hash_page.c revision 189291
1/*-
2 * Copyright (c) 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#if defined(LIBC_SCCS) && !defined(lint)
34static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
35#endif /* LIBC_SCCS and not lint */
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/lib/libc/db/hash/hash_page.c 189291 2009-03-02 23:47:18Z delphij $");
38
39/*
40 * PACKAGE:  hashing
41 *
42 * DESCRIPTION:
43 *	Page manipulation for hashing package.
44 *
45 * ROUTINES:
46 *
47 * External
48 *	__get_page
49 *	__add_ovflpage
50 * Internal
51 *	overflow_page
52 *	open_temp
53 */
54
55#include "namespace.h"
56#include <sys/types.h>
57
58#include <errno.h>
59#include <fcntl.h>
60#include <signal.h>
61#include <stdio.h>
62#include <stdlib.h>
63#include <string.h>
64#include <unistd.h>
65#ifdef DEBUG
66#include <assert.h>
67#endif
68#include "un-namespace.h"
69
70#include <db.h>
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static u_int32_t *fetch_bitmap(HTAB *, int);
76static u_int32_t  first_free(u_int32_t);
77static int	  open_temp(HTAB *);
78static u_int16_t  overflow_page(HTAB *);
79static void	  putpair(char *, const DBT *, const DBT *);
80static void	  squeeze_key(u_int16_t *, const DBT *, const DBT *);
81static int	  ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
82
83#define	PAGE_INIT(P) { \
84	((u_int16_t *)(P))[0] = 0; \
85	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
86	((u_int16_t *)(P))[2] = hashp->BSIZE; \
87}
88
89/*
90 * This is called AFTER we have verified that there is room on the page for
91 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
92 * stuff on.
93 */
94static void
95putpair(char *p, const DBT *key, const DBT *val)
96{
97	u_int16_t *bp, n, off;
98
99	bp = (u_int16_t *)p;
100
101	/* Enter the key first. */
102	n = bp[0];
103
104	off = OFFSET(bp) - key->size;
105	memmove(p + off, key->data, key->size);
106	bp[++n] = off;
107
108	/* Now the data. */
109	off -= val->size;
110	memmove(p + off, val->data, val->size);
111	bp[++n] = off;
112
113	/* Adjust page info. */
114	bp[0] = n;
115	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
116	bp[n + 2] = off;
117}
118
119/*
120 * Returns:
121 *	 0 OK
122 *	-1 error
123 */
124int
125__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
126{
127	u_int16_t *bp, newoff;
128	int n;
129	u_int16_t pairlen;
130
131	bp = (u_int16_t *)bufp->page;
132	n = bp[0];
133
134	if (bp[ndx + 1] < REAL_KEY)
135		return (__big_delete(hashp, bufp));
136	if (ndx != 1)
137		newoff = bp[ndx - 1];
138	else
139		newoff = hashp->BSIZE;
140	pairlen = newoff - bp[ndx + 1];
141
142	if (ndx != (n - 1)) {
143		/* Hard Case -- need to shuffle keys */
144		int i;
145		char *src = bufp->page + (int)OFFSET(bp);
146		char *dst = src + (int)pairlen;
147		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
148
149		/* Now adjust the pointers */
150		for (i = ndx + 2; i <= n; i += 2) {
151			if (bp[i + 1] == OVFLPAGE) {
152				bp[i - 2] = bp[i];
153				bp[i - 1] = bp[i + 1];
154			} else {
155				bp[i - 2] = bp[i] + pairlen;
156				bp[i - 1] = bp[i + 1] + pairlen;
157			}
158		}
159	}
160	/* Finally adjust the page data */
161	bp[n] = OFFSET(bp) + pairlen;
162	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
163	bp[0] = n - 2;
164	hashp->NKEYS--;
165
166	bufp->flags |= BUF_MOD;
167	return (0);
168}
169/*
170 * Returns:
171 *	 0 ==> OK
172 *	-1 ==> Error
173 */
174int
175__split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
176{
177	BUFHEAD *new_bufp, *old_bufp;
178	u_int16_t *ino;
179	char *np;
180	DBT key, val;
181	int n, ndx, retval;
182	u_int16_t copyto, diff, off, moved;
183	char *op;
184
185	copyto = (u_int16_t)hashp->BSIZE;
186	off = (u_int16_t)hashp->BSIZE;
187	old_bufp = __get_buf(hashp, obucket, NULL, 0);
188	if (old_bufp == NULL)
189		return (-1);
190	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
191	if (new_bufp == NULL)
192		return (-1);
193
194	old_bufp->flags |= (BUF_MOD | BUF_PIN);
195	new_bufp->flags |= (BUF_MOD | BUF_PIN);
196
197	ino = (u_int16_t *)(op = old_bufp->page);
198	np = new_bufp->page;
199
200	moved = 0;
201
202	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
203		if (ino[n + 1] < REAL_KEY) {
204			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
205			    (int)copyto, (int)moved);
206			old_bufp->flags &= ~BUF_PIN;
207			new_bufp->flags &= ~BUF_PIN;
208			return (retval);
209
210		}
211		key.data = (u_char *)op + ino[n];
212		key.size = off - ino[n];
213
214		if (__call_hash(hashp, key.data, key.size) == obucket) {
215			/* Don't switch page */
216			diff = copyto - off;
217			if (diff) {
218				copyto = ino[n + 1] + diff;
219				memmove(op + copyto, op + ino[n + 1],
220				    off - ino[n + 1]);
221				ino[ndx] = copyto + ino[n] - ino[n + 1];
222				ino[ndx + 1] = copyto;
223			} else
224				copyto = ino[n + 1];
225			ndx += 2;
226		} else {
227			/* Switch page */
228			val.data = (u_char *)op + ino[n + 1];
229			val.size = ino[n] - ino[n + 1];
230			putpair(np, &key, &val);
231			moved += 2;
232		}
233
234		off = ino[n + 1];
235	}
236
237	/* Now clean up the page */
238	ino[0] -= moved;
239	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
240	OFFSET(ino) = copyto;
241
242#ifdef DEBUG3
243	(void)fprintf(stderr, "split %d/%d\n",
244	    ((u_int16_t *)np)[0] / 2,
245	    ((u_int16_t *)op)[0] / 2);
246#endif
247	/* unpin both pages */
248	old_bufp->flags &= ~BUF_PIN;
249	new_bufp->flags &= ~BUF_PIN;
250	return (0);
251}
252
253/*
254 * Called when we encounter an overflow or big key/data page during split
255 * handling.  This is special cased since we have to begin checking whether
256 * the key/data pairs fit on their respective pages and because we may need
257 * overflow pages for both the old and new pages.
258 *
259 * The first page might be a page with regular key/data pairs in which case
260 * we have a regular overflow condition and just need to go on to the next
261 * page or it might be a big key/data pair in which case we need to fix the
262 * big key/data pair.
263 *
264 * Returns:
265 *	 0 ==> success
266 *	-1 ==> failure
267 */
268static int
269ugly_split(HTAB *hashp,
270    u_int32_t obucket,	/* Same as __split_page. */
271    BUFHEAD *old_bufp,
272    BUFHEAD *new_bufp,
273    int copyto,		/* First byte on page which contains key/data values. */
274    int moved)		/* Number of pairs moved to new page. */
275{
276	BUFHEAD *bufp;	/* Buffer header for ino */
277	u_int16_t *ino;	/* Page keys come off of */
278	u_int16_t *np;	/* New page */
279	u_int16_t *op;	/* Page keys go on to if they aren't moving */
280
281	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
282	DBT key, val;
283	SPLIT_RETURN ret;
284	u_int16_t n, off, ov_addr, scopyto;
285	char *cino;		/* Character value of ino */
286
287	bufp = old_bufp;
288	ino = (u_int16_t *)old_bufp->page;
289	np = (u_int16_t *)new_bufp->page;
290	op = (u_int16_t *)old_bufp->page;
291	last_bfp = NULL;
292	scopyto = (u_int16_t)copyto;	/* ANSI */
293
294	n = ino[0] - 1;
295	while (n < ino[0]) {
296		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
297			if (__big_split(hashp, old_bufp,
298			    new_bufp, bufp, bufp->addr, obucket, &ret))
299				return (-1);
300			old_bufp = ret.oldp;
301			if (!old_bufp)
302				return (-1);
303			op = (u_int16_t *)old_bufp->page;
304			new_bufp = ret.newp;
305			if (!new_bufp)
306				return (-1);
307			np = (u_int16_t *)new_bufp->page;
308			bufp = ret.nextp;
309			if (!bufp)
310				return (0);
311			cino = (char *)bufp->page;
312			ino = (u_int16_t *)cino;
313			last_bfp = ret.nextp;
314		} else if (ino[n + 1] == OVFLPAGE) {
315			ov_addr = ino[n];
316			/*
317			 * Fix up the old page -- the extra 2 are the fields
318			 * which contained the overflow information.
319			 */
320			ino[0] -= (moved + 2);
321			FREESPACE(ino) =
322			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
323			OFFSET(ino) = scopyto;
324
325			bufp = __get_buf(hashp, ov_addr, bufp, 0);
326			if (!bufp)
327				return (-1);
328
329			ino = (u_int16_t *)bufp->page;
330			n = 1;
331			scopyto = hashp->BSIZE;
332			moved = 0;
333
334			if (last_bfp)
335				__free_ovflpage(hashp, last_bfp);
336			last_bfp = bufp;
337		}
338		/* Move regular sized pairs of there are any */
339		off = hashp->BSIZE;
340		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
341			cino = (char *)ino;
342			key.data = (u_char *)cino + ino[n];
343			key.size = off - ino[n];
344			val.data = (u_char *)cino + ino[n + 1];
345			val.size = ino[n] - ino[n + 1];
346			off = ino[n + 1];
347
348			if (__call_hash(hashp, key.data, key.size) == obucket) {
349				/* Keep on old page */
350				if (PAIRFITS(op, (&key), (&val)))
351					putpair((char *)op, &key, &val);
352				else {
353					old_bufp =
354					    __add_ovflpage(hashp, old_bufp);
355					if (!old_bufp)
356						return (-1);
357					op = (u_int16_t *)old_bufp->page;
358					putpair((char *)op, &key, &val);
359				}
360				old_bufp->flags |= BUF_MOD;
361			} else {
362				/* Move to new page */
363				if (PAIRFITS(np, (&key), (&val)))
364					putpair((char *)np, &key, &val);
365				else {
366					new_bufp =
367					    __add_ovflpage(hashp, new_bufp);
368					if (!new_bufp)
369						return (-1);
370					np = (u_int16_t *)new_bufp->page;
371					putpair((char *)np, &key, &val);
372				}
373				new_bufp->flags |= BUF_MOD;
374			}
375		}
376	}
377	if (last_bfp)
378		__free_ovflpage(hashp, last_bfp);
379	return (0);
380}
381
382/*
383 * Add the given pair to the page
384 *
385 * Returns:
386 *	0 ==> OK
387 *	1 ==> failure
388 */
389int
390__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
391{
392	u_int16_t *bp, *sop;
393	int do_expand;
394
395	bp = (u_int16_t *)bufp->page;
396	do_expand = 0;
397	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
398		/* Exception case */
399		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
400			/* This is the last page of a big key/data pair
401			   and we need to add another page */
402			break;
403		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
404			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
405			if (!bufp)
406				return (-1);
407			bp = (u_int16_t *)bufp->page;
408		} else
409			/* Try to squeeze key on this page */
410			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
411				squeeze_key(bp, key, val);
412				return (0);
413			} else {
414				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
415				if (!bufp)
416					return (-1);
417				bp = (u_int16_t *)bufp->page;
418			}
419
420	if (PAIRFITS(bp, key, val))
421		putpair(bufp->page, key, val);
422	else {
423		do_expand = 1;
424		bufp = __add_ovflpage(hashp, bufp);
425		if (!bufp)
426			return (-1);
427		sop = (u_int16_t *)bufp->page;
428
429		if (PAIRFITS(sop, key, val))
430			putpair((char *)sop, key, val);
431		else
432			if (__big_insert(hashp, bufp, key, val))
433				return (-1);
434	}
435	bufp->flags |= BUF_MOD;
436	/*
437	 * If the average number of keys per bucket exceeds the fill factor,
438	 * expand the table.
439	 */
440	hashp->NKEYS++;
441	if (do_expand ||
442	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
443		return (__expand_table(hashp));
444	return (0);
445}
446
447/*
448 *
449 * Returns:
450 *	pointer on success
451 *	NULL on error
452 */
453BUFHEAD *
454__add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
455{
456	u_int16_t *sp;
457	u_int16_t ndx, ovfl_num;
458#ifdef DEBUG1
459	int tmp1, tmp2;
460#endif
461	sp = (u_int16_t *)bufp->page;
462
463	/* Check if we are dynamically determining the fill factor */
464	if (hashp->FFACTOR == DEF_FFACTOR) {
465		hashp->FFACTOR = sp[0] >> 1;
466		if (hashp->FFACTOR < MIN_FFACTOR)
467			hashp->FFACTOR = MIN_FFACTOR;
468	}
469	bufp->flags |= BUF_MOD;
470	ovfl_num = overflow_page(hashp);
471#ifdef DEBUG1
472	tmp1 = bufp->addr;
473	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
474#endif
475	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
476		return (NULL);
477	bufp->ovfl->flags |= BUF_MOD;
478#ifdef DEBUG1
479	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
480	    tmp1, tmp2, bufp->ovfl->addr);
481#endif
482	ndx = sp[0];
483	/*
484	 * Since a pair is allocated on a page only if there's room to add
485	 * an overflow page, we know that the OVFL information will fit on
486	 * the page.
487	 */
488	sp[ndx + 4] = OFFSET(sp);
489	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
490	sp[ndx + 1] = ovfl_num;
491	sp[ndx + 2] = OVFLPAGE;
492	sp[0] = ndx + 2;
493#ifdef HASH_STATISTICS
494	hash_overflows++;
495#endif
496	return (bufp->ovfl);
497}
498
499/*
500 * Returns:
501 *	 0 indicates SUCCESS
502 *	-1 indicates FAILURE
503 */
504int
505__get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
506    int is_bitmap)
507{
508	int fd, page, size;
509	int rsize;
510	u_int16_t *bp;
511
512	fd = hashp->fp;
513	size = hashp->BSIZE;
514
515	if ((fd == -1) || !is_disk) {
516		PAGE_INIT(p);
517		return (0);
518	}
519	if (is_bucket)
520		page = BUCKET_TO_PAGE(bucket);
521	else
522		page = OADDR_TO_PAGE(bucket);
523	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
524	    ((rsize = _read(fd, p, size)) == -1))
525		return (-1);
526	bp = (u_int16_t *)p;
527	if (!rsize)
528		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
529	else
530		if (rsize != size) {
531			errno = EFTYPE;
532			return (-1);
533		}
534	if (!is_bitmap && !bp[0]) {
535		PAGE_INIT(p);
536	} else
537		if (hashp->LORDER != BYTE_ORDER) {
538			int i, max;
539
540			if (is_bitmap) {
541				max = hashp->BSIZE >> 2; /* divide by 4 */
542				for (i = 0; i < max; i++)
543					M_32_SWAP(((int *)p)[i]);
544			} else {
545				M_16_SWAP(bp[0]);
546				max = bp[0] + 2;
547				for (i = 1; i <= max; i++)
548					M_16_SWAP(bp[i]);
549			}
550		}
551	return (0);
552}
553
554/*
555 * Write page p to disk
556 *
557 * Returns:
558 *	 0 ==> OK
559 *	-1 ==>failure
560 */
561int
562__put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
563{
564	int fd, page, size;
565	int wsize;
566
567	size = hashp->BSIZE;
568	if ((hashp->fp == -1) && open_temp(hashp))
569		return (-1);
570	fd = hashp->fp;
571
572	if (hashp->LORDER != BYTE_ORDER) {
573		int i;
574		int max;
575
576		if (is_bitmap) {
577			max = hashp->BSIZE >> 2;	/* divide by 4 */
578			for (i = 0; i < max; i++)
579				M_32_SWAP(((int *)p)[i]);
580		} else {
581			max = ((u_int16_t *)p)[0] + 2;
582			for (i = 0; i <= max; i++)
583				M_16_SWAP(((u_int16_t *)p)[i]);
584		}
585	}
586	if (is_bucket)
587		page = BUCKET_TO_PAGE(bucket);
588	else
589		page = OADDR_TO_PAGE(bucket);
590	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
591	    ((wsize = _write(fd, p, size)) == -1))
592		/* Errno is set */
593		return (-1);
594	if (wsize != size) {
595		errno = EFTYPE;
596		return (-1);
597	}
598	return (0);
599}
600
601#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
602/*
603 * Initialize a new bitmap page.  Bitmap pages are left in memory
604 * once they are read in.
605 */
606int
607__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
608{
609	u_int32_t *ip;
610	int clearbytes, clearints;
611
612	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
613		return (1);
614	hashp->nmaps++;
615	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
616	clearbytes = clearints << INT_TO_BYTE;
617	(void)memset((char *)ip, 0, clearbytes);
618	(void)memset(((char *)ip) + clearbytes, 0xFF,
619	    hashp->BSIZE - clearbytes);
620	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
621	SETBIT(ip, 0);
622	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
623	hashp->mapp[ndx] = ip;
624	return (0);
625}
626
627static u_int32_t
628first_free(u_int32_t map)
629{
630	u_int32_t i, mask;
631
632	mask = 0x1;
633	for (i = 0; i < BITS_PER_MAP; i++) {
634		if (!(mask & map))
635			return (i);
636		mask = mask << 1;
637	}
638	return (i);
639}
640
641static u_int16_t
642overflow_page(HTAB *hashp)
643{
644	u_int32_t *freep;
645	int max_free, offset, splitnum;
646	u_int16_t addr;
647	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
648#ifdef DEBUG2
649	int tmp1, tmp2;
650#endif
651	splitnum = hashp->OVFL_POINT;
652	max_free = hashp->SPARES[splitnum];
653
654	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
655	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
656
657	/* Look through all the free maps to find the first free block */
658	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
659	for ( i = first_page; i <= free_page; i++ ) {
660		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
661		    !(freep = fetch_bitmap(hashp, i)))
662			return (0);
663		if (i == free_page)
664			in_use_bits = free_bit;
665		else
666			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
667
668		if (i == first_page) {
669			bit = hashp->LAST_FREED &
670			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
671			j = bit / BITS_PER_MAP;
672			bit = bit & ~(BITS_PER_MAP - 1);
673		} else {
674			bit = 0;
675			j = 0;
676		}
677		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
678			if (freep[j] != ALL_SET)
679				goto found;
680	}
681
682	/* No Free Page Found */
683	hashp->LAST_FREED = hashp->SPARES[splitnum];
684	hashp->SPARES[splitnum]++;
685	offset = hashp->SPARES[splitnum] -
686	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
687
688#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
689	if (offset > SPLITMASK) {
690		if (++splitnum >= NCACHED) {
691			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
692			return (0);
693		}
694		hashp->OVFL_POINT = splitnum;
695		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
696		hashp->SPARES[splitnum-1]--;
697		offset = 1;
698	}
699
700	/* Check if we need to allocate a new bitmap page */
701	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
702		free_page++;
703		if (free_page >= NCACHED) {
704			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
705			return (0);
706		}
707		/*
708		 * This is tricky.  The 1 indicates that you want the new page
709		 * allocated with 1 clear bit.  Actually, you are going to
710		 * allocate 2 pages from this map.  The first is going to be
711		 * the map page, the second is the overflow page we were
712		 * looking for.  The init_bitmap routine automatically, sets
713		 * the first bit of itself to indicate that the bitmap itself
714		 * is in use.  We would explicitly set the second bit, but
715		 * don't have to if we tell init_bitmap not to leave it clear
716		 * in the first place.
717		 */
718		if (__ibitmap(hashp,
719		    (int)OADDR_OF(splitnum, offset), 1, free_page))
720			return (0);
721		hashp->SPARES[splitnum]++;
722#ifdef DEBUG2
723		free_bit = 2;
724#endif
725		offset++;
726		if (offset > SPLITMASK) {
727			if (++splitnum >= NCACHED) {
728				(void)_write(STDERR_FILENO, OVMSG,
729				    sizeof(OVMSG) - 1);
730				return (0);
731			}
732			hashp->OVFL_POINT = splitnum;
733			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
734			hashp->SPARES[splitnum-1]--;
735			offset = 0;
736		}
737	} else {
738		/*
739		 * Free_bit addresses the last used bit.  Bump it to address
740		 * the first available bit.
741		 */
742		free_bit++;
743		SETBIT(freep, free_bit);
744	}
745
746	/* Calculate address of the new overflow page */
747	addr = OADDR_OF(splitnum, offset);
748#ifdef DEBUG2
749	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
750	    addr, free_bit, free_page);
751#endif
752	return (addr);
753
754found:
755	bit = bit + first_free(freep[j]);
756	SETBIT(freep, bit);
757#ifdef DEBUG2
758	tmp1 = bit;
759	tmp2 = i;
760#endif
761	/*
762	 * Bits are addressed starting with 0, but overflow pages are addressed
763	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
764	 * it to convert it to a page number.
765	 */
766	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
767	if (bit >= hashp->LAST_FREED)
768		hashp->LAST_FREED = bit - 1;
769
770	/* Calculate the split number for this page */
771	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
772	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
773	if (offset >= SPLITMASK)
774		return (0);	/* Out of overflow pages */
775	addr = OADDR_OF(i, offset);
776#ifdef DEBUG2
777	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
778	    addr, tmp1, tmp2);
779#endif
780
781	/* Allocate and return the overflow page */
782	return (addr);
783}
784
785/*
786 * Mark this overflow page as free.
787 */
788void
789__free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
790{
791	u_int16_t addr;
792	u_int32_t *freep;
793	int bit_address, free_page, free_bit;
794	u_int16_t ndx;
795
796	addr = obufp->addr;
797#ifdef DEBUG1
798	(void)fprintf(stderr, "Freeing %d\n", addr);
799#endif
800	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
801	bit_address =
802	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
803	 if (bit_address < hashp->LAST_FREED)
804		hashp->LAST_FREED = bit_address;
805	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
806	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
807
808	if (!(freep = hashp->mapp[free_page]))
809		freep = fetch_bitmap(hashp, free_page);
810#ifdef DEBUG
811	/*
812	 * This had better never happen.  It means we tried to read a bitmap
813	 * that has already had overflow pages allocated off it, and we
814	 * failed to read it from the file.
815	 */
816	if (!freep)
817		assert(0);
818#endif
819	CLRBIT(freep, free_bit);
820#ifdef DEBUG2
821	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
822	    obufp->addr, free_bit, free_page);
823#endif
824	__reclaim_buf(hashp, obufp);
825}
826
827/*
828 * Returns:
829 *	 0 success
830 *	-1 failure
831 */
832static int
833open_temp(HTAB *hashp)
834{
835	sigset_t set, oset;
836	static char namestr[] = "_hashXXXXXX";
837
838	/* Block signals; make sure file goes away at process exit. */
839	(void)sigfillset(&set);
840	(void)_sigprocmask(SIG_BLOCK, &set, &oset);
841	if ((hashp->fp = mkstemp(namestr)) != -1) {
842		(void)unlink(namestr);
843		(void)_fcntl(hashp->fp, F_SETFD, 1);
844	}
845	(void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
846	return (hashp->fp != -1 ? 0 : -1);
847}
848
849/*
850 * We have to know that the key will fit, but the last entry on the page is
851 * an overflow pair, so we need to shift things.
852 */
853static void
854squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
855{
856	char *p;
857	u_int16_t free_space, n, off, pageno;
858
859	p = (char *)sp;
860	n = sp[0];
861	free_space = FREESPACE(sp);
862	off = OFFSET(sp);
863
864	pageno = sp[n - 1];
865	off -= key->size;
866	sp[n - 1] = off;
867	memmove(p + off, key->data, key->size);
868	off -= val->size;
869	sp[n] = off;
870	memmove(p + off, val->data, val->size);
871	sp[0] = n + 2;
872	sp[n + 1] = pageno;
873	sp[n + 2] = OVFLPAGE;
874	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
875	OFFSET(sp) = off;
876}
877
878static u_int32_t *
879fetch_bitmap(HTAB *hashp, int ndx)
880{
881	if (ndx >= hashp->nmaps)
882		return (NULL);
883	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
884		return (NULL);
885	if (__get_page(hashp,
886	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
887		free(hashp->mapp[ndx]);
888		return (NULL);
889	}
890	return (hashp->mapp[ndx]);
891}
892
893#ifdef DEBUG4
894int
895print_chain(int addr)
896{
897	BUFHEAD *bufp;
898	short *bp, oaddr;
899
900	(void)fprintf(stderr, "%d ", addr);
901	bufp = __get_buf(hashp, addr, NULL, 0);
902	bp = (short *)bufp->page;
903	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
904		((bp[0] > 2) && bp[2] < REAL_KEY))) {
905		oaddr = bp[bp[0] - 1];
906		(void)fprintf(stderr, "%d ", (int)oaddr);
907		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
908		bp = (short *)bufp->page;
909	}
910	(void)fprintf(stderr, "\n");
911}
912#endif
913