's.
117 * This is necessary to prevent our module
118 * from being unloaded after a umount -f
119 */
120static uint32_t	zfs_active_fs_count = 0;
121
122/*ARGSUSED*/
123static int
124zfs_sync(vfs_t *vfsp, int waitfor)
125{
126
127	/*
128	 * Data integrity is job one.  We don't want a compromised kernel
129	 * writing to the storage pool, so we never sync during panic.
130	 */
131	if (panicstr)
132		return (0);
133
134	if (vfsp != NULL) {
135		/*
136		 * Sync a specific filesystem.
137		 */
138		zfsvfs_t *zfsvfs = vfsp->vfs_data;
139		dsl_pool_t *dp;
140		int error;
141
142		error = vfs_stdsync(vfsp, waitfor);
143		if (error != 0)
144			return (error);
145
146		ZFS_ENTER(zfsvfs);
147		dp = dmu_objset_pool(zfsvfs->z_os);
148
149		/*
150		 * If the system is shutting down, then skip any
151		 * filesystems which may exist on a suspended pool.
152		 */
153		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
154			ZFS_EXIT(zfsvfs);
155			return (0);
156		}
157
158		if (zfsvfs->z_log != NULL)
159			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
160		else
161			txg_wait_synced(dp, 0);
162		ZFS_EXIT(zfsvfs);
163	} else {
164		/*
165		 * Sync all ZFS filesystems.  This is what happens when you
166		 * run sync(1M).  Unlike other filesystems, ZFS honors the
167		 * request by waiting for all pools to commit all dirty data.
168		 */
169		spa_sync_allpools();
170	}
171
172	return (0);
173}
174
175static void
176atime_changed_cb(void *arg, uint64_t newval)
177{
178	zfsvfs_t *zfsvfs = arg;
179
180	if (newval == TRUE) {
181		zfsvfs->z_atime = TRUE;
182		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
183		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
184		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
185	} else {
186		zfsvfs->z_atime = FALSE;
187		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
188		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
189		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
190	}
191}
192
193static void
194xattr_changed_cb(void *arg, uint64_t newval)
195{
196	zfsvfs_t *zfsvfs = arg;
197
198	if (newval == TRUE) {
199		/* XXX locking on vfs_flag? */
200#ifdef TODO
201		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
202#endif
203		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
204		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
205	} else {
206		/* XXX locking on vfs_flag? */
207#ifdef TODO
208		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
209#endif
210		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
211		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
212	}
213}
214
215static void
216blksz_changed_cb(void *arg, uint64_t newval)
217{
218	zfsvfs_t *zfsvfs = arg;
219
220	if (newval < SPA_MINBLOCKSIZE ||
221	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
222		newval = SPA_MAXBLOCKSIZE;
223
224	zfsvfs->z_max_blksz = newval;
225	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
226}
227
228static void
229readonly_changed_cb(void *arg, uint64_t newval)
230{
231	zfsvfs_t *zfsvfs = arg;
232
233	if (newval) {
234		/* XXX locking on vfs_flag? */
235		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
236		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
237		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
238	} else {
239		/* XXX locking on vfs_flag? */
240		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
241		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
242		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
243	}
244}
245
246static void
247setuid_changed_cb(void *arg, uint64_t newval)
248{
249	zfsvfs_t *zfsvfs = arg;
250
251	if (newval == FALSE) {
252		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
253		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
254		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
255	} else {
256		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
257		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
258		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
259	}
260}
261
262static void
263exec_changed_cb(void *arg, uint64_t newval)
264{
265	zfsvfs_t *zfsvfs = arg;
266
267	if (newval == FALSE) {
268		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
269		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
270		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
271	} else {
272		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
273		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
274		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
275	}
276}
277
278/*
279 * The nbmand mount option can be changed at mount time.
280 * We can't allow it to be toggled on live file systems or incorrect
281 * behavior may be seen from cifs clients
282 *
283 * This property isn't registered via dsl_prop_register(), but this callback
284 * will be called when a file system is first mounted
285 */
286static void
287nbmand_changed_cb(void *arg, uint64_t newval)
288{
289	zfsvfs_t *zfsvfs = arg;
290	if (newval == FALSE) {
291		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
292		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
293	} else {
294		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
295		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
296	}
297}
298
299static void
300snapdir_changed_cb(void *arg, uint64_t newval)
301{
302	zfsvfs_t *zfsvfs = arg;
303
304	zfsvfs->z_show_ctldir = newval;
305}
306
307static void
308vscan_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	zfsvfs->z_vscan = newval;
313}
314
315static void
316acl_mode_changed_cb(void *arg, uint64_t newval)
317{
318	zfsvfs_t *zfsvfs = arg;
319
320	zfsvfs->z_acl_mode = newval;
321}
322
323static void
324acl_inherit_changed_cb(void *arg, uint64_t newval)
325{
326	zfsvfs_t *zfsvfs = arg;
327
328	zfsvfs->z_acl_inherit = newval;
329}
330
331static int
332zfs_register_callbacks(vfs_t *vfsp)
333{
334	struct dsl_dataset *ds = NULL;
335	objset_t *os = NULL;
336	zfsvfs_t *zfsvfs = NULL;
337	uint64_t nbmand;
338	int readonly, do_readonly = FALSE;
339	int setuid, do_setuid = FALSE;
340	int exec, do_exec = FALSE;
341	int xattr, do_xattr = FALSE;
342	int atime, do_atime = FALSE;
343	int error = 0;
344
345	ASSERT(vfsp);
346	zfsvfs = vfsp->vfs_data;
347	ASSERT(zfsvfs);
348	os = zfsvfs->z_os;
349
350	/*
351	 * This function can be called for a snapshot when we update snapshot's
352	 * mount point, which isn't really supported.
353	 */
354	if (dmu_objset_is_snapshot(os))
355		return (EOPNOTSUPP);
356
357	/*
358	 * The act of registering our callbacks will destroy any mount
359	 * options we may have.  In order to enable temporary overrides
360	 * of mount options, we stash away the current values and
361	 * restore them after we register the callbacks.
362	 */
363	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
364		readonly = B_TRUE;
365		do_readonly = B_TRUE;
366	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
367		readonly = B_FALSE;
368		do_readonly = B_TRUE;
369	}
370	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
371		setuid = B_FALSE;
372		do_setuid = B_TRUE;
373	} else {
374		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
375			setuid = B_FALSE;
376			do_setuid = B_TRUE;
377		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
378			setuid = B_TRUE;
379			do_setuid = B_TRUE;
380		}
381	}
382	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
383		exec = B_FALSE;
384		do_exec = B_TRUE;
385	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
386		exec = B_TRUE;
387		do_exec = B_TRUE;
388	}
389	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
390		xattr = B_FALSE;
391		do_xattr = B_TRUE;
392	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
393		xattr = B_TRUE;
394		do_xattr = B_TRUE;
395	}
396	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
397		atime = B_FALSE;
398		do_atime = B_TRUE;
399	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
400		atime = B_TRUE;
401		do_atime = B_TRUE;
402	}
403
404	/*
405	 * nbmand is a special property.  It can only be changed at
406	 * mount time.
407	 *
408	 * This is weird, but it is documented to only be changeable
409	 * at mount time.
410	 */
411	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
412		nbmand = B_FALSE;
413	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
414		nbmand = B_TRUE;
415	} else {
416		char osname[MAXNAMELEN];
417
418		dmu_objset_name(os, osname);
419		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
420		    NULL)) {
421			return (error);
422		}
423	}
424
425	/*
426	 * Register property callbacks.
427	 *
428	 * It would probably be fine to just check for i/o error from
429	 * the first prop_register(), but I guess I like to go
430	 * overboard...
431	 */
432	ds = dmu_objset_ds(os);
433	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
434	error = error ? error : dsl_prop_register(ds,
435	    "xattr", xattr_changed_cb, zfsvfs);
436	error = error ? error : dsl_prop_register(ds,
437	    "recordsize", blksz_changed_cb, zfsvfs);
438	error = error ? error : dsl_prop_register(ds,
439	    "readonly", readonly_changed_cb, zfsvfs);
440	error = error ? error : dsl_prop_register(ds,
441	    "setuid", setuid_changed_cb, zfsvfs);
442	error = error ? error : dsl_prop_register(ds,
443	    "exec", exec_changed_cb, zfsvfs);
444	error = error ? error : dsl_prop_register(ds,
445	    "snapdir", snapdir_changed_cb, zfsvfs);
446	error = error ? error : dsl_prop_register(ds,
447	    "aclmode", acl_mode_changed_cb, zfsvfs);
448	error = error ? error : dsl_prop_register(ds,
449	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
450	error = error ? error : dsl_prop_register(ds,
451	    "vscan", vscan_changed_cb, zfsvfs);
452	if (error)
453		goto unregister;
454
455	/*
456	 * Invoke our callbacks to restore temporary mount options.
457	 */
458	if (do_readonly)
459		readonly_changed_cb(zfsvfs, readonly);
460	if (do_setuid)
461		setuid_changed_cb(zfsvfs, setuid);
462	if (do_exec)
463		exec_changed_cb(zfsvfs, exec);
464	if (do_xattr)
465		xattr_changed_cb(zfsvfs, xattr);
466	if (do_atime)
467		atime_changed_cb(zfsvfs, atime);
468
469	nbmand_changed_cb(zfsvfs, nbmand);
470
471	return (0);
472
473unregister:
474	/*
475	 * We may attempt to unregister some callbacks that are not
476	 * registered, but this is OK; it will simply return ENOMSG,
477	 * which we will ignore.
478	 */
479	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
480	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
481	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
482	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
483	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
484	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
485	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
486	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
487	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
488	    zfsvfs);
489	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
490	return (error);
491
492}
493
494static void
495uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid,
496    int64_t delta, dmu_tx_t *tx)
497{
498	uint64_t used = 0;
499	char buf[32];
500	int err;
501	uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
502
503	if (delta == 0)
504		return;
505
506	(void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid);
507	err = zap_lookup(os, obj, buf, 8, 1, &used);
508	ASSERT(err == 0 || err == ENOENT);
509	/* no underflow/overflow */
510	ASSERT(delta > 0 || used >= -delta);
511	ASSERT(delta < 0 || used + delta > used);
512	used += delta;
513	if (used == 0)
514		err = zap_remove(os, obj, buf, tx);
515	else
516		err = zap_update(os, obj, buf, 8, 1, &used, tx);
517	ASSERT(err == 0);
518}
519
520static void
521zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype,
522    void *oldbonus, void *newbonus,
523    uint64_t oldused, uint64_t newused, dmu_tx_t *tx)
524{
525	znode_phys_t *oldznp = oldbonus;
526	znode_phys_t *newznp = newbonus;
527
528	if (bonustype != DMU_OT_ZNODE)
529		return;
530
531	/* We charge 512 for the dnode (if it's allocated). */
532	if (oldznp->zp_gen != 0)
533		oldused += DNODE_SIZE;
534	if (newznp->zp_gen != 0)
535		newused += DNODE_SIZE;
536
537	if (oldznp->zp_uid == newznp->zp_uid) {
538		uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx);
539	} else {
540		uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx);
541		uidacct(os, B_FALSE, newznp->zp_uid, newused, tx);
542	}
543
544	if (oldznp->zp_gid == newznp->zp_gid) {
545		uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx);
546	} else {
547		uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx);
548		uidacct(os, B_TRUE, newznp->zp_gid, newused, tx);
549	}
550}
551
552static void
553fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
554    char *domainbuf, int buflen, uid_t *ridp)
555{
556	uint64_t fuid;
557	const char *domain;
558
559	fuid = strtonum(fuidstr, NULL);
560
561	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
562	if (domain)
563		(void) strlcpy(domainbuf, domain, buflen);
564	else
565		domainbuf[0] = '\0';
566	*ridp = FUID_RID(fuid);
567}
568
569static uint64_t
570zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
571{
572	switch (type) {
573	case ZFS_PROP_USERUSED:
574		return (DMU_USERUSED_OBJECT);
575	case ZFS_PROP_GROUPUSED:
576		return (DMU_GROUPUSED_OBJECT);
577	case ZFS_PROP_USERQUOTA:
578		return (zfsvfs->z_userquota_obj);
579	case ZFS_PROP_GROUPQUOTA:
580		return (zfsvfs->z_groupquota_obj);
581	}
582	return (0);
583}
584
585int
586zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
587    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
588{
589	int error;
590	zap_cursor_t zc;
591	zap_attribute_t za;
592	zfs_useracct_t *buf = vbuf;
593	uint64_t obj;
594
595	if (!dmu_objset_userspace_present(zfsvfs->z_os))
596		return (ENOTSUP);
597
598	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
599	if (obj == 0) {
600		*bufsizep = 0;
601		return (0);
602	}
603
604	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
605	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
606	    zap_cursor_advance(&zc)) {
607		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
608		    *bufsizep)
609			break;
610
611		fuidstr_to_sid(zfsvfs, za.za_name,
612		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
613
614		buf->zu_space = za.za_first_integer;
615		buf++;
616	}
617	if (error == ENOENT)
618		error = 0;
619
620	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
621	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
622	*cookiep = zap_cursor_serialize(&zc);
623	zap_cursor_fini(&zc);
624	return (error);
625}
626
627/*
628 * buf must be big enough (eg, 32 bytes)
629 */
630static int
631id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
632    char *buf, boolean_t addok)
633{
634	uint64_t fuid;
635	int domainid = 0;
636
637	if (domain && domain[0]) {
638		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
639		if (domainid == -1)
640			return (ENOENT);
641	}
642	fuid = FUID_ENCODE(domainid, rid);
643	(void) sprintf(buf, "%llx", (longlong_t)fuid);
644	return (0);
645}
646
647int
648zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
649    const char *domain, uint64_t rid, uint64_t *valp)
650{
651	char buf[32];
652	int err;
653	uint64_t obj;
654
655	*valp = 0;
656
657	if (!dmu_objset_userspace_present(zfsvfs->z_os))
658		return (ENOTSUP);
659
660	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
661	if (obj == 0)
662		return (0);
663
664	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
665	if (err)
666		return (err);
667
668	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
669	if (err == ENOENT)
670		err = 0;
671	return (err);
672}
673
674int
675zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
676    const char *domain, uint64_t rid, uint64_t quota)
677{
678	char buf[32];
679	int err;
680	dmu_tx_t *tx;
681	uint64_t *objp;
682	boolean_t fuid_dirtied;
683
684	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
685		return (EINVAL);
686
687	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
688		return (ENOTSUP);
689
690	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
691	    &zfsvfs->z_groupquota_obj;
692
693	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
694	if (err)
695		return (err);
696	fuid_dirtied = zfsvfs->z_fuid_dirty;
697
698	tx = dmu_tx_create(zfsvfs->z_os);
699	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
700	if (*objp == 0) {
701		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
702		    zfs_userquota_prop_prefixes[type]);
703	}
704	if (fuid_dirtied)
705		zfs_fuid_txhold(zfsvfs, tx);
706	err = dmu_tx_assign(tx, TXG_WAIT);
707	if (err) {
708		dmu_tx_abort(tx);
709		return (err);
710	}
711
712	mutex_enter(&zfsvfs->z_lock);
713	if (*objp == 0) {
714		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
715		    DMU_OT_NONE, 0, tx);
716		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
717		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
718	}
719	mutex_exit(&zfsvfs->z_lock);
720
721	if (quota == 0) {
722		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
723		if (err == ENOENT)
724			err = 0;
725	} else {
726		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
727	}
728	ASSERT(err == 0);
729	if (fuid_dirtied)
730		zfs_fuid_sync(zfsvfs, tx);
731	dmu_tx_commit(tx);
732	return (err);
733}
734
735boolean_t
736zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
737{
738	char buf[32];
739	uint64_t used, quota, usedobj, quotaobj;
740	int err;
741
742	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
743	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
744
745	if (quotaobj == 0 || zfsvfs->z_replay)
746		return (B_FALSE);
747
748	(void) sprintf(buf, "%llx", (longlong_t)fuid);
749	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
750	if (err != 0)
751		return (B_FALSE);
752
753	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
754	if (err != 0)
755		return (B_FALSE);
756	return (used >= quota);
757}
758
759int
760zfsvfs_create(const char *osname, int mode, zfsvfs_t **zvp)
761{
762	objset_t *os;
763	zfsvfs_t *zfsvfs;
764	uint64_t zval;
765	int i, error;
766
767	if (error = dsl_prop_get_integer(osname, "readonly", &zval, NULL))
768		return (error);
769	if (zval)
770		mode |= DS_MODE_READONLY;
771
772	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
773	if (error == EROFS) {
774		mode |= DS_MODE_READONLY;
775		error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &os);
776	}
777	if (error)
778		return (error);
779
780	/*
781	 * Initialize the zfs-specific filesystem structure.
782	 * Should probably make this a kmem cache, shuffle fields,
783	 * and just bzero up to z_hold_mtx[].
784	 */
785	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
786	zfsvfs->z_vfs = NULL;
787	zfsvfs->z_parent = zfsvfs;
788	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
789	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
790	zfsvfs->z_os = os;
791
792	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
793	if (error) {
794		goto out;
795	} else if (zfsvfs->z_version > ZPL_VERSION) {
796		(void) printf("Mismatched versions:  File system "
797		    "is version %llu on-disk format, which is "
798		    "incompatible with this software version %lld!",
799		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
800		error = ENOTSUP;
801		goto out;
802	}
803
804	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
805		goto out;
806	zfsvfs->z_norm = (int)zval;
807
808	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
809		goto out;
810	zfsvfs->z_utf8 = (zval != 0);
811
812	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
813		goto out;
814	zfsvfs->z_case = (uint_t)zval;
815
816	/*
817	 * Fold case on file systems that are always or sometimes case
818	 * insensitive.
819	 */
820	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
821	    zfsvfs->z_case == ZFS_CASE_MIXED)
822		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
823
824	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
825
826	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
827	    &zfsvfs->z_root);
828	if (error)
829		goto out;
830	ASSERT(zfsvfs->z_root != 0);
831
832	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
833	    &zfsvfs->z_unlinkedobj);
834	if (error)
835		goto out;
836
837	error = zap_lookup(os, MASTER_NODE_OBJ,
838	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
839	    8, 1, &zfsvfs->z_userquota_obj);
840	if (error && error != ENOENT)
841		goto out;
842
843	error = zap_lookup(os, MASTER_NODE_OBJ,
844	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
845	    8, 1, &zfsvfs->z_groupquota_obj);
846	if (error && error != ENOENT)
847		goto out;
848
849	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
850	    &zfsvfs->z_fuid_obj);
851	if (error && error != ENOENT)
852		goto out;
853
854	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
855	    &zfsvfs->z_shares_dir);
856	if (error && error != ENOENT)
857		goto out;
858
859	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
860	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
861	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
862	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
863	    offsetof(znode_t, z_link_node));
864	rrw_init(&zfsvfs->z_teardown_lock);
865	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
866	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
867	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
868		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
869
870	*zvp = zfsvfs;
871	return (0);
872
873out:
874	dmu_objset_close(os);
875	*zvp = NULL;
876	kmem_free(zfsvfs, sizeof (zfsvfs_t));
877	return (error);
878}
879
880static int
881zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
882{
883	int error;
884
885	error = zfs_register_callbacks(zfsvfs->z_vfs);
886	if (error)
887		return (error);
888
889	/*
890	 * Set the objset user_ptr to track its zfsvfs.
891	 */
892	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
893	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
894	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
895
896	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
897	if (zil_disable) {
898		zil_destroy(zfsvfs->z_log, B_FALSE);
899		zfsvfs->z_log = NULL;
900	}
901
902	/*
903	 * If we are not mounting (ie: online recv), then we don't
904	 * have to worry about replaying the log as we blocked all
905	 * operations out since we closed the ZIL.
906	 */
907	if (mounting) {
908		boolean_t readonly;
909
910		/*
911		 * During replay we remove the read only flag to
912		 * allow replays to succeed.
913		 */
914		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
915		if (readonly != 0)
916			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
917		else
918			zfs_unlinked_drain(zfsvfs);
919
920		if (zfsvfs->z_log) {
921			/*
922			 * Parse and replay the intent log.
923			 *
924			 * Because of ziltest, this must be done after
925			 * zfs_unlinked_drain().  (Further note: ziltest
926			 * doesn't use readonly mounts, where
927			 * zfs_unlinked_drain() isn't called.)  This is because
928			 * ziltest causes spa_sync() to think it's committed,
929			 * but actually it is not, so the intent log contains
930			 * many txg's worth of changes.
931			 *
932			 * In particular, if object N is in the unlinked set in
933			 * the last txg to actually sync, then it could be
934			 * actually freed in a later txg and then reallocated
935			 * in a yet later txg.  This would write a "create
936			 * object N" record to the intent log.  Normally, this
937			 * would be fine because the spa_sync() would have
938			 * written out the fact that object N is free, before
939			 * we could write the "create object N" intent log
940			 * record.
941			 *
942			 * But when we are in ziltest mode, we advance the "open
943			 * txg" without actually spa_sync()-ing the changes to
944			 * disk.  So we would see that object N is still
945			 * allocated and in the unlinked set, and there is an
946			 * intent log record saying to allocate it.
947			 */
948			zfsvfs->z_replay = B_TRUE;
949			zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector);
950			zfsvfs->z_replay = B_FALSE;
951		}
952		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
953	}
954
955	return (0);
956}
957
958extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
959
960void
961zfsvfs_free(zfsvfs_t *zfsvfs)
962{
963	int i;
964
965	/*
966	 * This is a barrier to prevent the filesystem from going away in
967	 * zfs_znode_move() until we can safely ensure that the filesystem is
968	 * not unmounted. We consider the filesystem valid before the barrier
969	 * and invalid after the barrier.
970	 */
971	rw_enter(&zfsvfs_lock, RW_READER);
972	rw_exit(&zfsvfs_lock);
973
974	zfs_fuid_destroy(zfsvfs);
975
976	mutex_destroy(&zfsvfs->z_znodes_lock);
977	mutex_destroy(&zfsvfs->z_online_recv_lock);
978	mutex_destroy(&zfsvfs->z_lock);
979	list_destroy(&zfsvfs->z_all_znodes);
980	rrw_destroy(&zfsvfs->z_teardown_lock);
981	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
982	rw_destroy(&zfsvfs->z_fuid_lock);
983	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
984		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
985	kmem_free(zfsvfs, sizeof (zfsvfs_t));
986}
987
988static void
989zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
990{
991	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
992	if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) {
993		vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
994		vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
995		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
996		vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
997	}
998}
999
1000static int
1001zfs_domount(vfs_t *vfsp, char *osname)
1002{
1003	uint64_t recordsize, fsid_guid;
1004	int error = 0;
1005	zfsvfs_t *zfsvfs;
1006	vnode_t *vp;
1007
1008	ASSERT(vfsp);
1009	ASSERT(osname);
1010
1011	error = zfsvfs_create(osname, DS_MODE_OWNER, &zfsvfs);
1012	if (error)
1013		return (error);
1014	zfsvfs->z_vfs = vfsp;
1015
1016	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1017	    NULL))
1018		goto out;
1019	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1020	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1021
1022	vfsp->vfs_data = zfsvfs;
1023	vfsp->mnt_flag |= MNT_LOCAL;
1024	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1025	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1026	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1027
1028
1029	/*
1030	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1031	 * separates our fsid from any other filesystem types, and a
1032	 * 56-bit objset unique ID.  The objset unique ID is unique to
1033	 * all objsets open on this system, provided by unique_create().
1034	 * The 8-bit fs type must be put in the low bits of fsid[1]
1035	 * because that's where other Solaris filesystems put it.
1036	 */
1037	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1038	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1039	vfsp->vfs_fsid.val[0] = fsid_guid;
1040	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1041	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1042
1043	/*
1044	 * Set features for file system.
1045	 */
1046	zfs_set_fuid_feature(zfsvfs);
1047	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1048		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1049		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1050		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1051	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1052		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1053		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1054	}
1055
1056	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1057		uint64_t pval;
1058
1059		atime_changed_cb(zfsvfs, B_FALSE);
1060		readonly_changed_cb(zfsvfs, B_TRUE);
1061		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1062			goto out;
1063		xattr_changed_cb(zfsvfs, pval);
1064		zfsvfs->z_issnap = B_TRUE;
1065
1066		mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
1067		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1068		mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
1069	} else {
1070		error = zfsvfs_setup(zfsvfs, B_TRUE);
1071	}
1072
1073	vfs_mountedfrom(vfsp, osname);
1074	/* Grab extra reference. */
1075	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1076	VOP_UNLOCK(vp, 0);
1077
1078	if (!zfsvfs->z_issnap)
1079		zfsctl_create(zfsvfs);
1080out:
1081	if (error) {
1082		dmu_objset_close(zfsvfs->z_os);
1083		zfsvfs_free(zfsvfs);
1084	} else {
1085		atomic_add_32(&zfs_active_fs_count, 1);
1086	}
1087
1088	return (error);
1089}
1090
1091void
1092zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1093{
1094	objset_t *os = zfsvfs->z_os;
1095	struct dsl_dataset *ds;
1096
1097	/*
1098	 * Unregister properties.
1099	 */
1100	if (!dmu_objset_is_snapshot(os)) {
1101		ds = dmu_objset_ds(os);
1102		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1103		    zfsvfs) == 0);
1104
1105		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1106		    zfsvfs) == 0);
1107
1108		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1109		    zfsvfs) == 0);
1110
1111		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1112		    zfsvfs) == 0);
1113
1114		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1115		    zfsvfs) == 0);
1116
1117		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1118		    zfsvfs) == 0);
1119
1120		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1121		    zfsvfs) == 0);
1122
1123		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1124		    zfsvfs) == 0);
1125
1126		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1127		    acl_inherit_changed_cb, zfsvfs) == 0);
1128
1129		VERIFY(dsl_prop_unregister(ds, "vscan",
1130		    vscan_changed_cb, zfsvfs) == 0);
1131	}
1132}
1133
1134/*ARGSUSED*/
1135static int
1136zfs_mount(vfs_t *vfsp)
1137{
1138	kthread_t	*td = curthread;
1139	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1140	cred_t		*cr = td->td_ucred;
1141	char		*osname;
1142	int		error = 0;
1143	int		canwrite;
1144
1145	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1146		return (EINVAL);
1147
1148	/*
1149	 * If full-owner-access is enabled and delegated administration is
1150	 * turned on, we must set nosuid.
1151	 */
1152	if (zfs_super_owner &&
1153	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1154		secpolicy_fs_mount_clearopts(cr, vfsp);
1155	}
1156
1157	/*
1158	 * Check for mount privilege?
1159	 *
1160	 * If we don't have privilege then see if
1161	 * we have local permission to allow it
1162	 */
1163	error = secpolicy_fs_mount(cr, mvp, vfsp);
1164	if (error) {
1165		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
1166		if (error != 0)
1167			goto out;
1168
1169		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1170			vattr_t		vattr;
1171
1172			/*
1173			 * Make sure user is the owner of the mount point
1174			 * or has sufficient privileges.
1175			 */
1176
1177			vattr.va_mask = AT_UID;
1178
1179			vn_lock(mvp, LK_SHARED | LK_RETRY);
1180			if (error = VOP_GETATTR(mvp, &vattr, cr)) {
1181				VOP_UNLOCK(mvp, 0);
1182				goto out;
1183			}
1184
1185			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1186			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1187				VOP_UNLOCK(mvp, 0);
1188				goto out;
1189			}
1190			VOP_UNLOCK(mvp, 0);
1191		}
1192
1193		secpolicy_fs_mount_clearopts(cr, vfsp);
1194	}
1195
1196	/*
1197	 * Refuse to mount a filesystem if we are in a local zone and the
1198	 * dataset is not visible.
1199	 */
1200	if (!INGLOBALZONE(curthread) &&
1201	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1202		error = EPERM;
1203		goto out;
1204	}
1205
1206	/*
1207	 * When doing a remount, we simply refresh our temporary properties
1208	 * according to those options set in the current VFS options.
1209	 */
1210	if (vfsp->vfs_flag & MS_REMOUNT) {
1211		/* refresh mount options */
1212		zfs_unregister_callbacks(vfsp->vfs_data);
1213		error = zfs_register_callbacks(vfsp);
1214		goto out;
1215	}
1216
1217	DROP_GIANT();
1218	error = zfs_domount(vfsp, osname);
1219	PICKUP_GIANT();
1220
1221	/*
1222	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1223	 * disappear due to a forced unmount.
1224	 */
1225	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1226		VFS_HOLD(mvp->v_vfsp);
1227
1228	/*
1229	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1230	 * disappear due to a forced unmount.
1231	 */
1232	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1233		VFS_HOLD(mvp->v_vfsp);
1234
1235out:
1236	return (error);
1237}
1238
1239static int
1240zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1241{
1242	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1243	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1244
1245	statp->f_version = STATFS_VERSION;
1246
1247	ZFS_ENTER(zfsvfs);
1248
1249	dmu_objset_space(zfsvfs->z_os,
1250	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1251
1252	/*
1253	 * The underlying storage pool actually uses multiple block sizes.
1254	 * We report the fragsize as the smallest block size we support,
1255	 * and we report our blocksize as the filesystem's maximum blocksize.
1256	 */
1257	statp->f_bsize = SPA_MINBLOCKSIZE;
1258	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1259
1260	/*
1261	 * The following report "total" blocks of various kinds in the
1262	 * file system, but reported in terms of f_frsize - the
1263	 * "fragment" size.
1264	 */
1265
1266	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1267	statp->f_bfree = availbytes / statp->f_bsize;
1268	statp->f_bavail = statp->f_bfree; /* no root reservation */
1269
1270	/*
1271	 * statvfs() should really be called statufs(), because it assumes
1272	 * static metadata.  ZFS doesn't preallocate files, so the best
1273	 * we can do is report the max that could possibly fit in f_files,
1274	 * and that minus the number actually used in f_ffree.
1275	 * For f_ffree, report the smaller of the number of object available
1276	 * and the number of blocks (each object will take at least a block).
1277	 */
1278	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1279	statp->f_files = statp->f_ffree + usedobjs;
1280
1281	/*
1282	 * We're a zfs filesystem.
1283	 */
1284	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1285
1286	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1287	    sizeof(statp->f_mntfromname));
1288	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1289	    sizeof(statp->f_mntonname));
1290
1291	statp->f_namemax = ZFS_MAXNAMELEN;
1292
1293	ZFS_EXIT(zfsvfs);
1294	return (0);
1295}
1296
1297static int
1298zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1299{
1300	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1301	znode_t *rootzp;
1302	int error;
1303
1304	ZFS_ENTER_NOERROR(zfsvfs);
1305
1306	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1307
1308	ZFS_EXIT(zfsvfs);
1309
1310	if (error == 0) {
1311		*vpp = ZTOV(rootzp);
1312		error = vn_lock(*vpp, flags);
1313		(*vpp)->v_vflag |= VV_ROOT;
1314	}
1315
1316	return (error);
1317}
1318
1319/*
1320 * Teardown the zfsvfs::z_os.
1321 *
1322 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1323 * and 'z_teardown_inactive_lock' held.
1324 */
1325static int
1326zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1327{
1328	znode_t	*zp;
1329
1330	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1331
1332	if (!unmounting) {
1333		/*
1334		 * We purge the parent filesystem's vfsp as the parent
1335		 * filesystem and all of its snapshots have their vnode's
1336		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1337		 * 'z_parent' is self referential for non-snapshots.
1338		 */
1339		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1340#ifdef FREEBSD_NAMECACHE
1341		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1342#endif
1343	}
1344
1345	/*
1346	 * Close the zil. NB: Can't close the zil while zfs_inactive
1347	 * threads are blocked as zil_close can call zfs_inactive.
1348	 */
1349	if (zfsvfs->z_log) {
1350		zil_close(zfsvfs->z_log);
1351		zfsvfs->z_log = NULL;
1352	}
1353
1354	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1355
1356	/*
1357	 * If we are not unmounting (ie: online recv) and someone already
1358	 * unmounted this file system while we were doing the switcheroo,
1359	 * or a reopen of z_os failed then just bail out now.
1360	 */
1361	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1362		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1363		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1364		return (EIO);
1365	}
1366
1367	/*
1368	 * At this point there are no vops active, and any new vops will
1369	 * fail with EIO since we have z_teardown_lock for writer (only
1370	 * relavent for forced unmount).
1371	 *
1372	 * Release all holds on dbufs.
1373	 */
1374	mutex_enter(&zfsvfs->z_znodes_lock);
1375	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1376	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1377		if (zp->z_dbuf) {
1378			ASSERT(ZTOV(zp)->v_count >= 0);
1379			zfs_znode_dmu_fini(zp);
1380		}
1381	mutex_exit(&zfsvfs->z_znodes_lock);
1382
1383	/*
1384	 * If we are unmounting, set the unmounted flag and let new vops
1385	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1386	 * other vops will fail with EIO.
1387	 */
1388	if (unmounting) {
1389		zfsvfs->z_unmounted = B_TRUE;
1390		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1391		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1392
1393#ifdef __FreeBSD__
1394		/*
1395		 * Some znodes might not be fully reclaimed, wait for them.
1396		 */
1397		mutex_enter(&zfsvfs->z_znodes_lock);
1398		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1399			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1400			    "zteardown", 0);
1401		}
1402		mutex_exit(&zfsvfs->z_znodes_lock);
1403#endif
1404	}
1405
1406	/*
1407	 * z_os will be NULL if there was an error in attempting to reopen
1408	 * zfsvfs, so just return as the properties had already been
1409	 * unregistered and cached data had been evicted before.
1410	 */
1411	if (zfsvfs->z_os == NULL)
1412		return (0);
1413
1414	/*
1415	 * Unregister properties.
1416	 */
1417	zfs_unregister_callbacks(zfsvfs);
1418
1419	/*
1420	 * Evict cached data
1421	 */
1422	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
1423		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1424		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1425	}
1426
1427	return (0);
1428}
1429
1430/*ARGSUSED*/
1431static int
1432zfs_umount(vfs_t *vfsp, int fflag)
1433{
1434	kthread_t *td = curthread;
1435	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1436	objset_t *os;
1437	cred_t *cr = td->td_ucred;
1438	int ret;
1439
1440	ret = secpolicy_fs_unmount(cr, vfsp);
1441	if (ret) {
1442		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1443		    ZFS_DELEG_PERM_MOUNT, cr);
1444		if (ret)
1445			return (ret);
1446	}
1447	/*
1448	 * We purge the parent filesystem's vfsp as the parent filesystem
1449	 * and all of its snapshots have their vnode's v_vfsp set to the
1450	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1451	 * referential for non-snapshots.
1452	 */
1453	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1454
1455	/*
1456	 * Unmount any snapshots mounted under .zfs before unmounting the
1457	 * dataset itself.
1458	 */
1459	if (zfsvfs->z_ctldir != NULL) {
1460		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1461			return (ret);
1462		ret = vflush(vfsp, 0, 0, td);
1463		ASSERT(ret == EBUSY);
1464		if (!(fflag & MS_FORCE)) {
1465			if (zfsvfs->z_ctldir->v_count > 1)
1466				return (EBUSY);
1467			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1468		}
1469		zfsctl_destroy(zfsvfs);
1470		ASSERT(zfsvfs->z_ctldir == NULL);
1471	}
1472
1473	if (fflag & MS_FORCE) {
1474		/*
1475		 * Mark file system as unmounted before calling
1476		 * vflush(FORCECLOSE). This way we ensure no future vnops
1477		 * will be called and risk operating on DOOMED vnodes.
1478		 */
1479		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1480		zfsvfs->z_unmounted = B_TRUE;
1481		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1482	}
1483
1484	/*
1485	 * Flush all the files.
1486	 */
1487	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1488	if (ret != 0) {
1489		if (!zfsvfs->z_issnap) {
1490			zfsctl_create(zfsvfs);
1491			ASSERT(zfsvfs->z_ctldir != NULL);
1492		}
1493		return (ret);
1494	}
1495
1496	if (!(fflag & MS_FORCE)) {
1497		/*
1498		 * Check the number of active vnodes in the file system.
1499		 * Our count is maintained in the vfs structure, but the
1500		 * number is off by 1 to indicate a hold on the vfs
1501		 * structure itself.
1502		 *
1503		 * The '.zfs' directory maintains a reference of its
1504		 * own, and any active references underneath are
1505		 * reflected in the vnode count.
1506		 */
1507		if (zfsvfs->z_ctldir == NULL) {
1508			if (vfsp->vfs_count > 1)
1509				return (EBUSY);
1510		} else {
1511			if (vfsp->vfs_count > 2 ||
1512			    zfsvfs->z_ctldir->v_count > 1)
1513				return (EBUSY);
1514		}
1515	} else {
1516		MNT_ILOCK(vfsp);
1517		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
1518		MNT_IUNLOCK(vfsp);
1519	}
1520
1521	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1522	os = zfsvfs->z_os;
1523
1524	/*
1525	 * z_os will be NULL if there was an error in
1526	 * attempting to reopen zfsvfs.
1527	 */
1528	if (os != NULL) {
1529		/*
1530		 * Unset the objset user_ptr.
1531		 */
1532		mutex_enter(&os->os->os_user_ptr_lock);
1533		dmu_objset_set_user(os, NULL);
1534		mutex_exit(&os->os->os_user_ptr_lock);
1535
1536		/*
1537		 * Finally release the objset
1538		 */
1539		dmu_objset_close(os);
1540	}
1541
1542	/*
1543	 * We can now safely destroy the '.zfs' directory node.
1544	 */
1545	if (zfsvfs->z_ctldir != NULL)
1546		zfsctl_destroy(zfsvfs);
1547	if (zfsvfs->z_issnap) {
1548		vnode_t *svp = vfsp->mnt_vnodecovered;
1549
1550		if (svp->v_count >= 2)
1551			VN_RELE(svp);
1552	}
1553	zfs_freevfs(vfsp);
1554
1555	return (0);
1556}
1557
1558static int
1559zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1560{
1561	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1562	znode_t		*zp;
1563	int 		err;
1564
1565	/*
1566	 * zfs_zget() can't operate on virtual entires like .zfs/ or
1567	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
1568	 * This will make NFS to switch to LOOKUP instead of using VGET.
1569	 */
1570	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
1571		return (EOPNOTSUPP);
1572
1573	ZFS_ENTER(zfsvfs);
1574	err = zfs_zget(zfsvfs, ino, &zp);
1575	if (err == 0 && zp->z_unlinked) {
1576		VN_RELE(ZTOV(zp));
1577		err = EINVAL;
1578	}
1579	ZFS_EXIT(zfsvfs);
1580	if (err != 0)
1581		*vpp = NULL;
1582	else {
1583		*vpp = ZTOV(zp);
1584		vn_lock(*vpp, flags);
1585	}
1586	return (err);
1587}
1588
1589static int
1590zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1591    struct ucred **credanonp, int *numsecflavors, int **secflavors)
1592{
1593	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1594
1595	/*
1596	 * If this is regular file system vfsp is the same as
1597	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1598	 * zfsvfs->z_parent->z_vfs represents parent file system
1599	 * which we have to use here, because only this file system
1600	 * has mnt_export configured.
1601	 */
1602	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1603	    credanonp, numsecflavors, secflavors));
1604}
1605
1606CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
1607CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
1608
1609static int
1610zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
1611{
1612	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1613	znode_t		*zp;
1614	uint64_t	object = 0;
1615	uint64_t	fid_gen = 0;
1616	uint64_t	gen_mask;
1617	uint64_t	zp_gen;
1618	int		i, err;
1619
1620	*vpp = NULL;
1621
1622	ZFS_ENTER(zfsvfs);
1623
1624	/*
1625	 * On FreeBSD we can get snapshot's mount point or its parent file
1626	 * system mount point depending if snapshot is already mounted or not.
1627	 */
1628	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1629		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1630		uint64_t	objsetid = 0;
1631		uint64_t	setgen = 0;
1632
1633		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1634			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1635
1636		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1637			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1638
1639		ZFS_EXIT(zfsvfs);
1640
1641		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1642		if (err)
1643			return (EINVAL);
1644		ZFS_ENTER(zfsvfs);
1645	}
1646
1647	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1648		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1649
1650		for (i = 0; i < sizeof (zfid->zf_object); i++)
1651			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1652
1653		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1654			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1655	} else {
1656		ZFS_EXIT(zfsvfs);
1657		return (EINVAL);
1658	}
1659
1660	/* A zero fid_gen means we are in the .zfs control directories */
1661	if (fid_gen == 0 &&
1662	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1663		*vpp = zfsvfs->z_ctldir;
1664		ASSERT(*vpp != NULL);
1665		if (object == ZFSCTL_INO_SNAPDIR) {
1666			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1667			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1668		} else {
1669			VN_HOLD(*vpp);
1670		}
1671		ZFS_EXIT(zfsvfs);
1672		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1673		return (0);
1674	}
1675
1676	gen_mask = -1ULL >> (64 - 8 * i);
1677
1678	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1679	if (err = zfs_zget(zfsvfs, object, &zp)) {
1680		ZFS_EXIT(zfsvfs);
1681		return (err);
1682	}
1683	zp_gen = zp->z_phys->zp_gen & gen_mask;
1684	if (zp_gen == 0)
1685		zp_gen = 1;
1686	if (zp->z_unlinked || zp_gen != fid_gen) {
1687		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1688		VN_RELE(ZTOV(zp));
1689		ZFS_EXIT(zfsvfs);
1690		return (EINVAL);
1691	}
1692
1693	ZFS_EXIT(zfsvfs);
1694
1695	*vpp = ZTOV(zp);
1696	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1697	vnode_create_vobject(*vpp, zp->z_phys->zp_size, curthread);
1698	return (0);
1699}
1700
1701/*
1702 * Block out VOPs and close zfsvfs_t::z_os
1703 *
1704 * Note, if successful, then we return with the 'z_teardown_lock' and
1705 * 'z_teardown_inactive_lock' write held.
1706 */
1707int
1708zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *modep)
1709{
1710	int error;
1711
1712	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1713		return (error);
1714
1715	*modep = zfsvfs->z_os->os_mode;
1716	if (name)
1717		dmu_objset_name(zfsvfs->z_os, name);
1718	dmu_objset_close(zfsvfs->z_os);
1719
1720	return (0);
1721}
1722
1723/*
1724 * Reopen zfsvfs_t::z_os and release VOPs.
1725 */
1726int
1727zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1728{
1729	int err;
1730
1731	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1732	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1733
1734	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1735	if (err) {
1736		zfsvfs->z_os = NULL;
1737	} else {
1738		znode_t *zp;
1739
1740		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1741
1742		/*
1743		 * Attempt to re-establish all the active znodes with
1744		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1745		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1746		 * when they try to use their znode.
1747		 */
1748		mutex_enter(&zfsvfs->z_znodes_lock);
1749		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1750		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1751			(void) zfs_rezget(zp);
1752		}
1753		mutex_exit(&zfsvfs->z_znodes_lock);
1754
1755	}
1756
1757	/* release the VOPs */
1758	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1759	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1760
1761	if (err) {
1762		/*
1763		 * Since we couldn't reopen zfsvfs::z_os, force
1764		 * unmount this file system.
1765		 */
1766		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1767			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
1768	}
1769	return (err);
1770}
1771
1772static void
1773zfs_freevfs(vfs_t *vfsp)
1774{
1775	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1776
1777	/*
1778	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
1779	 * from zfs_mount().  Release it here.
1780	 */
1781	if (zfsvfs->z_issnap)
1782		VFS_RELE(zfsvfs->z_parent->z_vfs);
1783
1784	zfsvfs_free(zfsvfs);
1785
1786	atomic_add_32(&zfs_active_fs_count, -1);
1787}
1788
1789#ifdef __i386__
1790static int desiredvnodes_backup;
1791#endif
1792
1793static void
1794zfs_vnodes_adjust(void)
1795{
1796#ifdef __i386__
1797	int newdesiredvnodes;
1798
1799	desiredvnodes_backup = desiredvnodes;
1800
1801	/*
1802	 * We calculate newdesiredvnodes the same way it is done in
1803	 * vntblinit(). If it is equal to desiredvnodes, it means that
1804	 * it wasn't tuned by the administrator and we can tune it down.
1805	 */
1806	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
1807	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
1808	    sizeof(struct vnode))));
1809	if (newdesiredvnodes == desiredvnodes)
1810		desiredvnodes = (3 * newdesiredvnodes) / 4;
1811#endif
1812}
1813
1814static void
1815zfs_vnodes_adjust_back(void)
1816{
1817
1818#ifdef __i386__
1819	desiredvnodes = desiredvnodes_backup;
1820#endif
1821}
1822
1823void
1824zfs_init(void)
1825{
1826
1827	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
1828
1829	/*
1830	 * Initialize znode cache, vnode ops, etc...
1831	 */
1832	zfs_znode_init();
1833
1834	/*
1835	 * Initialize .zfs directory structures
1836	 */
1837	zfsctl_init();
1838
1839	/*
1840	 * Reduce number of vnode. Originally number of vnodes is calculated
1841	 * with UFS inode in mind. We reduce it here, because it's too big for
1842	 * ZFS/i386.
1843	 */
1844	zfs_vnodes_adjust();
1845
1846	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1847}
1848
1849void
1850zfs_fini(void)
1851{
1852	zfsctl_fini();
1853	zfs_znode_fini();
1854	zfs_vnodes_adjust_back();
1855}
1856
1857int
1858zfs_busy(void)
1859{
1860	return (zfs_active_fs_count != 0);
1861}
1862
1863int
1864zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1865{
1866	int error;
1867	objset_t *os = zfsvfs->z_os;
1868	dmu_tx_t *tx;
1869
1870	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1871		return (EINVAL);
1872
1873	if (newvers < zfsvfs->z_version)
1874		return (EINVAL);
1875
1876	tx = dmu_tx_create(os);
1877	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1878	error = dmu_tx_assign(tx, TXG_WAIT);
1879	if (error) {
1880		dmu_tx_abort(tx);
1881		return (error);
1882	}
1883	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1884	    8, 1, &newvers, tx);
1885
1886	if (error) {
1887		dmu_tx_commit(tx);
1888		return (error);
1889	}
1890
1891	spa_history_internal_log(LOG_DS_UPGRADE,
1892	    dmu_objset_spa(os), tx, CRED(),
1893	    "oldver=%llu newver=%llu dataset = %llu",
1894	    zfsvfs->z_version, newvers, dmu_objset_id(os));
1895
1896	dmu_tx_commit(tx);
1897
1898	zfsvfs->z_version = newvers;
1899
1900	if (zfsvfs->z_version >= ZPL_VERSION_FUID)
1901		zfs_set_fuid_feature(zfsvfs);
1902
1903	return (0);
1904}
1905/*
1906 * Read a property stored within the master node.
1907 */
1908int
1909zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1910{
1911	const char *pname;
1912	int error = ENOENT;
1913
1914	/*
1915	 * Look up the file system's value for the property.  For the
1916	 * version property, we look up a slightly different string.
1917	 */
1918	if (prop == ZFS_PROP_VERSION)
1919		pname = ZPL_VERSION_STR;
1920	else
1921		pname = zfs_prop_to_name(prop);
1922
1923	if (os != NULL)
1924		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1925
1926	if (error == ENOENT) {
1927		/* No value set, use the default value */
1928		switch (prop) {
1929		case ZFS_PROP_VERSION:
1930			*value = ZPL_VERSION;
1931			break;
1932		case ZFS_PROP_NORMALIZE:
1933		case ZFS_PROP_UTF8ONLY:
1934			*value = 0;
1935			break;
1936		case ZFS_PROP_CASE:
1937			*value = ZFS_CASE_SENSITIVE;
1938			break;
1939		default:
1940			return (error);
1941		}
1942		error = 0;
1943	}
1944	return (error);
1945}
1946