1/*-
2 * Copyright (c) 1991, 1993, 1994
3 *	The Regents of the University of California.  All rights reserved.
4 * Copyright (c) 1991, 1993, 1994, 1995, 1996
5 *	Keith Bostic.  All rights reserved.
6 *
7 * See the LICENSE file for redistribution information.
8 */
9
10#include "config.h"
11
12#ifndef lint
13static const char sccsid[] = "@(#)key.c	10.33 (Berkeley) 9/24/96";
14#endif /* not lint */
15
16#include <sys/types.h>
17#include <sys/queue.h>
18#include <sys/time.h>
19
20#include <bitstring.h>
21#include <ctype.h>
22#include <errno.h>
23#include <limits.h>
24#include <locale.h>
25#include <stdio.h>
26#include <stdlib.h>
27#include <string.h>
28#include <unistd.h>
29
30#include "common.h"
31#include "../vi/vi.h"
32
33static int	v_event_append __P((SCR *, EVENT *));
34static int	v_event_grow __P((SCR *, int));
35static int	v_key_cmp __P((const void *, const void *));
36static void	v_keyval __P((SCR *, int, scr_keyval_t));
37static void	v_sync __P((SCR *, int));
38
39/*
40 * !!!
41 * Historic vi always used:
42 *
43 *	^D: autoindent deletion
44 *	^H: last character deletion
45 *	^W: last word deletion
46 *	^Q: quote the next character (if not used in flow control).
47 *	^V: quote the next character
48 *
49 * regardless of the user's choices for these characters.  The user's erase
50 * and kill characters worked in addition to these characters.  Nvi wires
51 * down the above characters, but in addition permits the VEOF, VERASE, VKILL
52 * and VWERASE characters described by the user's termios structure.
53 *
54 * Ex was not consistent with this scheme, as it historically ran in tty
55 * cooked mode.  This meant that the scroll command and autoindent erase
56 * characters were mapped to the user's EOF character, and the character
57 * and word deletion characters were the user's tty character and word
58 * deletion characters.  This implementation makes it all consistent, as
59 * described above for vi.
60 *
61 * !!!
62 * This means that all screens share a special key set.
63 */
64KEYLIST keylist[] = {
65	{K_BACKSLASH,	  '\\'},	/*  \ */
66	{K_CARAT,	   '^'},	/*  ^ */
67	{K_CNTRLD,	'\004'},	/* ^D */
68	{K_CNTRLR,	'\022'},	/* ^R */
69	{K_CNTRLT,	'\024'},	/* ^T */
70	{K_CNTRLZ,	'\032'},	/* ^Z */
71	{K_COLON,	   ':'},	/*  : */
72	{K_CR,		  '\r'},	/* \r */
73	{K_ESCAPE,	'\033'},	/* ^[ */
74	{K_FORMFEED,	  '\f'},	/* \f */
75	{K_HEXCHAR,	'\030'},	/* ^X */
76	{K_NL,		  '\n'},	/* \n */
77	{K_RIGHTBRACE,	   '}'},	/*  } */
78	{K_RIGHTPAREN,	   ')'},	/*  ) */
79	{K_TAB,		  '\t'},	/* \t */
80	{K_VERASE,	  '\b'},	/* \b */
81	{K_VKILL,	'\025'},	/* ^U */
82	{K_VLNEXT,	'\021'},	/* ^Q */
83	{K_VLNEXT,	'\026'},	/* ^V */
84	{K_VWERASE,	'\027'},	/* ^W */
85	{K_ZERO,	   '0'},	/*  0 */
86
87#define	ADDITIONAL_CHARACTERS	4
88	{K_NOTUSED, 0},			/* VEOF, VERASE, VKILL, VWERASE */
89	{K_NOTUSED, 0},
90	{K_NOTUSED, 0},
91	{K_NOTUSED, 0},
92};
93static int nkeylist =
94    (sizeof(keylist) / sizeof(keylist[0])) - ADDITIONAL_CHARACTERS;
95
96/*
97 * v_key_init --
98 *	Initialize the special key lookup table.
99 *
100 * PUBLIC: int v_key_init __P((SCR *));
101 */
102int
103v_key_init(sp)
104	SCR *sp;
105{
106	CHAR_T ch;
107	GS *gp;
108	KEYLIST *kp;
109	int cnt;
110
111	gp = sp->gp;
112
113	/*
114	 * XXX
115	 * 8-bit only, for now.  Recompilation should get you any 8-bit
116	 * character set, as long as nul isn't a character.
117	 */
118	(void)setlocale(LC_ALL, "");
119#if __linux__
120	/*
121	 * In libc 4.5.26, setlocale(LC_ALL, ""), doesn't setup the table
122	 * for ctype(3c) correctly.  This bug is fixed in libc 4.6.x.
123	 *
124	 * This code works around this problem for libc 4.5.x users.
125	 * Note that this code is harmless if you're using libc 4.6.x.
126	 */
127	(void)setlocale(LC_CTYPE, "");
128#endif
129	v_key_ilookup(sp);
130
131	v_keyval(sp, K_CNTRLD, KEY_VEOF);
132	v_keyval(sp, K_VERASE, KEY_VERASE);
133	v_keyval(sp, K_VKILL, KEY_VKILL);
134	v_keyval(sp, K_VWERASE, KEY_VWERASE);
135
136	/* Sort the special key list. */
137	qsort(keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
138
139	/* Initialize the fast lookup table. */
140	for (gp->max_special = 0, kp = keylist, cnt = nkeylist; cnt--; ++kp) {
141		if (gp->max_special < kp->value)
142			gp->max_special = kp->value;
143		if (kp->ch <= MAX_FAST_KEY)
144			gp->special_key[kp->ch] = kp->value;
145	}
146
147	/* Find a non-printable character to use as a message separator. */
148	for (ch = 1; ch <= MAX_CHAR_T; ++ch)
149		if (!isprint(ch)) {
150			gp->noprint = ch;
151			break;
152		}
153	if (ch != gp->noprint) {
154		msgq(sp, M_ERR, "079|No non-printable character found");
155		return (1);
156	}
157	return (0);
158}
159
160/*
161 * v_keyval --
162 *	Set key values.
163 *
164 * We've left some open slots in the keylist table, and if these values exist,
165 * we put them into place.  Note, they may reset (or duplicate) values already
166 * in the table, so we check for that first.
167 */
168static void
169v_keyval(sp, val, name)
170	SCR *sp;
171	int val;
172	scr_keyval_t name;
173{
174	KEYLIST *kp;
175	CHAR_T ch;
176	int dne;
177
178	/* Get the key's value from the screen. */
179	if (sp->gp->scr_keyval(sp, name, &ch, &dne))
180		return;
181	if (dne)
182		return;
183
184	/* Check for duplication. */
185	for (kp = keylist; kp->value != K_NOTUSED; ++kp)
186		if (kp->ch == ch) {
187			kp->value = val;
188			return;
189		}
190
191	/* Add a new entry. */
192	if (kp->value == K_NOTUSED) {
193		keylist[nkeylist].ch = ch;
194		keylist[nkeylist].value = val;
195		++nkeylist;
196	}
197}
198
199/*
200 * v_key_ilookup --
201 *	Build the fast-lookup key display array.
202 *
203 * PUBLIC: void v_key_ilookup __P((SCR *));
204 */
205void
206v_key_ilookup(sp)
207	SCR *sp;
208{
209	CHAR_T ch, *p, *t;
210	GS *gp;
211	size_t len;
212
213	for (gp = sp->gp, ch = 0; ch <= MAX_FAST_KEY; ++ch)
214		for (p = gp->cname[ch].name, t = v_key_name(sp, ch),
215		    len = gp->cname[ch].len = sp->clen; len--;)
216			*p++ = *t++;
217}
218
219/*
220 * v_key_len --
221 *	Return the length of the string that will display the key.
222 *	This routine is the backup for the KEY_LEN() macro.
223 *
224 * PUBLIC: size_t v_key_len __P((SCR *, ARG_CHAR_T));
225 */
226size_t
227v_key_len(sp, ch)
228	SCR *sp;
229	ARG_CHAR_T ch;
230{
231	(void)v_key_name(sp, ch);
232	return (sp->clen);
233}
234
235/*
236 * v_key_name --
237 *	Return the string that will display the key.  This routine
238 *	is the backup for the KEY_NAME() macro.
239 *
240 * PUBLIC: CHAR_T *v_key_name __P((SCR *, ARG_CHAR_T));
241 */
242CHAR_T *
243v_key_name(sp, ach)
244	SCR *sp;
245	ARG_CHAR_T ach;
246{
247	static const CHAR_T hexdigit[] = "0123456789abcdef";
248	static const CHAR_T octdigit[] = "01234567";
249	CHAR_T ch, *chp, mask;
250	size_t len;
251	int cnt, shift;
252
253	ch = ach;
254
255	/* See if the character was explicitly declared printable or not. */
256	if ((chp = O_STR(sp, O_PRINT)) != NULL)
257		for (; *chp != '\0'; ++chp)
258			if (*chp == ch)
259				goto pr;
260	if ((chp = O_STR(sp, O_NOPRINT)) != NULL)
261		for (; *chp != '\0'; ++chp)
262			if (*chp == ch)
263				goto nopr;
264
265	/*
266	 * Historical (ARPA standard) mappings.  Printable characters are left
267	 * alone.  Control characters less than 0x20 are represented as '^'
268	 * followed by the character offset from the '@' character in the ASCII
269	 * character set.  Del (0x7f) is represented as '^' followed by '?'.
270	 *
271	 * XXX
272	 * The following code depends on the current locale being identical to
273	 * the ASCII map from 0x40 to 0x5f (since 0x1f + 0x40 == 0x5f).  I'm
274	 * told that this is a reasonable assumption...
275	 *
276	 * XXX
277	 * This code will only work with CHAR_T's that are multiples of 8-bit
278	 * bytes.
279	 *
280	 * XXX
281	 * NB: There's an assumption here that all printable characters take
282	 * up a single column on the screen.  This is not always correct.
283	 */
284	if (isprint(ch)) {
285pr:		sp->cname[0] = ch;
286		len = 1;
287		goto done;
288	}
289nopr:	if (iscntrl(ch) && (ch < 0x20 || ch == 0x7f)) {
290		sp->cname[0] = '^';
291		sp->cname[1] = ch == 0x7f ? '?' : '@' + ch;
292		len = 2;
293	} else if (O_ISSET(sp, O_OCTAL)) {
294#define	BITS	(sizeof(CHAR_T) * 8)
295#define	SHIFT	(BITS - BITS % 3)
296#define	TOPMASK	(BITS % 3 == 2 ? 3 : 1) << (BITS - BITS % 3)
297		sp->cname[0] = '\\';
298		sp->cname[1] = octdigit[(ch & TOPMASK) >> SHIFT];
299		shift = SHIFT - 3;
300		for (len = 2, mask = 7 << (SHIFT - 3),
301		    cnt = BITS / 3; cnt-- > 0; mask >>= 3, shift -= 3)
302			sp->cname[len++] = octdigit[(ch & mask) >> shift];
303	} else {
304		sp->cname[0] = '\\';
305		sp->cname[1] = 'x';
306		for (len = 2, chp = (u_int8_t *)&ch,
307		    cnt = sizeof(CHAR_T); cnt-- > 0; ++chp) {
308			sp->cname[len++] = hexdigit[(*chp & 0xf0) >> 4];
309			sp->cname[len++] = hexdigit[*chp & 0x0f];
310		}
311	}
312done:	sp->cname[sp->clen = len] = '\0';
313	return (sp->cname);
314}
315
316/*
317 * v_key_val --
318 *	Fill in the value for a key.  This routine is the backup
319 *	for the KEY_VAL() macro.
320 *
321 * PUBLIC: int v_key_val __P((SCR *, ARG_CHAR_T));
322 */
323int
324v_key_val(sp, ch)
325	SCR *sp;
326	ARG_CHAR_T ch;
327{
328	KEYLIST k, *kp;
329
330	k.ch = ch;
331	kp = bsearch(&k, keylist, nkeylist, sizeof(keylist[0]), v_key_cmp);
332	return (kp == NULL ? K_NOTUSED : kp->value);
333}
334
335/*
336 * v_event_push --
337 *	Push events/keys onto the front of the buffer.
338 *
339 * There is a single input buffer in ex/vi.  Characters are put onto the
340 * end of the buffer by the terminal input routines, and pushed onto the
341 * front of the buffer by various other functions in ex/vi.  Each key has
342 * an associated flag value, which indicates if it has already been quoted,
343 * and if it is the result of a mapping or an abbreviation.
344 *
345 * PUBLIC: int v_event_push __P((SCR *, EVENT *, CHAR_T *, size_t, u_int));
346 */
347int
348v_event_push(sp, p_evp, p_s, nitems, flags)
349	SCR *sp;
350	EVENT *p_evp;			/* Push event. */
351	CHAR_T *p_s;			/* Push characters. */
352	size_t nitems;			/* Number of items to push. */
353	u_int flags;			/* CH_* flags. */
354{
355	EVENT *evp;
356	GS *gp;
357	size_t total;
358
359	/* If we have room, stuff the items into the buffer. */
360	gp = sp->gp;
361	if (nitems <= gp->i_next ||
362	    (gp->i_event != NULL && gp->i_cnt == 0 && nitems <= gp->i_nelem)) {
363		if (gp->i_cnt != 0)
364			gp->i_next -= nitems;
365		goto copy;
366	}
367
368	/*
369	 * If there are currently items in the queue, shift them up,
370	 * leaving some extra room.  Get enough space plus a little
371	 * extra.
372	 */
373#define	TERM_PUSH_SHIFT	30
374	total = gp->i_cnt + gp->i_next + nitems + TERM_PUSH_SHIFT;
375	if (total >= gp->i_nelem && v_event_grow(sp, MAX(total, 64)))
376		return (1);
377	if (gp->i_cnt)
378		MEMMOVE(gp->i_event + TERM_PUSH_SHIFT + nitems,
379		    gp->i_event + gp->i_next, gp->i_cnt);
380	gp->i_next = TERM_PUSH_SHIFT;
381
382	/* Put the new items into the queue. */
383copy:	gp->i_cnt += nitems;
384	for (evp = gp->i_event + gp->i_next; nitems--; ++evp) {
385		if (p_evp != NULL)
386			*evp = *p_evp++;
387		else {
388			evp->e_event = E_CHARACTER;
389			evp->e_c = *p_s++;
390			evp->e_value = KEY_VAL(sp, evp->e_c);
391			F_INIT(&evp->e_ch, flags);
392		}
393	}
394	return (0);
395}
396
397/*
398 * v_event_append --
399 *	Append events onto the tail of the buffer.
400 */
401static int
402v_event_append(sp, argp)
403	SCR *sp;
404	EVENT *argp;
405{
406	CHAR_T *s;			/* Characters. */
407	EVENT *evp;
408	GS *gp;
409	size_t nevents;			/* Number of events. */
410
411	/* Grow the buffer as necessary. */
412	nevents = argp->e_event == E_STRING ? argp->e_len : 1;
413	gp = sp->gp;
414	if (gp->i_event == NULL ||
415	    nevents > gp->i_nelem - (gp->i_next + gp->i_cnt))
416		v_event_grow(sp, MAX(nevents, 64));
417	evp = gp->i_event + gp->i_next + gp->i_cnt;
418	gp->i_cnt += nevents;
419
420	/* Transform strings of characters into single events. */
421	if (argp->e_event == E_STRING)
422		for (s = argp->e_csp; nevents--; ++evp) {
423			evp->e_event = E_CHARACTER;
424			evp->e_c = *s++;
425			evp->e_value = KEY_VAL(sp, evp->e_c);
426			evp->e_flags = 0;
427		}
428	else
429		*evp = *argp;
430	return (0);
431}
432
433/* Remove events from the queue. */
434#define	QREM(len) {							\
435	if ((gp->i_cnt -= len) == 0)					\
436		gp->i_next = 0;						\
437	else								\
438		gp->i_next += len;					\
439}
440
441/*
442 * v_event_get --
443 *	Return the next event.
444 *
445 * !!!
446 * The flag EC_NODIGIT probably needs some explanation.  First, the idea of
447 * mapping keys is that one or more keystrokes act like a function key.
448 * What's going on is that vi is reading a number, and the character following
449 * the number may or may not be mapped (EC_MAPCOMMAND).  For example, if the
450 * user is entering the z command, a valid command is "z40+", and we don't want
451 * to map the '+', i.e. if '+' is mapped to "xxx", we don't want to change it
452 * into "z40xxx".  However, if the user enters "35x", we want to put all of the
453 * characters through the mapping code.
454 *
455 * Historical practice is a bit muddled here.  (Surprise!)  It always permitted
456 * mapping digits as long as they weren't the first character of the map, e.g.
457 * ":map ^A1 xxx" was okay.  It also permitted the mapping of the digits 1-9
458 * (the digit 0 was a special case as it doesn't indicate the start of a count)
459 * as the first character of the map, but then ignored those mappings.  While
460 * it's probably stupid to map digits, vi isn't your mother.
461 *
462 * The way this works is that the EC_MAPNODIGIT causes term_key to return the
463 * end-of-digit without "looking" at the next character, i.e. leaving it as the
464 * user entered it.  Presumably, the next term_key call will tell us how the
465 * user wants it handled.
466 *
467 * There is one more complication.  Users might map keys to digits, and, as
468 * it's described above, the commands:
469 *
470 *	:map g 1G
471 *	d2g
472 *
473 * would return the keys "d2<end-of-digits>1G", when the user probably wanted
474 * "d21<end-of-digits>G".  So, if a map starts off with a digit we continue as
475 * before, otherwise, we pretend we haven't mapped the character, and return
476 * <end-of-digits>.
477 *
478 * Now that that's out of the way, let's talk about Energizer Bunny macros.
479 * It's easy to create macros that expand to a loop, e.g. map x 3x.  It's
480 * fairly easy to detect this example, because it's all internal to term_key.
481 * If we're expanding a macro and it gets big enough, at some point we can
482 * assume it's looping and kill it.  The examples that are tough are the ones
483 * where the parser is involved, e.g. map x "ayyx"byy.  We do an expansion
484 * on 'x', and get "ayyx"byy.  We then return the first 4 characters, and then
485 * find the looping macro again.  There is no way that we can detect this
486 * without doing a full parse of the command, because the character that might
487 * cause the loop (in this case 'x') may be a literal character, e.g. the map
488 * map x "ayy"xyy"byy is perfectly legal and won't cause a loop.
489 *
490 * Historic vi tried to detect looping macros by disallowing obvious cases in
491 * the map command, maps that that ended with the same letter as they started
492 * (which wrongly disallowed "map x 'x"), and detecting macros that expanded
493 * too many times before keys were returned to the command parser.  It didn't
494 * get many (most?) of the tricky cases right, however, and it was certainly
495 * possible to create macros that ran forever.  And, even if it did figure out
496 * what was going on, the user was usually tossed into ex mode.  Finally, any
497 * changes made before vi realized that the macro was recursing were left in
498 * place.  We recover gracefully, but the only recourse the user has in an
499 * infinite macro loop is to interrupt.
500 *
501 * !!!
502 * It is historic practice that mapping characters to themselves as the first
503 * part of the mapped string was legal, and did not cause infinite loops, i.e.
504 * ":map! { {^M^T" and ":map n nz." were known to work.  The initial, matching
505 * characters were returned instead of being remapped.
506 *
507 * !!!
508 * It is also historic practice that the macro "map ] ]]^" caused a single ]
509 * keypress to behave as the command ]] (the ^ got the map past the vi check
510 * for "tail recursion").  Conversely, the mapping "map n nn^" went recursive.
511 * What happened was that, in the historic vi, maps were expanded as the keys
512 * were retrieved, but not all at once and not centrally.  So, the keypress ]
513 * pushed ]]^ on the stack, and then the first ] from the stack was passed to
514 * the ]] command code.  The ]] command then retrieved a key without entering
515 * the mapping code.  This could bite us anytime a user has a map that depends
516 * on secondary keys NOT being mapped.  I can't see any possible way to make
517 * this work in here without the complete abandonment of Rationality Itself.
518 *
519 * XXX
520 * The final issue is recovery.  It would be possible to undo all of the work
521 * that was done by the macro if we entered a record into the log so that we
522 * knew when the macro started, and, in fact, this might be worth doing at some
523 * point.  Given that this might make the log grow unacceptably (consider that
524 * cursor keys are done with maps), for now we leave any changes made in place.
525 *
526 * PUBLIC: int v_event_get __P((SCR *, EVENT *, int, u_int32_t));
527 */
528int
529v_event_get(sp, argp, timeout, flags)
530	SCR *sp;
531	EVENT *argp;
532	int timeout;
533	u_int32_t flags;
534{
535	EVENT *evp, ev;
536	GS *gp;
537	SEQ *qp;
538	int init_nomap, ispartial, istimeout, remap_cnt;
539
540	gp = sp->gp;
541
542	/* If simply checking for interrupts, argp may be NULL. */
543	if (argp == NULL)
544		argp = &ev;
545
546retry:	istimeout = remap_cnt = 0;
547
548	/*
549	 * If the queue isn't empty and we're timing out for characters,
550	 * return immediately.
551	 */
552	if (gp->i_cnt != 0 && LF_ISSET(EC_TIMEOUT))
553		return (0);
554
555	/*
556	 * If the queue is empty, we're checking for interrupts, or we're
557	 * timing out for characters, get more events.
558	 */
559	if (gp->i_cnt == 0 || LF_ISSET(EC_INTERRUPT | EC_TIMEOUT)) {
560		/*
561		 * If we're reading new characters, check any scripting
562		 * windows for input.
563		 */
564		if (F_ISSET(gp, G_SCRWIN) && sscr_input(sp))
565			return (1);
566loop:		if (gp->scr_event(sp, argp,
567		    LF_ISSET(EC_INTERRUPT | EC_QUOTED | EC_RAW), timeout))
568			return (1);
569		switch (argp->e_event) {
570		case E_ERR:
571		case E_SIGHUP:
572		case E_SIGTERM:
573			/*
574			 * Fatal conditions cause the file to be synced to
575			 * disk immediately.
576			 */
577			v_sync(sp, RCV_ENDSESSION | RCV_PRESERVE |
578			    (argp->e_event == E_SIGTERM ? 0: RCV_EMAIL));
579			return (1);
580		case E_TIMEOUT:
581			istimeout = 1;
582			break;
583		case E_INTERRUPT:
584			/* Set the global interrupt flag. */
585			F_SET(sp->gp, G_INTERRUPTED);
586
587			/*
588			 * If the caller was interested in interrupts, return
589			 * immediately.
590			 */
591			if (LF_ISSET(EC_INTERRUPT))
592				return (0);
593			goto append;
594		default:
595append:			if (v_event_append(sp, argp))
596				return (1);
597			break;
598		}
599	}
600
601	/*
602	 * If the caller was only interested in interrupts or timeouts, return
603	 * immediately.  (We may have gotten characters, and that's okay, they
604	 * were queued up for later use.)
605	 */
606	if (LF_ISSET(EC_INTERRUPT | EC_TIMEOUT))
607		return (0);
608
609newmap:	evp = &gp->i_event[gp->i_next];
610
611	/*
612	 * If the next event in the queue isn't a character event, return
613	 * it, we're done.
614	 */
615	if (evp->e_event != E_CHARACTER) {
616		*argp = *evp;
617		QREM(1);
618		return (0);
619	}
620
621	/*
622	 * If the key isn't mappable because:
623	 *
624	 *	+ ... the timeout has expired
625	 *	+ ... it's not a mappable key
626	 *	+ ... neither the command or input map flags are set
627	 *	+ ... there are no maps that can apply to it
628	 *
629	 * return it forthwith.
630	 */
631	if (istimeout || F_ISSET(&evp->e_ch, CH_NOMAP) ||
632	    !LF_ISSET(EC_MAPCOMMAND | EC_MAPINPUT) ||
633	    evp->e_c < MAX_BIT_SEQ && !bit_test(gp->seqb, evp->e_c))
634		goto nomap;
635
636	/* Search the map. */
637	qp = seq_find(sp, NULL, evp, NULL, gp->i_cnt,
638	    LF_ISSET(EC_MAPCOMMAND) ? SEQ_COMMAND : SEQ_INPUT, &ispartial);
639
640	/*
641	 * If get a partial match, get more characters and retry the map.
642	 * If time out without further characters, return the characters
643	 * unmapped.
644	 *
645	 * !!!
646	 * <escape> characters are a problem.  Cursor keys start with <escape>
647	 * characters, so there's almost always a map in place that begins with
648	 * an <escape> character.  If we timeout <escape> keys in the same way
649	 * that we timeout other keys, the user will get a noticeable pause as
650	 * they enter <escape> to terminate input mode.  If key timeout is set
651	 * for a slow link, users will get an even longer pause.  Nvi used to
652	 * simply timeout <escape> characters at 1/10th of a second, but this
653	 * loses over PPP links where the latency is greater than 100Ms.
654	 */
655	if (ispartial) {
656		if (O_ISSET(sp, O_TIMEOUT))
657			timeout = (evp->e_value == K_ESCAPE ?
658			    O_VAL(sp, O_ESCAPETIME) :
659			    O_VAL(sp, O_KEYTIME)) * 100;
660		else
661			timeout = 0;
662		goto loop;
663	}
664
665	/* If no map, return the character. */
666	if (qp == NULL) {
667nomap:		if (!isdigit(evp->e_c) && LF_ISSET(EC_MAPNODIGIT))
668			goto not_digit;
669		*argp = *evp;
670		QREM(1);
671		return (0);
672	}
673
674	/*
675	 * If looking for the end of a digit string, and the first character
676	 * of the map is it, pretend we haven't seen the character.
677	 */
678	if (LF_ISSET(EC_MAPNODIGIT) &&
679	    qp->output != NULL && !isdigit(qp->output[0])) {
680not_digit:	argp->e_c = CH_NOT_DIGIT;
681		argp->e_value = K_NOTUSED;
682		argp->e_event = E_CHARACTER;
683		F_INIT(&argp->e_ch, 0);
684		return (0);
685	}
686
687	/* Find out if the initial segments are identical. */
688	init_nomap = !e_memcmp(qp->output, &gp->i_event[gp->i_next], qp->ilen);
689
690	/* Delete the mapped characters from the queue. */
691	QREM(qp->ilen);
692
693	/* If keys mapped to nothing, go get more. */
694	if (qp->output == NULL)
695		goto retry;
696
697	/* If remapping characters... */
698	if (O_ISSET(sp, O_REMAP)) {
699		/*
700		 * Periodically check for interrupts.  Always check the first
701		 * time through, because it's possible to set up a map that
702		 * will return a character every time, but will expand to more,
703		 * e.g. "map! a aaaa" will always return a 'a', but we'll never
704		 * get anywhere useful.
705		 */
706		if ((++remap_cnt == 1 || remap_cnt % 10 == 0) &&
707		    (gp->scr_event(sp, &ev,
708		    EC_INTERRUPT, 0) || ev.e_event == E_INTERRUPT)) {
709			F_SET(sp->gp, G_INTERRUPTED);
710			argp->e_event = E_INTERRUPT;
711			return (0);
712		}
713
714		/*
715		 * If an initial part of the characters mapped, they are not
716		 * further remapped -- return the first one.  Push the rest
717		 * of the characters, or all of the characters if no initial
718		 * part mapped, back on the queue.
719		 */
720		if (init_nomap) {
721			if (v_event_push(sp, NULL, qp->output + qp->ilen,
722			    qp->olen - qp->ilen, CH_MAPPED))
723				return (1);
724			if (v_event_push(sp, NULL,
725			    qp->output, qp->ilen, CH_NOMAP | CH_MAPPED))
726				return (1);
727			evp = &gp->i_event[gp->i_next];
728			goto nomap;
729		}
730		if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED))
731			return (1);
732		goto newmap;
733	}
734
735	/* Else, push the characters on the queue and return one. */
736	if (v_event_push(sp, NULL, qp->output, qp->olen, CH_MAPPED | CH_NOMAP))
737		return (1);
738
739	goto nomap;
740}
741
742/*
743 * v_sync --
744 *	Walk the screen lists, sync'ing files to their backup copies.
745 */
746static void
747v_sync(sp, flags)
748	SCR *sp;
749	int flags;
750{
751	GS *gp;
752
753	gp = sp->gp;
754	for (sp = gp->dq.cqh_first; sp != (void *)&gp->dq; sp = sp->q.cqe_next)
755		rcv_sync(sp, flags);
756	for (sp = gp->hq.cqh_first; sp != (void *)&gp->hq; sp = sp->q.cqe_next)
757		rcv_sync(sp, flags);
758}
759
760/*
761 * v_event_err --
762 *	Unexpected event.
763 *
764 * PUBLIC: void v_event_err __P((SCR *, EVENT *));
765 */
766void
767v_event_err(sp, evp)
768	SCR *sp;
769	EVENT *evp;
770{
771	switch (evp->e_event) {
772	case E_CHARACTER:
773		msgq(sp, M_ERR, "276|Unexpected character event");
774		break;
775	case E_EOF:
776		msgq(sp, M_ERR, "277|Unexpected end-of-file event");
777		break;
778	case E_INTERRUPT:
779		msgq(sp, M_ERR, "279|Unexpected interrupt event");
780		break;
781	case E_QUIT:
782		msgq(sp, M_ERR, "280|Unexpected quit event");
783		break;
784	case E_REPAINT:
785		msgq(sp, M_ERR, "281|Unexpected repaint event");
786		break;
787	case E_STRING:
788		msgq(sp, M_ERR, "285|Unexpected string event");
789		break;
790	case E_TIMEOUT:
791		msgq(sp, M_ERR, "286|Unexpected timeout event");
792		break;
793	case E_WRESIZE:
794		msgq(sp, M_ERR, "316|Unexpected resize event");
795		break;
796	case E_WRITE:
797		msgq(sp, M_ERR, "287|Unexpected write event");
798		break;
799
800	/*
801	 * Theoretically, none of these can occur, as they're handled at the
802	 * top editor level.
803	 */
804	case E_ERR:
805	case E_SIGHUP:
806	case E_SIGTERM:
807	default:
808		abort();
809	}
810
811	/* Free any allocated memory. */
812	if (evp->e_asp != NULL)
813		free(evp->e_asp);
814}
815
816/*
817 * v_event_flush --
818 *	Flush any flagged keys, returning if any keys were flushed.
819 *
820 * PUBLIC: int v_event_flush __P((SCR *, u_int));
821 */
822int
823v_event_flush(sp, flags)
824	SCR *sp;
825	u_int flags;
826{
827	GS *gp;
828	int rval;
829
830	for (rval = 0, gp = sp->gp; gp->i_cnt != 0 &&
831	    F_ISSET(&gp->i_event[gp->i_next].e_ch, flags); rval = 1)
832		QREM(1);
833	return (rval);
834}
835
836/*
837 * v_event_grow --
838 *	Grow the terminal queue.
839 */
840static int
841v_event_grow(sp, add)
842	SCR *sp;
843	int add;
844{
845	GS *gp;
846	size_t new_nelem, olen;
847
848	gp = sp->gp;
849	new_nelem = gp->i_nelem + add;
850	olen = gp->i_nelem * sizeof(gp->i_event[0]);
851	BINC_RET(sp, gp->i_event, olen, new_nelem * sizeof(gp->i_event[0]));
852	gp->i_nelem = olen / sizeof(gp->i_event[0]);
853	return (0);
854}
855
856/*
857 * v_key_cmp --
858 *	Compare two keys for sorting.
859 */
860static int
861v_key_cmp(ap, bp)
862	const void *ap, *bp;
863{
864	return (((KEYLIST *)ap)->ch - ((KEYLIST *)bp)->ch);
865}
866