1/*
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program.
10 *
11 * Copyright (c) 1980, 1989, 1993
12 *	The Regents of the University of California.  All rights reserved.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 */
38
39#if 0
40#ifndef lint
41static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
42#endif /* not lint */
43#endif
44#include <sys/cdefs.h>
45__FBSDID("$FreeBSD$");
46
47#include <sys/param.h>
48#include <sys/disklabel.h>
49#include <sys/file.h>
50#include <sys/ioctl.h>
51#include <sys/mman.h>
52#include <sys/resource.h>
53#include <sys/stat.h>
54#include <sys/wait.h>
55#include <err.h>
56#include <grp.h>
57#include <limits.h>
58#include <signal.h>
59#include <stdlib.h>
60#include <string.h>
61#include <stdint.h>
62#include <stdio.h>
63#include <time.h>
64#include <unistd.h>
65#include <ufs/ufs/dinode.h>
66#include <ufs/ufs/dir.h>
67#include <ufs/ffs/fs.h>
68#include "newfs.h"
69
70/*
71 * make file system for cylinder-group style file systems
72 */
73#define UMASK		0755
74#define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
75
76static struct	csum *fscs;
77#define	sblock	disk.d_fs
78#define	acg	disk.d_cg
79
80union dinode {
81	struct ufs1_dinode dp1;
82	struct ufs2_dinode dp2;
83};
84#define DIP(dp, field) \
85	((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86	(dp)->dp1.field : (dp)->dp2.field)
87
88static caddr_t iobuf;
89static long iobufsize;
90static ufs2_daddr_t alloc(int size, int mode);
91static int charsperline(void);
92static void clrblock(struct fs *, unsigned char *, int);
93static void fsinit(time_t);
94static int ilog2(int);
95static void initcg(int, time_t);
96static int isblock(struct fs *, unsigned char *, int);
97static void iput(union dinode *, ino_t);
98static int makedir(struct direct *, int);
99static void setblock(struct fs *, unsigned char *, int);
100static void wtfs(ufs2_daddr_t, int, char *);
101static u_int32_t newfs_random(void);
102
103static int
104do_sbwrite(struct uufsd *disk)
105{
106	if (!disk->d_sblock)
107		disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108	return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109	    disk->d_sblock) * disk->d_bsize)));
110}
111
112void
113mkfs(struct partition *pp, char *fsys)
114{
115	int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116	long i, j, csfrags;
117	uint cg;
118	time_t utime;
119	quad_t sizepb;
120	int width;
121	ino_t maxinum;
122	int minfragsperinode;	/* minimum ratio of frags to inodes */
123	char tmpbuf[100];	/* XXX this will break in about 2,500 years */
124	union {
125		struct fs fdummy;
126		char cdummy[SBLOCKSIZE];
127	} dummy;
128#define fsdummy dummy.fdummy
129#define chdummy dummy.cdummy
130
131	/*
132	 * Our blocks == sector size, and the version of UFS we are using is
133	 * specified by Oflag.
134	 */
135	disk.d_bsize = sectorsize;
136	disk.d_ufs = Oflag;
137	if (Rflag) {
138		utime = 1000000000;
139	} else {
140		time(&utime);
141		arc4random_stir();
142	}
143	sblock.fs_old_flags = FS_FLAGS_UPDATED;
144	sblock.fs_flags = 0;
145	if (Uflag)
146		sblock.fs_flags |= FS_DOSOFTDEP;
147	if (Lflag)
148		strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
149	if (Jflag)
150		sblock.fs_flags |= FS_GJOURNAL;
151	if (lflag)
152		sblock.fs_flags |= FS_MULTILABEL;
153	if (tflag)
154		sblock.fs_flags |= FS_TRIM;
155	/*
156	 * Validate the given file system size.
157	 * Verify that its last block can actually be accessed.
158	 * Convert to file system fragment sized units.
159	 */
160	if (fssize <= 0) {
161		printf("preposterous size %jd\n", (intmax_t)fssize);
162		exit(13);
163	}
164	wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
165	    (char *)&sblock);
166	/*
167	 * collect and verify the file system density info
168	 */
169	sblock.fs_avgfilesize = avgfilesize;
170	sblock.fs_avgfpdir = avgfilesperdir;
171	if (sblock.fs_avgfilesize <= 0)
172		printf("illegal expected average file size %d\n",
173		    sblock.fs_avgfilesize), exit(14);
174	if (sblock.fs_avgfpdir <= 0)
175		printf("illegal expected number of files per directory %d\n",
176		    sblock.fs_avgfpdir), exit(15);
177
178restart:
179	/*
180	 * collect and verify the block and fragment sizes
181	 */
182	sblock.fs_bsize = bsize;
183	sblock.fs_fsize = fsize;
184	if (!POWEROF2(sblock.fs_bsize)) {
185		printf("block size must be a power of 2, not %d\n",
186		    sblock.fs_bsize);
187		exit(16);
188	}
189	if (!POWEROF2(sblock.fs_fsize)) {
190		printf("fragment size must be a power of 2, not %d\n",
191		    sblock.fs_fsize);
192		exit(17);
193	}
194	if (sblock.fs_fsize < sectorsize) {
195		printf("increasing fragment size from %d to sector size (%d)\n",
196		    sblock.fs_fsize, sectorsize);
197		sblock.fs_fsize = sectorsize;
198	}
199	if (sblock.fs_bsize > MAXBSIZE) {
200		printf("decreasing block size from %d to maximum (%d)\n",
201		    sblock.fs_bsize, MAXBSIZE);
202		sblock.fs_bsize = MAXBSIZE;
203	}
204	if (sblock.fs_bsize < MINBSIZE) {
205		printf("increasing block size from %d to minimum (%d)\n",
206		    sblock.fs_bsize, MINBSIZE);
207		sblock.fs_bsize = MINBSIZE;
208	}
209	if (sblock.fs_fsize > MAXBSIZE) {
210		printf("decreasing fragment size from %d to maximum (%d)\n",
211		    sblock.fs_fsize, MAXBSIZE);
212		sblock.fs_fsize = MAXBSIZE;
213	}
214	if (sblock.fs_bsize < sblock.fs_fsize) {
215		printf("increasing block size from %d to fragment size (%d)\n",
216		    sblock.fs_bsize, sblock.fs_fsize);
217		sblock.fs_bsize = sblock.fs_fsize;
218	}
219	if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
220		printf(
221		"increasing fragment size from %d to block size / %d (%d)\n",
222		    sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
223		sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
224	}
225	if (maxbsize == 0)
226		maxbsize = bsize;
227	if (maxbsize < bsize || !POWEROF2(maxbsize)) {
228		sblock.fs_maxbsize = sblock.fs_bsize;
229		printf("Extent size set to %d\n", sblock.fs_maxbsize);
230	} else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
231		sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
232		printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
233	} else {
234		sblock.fs_maxbsize = maxbsize;
235	}
236	/*
237	 * Maxcontig sets the default for the maximum number of blocks
238	 * that may be allocated sequentially. With file system clustering
239	 * it is possible to allocate contiguous blocks up to the maximum
240	 * transfer size permitted by the controller or buffering.
241	 */
242	if (maxcontig == 0)
243		maxcontig = MAX(1, MAXPHYS / bsize);
244	sblock.fs_maxcontig = maxcontig;
245	if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
246		sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
247		printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
248	}
249	if (sblock.fs_maxcontig > 1)
250		sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
251	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
252	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
253	sblock.fs_qbmask = ~sblock.fs_bmask;
254	sblock.fs_qfmask = ~sblock.fs_fmask;
255	sblock.fs_bshift = ilog2(sblock.fs_bsize);
256	sblock.fs_fshift = ilog2(sblock.fs_fsize);
257	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
258	sblock.fs_fragshift = ilog2(sblock.fs_frag);
259	if (sblock.fs_frag > MAXFRAG) {
260		printf("fragment size %d is still too small (can't happen)\n",
261		    sblock.fs_bsize / MAXFRAG);
262		exit(21);
263	}
264	sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
265	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
266	sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
267
268	/*
269	 * Before the filesystem is finally initialized, mark it
270	 * as incompletely initialized.
271	 */
272	sblock.fs_magic = FS_BAD_MAGIC;
273
274	if (Oflag == 1) {
275		sblock.fs_sblockloc = SBLOCK_UFS1;
276		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
277		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
278		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
279		    sizeof(ufs1_daddr_t));
280		sblock.fs_old_inodefmt = FS_44INODEFMT;
281		sblock.fs_old_cgoffset = 0;
282		sblock.fs_old_cgmask = 0xffffffff;
283		sblock.fs_old_size = sblock.fs_size;
284		sblock.fs_old_rotdelay = 0;
285		sblock.fs_old_rps = 60;
286		sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
287		sblock.fs_old_cpg = 1;
288		sblock.fs_old_interleave = 1;
289		sblock.fs_old_trackskew = 0;
290		sblock.fs_old_cpc = 0;
291		sblock.fs_old_postblformat = 1;
292		sblock.fs_old_nrpos = 1;
293	} else {
294		sblock.fs_sblockloc = SBLOCK_UFS2;
295		sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
296		sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
297		sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
298		    sizeof(ufs2_daddr_t));
299	}
300	sblock.fs_sblkno =
301	    roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
302		sblock.fs_frag);
303	sblock.fs_cblkno = sblock.fs_sblkno +
304	    roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
305	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
306	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
307	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
308		sizepb *= NINDIR(&sblock);
309		sblock.fs_maxfilesize += sizepb;
310	}
311
312	/*
313	 * It's impossible to create a snapshot in case that fs_maxfilesize
314	 * is smaller than the fssize.
315	 */
316	if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
317		warnx("WARNING: You will be unable to create snapshots on this "
318		      "file system.  Correct by using a larger blocksize.");
319	}
320
321	/*
322	 * Calculate the number of blocks to put into each cylinder group.
323	 *
324	 * This algorithm selects the number of blocks per cylinder
325	 * group. The first goal is to have at least enough data blocks
326	 * in each cylinder group to meet the density requirement. Once
327	 * this goal is achieved we try to expand to have at least
328	 * MINCYLGRPS cylinder groups. Once this goal is achieved, we
329	 * pack as many blocks into each cylinder group map as will fit.
330	 *
331	 * We start by calculating the smallest number of blocks that we
332	 * can put into each cylinder group. If this is too big, we reduce
333	 * the density until it fits.
334	 */
335	maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
336	minfragsperinode = 1 + fssize / maxinum;
337	if (density == 0) {
338		density = MAX(NFPI, minfragsperinode) * fsize;
339	} else if (density < minfragsperinode * fsize) {
340		origdensity = density;
341		density = minfragsperinode * fsize;
342		fprintf(stderr, "density increased from %d to %d\n",
343		    origdensity, density);
344	}
345	origdensity = density;
346	for (;;) {
347		fragsperinode = MAX(numfrags(&sblock, density), 1);
348		if (fragsperinode < minfragsperinode) {
349			bsize <<= 1;
350			fsize <<= 1;
351			printf("Block size too small for a file system %s %d\n",
352			     "of this size. Increasing blocksize to", bsize);
353			goto restart;
354		}
355		minfpg = fragsperinode * INOPB(&sblock);
356		if (minfpg > sblock.fs_size)
357			minfpg = sblock.fs_size;
358		sblock.fs_ipg = INOPB(&sblock);
359		sblock.fs_fpg = roundup(sblock.fs_iblkno +
360		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
361		if (sblock.fs_fpg < minfpg)
362			sblock.fs_fpg = minfpg;
363		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
364		    INOPB(&sblock));
365		sblock.fs_fpg = roundup(sblock.fs_iblkno +
366		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
367		if (sblock.fs_fpg < minfpg)
368			sblock.fs_fpg = minfpg;
369		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
370		    INOPB(&sblock));
371		if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
372			break;
373		density -= sblock.fs_fsize;
374	}
375	if (density != origdensity)
376		printf("density reduced from %d to %d\n", origdensity, density);
377	/*
378	 * Start packing more blocks into the cylinder group until
379	 * it cannot grow any larger, the number of cylinder groups
380	 * drops below MINCYLGRPS, or we reach the size requested.
381	 * For UFS1 inodes per cylinder group are stored in an int16_t
382	 * so fs_ipg is limited to 2^15 - 1.
383	 */
384	for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
385		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
386		    INOPB(&sblock));
387		if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
388			if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
389				break;
390			if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
391				continue;
392			if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
393				break;
394		}
395		sblock.fs_fpg -= sblock.fs_frag;
396		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
397		    INOPB(&sblock));
398		break;
399	}
400	/*
401	 * Check to be sure that the last cylinder group has enough blocks
402	 * to be viable. If it is too small, reduce the number of blocks
403	 * per cylinder group which will have the effect of moving more
404	 * blocks into the last cylinder group.
405	 */
406	optimalfpg = sblock.fs_fpg;
407	for (;;) {
408		sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
409		lastminfpg = roundup(sblock.fs_iblkno +
410		    sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
411		if (sblock.fs_size < lastminfpg) {
412			printf("Filesystem size %jd < minimum size of %d\n",
413			    (intmax_t)sblock.fs_size, lastminfpg);
414			exit(28);
415		}
416		if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
417		    sblock.fs_size % sblock.fs_fpg == 0)
418			break;
419		sblock.fs_fpg -= sblock.fs_frag;
420		sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
421		    INOPB(&sblock));
422	}
423	if (optimalfpg != sblock.fs_fpg)
424		printf("Reduced frags per cylinder group from %d to %d %s\n",
425		   optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
426	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
427	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
428	if (Oflag == 1) {
429		sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
430		sblock.fs_old_nsect = sblock.fs_old_spc;
431		sblock.fs_old_npsect = sblock.fs_old_spc;
432		sblock.fs_old_ncyl = sblock.fs_ncg;
433	}
434	/*
435	 * fill in remaining fields of the super block
436	 */
437	sblock.fs_csaddr = cgdmin(&sblock, 0);
438	sblock.fs_cssize =
439	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
440	fscs = (struct csum *)calloc(1, sblock.fs_cssize);
441	if (fscs == NULL)
442		errx(31, "calloc failed");
443	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
444	if (sblock.fs_sbsize > SBLOCKSIZE)
445		sblock.fs_sbsize = SBLOCKSIZE;
446	sblock.fs_minfree = minfree;
447	if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
448		sblock.fs_metaspace = blknum(&sblock, metaspace);
449	else if (metaspace != -1)
450		/* reserve half of minfree for metadata blocks */
451		sblock.fs_metaspace = blknum(&sblock,
452		    (sblock.fs_fpg * minfree) / 200);
453	if (maxbpg == 0)
454		sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
455	else
456		sblock.fs_maxbpg = maxbpg;
457	sblock.fs_optim = opt;
458	sblock.fs_cgrotor = 0;
459	sblock.fs_pendingblocks = 0;
460	sblock.fs_pendinginodes = 0;
461	sblock.fs_fmod = 0;
462	sblock.fs_ronly = 0;
463	sblock.fs_state = 0;
464	sblock.fs_clean = 1;
465	sblock.fs_id[0] = (long)utime;
466	sblock.fs_id[1] = newfs_random();
467	sblock.fs_fsmnt[0] = '\0';
468	csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
469	sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
470	    sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
471	sblock.fs_cstotal.cs_nbfree =
472	    fragstoblks(&sblock, sblock.fs_dsize) -
473	    howmany(csfrags, sblock.fs_frag);
474	sblock.fs_cstotal.cs_nffree =
475	    fragnum(&sblock, sblock.fs_size) +
476	    (fragnum(&sblock, csfrags) > 0 ?
477	     sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
478	sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
479	sblock.fs_cstotal.cs_ndir = 0;
480	sblock.fs_dsize -= csfrags;
481	sblock.fs_time = utime;
482	if (Oflag == 1) {
483		sblock.fs_old_time = utime;
484		sblock.fs_old_dsize = sblock.fs_dsize;
485		sblock.fs_old_csaddr = sblock.fs_csaddr;
486		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
487		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
488		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
489		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
490	}
491
492	/*
493	 * Dump out summary information about file system.
494	 */
495#	define B2MBFACTOR (1 / (1024.0 * 1024.0))
496	printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
497	    fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
498	    (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
499	    sblock.fs_fsize);
500	printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
501	    sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
502	    sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
503	if (sblock.fs_flags & FS_DOSOFTDEP)
504		printf("\twith soft updates\n");
505#	undef B2MBFACTOR
506
507	if (Eflag && !Nflag) {
508		printf("Erasing sectors [%jd...%jd]\n",
509		    sblock.fs_sblockloc / disk.d_bsize,
510		    fsbtodb(&sblock, sblock.fs_size) - 1);
511		berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
512		    sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
513	}
514	/*
515	 * Wipe out old UFS1 superblock(s) if necessary.
516	 */
517	if (!Nflag && Oflag != 1) {
518		i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
519		if (i == -1)
520			err(1, "can't read old UFS1 superblock: %s", disk.d_error);
521
522		if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
523			fsdummy.fs_magic = 0;
524			bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
525			    chdummy, SBLOCKSIZE);
526			for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
527				if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
528					break;
529				bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
530				  cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
531			}
532		}
533	}
534	if (!Nflag)
535		do_sbwrite(&disk);
536	if (Xflag == 1) {
537		printf("** Exiting on Xflag 1\n");
538		exit(0);
539	}
540	if (Xflag == 2)
541		printf("** Leaving BAD MAGIC on Xflag 2\n");
542	else
543		sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
544
545	/*
546	 * Now build the cylinders group blocks and
547	 * then print out indices of cylinder groups.
548	 */
549	printf("super-block backups (for fsck_ffs -b #) at:\n");
550	i = 0;
551	width = charsperline();
552	/*
553	 * allocate space for superblock, cylinder group map, and
554	 * two sets of inode blocks.
555	 */
556	if (sblock.fs_bsize < SBLOCKSIZE)
557		iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
558	else
559		iobufsize = 4 * sblock.fs_bsize;
560	if ((iobuf = calloc(1, iobufsize)) == 0) {
561		printf("Cannot allocate I/O buffer\n");
562		exit(38);
563	}
564	/*
565	 * Make a copy of the superblock into the buffer that we will be
566	 * writing out in each cylinder group.
567	 */
568	bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
569	for (cg = 0; cg < sblock.fs_ncg; cg++) {
570		initcg(cg, utime);
571		j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
572		    (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
573		    cg < (sblock.fs_ncg-1) ? "," : "");
574		if (j < 0)
575			tmpbuf[j = 0] = '\0';
576		if (i + j >= width) {
577			printf("\n");
578			i = 0;
579		}
580		i += j;
581		printf("%s", tmpbuf);
582		fflush(stdout);
583	}
584	printf("\n");
585	if (Nflag)
586		exit(0);
587	/*
588	 * Now construct the initial file system,
589	 * then write out the super-block.
590	 */
591	fsinit(utime);
592	if (Oflag == 1) {
593		sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
594		sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
595		sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
596		sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
597	}
598	if (Xflag == 3) {
599		printf("** Exiting on Xflag 3\n");
600		exit(0);
601	}
602	if (!Nflag) {
603		do_sbwrite(&disk);
604		/*
605		 * For UFS1 filesystems with a blocksize of 64K, the first
606		 * alternate superblock resides at the location used for
607		 * the default UFS2 superblock. As there is a valid
608		 * superblock at this location, the boot code will use
609		 * it as its first choice. Thus we have to ensure that
610		 * all of its statistcs on usage are correct.
611		 */
612		if (Oflag == 1 && sblock.fs_bsize == 65536)
613			wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
614			    sblock.fs_bsize, (char *)&sblock);
615	}
616	for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
617		wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
618			sblock.fs_cssize - i < sblock.fs_bsize ?
619			sblock.fs_cssize - i : sblock.fs_bsize,
620			((char *)fscs) + i);
621	/*
622	 * Update information about this partition in pack
623	 * label, to that it may be updated on disk.
624	 */
625	if (pp != NULL) {
626		pp->p_fstype = FS_BSDFFS;
627		pp->p_fsize = sblock.fs_fsize;
628		pp->p_frag = sblock.fs_frag;
629		pp->p_cpg = sblock.fs_fpg;
630	}
631}
632
633/*
634 * Initialize a cylinder group.
635 */
636void
637initcg(int cylno, time_t utime)
638{
639	long blkno, start;
640	uint i, j, d, dlower, dupper;
641	ufs2_daddr_t cbase, dmax;
642	struct ufs1_dinode *dp1;
643	struct ufs2_dinode *dp2;
644	struct csum *cs;
645
646	/*
647	 * Determine block bounds for cylinder group.
648	 * Allow space for super block summary information in first
649	 * cylinder group.
650	 */
651	cbase = cgbase(&sblock, cylno);
652	dmax = cbase + sblock.fs_fpg;
653	if (dmax > sblock.fs_size)
654		dmax = sblock.fs_size;
655	dlower = cgsblock(&sblock, cylno) - cbase;
656	dupper = cgdmin(&sblock, cylno) - cbase;
657	if (cylno == 0)
658		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
659	cs = &fscs[cylno];
660	memset(&acg, 0, sblock.fs_cgsize);
661	acg.cg_time = utime;
662	acg.cg_magic = CG_MAGIC;
663	acg.cg_cgx = cylno;
664	acg.cg_niblk = sblock.fs_ipg;
665	acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
666	    sblock.fs_ipg : 2 * INOPB(&sblock);
667	acg.cg_ndblk = dmax - cbase;
668	if (sblock.fs_contigsumsize > 0)
669		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
670	start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
671	if (Oflag == 2) {
672		acg.cg_iusedoff = start;
673	} else {
674		acg.cg_old_ncyl = sblock.fs_old_cpg;
675		acg.cg_old_time = acg.cg_time;
676		acg.cg_time = 0;
677		acg.cg_old_niblk = acg.cg_niblk;
678		acg.cg_niblk = 0;
679		acg.cg_initediblk = 0;
680		acg.cg_old_btotoff = start;
681		acg.cg_old_boff = acg.cg_old_btotoff +
682		    sblock.fs_old_cpg * sizeof(int32_t);
683		acg.cg_iusedoff = acg.cg_old_boff +
684		    sblock.fs_old_cpg * sizeof(u_int16_t);
685	}
686	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
687	acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
688	if (sblock.fs_contigsumsize > 0) {
689		acg.cg_clustersumoff =
690		    roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
691		acg.cg_clustersumoff -= sizeof(u_int32_t);
692		acg.cg_clusteroff = acg.cg_clustersumoff +
693		    (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
694		acg.cg_nextfreeoff = acg.cg_clusteroff +
695		    howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
696	}
697	if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
698		printf("Panic: cylinder group too big\n");
699		exit(37);
700	}
701	acg.cg_cs.cs_nifree += sblock.fs_ipg;
702	if (cylno == 0)
703		for (i = 0; i < (long)ROOTINO; i++) {
704			setbit(cg_inosused(&acg), i);
705			acg.cg_cs.cs_nifree--;
706		}
707	if (cylno > 0) {
708		/*
709		 * In cylno 0, beginning space is reserved
710		 * for boot and super blocks.
711		 */
712		for (d = 0; d < dlower; d += sblock.fs_frag) {
713			blkno = d / sblock.fs_frag;
714			setblock(&sblock, cg_blksfree(&acg), blkno);
715			if (sblock.fs_contigsumsize > 0)
716				setbit(cg_clustersfree(&acg), blkno);
717			acg.cg_cs.cs_nbfree++;
718		}
719	}
720	if ((i = dupper % sblock.fs_frag)) {
721		acg.cg_frsum[sblock.fs_frag - i]++;
722		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
723			setbit(cg_blksfree(&acg), dupper);
724			acg.cg_cs.cs_nffree++;
725		}
726	}
727	for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
728	     d += sblock.fs_frag) {
729		blkno = d / sblock.fs_frag;
730		setblock(&sblock, cg_blksfree(&acg), blkno);
731		if (sblock.fs_contigsumsize > 0)
732			setbit(cg_clustersfree(&acg), blkno);
733		acg.cg_cs.cs_nbfree++;
734	}
735	if (d < acg.cg_ndblk) {
736		acg.cg_frsum[acg.cg_ndblk - d]++;
737		for (; d < acg.cg_ndblk; d++) {
738			setbit(cg_blksfree(&acg), d);
739			acg.cg_cs.cs_nffree++;
740		}
741	}
742	if (sblock.fs_contigsumsize > 0) {
743		int32_t *sump = cg_clustersum(&acg);
744		u_char *mapp = cg_clustersfree(&acg);
745		int map = *mapp++;
746		int bit = 1;
747		int run = 0;
748
749		for (i = 0; i < acg.cg_nclusterblks; i++) {
750			if ((map & bit) != 0)
751				run++;
752			else if (run != 0) {
753				if (run > sblock.fs_contigsumsize)
754					run = sblock.fs_contigsumsize;
755				sump[run]++;
756				run = 0;
757			}
758			if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
759				bit <<= 1;
760			else {
761				map = *mapp++;
762				bit = 1;
763			}
764		}
765		if (run != 0) {
766			if (run > sblock.fs_contigsumsize)
767				run = sblock.fs_contigsumsize;
768			sump[run]++;
769		}
770	}
771	*cs = acg.cg_cs;
772	/*
773	 * Write out the duplicate super block, the cylinder group map
774	 * and two blocks worth of inodes in a single write.
775	 */
776	start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
777	bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
778	start += sblock.fs_bsize;
779	dp1 = (struct ufs1_dinode *)(&iobuf[start]);
780	dp2 = (struct ufs2_dinode *)(&iobuf[start]);
781	for (i = 0; i < acg.cg_initediblk; i++) {
782		if (sblock.fs_magic == FS_UFS1_MAGIC) {
783			dp1->di_gen = newfs_random();
784			dp1++;
785		} else {
786			dp2->di_gen = newfs_random();
787			dp2++;
788		}
789	}
790	wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
791	/*
792	 * For the old file system, we have to initialize all the inodes.
793	 */
794	if (Oflag == 1) {
795		for (i = 2 * sblock.fs_frag;
796		     i < sblock.fs_ipg / INOPF(&sblock);
797		     i += sblock.fs_frag) {
798			dp1 = (struct ufs1_dinode *)(&iobuf[start]);
799			for (j = 0; j < INOPB(&sblock); j++) {
800				dp1->di_gen = newfs_random();
801				dp1++;
802			}
803			wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
804			    sblock.fs_bsize, &iobuf[start]);
805		}
806	}
807}
808
809/*
810 * initialize the file system
811 */
812#define ROOTLINKCNT 3
813
814struct direct root_dir[] = {
815	{ ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
816	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
817	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
818};
819
820#define SNAPLINKCNT 2
821
822struct direct snap_dir[] = {
823	{ ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
824	{ ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
825};
826
827void
828fsinit(time_t utime)
829{
830	union dinode node;
831	struct group *grp;
832	gid_t gid;
833	int entries;
834
835	memset(&node, 0, sizeof node);
836	if ((grp = getgrnam("operator")) != NULL) {
837		gid = grp->gr_gid;
838	} else {
839		warnx("Cannot retrieve operator gid, using gid 0.");
840		gid = 0;
841	}
842	entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
843	if (sblock.fs_magic == FS_UFS1_MAGIC) {
844		/*
845		 * initialize the node
846		 */
847		node.dp1.di_atime = utime;
848		node.dp1.di_mtime = utime;
849		node.dp1.di_ctime = utime;
850		/*
851		 * create the root directory
852		 */
853		node.dp1.di_mode = IFDIR | UMASK;
854		node.dp1.di_nlink = entries;
855		node.dp1.di_size = makedir(root_dir, entries);
856		node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
857		node.dp1.di_blocks =
858		    btodb(fragroundup(&sblock, node.dp1.di_size));
859		wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
860		    iobuf);
861		iput(&node, ROOTINO);
862		if (!nflag) {
863			/*
864			 * create the .snap directory
865			 */
866			node.dp1.di_mode |= 020;
867			node.dp1.di_gid = gid;
868			node.dp1.di_nlink = SNAPLINKCNT;
869			node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
870				node.dp1.di_db[0] =
871				    alloc(sblock.fs_fsize, node.dp1.di_mode);
872			node.dp1.di_blocks =
873			    btodb(fragroundup(&sblock, node.dp1.di_size));
874				wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
875				    sblock.fs_fsize, iobuf);
876			iput(&node, ROOTINO + 1);
877		}
878	} else {
879		/*
880		 * initialize the node
881		 */
882		node.dp2.di_atime = utime;
883		node.dp2.di_mtime = utime;
884		node.dp2.di_ctime = utime;
885		node.dp2.di_birthtime = utime;
886		/*
887		 * create the root directory
888		 */
889		node.dp2.di_mode = IFDIR | UMASK;
890		node.dp2.di_nlink = entries;
891		node.dp2.di_size = makedir(root_dir, entries);
892		node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
893		node.dp2.di_blocks =
894		    btodb(fragroundup(&sblock, node.dp2.di_size));
895		wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
896		    iobuf);
897		iput(&node, ROOTINO);
898		if (!nflag) {
899			/*
900			 * create the .snap directory
901			 */
902			node.dp2.di_mode |= 020;
903			node.dp2.di_gid = gid;
904			node.dp2.di_nlink = SNAPLINKCNT;
905			node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
906				node.dp2.di_db[0] =
907				    alloc(sblock.fs_fsize, node.dp2.di_mode);
908			node.dp2.di_blocks =
909			    btodb(fragroundup(&sblock, node.dp2.di_size));
910				wtfs(fsbtodb(&sblock, node.dp2.di_db[0]),
911				    sblock.fs_fsize, iobuf);
912			iput(&node, ROOTINO + 1);
913		}
914	}
915}
916
917/*
918 * construct a set of directory entries in "iobuf".
919 * return size of directory.
920 */
921int
922makedir(struct direct *protodir, int entries)
923{
924	char *cp;
925	int i, spcleft;
926
927	spcleft = DIRBLKSIZ;
928	memset(iobuf, 0, DIRBLKSIZ);
929	for (cp = iobuf, i = 0; i < entries - 1; i++) {
930		protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
931		memmove(cp, &protodir[i], protodir[i].d_reclen);
932		cp += protodir[i].d_reclen;
933		spcleft -= protodir[i].d_reclen;
934	}
935	protodir[i].d_reclen = spcleft;
936	memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
937	return (DIRBLKSIZ);
938}
939
940/*
941 * allocate a block or frag
942 */
943ufs2_daddr_t
944alloc(int size, int mode)
945{
946	int i, blkno, frag;
947	uint d;
948
949	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
950	    sblock.fs_cgsize);
951	if (acg.cg_magic != CG_MAGIC) {
952		printf("cg 0: bad magic number\n");
953		exit(38);
954	}
955	if (acg.cg_cs.cs_nbfree == 0) {
956		printf("first cylinder group ran out of space\n");
957		exit(39);
958	}
959	for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
960		if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
961			goto goth;
962	printf("internal error: can't find block in cyl 0\n");
963	exit(40);
964goth:
965	blkno = fragstoblks(&sblock, d);
966	clrblock(&sblock, cg_blksfree(&acg), blkno);
967	if (sblock.fs_contigsumsize > 0)
968		clrbit(cg_clustersfree(&acg), blkno);
969	acg.cg_cs.cs_nbfree--;
970	sblock.fs_cstotal.cs_nbfree--;
971	fscs[0].cs_nbfree--;
972	if (mode & IFDIR) {
973		acg.cg_cs.cs_ndir++;
974		sblock.fs_cstotal.cs_ndir++;
975		fscs[0].cs_ndir++;
976	}
977	if (size != sblock.fs_bsize) {
978		frag = howmany(size, sblock.fs_fsize);
979		fscs[0].cs_nffree += sblock.fs_frag - frag;
980		sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
981		acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
982		acg.cg_frsum[sblock.fs_frag - frag]++;
983		for (i = frag; i < sblock.fs_frag; i++)
984			setbit(cg_blksfree(&acg), d + i);
985	}
986	/* XXX cgwrite(&disk, 0)??? */
987	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
988	    (char *)&acg);
989	return ((ufs2_daddr_t)d);
990}
991
992/*
993 * Allocate an inode on the disk
994 */
995void
996iput(union dinode *ip, ino_t ino)
997{
998	ufs2_daddr_t d;
999
1000	bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1001	    sblock.fs_cgsize);
1002	if (acg.cg_magic != CG_MAGIC) {
1003		printf("cg 0: bad magic number\n");
1004		exit(31);
1005	}
1006	acg.cg_cs.cs_nifree--;
1007	setbit(cg_inosused(&acg), ino);
1008	wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1009	    (char *)&acg);
1010	sblock.fs_cstotal.cs_nifree--;
1011	fscs[0].cs_nifree--;
1012	if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1013		printf("fsinit: inode value out of range (%d).\n", ino);
1014		exit(32);
1015	}
1016	d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1017	bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1018	if (sblock.fs_magic == FS_UFS1_MAGIC)
1019		((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1020		    ip->dp1;
1021	else
1022		((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1023		    ip->dp2;
1024	wtfs(d, sblock.fs_bsize, (char *)iobuf);
1025}
1026
1027/*
1028 * possibly write to disk
1029 */
1030static void
1031wtfs(ufs2_daddr_t bno, int size, char *bf)
1032{
1033	if (Nflag)
1034		return;
1035	if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1036		err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1037}
1038
1039/*
1040 * check if a block is available
1041 */
1042static int
1043isblock(struct fs *fs, unsigned char *cp, int h)
1044{
1045	unsigned char mask;
1046
1047	switch (fs->fs_frag) {
1048	case 8:
1049		return (cp[h] == 0xff);
1050	case 4:
1051		mask = 0x0f << ((h & 0x1) << 2);
1052		return ((cp[h >> 1] & mask) == mask);
1053	case 2:
1054		mask = 0x03 << ((h & 0x3) << 1);
1055		return ((cp[h >> 2] & mask) == mask);
1056	case 1:
1057		mask = 0x01 << (h & 0x7);
1058		return ((cp[h >> 3] & mask) == mask);
1059	default:
1060		fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1061		return (0);
1062	}
1063}
1064
1065/*
1066 * take a block out of the map
1067 */
1068static void
1069clrblock(struct fs *fs, unsigned char *cp, int h)
1070{
1071	switch ((fs)->fs_frag) {
1072	case 8:
1073		cp[h] = 0;
1074		return;
1075	case 4:
1076		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1077		return;
1078	case 2:
1079		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1080		return;
1081	case 1:
1082		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1083		return;
1084	default:
1085		fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1086		return;
1087	}
1088}
1089
1090/*
1091 * put a block into the map
1092 */
1093static void
1094setblock(struct fs *fs, unsigned char *cp, int h)
1095{
1096	switch (fs->fs_frag) {
1097	case 8:
1098		cp[h] = 0xff;
1099		return;
1100	case 4:
1101		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1102		return;
1103	case 2:
1104		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1105		return;
1106	case 1:
1107		cp[h >> 3] |= (0x01 << (h & 0x7));
1108		return;
1109	default:
1110		fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1111		return;
1112	}
1113}
1114
1115/*
1116 * Determine the number of characters in a
1117 * single line.
1118 */
1119
1120static int
1121charsperline(void)
1122{
1123	int columns;
1124	char *cp;
1125	struct winsize ws;
1126
1127	columns = 0;
1128	if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1129		columns = ws.ws_col;
1130	if (columns == 0 && (cp = getenv("COLUMNS")))
1131		columns = atoi(cp);
1132	if (columns == 0)
1133		columns = 80;	/* last resort */
1134	return (columns);
1135}
1136
1137static int
1138ilog2(int val)
1139{
1140	u_int n;
1141
1142	for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1143		if (1 << n == val)
1144			return (n);
1145	errx(1, "ilog2: %d is not a power of 2\n", val);
1146}
1147
1148/*
1149 * For the regression test, return predictable random values.
1150 * Otherwise use a true random number generator.
1151 */
1152static u_int32_t
1153newfs_random(void)
1154{
1155	static int nextnum = 1;
1156
1157	if (Rflag)
1158		return (nextnum++);
1159	return (arc4random());
1160}
1161