1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26#include <sys/types.h>
27#include <sys/param.h>
28#include <sys/errno.h>
29#include <sys/kmem.h>
30#include <sys/conf.h>
31#include <sys/sunddi.h>
32#include <sys/zfs_ioctl.h>
33#include <sys/zfs_onexit.h>
34#include <sys/zvol.h>
35
36/*
37 * ZFS kernel routines may add/delete callback routines to be invoked
38 * upon process exit (triggered via the close operation from the /dev/zfs
39 * driver).
40 *
41 * These cleanup callbacks are intended to allow for the accumulation
42 * of kernel state across multiple ioctls.  User processes participate
43 * by opening ZFS_DEV with O_EXCL. This causes the ZFS driver to do a
44 * clone-open, generating a unique minor number. The process then passes
45 * along that file descriptor to each ioctl that might have a cleanup operation.
46 *
47 * Consumers of the onexit routines should call zfs_onexit_fd_hold() early
48 * on to validate the given fd and add a reference to its file table entry.
49 * This allows the consumer to do its work and then add a callback, knowing
50 * that zfs_onexit_add_cb() won't fail with EBADF.  When finished, consumers
51 * should call zfs_onexit_fd_rele().
52 *
53 * A simple example is zfs_ioc_recv(), where we might create an AVL tree
54 * with dataset/GUID mappings and then reuse that tree on subsequent
55 * zfs_ioc_recv() calls.
56 *
57 * On the first zfs_ioc_recv() call, dmu_recv_stream() will kmem_alloc()
58 * the AVL tree and pass it along with a callback function to
59 * zfs_onexit_add_cb(). The zfs_onexit_add_cb() routine will register the
60 * callback and return an action handle.
61 *
62 * The action handle is then passed from user space to subsequent
63 * zfs_ioc_recv() calls, so that dmu_recv_stream() can fetch its AVL tree
64 * by calling zfs_onexit_cb_data() with the device minor number and
65 * action handle.
66 *
67 * If the user process exits abnormally, the callback is invoked implicitly
68 * as part of the driver close operation.  Once the user space process is
69 * finished with the accumulated kernel state, it can also just call close(2)
70 * on the cleanup fd to trigger the cleanup callback.
71 */
72
73void
74zfs_onexit_init(zfs_onexit_t **zop)
75{
76	zfs_onexit_t *zo;
77
78	zo = *zop = kmem_zalloc(sizeof (zfs_onexit_t), KM_SLEEP);
79	mutex_init(&zo->zo_lock, NULL, MUTEX_DEFAULT, NULL);
80	list_create(&zo->zo_actions, sizeof (zfs_onexit_action_node_t),
81	    offsetof(zfs_onexit_action_node_t, za_link));
82}
83
84void
85zfs_onexit_destroy(zfs_onexit_t *zo)
86{
87	zfs_onexit_action_node_t *ap;
88
89	mutex_enter(&zo->zo_lock);
90	while ((ap = list_head(&zo->zo_actions)) != NULL) {
91		list_remove(&zo->zo_actions, ap);
92		mutex_exit(&zo->zo_lock);
93		ap->za_func(ap->za_data);
94		kmem_free(ap, sizeof (zfs_onexit_action_node_t));
95		mutex_enter(&zo->zo_lock);
96	}
97	mutex_exit(&zo->zo_lock);
98
99	list_destroy(&zo->zo_actions);
100	mutex_destroy(&zo->zo_lock);
101	kmem_free(zo, sizeof (zfs_onexit_t));
102}
103
104static int
105zfs_onexit_minor_to_state(minor_t minor, zfs_onexit_t **zo)
106{
107	*zo = zfsdev_get_soft_state(minor, ZSST_CTLDEV);
108	if (*zo == NULL)
109		return (SET_ERROR(EBADF));
110
111	return (0);
112}
113
114/*
115 * Consumers might need to operate by minor number instead of fd, since
116 * they might be running in another thread (e.g. txg_sync_thread). Callers
117 * of this function must call zfs_onexit_fd_rele() when they're finished
118 * using the minor number.
119 */
120int
121zfs_onexit_fd_hold(int fd, minor_t *minorp)
122{
123	file_t *fp, *tmpfp;
124	zfs_onexit_t *zo;
125	void *data;
126	int error;
127
128	fp = getf(fd);
129	if (fp == NULL)
130		return (SET_ERROR(EBADF));
131
132	tmpfp = curthread->td_fpop;
133	curthread->td_fpop = fp;
134	error = devfs_get_cdevpriv(&data);
135	if (error == 0)
136		*minorp = (minor_t)(uintptr_t)data;
137	curthread->td_fpop = tmpfp;
138	if (error != 0)
139		return (error);
140	return (zfs_onexit_minor_to_state(*minorp, &zo));
141}
142
143void
144zfs_onexit_fd_rele(int fd)
145{
146	releasef(fd);
147}
148
149/*
150 * Add a callback to be invoked when the calling process exits.
151 */
152int
153zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
154    uint64_t *action_handle)
155{
156	zfs_onexit_t *zo;
157	zfs_onexit_action_node_t *ap;
158	int error;
159
160	error = zfs_onexit_minor_to_state(minor, &zo);
161	if (error)
162		return (error);
163
164	ap = kmem_alloc(sizeof (zfs_onexit_action_node_t), KM_SLEEP);
165	list_link_init(&ap->za_link);
166	ap->za_func = func;
167	ap->za_data = data;
168
169	mutex_enter(&zo->zo_lock);
170	list_insert_tail(&zo->zo_actions, ap);
171	mutex_exit(&zo->zo_lock);
172	if (action_handle)
173		*action_handle = (uint64_t)(uintptr_t)ap;
174
175	return (0);
176}
177
178static zfs_onexit_action_node_t *
179zfs_onexit_find_cb(zfs_onexit_t *zo, uint64_t action_handle)
180{
181	zfs_onexit_action_node_t *match;
182	zfs_onexit_action_node_t *ap;
183	list_t *l;
184
185	ASSERT(MUTEX_HELD(&zo->zo_lock));
186
187	match = (zfs_onexit_action_node_t *)(uintptr_t)action_handle;
188	l = &zo->zo_actions;
189	for (ap = list_head(l); ap != NULL; ap = list_next(l, ap)) {
190		if (match == ap)
191			break;
192	}
193	return (ap);
194}
195
196/*
197 * Delete the callback, triggering it first if 'fire' is set.
198 */
199int
200zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
201{
202	zfs_onexit_t *zo;
203	zfs_onexit_action_node_t *ap;
204	int error;
205
206	error = zfs_onexit_minor_to_state(minor, &zo);
207	if (error)
208		return (error);
209
210	mutex_enter(&zo->zo_lock);
211	ap = zfs_onexit_find_cb(zo, action_handle);
212	if (ap != NULL) {
213		list_remove(&zo->zo_actions, ap);
214		mutex_exit(&zo->zo_lock);
215		if (fire)
216			ap->za_func(ap->za_data);
217		kmem_free(ap, sizeof (zfs_onexit_action_node_t));
218	} else {
219		mutex_exit(&zo->zo_lock);
220		error = SET_ERROR(ENOENT);
221	}
222
223	return (error);
224}
225
226/*
227 * Return the data associated with this callback.  This allows consumers
228 * of the cleanup-on-exit interfaces to stash kernel data across system
229 * calls, knowing that it will be cleaned up if the calling process exits.
230 */
231int
232zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
233{
234	zfs_onexit_t *zo;
235	zfs_onexit_action_node_t *ap;
236	int error;
237
238	*data = NULL;
239
240	error = zfs_onexit_minor_to_state(minor, &zo);
241	if (error)
242		return (error);
243
244	mutex_enter(&zo->zo_lock);
245	ap = zfs_onexit_find_cb(zo, action_handle);
246	if (ap != NULL)
247		*data = ap->za_data;
248	else
249		error = SET_ERROR(ENOENT);
250	mutex_exit(&zo->zo_lock);
251
252	return (error);
253}
254