zfs_vfsops.c revision 243674
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 Pawel Jakub Dawidek <pawel@dawidek.net>.
24 * All rights reserved.
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/types.h>
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysmacros.h>
34#include <sys/kmem.h>
35#include <sys/acl.h>
36#include <sys/vnode.h>
37#include <sys/vfs.h>
38#include <sys/mntent.h>
39#include <sys/mount.h>
40#include <sys/cmn_err.h>
41#include <sys/zfs_znode.h>
42#include <sys/zfs_dir.h>
43#include <sys/zil.h>
44#include <sys/fs/zfs.h>
45#include <sys/dmu.h>
46#include <sys/dsl_prop.h>
47#include <sys/dsl_dataset.h>
48#include <sys/dsl_deleg.h>
49#include <sys/spa.h>
50#include <sys/zap.h>
51#include <sys/sa.h>
52#include <sys/sa_impl.h>
53#include <sys/varargs.h>
54#include <sys/policy.h>
55#include <sys/atomic.h>
56#include <sys/zfs_ioctl.h>
57#include <sys/zfs_ctldir.h>
58#include <sys/zfs_fuid.h>
59#include <sys/sunddi.h>
60#include <sys/dnlc.h>
61#include <sys/dmu_objset.h>
62#include <sys/spa_boot.h>
63#include <sys/jail.h>
64#include "zfs_comutil.h"
65
66struct mtx zfs_debug_mtx;
67MTX_SYSINIT(zfs_debug_mtx, &zfs_debug_mtx, "zfs_debug", MTX_DEF);
68
69SYSCTL_NODE(_vfs, OID_AUTO, zfs, CTLFLAG_RW, 0, "ZFS file system");
70
71int zfs_super_owner;
72SYSCTL_INT(_vfs_zfs, OID_AUTO, super_owner, CTLFLAG_RW, &zfs_super_owner, 0,
73    "File system owner can perform privileged operation on his file systems");
74
75int zfs_debug_level;
76TUNABLE_INT("vfs.zfs.debug", &zfs_debug_level);
77SYSCTL_INT(_vfs_zfs, OID_AUTO, debug, CTLFLAG_RW, &zfs_debug_level, 0,
78    "Debug level");
79
80SYSCTL_NODE(_vfs_zfs, OID_AUTO, version, CTLFLAG_RD, 0, "ZFS versions");
81static int zfs_version_acl = ZFS_ACL_VERSION;
82SYSCTL_INT(_vfs_zfs_version, OID_AUTO, acl, CTLFLAG_RD, &zfs_version_acl, 0,
83    "ZFS_ACL_VERSION");
84static int zfs_version_spa = SPA_VERSION;
85SYSCTL_INT(_vfs_zfs_version, OID_AUTO, spa, CTLFLAG_RD, &zfs_version_spa, 0,
86    "SPA_VERSION");
87static int zfs_version_zpl = ZPL_VERSION;
88SYSCTL_INT(_vfs_zfs_version, OID_AUTO, zpl, CTLFLAG_RD, &zfs_version_zpl, 0,
89    "ZPL_VERSION");
90
91static int zfs_mount(vfs_t *vfsp);
92static int zfs_umount(vfs_t *vfsp, int fflag);
93static int zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp);
94static int zfs_statfs(vfs_t *vfsp, struct statfs *statp);
95static int zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp);
96static int zfs_sync(vfs_t *vfsp, int waitfor);
97static int zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
98    struct ucred **credanonp, int *numsecflavors, int **secflavors);
99static int zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp);
100static void zfs_objset_close(zfsvfs_t *zfsvfs);
101static void zfs_freevfs(vfs_t *vfsp);
102
103static struct vfsops zfs_vfsops = {
104	.vfs_mount =		zfs_mount,
105	.vfs_unmount =		zfs_umount,
106	.vfs_root =		zfs_root,
107	.vfs_statfs =		zfs_statfs,
108	.vfs_vget =		zfs_vget,
109	.vfs_sync =		zfs_sync,
110	.vfs_checkexp =		zfs_checkexp,
111	.vfs_fhtovp =		zfs_fhtovp,
112};
113
114VFS_SET(zfs_vfsops, zfs, VFCF_JAIL | VFCF_DELEGADMIN);
115
116/*
117 * We need to keep a count of active fs's.
118 * This is necessary to prevent our module
119 * from being unloaded after a umount -f
120 */
121static uint32_t	zfs_active_fs_count = 0;
122
123/*ARGSUSED*/
124static int
125zfs_sync(vfs_t *vfsp, int waitfor)
126{
127
128	/*
129	 * Data integrity is job one.  We don't want a compromised kernel
130	 * writing to the storage pool, so we never sync during panic.
131	 */
132	if (panicstr)
133		return (0);
134
135	if (vfsp != NULL) {
136		/*
137		 * Sync a specific filesystem.
138		 */
139		zfsvfs_t *zfsvfs = vfsp->vfs_data;
140		dsl_pool_t *dp;
141		int error;
142
143		error = vfs_stdsync(vfsp, waitfor);
144		if (error != 0)
145			return (error);
146
147		ZFS_ENTER(zfsvfs);
148		dp = dmu_objset_pool(zfsvfs->z_os);
149
150		/*
151		 * If the system is shutting down, then skip any
152		 * filesystems which may exist on a suspended pool.
153		 */
154		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
155			ZFS_EXIT(zfsvfs);
156			return (0);
157		}
158
159		if (zfsvfs->z_log != NULL)
160			zil_commit(zfsvfs->z_log, 0);
161
162		ZFS_EXIT(zfsvfs);
163	} else {
164		/*
165		 * Sync all ZFS filesystems.  This is what happens when you
166		 * run sync(1M).  Unlike other filesystems, ZFS honors the
167		 * request by waiting for all pools to commit all dirty data.
168		 */
169		spa_sync_allpools();
170	}
171
172	return (0);
173}
174
175#ifndef __FreeBSD__
176static int
177zfs_create_unique_device(dev_t *dev)
178{
179	major_t new_major;
180
181	do {
182		ASSERT3U(zfs_minor, <=, MAXMIN32);
183		minor_t start = zfs_minor;
184		do {
185			mutex_enter(&zfs_dev_mtx);
186			if (zfs_minor >= MAXMIN32) {
187				/*
188				 * If we're still using the real major
189				 * keep out of /dev/zfs and /dev/zvol minor
190				 * number space.  If we're using a getudev()'ed
191				 * major number, we can use all of its minors.
192				 */
193				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
194					zfs_minor = ZFS_MIN_MINOR;
195				else
196					zfs_minor = 0;
197			} else {
198				zfs_minor++;
199			}
200			*dev = makedevice(zfs_major, zfs_minor);
201			mutex_exit(&zfs_dev_mtx);
202		} while (vfs_devismounted(*dev) && zfs_minor != start);
203		if (zfs_minor == start) {
204			/*
205			 * We are using all ~262,000 minor numbers for the
206			 * current major number.  Create a new major number.
207			 */
208			if ((new_major = getudev()) == (major_t)-1) {
209				cmn_err(CE_WARN,
210				    "zfs_mount: Can't get unique major "
211				    "device number.");
212				return (-1);
213			}
214			mutex_enter(&zfs_dev_mtx);
215			zfs_major = new_major;
216			zfs_minor = 0;
217
218			mutex_exit(&zfs_dev_mtx);
219		} else {
220			break;
221		}
222		/* CONSTANTCONDITION */
223	} while (1);
224
225	return (0);
226}
227#endif	/* !__FreeBSD__ */
228
229static void
230atime_changed_cb(void *arg, uint64_t newval)
231{
232	zfsvfs_t *zfsvfs = arg;
233
234	if (newval == TRUE) {
235		zfsvfs->z_atime = TRUE;
236		zfsvfs->z_vfs->vfs_flag &= ~MNT_NOATIME;
237		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
238		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
239	} else {
240		zfsvfs->z_atime = FALSE;
241		zfsvfs->z_vfs->vfs_flag |= MNT_NOATIME;
242		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
243		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
244	}
245}
246
247static void
248xattr_changed_cb(void *arg, uint64_t newval)
249{
250	zfsvfs_t *zfsvfs = arg;
251
252	if (newval == TRUE) {
253		/* XXX locking on vfs_flag? */
254#ifdef TODO
255		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
256#endif
257		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
258		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
259	} else {
260		/* XXX locking on vfs_flag? */
261#ifdef TODO
262		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
263#endif
264		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
265		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
266	}
267}
268
269static void
270blksz_changed_cb(void *arg, uint64_t newval)
271{
272	zfsvfs_t *zfsvfs = arg;
273
274	if (newval < SPA_MINBLOCKSIZE ||
275	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
276		newval = SPA_MAXBLOCKSIZE;
277
278	zfsvfs->z_max_blksz = newval;
279	zfsvfs->z_vfs->mnt_stat.f_iosize = newval;
280}
281
282static void
283readonly_changed_cb(void *arg, uint64_t newval)
284{
285	zfsvfs_t *zfsvfs = arg;
286
287	if (newval) {
288		/* XXX locking on vfs_flag? */
289		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
290		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
291		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
292	} else {
293		/* XXX locking on vfs_flag? */
294		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
295		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
296		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
297	}
298}
299
300static void
301setuid_changed_cb(void *arg, uint64_t newval)
302{
303	zfsvfs_t *zfsvfs = arg;
304
305	if (newval == FALSE) {
306		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
307		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
308		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
309	} else {
310		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
311		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
312		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
313	}
314}
315
316static void
317exec_changed_cb(void *arg, uint64_t newval)
318{
319	zfsvfs_t *zfsvfs = arg;
320
321	if (newval == FALSE) {
322		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
323		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
324		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
325	} else {
326		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
327		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
328		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
329	}
330}
331
332/*
333 * The nbmand mount option can be changed at mount time.
334 * We can't allow it to be toggled on live file systems or incorrect
335 * behavior may be seen from cifs clients
336 *
337 * This property isn't registered via dsl_prop_register(), but this callback
338 * will be called when a file system is first mounted
339 */
340static void
341nbmand_changed_cb(void *arg, uint64_t newval)
342{
343	zfsvfs_t *zfsvfs = arg;
344	if (newval == FALSE) {
345		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
346		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
347	} else {
348		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
349		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
350	}
351}
352
353static void
354snapdir_changed_cb(void *arg, uint64_t newval)
355{
356	zfsvfs_t *zfsvfs = arg;
357
358	zfsvfs->z_show_ctldir = newval;
359}
360
361static void
362vscan_changed_cb(void *arg, uint64_t newval)
363{
364	zfsvfs_t *zfsvfs = arg;
365
366	zfsvfs->z_vscan = newval;
367}
368
369static void
370acl_mode_changed_cb(void *arg, uint64_t newval)
371{
372	zfsvfs_t *zfsvfs = arg;
373
374	zfsvfs->z_acl_mode = newval;
375}
376
377static void
378acl_inherit_changed_cb(void *arg, uint64_t newval)
379{
380	zfsvfs_t *zfsvfs = arg;
381
382	zfsvfs->z_acl_inherit = newval;
383}
384
385static int
386zfs_register_callbacks(vfs_t *vfsp)
387{
388	struct dsl_dataset *ds = NULL;
389	objset_t *os = NULL;
390	zfsvfs_t *zfsvfs = NULL;
391	uint64_t nbmand;
392	int readonly, do_readonly = B_FALSE;
393	int setuid, do_setuid = B_FALSE;
394	int exec, do_exec = B_FALSE;
395	int xattr, do_xattr = B_FALSE;
396	int atime, do_atime = B_FALSE;
397	int error = 0;
398
399	ASSERT(vfsp);
400	zfsvfs = vfsp->vfs_data;
401	ASSERT(zfsvfs);
402	os = zfsvfs->z_os;
403
404	/*
405	 * This function can be called for a snapshot when we update snapshot's
406	 * mount point, which isn't really supported.
407	 */
408	if (dmu_objset_is_snapshot(os))
409		return (EOPNOTSUPP);
410
411	/*
412	 * The act of registering our callbacks will destroy any mount
413	 * options we may have.  In order to enable temporary overrides
414	 * of mount options, we stash away the current values and
415	 * restore them after we register the callbacks.
416	 */
417	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
418	    !spa_writeable(dmu_objset_spa(os))) {
419		readonly = B_TRUE;
420		do_readonly = B_TRUE;
421	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
422		readonly = B_FALSE;
423		do_readonly = B_TRUE;
424	}
425	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
426		setuid = B_FALSE;
427		do_setuid = B_TRUE;
428	} else {
429		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
430			setuid = B_FALSE;
431			do_setuid = B_TRUE;
432		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
433			setuid = B_TRUE;
434			do_setuid = B_TRUE;
435		}
436	}
437	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
438		exec = B_FALSE;
439		do_exec = B_TRUE;
440	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
441		exec = B_TRUE;
442		do_exec = B_TRUE;
443	}
444	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
445		xattr = B_FALSE;
446		do_xattr = B_TRUE;
447	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
448		xattr = B_TRUE;
449		do_xattr = B_TRUE;
450	}
451	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
452		atime = B_FALSE;
453		do_atime = B_TRUE;
454	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
455		atime = B_TRUE;
456		do_atime = B_TRUE;
457	}
458
459	/*
460	 * nbmand is a special property.  It can only be changed at
461	 * mount time.
462	 *
463	 * This is weird, but it is documented to only be changeable
464	 * at mount time.
465	 */
466	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
467		nbmand = B_FALSE;
468	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
469		nbmand = B_TRUE;
470	} else {
471		char osname[MAXNAMELEN];
472
473		dmu_objset_name(os, osname);
474		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
475		    NULL)) {
476			return (error);
477		}
478	}
479
480	/*
481	 * Register property callbacks.
482	 *
483	 * It would probably be fine to just check for i/o error from
484	 * the first prop_register(), but I guess I like to go
485	 * overboard...
486	 */
487	ds = dmu_objset_ds(os);
488	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
489	error = error ? error : dsl_prop_register(ds,
490	    "xattr", xattr_changed_cb, zfsvfs);
491	error = error ? error : dsl_prop_register(ds,
492	    "recordsize", blksz_changed_cb, zfsvfs);
493	error = error ? error : dsl_prop_register(ds,
494	    "readonly", readonly_changed_cb, zfsvfs);
495	error = error ? error : dsl_prop_register(ds,
496	    "setuid", setuid_changed_cb, zfsvfs);
497	error = error ? error : dsl_prop_register(ds,
498	    "exec", exec_changed_cb, zfsvfs);
499	error = error ? error : dsl_prop_register(ds,
500	    "snapdir", snapdir_changed_cb, zfsvfs);
501	error = error ? error : dsl_prop_register(ds,
502	    "aclmode", acl_mode_changed_cb, zfsvfs);
503	error = error ? error : dsl_prop_register(ds,
504	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
505	error = error ? error : dsl_prop_register(ds,
506	    "vscan", vscan_changed_cb, zfsvfs);
507	if (error)
508		goto unregister;
509
510	/*
511	 * Invoke our callbacks to restore temporary mount options.
512	 */
513	if (do_readonly)
514		readonly_changed_cb(zfsvfs, readonly);
515	if (do_setuid)
516		setuid_changed_cb(zfsvfs, setuid);
517	if (do_exec)
518		exec_changed_cb(zfsvfs, exec);
519	if (do_xattr)
520		xattr_changed_cb(zfsvfs, xattr);
521	if (do_atime)
522		atime_changed_cb(zfsvfs, atime);
523
524	nbmand_changed_cb(zfsvfs, nbmand);
525
526	return (0);
527
528unregister:
529	/*
530	 * We may attempt to unregister some callbacks that are not
531	 * registered, but this is OK; it will simply return ENOMSG,
532	 * which we will ignore.
533	 */
534	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
535	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
536	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
537	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
538	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
539	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
540	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
541	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
542	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
543	    zfsvfs);
544	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
545	return (error);
546
547}
548
549static int
550zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
551    uint64_t *userp, uint64_t *groupp)
552{
553	int error = 0;
554
555	/*
556	 * Is it a valid type of object to track?
557	 */
558	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
559		return (ENOENT);
560
561	/*
562	 * If we have a NULL data pointer
563	 * then assume the id's aren't changing and
564	 * return EEXIST to the dmu to let it know to
565	 * use the same ids
566	 */
567	if (data == NULL)
568		return (EEXIST);
569
570	if (bonustype == DMU_OT_ZNODE) {
571		znode_phys_t *znp = data;
572		*userp = znp->zp_uid;
573		*groupp = znp->zp_gid;
574	} else {
575		int hdrsize;
576		sa_hdr_phys_t *sap = data;
577		sa_hdr_phys_t sa = *sap;
578		boolean_t swap = B_FALSE;
579
580		ASSERT(bonustype == DMU_OT_SA);
581
582		if (sa.sa_magic == 0) {
583			/*
584			 * This should only happen for newly created
585			 * files that haven't had the znode data filled
586			 * in yet.
587			 */
588			*userp = 0;
589			*groupp = 0;
590			return (0);
591		}
592		if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
593			sa.sa_magic = SA_MAGIC;
594			sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
595			swap = B_TRUE;
596		} else {
597			VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
598		}
599
600		hdrsize = sa_hdrsize(&sa);
601		VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
602		*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
603		    SA_UID_OFFSET));
604		*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
605		    SA_GID_OFFSET));
606		if (swap) {
607			*userp = BSWAP_64(*userp);
608			*groupp = BSWAP_64(*groupp);
609		}
610	}
611	return (error);
612}
613
614static void
615fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
616    char *domainbuf, int buflen, uid_t *ridp)
617{
618	uint64_t fuid;
619	const char *domain;
620
621	fuid = strtonum(fuidstr, NULL);
622
623	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
624	if (domain)
625		(void) strlcpy(domainbuf, domain, buflen);
626	else
627		domainbuf[0] = '\0';
628	*ridp = FUID_RID(fuid);
629}
630
631static uint64_t
632zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
633{
634	switch (type) {
635	case ZFS_PROP_USERUSED:
636		return (DMU_USERUSED_OBJECT);
637	case ZFS_PROP_GROUPUSED:
638		return (DMU_GROUPUSED_OBJECT);
639	case ZFS_PROP_USERQUOTA:
640		return (zfsvfs->z_userquota_obj);
641	case ZFS_PROP_GROUPQUOTA:
642		return (zfsvfs->z_groupquota_obj);
643	}
644	return (0);
645}
646
647int
648zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
649    uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
650{
651	int error;
652	zap_cursor_t zc;
653	zap_attribute_t za;
654	zfs_useracct_t *buf = vbuf;
655	uint64_t obj;
656
657	if (!dmu_objset_userspace_present(zfsvfs->z_os))
658		return (ENOTSUP);
659
660	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
661	if (obj == 0) {
662		*bufsizep = 0;
663		return (0);
664	}
665
666	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
667	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
668	    zap_cursor_advance(&zc)) {
669		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
670		    *bufsizep)
671			break;
672
673		fuidstr_to_sid(zfsvfs, za.za_name,
674		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
675
676		buf->zu_space = za.za_first_integer;
677		buf++;
678	}
679	if (error == ENOENT)
680		error = 0;
681
682	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
683	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
684	*cookiep = zap_cursor_serialize(&zc);
685	zap_cursor_fini(&zc);
686	return (error);
687}
688
689/*
690 * buf must be big enough (eg, 32 bytes)
691 */
692static int
693id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
694    char *buf, boolean_t addok)
695{
696	uint64_t fuid;
697	int domainid = 0;
698
699	if (domain && domain[0]) {
700		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
701		if (domainid == -1)
702			return (ENOENT);
703	}
704	fuid = FUID_ENCODE(domainid, rid);
705	(void) sprintf(buf, "%llx", (longlong_t)fuid);
706	return (0);
707}
708
709int
710zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
711    const char *domain, uint64_t rid, uint64_t *valp)
712{
713	char buf[32];
714	int err;
715	uint64_t obj;
716
717	*valp = 0;
718
719	if (!dmu_objset_userspace_present(zfsvfs->z_os))
720		return (ENOTSUP);
721
722	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
723	if (obj == 0)
724		return (0);
725
726	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
727	if (err)
728		return (err);
729
730	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
731	if (err == ENOENT)
732		err = 0;
733	return (err);
734}
735
736int
737zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
738    const char *domain, uint64_t rid, uint64_t quota)
739{
740	char buf[32];
741	int err;
742	dmu_tx_t *tx;
743	uint64_t *objp;
744	boolean_t fuid_dirtied;
745
746	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
747		return (EINVAL);
748
749	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
750		return (ENOTSUP);
751
752	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
753	    &zfsvfs->z_groupquota_obj;
754
755	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
756	if (err)
757		return (err);
758	fuid_dirtied = zfsvfs->z_fuid_dirty;
759
760	tx = dmu_tx_create(zfsvfs->z_os);
761	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
762	if (*objp == 0) {
763		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
764		    zfs_userquota_prop_prefixes[type]);
765	}
766	if (fuid_dirtied)
767		zfs_fuid_txhold(zfsvfs, tx);
768	err = dmu_tx_assign(tx, TXG_WAIT);
769	if (err) {
770		dmu_tx_abort(tx);
771		return (err);
772	}
773
774	mutex_enter(&zfsvfs->z_lock);
775	if (*objp == 0) {
776		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
777		    DMU_OT_NONE, 0, tx);
778		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
779		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
780	}
781	mutex_exit(&zfsvfs->z_lock);
782
783	if (quota == 0) {
784		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
785		if (err == ENOENT)
786			err = 0;
787	} else {
788		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
789	}
790	ASSERT(err == 0);
791	if (fuid_dirtied)
792		zfs_fuid_sync(zfsvfs, tx);
793	dmu_tx_commit(tx);
794	return (err);
795}
796
797boolean_t
798zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
799{
800	char buf[32];
801	uint64_t used, quota, usedobj, quotaobj;
802	int err;
803
804	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
805	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
806
807	if (quotaobj == 0 || zfsvfs->z_replay)
808		return (B_FALSE);
809
810	(void) sprintf(buf, "%llx", (longlong_t)fuid);
811	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
812	if (err != 0)
813		return (B_FALSE);
814
815	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
816	if (err != 0)
817		return (B_FALSE);
818	return (used >= quota);
819}
820
821boolean_t
822zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
823{
824	uint64_t fuid;
825	uint64_t quotaobj;
826
827	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
828
829	fuid = isgroup ? zp->z_gid : zp->z_uid;
830
831	if (quotaobj == 0 || zfsvfs->z_replay)
832		return (B_FALSE);
833
834	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
835}
836
837int
838zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
839{
840	objset_t *os;
841	zfsvfs_t *zfsvfs;
842	uint64_t zval;
843	int i, error;
844	uint64_t sa_obj;
845
846	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
847
848	/*
849	 * We claim to always be readonly so we can open snapshots;
850	 * other ZPL code will prevent us from writing to snapshots.
851	 */
852	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
853	if (error) {
854		kmem_free(zfsvfs, sizeof (zfsvfs_t));
855		return (error);
856	}
857
858	/*
859	 * Initialize the zfs-specific filesystem structure.
860	 * Should probably make this a kmem cache, shuffle fields,
861	 * and just bzero up to z_hold_mtx[].
862	 */
863	zfsvfs->z_vfs = NULL;
864	zfsvfs->z_parent = zfsvfs;
865	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
866	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
867	zfsvfs->z_os = os;
868
869	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
870	if (error) {
871		goto out;
872	} else if (zfsvfs->z_version >
873	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
874		(void) printf("Can't mount a version %lld file system "
875		    "on a version %lld pool\n. Pool must be upgraded to mount "
876		    "this file system.", (u_longlong_t)zfsvfs->z_version,
877		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
878		error = ENOTSUP;
879		goto out;
880	}
881	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
882		goto out;
883	zfsvfs->z_norm = (int)zval;
884
885	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
886		goto out;
887	zfsvfs->z_utf8 = (zval != 0);
888
889	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
890		goto out;
891	zfsvfs->z_case = (uint_t)zval;
892
893	/*
894	 * Fold case on file systems that are always or sometimes case
895	 * insensitive.
896	 */
897	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
898	    zfsvfs->z_case == ZFS_CASE_MIXED)
899		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
900
901	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
902	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
903
904	if (zfsvfs->z_use_sa) {
905		/* should either have both of these objects or none */
906		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
907		    &sa_obj);
908		if (error)
909			return (error);
910	} else {
911		/*
912		 * Pre SA versions file systems should never touch
913		 * either the attribute registration or layout objects.
914		 */
915		sa_obj = 0;
916	}
917
918	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
919	    &zfsvfs->z_attr_table);
920	if (error)
921		goto out;
922
923	if (zfsvfs->z_version >= ZPL_VERSION_SA)
924		sa_register_update_callback(os, zfs_sa_upgrade);
925
926	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
927	    &zfsvfs->z_root);
928	if (error)
929		goto out;
930	ASSERT(zfsvfs->z_root != 0);
931
932	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
933	    &zfsvfs->z_unlinkedobj);
934	if (error)
935		goto out;
936
937	error = zap_lookup(os, MASTER_NODE_OBJ,
938	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
939	    8, 1, &zfsvfs->z_userquota_obj);
940	if (error && error != ENOENT)
941		goto out;
942
943	error = zap_lookup(os, MASTER_NODE_OBJ,
944	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
945	    8, 1, &zfsvfs->z_groupquota_obj);
946	if (error && error != ENOENT)
947		goto out;
948
949	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
950	    &zfsvfs->z_fuid_obj);
951	if (error && error != ENOENT)
952		goto out;
953
954	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
955	    &zfsvfs->z_shares_dir);
956	if (error && error != ENOENT)
957		goto out;
958
959	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
960	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
961	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
962	    offsetof(znode_t, z_link_node));
963	rrw_init(&zfsvfs->z_teardown_lock);
964	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
965	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
966	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
967		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
968
969	*zfvp = zfsvfs;
970	return (0);
971
972out:
973	dmu_objset_disown(os, zfsvfs);
974	*zfvp = NULL;
975	kmem_free(zfsvfs, sizeof (zfsvfs_t));
976	return (error);
977}
978
979static int
980zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
981{
982	int error;
983
984	error = zfs_register_callbacks(zfsvfs->z_vfs);
985	if (error)
986		return (error);
987
988	/*
989	 * Set the objset user_ptr to track its zfsvfs.
990	 */
991	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
992	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
993	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
994
995	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
996
997	/*
998	 * If we are not mounting (ie: online recv), then we don't
999	 * have to worry about replaying the log as we blocked all
1000	 * operations out since we closed the ZIL.
1001	 */
1002	if (mounting) {
1003		boolean_t readonly;
1004
1005		/*
1006		 * During replay we remove the read only flag to
1007		 * allow replays to succeed.
1008		 */
1009		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1010		if (readonly != 0)
1011			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1012		else
1013			zfs_unlinked_drain(zfsvfs);
1014
1015		/*
1016		 * Parse and replay the intent log.
1017		 *
1018		 * Because of ziltest, this must be done after
1019		 * zfs_unlinked_drain().  (Further note: ziltest
1020		 * doesn't use readonly mounts, where
1021		 * zfs_unlinked_drain() isn't called.)  This is because
1022		 * ziltest causes spa_sync() to think it's committed,
1023		 * but actually it is not, so the intent log contains
1024		 * many txg's worth of changes.
1025		 *
1026		 * In particular, if object N is in the unlinked set in
1027		 * the last txg to actually sync, then it could be
1028		 * actually freed in a later txg and then reallocated
1029		 * in a yet later txg.  This would write a "create
1030		 * object N" record to the intent log.  Normally, this
1031		 * would be fine because the spa_sync() would have
1032		 * written out the fact that object N is free, before
1033		 * we could write the "create object N" intent log
1034		 * record.
1035		 *
1036		 * But when we are in ziltest mode, we advance the "open
1037		 * txg" without actually spa_sync()-ing the changes to
1038		 * disk.  So we would see that object N is still
1039		 * allocated and in the unlinked set, and there is an
1040		 * intent log record saying to allocate it.
1041		 */
1042		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1043			if (zil_replay_disable) {
1044				zil_destroy(zfsvfs->z_log, B_FALSE);
1045			} else {
1046				zfsvfs->z_replay = B_TRUE;
1047				zil_replay(zfsvfs->z_os, zfsvfs,
1048				    zfs_replay_vector);
1049				zfsvfs->z_replay = B_FALSE;
1050			}
1051		}
1052		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1053	}
1054
1055	return (0);
1056}
1057
1058extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1059
1060void
1061zfsvfs_free(zfsvfs_t *zfsvfs)
1062{
1063	int i;
1064
1065	/*
1066	 * This is a barrier to prevent the filesystem from going away in
1067	 * zfs_znode_move() until we can safely ensure that the filesystem is
1068	 * not unmounted. We consider the filesystem valid before the barrier
1069	 * and invalid after the barrier.
1070	 */
1071	rw_enter(&zfsvfs_lock, RW_READER);
1072	rw_exit(&zfsvfs_lock);
1073
1074	zfs_fuid_destroy(zfsvfs);
1075
1076	mutex_destroy(&zfsvfs->z_znodes_lock);
1077	mutex_destroy(&zfsvfs->z_lock);
1078	list_destroy(&zfsvfs->z_all_znodes);
1079	rrw_destroy(&zfsvfs->z_teardown_lock);
1080	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1081	rw_destroy(&zfsvfs->z_fuid_lock);
1082	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1083		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1084	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1085}
1086
1087static void
1088zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1089{
1090	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1091	if (zfsvfs->z_vfs) {
1092		if (zfsvfs->z_use_fuids) {
1093			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1094			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1095			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1096			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1097			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1098			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1099		} else {
1100			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1101			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1102			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1103			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1104			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1105			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1106		}
1107	}
1108	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1109}
1110
1111static int
1112zfs_domount(vfs_t *vfsp, char *osname)
1113{
1114	uint64_t recordsize, fsid_guid;
1115	int error = 0;
1116	zfsvfs_t *zfsvfs;
1117	vnode_t *vp;
1118
1119	ASSERT(vfsp);
1120	ASSERT(osname);
1121
1122	error = zfsvfs_create(osname, &zfsvfs);
1123	if (error)
1124		return (error);
1125	zfsvfs->z_vfs = vfsp;
1126
1127	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1128	    NULL))
1129		goto out;
1130	zfsvfs->z_vfs->vfs_bsize = SPA_MINBLOCKSIZE;
1131	zfsvfs->z_vfs->mnt_stat.f_iosize = recordsize;
1132
1133	vfsp->vfs_data = zfsvfs;
1134	vfsp->mnt_flag |= MNT_LOCAL;
1135	vfsp->mnt_kern_flag |= MNTK_MPSAFE;
1136	vfsp->mnt_kern_flag |= MNTK_LOOKUP_SHARED;
1137	vfsp->mnt_kern_flag |= MNTK_SHARED_WRITES;
1138	vfsp->mnt_kern_flag |= MNTK_EXTENDED_SHARED;
1139
1140	/*
1141	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1142	 * separates our fsid from any other filesystem types, and a
1143	 * 56-bit objset unique ID.  The objset unique ID is unique to
1144	 * all objsets open on this system, provided by unique_create().
1145	 * The 8-bit fs type must be put in the low bits of fsid[1]
1146	 * because that's where other Solaris filesystems put it.
1147	 */
1148	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1149	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1150	vfsp->vfs_fsid.val[0] = fsid_guid;
1151	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1152	    vfsp->mnt_vfc->vfc_typenum & 0xFF;
1153
1154	/*
1155	 * Set features for file system.
1156	 */
1157	zfs_set_fuid_feature(zfsvfs);
1158	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1159		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1160		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1161		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1162	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1163		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1164		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1165	}
1166	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1167
1168	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1169		uint64_t pval;
1170
1171		atime_changed_cb(zfsvfs, B_FALSE);
1172		readonly_changed_cb(zfsvfs, B_TRUE);
1173		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1174			goto out;
1175		xattr_changed_cb(zfsvfs, pval);
1176		zfsvfs->z_issnap = B_TRUE;
1177		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1178
1179		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1180		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1181		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1182	} else {
1183		error = zfsvfs_setup(zfsvfs, B_TRUE);
1184	}
1185
1186	vfs_mountedfrom(vfsp, osname);
1187	/* Grab extra reference. */
1188	VERIFY(VFS_ROOT(vfsp, LK_EXCLUSIVE, &vp) == 0);
1189	VOP_UNLOCK(vp, 0);
1190
1191	if (!zfsvfs->z_issnap)
1192		zfsctl_create(zfsvfs);
1193out:
1194	if (error) {
1195		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1196		zfsvfs_free(zfsvfs);
1197	} else {
1198		atomic_add_32(&zfs_active_fs_count, 1);
1199	}
1200
1201	return (error);
1202}
1203
1204void
1205zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1206{
1207	objset_t *os = zfsvfs->z_os;
1208	struct dsl_dataset *ds;
1209
1210	/*
1211	 * Unregister properties.
1212	 */
1213	if (!dmu_objset_is_snapshot(os)) {
1214		ds = dmu_objset_ds(os);
1215		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1216		    zfsvfs) == 0);
1217
1218		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1219		    zfsvfs) == 0);
1220
1221		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1222		    zfsvfs) == 0);
1223
1224		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1225		    zfsvfs) == 0);
1226
1227		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1228		    zfsvfs) == 0);
1229
1230		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1231		    zfsvfs) == 0);
1232
1233		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1234		    zfsvfs) == 0);
1235
1236		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1237		    zfsvfs) == 0);
1238
1239		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1240		    acl_inherit_changed_cb, zfsvfs) == 0);
1241
1242		VERIFY(dsl_prop_unregister(ds, "vscan",
1243		    vscan_changed_cb, zfsvfs) == 0);
1244	}
1245}
1246
1247#ifdef SECLABEL
1248/*
1249 * Convert a decimal digit string to a uint64_t integer.
1250 */
1251static int
1252str_to_uint64(char *str, uint64_t *objnum)
1253{
1254	uint64_t num = 0;
1255
1256	while (*str) {
1257		if (*str < '0' || *str > '9')
1258			return (EINVAL);
1259
1260		num = num*10 + *str++ - '0';
1261	}
1262
1263	*objnum = num;
1264	return (0);
1265}
1266
1267/*
1268 * The boot path passed from the boot loader is in the form of
1269 * "rootpool-name/root-filesystem-object-number'. Convert this
1270 * string to a dataset name: "rootpool-name/root-filesystem-name".
1271 */
1272static int
1273zfs_parse_bootfs(char *bpath, char *outpath)
1274{
1275	char *slashp;
1276	uint64_t objnum;
1277	int error;
1278
1279	if (*bpath == 0 || *bpath == '/')
1280		return (EINVAL);
1281
1282	(void) strcpy(outpath, bpath);
1283
1284	slashp = strchr(bpath, '/');
1285
1286	/* if no '/', just return the pool name */
1287	if (slashp == NULL) {
1288		return (0);
1289	}
1290
1291	/* if not a number, just return the root dataset name */
1292	if (str_to_uint64(slashp+1, &objnum)) {
1293		return (0);
1294	}
1295
1296	*slashp = '\0';
1297	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1298	*slashp = '/';
1299
1300	return (error);
1301}
1302
1303/*
1304 * zfs_check_global_label:
1305 *	Check that the hex label string is appropriate for the dataset
1306 *	being mounted into the global_zone proper.
1307 *
1308 *	Return an error if the hex label string is not default or
1309 *	admin_low/admin_high.  For admin_low labels, the corresponding
1310 *	dataset must be readonly.
1311 */
1312int
1313zfs_check_global_label(const char *dsname, const char *hexsl)
1314{
1315	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1316		return (0);
1317	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1318		return (0);
1319	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1320		/* must be readonly */
1321		uint64_t rdonly;
1322
1323		if (dsl_prop_get_integer(dsname,
1324		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1325			return (EACCES);
1326		return (rdonly ? 0 : EACCES);
1327	}
1328	return (EACCES);
1329}
1330
1331/*
1332 * zfs_mount_label_policy:
1333 *	Determine whether the mount is allowed according to MAC check.
1334 *	by comparing (where appropriate) label of the dataset against
1335 *	the label of the zone being mounted into.  If the dataset has
1336 *	no label, create one.
1337 *
1338 *	Returns:
1339 *		 0 :	access allowed
1340 *		>0 :	error code, such as EACCES
1341 */
1342static int
1343zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1344{
1345	int		error, retv;
1346	zone_t		*mntzone = NULL;
1347	ts_label_t	*mnt_tsl;
1348	bslabel_t	*mnt_sl;
1349	bslabel_t	ds_sl;
1350	char		ds_hexsl[MAXNAMELEN];
1351
1352	retv = EACCES;				/* assume the worst */
1353
1354	/*
1355	 * Start by getting the dataset label if it exists.
1356	 */
1357	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1358	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1359	if (error)
1360		return (EACCES);
1361
1362	/*
1363	 * If labeling is NOT enabled, then disallow the mount of datasets
1364	 * which have a non-default label already.  No other label checks
1365	 * are needed.
1366	 */
1367	if (!is_system_labeled()) {
1368		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1369			return (0);
1370		return (EACCES);
1371	}
1372
1373	/*
1374	 * Get the label of the mountpoint.  If mounting into the global
1375	 * zone (i.e. mountpoint is not within an active zone and the
1376	 * zoned property is off), the label must be default or
1377	 * admin_low/admin_high only; no other checks are needed.
1378	 */
1379	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1380	if (mntzone->zone_id == GLOBAL_ZONEID) {
1381		uint64_t zoned;
1382
1383		zone_rele(mntzone);
1384
1385		if (dsl_prop_get_integer(osname,
1386		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1387			return (EACCES);
1388		if (!zoned)
1389			return (zfs_check_global_label(osname, ds_hexsl));
1390		else
1391			/*
1392			 * This is the case of a zone dataset being mounted
1393			 * initially, before the zone has been fully created;
1394			 * allow this mount into global zone.
1395			 */
1396			return (0);
1397	}
1398
1399	mnt_tsl = mntzone->zone_slabel;
1400	ASSERT(mnt_tsl != NULL);
1401	label_hold(mnt_tsl);
1402	mnt_sl = label2bslabel(mnt_tsl);
1403
1404	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1405		/*
1406		 * The dataset doesn't have a real label, so fabricate one.
1407		 */
1408		char *str = NULL;
1409
1410		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1411		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1412		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1413			retv = 0;
1414		if (str != NULL)
1415			kmem_free(str, strlen(str) + 1);
1416	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1417		/*
1418		 * Now compare labels to complete the MAC check.  If the
1419		 * labels are equal then allow access.  If the mountpoint
1420		 * label dominates the dataset label, allow readonly access.
1421		 * Otherwise, access is denied.
1422		 */
1423		if (blequal(mnt_sl, &ds_sl))
1424			retv = 0;
1425		else if (bldominates(mnt_sl, &ds_sl)) {
1426			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1427			retv = 0;
1428		}
1429	}
1430
1431	label_rele(mnt_tsl);
1432	zone_rele(mntzone);
1433	return (retv);
1434}
1435#endif	/* SECLABEL */
1436
1437#ifdef OPENSOLARIS_MOUNTROOT
1438static int
1439zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1440{
1441	int error = 0;
1442	static int zfsrootdone = 0;
1443	zfsvfs_t *zfsvfs = NULL;
1444	znode_t *zp = NULL;
1445	vnode_t *vp = NULL;
1446	char *zfs_bootfs;
1447	char *zfs_devid;
1448
1449	ASSERT(vfsp);
1450
1451	/*
1452	 * The filesystem that we mount as root is defined in the
1453	 * boot property "zfs-bootfs" with a format of
1454	 * "poolname/root-dataset-objnum".
1455	 */
1456	if (why == ROOT_INIT) {
1457		if (zfsrootdone++)
1458			return (EBUSY);
1459		/*
1460		 * the process of doing a spa_load will require the
1461		 * clock to be set before we could (for example) do
1462		 * something better by looking at the timestamp on
1463		 * an uberblock, so just set it to -1.
1464		 */
1465		clkset(-1);
1466
1467		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1468			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1469			    "bootfs name");
1470			return (EINVAL);
1471		}
1472		zfs_devid = spa_get_bootprop("diskdevid");
1473		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1474		if (zfs_devid)
1475			spa_free_bootprop(zfs_devid);
1476		if (error) {
1477			spa_free_bootprop(zfs_bootfs);
1478			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1479			    error);
1480			return (error);
1481		}
1482		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1483			spa_free_bootprop(zfs_bootfs);
1484			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1485			    error);
1486			return (error);
1487		}
1488
1489		spa_free_bootprop(zfs_bootfs);
1490
1491		if (error = vfs_lock(vfsp))
1492			return (error);
1493
1494		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1495			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1496			goto out;
1497		}
1498
1499		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1500		ASSERT(zfsvfs);
1501		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1502			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1503			goto out;
1504		}
1505
1506		vp = ZTOV(zp);
1507		mutex_enter(&vp->v_lock);
1508		vp->v_flag |= VROOT;
1509		mutex_exit(&vp->v_lock);
1510		rootvp = vp;
1511
1512		/*
1513		 * Leave rootvp held.  The root file system is never unmounted.
1514		 */
1515
1516		vfs_add((struct vnode *)0, vfsp,
1517		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1518out:
1519		vfs_unlock(vfsp);
1520		return (error);
1521	} else if (why == ROOT_REMOUNT) {
1522		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1523		vfsp->vfs_flag |= VFS_REMOUNT;
1524
1525		/* refresh mount options */
1526		zfs_unregister_callbacks(vfsp->vfs_data);
1527		return (zfs_register_callbacks(vfsp));
1528
1529	} else if (why == ROOT_UNMOUNT) {
1530		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1531		(void) zfs_sync(vfsp, 0, 0);
1532		return (0);
1533	}
1534
1535	/*
1536	 * if "why" is equal to anything else other than ROOT_INIT,
1537	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1538	 */
1539	return (ENOTSUP);
1540}
1541#endif	/* OPENSOLARIS_MOUNTROOT */
1542
1543static int
1544getpoolname(const char *osname, char *poolname)
1545{
1546	char *p;
1547
1548	p = strchr(osname, '/');
1549	if (p == NULL) {
1550		if (strlen(osname) >= MAXNAMELEN)
1551			return (ENAMETOOLONG);
1552		(void) strcpy(poolname, osname);
1553	} else {
1554		if (p - osname >= MAXNAMELEN)
1555			return (ENAMETOOLONG);
1556		(void) strncpy(poolname, osname, p - osname);
1557		poolname[p - osname] = '\0';
1558	}
1559	return (0);
1560}
1561
1562/*ARGSUSED*/
1563static int
1564zfs_mount(vfs_t *vfsp)
1565{
1566	kthread_t	*td = curthread;
1567	vnode_t		*mvp = vfsp->mnt_vnodecovered;
1568	cred_t		*cr = td->td_ucred;
1569	char		*osname;
1570	int		error = 0;
1571	int		canwrite;
1572
1573	if (!prison_allow(td->td_ucred, PR_ALLOW_MOUNT_ZFS))
1574		return (EPERM);
1575
1576	if (vfs_getopt(vfsp->mnt_optnew, "from", (void **)&osname, NULL))
1577		return (EINVAL);
1578
1579	/*
1580	 * If full-owner-access is enabled and delegated administration is
1581	 * turned on, we must set nosuid.
1582	 */
1583	if (zfs_super_owner &&
1584	    dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != ECANCELED) {
1585		secpolicy_fs_mount_clearopts(cr, vfsp);
1586	}
1587
1588	/*
1589	 * Check for mount privilege?
1590	 *
1591	 * If we don't have privilege then see if
1592	 * we have local permission to allow it
1593	 */
1594	error = secpolicy_fs_mount(cr, mvp, vfsp);
1595	if (error) {
1596		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) != 0)
1597			goto out;
1598
1599		if (!(vfsp->vfs_flag & MS_REMOUNT)) {
1600			vattr_t		vattr;
1601
1602			/*
1603			 * Make sure user is the owner of the mount point
1604			 * or has sufficient privileges.
1605			 */
1606
1607			vattr.va_mask = AT_UID;
1608
1609			vn_lock(mvp, LK_SHARED | LK_RETRY);
1610			if (VOP_GETATTR(mvp, &vattr, cr)) {
1611				VOP_UNLOCK(mvp, 0);
1612				goto out;
1613			}
1614
1615			if (secpolicy_vnode_owner(mvp, cr, vattr.va_uid) != 0 &&
1616			    VOP_ACCESS(mvp, VWRITE, cr, td) != 0) {
1617				VOP_UNLOCK(mvp, 0);
1618				goto out;
1619			}
1620			VOP_UNLOCK(mvp, 0);
1621		}
1622
1623		secpolicy_fs_mount_clearopts(cr, vfsp);
1624	}
1625
1626	/*
1627	 * Refuse to mount a filesystem if we are in a local zone and the
1628	 * dataset is not visible.
1629	 */
1630	if (!INGLOBALZONE(curthread) &&
1631	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1632		error = EPERM;
1633		goto out;
1634	}
1635
1636#ifdef SECLABEL
1637	error = zfs_mount_label_policy(vfsp, osname);
1638	if (error)
1639		goto out;
1640#endif
1641
1642	vfsp->vfs_flag |= MNT_NFS4ACLS;
1643
1644	/*
1645	 * When doing a remount, we simply refresh our temporary properties
1646	 * according to those options set in the current VFS options.
1647	 */
1648	if (vfsp->vfs_flag & MS_REMOUNT) {
1649		/* refresh mount options */
1650		zfs_unregister_callbacks(vfsp->vfs_data);
1651		error = zfs_register_callbacks(vfsp);
1652		goto out;
1653	}
1654
1655	/* Initial root mount: try hard to import the requested root pool. */
1656	if ((vfsp->vfs_flag & MNT_ROOTFS) != 0 &&
1657	    (vfsp->vfs_flag & MNT_UPDATE) == 0) {
1658		char pname[MAXNAMELEN];
1659		spa_t *spa;
1660		int prefer_cache;
1661
1662		error = getpoolname(osname, pname);
1663		if (error)
1664			goto out;
1665
1666		prefer_cache = 1;
1667		TUNABLE_INT_FETCH("vfs.zfs.rootpool.prefer_cached_config",
1668		    &prefer_cache);
1669		mutex_enter(&spa_namespace_lock);
1670		spa = spa_lookup(pname);
1671		mutex_exit(&spa_namespace_lock);
1672		if (!prefer_cache || spa == NULL) {
1673			error = spa_import_rootpool(pname);
1674			if (error)
1675				goto out;
1676		}
1677	}
1678	DROP_GIANT();
1679	error = zfs_domount(vfsp, osname);
1680	PICKUP_GIANT();
1681
1682#ifdef sun
1683	/*
1684	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1685	 * disappear due to a forced unmount.
1686	 */
1687	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1688		VFS_HOLD(mvp->v_vfsp);
1689#endif	/* sun */
1690
1691out:
1692	return (error);
1693}
1694
1695static int
1696zfs_statfs(vfs_t *vfsp, struct statfs *statp)
1697{
1698	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1699	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1700
1701	statp->f_version = STATFS_VERSION;
1702
1703	ZFS_ENTER(zfsvfs);
1704
1705	dmu_objset_space(zfsvfs->z_os,
1706	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1707
1708	/*
1709	 * The underlying storage pool actually uses multiple block sizes.
1710	 * We report the fragsize as the smallest block size we support,
1711	 * and we report our blocksize as the filesystem's maximum blocksize.
1712	 */
1713	statp->f_bsize = SPA_MINBLOCKSIZE;
1714	statp->f_iosize = zfsvfs->z_vfs->mnt_stat.f_iosize;
1715
1716	/*
1717	 * The following report "total" blocks of various kinds in the
1718	 * file system, but reported in terms of f_frsize - the
1719	 * "fragment" size.
1720	 */
1721
1722	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1723	statp->f_bfree = availbytes / statp->f_bsize;
1724	statp->f_bavail = statp->f_bfree; /* no root reservation */
1725
1726	/*
1727	 * statvfs() should really be called statufs(), because it assumes
1728	 * static metadata.  ZFS doesn't preallocate files, so the best
1729	 * we can do is report the max that could possibly fit in f_files,
1730	 * and that minus the number actually used in f_ffree.
1731	 * For f_ffree, report the smaller of the number of object available
1732	 * and the number of blocks (each object will take at least a block).
1733	 */
1734	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1735	statp->f_files = statp->f_ffree + usedobjs;
1736
1737	/*
1738	 * We're a zfs filesystem.
1739	 */
1740	(void) strlcpy(statp->f_fstypename, "zfs", sizeof(statp->f_fstypename));
1741
1742	strlcpy(statp->f_mntfromname, vfsp->mnt_stat.f_mntfromname,
1743	    sizeof(statp->f_mntfromname));
1744	strlcpy(statp->f_mntonname, vfsp->mnt_stat.f_mntonname,
1745	    sizeof(statp->f_mntonname));
1746
1747	statp->f_namemax = ZFS_MAXNAMELEN;
1748
1749	ZFS_EXIT(zfsvfs);
1750	return (0);
1751}
1752
1753int
1754zfs_vnode_lock(vnode_t *vp, int flags)
1755{
1756	int error;
1757
1758	ASSERT(vp != NULL);
1759
1760	error = vn_lock(vp, flags);
1761	return (error);
1762}
1763
1764static int
1765zfs_root(vfs_t *vfsp, int flags, vnode_t **vpp)
1766{
1767	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1768	znode_t *rootzp;
1769	int error;
1770
1771	ZFS_ENTER_NOERROR(zfsvfs);
1772
1773	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1774	if (error == 0)
1775		*vpp = ZTOV(rootzp);
1776
1777	ZFS_EXIT(zfsvfs);
1778
1779	if (error == 0) {
1780		error = zfs_vnode_lock(*vpp, flags);
1781		if (error == 0)
1782			(*vpp)->v_vflag |= VV_ROOT;
1783	}
1784	if (error != 0)
1785		*vpp = NULL;
1786
1787	return (error);
1788}
1789
1790/*
1791 * Teardown the zfsvfs::z_os.
1792 *
1793 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1794 * and 'z_teardown_inactive_lock' held.
1795 */
1796static int
1797zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1798{
1799	znode_t	*zp;
1800
1801	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1802
1803	if (!unmounting) {
1804		/*
1805		 * We purge the parent filesystem's vfsp as the parent
1806		 * filesystem and all of its snapshots have their vnode's
1807		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1808		 * 'z_parent' is self referential for non-snapshots.
1809		 */
1810		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1811#ifdef FREEBSD_NAMECACHE
1812		cache_purgevfs(zfsvfs->z_parent->z_vfs);
1813#endif
1814	}
1815
1816	/*
1817	 * Close the zil. NB: Can't close the zil while zfs_inactive
1818	 * threads are blocked as zil_close can call zfs_inactive.
1819	 */
1820	if (zfsvfs->z_log) {
1821		zil_close(zfsvfs->z_log);
1822		zfsvfs->z_log = NULL;
1823	}
1824
1825	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1826
1827	/*
1828	 * If we are not unmounting (ie: online recv) and someone already
1829	 * unmounted this file system while we were doing the switcheroo,
1830	 * or a reopen of z_os failed then just bail out now.
1831	 */
1832	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1833		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1834		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1835		return (EIO);
1836	}
1837
1838	/*
1839	 * At this point there are no vops active, and any new vops will
1840	 * fail with EIO since we have z_teardown_lock for writer (only
1841	 * relavent for forced unmount).
1842	 *
1843	 * Release all holds on dbufs.
1844	 */
1845	mutex_enter(&zfsvfs->z_znodes_lock);
1846	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1847	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1848		if (zp->z_sa_hdl) {
1849			ASSERT(ZTOV(zp)->v_count >= 0);
1850			zfs_znode_dmu_fini(zp);
1851		}
1852	mutex_exit(&zfsvfs->z_znodes_lock);
1853
1854	/*
1855	 * If we are unmounting, set the unmounted flag and let new vops
1856	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1857	 * other vops will fail with EIO.
1858	 */
1859	if (unmounting) {
1860		zfsvfs->z_unmounted = B_TRUE;
1861		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1862		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1863
1864#ifdef __FreeBSD__
1865		/*
1866		 * Some znodes might not be fully reclaimed, wait for them.
1867		 */
1868		mutex_enter(&zfsvfs->z_znodes_lock);
1869		while (list_head(&zfsvfs->z_all_znodes) != NULL) {
1870			msleep(zfsvfs, &zfsvfs->z_znodes_lock, 0,
1871			    "zteardown", 0);
1872		}
1873		mutex_exit(&zfsvfs->z_znodes_lock);
1874#endif
1875	}
1876
1877	/*
1878	 * z_os will be NULL if there was an error in attempting to reopen
1879	 * zfsvfs, so just return as the properties had already been
1880	 * unregistered and cached data had been evicted before.
1881	 */
1882	if (zfsvfs->z_os == NULL)
1883		return (0);
1884
1885	/*
1886	 * Unregister properties.
1887	 */
1888	zfs_unregister_callbacks(zfsvfs);
1889
1890	/*
1891	 * Evict cached data
1892	 */
1893	if (dsl_dataset_is_dirty(dmu_objset_ds(zfsvfs->z_os)) &&
1894	    !(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1895		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1896	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1897
1898	return (0);
1899}
1900
1901/*ARGSUSED*/
1902static int
1903zfs_umount(vfs_t *vfsp, int fflag)
1904{
1905	kthread_t *td = curthread;
1906	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1907	objset_t *os;
1908	cred_t *cr = td->td_ucred;
1909	int ret;
1910
1911	ret = secpolicy_fs_unmount(cr, vfsp);
1912	if (ret) {
1913		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1914		    ZFS_DELEG_PERM_MOUNT, cr))
1915			return (ret);
1916	}
1917
1918	/*
1919	 * We purge the parent filesystem's vfsp as the parent filesystem
1920	 * and all of its snapshots have their vnode's v_vfsp set to the
1921	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1922	 * referential for non-snapshots.
1923	 */
1924	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1925
1926	/*
1927	 * Unmount any snapshots mounted under .zfs before unmounting the
1928	 * dataset itself.
1929	 */
1930	if (zfsvfs->z_ctldir != NULL) {
1931		if ((ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
1932			return (ret);
1933		ret = vflush(vfsp, 0, 0, td);
1934		ASSERT(ret == EBUSY);
1935		if (!(fflag & MS_FORCE)) {
1936			if (zfsvfs->z_ctldir->v_count > 1)
1937				return (EBUSY);
1938			ASSERT(zfsvfs->z_ctldir->v_count == 1);
1939		}
1940		zfsctl_destroy(zfsvfs);
1941		ASSERT(zfsvfs->z_ctldir == NULL);
1942	}
1943
1944	if (fflag & MS_FORCE) {
1945		/*
1946		 * Mark file system as unmounted before calling
1947		 * vflush(FORCECLOSE). This way we ensure no future vnops
1948		 * will be called and risk operating on DOOMED vnodes.
1949		 */
1950		rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1951		zfsvfs->z_unmounted = B_TRUE;
1952		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1953	}
1954
1955	/*
1956	 * Flush all the files.
1957	 */
1958	ret = vflush(vfsp, 1, (fflag & MS_FORCE) ? FORCECLOSE : 0, td);
1959	if (ret != 0) {
1960		if (!zfsvfs->z_issnap) {
1961			zfsctl_create(zfsvfs);
1962			ASSERT(zfsvfs->z_ctldir != NULL);
1963		}
1964		return (ret);
1965	}
1966
1967	if (!(fflag & MS_FORCE)) {
1968		/*
1969		 * Check the number of active vnodes in the file system.
1970		 * Our count is maintained in the vfs structure, but the
1971		 * number is off by 1 to indicate a hold on the vfs
1972		 * structure itself.
1973		 *
1974		 * The '.zfs' directory maintains a reference of its
1975		 * own, and any active references underneath are
1976		 * reflected in the vnode count.
1977		 */
1978		if (zfsvfs->z_ctldir == NULL) {
1979			if (vfsp->vfs_count > 1)
1980				return (EBUSY);
1981		} else {
1982			if (vfsp->vfs_count > 2 ||
1983			    zfsvfs->z_ctldir->v_count > 1)
1984				return (EBUSY);
1985		}
1986	}
1987
1988	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1989	os = zfsvfs->z_os;
1990
1991	/*
1992	 * z_os will be NULL if there was an error in
1993	 * attempting to reopen zfsvfs.
1994	 */
1995	if (os != NULL) {
1996		/*
1997		 * Unset the objset user_ptr.
1998		 */
1999		mutex_enter(&os->os_user_ptr_lock);
2000		dmu_objset_set_user(os, NULL);
2001		mutex_exit(&os->os_user_ptr_lock);
2002
2003		/*
2004		 * Finally release the objset
2005		 */
2006		dmu_objset_disown(os, zfsvfs);
2007	}
2008
2009	/*
2010	 * We can now safely destroy the '.zfs' directory node.
2011	 */
2012	if (zfsvfs->z_ctldir != NULL)
2013		zfsctl_destroy(zfsvfs);
2014	if (zfsvfs->z_issnap) {
2015		vnode_t *svp = vfsp->mnt_vnodecovered;
2016
2017		if (svp->v_count >= 2)
2018			VN_RELE(svp);
2019	}
2020	zfs_freevfs(vfsp);
2021
2022	return (0);
2023}
2024
2025static int
2026zfs_vget(vfs_t *vfsp, ino_t ino, int flags, vnode_t **vpp)
2027{
2028	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2029	znode_t		*zp;
2030	int 		err;
2031
2032	/*
2033	 * zfs_zget() can't operate on virtual entries like .zfs/ or
2034	 * .zfs/snapshot/ directories, that's why we return EOPNOTSUPP.
2035	 * This will make NFS to switch to LOOKUP instead of using VGET.
2036	 */
2037	if (ino == ZFSCTL_INO_ROOT || ino == ZFSCTL_INO_SNAPDIR)
2038		return (EOPNOTSUPP);
2039
2040	ZFS_ENTER(zfsvfs);
2041	err = zfs_zget(zfsvfs, ino, &zp);
2042	if (err == 0 && zp->z_unlinked) {
2043		VN_RELE(ZTOV(zp));
2044		err = EINVAL;
2045	}
2046	if (err == 0)
2047		*vpp = ZTOV(zp);
2048	ZFS_EXIT(zfsvfs);
2049	if (err == 0)
2050		err = zfs_vnode_lock(*vpp, flags);
2051	if (err != 0)
2052		*vpp = NULL;
2053	return (err);
2054}
2055
2056static int
2057zfs_checkexp(vfs_t *vfsp, struct sockaddr *nam, int *extflagsp,
2058    struct ucred **credanonp, int *numsecflavors, int **secflavors)
2059{
2060	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2061
2062	/*
2063	 * If this is regular file system vfsp is the same as
2064	 * zfsvfs->z_parent->z_vfs, but if it is snapshot,
2065	 * zfsvfs->z_parent->z_vfs represents parent file system
2066	 * which we have to use here, because only this file system
2067	 * has mnt_export configured.
2068	 */
2069	return (vfs_stdcheckexp(zfsvfs->z_parent->z_vfs, nam, extflagsp,
2070	    credanonp, numsecflavors, secflavors));
2071}
2072
2073CTASSERT(SHORT_FID_LEN <= sizeof(struct fid));
2074CTASSERT(LONG_FID_LEN <= sizeof(struct fid));
2075
2076static int
2077zfs_fhtovp(vfs_t *vfsp, fid_t *fidp, int flags, vnode_t **vpp)
2078{
2079	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
2080	znode_t		*zp;
2081	uint64_t	object = 0;
2082	uint64_t	fid_gen = 0;
2083	uint64_t	gen_mask;
2084	uint64_t	zp_gen;
2085	int 		i, err;
2086
2087	*vpp = NULL;
2088
2089	ZFS_ENTER(zfsvfs);
2090
2091	/*
2092	 * On FreeBSD we can get snapshot's mount point or its parent file
2093	 * system mount point depending if snapshot is already mounted or not.
2094	 */
2095	if (zfsvfs->z_parent == zfsvfs && fidp->fid_len == LONG_FID_LEN) {
2096		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
2097		uint64_t	objsetid = 0;
2098		uint64_t	setgen = 0;
2099
2100		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
2101			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
2102
2103		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
2104			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
2105
2106		ZFS_EXIT(zfsvfs);
2107
2108		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
2109		if (err)
2110			return (EINVAL);
2111		ZFS_ENTER(zfsvfs);
2112	}
2113
2114	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
2115		zfid_short_t	*zfid = (zfid_short_t *)fidp;
2116
2117		for (i = 0; i < sizeof (zfid->zf_object); i++)
2118			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
2119
2120		for (i = 0; i < sizeof (zfid->zf_gen); i++)
2121			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
2122	} else {
2123		ZFS_EXIT(zfsvfs);
2124		return (EINVAL);
2125	}
2126
2127	/* A zero fid_gen means we are in the .zfs control directories */
2128	if (fid_gen == 0 &&
2129	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
2130		*vpp = zfsvfs->z_ctldir;
2131		ASSERT(*vpp != NULL);
2132		if (object == ZFSCTL_INO_SNAPDIR) {
2133			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
2134			    0, NULL, NULL, NULL, NULL, NULL) == 0);
2135		} else {
2136			VN_HOLD(*vpp);
2137		}
2138		ZFS_EXIT(zfsvfs);
2139		err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2140		if (err != 0)
2141			*vpp = NULL;
2142		return (err);
2143	}
2144
2145	gen_mask = -1ULL >> (64 - 8 * i);
2146
2147	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
2148	if (err = zfs_zget(zfsvfs, object, &zp)) {
2149		ZFS_EXIT(zfsvfs);
2150		return (err);
2151	}
2152	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
2153	    sizeof (uint64_t));
2154	zp_gen = zp_gen & gen_mask;
2155	if (zp_gen == 0)
2156		zp_gen = 1;
2157	if (zp->z_unlinked || zp_gen != fid_gen) {
2158		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2159		VN_RELE(ZTOV(zp));
2160		ZFS_EXIT(zfsvfs);
2161		return (EINVAL);
2162	}
2163
2164	*vpp = ZTOV(zp);
2165	ZFS_EXIT(zfsvfs);
2166	err = zfs_vnode_lock(*vpp, flags | LK_RETRY);
2167	if (err == 0)
2168		vnode_create_vobject(*vpp, zp->z_size, curthread);
2169	else
2170		*vpp = NULL;
2171	return (err);
2172}
2173
2174/*
2175 * Block out VOPs and close zfsvfs_t::z_os
2176 *
2177 * Note, if successful, then we return with the 'z_teardown_lock' and
2178 * 'z_teardown_inactive_lock' write held.
2179 */
2180int
2181zfs_suspend_fs(zfsvfs_t *zfsvfs)
2182{
2183	int error;
2184
2185	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2186		return (error);
2187	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2188
2189	return (0);
2190}
2191
2192/*
2193 * Reopen zfsvfs_t::z_os and release VOPs.
2194 */
2195int
2196zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2197{
2198	int err;
2199
2200	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2201	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2202
2203	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2204	    &zfsvfs->z_os);
2205	if (err) {
2206		zfsvfs->z_os = NULL;
2207	} else {
2208		znode_t *zp;
2209		uint64_t sa_obj = 0;
2210
2211		/*
2212		 * Make sure version hasn't changed
2213		 */
2214
2215		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2216		    &zfsvfs->z_version);
2217
2218		if (err)
2219			goto bail;
2220
2221		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2222		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2223
2224		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2225			goto bail;
2226
2227		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2228		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2229			goto bail;
2230
2231		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2232			sa_register_update_callback(zfsvfs->z_os,
2233			    zfs_sa_upgrade);
2234
2235		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2236
2237		zfs_set_fuid_feature(zfsvfs);
2238
2239		/*
2240		 * Attempt to re-establish all the active znodes with
2241		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2242		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2243		 * when they try to use their znode.
2244		 */
2245		mutex_enter(&zfsvfs->z_znodes_lock);
2246		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2247		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2248			(void) zfs_rezget(zp);
2249		}
2250		mutex_exit(&zfsvfs->z_znodes_lock);
2251	}
2252
2253bail:
2254	/* release the VOPs */
2255	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2256	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2257
2258	if (err) {
2259		/*
2260		 * Since we couldn't reopen zfsvfs::z_os, or
2261		 * setup the sa framework force unmount this file system.
2262		 */
2263		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2264			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, curthread);
2265	}
2266	return (err);
2267}
2268
2269static void
2270zfs_freevfs(vfs_t *vfsp)
2271{
2272	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2273
2274#ifdef sun
2275	/*
2276	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2277	 * from zfs_mount().  Release it here.  If we came through
2278	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2279	 * skip the VFS_RELE for rootvfs.
2280	 */
2281	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2282		VFS_RELE(zfsvfs->z_parent->z_vfs);
2283#endif	/* sun */
2284
2285	zfsvfs_free(zfsvfs);
2286
2287	atomic_add_32(&zfs_active_fs_count, -1);
2288}
2289
2290#ifdef __i386__
2291static int desiredvnodes_backup;
2292#endif
2293
2294static void
2295zfs_vnodes_adjust(void)
2296{
2297#ifdef __i386__
2298	int newdesiredvnodes;
2299
2300	desiredvnodes_backup = desiredvnodes;
2301
2302	/*
2303	 * We calculate newdesiredvnodes the same way it is done in
2304	 * vntblinit(). If it is equal to desiredvnodes, it means that
2305	 * it wasn't tuned by the administrator and we can tune it down.
2306	 */
2307	newdesiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 *
2308	    vm_kmem_size / (5 * (sizeof(struct vm_object) +
2309	    sizeof(struct vnode))));
2310	if (newdesiredvnodes == desiredvnodes)
2311		desiredvnodes = (3 * newdesiredvnodes) / 4;
2312#endif
2313}
2314
2315static void
2316zfs_vnodes_adjust_back(void)
2317{
2318
2319#ifdef __i386__
2320	desiredvnodes = desiredvnodes_backup;
2321#endif
2322}
2323
2324void
2325zfs_init(void)
2326{
2327
2328	printf("ZFS filesystem version: " ZPL_VERSION_STRING "\n");
2329
2330	/*
2331	 * Initialize .zfs directory structures
2332	 */
2333	zfsctl_init();
2334
2335	/*
2336	 * Initialize znode cache, vnode ops, etc...
2337	 */
2338	zfs_znode_init();
2339
2340	/*
2341	 * Reduce number of vnodes. Originally number of vnodes is calculated
2342	 * with UFS inode in mind. We reduce it here, because it's too big for
2343	 * ZFS/i386.
2344	 */
2345	zfs_vnodes_adjust();
2346
2347	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2348}
2349
2350void
2351zfs_fini(void)
2352{
2353	zfsctl_fini();
2354	zfs_znode_fini();
2355	zfs_vnodes_adjust_back();
2356}
2357
2358int
2359zfs_busy(void)
2360{
2361	return (zfs_active_fs_count != 0);
2362}
2363
2364int
2365zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2366{
2367	int error;
2368	objset_t *os = zfsvfs->z_os;
2369	dmu_tx_t *tx;
2370
2371	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2372		return (EINVAL);
2373
2374	if (newvers < zfsvfs->z_version)
2375		return (EINVAL);
2376
2377	if (zfs_spa_version_map(newvers) >
2378	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2379		return (ENOTSUP);
2380
2381	tx = dmu_tx_create(os);
2382	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2383	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2384		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2385		    ZFS_SA_ATTRS);
2386		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2387	}
2388	error = dmu_tx_assign(tx, TXG_WAIT);
2389	if (error) {
2390		dmu_tx_abort(tx);
2391		return (error);
2392	}
2393
2394	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2395	    8, 1, &newvers, tx);
2396
2397	if (error) {
2398		dmu_tx_commit(tx);
2399		return (error);
2400	}
2401
2402	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2403		uint64_t sa_obj;
2404
2405		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2406		    SPA_VERSION_SA);
2407		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2408		    DMU_OT_NONE, 0, tx);
2409
2410		error = zap_add(os, MASTER_NODE_OBJ,
2411		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2412		ASSERT0(error);
2413
2414		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2415		sa_register_update_callback(os, zfs_sa_upgrade);
2416	}
2417
2418	spa_history_log_internal(LOG_DS_UPGRADE,
2419	    dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
2420	    zfsvfs->z_version, newvers, dmu_objset_id(os));
2421
2422	dmu_tx_commit(tx);
2423
2424	zfsvfs->z_version = newvers;
2425
2426	zfs_set_fuid_feature(zfsvfs);
2427
2428	return (0);
2429}
2430
2431/*
2432 * Read a property stored within the master node.
2433 */
2434int
2435zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2436{
2437	const char *pname;
2438	int error = ENOENT;
2439
2440	/*
2441	 * Look up the file system's value for the property.  For the
2442	 * version property, we look up a slightly different string.
2443	 */
2444	if (prop == ZFS_PROP_VERSION)
2445		pname = ZPL_VERSION_STR;
2446	else
2447		pname = zfs_prop_to_name(prop);
2448
2449	if (os != NULL)
2450		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2451
2452	if (error == ENOENT) {
2453		/* No value set, use the default value */
2454		switch (prop) {
2455		case ZFS_PROP_VERSION:
2456			*value = ZPL_VERSION;
2457			break;
2458		case ZFS_PROP_NORMALIZE:
2459		case ZFS_PROP_UTF8ONLY:
2460			*value = 0;
2461			break;
2462		case ZFS_PROP_CASE:
2463			*value = ZFS_CASE_SENSITIVE;
2464			break;
2465		default:
2466			return (error);
2467		}
2468		error = 0;
2469	}
2470	return (error);
2471}
2472
2473#ifdef _KERNEL
2474void
2475zfsvfs_update_fromname(const char *oldname, const char *newname)
2476{
2477	char tmpbuf[MAXPATHLEN];
2478	struct mount *mp;
2479	char *fromname;
2480	size_t oldlen;
2481
2482	oldlen = strlen(oldname);
2483
2484	mtx_lock(&mountlist_mtx);
2485	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
2486		fromname = mp->mnt_stat.f_mntfromname;
2487		if (strcmp(fromname, oldname) == 0) {
2488			(void)strlcpy(fromname, newname,
2489			    sizeof(mp->mnt_stat.f_mntfromname));
2490			continue;
2491		}
2492		if (strncmp(fromname, oldname, oldlen) == 0 &&
2493		    (fromname[oldlen] == '/' || fromname[oldlen] == '@')) {
2494			(void)snprintf(tmpbuf, sizeof(tmpbuf), "%s%s",
2495			    newname, fromname + oldlen);
2496			(void)strlcpy(fromname, tmpbuf,
2497			    sizeof(mp->mnt_stat.f_mntfromname));
2498			continue;
2499		}
2500	}
2501	mtx_unlock(&mountlist_mtx);
2502}
2503#endif
2504