hash_page.c revision 8870
1/*-
2 * Copyright (c) 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#if defined(LIBC_SCCS) && !defined(lint)
38static char sccsid[] = "@(#)hash_page.c	8.4 (Berkeley) 2/21/94";
39#endif /* LIBC_SCCS and not lint */
40
41/*
42 * PACKAGE:  hashing
43 *
44 * DESCRIPTION:
45 *	Page manipulation for hashing package.
46 *
47 * ROUTINES:
48 *
49 * External
50 *	__get_page
51 *	__add_ovflpage
52 * Internal
53 *	overflow_page
54 *	open_temp
55 */
56
57#include <sys/types.h>
58
59#include <errno.h>
60#include <fcntl.h>
61#include <signal.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <string.h>
65#include <unistd.h>
66#ifdef DEBUG
67#include <assert.h>
68#endif
69
70#include <db.h>
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static u_long	*fetch_bitmap __P((HTAB *, int));
76static u_long	 first_free __P((u_long));
77static int	 open_temp __P((HTAB *));
78static u_short	 overflow_page __P((HTAB *));
79static void	 putpair __P((char *, const DBT *, const DBT *));
80static void	 squeeze_key __P((u_short *, const DBT *, const DBT *));
81static int	 ugly_split
82		    __P((HTAB *, u_int, BUFHEAD *, BUFHEAD *, int, int));
83
84#define	PAGE_INIT(P) { \
85	((u_short *)(P))[0] = 0; \
86	((u_short *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_short); \
87	((u_short *)(P))[2] = hashp->BSIZE; \
88}
89
90/*
91 * This is called AFTER we have verified that there is room on the page for
92 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
93 * stuff on.
94 */
95static void
96putpair(p, key, val)
97	char *p;
98	const DBT *key, *val;
99{
100	register u_short *bp, n, off;
101
102	bp = (u_short *)p;
103
104	/* Enter the key first. */
105	n = bp[0];
106
107	off = OFFSET(bp) - key->size;
108	memmove(p + off, key->data, key->size);
109	bp[++n] = off;
110
111	/* Now the data. */
112	off -= val->size;
113	memmove(p + off, val->data, val->size);
114	bp[++n] = off;
115
116	/* Adjust page info. */
117	bp[0] = n;
118	bp[n + 1] = off - ((n + 3) * sizeof(u_short));
119	bp[n + 2] = off;
120}
121
122/*
123 * Returns:
124 *	 0 OK
125 *	-1 error
126 */
127extern int
128__delpair(hashp, bufp, ndx)
129	HTAB *hashp;
130	BUFHEAD *bufp;
131	register int ndx;
132{
133	register u_short *bp, newoff;
134	register int n;
135	u_short pairlen;
136
137	bp = (u_short *)bufp->page;
138	n = bp[0];
139
140	if (bp[ndx + 1] < REAL_KEY)
141		return (__big_delete(hashp, bufp));
142	if (ndx != 1)
143		newoff = bp[ndx - 1];
144	else
145		newoff = hashp->BSIZE;
146	pairlen = newoff - bp[ndx + 1];
147
148	if (ndx != (n - 1)) {
149		/* Hard Case -- need to shuffle keys */
150		register int i;
151		register char *src = bufp->page + (int)OFFSET(bp);
152		register char *dst = src + (int)pairlen;
153		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
154
155		/* Now adjust the pointers */
156		for (i = ndx + 2; i <= n; i += 2) {
157			if (bp[i + 1] == OVFLPAGE) {
158				bp[i - 2] = bp[i];
159				bp[i - 1] = bp[i + 1];
160			} else {
161				bp[i - 2] = bp[i] + pairlen;
162				bp[i - 1] = bp[i + 1] + pairlen;
163			}
164		}
165	}
166	/* Finally adjust the page data */
167	bp[n] = OFFSET(bp) + pairlen;
168	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_short);
169	bp[0] = n - 2;
170	hashp->NKEYS--;
171
172	bufp->flags |= BUF_MOD;
173	return (0);
174}
175/*
176 * Returns:
177 *	 0 ==> OK
178 *	-1 ==> Error
179 */
180extern int
181__split_page(hashp, obucket, nbucket)
182	HTAB *hashp;
183	u_int obucket, nbucket;
184{
185	register BUFHEAD *new_bufp, *old_bufp;
186	register u_short *ino;
187	register char *np;
188	DBT key, val;
189	int n, ndx, retval;
190	u_short copyto, diff, off, moved;
191	char *op;
192
193	copyto = (u_short)hashp->BSIZE;
194	off = (u_short)hashp->BSIZE;
195	old_bufp = __get_buf(hashp, obucket, NULL, 0);
196	if (old_bufp == NULL)
197		return (-1);
198	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
199	if (new_bufp == NULL)
200		return (-1);
201
202	old_bufp->flags |= (BUF_MOD | BUF_PIN);
203	new_bufp->flags |= (BUF_MOD | BUF_PIN);
204
205	ino = (u_short *)(op = old_bufp->page);
206	np = new_bufp->page;
207
208	moved = 0;
209
210	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
211		if (ino[n + 1] < REAL_KEY) {
212			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
213			    (int)copyto, (int)moved);
214			old_bufp->flags &= ~BUF_PIN;
215			new_bufp->flags &= ~BUF_PIN;
216			return (retval);
217
218		}
219		key.data = (u_char *)op + ino[n];
220		key.size = off - ino[n];
221
222		if (__call_hash(hashp, key.data, key.size) == obucket) {
223			/* Don't switch page */
224			diff = copyto - off;
225			if (diff) {
226				copyto = ino[n + 1] + diff;
227				memmove(op + copyto, op + ino[n + 1],
228				    off - ino[n + 1]);
229				ino[ndx] = copyto + ino[n] - ino[n + 1];
230				ino[ndx + 1] = copyto;
231			} else
232				copyto = ino[n + 1];
233			ndx += 2;
234		} else {
235			/* Switch page */
236			val.data = (u_char *)op + ino[n + 1];
237			val.size = ino[n] - ino[n + 1];
238			putpair(np, &key, &val);
239			moved += 2;
240		}
241
242		off = ino[n + 1];
243	}
244
245	/* Now clean up the page */
246	ino[0] -= moved;
247	FREESPACE(ino) = copyto - sizeof(u_short) * (ino[0] + 3);
248	OFFSET(ino) = copyto;
249
250#ifdef DEBUG3
251	(void)fprintf(stderr, "split %d/%d\n",
252	    ((u_short *)np)[0] / 2,
253	    ((u_short *)op)[0] / 2);
254#endif
255	/* unpin both pages */
256	old_bufp->flags &= ~BUF_PIN;
257	new_bufp->flags &= ~BUF_PIN;
258	return (0);
259}
260
261/*
262 * Called when we encounter an overflow or big key/data page during split
263 * handling.  This is special cased since we have to begin checking whether
264 * the key/data pairs fit on their respective pages and because we may need
265 * overflow pages for both the old and new pages.
266 *
267 * The first page might be a page with regular key/data pairs in which case
268 * we have a regular overflow condition and just need to go on to the next
269 * page or it might be a big key/data pair in which case we need to fix the
270 * big key/data pair.
271 *
272 * Returns:
273 *	 0 ==> success
274 *	-1 ==> failure
275 */
276static int
277ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
278	HTAB *hashp;
279	u_int obucket;	/* Same as __split_page. */
280	BUFHEAD *old_bufp, *new_bufp;
281	int copyto;	/* First byte on page which contains key/data values. */
282	int moved;	/* Number of pairs moved to new page. */
283{
284	register BUFHEAD *bufp;	/* Buffer header for ino */
285	register u_short *ino;	/* Page keys come off of */
286	register u_short *np;	/* New page */
287	register u_short *op;	/* Page keys go on to if they aren't moving */
288
289	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
290	DBT key, val;
291	SPLIT_RETURN ret;
292	u_short n, off, ov_addr, scopyto;
293	char *cino;		/* Character value of ino */
294
295	bufp = old_bufp;
296	ino = (u_short *)old_bufp->page;
297	np = (u_short *)new_bufp->page;
298	op = (u_short *)old_bufp->page;
299	last_bfp = NULL;
300	scopyto = (u_short)copyto;	/* ANSI */
301
302	n = ino[0] - 1;
303	while (n < ino[0]) {
304		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
305			if (__big_split(hashp, old_bufp,
306			    new_bufp, bufp, bufp->addr, obucket, &ret))
307				return (-1);
308			old_bufp = ret.oldp;
309			if (!old_bufp)
310				return (-1);
311			op = (u_short *)old_bufp->page;
312			new_bufp = ret.newp;
313			if (!new_bufp)
314				return (-1);
315			np = (u_short *)new_bufp->page;
316			bufp = ret.nextp;
317			if (!bufp)
318				return (0);
319			cino = (char *)bufp->page;
320			ino = (u_short *)cino;
321			last_bfp = ret.nextp;
322		} else if (ino[n + 1] == OVFLPAGE) {
323			ov_addr = ino[n];
324			/*
325			 * Fix up the old page -- the extra 2 are the fields
326			 * which contained the overflow information.
327			 */
328			ino[0] -= (moved + 2);
329			FREESPACE(ino) =
330			    scopyto - sizeof(u_short) * (ino[0] + 3);
331			OFFSET(ino) = scopyto;
332
333			bufp = __get_buf(hashp, ov_addr, bufp, 0);
334			if (!bufp)
335				return (-1);
336
337			ino = (u_short *)bufp->page;
338			n = 1;
339			scopyto = hashp->BSIZE;
340			moved = 0;
341
342			if (last_bfp)
343				__free_ovflpage(hashp, last_bfp);
344			last_bfp = bufp;
345		}
346		/* Move regular sized pairs of there are any */
347		off = hashp->BSIZE;
348		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
349			cino = (char *)ino;
350			key.data = (u_char *)cino + ino[n];
351			key.size = off - ino[n];
352			val.data = (u_char *)cino + ino[n + 1];
353			val.size = ino[n] - ino[n + 1];
354			off = ino[n + 1];
355
356			if (__call_hash(hashp, key.data, key.size) == obucket) {
357				/* Keep on old page */
358				if (PAIRFITS(op, (&key), (&val)))
359					putpair((char *)op, &key, &val);
360				else {
361					old_bufp =
362					    __add_ovflpage(hashp, old_bufp);
363					if (!old_bufp)
364						return (-1);
365					op = (u_short *)old_bufp->page;
366					putpair((char *)op, &key, &val);
367				}
368				old_bufp->flags |= BUF_MOD;
369			} else {
370				/* Move to new page */
371				if (PAIRFITS(np, (&key), (&val)))
372					putpair((char *)np, &key, &val);
373				else {
374					new_bufp =
375					    __add_ovflpage(hashp, new_bufp);
376					if (!new_bufp)
377						return (-1);
378					np = (u_short *)new_bufp->page;
379					putpair((char *)np, &key, &val);
380				}
381				new_bufp->flags |= BUF_MOD;
382			}
383		}
384	}
385	if (last_bfp)
386		__free_ovflpage(hashp, last_bfp);
387	return (0);
388}
389
390/*
391 * Add the given pair to the page
392 *
393 * Returns:
394 *	0 ==> OK
395 *	1 ==> failure
396 */
397extern int
398__addel(hashp, bufp, key, val)
399	HTAB *hashp;
400	BUFHEAD *bufp;
401	const DBT *key, *val;
402{
403	register u_short *bp, *sop;
404	int do_expand;
405
406	bp = (u_short *)bufp->page;
407	do_expand = 0;
408	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
409		/* Exception case */
410		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
411			/* This is the last page of a big key/data pair
412			   and we need to add another page */
413			break;
414		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
415			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
416			if (!bufp)
417				return (-1);
418			bp = (u_short *)bufp->page;
419		} else
420			/* Try to squeeze key on this page */
421			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
422				squeeze_key(bp, key, val);
423				return (0);
424			} else {
425				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
426				if (!bufp)
427					return (-1);
428				bp = (u_short *)bufp->page;
429			}
430
431	if (PAIRFITS(bp, key, val))
432		putpair(bufp->page, key, val);
433	else {
434		do_expand = 1;
435		bufp = __add_ovflpage(hashp, bufp);
436		if (!bufp)
437			return (-1);
438		sop = (u_short *)bufp->page;
439
440		if (PAIRFITS(sop, key, val))
441			putpair((char *)sop, key, val);
442		else
443			if (__big_insert(hashp, bufp, key, val))
444				return (-1);
445	}
446	bufp->flags |= BUF_MOD;
447	/*
448	 * If the average number of keys per bucket exceeds the fill factor,
449	 * expand the table.
450	 */
451	hashp->NKEYS++;
452	if (do_expand ||
453	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
454		return (__expand_table(hashp));
455	return (0);
456}
457
458/*
459 *
460 * Returns:
461 *	pointer on success
462 *	NULL on error
463 */
464extern BUFHEAD *
465__add_ovflpage(hashp, bufp)
466	HTAB *hashp;
467	BUFHEAD *bufp;
468{
469	register u_short *sp;
470	u_short ndx, ovfl_num;
471#ifdef DEBUG1
472	int tmp1, tmp2;
473#endif
474	sp = (u_short *)bufp->page;
475
476	/* Check if we are dynamically determining the fill factor */
477	if (hashp->FFACTOR == DEF_FFACTOR) {
478		hashp->FFACTOR = sp[0] >> 1;
479		if (hashp->FFACTOR < MIN_FFACTOR)
480			hashp->FFACTOR = MIN_FFACTOR;
481	}
482	bufp->flags |= BUF_MOD;
483	ovfl_num = overflow_page(hashp);
484#ifdef DEBUG1
485	tmp1 = bufp->addr;
486	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
487#endif
488	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
489		return (NULL);
490	bufp->ovfl->flags |= BUF_MOD;
491#ifdef DEBUG1
492	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
493	    tmp1, tmp2, bufp->ovfl->addr);
494#endif
495	ndx = sp[0];
496	/*
497	 * Since a pair is allocated on a page only if there's room to add
498	 * an overflow page, we know that the OVFL information will fit on
499	 * the page.
500	 */
501	sp[ndx + 4] = OFFSET(sp);
502	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
503	sp[ndx + 1] = ovfl_num;
504	sp[ndx + 2] = OVFLPAGE;
505	sp[0] = ndx + 2;
506#ifdef HASH_STATISTICS
507	hash_overflows++;
508#endif
509	return (bufp->ovfl);
510}
511
512/*
513 * Returns:
514 *	 0 indicates SUCCESS
515 *	-1 indicates FAILURE
516 */
517extern int
518__get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
519	HTAB *hashp;
520	char *p;
521	u_int bucket;
522	int is_bucket, is_disk, is_bitmap;
523{
524	register int fd, page, size;
525	int rsize;
526	u_short *bp;
527
528	fd = hashp->fp;
529	size = hashp->BSIZE;
530
531	if ((fd == -1) || !is_disk) {
532		PAGE_INIT(p);
533		return (0);
534	}
535	if (is_bucket)
536		page = BUCKET_TO_PAGE(bucket);
537	else
538		page = OADDR_TO_PAGE(bucket);
539	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
540	    ((rsize = read(fd, p, size)) == -1))
541		return (-1);
542	bp = (u_short *)p;
543	if (!rsize)
544		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
545	else
546		if (rsize != size) {
547			errno = EFTYPE;
548			return (-1);
549		}
550	if (!is_bitmap && !bp[0]) {
551		PAGE_INIT(p);
552	} else
553		if (hashp->LORDER != BYTE_ORDER) {
554			register int i, max;
555
556			if (is_bitmap) {
557				max = hashp->BSIZE >> 2; /* divide by 4 */
558				for (i = 0; i < max; i++)
559					M_32_SWAP(((long *)p)[i]);
560			} else {
561				M_16_SWAP(bp[0]);
562				max = bp[0] + 2;
563				for (i = 1; i <= max; i++)
564					M_16_SWAP(bp[i]);
565			}
566		}
567	return (0);
568}
569
570/*
571 * Write page p to disk
572 *
573 * Returns:
574 *	 0 ==> OK
575 *	-1 ==>failure
576 */
577extern int
578__put_page(hashp, p, bucket, is_bucket, is_bitmap)
579	HTAB *hashp;
580	char *p;
581	u_int bucket;
582	int is_bucket, is_bitmap;
583{
584	register int fd, page, size;
585	int wsize;
586
587	size = hashp->BSIZE;
588	if ((hashp->fp == -1) && open_temp(hashp))
589		return (-1);
590	fd = hashp->fp;
591
592	if (hashp->LORDER != BYTE_ORDER) {
593		register int i;
594		register int max;
595
596		if (is_bitmap) {
597			max = hashp->BSIZE >> 2;	/* divide by 4 */
598			for (i = 0; i < max; i++)
599				M_32_SWAP(((long *)p)[i]);
600		} else {
601			max = ((u_short *)p)[0] + 2;
602			for (i = 0; i <= max; i++)
603				M_16_SWAP(((u_short *)p)[i]);
604		}
605	}
606	if (is_bucket)
607		page = BUCKET_TO_PAGE(bucket);
608	else
609		page = OADDR_TO_PAGE(bucket);
610	if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
611	    ((wsize = write(fd, p, size)) == -1))
612		/* Errno is set */
613		return (-1);
614	if (wsize != size) {
615		errno = EFTYPE;
616		return (-1);
617	}
618	return (0);
619}
620
621#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
622/*
623 * Initialize a new bitmap page.  Bitmap pages are left in memory
624 * once they are read in.
625 */
626extern int
627__init_bitmap(hashp, pnum, nbits, ndx)
628	HTAB *hashp;
629	int pnum, nbits, ndx;
630{
631	u_long *ip;
632	int clearbytes, clearints;
633
634	if ((ip = (u_long *)malloc(hashp->BSIZE)) == NULL)
635		return (1);
636	hashp->nmaps++;
637	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
638	clearbytes = clearints << INT_TO_BYTE;
639	(void)memset((char *)ip, 0, clearbytes);
640	(void)memset(((char *)ip) + clearbytes, 0xFF,
641	    hashp->BSIZE - clearbytes);
642	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
643	SETBIT(ip, 0);
644	hashp->BITMAPS[ndx] = (u_short)pnum;
645	hashp->mapp[ndx] = ip;
646	return (0);
647}
648
649static u_long
650first_free(map)
651	u_long map;
652{
653	register u_long i, mask;
654
655	mask = 0x1;
656	for (i = 0; i < BITS_PER_MAP; i++) {
657		if (!(mask & map))
658			return (i);
659		mask = mask << 1;
660	}
661	return (i);
662}
663
664static u_short
665overflow_page(hashp)
666	HTAB *hashp;
667{
668	register u_long *freep;
669	register int max_free, offset, splitnum;
670	u_short addr;
671	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
672#ifdef DEBUG2
673	int tmp1, tmp2;
674#endif
675	splitnum = hashp->OVFL_POINT;
676	max_free = hashp->SPARES[splitnum];
677
678	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
679	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
680
681	/* Look through all the free maps to find the first free block */
682	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
683	for ( i = first_page; i <= free_page; i++ ) {
684		if (!(freep = (u_long *)hashp->mapp[i]) &&
685		    !(freep = fetch_bitmap(hashp, i)))
686			return (NULL);
687		if (i == free_page)
688			in_use_bits = free_bit;
689		else
690			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
691
692		if (i == first_page) {
693			bit = hashp->LAST_FREED &
694			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
695			j = bit / BITS_PER_MAP;
696			bit = bit & ~(BITS_PER_MAP - 1);
697		} else {
698			bit = 0;
699			j = 0;
700		}
701		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
702			if (freep[j] != ALL_SET)
703				goto found;
704	}
705
706	/* No Free Page Found */
707	hashp->LAST_FREED = hashp->SPARES[splitnum];
708	hashp->SPARES[splitnum]++;
709	offset = hashp->SPARES[splitnum] -
710	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
711
712#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
713	if (offset > SPLITMASK) {
714		if (++splitnum >= NCACHED) {
715			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
716			return (NULL);
717		}
718		hashp->OVFL_POINT = splitnum;
719		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
720		hashp->SPARES[splitnum-1]--;
721		offset = 1;
722	}
723
724	/* Check if we need to allocate a new bitmap page */
725	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
726		free_page++;
727		if (free_page >= NCACHED) {
728			(void)write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
729			return (NULL);
730		}
731		/*
732		 * This is tricky.  The 1 indicates that you want the new page
733		 * allocated with 1 clear bit.  Actually, you are going to
734		 * allocate 2 pages from this map.  The first is going to be
735		 * the map page, the second is the overflow page we were
736		 * looking for.  The init_bitmap routine automatically, sets
737		 * the first bit of itself to indicate that the bitmap itself
738		 * is in use.  We would explicitly set the second bit, but
739		 * don't have to if we tell init_bitmap not to leave it clear
740		 * in the first place.
741		 */
742		if (__init_bitmap(hashp, (int)OADDR_OF(splitnum, offset),
743		    1, free_page))
744			return (NULL);
745		hashp->SPARES[splitnum]++;
746#ifdef DEBUG2
747		free_bit = 2;
748#endif
749		offset++;
750		if (offset > SPLITMASK) {
751			if (++splitnum >= NCACHED) {
752				(void)write(STDERR_FILENO, OVMSG,
753				    sizeof(OVMSG) - 1);
754				return (NULL);
755			}
756			hashp->OVFL_POINT = splitnum;
757			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
758			hashp->SPARES[splitnum-1]--;
759			offset = 0;
760		}
761	} else {
762		/*
763		 * Free_bit addresses the last used bit.  Bump it to address
764		 * the first available bit.
765		 */
766		free_bit++;
767		SETBIT(freep, free_bit);
768	}
769
770	/* Calculate address of the new overflow page */
771	addr = OADDR_OF(splitnum, offset);
772#ifdef DEBUG2
773	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
774	    addr, free_bit, free_page);
775#endif
776	return (addr);
777
778found:
779	bit = bit + first_free(freep[j]);
780	SETBIT(freep, bit);
781#ifdef DEBUG2
782	tmp1 = bit;
783	tmp2 = i;
784#endif
785	/*
786	 * Bits are addressed starting with 0, but overflow pages are addressed
787	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
788	 * it to convert it to a page number.
789	 */
790	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
791	if (bit >= hashp->LAST_FREED)
792		hashp->LAST_FREED = bit - 1;
793
794	/* Calculate the split number for this page */
795	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
796	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
797	if (offset >= SPLITMASK)
798		return (NULL);	/* Out of overflow pages */
799	addr = OADDR_OF(i, offset);
800#ifdef DEBUG2
801	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
802	    addr, tmp1, tmp2);
803#endif
804
805	/* Allocate and return the overflow page */
806	return (addr);
807}
808
809/*
810 * Mark this overflow page as free.
811 */
812extern void
813__free_ovflpage(hashp, obufp)
814	HTAB *hashp;
815	BUFHEAD *obufp;
816{
817	register u_short addr;
818	u_long *freep;
819	int bit_address, free_page, free_bit;
820	u_short ndx;
821
822	addr = obufp->addr;
823#ifdef DEBUG1
824	(void)fprintf(stderr, "Freeing %d\n", addr);
825#endif
826	ndx = (((u_short)addr) >> SPLITSHIFT);
827	bit_address =
828	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
829	 if (bit_address < hashp->LAST_FREED)
830		hashp->LAST_FREED = bit_address;
831	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
832	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
833
834	if (!(freep = hashp->mapp[free_page]))
835		freep = fetch_bitmap(hashp, free_page);
836#ifdef DEBUG
837	/*
838	 * This had better never happen.  It means we tried to read a bitmap
839	 * that has already had overflow pages allocated off it, and we
840	 * failed to read it from the file.
841	 */
842	if (!freep)
843		assert(0);
844#endif
845	CLRBIT(freep, free_bit);
846#ifdef DEBUG2
847	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
848	    obufp->addr, free_bit, free_page);
849#endif
850	__reclaim_buf(hashp, obufp);
851}
852
853/*
854 * Returns:
855 *	 0 success
856 *	-1 failure
857 */
858static int
859open_temp(hashp)
860	HTAB *hashp;
861{
862	sigset_t set, oset;
863	static char namestr[] = "_hashXXXXXX";
864
865	/* Block signals; make sure file goes away at process exit. */
866	(void)sigfillset(&set);
867	(void)sigprocmask(SIG_BLOCK, &set, &oset);
868	if ((hashp->fp = mkstemp(namestr)) != -1) {
869		(void)unlink(namestr);
870		(void)fcntl(hashp->fp, F_SETFD, 1);
871	}
872	(void)sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
873	return (hashp->fp != -1 ? 0 : -1);
874}
875
876/*
877 * We have to know that the key will fit, but the last entry on the page is
878 * an overflow pair, so we need to shift things.
879 */
880static void
881squeeze_key(sp, key, val)
882	u_short *sp;
883	const DBT *key, *val;
884{
885	register char *p;
886	u_short free_space, n, off, pageno;
887
888	p = (char *)sp;
889	n = sp[0];
890	free_space = FREESPACE(sp);
891	off = OFFSET(sp);
892
893	pageno = sp[n - 1];
894	off -= key->size;
895	sp[n - 1] = off;
896	memmove(p + off, key->data, key->size);
897	off -= val->size;
898	sp[n] = off;
899	memmove(p + off, val->data, val->size);
900	sp[0] = n + 2;
901	sp[n + 1] = pageno;
902	sp[n + 2] = OVFLPAGE;
903	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
904	OFFSET(sp) = off;
905}
906
907static u_long *
908fetch_bitmap(hashp, ndx)
909	HTAB *hashp;
910	int ndx;
911{
912	if (ndx >= hashp->nmaps)
913		return (NULL);
914	if ((hashp->mapp[ndx] = (u_long *)malloc(hashp->BSIZE)) == NULL)
915		return (NULL);
916	if (__get_page(hashp,
917	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
918		free(hashp->mapp[ndx]);
919		return (NULL);
920	}
921	return (hashp->mapp[ndx]);
922}
923
924#ifdef DEBUG4
925int
926print_chain(addr)
927	int addr;
928{
929	BUFHEAD *bufp;
930	short *bp, oaddr;
931
932	(void)fprintf(stderr, "%d ", addr);
933	bufp = __get_buf(hashp, addr, NULL, 0);
934	bp = (short *)bufp->page;
935	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
936		((bp[0] > 2) && bp[2] < REAL_KEY))) {
937		oaddr = bp[bp[0] - 1];
938		(void)fprintf(stderr, "%d ", (int)oaddr);
939		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
940		bp = (short *)bufp->page;
941	}
942	(void)fprintf(stderr, "\n");
943}
944#endif
945