1/*-
2 * Copyright (c) 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#if defined(LIBC_SCCS) && !defined(lint)
34static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
35#endif /* LIBC_SCCS and not lint */
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD$");
38
39/*
40 * PACKAGE:  hashing
41 *
42 * DESCRIPTION:
43 *	Page manipulation for hashing package.
44 *
45 * ROUTINES:
46 *
47 * External
48 *	__get_page
49 *	__add_ovflpage
50 * Internal
51 *	overflow_page
52 *	open_temp
53 */
54
55#include "namespace.h"
56#include <sys/param.h>
57
58#include <errno.h>
59#include <fcntl.h>
60#include <signal.h>
61#include <stdio.h>
62#include <stdlib.h>
63#include <string.h>
64#include <unistd.h>
65#ifdef DEBUG
66#include <assert.h>
67#endif
68#include "un-namespace.h"
69
70#include <db.h>
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static u_int32_t *fetch_bitmap(HTAB *, int);
76static u_int32_t  first_free(u_int32_t);
77static int	  open_temp(HTAB *);
78static u_int16_t  overflow_page(HTAB *);
79static void	  putpair(char *, const DBT *, const DBT *);
80static void	  squeeze_key(u_int16_t *, const DBT *, const DBT *);
81static int	  ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
82
83#define	PAGE_INIT(P) { \
84	((u_int16_t *)(P))[0] = 0; \
85	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
86	((u_int16_t *)(P))[2] = hashp->BSIZE; \
87}
88
89/*
90 * This is called AFTER we have verified that there is room on the page for
91 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
92 * stuff on.
93 */
94static void
95putpair(char *p, const DBT *key, const DBT *val)
96{
97	u_int16_t *bp, n, off;
98
99	bp = (u_int16_t *)p;
100
101	/* Enter the key first. */
102	n = bp[0];
103
104	off = OFFSET(bp) - key->size;
105	memmove(p + off, key->data, key->size);
106	bp[++n] = off;
107
108	/* Now the data. */
109	off -= val->size;
110	memmove(p + off, val->data, val->size);
111	bp[++n] = off;
112
113	/* Adjust page info. */
114	bp[0] = n;
115	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
116	bp[n + 2] = off;
117}
118
119/*
120 * Returns:
121 *	 0 OK
122 *	-1 error
123 */
124int
125__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
126{
127	u_int16_t *bp, newoff, pairlen;
128	int n;
129
130	bp = (u_int16_t *)bufp->page;
131	n = bp[0];
132
133	if (bp[ndx + 1] < REAL_KEY)
134		return (__big_delete(hashp, bufp));
135	if (ndx != 1)
136		newoff = bp[ndx - 1];
137	else
138		newoff = hashp->BSIZE;
139	pairlen = newoff - bp[ndx + 1];
140
141	if (ndx != (n - 1)) {
142		/* Hard Case -- need to shuffle keys */
143		int i;
144		char *src = bufp->page + (int)OFFSET(bp);
145		char *dst = src + (int)pairlen;
146		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
147
148		/* Now adjust the pointers */
149		for (i = ndx + 2; i <= n; i += 2) {
150			if (bp[i + 1] == OVFLPAGE) {
151				bp[i - 2] = bp[i];
152				bp[i - 1] = bp[i + 1];
153			} else {
154				bp[i - 2] = bp[i] + pairlen;
155				bp[i - 1] = bp[i + 1] + pairlen;
156			}
157		}
158		if (ndx == hashp->cndx) {
159			/*
160			 * We just removed pair we were "pointing" to.
161			 * By moving back the cndx we ensure subsequent
162			 * hash_seq() calls won't skip over any entries.
163			 */
164			hashp->cndx -= 2;
165		}
166	}
167	/* Finally adjust the page data */
168	bp[n] = OFFSET(bp) + pairlen;
169	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
170	bp[0] = n - 2;
171	hashp->NKEYS--;
172
173	bufp->flags |= BUF_MOD;
174	return (0);
175}
176/*
177 * Returns:
178 *	 0 ==> OK
179 *	-1 ==> Error
180 */
181int
182__split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
183{
184	BUFHEAD *new_bufp, *old_bufp;
185	u_int16_t *ino;
186	char *np;
187	DBT key, val;
188	int n, ndx, retval;
189	u_int16_t copyto, diff, off, moved;
190	char *op;
191
192	copyto = (u_int16_t)hashp->BSIZE;
193	off = (u_int16_t)hashp->BSIZE;
194	old_bufp = __get_buf(hashp, obucket, NULL, 0);
195	if (old_bufp == NULL)
196		return (-1);
197	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
198	if (new_bufp == NULL)
199		return (-1);
200
201	old_bufp->flags |= (BUF_MOD | BUF_PIN);
202	new_bufp->flags |= (BUF_MOD | BUF_PIN);
203
204	ino = (u_int16_t *)(op = old_bufp->page);
205	np = new_bufp->page;
206
207	moved = 0;
208
209	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
210		if (ino[n + 1] < REAL_KEY) {
211			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
212			    (int)copyto, (int)moved);
213			old_bufp->flags &= ~BUF_PIN;
214			new_bufp->flags &= ~BUF_PIN;
215			return (retval);
216
217		}
218		key.data = (u_char *)op + ino[n];
219		key.size = off - ino[n];
220
221		if (__call_hash(hashp, key.data, key.size) == obucket) {
222			/* Don't switch page */
223			diff = copyto - off;
224			if (diff) {
225				copyto = ino[n + 1] + diff;
226				memmove(op + copyto, op + ino[n + 1],
227				    off - ino[n + 1]);
228				ino[ndx] = copyto + ino[n] - ino[n + 1];
229				ino[ndx + 1] = copyto;
230			} else
231				copyto = ino[n + 1];
232			ndx += 2;
233		} else {
234			/* Switch page */
235			val.data = (u_char *)op + ino[n + 1];
236			val.size = ino[n] - ino[n + 1];
237			putpair(np, &key, &val);
238			moved += 2;
239		}
240
241		off = ino[n + 1];
242	}
243
244	/* Now clean up the page */
245	ino[0] -= moved;
246	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
247	OFFSET(ino) = copyto;
248
249#ifdef DEBUG3
250	(void)fprintf(stderr, "split %d/%d\n",
251	    ((u_int16_t *)np)[0] / 2,
252	    ((u_int16_t *)op)[0] / 2);
253#endif
254	/* unpin both pages */
255	old_bufp->flags &= ~BUF_PIN;
256	new_bufp->flags &= ~BUF_PIN;
257	return (0);
258}
259
260/*
261 * Called when we encounter an overflow or big key/data page during split
262 * handling.  This is special cased since we have to begin checking whether
263 * the key/data pairs fit on their respective pages and because we may need
264 * overflow pages for both the old and new pages.
265 *
266 * The first page might be a page with regular key/data pairs in which case
267 * we have a regular overflow condition and just need to go on to the next
268 * page or it might be a big key/data pair in which case we need to fix the
269 * big key/data pair.
270 *
271 * Returns:
272 *	 0 ==> success
273 *	-1 ==> failure
274 */
275static int
276ugly_split(HTAB *hashp,
277    u_int32_t obucket,	/* Same as __split_page. */
278    BUFHEAD *old_bufp,
279    BUFHEAD *new_bufp,
280    int copyto,		/* First byte on page which contains key/data values. */
281    int moved)		/* Number of pairs moved to new page. */
282{
283	BUFHEAD *bufp;	/* Buffer header for ino */
284	u_int16_t *ino;	/* Page keys come off of */
285	u_int16_t *np;	/* New page */
286	u_int16_t *op;	/* Page keys go on to if they aren't moving */
287
288	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
289	DBT key, val;
290	SPLIT_RETURN ret;
291	u_int16_t n, off, ov_addr, scopyto;
292	char *cino;		/* Character value of ino */
293
294	bufp = old_bufp;
295	ino = (u_int16_t *)old_bufp->page;
296	np = (u_int16_t *)new_bufp->page;
297	op = (u_int16_t *)old_bufp->page;
298	last_bfp = NULL;
299	scopyto = (u_int16_t)copyto;	/* ANSI */
300
301	n = ino[0] - 1;
302	while (n < ino[0]) {
303		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
304			if (__big_split(hashp, old_bufp,
305			    new_bufp, bufp, bufp->addr, obucket, &ret))
306				return (-1);
307			old_bufp = ret.oldp;
308			if (!old_bufp)
309				return (-1);
310			op = (u_int16_t *)old_bufp->page;
311			new_bufp = ret.newp;
312			if (!new_bufp)
313				return (-1);
314			np = (u_int16_t *)new_bufp->page;
315			bufp = ret.nextp;
316			if (!bufp)
317				return (0);
318			cino = (char *)bufp->page;
319			ino = (u_int16_t *)cino;
320			last_bfp = ret.nextp;
321		} else if (ino[n + 1] == OVFLPAGE) {
322			ov_addr = ino[n];
323			/*
324			 * Fix up the old page -- the extra 2 are the fields
325			 * which contained the overflow information.
326			 */
327			ino[0] -= (moved + 2);
328			FREESPACE(ino) =
329			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
330			OFFSET(ino) = scopyto;
331
332			bufp = __get_buf(hashp, ov_addr, bufp, 0);
333			if (!bufp)
334				return (-1);
335
336			ino = (u_int16_t *)bufp->page;
337			n = 1;
338			scopyto = hashp->BSIZE;
339			moved = 0;
340
341			if (last_bfp)
342				__free_ovflpage(hashp, last_bfp);
343			last_bfp = bufp;
344		}
345		/* Move regular sized pairs of there are any */
346		off = hashp->BSIZE;
347		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
348			cino = (char *)ino;
349			key.data = (u_char *)cino + ino[n];
350			key.size = off - ino[n];
351			val.data = (u_char *)cino + ino[n + 1];
352			val.size = ino[n] - ino[n + 1];
353			off = ino[n + 1];
354
355			if (__call_hash(hashp, key.data, key.size) == obucket) {
356				/* Keep on old page */
357				if (PAIRFITS(op, (&key), (&val)))
358					putpair((char *)op, &key, &val);
359				else {
360					old_bufp =
361					    __add_ovflpage(hashp, old_bufp);
362					if (!old_bufp)
363						return (-1);
364					op = (u_int16_t *)old_bufp->page;
365					putpair((char *)op, &key, &val);
366				}
367				old_bufp->flags |= BUF_MOD;
368			} else {
369				/* Move to new page */
370				if (PAIRFITS(np, (&key), (&val)))
371					putpair((char *)np, &key, &val);
372				else {
373					new_bufp =
374					    __add_ovflpage(hashp, new_bufp);
375					if (!new_bufp)
376						return (-1);
377					np = (u_int16_t *)new_bufp->page;
378					putpair((char *)np, &key, &val);
379				}
380				new_bufp->flags |= BUF_MOD;
381			}
382		}
383	}
384	if (last_bfp)
385		__free_ovflpage(hashp, last_bfp);
386	return (0);
387}
388
389/*
390 * Add the given pair to the page
391 *
392 * Returns:
393 *	0 ==> OK
394 *	1 ==> failure
395 */
396int
397__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
398{
399	u_int16_t *bp, *sop;
400	int do_expand;
401
402	bp = (u_int16_t *)bufp->page;
403	do_expand = 0;
404	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
405		/* Exception case */
406		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
407			/* This is the last page of a big key/data pair
408			   and we need to add another page */
409			break;
410		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
411			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
412			if (!bufp)
413				return (-1);
414			bp = (u_int16_t *)bufp->page;
415		} else if (bp[bp[0]] != OVFLPAGE) {
416			/* Short key/data pairs, no more pages */
417			break;
418		} else {
419			/* Try to squeeze key on this page */
420			if (bp[2] >= REAL_KEY &&
421			    FREESPACE(bp) >= PAIRSIZE(key, val)) {
422				squeeze_key(bp, key, val);
423				goto stats;
424			} else {
425				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
426				if (!bufp)
427					return (-1);
428				bp = (u_int16_t *)bufp->page;
429			}
430		}
431
432	if (PAIRFITS(bp, key, val))
433		putpair(bufp->page, key, val);
434	else {
435		do_expand = 1;
436		bufp = __add_ovflpage(hashp, bufp);
437		if (!bufp)
438			return (-1);
439		sop = (u_int16_t *)bufp->page;
440
441		if (PAIRFITS(sop, key, val))
442			putpair((char *)sop, key, val);
443		else
444			if (__big_insert(hashp, bufp, key, val))
445				return (-1);
446	}
447stats:
448	bufp->flags |= BUF_MOD;
449	/*
450	 * If the average number of keys per bucket exceeds the fill factor,
451	 * expand the table.
452	 */
453	hashp->NKEYS++;
454	if (do_expand ||
455	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
456		return (__expand_table(hashp));
457	return (0);
458}
459
460/*
461 *
462 * Returns:
463 *	pointer on success
464 *	NULL on error
465 */
466BUFHEAD *
467__add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
468{
469	u_int16_t *sp, ndx, ovfl_num;
470#ifdef DEBUG1
471	int tmp1, tmp2;
472#endif
473	sp = (u_int16_t *)bufp->page;
474
475	/* Check if we are dynamically determining the fill factor */
476	if (hashp->FFACTOR == DEF_FFACTOR) {
477		hashp->FFACTOR = sp[0] >> 1;
478		if (hashp->FFACTOR < MIN_FFACTOR)
479			hashp->FFACTOR = MIN_FFACTOR;
480	}
481	bufp->flags |= BUF_MOD;
482	ovfl_num = overflow_page(hashp);
483#ifdef DEBUG1
484	tmp1 = bufp->addr;
485	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
486#endif
487	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
488		return (NULL);
489	bufp->ovfl->flags |= BUF_MOD;
490#ifdef DEBUG1
491	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
492	    tmp1, tmp2, bufp->ovfl->addr);
493#endif
494	ndx = sp[0];
495	/*
496	 * Since a pair is allocated on a page only if there's room to add
497	 * an overflow page, we know that the OVFL information will fit on
498	 * the page.
499	 */
500	sp[ndx + 4] = OFFSET(sp);
501	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
502	sp[ndx + 1] = ovfl_num;
503	sp[ndx + 2] = OVFLPAGE;
504	sp[0] = ndx + 2;
505#ifdef HASH_STATISTICS
506	hash_overflows++;
507#endif
508	return (bufp->ovfl);
509}
510
511/*
512 * Returns:
513 *	 0 indicates SUCCESS
514 *	-1 indicates FAILURE
515 */
516int
517__get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
518    int is_bitmap)
519{
520	int fd, page, size, rsize;
521	u_int16_t *bp;
522
523	fd = hashp->fp;
524	size = hashp->BSIZE;
525
526	if ((fd == -1) || !is_disk) {
527		PAGE_INIT(p);
528		return (0);
529	}
530	if (is_bucket)
531		page = BUCKET_TO_PAGE(bucket);
532	else
533		page = OADDR_TO_PAGE(bucket);
534	if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
535		return (-1);
536	bp = (u_int16_t *)p;
537	if (!rsize)
538		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
539	else
540		if (rsize != size) {
541			errno = EFTYPE;
542			return (-1);
543		}
544	if (!is_bitmap && !bp[0]) {
545		PAGE_INIT(p);
546	} else
547		if (hashp->LORDER != BYTE_ORDER) {
548			int i, max;
549
550			if (is_bitmap) {
551				max = hashp->BSIZE >> 2; /* divide by 4 */
552				for (i = 0; i < max; i++)
553					M_32_SWAP(((int *)p)[i]);
554			} else {
555				M_16_SWAP(bp[0]);
556				max = bp[0] + 2;
557				for (i = 1; i <= max; i++)
558					M_16_SWAP(bp[i]);
559			}
560		}
561	return (0);
562}
563
564/*
565 * Write page p to disk
566 *
567 * Returns:
568 *	 0 ==> OK
569 *	-1 ==>failure
570 */
571int
572__put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
573{
574	int fd, page, size, wsize;
575
576	size = hashp->BSIZE;
577	if ((hashp->fp == -1) && open_temp(hashp))
578		return (-1);
579	fd = hashp->fp;
580
581	if (hashp->LORDER != BYTE_ORDER) {
582		int i, max;
583
584		if (is_bitmap) {
585			max = hashp->BSIZE >> 2;	/* divide by 4 */
586			for (i = 0; i < max; i++)
587				M_32_SWAP(((int *)p)[i]);
588		} else {
589			max = ((u_int16_t *)p)[0] + 2;
590			for (i = 0; i <= max; i++)
591				M_16_SWAP(((u_int16_t *)p)[i]);
592		}
593	}
594	if (is_bucket)
595		page = BUCKET_TO_PAGE(bucket);
596	else
597		page = OADDR_TO_PAGE(bucket);
598	if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
599		/* Errno is set */
600		return (-1);
601	if (wsize != size) {
602		errno = EFTYPE;
603		return (-1);
604	}
605	return (0);
606}
607
608#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
609/*
610 * Initialize a new bitmap page.  Bitmap pages are left in memory
611 * once they are read in.
612 */
613int
614__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
615{
616	u_int32_t *ip;
617	int clearbytes, clearints;
618
619	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
620		return (1);
621	hashp->nmaps++;
622	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
623	clearbytes = clearints << INT_TO_BYTE;
624	(void)memset((char *)ip, 0, clearbytes);
625	(void)memset(((char *)ip) + clearbytes, 0xFF,
626	    hashp->BSIZE - clearbytes);
627	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
628	SETBIT(ip, 0);
629	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
630	hashp->mapp[ndx] = ip;
631	return (0);
632}
633
634static u_int32_t
635first_free(u_int32_t map)
636{
637	u_int32_t i, mask;
638
639	mask = 0x1;
640	for (i = 0; i < BITS_PER_MAP; i++) {
641		if (!(mask & map))
642			return (i);
643		mask = mask << 1;
644	}
645	return (i);
646}
647
648static u_int16_t
649overflow_page(HTAB *hashp)
650{
651	u_int32_t *freep;
652	int max_free, offset, splitnum;
653	u_int16_t addr;
654	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
655#ifdef DEBUG2
656	int tmp1, tmp2;
657#endif
658	splitnum = hashp->OVFL_POINT;
659	max_free = hashp->SPARES[splitnum];
660
661	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
662	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
663
664	/* Look through all the free maps to find the first free block */
665	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
666	for ( i = first_page; i <= free_page; i++ ) {
667		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
668		    !(freep = fetch_bitmap(hashp, i)))
669			return (0);
670		if (i == free_page)
671			in_use_bits = free_bit;
672		else
673			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
674
675		if (i == first_page) {
676			bit = hashp->LAST_FREED &
677			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
678			j = bit / BITS_PER_MAP;
679			bit = bit & ~(BITS_PER_MAP - 1);
680		} else {
681			bit = 0;
682			j = 0;
683		}
684		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
685			if (freep[j] != ALL_SET)
686				goto found;
687	}
688
689	/* No Free Page Found */
690	hashp->LAST_FREED = hashp->SPARES[splitnum];
691	hashp->SPARES[splitnum]++;
692	offset = hashp->SPARES[splitnum] -
693	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
694
695#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
696	if (offset > SPLITMASK) {
697		if (++splitnum >= NCACHED) {
698			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
699			errno = EFBIG;
700			return (0);
701		}
702		hashp->OVFL_POINT = splitnum;
703		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
704		hashp->SPARES[splitnum-1]--;
705		offset = 1;
706	}
707
708	/* Check if we need to allocate a new bitmap page */
709	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
710		free_page++;
711		if (free_page >= NCACHED) {
712			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
713			errno = EFBIG;
714			return (0);
715		}
716		/*
717		 * This is tricky.  The 1 indicates that you want the new page
718		 * allocated with 1 clear bit.  Actually, you are going to
719		 * allocate 2 pages from this map.  The first is going to be
720		 * the map page, the second is the overflow page we were
721		 * looking for.  The init_bitmap routine automatically, sets
722		 * the first bit of itself to indicate that the bitmap itself
723		 * is in use.  We would explicitly set the second bit, but
724		 * don't have to if we tell init_bitmap not to leave it clear
725		 * in the first place.
726		 */
727		if (__ibitmap(hashp,
728		    (int)OADDR_OF(splitnum, offset), 1, free_page))
729			return (0);
730		hashp->SPARES[splitnum]++;
731#ifdef DEBUG2
732		free_bit = 2;
733#endif
734		offset++;
735		if (offset > SPLITMASK) {
736			if (++splitnum >= NCACHED) {
737				(void)_write(STDERR_FILENO, OVMSG,
738				    sizeof(OVMSG) - 1);
739				errno = EFBIG;
740				return (0);
741			}
742			hashp->OVFL_POINT = splitnum;
743			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
744			hashp->SPARES[splitnum-1]--;
745			offset = 0;
746		}
747	} else {
748		/*
749		 * Free_bit addresses the last used bit.  Bump it to address
750		 * the first available bit.
751		 */
752		free_bit++;
753		SETBIT(freep, free_bit);
754	}
755
756	/* Calculate address of the new overflow page */
757	addr = OADDR_OF(splitnum, offset);
758#ifdef DEBUG2
759	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
760	    addr, free_bit, free_page);
761#endif
762	return (addr);
763
764found:
765	bit = bit + first_free(freep[j]);
766	SETBIT(freep, bit);
767#ifdef DEBUG2
768	tmp1 = bit;
769	tmp2 = i;
770#endif
771	/*
772	 * Bits are addressed starting with 0, but overflow pages are addressed
773	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
774	 * it to convert it to a page number.
775	 */
776	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
777	if (bit >= hashp->LAST_FREED)
778		hashp->LAST_FREED = bit - 1;
779
780	/* Calculate the split number for this page */
781	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
782	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
783	if (offset >= SPLITMASK) {
784		(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
785		errno = EFBIG;
786		return (0);	/* Out of overflow pages */
787	}
788	addr = OADDR_OF(i, offset);
789#ifdef DEBUG2
790	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
791	    addr, tmp1, tmp2);
792#endif
793
794	/* Allocate and return the overflow page */
795	return (addr);
796}
797
798/*
799 * Mark this overflow page as free.
800 */
801void
802__free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
803{
804	u_int16_t addr;
805	u_int32_t *freep;
806	int bit_address, free_page, free_bit;
807	u_int16_t ndx;
808
809	addr = obufp->addr;
810#ifdef DEBUG1
811	(void)fprintf(stderr, "Freeing %d\n", addr);
812#endif
813	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
814	bit_address =
815	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
816	 if (bit_address < hashp->LAST_FREED)
817		hashp->LAST_FREED = bit_address;
818	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
819	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
820
821	if (!(freep = hashp->mapp[free_page]))
822		freep = fetch_bitmap(hashp, free_page);
823#ifdef DEBUG
824	/*
825	 * This had better never happen.  It means we tried to read a bitmap
826	 * that has already had overflow pages allocated off it, and we
827	 * failed to read it from the file.
828	 */
829	if (!freep)
830		assert(0);
831#endif
832	CLRBIT(freep, free_bit);
833#ifdef DEBUG2
834	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
835	    obufp->addr, free_bit, free_page);
836#endif
837	__reclaim_buf(hashp, obufp);
838}
839
840/*
841 * Returns:
842 *	 0 success
843 *	-1 failure
844 */
845static int
846open_temp(HTAB *hashp)
847{
848	sigset_t set, oset;
849	int len;
850	char *envtmp = NULL;
851	char path[MAXPATHLEN];
852
853	if (issetugid() == 0)
854		envtmp = getenv("TMPDIR");
855	len = snprintf(path,
856	    sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp");
857	if (len < 0 || len >= (int)sizeof(path)) {
858		errno = ENAMETOOLONG;
859		return (-1);
860	}
861
862	/* Block signals; make sure file goes away at process exit. */
863	(void)sigfillset(&set);
864	(void)_sigprocmask(SIG_BLOCK, &set, &oset);
865	if ((hashp->fp = mkstemp(path)) != -1) {
866		(void)unlink(path);
867		(void)_fcntl(hashp->fp, F_SETFD, 1);
868	}
869	(void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
870	return (hashp->fp != -1 ? 0 : -1);
871}
872
873/*
874 * We have to know that the key will fit, but the last entry on the page is
875 * an overflow pair, so we need to shift things.
876 */
877static void
878squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
879{
880	char *p;
881	u_int16_t free_space, n, off, pageno;
882
883	p = (char *)sp;
884	n = sp[0];
885	free_space = FREESPACE(sp);
886	off = OFFSET(sp);
887
888	pageno = sp[n - 1];
889	off -= key->size;
890	sp[n - 1] = off;
891	memmove(p + off, key->data, key->size);
892	off -= val->size;
893	sp[n] = off;
894	memmove(p + off, val->data, val->size);
895	sp[0] = n + 2;
896	sp[n + 1] = pageno;
897	sp[n + 2] = OVFLPAGE;
898	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
899	OFFSET(sp) = off;
900}
901
902static u_int32_t *
903fetch_bitmap(HTAB *hashp, int ndx)
904{
905	if (ndx >= hashp->nmaps)
906		return (NULL);
907	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
908		return (NULL);
909	if (__get_page(hashp,
910	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
911		free(hashp->mapp[ndx]);
912		return (NULL);
913	}
914	return (hashp->mapp[ndx]);
915}
916
917#ifdef DEBUG4
918int
919print_chain(int addr)
920{
921	BUFHEAD *bufp;
922	short *bp, oaddr;
923
924	(void)fprintf(stderr, "%d ", addr);
925	bufp = __get_buf(hashp, addr, NULL, 0);
926	bp = (short *)bufp->page;
927	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
928		((bp[0] > 2) && bp[2] < REAL_KEY))) {
929		oaddr = bp[bp[0] - 1];
930		(void)fprintf(stderr, "%d ", (int)oaddr);
931		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
932		bp = (short *)bufp->page;
933	}
934	(void)fprintf(stderr, "\n");
935}
936#endif
937