zfs_vfsops.c revision 204101
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/systm.h>
29#include <sys/kernel.h>
30#include <sys/sysmacros.h>
31#include <sys/kmem.h>
32#include <sys/acl.h>
33#include <sys/vnode.h>
34#include <sys/vfs.h>
35#include <sys/mntent.h>
36#include <sys/mount.h>
37#include <sys/cmn_err.h>
38#include <sys/zfs_znode.h>
39#include <sys/zfs_dir.h>
40#include <sys/zil.h>
41#include <sys/fs/zfs.h>
42#include <sys/dmu.h>
43#include <sys/dsl_prop.h>
44#include <sys/dsl_dataset.h>
45#include <sys/dsl_deleg.h>
46#include <sys/spa.h>
47#include <sys/zap.h>
48#include <sys/varargs.h>
49#include <sys/policy.h>
50#include <sys/atomic.h>
51#include <sys/zfs_ioctl.h>
52#include <sys/zfs_ctldir.h>
53#include <sys/zfs_fuid.h>
54#include <sys/sunddi.h>
55#include <sys/dnlc.h>
56#include <sys/dmu_objset.h>
57#include <sys/spa_boot.h>
58#include <sys/vdev_impl.h>	/* VDEV_BOOT_VERSION */
59
60struct mtx zfs_debug_mtx;
61MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
62
63SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
64
65int zfs_super_owner = 0;
66SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
67    "File system owner can perform privileged operation on his file systems");
68
69int zfs_debug_level = 0;
70TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
71SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
72    "Debug level");
73
74SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
75static int zfs_version_acl = ZFS_ACL_VERSION;
76SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
77    "ZFS_ACL_VERSION");
78static int zfs_version_dmu_backup_header = DMU_BACKUP_HEADER_VERSION;
79SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_header, CTLFLAG_RD,
80    &zfs_version_dmu_backup_header, 0, "DMU_BACKUP_HEADER_VERSION");
81static int zfs_version_dmu_backup_stream = DMU_BACKUP_STREAM_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, dmu_backup_stream, CTLFLAG_RD,
83    &zfs_version_dmu_backup_stream, 0, "DMU_BACKUP_STREAM_VERSION");
84static int zfs_version_spa = SPA_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
86    "SPA_VERSION");
87static int zfs_version_vdev_boot = VDEV_BOOT_VERSION;
88SYSCTL_INT(_vfs_zfs_version, OID_AUTO, vdev_boot, CTLFLAG_RD,
89    &zfs_version_vdev_boot, 0, "VDEV_BOOT_VERSION");
90static int zfs_version_zpl = ZPL_VERSION;
91SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
92    "ZPL_VERSION");
93
94static int zfs_mount(vfs_t *vfsp);
95static int zfs_umount(vfs_t *vfsp, int fflag);
96static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
97static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
98static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
99static int zfs_sync(vfs_t *vfsp, int waitfor);
100static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
101    struct ucred **credanonp, int *numsecflavors, int **secflavors);
102static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp);
103static void zfs_objset_close(zfsvfs_t *zfsvfs);
104static void zfs_freevfs(vfs_t *vfsp);
105
106static struct vfsops zfs_vfsops = {
107	.vfs_mount =		zfs_mount,
108	.vfs_unmount =		zfs_umount,
109	.vfs_root =		zfs_root,
110	.vfs_statfs =		zfs_statfs,
111	.vfs_vget =		zfs_vget,
112	.vfs_sync =		zfs_sync,
113	.vfs_checkexp =		zfs_checkexp,
114	.vfs_fhtovp =		zfs_fhtovp,
115};
116
117VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
118
119/*
120 * We need to keep a count of active fs's.
121 * This is necessary to prevent our module
122 * from being unloaded after a umount -f
123 */
124static uint32_t	zfs_active_fs_count = 0;
125
126/*ARGSUSED*/
127static int
128zfs_sync(vfs_t *vfsp, int waitfor)
129{
130
131	/*
132	 * Data integrity is job one.  We don't want a compromised kernel
133	 * writing to the storage pool, so we never sync during panic.
134	 */
135	if (panicstr)
136		return (0);
137
138	if (vfsp != NULL) {
139		/*
140		 * Sync a specific filesystem.
141		 */
142		zfsvfs_t *zfsvfs = vfsp->vfs_data;
143		int error;
144
145		error = vfs_stdsync(vfsp, waitfor);
146		if (error != 0)
147			return (error);
148
149		ZFS_ENTER(zfsvfs);
150		if (zfsvfs->z_log != NULL)
151			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
152		else
153			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
154		ZFS_EXIT(zfsvfs);
155	} else {
156		/*
157		 * Sync all ZFS filesystems.  This is what happens when you
158		 * run sync(1M).  Unlike other filesystems, ZFS honors the
159		 * request by waiting for all pools to commit all dirty data.
160		 */
161		spa_sync_allpools();
162	}
163
164	return (0);
165}
166
167static void
168atime_changed_cb(void *arg, uint64_t newval)
169{
170	zfsvfs_t *zfsvfs = arg;
171
172	if (newval == TRUE) {
173		zfsvfs->z_atime = TRUE;
174		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
175		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
176		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
177	} else {
178		zfsvfs->z_atime = FALSE;
179		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
180		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
181		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
182	}
183}
184
185static void
186xattr_changed_cb(void *arg, uint64_t newval)
187{
188	zfsvfs_t *zfsvfs = arg;
189
190	if (newval == TRUE) {
191		/* XXX locking on vfs_flag? */
192#ifdef TODO
193		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
194#endif
195		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
196		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
197	} else {
198		/* XXX locking on vfs_flag? */
199#ifdef TODO
200		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
201#endif
202		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
203		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
204	}
205}
206
207static void
208blksz_changed_cb(void *arg, uint64_t newval)
209{
210	zfsvfs_t *zfsvfs = arg;
211
212	if (newval < SPA_MINBLOCKSIZE ||
213	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
214		newval = SPA_MAXBLOCKSIZE;
215
216	zfsvfs->z_max_blksz = newval;
217	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
218}
219
220static void
221readonly_changed_cb(void *arg, uint64_t newval)
222{
223	zfsvfs_t *zfsvfs = arg;
224
225	if (newval) {
226		/* XXX locking on vfs_flag? */
227		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
228		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
229		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
230	} else {
231		/* XXX locking on vfs_flag? */
232		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
233		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
234		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
235	}
236}
237
238static void
239setuid_changed_cb(void *arg, uint64_t newval)
240{
241	zfsvfs_t *zfsvfs = arg;
242
243	if (newval == FALSE) {
244		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
245		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
246		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
247	} else {
248		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
249		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
250		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
251	}
252}
253
254static void
255exec_changed_cb(void *arg, uint64_t newval)
256{
257	zfsvfs_t *zfsvfs = arg;
258
259	if (newval == FALSE) {
260		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
261		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
262		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
263	} else {
264		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
265		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
266		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
267	}
268}
269
270/*
271 * The nbmand mount option can be changed at mount time.
272 * We can't allow it to be toggled on live file systems or incorrect
273 * behavior may be seen from cifs clients
274 *
275 * This property isn't registered via dsl_prop_register(), but this callback
276 * will be called when a file system is first mounted
277 */
278static void
279nbmand_changed_cb(void *arg, uint64_t newval)
280{
281	zfsvfs_t *zfsvfs = arg;
282	if (newval == FALSE) {
283		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
284		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
285	} else {
286		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
287		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
288	}
289}
290
291static void
292snapdir_changed_cb(void *arg, uint64_t newval)
293{
294	zfsvfs_t *zfsvfs = arg;
295
296	zfsvfs->z_show_ctldir = newval;
297}
298
299static void
300vscan_changed_cb(void *arg, uint64_t newval)
301{
302	zfsvfs_t *zfsvfs = arg;
303
304	zfsvfs->z_vscan = newval;
305}
306
307static void
308acl_mode_changed_cb(void *arg, uint64_t newval)
309{
310	zfsvfs_t *zfsvfs = arg;
311
312	zfsvfs->z_acl_mode = newval;
313}
314
315static void
316acl_inherit_changed_cb(void *arg, uint64_t newval)
317{
318	zfsvfs_t *zfsvfs = arg;
319
320	zfsvfs->z_acl_inherit = newval;
321}
322
323static int
324zfs_register_callbacks(vfs_t *vfsp)
325{
326	struct dsl_dataset *ds = NULL;
327	objset_t *os = NULL;
328	zfsvfs_t *zfsvfs = NULL;
329	uint64_t nbmand;
330	int readonly, do_readonly = FALSE;
331	int setuid, do_setuid = FALSE;
332	int exec, do_exec = FALSE;
333	int xattr, do_xattr = FALSE;
334	int atime, do_atime = FALSE;
335	int error = 0;
336
337	ASSERT(vfsp);
338	zfsvfs = vfsp->vfs_data;
339	ASSERT(zfsvfs);
340	os = zfsvfs->z_os;
341
342	/*
343	 * This function can be called for a snapshot when we update snapshot's
344	 * mount point, which isn't really supported.
345	 */
346	if (dmu_objset_is_snapshot(os))
347		return (EOPNOTSUPP);
348
349	/*
350	 * The act of registering our callbacks will destroy any mount
351	 * options we may have.  In order to enable temporary overrides
352	 * of mount options, we stash away the current values and
353	 * restore them after we register the callbacks.
354	 */
355	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
356		readonly = B_TRUE;
357		do_readonly = B_TRUE;
358	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
359		readonly = B_FALSE;
360		do_readonly = B_TRUE;
361	}
362	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
363		setuid = B_FALSE;
364		do_setuid = B_TRUE;
365	} else {
366		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
367			setuid = B_FALSE;
368			do_setuid = B_TRUE;
369		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
370			setuid = B_TRUE;
371			do_setuid = B_TRUE;
372		}
373	}
374	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
375		exec = B_FALSE;
376		do_exec = B_TRUE;
377	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
378		exec = B_TRUE;
379		do_exec = B_TRUE;
380	}
381	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
382		xattr = B_FALSE;
383		do_xattr = B_TRUE;
384	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
385		xattr = B_TRUE;
386		do_xattr = B_TRUE;
387	}
388	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
389		atime = B_FALSE;
390		do_atime = B_TRUE;
391	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
392		atime = B_TRUE;
393		do_atime = B_TRUE;
394	}
395
396	/*
397	 * nbmand is a special property.  It can only be changed at
398	 * mount time.
399	 *
400	 * This is weird, but it is documented to only be changeable
401	 * at mount time.
402	 */
403	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
404		nbmand = B_FALSE;
405	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
406		nbmand = B_TRUE;
407	} else {
408		char osname[MAXNAMELEN];
409
410		dmu_objset_name(os, osname);
411		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
412		    NULL)) {
413			return (error);
414		}
415	}
416
417	/*
418	 * Register property callbacks.
419	 *
420	 * It would probably be fine to just check for i/o error from
421	 * the first prop_register(), but I guess I like to go
422	 * overboard...
423	 */
424	ds = dmu_objset_ds(os);
425	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
426	error = error ? error : dsl_prop_register(ds,
427	    "xattr", xattr_changed_cb, zfsvfs);
428	error = error ? error : dsl_prop_register(ds,
429	    "recordsize", blksz_changed_cb, zfsvfs);
430	error = error ? error : dsl_prop_register(ds,
431	    "readonly", readonly_changed_cb, zfsvfs);
432	error = error ? error : dsl_prop_register(ds,
433	    "setuid", setuid_changed_cb, zfsvfs);
434	error = error ? error : dsl_prop_register(ds,
435	    "exec", exec_changed_cb, zfsvfs);
436	error = error ? error : dsl_prop_register(ds,
437	    "snapdir", snapdir_changed_cb, zfsvfs);
438	error = error ? error : dsl_prop_register(ds,
439	    "aclmode", acl_mode_changed_cb, zfsvfs);
440	error = error ? error : dsl_prop_register(ds,
441	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
442	error = error ? error : dsl_prop_register(ds,
443	    "vscan", vscan_changed_cb, zfsvfs);
444	if (error)
445		goto unregister;
446
447	/*
448	 * Invoke our callbacks to restore temporary mount options.
449	 */
450	if (do_readonly)
451		readonly_changed_cb(zfsvfs, readonly);
452	if (do_setuid)
453		setuid_changed_cb(zfsvfs, setuid);
454	if (do_exec)
455		exec_changed_cb(zfsvfs, exec);
456	if (do_xattr)
457		xattr_changed_cb(zfsvfs, xattr);
458	if (do_atime)
459		atime_changed_cb(zfsvfs, atime);
460
461	nbmand_changed_cb(zfsvfs, nbmand);
462
463	return (0);
464
465unregister:
466	/*
467	 * We may attempt to unregister some callbacks that are not
468	 * registered, but this is OK; it will simply return ENOMSG,
469	 * which we will ignore.
470	 */
471	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
472	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
473	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
474	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
475	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
476	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
477	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
478	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
479	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
480	    zfsvfs);
481	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
482	return (error);
483
484}
485
486static int
487zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
488{
489	int error;
490
491	error = zfs_register_callbacks(zfsvfs->z_vfs);
492	if (error)
493		return (error);
494
495	/*
496	 * Set the objset user_ptr to track its zfsvfs.
497	 */
498	mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock);
499	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
500	mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock);
501
502	/*
503	 * If we are not mounting (ie: online recv), then we don't
504	 * have to worry about replaying the log as we blocked all
505	 * operations out since we closed the ZIL.
506	 */
507	if (mounting) {
508		boolean_t readonly;
509
510		/*
511		 * During replay we remove the read only flag to
512		 * allow replays to succeed.
513		 */
514		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
515		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
516
517		/*
518		 * Parse and replay the intent log.
519		 */
520		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
521		    zfs_replay_vector, zfs_unlinked_drain);
522
523		zfs_unlinked_drain(zfsvfs);
524		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
525	}
526
527	if (!zil_disable)
528		zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
529
530	return (0);
531}
532
533static void
534zfs_freezfsvfs(zfsvfs_t *zfsvfs)
535{
536	mutex_destroy(&zfsvfs->z_znodes_lock);
537	mutex_destroy(&zfsvfs->z_online_recv_lock);
538	list_destroy(&zfsvfs->z_all_znodes);
539	rrw_destroy(&zfsvfs->z_teardown_lock);
540	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
541	rw_destroy(&zfsvfs->z_fuid_lock);
542	kmem_free(zfsvfs, sizeof (zfsvfs_t));
543}
544
545static int
546zfs_domount(vfs_t *vfsp, char *osname)
547{
548	uint64_t recordsize, readonly;
549	int error = 0;
550	int mode;
551	zfsvfs_t *zfsvfs;
552	znode_t *zp = NULL;
553
554	ASSERT(vfsp);
555	ASSERT(osname);
556
557	/*
558	 * Initialize the zfs-specific filesystem structure.
559	 * Should probably make this a kmem cache, shuffle fields,
560	 * and just bzero up to z_hold_mtx[].
561	 */
562	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
563	zfsvfs->z_vfs = vfsp;
564	zfsvfs->z_parent = zfsvfs;
565	zfsvfs->z_assign = TXG_NOWAIT;
566	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
567	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
568
569	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
570	mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL);
571	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
572	    offsetof(znode_t, z_link_node));
573	rrw_init(&zfsvfs->z_teardown_lock);
574	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
575	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
576
577	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
578	    NULL))
579		goto out;
580	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
581	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
582
583	vfsp->vfs_data = zfsvfs;
584	vfsp->mnt_flag |= MNT_LOCAL;
585	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
586	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
587	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
588
589	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
590		goto out;
591
592	mode = DS_MODE_OWNER;
593	if (readonly)
594		mode |= DS_MODE_READONLY;
595
596	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
597	if (error == EROFS) {
598		mode = DS_MODE_OWNER | DS_MODE_READONLY;
599		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
600		    &zfsvfs->z_os);
601	}
602
603	if (error)
604		goto out;
605
606	if (error = zfs_init_fs(zfsvfs, &zp))
607		goto out;
608
609	/*
610	 * Set features for file system.
611	 */
612	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
613	if (zfsvfs->z_use_fuids) {
614		vfs_set_feature(vfsp, VFSFT_XVATTR);
615		vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
616		vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS);
617		vfs_set_feature(vfsp, VFSFT_ACLONCREATE);
618	}
619	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
620		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
621		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
622		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
623	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
624		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
625		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
626	}
627
628	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
629		uint64_t pval;
630
631		ASSERT(mode & DS_MODE_READONLY);
632		atime_changed_cb(zfsvfs, B_FALSE);
633		readonly_changed_cb(zfsvfs, B_TRUE);
634		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
635			goto out;
636		xattr_changed_cb(zfsvfs, pval);
637		zfsvfs->z_issnap = B_TRUE;
638	} else {
639		error = zfsvfs_setup(zfsvfs, B_TRUE);
640	}
641
642	vfs_mountedfrom(vfsp, osname);
643
644	if (!zfsvfs->z_issnap)
645		zfsctl_create(zfsvfs);
646out:
647	if (error) {
648		if (zfsvfs->z_os)
649			dmu_objset_close(zfsvfs->z_os);
650		zfs_freezfsvfs(zfsvfs);
651	} else {
652		atomic_add_32(&zfs_active_fs_count, 1);
653	}
654
655	return (error);
656}
657
658void
659zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
660{
661	objset_t *os = zfsvfs->z_os;
662	struct dsl_dataset *ds;
663
664	/*
665	 * Unregister properties.
666	 */
667	if (!dmu_objset_is_snapshot(os)) {
668		ds = dmu_objset_ds(os);
669		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
670		    zfsvfs) == 0);
671
672		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
673		    zfsvfs) == 0);
674
675		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
676		    zfsvfs) == 0);
677
678		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
679		    zfsvfs) == 0);
680
681		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
682		    zfsvfs) == 0);
683
684		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
685		    zfsvfs) == 0);
686
687		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
688		    zfsvfs) == 0);
689
690		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
691		    zfsvfs) == 0);
692
693		VERIFY(dsl_prop_unregister(ds, "aclinherit",
694		    acl_inherit_changed_cb, zfsvfs) == 0);
695
696		VERIFY(dsl_prop_unregister(ds, "vscan",
697		    vscan_changed_cb, zfsvfs) == 0);
698	}
699}
700
701/*ARGSUSED*/
702static int
703zfs_mount(vfs_t *vfsp)
704{
705	kthread_t	*td = curthread;
706	vnode_t		*mvp = vfsp->mnt_vnodecovered;
707	cred_t		*cr = td->td_ucred;
708	char		*osname;
709	int		error = 0;
710	int		canwrite;
711
712	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
713		return (EINVAL);
714
715	/*
716	 * If full-owner-access is enabled and delegated administration is
717	 * turned on, we must set nosuid.
718	 */
719	if (zfs_super_owner &&
720	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
721		secpolicy_fs_mount_clearopts(cr, vfsp);
722	}
723
724	/*
725	 * Check for mount privilege?
726	 *
727	 * If we don't have privilege then see if
728	 * we have local permission to allow it
729	 */
730	error = secpolicy_fs_mount(cr, mvp, vfsp);
731	if (error) {
732		error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr);
733		if (error != 0)
734			goto out;
735
736		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
737			vattr_t		vattr;
738
739			/*
740			 * Make sure user is the owner of the mount point
741			 * or has sufficient privileges.
742			 */
743
744			vattr.va_mask = AT_UID;
745
746			vn_lock(mvp, LK_SHARED | LK_RETRY);
747			if (error = VOP_GETATTR(mvp, &vattr, cr)) {
748				VOP_UNLOCK(mvp, 0);
749				goto out;
750			}
751
752#if 0 /* CHECK THIS! Is probably needed for zfs_suser. */
753			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
754			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
755				error = EPERM;
756				goto out;
757			}
758#else
759			if (error = secpolicy_vnode_owner(mvp, cr, vattr.va_uid)) {
760				VOP_UNLOCK(mvp, 0);
761				goto out;
762			}
763
764			if (error = VOP_ACCESS(mvp, VWRITE, cr, td)) {
765				VOP_UNLOCK(mvp, 0);
766				goto out;
767			}
768			VOP_UNLOCK(mvp, 0);
769#endif
770		}
771
772		secpolicy_fs_mount_clearopts(cr, vfsp);
773	}
774
775	/*
776	 * Refuse to mount a filesystem if we are in a local zone and the
777	 * dataset is not visible.
778	 */
779	if (!INGLOBALZONE(curthread) &&
780	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
781		error = EPERM;
782		goto out;
783	}
784
785	/*
786	 * When doing a remount, we simply refresh our temporary properties
787	 * according to those options set in the current VFS options.
788	 */
789	if (vfsp->vfs_flag & MS_REMOUNT) {
790		/* refresh mount options */
791		zfs_unregister_callbacks(vfsp->vfs_data);
792		error = zfs_register_callbacks(vfsp);
793		goto out;
794	}
795
796	DROP_GIANT();
797	error = zfs_domount(vfsp, osname);
798	PICKUP_GIANT();
799out:
800	return (error);
801}
802
803static int
804zfs_statfs(vfs_t *vfsp, struct statfs *statp)
805{
806	zfsvfs_t *zfsvfs = vfsp->vfs_data;
807	uint64_t refdbytes, availbytes, usedobjs, availobjs;
808
809	statp->f_version = STATFS_VERSION;
810
811	ZFS_ENTER(zfsvfs);
812
813	dmu_objset_space(zfsvfs->z_os,
814	    &refdbytes, &availbytes, &usedobjs, &availobjs);
815
816	/*
817	 * The underlying storage pool actually uses multiple block sizes.
818	 * We report the fragsize as the smallest block size we support,
819	 * and we report our blocksize as the filesystem's maximum blocksize.
820	 */
821	statp->f_bsize = SPA_MINBLOCKSIZE;
822	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
823
824	/*
825	 * The following report "total" blocks of various kinds in the
826	 * file system, but reported in terms of f_frsize - the
827	 * "fragment" size.
828	 */
829
830	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
831	statp->f_bfree = availbytes / statp->f_bsize;
832	statp->f_bavail = statp->f_bfree; /* no root reservation */
833
834	/*
835	 * statvfs() should really be called statufs(), because it assumes
836	 * static metadata.  ZFS doesn't preallocate files, so the best
837	 * we can do is report the max that could possibly fit in f_files,
838	 * and that minus the number actually used in f_ffree.
839	 * For f_ffree, report the smaller of the number of object available
840	 * and the number of blocks (each object will take at least a block).
841	 */
842	statp->f_ffree = MIN(availobjs, statp->f_bfree);
843	statp->f_files = statp->f_ffree + usedobjs;
844
845	/*
846	 * We're a zfs filesystem.
847	 */
848	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
849
850	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
851	    sizeof(statp->f_mntfromname));
852	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
853	    sizeof(statp->f_mntonname));
854
855	statp->f_namemax = ZFS_MAXNAMELEN;
856
857	ZFS_EXIT(zfsvfs);
858	return (0);
859}
860
861static int
862zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
863{
864	zfsvfs_t *zfsvfs = vfsp->vfs_data;
865	znode_t *rootzp;
866	int error;
867
868	ZFS_ENTER_NOERROR(zfsvfs);
869
870	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
871	if (error == 0) {
872		*vpp = ZTOV(rootzp);
873		error = vn_lock(*vpp, flags);
874		(*vpp)->v_vflag |= VV_ROOT;
875	}
876
877	ZFS_EXIT(zfsvfs);
878	return (error);
879}
880
881/*
882 * Teardown the zfsvfs::z_os.
883 *
884 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
885 * and 'z_teardown_inactive_lock' held.
886 */
887static int
888zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
889{
890	znode_t	*zp;
891
892	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
893
894	if (!unmounting) {
895		/*
896		 * We purge the parent filesystem's vfsp as the parent
897		 * filesystem and all of its snapshots have their vnode's
898		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
899		 * 'z_parent' is self referential for non-snapshots.
900		 */
901		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
902#ifdef FREEBSD_NAMECACHE
903		cache_purgevfs(zfsvfs->z_parent->z_vfs);
904#endif
905	}
906
907	/*
908	 * Close the zil. NB: Can't close the zil while zfs_inactive
909	 * threads are blocked as zil_close can call zfs_inactive.
910	 */
911	if (zfsvfs->z_log) {
912		zil_close(zfsvfs->z_log);
913		zfsvfs->z_log = NULL;
914	}
915
916	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
917
918	/*
919	 * If we are not unmounting (ie: online recv) and someone already
920	 * unmounted this file system while we were doing the switcheroo,
921	 * or a reopen of z_os failed then just bail out now.
922	 */
923	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
924		rw_exit(&zfsvfs->z_teardown_inactive_lock);
925		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
926		return (EIO);
927	}
928
929	/*
930	 * At this point there are no vops active, and any new vops will
931	 * fail with EIO since we have z_teardown_lock for writer (only
932	 * relavent for forced unmount).
933	 *
934	 * Release all holds on dbufs.
935	 */
936	mutex_enter(&zfsvfs->z_znodes_lock);
937	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
938	    zp = list_next(&zfsvfs->z_all_znodes, zp))
939		if (zp->z_dbuf) {
940			ASSERT(ZTOV(zp)->v_count >= 0);
941			zfs_znode_dmu_fini(zp);
942		}
943	mutex_exit(&zfsvfs->z_znodes_lock);
944
945	/*
946	 * If we are unmounting, set the unmounted flag and let new vops
947	 * unblock.  zfs_inactive will have the unmounted behavior, and all
948	 * other vops will fail with EIO.
949	 */
950	if (unmounting) {
951		zfsvfs->z_unmounted = B_TRUE;
952		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
953		rw_exit(&zfsvfs->z_teardown_inactive_lock);
954
955#ifdef __FreeBSD__
956		/*
957		 * Some znodes might not be fully reclaimed, wait for them.
958		 */
959		mutex_enter(&zfsvfs->z_znodes_lock);
960		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
961			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
962			    "zteardown", 0);
963		}
964		mutex_exit(&zfsvfs->z_znodes_lock);
965#endif
966	}
967
968	/*
969	 * z_os will be NULL if there was an error in attempting to reopen
970	 * zfsvfs, so just return as the properties had already been
971	 * unregistered and cached data had been evicted before.
972	 */
973	if (zfsvfs->z_os == NULL)
974		return (0);
975
976	/*
977	 * Unregister properties.
978	 */
979	zfs_unregister_callbacks(zfsvfs);
980
981	/*
982	 * Evict cached data
983	 */
984	if (dmu_objset_evict_dbufs(zfsvfs->z_os)) {
985		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
986		(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
987	}
988
989	return (0);
990}
991
992/*ARGSUSED*/
993static int
994zfs_umount(vfs_t *vfsp, int fflag)
995{
996	zfsvfs_t *zfsvfs = vfsp->vfs_data;
997	objset_t *os;
998	cred_t *cr = curthread->td_ucred;
999	int ret;
1000
1001	ret = secpolicy_fs_unmount(cr, vfsp);
1002	if (ret) {
1003		ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1004		    ZFS_DELEG_PERM_MOUNT, cr);
1005		if (ret)
1006			return (ret);
1007	}
1008	/*
1009	 * We purge the parent filesystem's vfsp as the parent filesystem
1010	 * and all of its snapshots have their vnode's v_vfsp set to the
1011	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1012	 * referential for non-snapshots.
1013	 */
1014	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1015
1016	/*
1017	 * Unmount any snapshots mounted under .zfs before unmounting the
1018	 * dataset itself.
1019	 */
1020	if (zfsvfs->z_ctldir != NULL) {
1021		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1022			return (ret);
1023		ret = vflush(vfsp, 0, 0, curthread);
1024		ASSERT(ret == EBUSY);
1025		if (!(fflag & MS_FORCE)) {
1026			if (zfsvfs->z_ctldir->v_count > 1)
1027				return (EBUSY);
1028			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1029		}
1030		zfsctl_destroy(zfsvfs);
1031		ASSERT(zfsvfs->z_ctldir == NULL);
1032	}
1033
1034	if (fflag & MS_FORCE) {
1035		/*
1036		 * Mark file system as unmounted before calling
1037		 * vflush(FORCECLOSE). This way we ensure no future vnops
1038		 * will be called and risk operating on DOOMED vnodes.
1039		 */
1040		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1041		zfsvfs->z_unmounted = B_TRUE;
1042		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1043	}
1044
1045	/*
1046	 * Flush all the files.
1047	 */
1048	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, curthread);
1049	if (ret != 0) {
1050		if (!zfsvfs->z_issnap) {
1051			zfsctl_create(zfsvfs);
1052			ASSERT(zfsvfs->z_ctldir != NULL);
1053		}
1054		return (ret);
1055	}
1056
1057	if (!(fflag & MS_FORCE)) {
1058		/*
1059		 * Check the number of active vnodes in the file system.
1060		 * Our count is maintained in the vfs structure, but the
1061		 * number is off by 1 to indicate a hold on the vfs
1062		 * structure itself.
1063		 *
1064		 * The '.zfs' directory maintains a reference of its
1065		 * own, and any active references underneath are
1066		 * reflected in the vnode count.
1067		 */
1068		if (zfsvfs->z_ctldir == NULL) {
1069			if (vfsp->vfs_count > 1)
1070				return (EBUSY);
1071		} else {
1072			if (vfsp->vfs_count > 2 ||
1073			    zfsvfs->z_ctldir->v_count > 1)
1074				return (EBUSY);
1075		}
1076	} else {
1077		MNT_ILOCK(vfsp);
1078		vfsp->mnt_kern_flag |= MNTK_UNMOUNTF;
1079		MNT_IUNLOCK(vfsp);
1080	}
1081
1082	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1083	os = zfsvfs->z_os;
1084
1085	/*
1086	 * z_os will be NULL if there was an error in
1087	 * attempting to reopen zfsvfs.
1088	 */
1089	if (os != NULL) {
1090		/*
1091		 * Unset the objset user_ptr.
1092		 */
1093		mutex_enter(&os->os->os_user_ptr_lock);
1094		dmu_objset_set_user(os, NULL);
1095		mutex_exit(&os->os->os_user_ptr_lock);
1096
1097		/*
1098		 * Finally release the objset
1099		 */
1100		dmu_objset_close(os);
1101	}
1102
1103	/*
1104	 * We can now safely destroy the '.zfs' directory node.
1105	 */
1106	if (zfsvfs->z_ctldir != NULL)
1107		zfsctl_destroy(zfsvfs);
1108	if (zfsvfs->z_issnap) {
1109		vnode_t *svp = vfsp->mnt_vnodecovered;
1110
1111		if (svp->v_count >= 2)
1112			VN_RELE(svp);
1113	}
1114	zfs_freevfs(vfsp);
1115
1116	return (0);
1117}
1118
1119static int
1120zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
1121{
1122	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1123	znode_t		*zp;
1124	int 		err;
1125
1126	/*
1127	 * XXXPJD: zfs_zget() can't operate on virtual entires like .zfs/ or
1128	 * .zfs/snapshot/ directories, so for now just return EOPNOTSUPP.
1129	 * This will make NFS to fall back to using READDIR instead of
1130	 * READDIRPLUS.
1131	 * Also snapshots are stored in AVL tree, but based on their names,
1132	 * not inode numbers, so it will be very inefficient to iterate
1133	 * over all snapshots to find the right one.
1134	 * Note that OpenSolaris READDIRPLUS implementation does LOOKUP on
1135	 * d_name, and not VGET on d_fileno as we do.
1136	 */
1137	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
1138		return (EOPNOTSUPP);
1139
1140	ZFS_ENTER(zfsvfs);
1141	err = zfs_zget(zfsvfs, ino, &zp);
1142	if (err == 0 && zp->z_unlinked) {
1143		VN_RELE(ZTOV(zp));
1144		err = EINVAL;
1145	}
1146	if (err != 0)
1147		*vpp = NULL;
1148	else {
1149		*vpp = ZTOV(zp);
1150		vn_lock(*vpp, flags);
1151	}
1152	ZFS_EXIT(zfsvfs);
1153	return (err);
1154}
1155
1156static int
1157zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
1158    struct ucred **credanonp, int *numsecflavors, int **secflavors)
1159{
1160	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1161
1162	/*
1163	 * If this is regular file system vfsp is the same as
1164	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
1165	 * zfsvfs->z_parent->z_vfs represents parent file system
1166	 * which we have to use here, because only this file system
1167	 * has mnt_export configured.
1168	 */
1169	vfsp = zfsvfs->z_parent->z_vfs;
1170
1171	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
1172	    credanonp, numsecflavors, secflavors));
1173}
1174
1175CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
1176CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
1177
1178static int
1179zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, vnode_t **vpp)
1180{
1181	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1182	znode_t		*zp;
1183	uint64_t	object = 0;
1184	uint64_t	fid_gen = 0;
1185	uint64_t	gen_mask;
1186	uint64_t	zp_gen;
1187	int		i, err;
1188
1189	*vpp = NULL;
1190
1191	ZFS_ENTER(zfsvfs);
1192
1193	/*
1194	 * On FreeBSD we can get snapshot's mount point or its parent file
1195	 * system mount point depending if snapshot is already mounted or not.
1196	 */
1197	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
1198		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1199		uint64_t	objsetid = 0;
1200		uint64_t	setgen = 0;
1201
1202		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1203			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1204
1205		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1206			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1207
1208		ZFS_EXIT(zfsvfs);
1209
1210		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1211		if (err)
1212			return (EINVAL);
1213		ZFS_ENTER(zfsvfs);
1214	}
1215
1216	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1217		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1218
1219		for (i = 0; i < sizeof (zfid->zf_object); i++)
1220			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1221
1222		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1223			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1224	} else {
1225		ZFS_EXIT(zfsvfs);
1226		return (EINVAL);
1227	}
1228
1229	/* A zero fid_gen means we are in the .zfs control directories */
1230	if (fid_gen == 0 &&
1231	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1232		*vpp = zfsvfs->z_ctldir;
1233		ASSERT(*vpp != NULL);
1234		if (object == ZFSCTL_INO_SNAPDIR) {
1235			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1236			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1237		} else {
1238			VN_HOLD(*vpp);
1239		}
1240		vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1241		ZFS_EXIT(zfsvfs);
1242		return (0);
1243	}
1244
1245	gen_mask = -1ULL >> (64 - 8 * i);
1246
1247	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1248	if (err = zfs_zget(zfsvfs, object, &zp)) {
1249		ZFS_EXIT(zfsvfs);
1250		return (err);
1251	}
1252	zp_gen = zp->z_phys->zp_gen & gen_mask;
1253	if (zp_gen == 0)
1254		zp_gen = 1;
1255	if (zp->z_unlinked || zp_gen != fid_gen) {
1256		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1257		VN_RELE(ZTOV(zp));
1258		ZFS_EXIT(zfsvfs);
1259		return (EINVAL);
1260	}
1261
1262	*vpp = ZTOV(zp);
1263	vn_lock(*vpp, LK_EXCLUSIVE | LK_RETRY);
1264	vnode_create_vobject(*vpp, zp->z_phys->zp_size, curthread);
1265	ZFS_EXIT(zfsvfs);
1266	return (0);
1267}
1268
1269/*
1270 * Block out VOPs and close zfsvfs_t::z_os
1271 *
1272 * Note, if successful, then we return with the 'z_teardown_lock' and
1273 * 'z_teardown_inactive_lock' write held.
1274 */
1275int
1276zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode)
1277{
1278	int error;
1279
1280	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1281		return (error);
1282
1283	*mode = zfsvfs->z_os->os_mode;
1284	dmu_objset_name(zfsvfs->z_os, name);
1285	dmu_objset_close(zfsvfs->z_os);
1286
1287	return (0);
1288}
1289
1290/*
1291 * Reopen zfsvfs_t::z_os and release VOPs.
1292 */
1293int
1294zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode)
1295{
1296	int err;
1297
1298	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
1299	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1300
1301	err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
1302	if (err) {
1303		zfsvfs->z_os = NULL;
1304	} else {
1305		znode_t *zp;
1306
1307		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1308
1309		/*
1310		 * Attempt to re-establish all the active znodes with
1311		 * their dbufs.  If a zfs_rezget() fails, then we'll let
1312		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1313		 * when they try to use their znode.
1314		 */
1315		mutex_enter(&zfsvfs->z_znodes_lock);
1316		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1317		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1318			(void) zfs_rezget(zp);
1319		}
1320		mutex_exit(&zfsvfs->z_znodes_lock);
1321
1322	}
1323
1324	/* release the VOPs */
1325	rw_exit(&zfsvfs->z_teardown_inactive_lock);
1326	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1327
1328	if (err) {
1329		/*
1330		 * Since we couldn't reopen zfsvfs::z_os, force
1331		 * unmount this file system.
1332		 */
1333		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
1334			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
1335	}
1336	return (err);
1337}
1338
1339static void
1340zfs_freevfs(vfs_t *vfsp)
1341{
1342	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1343	int i;
1344
1345	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1346		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1347
1348	zfs_fuid_destroy(zfsvfs);
1349	zfs_freezfsvfs(zfsvfs);
1350
1351	atomic_add_32(&zfs_active_fs_count, -1);
1352}
1353
1354#ifdef __i386__
1355static int desiredvnodes_backup;
1356#endif
1357
1358static void
1359zfs_vnodes_adjust(void)
1360{
1361#ifdef __i386__
1362	int newdesiredvnodes;
1363
1364	desiredvnodes_backup = desiredvnodes;
1365
1366	/*
1367	 * We calculate newdesiredvnodes the same way it is done in
1368	 * vntblinit(). If it is equal to desiredvnodes, it means that
1369	 * it wasn't tuned by the administrator and we can tune it down.
1370	 */
1371	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
1372	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
1373	    sizeof(struct vnode))));
1374	if (newdesiredvnodes == desiredvnodes)
1375		desiredvnodes = (3 * newdesiredvnodes) / 4;
1376#endif
1377}
1378
1379static void
1380zfs_vnodes_adjust_back(void)
1381{
1382
1383#ifdef __i386__
1384	desiredvnodes = desiredvnodes_backup;
1385#endif
1386}
1387
1388void
1389zfs_init(void)
1390{
1391
1392	printf("ZFS filesystem version " ZPL_VERSION_STRING "\n");
1393
1394	/*
1395	 * Initialize znode cache, vnode ops, etc...
1396	 */
1397	zfs_znode_init();
1398
1399	/*
1400	 * Initialize .zfs directory structures
1401	 */
1402	zfsctl_init();
1403
1404	/*
1405	 * Reduce number of vnode. Originally number of vnodes is calculated
1406	 * with UFS inode in mind. We reduce it here, because it's too big for
1407	 * ZFS/i386.
1408	 */
1409	zfs_vnodes_adjust();
1410}
1411
1412void
1413zfs_fini(void)
1414{
1415	zfsctl_fini();
1416	zfs_znode_fini();
1417	zfs_vnodes_adjust_back();
1418}
1419
1420int
1421zfs_busy(void)
1422{
1423	return (zfs_active_fs_count != 0);
1424}
1425
1426int
1427zfs_set_version(const char *name, uint64_t newvers)
1428{
1429	int error;
1430	objset_t *os;
1431	dmu_tx_t *tx;
1432	uint64_t curvers;
1433
1434	/*
1435	 * XXX for now, require that the filesystem be unmounted.  Would
1436	 * be nice to find the zfsvfs_t and just update that if
1437	 * possible.
1438	 */
1439
1440	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1441		return (EINVAL);
1442
1443	error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os);
1444	if (error)
1445		return (error);
1446
1447	error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1448	    8, 1, &curvers);
1449	if (error)
1450		goto out;
1451	if (newvers < curvers) {
1452		error = EINVAL;
1453		goto out;
1454	}
1455
1456	tx = dmu_tx_create(os);
1457	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR);
1458	error = dmu_tx_assign(tx, TXG_WAIT);
1459	if (error) {
1460		dmu_tx_abort(tx);
1461		goto out;
1462	}
1463	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1,
1464	    &newvers, tx);
1465
1466	spa_history_internal_log(LOG_DS_UPGRADE,
1467	    dmu_objset_spa(os), tx, CRED(),
1468	    "oldver=%llu newver=%llu dataset = %llu", curvers, newvers,
1469	    dmu_objset_id(os));
1470	dmu_tx_commit(tx);
1471
1472out:
1473	dmu_objset_close(os);
1474	return (error);
1475}
1476/*
1477 * Read a property stored within the master node.
1478 */
1479int
1480zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1481{
1482	const char *pname;
1483	int error = ENOENT;
1484
1485	/*
1486	 * Look up the file system's value for the property.  For the
1487	 * version property, we look up a slightly different string.
1488	 */
1489	if (prop == ZFS_PROP_VERSION)
1490		pname = ZPL_VERSION_STR;
1491	else
1492		pname = zfs_prop_to_name(prop);
1493
1494	if (os != NULL)
1495		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1496
1497	if (error == ENOENT) {
1498		/* No value set, use the default value */
1499		switch (prop) {
1500		case ZFS_PROP_VERSION:
1501			*value = ZPL_VERSION;
1502			break;
1503		case ZFS_PROP_NORMALIZE:
1504		case ZFS_PROP_UTF8ONLY:
1505			*value = 0;
1506			break;
1507		case ZFS_PROP_CASE:
1508			*value = ZFS_CASE_SENSITIVE;
1509			break;
1510		default:
1511			return (error);
1512		}
1513		error = 0;
1514	}
1515	return (error);
1516}
1517