hash_page.c revision 190489
1/*-
2 * Copyright (c) 1990, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#if defined(LIBC_SCCS) && !defined(lint)
34static char sccsid[] = "@(#)hash_page.c	8.7 (Berkeley) 8/16/94";
35#endif /* LIBC_SCCS and not lint */
36#include <sys/cdefs.h>
37__FBSDID("$FreeBSD: head/lib/libc/db/hash/hash_page.c 190489 2009-03-28 06:23:10Z delphij $");
38
39/*
40 * PACKAGE:  hashing
41 *
42 * DESCRIPTION:
43 *	Page manipulation for hashing package.
44 *
45 * ROUTINES:
46 *
47 * External
48 *	__get_page
49 *	__add_ovflpage
50 * Internal
51 *	overflow_page
52 *	open_temp
53 */
54
55#include "namespace.h"
56#include <sys/param.h>
57
58#include <errno.h>
59#include <fcntl.h>
60#include <signal.h>
61#include <stdio.h>
62#include <stdlib.h>
63#include <string.h>
64#include <unistd.h>
65#ifdef DEBUG
66#include <assert.h>
67#endif
68#include "un-namespace.h"
69
70#include <db.h>
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static u_int32_t *fetch_bitmap(HTAB *, int);
76static u_int32_t  first_free(u_int32_t);
77static int	  open_temp(HTAB *);
78static u_int16_t  overflow_page(HTAB *);
79static void	  putpair(char *, const DBT *, const DBT *);
80static void	  squeeze_key(u_int16_t *, const DBT *, const DBT *);
81static int	  ugly_split(HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
82
83#define	PAGE_INIT(P) { \
84	((u_int16_t *)(P))[0] = 0; \
85	((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
86	((u_int16_t *)(P))[2] = hashp->BSIZE; \
87}
88
89/*
90 * This is called AFTER we have verified that there is room on the page for
91 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
92 * stuff on.
93 */
94static void
95putpair(char *p, const DBT *key, const DBT *val)
96{
97	u_int16_t *bp, n, off;
98
99	bp = (u_int16_t *)p;
100
101	/* Enter the key first. */
102	n = bp[0];
103
104	off = OFFSET(bp) - key->size;
105	memmove(p + off, key->data, key->size);
106	bp[++n] = off;
107
108	/* Now the data. */
109	off -= val->size;
110	memmove(p + off, val->data, val->size);
111	bp[++n] = off;
112
113	/* Adjust page info. */
114	bp[0] = n;
115	bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
116	bp[n + 2] = off;
117}
118
119/*
120 * Returns:
121 *	 0 OK
122 *	-1 error
123 */
124int
125__delpair(HTAB *hashp, BUFHEAD *bufp, int ndx)
126{
127	u_int16_t *bp, newoff, pairlen;
128	int n;
129
130	bp = (u_int16_t *)bufp->page;
131	n = bp[0];
132
133	if (bp[ndx + 1] < REAL_KEY)
134		return (__big_delete(hashp, bufp));
135	if (ndx != 1)
136		newoff = bp[ndx - 1];
137	else
138		newoff = hashp->BSIZE;
139	pairlen = newoff - bp[ndx + 1];
140
141	if (ndx != (n - 1)) {
142		/* Hard Case -- need to shuffle keys */
143		int i;
144		char *src = bufp->page + (int)OFFSET(bp);
145		char *dst = src + (int)pairlen;
146		memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
147
148		/* Now adjust the pointers */
149		for (i = ndx + 2; i <= n; i += 2) {
150			if (bp[i + 1] == OVFLPAGE) {
151				bp[i - 2] = bp[i];
152				bp[i - 1] = bp[i + 1];
153			} else {
154				bp[i - 2] = bp[i] + pairlen;
155				bp[i - 1] = bp[i + 1] + pairlen;
156			}
157		}
158	}
159	/* Finally adjust the page data */
160	bp[n] = OFFSET(bp) + pairlen;
161	bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
162	bp[0] = n - 2;
163	hashp->NKEYS--;
164
165	bufp->flags |= BUF_MOD;
166	return (0);
167}
168/*
169 * Returns:
170 *	 0 ==> OK
171 *	-1 ==> Error
172 */
173int
174__split_page(HTAB *hashp, u_int32_t obucket, u_int32_t nbucket)
175{
176	BUFHEAD *new_bufp, *old_bufp;
177	u_int16_t *ino;
178	char *np;
179	DBT key, val;
180	int n, ndx, retval;
181	u_int16_t copyto, diff, off, moved;
182	char *op;
183
184	copyto = (u_int16_t)hashp->BSIZE;
185	off = (u_int16_t)hashp->BSIZE;
186	old_bufp = __get_buf(hashp, obucket, NULL, 0);
187	if (old_bufp == NULL)
188		return (-1);
189	new_bufp = __get_buf(hashp, nbucket, NULL, 0);
190	if (new_bufp == NULL)
191		return (-1);
192
193	old_bufp->flags |= (BUF_MOD | BUF_PIN);
194	new_bufp->flags |= (BUF_MOD | BUF_PIN);
195
196	ino = (u_int16_t *)(op = old_bufp->page);
197	np = new_bufp->page;
198
199	moved = 0;
200
201	for (n = 1, ndx = 1; n < ino[0]; n += 2) {
202		if (ino[n + 1] < REAL_KEY) {
203			retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
204			    (int)copyto, (int)moved);
205			old_bufp->flags &= ~BUF_PIN;
206			new_bufp->flags &= ~BUF_PIN;
207			return (retval);
208
209		}
210		key.data = (u_char *)op + ino[n];
211		key.size = off - ino[n];
212
213		if (__call_hash(hashp, key.data, key.size) == obucket) {
214			/* Don't switch page */
215			diff = copyto - off;
216			if (diff) {
217				copyto = ino[n + 1] + diff;
218				memmove(op + copyto, op + ino[n + 1],
219				    off - ino[n + 1]);
220				ino[ndx] = copyto + ino[n] - ino[n + 1];
221				ino[ndx + 1] = copyto;
222			} else
223				copyto = ino[n + 1];
224			ndx += 2;
225		} else {
226			/* Switch page */
227			val.data = (u_char *)op + ino[n + 1];
228			val.size = ino[n] - ino[n + 1];
229			putpair(np, &key, &val);
230			moved += 2;
231		}
232
233		off = ino[n + 1];
234	}
235
236	/* Now clean up the page */
237	ino[0] -= moved;
238	FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
239	OFFSET(ino) = copyto;
240
241#ifdef DEBUG3
242	(void)fprintf(stderr, "split %d/%d\n",
243	    ((u_int16_t *)np)[0] / 2,
244	    ((u_int16_t *)op)[0] / 2);
245#endif
246	/* unpin both pages */
247	old_bufp->flags &= ~BUF_PIN;
248	new_bufp->flags &= ~BUF_PIN;
249	return (0);
250}
251
252/*
253 * Called when we encounter an overflow or big key/data page during split
254 * handling.  This is special cased since we have to begin checking whether
255 * the key/data pairs fit on their respective pages and because we may need
256 * overflow pages for both the old and new pages.
257 *
258 * The first page might be a page with regular key/data pairs in which case
259 * we have a regular overflow condition and just need to go on to the next
260 * page or it might be a big key/data pair in which case we need to fix the
261 * big key/data pair.
262 *
263 * Returns:
264 *	 0 ==> success
265 *	-1 ==> failure
266 */
267static int
268ugly_split(HTAB *hashp,
269    u_int32_t obucket,	/* Same as __split_page. */
270    BUFHEAD *old_bufp,
271    BUFHEAD *new_bufp,
272    int copyto,		/* First byte on page which contains key/data values. */
273    int moved)		/* Number of pairs moved to new page. */
274{
275	BUFHEAD *bufp;	/* Buffer header for ino */
276	u_int16_t *ino;	/* Page keys come off of */
277	u_int16_t *np;	/* New page */
278	u_int16_t *op;	/* Page keys go on to if they aren't moving */
279
280	BUFHEAD *last_bfp;	/* Last buf header OVFL needing to be freed */
281	DBT key, val;
282	SPLIT_RETURN ret;
283	u_int16_t n, off, ov_addr, scopyto;
284	char *cino;		/* Character value of ino */
285
286	bufp = old_bufp;
287	ino = (u_int16_t *)old_bufp->page;
288	np = (u_int16_t *)new_bufp->page;
289	op = (u_int16_t *)old_bufp->page;
290	last_bfp = NULL;
291	scopyto = (u_int16_t)copyto;	/* ANSI */
292
293	n = ino[0] - 1;
294	while (n < ino[0]) {
295		if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
296			if (__big_split(hashp, old_bufp,
297			    new_bufp, bufp, bufp->addr, obucket, &ret))
298				return (-1);
299			old_bufp = ret.oldp;
300			if (!old_bufp)
301				return (-1);
302			op = (u_int16_t *)old_bufp->page;
303			new_bufp = ret.newp;
304			if (!new_bufp)
305				return (-1);
306			np = (u_int16_t *)new_bufp->page;
307			bufp = ret.nextp;
308			if (!bufp)
309				return (0);
310			cino = (char *)bufp->page;
311			ino = (u_int16_t *)cino;
312			last_bfp = ret.nextp;
313		} else if (ino[n + 1] == OVFLPAGE) {
314			ov_addr = ino[n];
315			/*
316			 * Fix up the old page -- the extra 2 are the fields
317			 * which contained the overflow information.
318			 */
319			ino[0] -= (moved + 2);
320			FREESPACE(ino) =
321			    scopyto - sizeof(u_int16_t) * (ino[0] + 3);
322			OFFSET(ino) = scopyto;
323
324			bufp = __get_buf(hashp, ov_addr, bufp, 0);
325			if (!bufp)
326				return (-1);
327
328			ino = (u_int16_t *)bufp->page;
329			n = 1;
330			scopyto = hashp->BSIZE;
331			moved = 0;
332
333			if (last_bfp)
334				__free_ovflpage(hashp, last_bfp);
335			last_bfp = bufp;
336		}
337		/* Move regular sized pairs of there are any */
338		off = hashp->BSIZE;
339		for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
340			cino = (char *)ino;
341			key.data = (u_char *)cino + ino[n];
342			key.size = off - ino[n];
343			val.data = (u_char *)cino + ino[n + 1];
344			val.size = ino[n] - ino[n + 1];
345			off = ino[n + 1];
346
347			if (__call_hash(hashp, key.data, key.size) == obucket) {
348				/* Keep on old page */
349				if (PAIRFITS(op, (&key), (&val)))
350					putpair((char *)op, &key, &val);
351				else {
352					old_bufp =
353					    __add_ovflpage(hashp, old_bufp);
354					if (!old_bufp)
355						return (-1);
356					op = (u_int16_t *)old_bufp->page;
357					putpair((char *)op, &key, &val);
358				}
359				old_bufp->flags |= BUF_MOD;
360			} else {
361				/* Move to new page */
362				if (PAIRFITS(np, (&key), (&val)))
363					putpair((char *)np, &key, &val);
364				else {
365					new_bufp =
366					    __add_ovflpage(hashp, new_bufp);
367					if (!new_bufp)
368						return (-1);
369					np = (u_int16_t *)new_bufp->page;
370					putpair((char *)np, &key, &val);
371				}
372				new_bufp->flags |= BUF_MOD;
373			}
374		}
375	}
376	if (last_bfp)
377		__free_ovflpage(hashp, last_bfp);
378	return (0);
379}
380
381/*
382 * Add the given pair to the page
383 *
384 * Returns:
385 *	0 ==> OK
386 *	1 ==> failure
387 */
388int
389__addel(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
390{
391	u_int16_t *bp, *sop;
392	int do_expand;
393
394	bp = (u_int16_t *)bufp->page;
395	do_expand = 0;
396	while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
397		/* Exception case */
398		if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
399			/* This is the last page of a big key/data pair
400			   and we need to add another page */
401			break;
402		else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
403			bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
404			if (!bufp)
405				return (-1);
406			bp = (u_int16_t *)bufp->page;
407		} else
408			/* Try to squeeze key on this page */
409			if (FREESPACE(bp) > PAIRSIZE(key, val)) {
410				squeeze_key(bp, key, val);
411				return (0);
412			} else {
413				bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
414				if (!bufp)
415					return (-1);
416				bp = (u_int16_t *)bufp->page;
417			}
418
419	if (PAIRFITS(bp, key, val))
420		putpair(bufp->page, key, val);
421	else {
422		do_expand = 1;
423		bufp = __add_ovflpage(hashp, bufp);
424		if (!bufp)
425			return (-1);
426		sop = (u_int16_t *)bufp->page;
427
428		if (PAIRFITS(sop, key, val))
429			putpair((char *)sop, key, val);
430		else
431			if (__big_insert(hashp, bufp, key, val))
432				return (-1);
433	}
434	bufp->flags |= BUF_MOD;
435	/*
436	 * If the average number of keys per bucket exceeds the fill factor,
437	 * expand the table.
438	 */
439	hashp->NKEYS++;
440	if (do_expand ||
441	    (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
442		return (__expand_table(hashp));
443	return (0);
444}
445
446/*
447 *
448 * Returns:
449 *	pointer on success
450 *	NULL on error
451 */
452BUFHEAD *
453__add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
454{
455	u_int16_t *sp, ndx, ovfl_num;
456#ifdef DEBUG1
457	int tmp1, tmp2;
458#endif
459	sp = (u_int16_t *)bufp->page;
460
461	/* Check if we are dynamically determining the fill factor */
462	if (hashp->FFACTOR == DEF_FFACTOR) {
463		hashp->FFACTOR = sp[0] >> 1;
464		if (hashp->FFACTOR < MIN_FFACTOR)
465			hashp->FFACTOR = MIN_FFACTOR;
466	}
467	bufp->flags |= BUF_MOD;
468	ovfl_num = overflow_page(hashp);
469#ifdef DEBUG1
470	tmp1 = bufp->addr;
471	tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
472#endif
473	if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
474		return (NULL);
475	bufp->ovfl->flags |= BUF_MOD;
476#ifdef DEBUG1
477	(void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
478	    tmp1, tmp2, bufp->ovfl->addr);
479#endif
480	ndx = sp[0];
481	/*
482	 * Since a pair is allocated on a page only if there's room to add
483	 * an overflow page, we know that the OVFL information will fit on
484	 * the page.
485	 */
486	sp[ndx + 4] = OFFSET(sp);
487	sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
488	sp[ndx + 1] = ovfl_num;
489	sp[ndx + 2] = OVFLPAGE;
490	sp[0] = ndx + 2;
491#ifdef HASH_STATISTICS
492	hash_overflows++;
493#endif
494	return (bufp->ovfl);
495}
496
497/*
498 * Returns:
499 *	 0 indicates SUCCESS
500 *	-1 indicates FAILURE
501 */
502int
503__get_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_disk,
504    int is_bitmap)
505{
506	int fd, page, size, rsize;
507	u_int16_t *bp;
508
509	fd = hashp->fp;
510	size = hashp->BSIZE;
511
512	if ((fd == -1) || !is_disk) {
513		PAGE_INIT(p);
514		return (0);
515	}
516	if (is_bucket)
517		page = BUCKET_TO_PAGE(bucket);
518	else
519		page = OADDR_TO_PAGE(bucket);
520	if ((rsize = pread(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
521		return (-1);
522	bp = (u_int16_t *)p;
523	if (!rsize)
524		bp[0] = 0;	/* We hit the EOF, so initialize a new page */
525	else
526		if (rsize != size) {
527			errno = EFTYPE;
528			return (-1);
529		}
530	if (!is_bitmap && !bp[0]) {
531		PAGE_INIT(p);
532	} else
533		if (hashp->LORDER != BYTE_ORDER) {
534			int i, max;
535
536			if (is_bitmap) {
537				max = hashp->BSIZE >> 2; /* divide by 4 */
538				for (i = 0; i < max; i++)
539					M_32_SWAP(((int *)p)[i]);
540			} else {
541				M_16_SWAP(bp[0]);
542				max = bp[0] + 2;
543				for (i = 1; i <= max; i++)
544					M_16_SWAP(bp[i]);
545			}
546		}
547	return (0);
548}
549
550/*
551 * Write page p to disk
552 *
553 * Returns:
554 *	 0 ==> OK
555 *	-1 ==>failure
556 */
557int
558__put_page(HTAB *hashp, char *p, u_int32_t bucket, int is_bucket, int is_bitmap)
559{
560	int fd, page, size, wsize;
561
562	size = hashp->BSIZE;
563	if ((hashp->fp == -1) && open_temp(hashp))
564		return (-1);
565	fd = hashp->fp;
566
567	if (hashp->LORDER != BYTE_ORDER) {
568		int i, max;
569
570		if (is_bitmap) {
571			max = hashp->BSIZE >> 2;	/* divide by 4 */
572			for (i = 0; i < max; i++)
573				M_32_SWAP(((int *)p)[i]);
574		} else {
575			max = ((u_int16_t *)p)[0] + 2;
576			for (i = 0; i <= max; i++)
577				M_16_SWAP(((u_int16_t *)p)[i]);
578		}
579	}
580	if (is_bucket)
581		page = BUCKET_TO_PAGE(bucket);
582	else
583		page = OADDR_TO_PAGE(bucket);
584	if ((wsize = pwrite(fd, p, size, (off_t)page << hashp->BSHIFT)) == -1)
585		/* Errno is set */
586		return (-1);
587	if (wsize != size) {
588		errno = EFTYPE;
589		return (-1);
590	}
591	return (0);
592}
593
594#define BYTE_MASK	((1 << INT_BYTE_SHIFT) -1)
595/*
596 * Initialize a new bitmap page.  Bitmap pages are left in memory
597 * once they are read in.
598 */
599int
600__ibitmap(HTAB *hashp, int pnum, int nbits, int ndx)
601{
602	u_int32_t *ip;
603	int clearbytes, clearints;
604
605	if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
606		return (1);
607	hashp->nmaps++;
608	clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
609	clearbytes = clearints << INT_TO_BYTE;
610	(void)memset((char *)ip, 0, clearbytes);
611	(void)memset(((char *)ip) + clearbytes, 0xFF,
612	    hashp->BSIZE - clearbytes);
613	ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
614	SETBIT(ip, 0);
615	hashp->BITMAPS[ndx] = (u_int16_t)pnum;
616	hashp->mapp[ndx] = ip;
617	return (0);
618}
619
620static u_int32_t
621first_free(u_int32_t map)
622{
623	u_int32_t i, mask;
624
625	mask = 0x1;
626	for (i = 0; i < BITS_PER_MAP; i++) {
627		if (!(mask & map))
628			return (i);
629		mask = mask << 1;
630	}
631	return (i);
632}
633
634static u_int16_t
635overflow_page(HTAB *hashp)
636{
637	u_int32_t *freep;
638	int max_free, offset, splitnum;
639	u_int16_t addr;
640	int bit, first_page, free_bit, free_page, i, in_use_bits, j;
641#ifdef DEBUG2
642	int tmp1, tmp2;
643#endif
644	splitnum = hashp->OVFL_POINT;
645	max_free = hashp->SPARES[splitnum];
646
647	free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
648	free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
649
650	/* Look through all the free maps to find the first free block */
651	first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
652	for ( i = first_page; i <= free_page; i++ ) {
653		if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
654		    !(freep = fetch_bitmap(hashp, i)))
655			return (0);
656		if (i == free_page)
657			in_use_bits = free_bit;
658		else
659			in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
660
661		if (i == first_page) {
662			bit = hashp->LAST_FREED &
663			    ((hashp->BSIZE << BYTE_SHIFT) - 1);
664			j = bit / BITS_PER_MAP;
665			bit = bit & ~(BITS_PER_MAP - 1);
666		} else {
667			bit = 0;
668			j = 0;
669		}
670		for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
671			if (freep[j] != ALL_SET)
672				goto found;
673	}
674
675	/* No Free Page Found */
676	hashp->LAST_FREED = hashp->SPARES[splitnum];
677	hashp->SPARES[splitnum]++;
678	offset = hashp->SPARES[splitnum] -
679	    (splitnum ? hashp->SPARES[splitnum - 1] : 0);
680
681#define	OVMSG	"HASH: Out of overflow pages.  Increase page size\n"
682	if (offset > SPLITMASK) {
683		if (++splitnum >= NCACHED) {
684			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
685			errno = EFBIG;
686			return (0);
687		}
688		hashp->OVFL_POINT = splitnum;
689		hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
690		hashp->SPARES[splitnum-1]--;
691		offset = 1;
692	}
693
694	/* Check if we need to allocate a new bitmap page */
695	if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
696		free_page++;
697		if (free_page >= NCACHED) {
698			(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
699			errno = EFBIG;
700			return (0);
701		}
702		/*
703		 * This is tricky.  The 1 indicates that you want the new page
704		 * allocated with 1 clear bit.  Actually, you are going to
705		 * allocate 2 pages from this map.  The first is going to be
706		 * the map page, the second is the overflow page we were
707		 * looking for.  The init_bitmap routine automatically, sets
708		 * the first bit of itself to indicate that the bitmap itself
709		 * is in use.  We would explicitly set the second bit, but
710		 * don't have to if we tell init_bitmap not to leave it clear
711		 * in the first place.
712		 */
713		if (__ibitmap(hashp,
714		    (int)OADDR_OF(splitnum, offset), 1, free_page))
715			return (0);
716		hashp->SPARES[splitnum]++;
717#ifdef DEBUG2
718		free_bit = 2;
719#endif
720		offset++;
721		if (offset > SPLITMASK) {
722			if (++splitnum >= NCACHED) {
723				(void)_write(STDERR_FILENO, OVMSG,
724				    sizeof(OVMSG) - 1);
725				errno = EFBIG;
726				return (0);
727			}
728			hashp->OVFL_POINT = splitnum;
729			hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
730			hashp->SPARES[splitnum-1]--;
731			offset = 0;
732		}
733	} else {
734		/*
735		 * Free_bit addresses the last used bit.  Bump it to address
736		 * the first available bit.
737		 */
738		free_bit++;
739		SETBIT(freep, free_bit);
740	}
741
742	/* Calculate address of the new overflow page */
743	addr = OADDR_OF(splitnum, offset);
744#ifdef DEBUG2
745	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
746	    addr, free_bit, free_page);
747#endif
748	return (addr);
749
750found:
751	bit = bit + first_free(freep[j]);
752	SETBIT(freep, bit);
753#ifdef DEBUG2
754	tmp1 = bit;
755	tmp2 = i;
756#endif
757	/*
758	 * Bits are addressed starting with 0, but overflow pages are addressed
759	 * beginning at 1. Bit is a bit addressnumber, so we need to increment
760	 * it to convert it to a page number.
761	 */
762	bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
763	if (bit >= hashp->LAST_FREED)
764		hashp->LAST_FREED = bit - 1;
765
766	/* Calculate the split number for this page */
767	for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
768	offset = (i ? bit - hashp->SPARES[i - 1] : bit);
769	if (offset >= SPLITMASK) {
770		(void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
771		errno = EFBIG;
772		return (0);	/* Out of overflow pages */
773	}
774	addr = OADDR_OF(i, offset);
775#ifdef DEBUG2
776	(void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
777	    addr, tmp1, tmp2);
778#endif
779
780	/* Allocate and return the overflow page */
781	return (addr);
782}
783
784/*
785 * Mark this overflow page as free.
786 */
787void
788__free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
789{
790	u_int16_t addr;
791	u_int32_t *freep;
792	int bit_address, free_page, free_bit;
793	u_int16_t ndx;
794
795	addr = obufp->addr;
796#ifdef DEBUG1
797	(void)fprintf(stderr, "Freeing %d\n", addr);
798#endif
799	ndx = (((u_int16_t)addr) >> SPLITSHIFT);
800	bit_address =
801	    (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
802	 if (bit_address < hashp->LAST_FREED)
803		hashp->LAST_FREED = bit_address;
804	free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
805	free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
806
807	if (!(freep = hashp->mapp[free_page]))
808		freep = fetch_bitmap(hashp, free_page);
809#ifdef DEBUG
810	/*
811	 * This had better never happen.  It means we tried to read a bitmap
812	 * that has already had overflow pages allocated off it, and we
813	 * failed to read it from the file.
814	 */
815	if (!freep)
816		assert(0);
817#endif
818	CLRBIT(freep, free_bit);
819#ifdef DEBUG2
820	(void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
821	    obufp->addr, free_bit, free_page);
822#endif
823	__reclaim_buf(hashp, obufp);
824}
825
826/*
827 * Returns:
828 *	 0 success
829 *	-1 failure
830 */
831static int
832open_temp(HTAB *hashp)
833{
834	sigset_t set, oset;
835	int len;
836	char *envtmp = NULL;
837	char path[MAXPATHLEN];
838
839	if (issetugid() == 0)
840		envtmp = getenv("TMPDIR");
841	len = snprintf(path,
842	    sizeof(path), "%s/_hash.XXXXXX", envtmp ? envtmp : "/tmp");
843	if (len < 0 || len >= sizeof(path)) {
844		errno = ENAMETOOLONG;
845		return (-1);
846	}
847
848	/* Block signals; make sure file goes away at process exit. */
849	(void)sigfillset(&set);
850	(void)_sigprocmask(SIG_BLOCK, &set, &oset);
851	if ((hashp->fp = mkstemp(path)) != -1) {
852		(void)unlink(path);
853		(void)_fcntl(hashp->fp, F_SETFD, 1);
854	}
855	(void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
856	return (hashp->fp != -1 ? 0 : -1);
857}
858
859/*
860 * We have to know that the key will fit, but the last entry on the page is
861 * an overflow pair, so we need to shift things.
862 */
863static void
864squeeze_key(u_int16_t *sp, const DBT *key, const DBT *val)
865{
866	char *p;
867	u_int16_t free_space, n, off, pageno;
868
869	p = (char *)sp;
870	n = sp[0];
871	free_space = FREESPACE(sp);
872	off = OFFSET(sp);
873
874	pageno = sp[n - 1];
875	off -= key->size;
876	sp[n - 1] = off;
877	memmove(p + off, key->data, key->size);
878	off -= val->size;
879	sp[n] = off;
880	memmove(p + off, val->data, val->size);
881	sp[0] = n + 2;
882	sp[n + 1] = pageno;
883	sp[n + 2] = OVFLPAGE;
884	FREESPACE(sp) = free_space - PAIRSIZE(key, val);
885	OFFSET(sp) = off;
886}
887
888static u_int32_t *
889fetch_bitmap(HTAB *hashp, int ndx)
890{
891	if (ndx >= hashp->nmaps)
892		return (NULL);
893	if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
894		return (NULL);
895	if (__get_page(hashp,
896	    (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
897		free(hashp->mapp[ndx]);
898		return (NULL);
899	}
900	return (hashp->mapp[ndx]);
901}
902
903#ifdef DEBUG4
904int
905print_chain(int addr)
906{
907	BUFHEAD *bufp;
908	short *bp, oaddr;
909
910	(void)fprintf(stderr, "%d ", addr);
911	bufp = __get_buf(hashp, addr, NULL, 0);
912	bp = (short *)bufp->page;
913	while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
914		((bp[0] > 2) && bp[2] < REAL_KEY))) {
915		oaddr = bp[bp[0] - 1];
916		(void)fprintf(stderr, "%d ", (int)oaddr);
917		bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
918		bp = (short *)bufp->page;
919	}
920	(void)fprintf(stderr, "\n");
921}
922#endif
923