1/*	from OpenBSD: sha2.c,v 1.11 2005/08/08 08:05:35 espie Exp 	*/
2
3/*
4 * FILE:	sha2.c
5 * AUTHOR:	Aaron D. Gifford <me@aarongifford.com>
6 *
7 * Copyright (c) 2000-2001, Aaron D. Gifford
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the copyright holder nor the names of contributors
19 *    may be used to endorse or promote products derived from this software
20 *    without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $From: sha2.c,v 1.1 2001/11/08 00:01:51 adg Exp adg $
35 */
36
37/* OPENBSD ORIGINAL: lib/libc/hash/sha2.c */
38
39#include "includes.h"
40
41#include <openssl/opensslv.h>
42
43#if !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
44    (OPENSSL_VERSION_NUMBER >= 0x00907000L)
45#include <sys/types.h>
46#include <string.h>
47#include "sha2.h"
48
49/*
50 * UNROLLED TRANSFORM LOOP NOTE:
51 * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform
52 * loop version for the hash transform rounds (defined using macros
53 * later in this file).  Either define on the command line, for example:
54 *
55 *   cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c
56 *
57 * or define below:
58 *
59 *   #define SHA2_UNROLL_TRANSFORM
60 *
61 */
62
63/*** SHA-256/384/512 Machine Architecture Definitions *****************/
64/*
65 * BYTE_ORDER NOTE:
66 *
67 * Please make sure that your system defines BYTE_ORDER.  If your
68 * architecture is little-endian, make sure it also defines
69 * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are
70 * equivilent.
71 *
72 * If your system does not define the above, then you can do so by
73 * hand like this:
74 *
75 *   #define LITTLE_ENDIAN 1234
76 *   #define BIG_ENDIAN    4321
77 *
78 * And for little-endian machines, add:
79 *
80 *   #define BYTE_ORDER LITTLE_ENDIAN
81 *
82 * Or for big-endian machines:
83 *
84 *   #define BYTE_ORDER BIG_ENDIAN
85 *
86 * The FreeBSD machine this was written on defines BYTE_ORDER
87 * appropriately by including <sys/types.h> (which in turn includes
88 * <machine/endian.h> where the appropriate definitions are actually
89 * made).
90 */
91#if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN)
92#error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN
93#endif
94
95
96/*** SHA-256/384/512 Various Length Definitions ***********************/
97/* NOTE: Most of these are in sha2.h */
98#define SHA256_SHORT_BLOCK_LENGTH	(SHA256_BLOCK_LENGTH - 8)
99#define SHA384_SHORT_BLOCK_LENGTH	(SHA384_BLOCK_LENGTH - 16)
100#define SHA512_SHORT_BLOCK_LENGTH	(SHA512_BLOCK_LENGTH - 16)
101
102/*** ENDIAN SPECIFIC COPY MACROS **************************************/
103#define BE_8_TO_32(dst, cp) do {					\
104	(dst) = (u_int32_t)(cp)[3] | ((u_int32_t)(cp)[2] << 8) |	\
105	    ((u_int32_t)(cp)[1] << 16) | ((u_int32_t)(cp)[0] << 24);	\
106} while(0)
107
108#define BE_8_TO_64(dst, cp) do {					\
109	(dst) = (u_int64_t)(cp)[7] | ((u_int64_t)(cp)[6] << 8) |	\
110	    ((u_int64_t)(cp)[5] << 16) | ((u_int64_t)(cp)[4] << 24) |	\
111	    ((u_int64_t)(cp)[3] << 32) | ((u_int64_t)(cp)[2] << 40) |	\
112	    ((u_int64_t)(cp)[1] << 48) | ((u_int64_t)(cp)[0] << 56);	\
113} while (0)
114
115#define BE_64_TO_8(cp, src) do {					\
116	(cp)[0] = (src) >> 56;						\
117        (cp)[1] = (src) >> 48;						\
118	(cp)[2] = (src) >> 40;						\
119	(cp)[3] = (src) >> 32;						\
120	(cp)[4] = (src) >> 24;						\
121	(cp)[5] = (src) >> 16;						\
122	(cp)[6] = (src) >> 8;						\
123	(cp)[7] = (src);						\
124} while (0)
125
126#define BE_32_TO_8(cp, src) do {					\
127	(cp)[0] = (src) >> 24;						\
128	(cp)[1] = (src) >> 16;						\
129	(cp)[2] = (src) >> 8;						\
130	(cp)[3] = (src);						\
131} while (0)
132
133/*
134 * Macro for incrementally adding the unsigned 64-bit integer n to the
135 * unsigned 128-bit integer (represented using a two-element array of
136 * 64-bit words):
137 */
138#define ADDINC128(w,n) do {						\
139	(w)[0] += (u_int64_t)(n);					\
140	if ((w)[0] < (n)) {						\
141		(w)[1]++;						\
142	}								\
143} while (0)
144
145/*** THE SIX LOGICAL FUNCTIONS ****************************************/
146/*
147 * Bit shifting and rotation (used by the six SHA-XYZ logical functions:
148 *
149 *   NOTE:  The naming of R and S appears backwards here (R is a SHIFT and
150 *   S is a ROTATION) because the SHA-256/384/512 description document
151 *   (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this
152 *   same "backwards" definition.
153 */
154/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */
155#define R(b,x) 		((x) >> (b))
156/* 32-bit Rotate-right (used in SHA-256): */
157#define S32(b,x)	(((x) >> (b)) | ((x) << (32 - (b))))
158/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */
159#define S64(b,x)	(((x) >> (b)) | ((x) << (64 - (b))))
160
161/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */
162#define Ch(x,y,z)	(((x) & (y)) ^ ((~(x)) & (z)))
163#define Maj(x,y,z)	(((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
164
165/* Four of six logical functions used in SHA-256: */
166#define Sigma0_256(x)	(S32(2,  (x)) ^ S32(13, (x)) ^ S32(22, (x)))
167#define Sigma1_256(x)	(S32(6,  (x)) ^ S32(11, (x)) ^ S32(25, (x)))
168#define sigma0_256(x)	(S32(7,  (x)) ^ S32(18, (x)) ^ R(3 ,   (x)))
169#define sigma1_256(x)	(S32(17, (x)) ^ S32(19, (x)) ^ R(10,   (x)))
170
171/* Four of six logical functions used in SHA-384 and SHA-512: */
172#define Sigma0_512(x)	(S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x)))
173#define Sigma1_512(x)	(S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x)))
174#define sigma0_512(x)	(S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7,   (x)))
175#define sigma1_512(x)	(S64(19, (x)) ^ S64(61, (x)) ^ R( 6,   (x)))
176
177
178/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/
179/* Hash constant words K for SHA-256: */
180const static u_int32_t K256[64] = {
181	0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
182	0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
183	0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
184	0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
185	0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
186	0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
187	0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
188	0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
189	0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
190	0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
191	0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
192	0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
193	0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
194	0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
195	0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
196	0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
197};
198
199/* Initial hash value H for SHA-256: */
200const static u_int32_t sha256_initial_hash_value[8] = {
201	0x6a09e667UL,
202	0xbb67ae85UL,
203	0x3c6ef372UL,
204	0xa54ff53aUL,
205	0x510e527fUL,
206	0x9b05688cUL,
207	0x1f83d9abUL,
208	0x5be0cd19UL
209};
210
211/* Hash constant words K for SHA-384 and SHA-512: */
212const static u_int64_t K512[80] = {
213	0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL,
214	0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
215	0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
216	0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
217	0xd807aa98a3030242ULL, 0x12835b0145706fbeULL,
218	0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
219	0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL,
220	0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
221	0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
222	0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
223	0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL,
224	0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
225	0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL,
226	0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
227	0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
228	0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
229	0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL,
230	0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
231	0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL,
232	0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
233	0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
234	0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
235	0xd192e819d6ef5218ULL, 0xd69906245565a910ULL,
236	0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
237	0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL,
238	0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
239	0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
240	0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
241	0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL,
242	0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
243	0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL,
244	0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
245	0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
246	0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
247	0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL,
248	0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
249	0x28db77f523047d84ULL, 0x32caab7b40c72493ULL,
250	0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
251	0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
252	0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
253};
254
255/* Initial hash value H for SHA-384 */
256const static u_int64_t sha384_initial_hash_value[8] = {
257	0xcbbb9d5dc1059ed8ULL,
258	0x629a292a367cd507ULL,
259	0x9159015a3070dd17ULL,
260	0x152fecd8f70e5939ULL,
261	0x67332667ffc00b31ULL,
262	0x8eb44a8768581511ULL,
263	0xdb0c2e0d64f98fa7ULL,
264	0x47b5481dbefa4fa4ULL
265};
266
267/* Initial hash value H for SHA-512 */
268const static u_int64_t sha512_initial_hash_value[8] = {
269	0x6a09e667f3bcc908ULL,
270	0xbb67ae8584caa73bULL,
271	0x3c6ef372fe94f82bULL,
272	0xa54ff53a5f1d36f1ULL,
273	0x510e527fade682d1ULL,
274	0x9b05688c2b3e6c1fULL,
275	0x1f83d9abfb41bd6bULL,
276	0x5be0cd19137e2179ULL
277};
278
279
280/*** SHA-256: *********************************************************/
281void
282SHA256_Init(SHA256_CTX *context)
283{
284	if (context == NULL)
285		return;
286	memcpy(context->state, sha256_initial_hash_value,
287	    sizeof(sha256_initial_hash_value));
288	memset(context->buffer, 0, sizeof(context->buffer));
289	context->bitcount = 0;
290}
291
292#ifdef SHA2_UNROLL_TRANSFORM
293
294/* Unrolled SHA-256 round macros: */
295
296#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
297	BE_8_TO_32(W256[j], data);					    \
298	data += 4;							    \
299	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \
300	(d) += T1;							    \
301	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
302	j++;								    \
303} while(0)
304
305#define ROUND256(a,b,c,d,e,f,g,h) do {					    \
306	s0 = W256[(j+1)&0x0f];						    \
307	s0 = sigma0_256(s0);						    \
308	s1 = W256[(j+14)&0x0f];						    \
309	s1 = sigma1_256(s1);						    \
310	T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] +	    \
311	     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);		    \
312	(d) += T1;							    \
313	(h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c));		    \
314	j++;								    \
315} while(0)
316
317void
318SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
319{
320	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
321	u_int32_t	T1, W256[16];
322	int		j;
323
324	/* Initialize registers with the prev. intermediate value */
325	a = state[0];
326	b = state[1];
327	c = state[2];
328	d = state[3];
329	e = state[4];
330	f = state[5];
331	g = state[6];
332	h = state[7];
333
334	j = 0;
335	do {
336		/* Rounds 0 to 15 (unrolled): */
337		ROUND256_0_TO_15(a,b,c,d,e,f,g,h);
338		ROUND256_0_TO_15(h,a,b,c,d,e,f,g);
339		ROUND256_0_TO_15(g,h,a,b,c,d,e,f);
340		ROUND256_0_TO_15(f,g,h,a,b,c,d,e);
341		ROUND256_0_TO_15(e,f,g,h,a,b,c,d);
342		ROUND256_0_TO_15(d,e,f,g,h,a,b,c);
343		ROUND256_0_TO_15(c,d,e,f,g,h,a,b);
344		ROUND256_0_TO_15(b,c,d,e,f,g,h,a);
345	} while (j < 16);
346
347	/* Now for the remaining rounds up to 63: */
348	do {
349		ROUND256(a,b,c,d,e,f,g,h);
350		ROUND256(h,a,b,c,d,e,f,g);
351		ROUND256(g,h,a,b,c,d,e,f);
352		ROUND256(f,g,h,a,b,c,d,e);
353		ROUND256(e,f,g,h,a,b,c,d);
354		ROUND256(d,e,f,g,h,a,b,c);
355		ROUND256(c,d,e,f,g,h,a,b);
356		ROUND256(b,c,d,e,f,g,h,a);
357	} while (j < 64);
358
359	/* Compute the current intermediate hash value */
360	state[0] += a;
361	state[1] += b;
362	state[2] += c;
363	state[3] += d;
364	state[4] += e;
365	state[5] += f;
366	state[6] += g;
367	state[7] += h;
368
369	/* Clean up */
370	a = b = c = d = e = f = g = h = T1 = 0;
371}
372
373#else /* SHA2_UNROLL_TRANSFORM */
374
375void
376SHA256_Transform(u_int32_t state[8], const u_int8_t data[SHA256_BLOCK_LENGTH])
377{
378	u_int32_t	a, b, c, d, e, f, g, h, s0, s1;
379	u_int32_t	T1, T2, W256[16];
380	int		j;
381
382	/* Initialize registers with the prev. intermediate value */
383	a = state[0];
384	b = state[1];
385	c = state[2];
386	d = state[3];
387	e = state[4];
388	f = state[5];
389	g = state[6];
390	h = state[7];
391
392	j = 0;
393	do {
394		BE_8_TO_32(W256[j], data);
395		data += 4;
396		/* Apply the SHA-256 compression function to update a..h */
397		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j];
398		T2 = Sigma0_256(a) + Maj(a, b, c);
399		h = g;
400		g = f;
401		f = e;
402		e = d + T1;
403		d = c;
404		c = b;
405		b = a;
406		a = T1 + T2;
407
408		j++;
409	} while (j < 16);
410
411	do {
412		/* Part of the message block expansion: */
413		s0 = W256[(j+1)&0x0f];
414		s0 = sigma0_256(s0);
415		s1 = W256[(j+14)&0x0f];
416		s1 = sigma1_256(s1);
417
418		/* Apply the SHA-256 compression function to update a..h */
419		T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] +
420		     (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0);
421		T2 = Sigma0_256(a) + Maj(a, b, c);
422		h = g;
423		g = f;
424		f = e;
425		e = d + T1;
426		d = c;
427		c = b;
428		b = a;
429		a = T1 + T2;
430
431		j++;
432	} while (j < 64);
433
434	/* Compute the current intermediate hash value */
435	state[0] += a;
436	state[1] += b;
437	state[2] += c;
438	state[3] += d;
439	state[4] += e;
440	state[5] += f;
441	state[6] += g;
442	state[7] += h;
443
444	/* Clean up */
445	a = b = c = d = e = f = g = h = T1 = T2 = 0;
446}
447
448#endif /* SHA2_UNROLL_TRANSFORM */
449
450void
451SHA256_Update(SHA256_CTX *context, const u_int8_t *data, size_t len)
452{
453	size_t	freespace, usedspace;
454
455	/* Calling with no data is valid (we do nothing) */
456	if (len == 0)
457		return;
458
459	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
460	if (usedspace > 0) {
461		/* Calculate how much free space is available in the buffer */
462		freespace = SHA256_BLOCK_LENGTH - usedspace;
463
464		if (len >= freespace) {
465			/* Fill the buffer completely and process it */
466			memcpy(&context->buffer[usedspace], data, freespace);
467			context->bitcount += freespace << 3;
468			len -= freespace;
469			data += freespace;
470			SHA256_Transform(context->state, context->buffer);
471		} else {
472			/* The buffer is not yet full */
473			memcpy(&context->buffer[usedspace], data, len);
474			context->bitcount += len << 3;
475			/* Clean up: */
476			usedspace = freespace = 0;
477			return;
478		}
479	}
480	while (len >= SHA256_BLOCK_LENGTH) {
481		/* Process as many complete blocks as we can */
482		SHA256_Transform(context->state, data);
483		context->bitcount += SHA256_BLOCK_LENGTH << 3;
484		len -= SHA256_BLOCK_LENGTH;
485		data += SHA256_BLOCK_LENGTH;
486	}
487	if (len > 0) {
488		/* There's left-overs, so save 'em */
489		memcpy(context->buffer, data, len);
490		context->bitcount += len << 3;
491	}
492	/* Clean up: */
493	usedspace = freespace = 0;
494}
495
496void
497SHA256_Pad(SHA256_CTX *context)
498{
499	unsigned int	usedspace;
500
501	usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH;
502	if (usedspace > 0) {
503		/* Begin padding with a 1 bit: */
504		context->buffer[usedspace++] = 0x80;
505
506		if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) {
507			/* Set-up for the last transform: */
508			memset(&context->buffer[usedspace], 0,
509			    SHA256_SHORT_BLOCK_LENGTH - usedspace);
510		} else {
511			if (usedspace < SHA256_BLOCK_LENGTH) {
512				memset(&context->buffer[usedspace], 0,
513				    SHA256_BLOCK_LENGTH - usedspace);
514			}
515			/* Do second-to-last transform: */
516			SHA256_Transform(context->state, context->buffer);
517
518			/* Prepare for last transform: */
519			memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
520		}
521	} else {
522		/* Set-up for the last transform: */
523		memset(context->buffer, 0, SHA256_SHORT_BLOCK_LENGTH);
524
525		/* Begin padding with a 1 bit: */
526		*context->buffer = 0x80;
527	}
528	/* Store the length of input data (in bits) in big endian format: */
529	BE_64_TO_8(&context->buffer[SHA256_SHORT_BLOCK_LENGTH],
530	    context->bitcount);
531
532	/* Final transform: */
533	SHA256_Transform(context->state, context->buffer);
534
535	/* Clean up: */
536	usedspace = 0;
537}
538
539void
540SHA256_Final(u_int8_t digest[SHA256_DIGEST_LENGTH], SHA256_CTX *context)
541{
542	SHA256_Pad(context);
543
544	/* If no digest buffer is passed, we don't bother doing this: */
545	if (digest != NULL) {
546#if BYTE_ORDER == LITTLE_ENDIAN
547		int	i;
548
549		/* Convert TO host byte order */
550		for (i = 0; i < 8; i++)
551			BE_32_TO_8(digest + i * 4, context->state[i]);
552#else
553		memcpy(digest, context->state, SHA256_DIGEST_LENGTH);
554#endif
555		memset(context, 0, sizeof(*context));
556	}
557}
558
559
560/*** SHA-512: *********************************************************/
561void
562SHA512_Init(SHA512_CTX *context)
563{
564	if (context == NULL)
565		return;
566	memcpy(context->state, sha512_initial_hash_value,
567	    sizeof(sha512_initial_hash_value));
568	memset(context->buffer, 0, sizeof(context->buffer));
569	context->bitcount[0] = context->bitcount[1] =  0;
570}
571
572#ifdef SHA2_UNROLL_TRANSFORM
573
574/* Unrolled SHA-512 round macros: */
575
576#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do {				    \
577	BE_8_TO_64(W512[j], data);					    \
578	data += 8;							    \
579	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \
580	(d) += T1;							    \
581	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
582	j++;								    \
583} while(0)
584
585
586#define ROUND512(a,b,c,d,e,f,g,h) do {					    \
587	s0 = W512[(j+1)&0x0f];						    \
588	s0 = sigma0_512(s0);						    \
589	s1 = W512[(j+14)&0x0f];						    \
590	s1 = sigma1_512(s1);						    \
591	T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] +	    \
592             (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);		    \
593	(d) += T1;							    \
594	(h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c));		    \
595	j++;								    \
596} while(0)
597
598void
599SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
600{
601	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
602	u_int64_t	T1, W512[16];
603	int		j;
604
605	/* Initialize registers with the prev. intermediate value */
606	a = state[0];
607	b = state[1];
608	c = state[2];
609	d = state[3];
610	e = state[4];
611	f = state[5];
612	g = state[6];
613	h = state[7];
614
615	j = 0;
616	do {
617		/* Rounds 0 to 15 (unrolled): */
618		ROUND512_0_TO_15(a,b,c,d,e,f,g,h);
619		ROUND512_0_TO_15(h,a,b,c,d,e,f,g);
620		ROUND512_0_TO_15(g,h,a,b,c,d,e,f);
621		ROUND512_0_TO_15(f,g,h,a,b,c,d,e);
622		ROUND512_0_TO_15(e,f,g,h,a,b,c,d);
623		ROUND512_0_TO_15(d,e,f,g,h,a,b,c);
624		ROUND512_0_TO_15(c,d,e,f,g,h,a,b);
625		ROUND512_0_TO_15(b,c,d,e,f,g,h,a);
626	} while (j < 16);
627
628	/* Now for the remaining rounds up to 79: */
629	do {
630		ROUND512(a,b,c,d,e,f,g,h);
631		ROUND512(h,a,b,c,d,e,f,g);
632		ROUND512(g,h,a,b,c,d,e,f);
633		ROUND512(f,g,h,a,b,c,d,e);
634		ROUND512(e,f,g,h,a,b,c,d);
635		ROUND512(d,e,f,g,h,a,b,c);
636		ROUND512(c,d,e,f,g,h,a,b);
637		ROUND512(b,c,d,e,f,g,h,a);
638	} while (j < 80);
639
640	/* Compute the current intermediate hash value */
641	state[0] += a;
642	state[1] += b;
643	state[2] += c;
644	state[3] += d;
645	state[4] += e;
646	state[5] += f;
647	state[6] += g;
648	state[7] += h;
649
650	/* Clean up */
651	a = b = c = d = e = f = g = h = T1 = 0;
652}
653
654#else /* SHA2_UNROLL_TRANSFORM */
655
656void
657SHA512_Transform(u_int64_t state[8], const u_int8_t data[SHA512_BLOCK_LENGTH])
658{
659	u_int64_t	a, b, c, d, e, f, g, h, s0, s1;
660	u_int64_t	T1, T2, W512[16];
661	int		j;
662
663	/* Initialize registers with the prev. intermediate value */
664	a = state[0];
665	b = state[1];
666	c = state[2];
667	d = state[3];
668	e = state[4];
669	f = state[5];
670	g = state[6];
671	h = state[7];
672
673	j = 0;
674	do {
675		BE_8_TO_64(W512[j], data);
676		data += 8;
677		/* Apply the SHA-512 compression function to update a..h */
678		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j];
679		T2 = Sigma0_512(a) + Maj(a, b, c);
680		h = g;
681		g = f;
682		f = e;
683		e = d + T1;
684		d = c;
685		c = b;
686		b = a;
687		a = T1 + T2;
688
689		j++;
690	} while (j < 16);
691
692	do {
693		/* Part of the message block expansion: */
694		s0 = W512[(j+1)&0x0f];
695		s0 = sigma0_512(s0);
696		s1 = W512[(j+14)&0x0f];
697		s1 =  sigma1_512(s1);
698
699		/* Apply the SHA-512 compression function to update a..h */
700		T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] +
701		     (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0);
702		T2 = Sigma0_512(a) + Maj(a, b, c);
703		h = g;
704		g = f;
705		f = e;
706		e = d + T1;
707		d = c;
708		c = b;
709		b = a;
710		a = T1 + T2;
711
712		j++;
713	} while (j < 80);
714
715	/* Compute the current intermediate hash value */
716	state[0] += a;
717	state[1] += b;
718	state[2] += c;
719	state[3] += d;
720	state[4] += e;
721	state[5] += f;
722	state[6] += g;
723	state[7] += h;
724
725	/* Clean up */
726	a = b = c = d = e = f = g = h = T1 = T2 = 0;
727}
728
729#endif /* SHA2_UNROLL_TRANSFORM */
730
731void
732SHA512_Update(SHA512_CTX *context, const u_int8_t *data, size_t len)
733{
734	size_t	freespace, usedspace;
735
736	/* Calling with no data is valid (we do nothing) */
737	if (len == 0)
738		return;
739
740	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
741	if (usedspace > 0) {
742		/* Calculate how much free space is available in the buffer */
743		freespace = SHA512_BLOCK_LENGTH - usedspace;
744
745		if (len >= freespace) {
746			/* Fill the buffer completely and process it */
747			memcpy(&context->buffer[usedspace], data, freespace);
748			ADDINC128(context->bitcount, freespace << 3);
749			len -= freespace;
750			data += freespace;
751			SHA512_Transform(context->state, context->buffer);
752		} else {
753			/* The buffer is not yet full */
754			memcpy(&context->buffer[usedspace], data, len);
755			ADDINC128(context->bitcount, len << 3);
756			/* Clean up: */
757			usedspace = freespace = 0;
758			return;
759		}
760	}
761	while (len >= SHA512_BLOCK_LENGTH) {
762		/* Process as many complete blocks as we can */
763		SHA512_Transform(context->state, data);
764		ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3);
765		len -= SHA512_BLOCK_LENGTH;
766		data += SHA512_BLOCK_LENGTH;
767	}
768	if (len > 0) {
769		/* There's left-overs, so save 'em */
770		memcpy(context->buffer, data, len);
771		ADDINC128(context->bitcount, len << 3);
772	}
773	/* Clean up: */
774	usedspace = freespace = 0;
775}
776
777void
778SHA512_Pad(SHA512_CTX *context)
779{
780	unsigned int	usedspace;
781
782	usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH;
783	if (usedspace > 0) {
784		/* Begin padding with a 1 bit: */
785		context->buffer[usedspace++] = 0x80;
786
787		if (usedspace <= SHA512_SHORT_BLOCK_LENGTH) {
788			/* Set-up for the last transform: */
789			memset(&context->buffer[usedspace], 0, SHA512_SHORT_BLOCK_LENGTH - usedspace);
790		} else {
791			if (usedspace < SHA512_BLOCK_LENGTH) {
792				memset(&context->buffer[usedspace], 0, SHA512_BLOCK_LENGTH - usedspace);
793			}
794			/* Do second-to-last transform: */
795			SHA512_Transform(context->state, context->buffer);
796
797			/* And set-up for the last transform: */
798			memset(context->buffer, 0, SHA512_BLOCK_LENGTH - 2);
799		}
800	} else {
801		/* Prepare for final transform: */
802		memset(context->buffer, 0, SHA512_SHORT_BLOCK_LENGTH);
803
804		/* Begin padding with a 1 bit: */
805		*context->buffer = 0x80;
806	}
807	/* Store the length of input data (in bits) in big endian format: */
808	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH],
809	    context->bitcount[1]);
810	BE_64_TO_8(&context->buffer[SHA512_SHORT_BLOCK_LENGTH + 8],
811	    context->bitcount[0]);
812
813	/* Final transform: */
814	SHA512_Transform(context->state, context->buffer);
815
816	/* Clean up: */
817	usedspace = 0;
818}
819
820void
821SHA512_Final(u_int8_t digest[SHA512_DIGEST_LENGTH], SHA512_CTX *context)
822{
823	SHA512_Pad(context);
824
825	/* If no digest buffer is passed, we don't bother doing this: */
826	if (digest != NULL) {
827#if BYTE_ORDER == LITTLE_ENDIAN
828		int	i;
829
830		/* Convert TO host byte order */
831		for (i = 0; i < 8; i++)
832			BE_64_TO_8(digest + i * 8, context->state[i]);
833#else
834		memcpy(digest, context->state, SHA512_DIGEST_LENGTH);
835#endif
836		memset(context, 0, sizeof(*context));
837	}
838}
839
840
841#if 0
842/*** SHA-384: *********************************************************/
843void
844SHA384_Init(SHA384_CTX *context)
845{
846	if (context == NULL)
847		return;
848	memcpy(context->state, sha384_initial_hash_value,
849	    sizeof(sha384_initial_hash_value));
850	memset(context->buffer, 0, sizeof(context->buffer));
851	context->bitcount[0] = context->bitcount[1] = 0;
852}
853
854__weak_alias(SHA384_Transform, SHA512_Transform);
855__weak_alias(SHA384_Update, SHA512_Update);
856__weak_alias(SHA384_Pad, SHA512_Pad);
857
858void
859SHA384_Final(u_int8_t digest[SHA384_DIGEST_LENGTH], SHA384_CTX *context)
860{
861	SHA384_Pad(context);
862
863	/* If no digest buffer is passed, we don't bother doing this: */
864	if (digest != NULL) {
865#if BYTE_ORDER == LITTLE_ENDIAN
866		int	i;
867
868		/* Convert TO host byte order */
869		for (i = 0; i < 6; i++)
870			BE_64_TO_8(digest + i * 8, context->state[i]);
871#else
872		memcpy(digest, context->state, SHA384_DIGEST_LENGTH);
873#endif
874	}
875
876	/* Zero out state data */
877	memset(context, 0, sizeof(*context));
878}
879#endif
880
881#endif /* !defined(HAVE_EVP_SHA256) && !defined(HAVE_SHA256_UPDATE) && \
882    (OPENSSL_VERSION_NUMBER >= 0x00907000L) */
883