1/*
2 * Program to generate cryptographic keys for ntp clients and servers
3 *
4 * This program generates password encrypted data files for use with the
5 * Autokey security protocol and Network Time Protocol Version 4. Files
6 * are prefixed with a header giving the name and date of creation
7 * followed by a type-specific descriptive label and PEM-encoded data
8 * structure compatible with programs of the OpenSSL library.
9 *
10 * All file names are like "ntpkey_<type>_<hostname>.<filestamp>", where
11 * <type> is the file type, <hostname> the generating host name and
12 * <filestamp> the generation time in NTP seconds. The NTP programs
13 * expect generic names such as "ntpkey_<type>_whimsy.udel.edu" with the
14 * association maintained by soft links. Following is a list of file
15 * types; the first line is the file name and the second link name.
16 *
17 * ntpkey_MD5key_<hostname>.<filestamp>
18 * 	MD5 (128-bit) keys used to compute message digests in symmetric
19 *	key cryptography
20 *
21 * ntpkey_RSAhost_<hostname>.<filestamp>
22 * ntpkey_host_<hostname>
23 *	RSA private/public host key pair used for public key signatures
24 *
25 * ntpkey_RSAsign_<hostname>.<filestamp>
26 * ntpkey_sign_<hostname>
27 *	RSA private/public sign key pair used for public key signatures
28 *
29 * ntpkey_DSAsign_<hostname>.<filestamp>
30 * ntpkey_sign_<hostname>
31 *	DSA Private/public sign key pair used for public key signatures
32 *
33 * Available digest/signature schemes
34 *
35 * RSA:	RSA-MD2, RSA-MD5, RSA-SHA, RSA-SHA1, RSA-MDC2, EVP-RIPEMD160
36 * DSA:	DSA-SHA, DSA-SHA1
37 *
38 * ntpkey_XXXcert_<hostname>.<filestamp>
39 * ntpkey_cert_<hostname>
40 *	X509v3 certificate using RSA or DSA public keys and signatures.
41 *	XXX is a code identifying the message digest and signature
42 *	encryption algorithm
43 *
44 * Identity schemes. The key type par is used for the challenge; the key
45 * type key is used for the response.
46 *
47 * ntpkey_IFFkey_<groupname>.<filestamp>
48 * ntpkey_iffkey_<groupname>
49 *	Schnorr (IFF) identity parameters and keys
50 *
51 * ntpkey_GQkey_<groupname>.<filestamp>,
52 * ntpkey_gqkey_<groupname>
53 *	Guillou-Quisquater (GQ) identity parameters and keys
54 *
55 * ntpkey_MVkeyX_<groupname>.<filestamp>,
56 * ntpkey_mvkey_<groupname>
57 *	Mu-Varadharajan (MV) identity parameters and keys
58 *
59 * Note: Once in a while because of some statistical fluke this program
60 * fails to generate and verify some cryptographic data, as indicated by
61 * exit status -1. In this case simply run the program again. If the
62 * program does complete with exit code 0, the data are correct as
63 * verified.
64 *
65 * These cryptographic routines are characterized by the prime modulus
66 * size in bits. The default value of 512 bits is a compromise between
67 * cryptographic strength and computing time and is ordinarily
68 * considered adequate for this application. The routines have been
69 * tested with sizes of 256, 512, 1024 and 2048 bits. Not all message
70 * digest and signature encryption schemes work with sizes less than 512
71 * bits. The computing time for sizes greater than 2048 bits is
72 * prohibitive on all but the fastest processors. An UltraSPARC Blade
73 * 1000 took something over nine minutes to generate and verify the
74 * values with size 2048. An old SPARC IPC would take a week.
75 *
76 * The OpenSSL library used by this program expects a random seed file.
77 * As described in the OpenSSL documentation, the file name defaults to
78 * first the RANDFILE environment variable in the user's home directory
79 * and then .rnd in the user's home directory.
80 */
81#ifdef HAVE_CONFIG_H
82# include <config.h>
83#endif
84#include <string.h>
85#include <stdio.h>
86#include <stdlib.h>
87#include <unistd.h>
88#include <sys/stat.h>
89#include <sys/time.h>
90#include <sys/types.h>
91
92#include "ntp.h"
93#include "ntp_random.h"
94#include "ntp_stdlib.h"
95#include "ntp_assert.h"
96#include "ntp_libopts.h"
97#include "ntp_unixtime.h"
98#include "ntp-keygen-opts.h"
99
100#ifdef OPENSSL
101#include "openssl/bn.h"
102#include "openssl/evp.h"
103#include "openssl/err.h"
104#include "openssl/rand.h"
105#include "openssl/pem.h"
106#include "openssl/x509v3.h"
107#include <openssl/objects.h>
108#include "libssl_compat.h"
109#endif	/* OPENSSL */
110#include <ssl_applink.c>
111
112#define _UC(str)	((char *)(intptr_t)(str))
113/*
114 * Cryptodefines
115 */
116#define	MD5KEYS		10	/* number of keys generated of each type */
117#define	MD5SIZE		20	/* maximum key size */
118#ifdef AUTOKEY
119#define	PLEN		512	/* default prime modulus size (bits) */
120#define	ILEN		256	/* default identity modulus size (bits) */
121#define	MVMAX		100	/* max MV parameters */
122
123/*
124 * Strings used in X509v3 extension fields
125 */
126#define KEY_USAGE		"digitalSignature,keyCertSign"
127#define BASIC_CONSTRAINTS	"critical,CA:TRUE"
128#define EXT_KEY_PRIVATE		"private"
129#define EXT_KEY_TRUST		"trustRoot"
130#endif	/* AUTOKEY */
131
132/*
133 * Prototypes
134 */
135FILE	*fheader	(const char *, const char *, const char *);
136int	gen_md5		(const char *);
137void	followlink	(char *, size_t);
138#ifdef AUTOKEY
139EVP_PKEY *gen_rsa	(const char *);
140EVP_PKEY *gen_dsa	(const char *);
141EVP_PKEY *gen_iffkey	(const char *);
142EVP_PKEY *gen_gqkey	(const char *);
143EVP_PKEY *gen_mvkey	(const char *, EVP_PKEY **);
144void	gen_mvserv	(char *, EVP_PKEY **);
145int	x509		(EVP_PKEY *, const EVP_MD *, char *, const char *,
146			    char *);
147void	cb		(int, int, void *);
148EVP_PKEY *genkey	(const char *, const char *);
149EVP_PKEY *readkey	(char *, char *, u_int *, EVP_PKEY **);
150void	writekey	(char *, char *, u_int *, EVP_PKEY **);
151u_long	asn2ntp		(ASN1_TIME *);
152
153static DSA* genDsaParams(int, char*);
154static RSA* genRsaKeyPair(int, char*);
155
156#endif	/* AUTOKEY */
157
158/*
159 * Program variables
160 */
161extern char *optarg;		/* command line argument */
162char	const *progname;
163u_int	lifetime = DAYSPERYEAR;	/* certificate lifetime (days) */
164int	nkeys;			/* MV keys */
165time_t	epoch;			/* Unix epoch (seconds) since 1970 */
166u_int	fstamp;			/* NTP filestamp */
167char	hostbuf[MAXHOSTNAME + 1];
168char	*hostname = NULL;	/* host, used in cert filenames */
169char	*groupname = NULL;	/* group name */
170char	certnamebuf[2 * sizeof(hostbuf)];
171char	*certname = NULL;	/* certificate subject/issuer name */
172char	*passwd1 = NULL;	/* input private key password */
173char	*passwd2 = NULL;	/* output private key password */
174char	filename[MAXFILENAME + 1]; /* file name */
175#ifdef AUTOKEY
176u_int	modulus = PLEN;		/* prime modulus size (bits) */
177u_int	modulus2 = ILEN;	/* identity modulus size (bits) */
178long	d0, d1, d2, d3;		/* callback counters */
179const EVP_CIPHER * cipher = NULL;
180#endif	/* AUTOKEY */
181
182#ifdef SYS_WINNT
183BOOL init_randfile();
184
185/*
186 * Don't try to follow symbolic links on Windows.  Assume link == file.
187 */
188int
189readlink(
190	char *	link,
191	char *	file,
192	int	len
193	)
194{
195	return (int)strlen(file); /* assume no overflow possible */
196}
197
198/*
199 * Don't try to create symbolic links on Windows, that is supported on
200 * Vista and later only.  Instead, if CreateHardLink is available (XP
201 * and later), hardlink the linkname to the original filename.  On
202 * earlier systems, user must rename file to match expected link for
203 * ntpd to find it.  To allow building a ntp-keygen.exe which loads on
204 * Windows pre-XP, runtime link to CreateHardLinkA().
205 */
206int
207symlink(
208	char *	filename,
209	char*	linkname
210	)
211{
212	typedef BOOL (WINAPI *PCREATEHARDLINKA)(
213		__in LPCSTR	lpFileName,
214		__in LPCSTR	lpExistingFileName,
215		__reserved LPSECURITY_ATTRIBUTES lpSA
216		);
217	static PCREATEHARDLINKA pCreateHardLinkA;
218	static int		tried;
219	HMODULE			hDll;
220	FARPROC			pfn;
221	int			link_created;
222	int			saved_errno;
223
224	if (!tried) {
225		tried = TRUE;
226		hDll = LoadLibrary("kernel32");
227		pfn = GetProcAddress(hDll, "CreateHardLinkA");
228		pCreateHardLinkA = (PCREATEHARDLINKA)pfn;
229	}
230
231	if (NULL == pCreateHardLinkA) {
232		errno = ENOSYS;
233		return -1;
234	}
235
236	link_created = (*pCreateHardLinkA)(linkname, filename, NULL);
237
238	if (link_created)
239		return 0;
240
241	saved_errno = GetLastError();	/* yes we play loose */
242	mfprintf(stderr, "Create hard link %s to %s failed: %m\n",
243		 linkname, filename);
244	errno = saved_errno;
245	return -1;
246}
247
248void
249InitWin32Sockets() {
250	WORD wVersionRequested;
251	WSADATA wsaData;
252	wVersionRequested = MAKEWORD(2,0);
253	if (WSAStartup(wVersionRequested, &wsaData))
254	{
255		fprintf(stderr, "No useable winsock.dll\n");
256		exit(1);
257	}
258}
259#endif /* SYS_WINNT */
260
261
262/*
263 * followlink() - replace filename with its target if symlink.
264 *
265 * Some readlink() implementations do not null-terminate the result.
266 */
267void
268followlink(
269	char *	fname,
270	size_t	bufsiz
271	)
272{
273	int len;
274
275	REQUIRE(bufsiz > 0);
276
277	len = readlink(fname, fname, (int)bufsiz);
278	if (len < 0 ) {
279		fname[0] = '\0';
280		return;
281	}
282	if (len > (int)bufsiz - 1)
283		len = (int)bufsiz - 1;
284	fname[len] = '\0';
285}
286
287
288/*
289 * Main program
290 */
291int
292main(
293	int	argc,		/* command line options */
294	char	**argv
295	)
296{
297	struct timeval tv;	/* initialization vector */
298	int	md5key = 0;	/* generate MD5 keys */
299	int	optct;		/* option count */
300#ifdef AUTOKEY
301	X509	*cert = NULL;	/* X509 certificate */
302	EVP_PKEY *pkey_host = NULL; /* host key */
303	EVP_PKEY *pkey_sign = NULL; /* sign key */
304	EVP_PKEY *pkey_iffkey = NULL; /* IFF sever keys */
305	EVP_PKEY *pkey_gqkey = NULL; /* GQ server keys */
306	EVP_PKEY *pkey_mvkey = NULL; /* MV trusted agen keys */
307	EVP_PKEY *pkey_mvpar[MVMAX]; /* MV cleient keys */
308	int	hostkey = 0;	/* generate RSA keys */
309	int	iffkey = 0;	/* generate IFF keys */
310	int	gqkey = 0;	/* generate GQ keys */
311	int	mvkey = 0;	/* update MV keys */
312	int	mvpar = 0;	/* generate MV parameters */
313	char	*sign = NULL;	/* sign key */
314	EVP_PKEY *pkey = NULL;	/* temp key */
315	const EVP_MD *ectx;	/* EVP digest */
316	char	pathbuf[MAXFILENAME + 1];
317	const char *scheme = NULL; /* digest/signature scheme */
318	const char *ciphername = NULL; /* to encrypt priv. key */
319	const char *exten = NULL;	/* private extension */
320	char	*grpkey = NULL;	/* identity extension */
321	int	nid;		/* X509 digest/signature scheme */
322	FILE	*fstr = NULL;	/* file handle */
323	char	groupbuf[MAXHOSTNAME + 1];
324	u_int	temp;
325	BIO *	bp;
326	int	i, cnt;
327	char *	ptr;
328#endif	/* AUTOKEY */
329
330	progname = argv[0];
331
332#ifdef SYS_WINNT
333	/* Initialize before OpenSSL checks */
334	InitWin32Sockets();
335	if (!init_randfile())
336		fprintf(stderr, "Unable to initialize .rnd file\n");
337	ssl_applink();
338#endif
339
340#ifdef OPENSSL
341	ssl_check_version();
342#endif	/* OPENSSL */
343
344	ntp_crypto_srandom();
345
346	/*
347	 * Process options, initialize host name and timestamp.
348	 * gethostname() won't null-terminate if hostname is exactly the
349	 * length provided for the buffer.
350	 */
351	gethostname(hostbuf, sizeof(hostbuf) - 1);
352	hostbuf[COUNTOF(hostbuf) - 1] = '\0';
353	hostname = hostbuf;
354	groupname = hostbuf;
355	passwd1 = hostbuf;
356	passwd2 = NULL;
357	GETTIMEOFDAY(&tv, NULL);
358	epoch = tv.tv_sec;
359	fstamp = (u_int)(epoch + JAN_1970);
360
361	optct = ntpOptionProcess(&ntp_keygenOptions, argc, argv);
362	argc -= optct;	// Just in case we care later.
363	argv += optct;	// Just in case we care later.
364
365#ifdef OPENSSL
366	if (SSLeay() == SSLEAY_VERSION_NUMBER)
367		fprintf(stderr, "Using OpenSSL version %s\n",
368			SSLeay_version(SSLEAY_VERSION));
369	else
370		fprintf(stderr, "Built against OpenSSL %s, using version %s\n",
371			OPENSSL_VERSION_TEXT, SSLeay_version(SSLEAY_VERSION));
372#endif /* OPENSSL */
373
374	debug = OPT_VALUE_SET_DEBUG_LEVEL;
375
376	if (HAVE_OPT( MD5KEY ))
377		md5key++;
378#ifdef AUTOKEY
379	if (HAVE_OPT( PASSWORD ))
380		passwd1 = estrdup(OPT_ARG( PASSWORD ));
381
382	if (HAVE_OPT( EXPORT_PASSWD ))
383		passwd2 = estrdup(OPT_ARG( EXPORT_PASSWD ));
384
385	if (HAVE_OPT( HOST_KEY ))
386		hostkey++;
387
388	if (HAVE_OPT( SIGN_KEY ))
389		sign = estrdup(OPT_ARG( SIGN_KEY ));
390
391	if (HAVE_OPT( GQ_PARAMS ))
392		gqkey++;
393
394	if (HAVE_OPT( IFFKEY ))
395		iffkey++;
396
397	if (HAVE_OPT( MV_PARAMS )) {
398		mvkey++;
399		nkeys = OPT_VALUE_MV_PARAMS;
400	}
401	if (HAVE_OPT( MV_KEYS )) {
402		mvpar++;
403		nkeys = OPT_VALUE_MV_KEYS;
404	}
405
406	if (HAVE_OPT( IMBITS ))
407		modulus2 = OPT_VALUE_IMBITS;
408
409	if (HAVE_OPT( MODULUS ))
410		modulus = OPT_VALUE_MODULUS;
411
412	if (HAVE_OPT( CERTIFICATE ))
413		scheme = OPT_ARG( CERTIFICATE );
414
415	if (HAVE_OPT( CIPHER ))
416		ciphername = OPT_ARG( CIPHER );
417
418	if (HAVE_OPT( SUBJECT_NAME ))
419		hostname = estrdup(OPT_ARG( SUBJECT_NAME ));
420
421	if (HAVE_OPT( IDENT ))
422		groupname = estrdup(OPT_ARG( IDENT ));
423
424	if (HAVE_OPT( LIFETIME ))
425		lifetime = OPT_VALUE_LIFETIME;
426
427	if (HAVE_OPT( PVT_CERT ))
428		exten = EXT_KEY_PRIVATE;
429
430	if (HAVE_OPT( TRUSTED_CERT ))
431		exten = EXT_KEY_TRUST;
432
433	/*
434	 * Remove the group name from the hostname variable used
435	 * in host and sign certificate file names.
436	 */
437	if (hostname != hostbuf)
438		ptr = strchr(hostname, '@');
439	else
440		ptr = NULL;
441	if (ptr != NULL) {
442		*ptr = '\0';
443		groupname = estrdup(ptr + 1);
444		/* -s @group is equivalent to -i group, host unch. */
445		if (ptr == hostname)
446			hostname = hostbuf;
447	}
448
449	/*
450	 * Derive host certificate issuer/subject names from host name
451	 * and optional group.  If no groupname is provided, the issuer
452	 * and subject is the hostname with no '@group', and the
453	 * groupname variable is pointed to hostname for use in IFF, GQ,
454	 * and MV parameters file names.
455	 */
456	if (groupname == hostbuf) {
457		certname = hostname;
458	} else {
459		snprintf(certnamebuf, sizeof(certnamebuf), "%s@%s",
460			 hostname, groupname);
461		certname = certnamebuf;
462	}
463
464	/*
465	 * Seed random number generator and grow weeds.
466	 */
467	ERR_load_crypto_strings();
468	OpenSSL_add_all_algorithms();
469	if (!RAND_status()) {
470		if (RAND_file_name(pathbuf, sizeof(pathbuf)) == NULL) {
471			fprintf(stderr, "RAND_file_name %s\n",
472			    ERR_error_string(ERR_get_error(), NULL));
473			exit (-1);
474		}
475		temp = RAND_load_file(pathbuf, -1);
476		if (temp == 0) {
477			fprintf(stderr,
478			    "RAND_load_file %s not found or empty\n",
479			    pathbuf);
480			exit (-1);
481		}
482		fprintf(stderr,
483		    "Random seed file %s %u bytes\n", pathbuf, temp);
484		RAND_add(&epoch, sizeof(epoch), 4.0);
485	}
486#endif	/* AUTOKEY */
487
488	/*
489	 * Create new unencrypted MD5 keys file if requested. If this
490	 * option is selected, ignore all other options.
491	 */
492	if (md5key) {
493		gen_md5("md5");
494		exit (0);
495	}
496
497#ifdef AUTOKEY
498	/*
499	 * Load previous certificate if available.
500	 */
501	snprintf(filename, sizeof(filename), "ntpkey_cert_%s", hostname);
502	if ((fstr = fopen(filename, "r")) != NULL) {
503		cert = PEM_read_X509(fstr, NULL, NULL, NULL);
504		fclose(fstr);
505	}
506	if (cert != NULL) {
507
508		/*
509		 * Extract subject name.
510		 */
511		X509_NAME_oneline(X509_get_subject_name(cert), groupbuf,
512		    MAXFILENAME);
513
514		/*
515		 * Extract digest/signature scheme.
516		 */
517		if (scheme == NULL) {
518			nid = X509_get_signature_nid(cert);
519			scheme = OBJ_nid2sn(nid);
520		}
521
522		/*
523		 * If a key_usage extension field is present, determine
524		 * whether this is a trusted or private certificate.
525		 */
526		if (exten == NULL) {
527			ptr = strstr(groupbuf, "CN=");
528			cnt = X509_get_ext_count(cert);
529			for (i = 0; i < cnt; i++) {
530				X509_EXTENSION *ext;
531				ASN1_OBJECT *obj;
532
533				ext = X509_get_ext(cert, i);
534				obj = X509_EXTENSION_get_object(ext);
535
536				if (OBJ_obj2nid(obj) ==
537				    NID_ext_key_usage) {
538					bp = BIO_new(BIO_s_mem());
539					X509V3_EXT_print(bp, ext, 0, 0);
540					BIO_gets(bp, pathbuf,
541					    MAXFILENAME);
542					BIO_free(bp);
543					if (strcmp(pathbuf,
544					    "Trust Root") == 0)
545						exten = EXT_KEY_TRUST;
546					else if (strcmp(pathbuf,
547					    "Private") == 0)
548						exten = EXT_KEY_PRIVATE;
549					certname = estrdup(ptr + 3);
550				}
551			}
552		}
553	}
554	if (scheme == NULL)
555		scheme = "RSA-MD5";
556	if (ciphername == NULL)
557		ciphername = "des-ede3-cbc";
558	cipher = EVP_get_cipherbyname(ciphername);
559	if (cipher == NULL) {
560		fprintf(stderr, "Unknown cipher %s\n", ciphername);
561		exit(-1);
562	}
563	fprintf(stderr, "Using host %s group %s\n", hostname,
564	    groupname);
565
566	/*
567	 * Create a new encrypted RSA host key file if requested;
568	 * otherwise, look for an existing host key file. If not found,
569	 * create a new encrypted RSA host key file. If that fails, go
570	 * no further.
571	 */
572	if (hostkey)
573		pkey_host = genkey("RSA", "host");
574	if (pkey_host == NULL) {
575		snprintf(filename, sizeof(filename), "ntpkey_host_%s", hostname);
576		pkey_host = readkey(filename, passwd1, &fstamp, NULL);
577		if (pkey_host != NULL) {
578			followlink(filename, sizeof(filename));
579			fprintf(stderr, "Using host key %s\n",
580			    filename);
581		} else {
582			pkey_host = genkey("RSA", "host");
583		}
584	}
585	if (pkey_host == NULL) {
586		fprintf(stderr, "Generating host key fails\n");
587		exit(-1);
588	}
589
590	/*
591	 * Create new encrypted RSA or DSA sign keys file if requested;
592	 * otherwise, look for an existing sign key file. If not found,
593	 * use the host key instead.
594	 */
595	if (sign != NULL)
596		pkey_sign = genkey(sign, "sign");
597	if (pkey_sign == NULL) {
598		snprintf(filename, sizeof(filename), "ntpkey_sign_%s",
599			 hostname);
600		pkey_sign = readkey(filename, passwd1, &fstamp, NULL);
601		if (pkey_sign != NULL) {
602			followlink(filename, sizeof(filename));
603			fprintf(stderr, "Using sign key %s\n",
604			    filename);
605		} else {
606			pkey_sign = pkey_host;
607			fprintf(stderr, "Using host key as sign key\n");
608		}
609	}
610
611	/*
612	 * Create new encrypted GQ server keys file if requested;
613	 * otherwise, look for an exisiting file. If found, fetch the
614	 * public key for the certificate.
615	 */
616	if (gqkey)
617		pkey_gqkey = gen_gqkey("gqkey");
618	if (pkey_gqkey == NULL) {
619		snprintf(filename, sizeof(filename), "ntpkey_gqkey_%s",
620		    groupname);
621		pkey_gqkey = readkey(filename, passwd1, &fstamp, NULL);
622		if (pkey_gqkey != NULL) {
623			followlink(filename, sizeof(filename));
624			fprintf(stderr, "Using GQ parameters %s\n",
625			    filename);
626		}
627	}
628	if (pkey_gqkey != NULL) {
629		RSA	*rsa;
630		const BIGNUM *q;
631
632		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
633		RSA_get0_factors(rsa, NULL, &q);
634		grpkey = BN_bn2hex(q);
635	}
636
637	/*
638	 * Write the nonencrypted GQ client parameters to the stdout
639	 * stream. The parameter file is the server key file with the
640	 * private key obscured.
641	 */
642	if (pkey_gqkey != NULL && HAVE_OPT(ID_KEY)) {
643		RSA	*rsa;
644
645		snprintf(filename, sizeof(filename),
646		    "ntpkey_gqpar_%s.%u", groupname, fstamp);
647		fprintf(stderr, "Writing GQ parameters %s to stdout\n",
648		    filename);
649		fprintf(stdout, "# %s\n# %s\n", filename,
650		    ctime(&epoch));
651		/* XXX: This modifies the private key and should probably use a
652		 * copy of it instead. */
653		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
654		RSA_set0_factors(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()));
655		pkey = EVP_PKEY_new();
656		EVP_PKEY_assign_RSA(pkey, rsa);
657		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
658		    NULL, NULL);
659		fflush(stdout);
660		if (debug)
661			RSA_print_fp(stderr, rsa, 0);
662	}
663
664	/*
665	 * Write the encrypted GQ server keys to the stdout stream.
666	 */
667	if (pkey_gqkey != NULL && passwd2 != NULL) {
668		RSA	*rsa;
669
670		snprintf(filename, sizeof(filename),
671		    "ntpkey_gqkey_%s.%u", groupname, fstamp);
672		fprintf(stderr, "Writing GQ keys %s to stdout\n",
673		    filename);
674		fprintf(stdout, "# %s\n# %s\n", filename,
675		    ctime(&epoch));
676		rsa = EVP_PKEY_get0_RSA(pkey_gqkey);
677		pkey = EVP_PKEY_new();
678		EVP_PKEY_assign_RSA(pkey, rsa);
679		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
680		    NULL, passwd2);
681		fflush(stdout);
682		if (debug)
683			RSA_print_fp(stderr, rsa, 0);
684	}
685
686	/*
687	 * Create new encrypted IFF server keys file if requested;
688	 * otherwise, look for existing file.
689	 */
690	if (iffkey)
691		pkey_iffkey = gen_iffkey("iffkey");
692	if (pkey_iffkey == NULL) {
693		snprintf(filename, sizeof(filename), "ntpkey_iffkey_%s",
694		    groupname);
695		pkey_iffkey = readkey(filename, passwd1, &fstamp, NULL);
696		if (pkey_iffkey != NULL) {
697			followlink(filename, sizeof(filename));
698			fprintf(stderr, "Using IFF keys %s\n",
699			    filename);
700		}
701	}
702
703	/*
704	 * Write the nonencrypted IFF client parameters to the stdout
705	 * stream. The parameter file is the server key file with the
706	 * private key obscured.
707	 */
708	if (pkey_iffkey != NULL && HAVE_OPT(ID_KEY)) {
709		DSA	*dsa;
710
711		snprintf(filename, sizeof(filename),
712		    "ntpkey_iffpar_%s.%u", groupname, fstamp);
713		fprintf(stderr, "Writing IFF parameters %s to stdout\n",
714		    filename);
715		fprintf(stdout, "# %s\n# %s\n", filename,
716		    ctime(&epoch));
717		/* XXX: This modifies the private key and should probably use a
718		 * copy of it instead. */
719		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
720		DSA_set0_key(dsa, NULL, BN_dup(BN_value_one()));
721		pkey = EVP_PKEY_new();
722		EVP_PKEY_assign_DSA(pkey, dsa);
723		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
724		    NULL, NULL);
725		fflush(stdout);
726		if (debug)
727			DSA_print_fp(stderr, dsa, 0);
728	}
729
730	/*
731	 * Write the encrypted IFF server keys to the stdout stream.
732	 */
733	if (pkey_iffkey != NULL && passwd2 != NULL) {
734		DSA	*dsa;
735
736		snprintf(filename, sizeof(filename),
737		    "ntpkey_iffkey_%s.%u", groupname, fstamp);
738		fprintf(stderr, "Writing IFF keys %s to stdout\n",
739		    filename);
740		fprintf(stdout, "# %s\n# %s\n", filename,
741		    ctime(&epoch));
742		dsa = EVP_PKEY_get0_DSA(pkey_iffkey);
743		pkey = EVP_PKEY_new();
744		EVP_PKEY_assign_DSA(pkey, dsa);
745		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
746		    NULL, passwd2);
747		fflush(stdout);
748		if (debug)
749			DSA_print_fp(stderr, dsa, 0);
750	}
751
752	/*
753	 * Create new encrypted MV trusted-authority keys file if
754	 * requested; otherwise, look for existing keys file.
755	 */
756	if (mvkey)
757		pkey_mvkey = gen_mvkey("mv", pkey_mvpar);
758	if (pkey_mvkey == NULL) {
759		snprintf(filename, sizeof(filename), "ntpkey_mvta_%s",
760		    groupname);
761		pkey_mvkey = readkey(filename, passwd1, &fstamp,
762		    pkey_mvpar);
763		if (pkey_mvkey != NULL) {
764			followlink(filename, sizeof(filename));
765			fprintf(stderr, "Using MV keys %s\n",
766			    filename);
767		}
768	}
769
770	/*
771	 * Write the nonencrypted MV client parameters to the stdout
772	 * stream. For the moment, we always use the client parameters
773	 * associated with client key 1.
774	 */
775	if (pkey_mvkey != NULL && HAVE_OPT(ID_KEY)) {
776		snprintf(filename, sizeof(filename),
777		    "ntpkey_mvpar_%s.%u", groupname, fstamp);
778		fprintf(stderr, "Writing MV parameters %s to stdout\n",
779		    filename);
780		fprintf(stdout, "# %s\n# %s\n", filename,
781		    ctime(&epoch));
782		pkey = pkey_mvpar[2];
783		PEM_write_PKCS8PrivateKey(stdout, pkey, NULL, NULL, 0,
784		    NULL, NULL);
785		fflush(stdout);
786		if (debug)
787			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
788	}
789
790	/*
791	 * Write the encrypted MV server keys to the stdout stream.
792	 */
793	if (pkey_mvkey != NULL && passwd2 != NULL) {
794		snprintf(filename, sizeof(filename),
795		    "ntpkey_mvkey_%s.%u", groupname, fstamp);
796		fprintf(stderr, "Writing MV keys %s to stdout\n",
797		    filename);
798		fprintf(stdout, "# %s\n# %s\n", filename,
799		    ctime(&epoch));
800		pkey = pkey_mvpar[1];
801		PEM_write_PKCS8PrivateKey(stdout, pkey, cipher, NULL, 0,
802		    NULL, passwd2);
803		fflush(stdout);
804		if (debug)
805			DSA_print_fp(stderr, EVP_PKEY_get0_DSA(pkey), 0);
806	}
807
808	/*
809	 * Decode the digest/signature scheme and create the
810	 * certificate. Do this every time we run the program.
811	 */
812	ectx = EVP_get_digestbyname(scheme);
813	if (ectx == NULL) {
814		fprintf(stderr,
815		    "Invalid digest/signature combination %s\n",
816		    scheme);
817			exit (-1);
818	}
819	x509(pkey_sign, ectx, grpkey, exten, certname);
820#endif	/* AUTOKEY */
821	exit(0);
822}
823
824
825/*
826 * Generate semi-random MD5 keys compatible with NTPv3 and NTPv4. Also,
827 * if OpenSSL is around, generate random SHA1 keys compatible with
828 * symmetric key cryptography.
829 */
830int
831gen_md5(
832	const char *id		/* file name id */
833	)
834{
835	u_char	md5key[MD5SIZE + 1];	/* MD5 key */
836	FILE	*str;
837	int	i, j;
838#ifdef OPENSSL
839	u_char	keystr[MD5SIZE];
840	u_char	hexstr[2 * MD5SIZE + 1];
841	u_char	hex[] = "0123456789abcdef";
842#endif	/* OPENSSL */
843
844	str = fheader("MD5key", id, groupname);
845	for (i = 1; i <= MD5KEYS; i++) {
846		for (j = 0; j < MD5SIZE; j++) {
847			u_char temp;
848
849			while (1) {
850				int rc;
851
852				rc = ntp_crypto_random_buf(
853				    &temp, sizeof(temp));
854				if (-1 == rc) {
855					fprintf(stderr, "ntp_crypto_random_buf() failed.\n");
856					exit (-1);
857				}
858				if (temp == '#')
859					continue;
860
861				if (temp > 0x20 && temp < 0x7f)
862					break;
863			}
864			md5key[j] = temp;
865		}
866		md5key[j] = '\0';
867		fprintf(str, "%2d MD5 %s  # MD5 key\n", i,
868		    md5key);
869	}
870#ifdef OPENSSL
871	for (i = 1; i <= MD5KEYS; i++) {
872		RAND_bytes(keystr, 20);
873		for (j = 0; j < MD5SIZE; j++) {
874			hexstr[2 * j] = hex[keystr[j] >> 4];
875			hexstr[2 * j + 1] = hex[keystr[j] & 0xf];
876		}
877		hexstr[2 * MD5SIZE] = '\0';
878		fprintf(str, "%2d SHA1 %s  # SHA1 key\n", i + MD5KEYS,
879		    hexstr);
880	}
881#endif	/* OPENSSL */
882	fclose(str);
883	return (1);
884}
885
886
887#ifdef AUTOKEY
888/*
889 * readkey - load cryptographic parameters and keys
890 *
891 * This routine loads a PEM-encoded file of given name and password and
892 * extracts the filestamp from the file name. It returns a pointer to
893 * the first key if valid, NULL if not.
894 */
895EVP_PKEY *			/* public/private key pair */
896readkey(
897	char	*cp,		/* file name */
898	char	*passwd,	/* password */
899	u_int	*estamp,	/* file stamp */
900	EVP_PKEY **evpars	/* parameter list pointer */
901	)
902{
903	FILE	*str;		/* file handle */
904	EVP_PKEY *pkey = NULL;	/* public/private key */
905	u_int	gstamp;		/* filestamp */
906	char	linkname[MAXFILENAME]; /* filestamp buffer) */
907	EVP_PKEY *parkey;
908	char	*ptr;
909	int	i;
910
911	/*
912	 * Open the key file.
913	 */
914	str = fopen(cp, "r");
915	if (str == NULL)
916		return (NULL);
917
918	/*
919	 * Read the filestamp, which is contained in the first line.
920	 */
921	if ((ptr = fgets(linkname, MAXFILENAME, str)) == NULL) {
922		fprintf(stderr, "Empty key file %s\n", cp);
923		fclose(str);
924		return (NULL);
925	}
926	if ((ptr = strrchr(ptr, '.')) == NULL) {
927		fprintf(stderr, "No filestamp found in %s\n", cp);
928		fclose(str);
929		return (NULL);
930	}
931	if (sscanf(++ptr, "%u", &gstamp) != 1) {
932		fprintf(stderr, "Invalid filestamp found in %s\n", cp);
933		fclose(str);
934		return (NULL);
935	}
936
937	/*
938	 * Read and decrypt PEM-encoded private keys. The first one
939	 * found is returned. If others are expected, add them to the
940	 * parameter list.
941	 */
942	for (i = 0; i <= MVMAX - 1;) {
943		parkey = PEM_read_PrivateKey(str, NULL, NULL, passwd);
944		if (evpars != NULL) {
945			evpars[i++] = parkey;
946			evpars[i] = NULL;
947		}
948		if (parkey == NULL)
949			break;
950
951		if (pkey == NULL)
952			pkey = parkey;
953		if (debug) {
954			if (EVP_PKEY_base_id(parkey) == EVP_PKEY_DSA)
955				DSA_print_fp(stderr, EVP_PKEY_get0_DSA(parkey),
956				    0);
957			else if (EVP_PKEY_base_id(parkey) == EVP_PKEY_RSA)
958				RSA_print_fp(stderr, EVP_PKEY_get0_RSA(parkey),
959				    0);
960		}
961	}
962	fclose(str);
963	if (pkey == NULL) {
964		fprintf(stderr, "Corrupt file %s or wrong key %s\n%s\n",
965		    cp, passwd, ERR_error_string(ERR_get_error(),
966		    NULL));
967		exit (-1);
968	}
969	*estamp = gstamp;
970	return (pkey);
971}
972
973
974/*
975 * Generate RSA public/private key pair
976 */
977EVP_PKEY *			/* public/private key pair */
978gen_rsa(
979	const char *id		/* file name id */
980	)
981{
982	EVP_PKEY *pkey;		/* private key */
983	RSA	*rsa;		/* RSA parameters and key pair */
984	FILE	*str;
985
986	fprintf(stderr, "Generating RSA keys (%d bits)...\n", modulus);
987	rsa = genRsaKeyPair(modulus, _UC("RSA"));
988	fprintf(stderr, "\n");
989	if (rsa == NULL) {
990		fprintf(stderr, "RSA generate keys fails\n%s\n",
991		    ERR_error_string(ERR_get_error(), NULL));
992		return (NULL);
993	}
994
995	/*
996	 * For signature encryption it is not necessary that the RSA
997	 * parameters be strictly groomed and once in a while the
998	 * modulus turns out to be non-prime. Just for grins, we check
999	 * the primality.
1000	 */
1001	if (!RSA_check_key(rsa)) {
1002		fprintf(stderr, "Invalid RSA key\n%s\n",
1003		    ERR_error_string(ERR_get_error(), NULL));
1004		RSA_free(rsa);
1005		return (NULL);
1006	}
1007
1008	/*
1009	 * Write the RSA parameters and keys as a RSA private key
1010	 * encoded in PEM.
1011	 */
1012	if (strcmp(id, "sign") == 0)
1013		str = fheader("RSAsign", id, hostname);
1014	else
1015		str = fheader("RSAhost", id, hostname);
1016	pkey = EVP_PKEY_new();
1017	EVP_PKEY_assign_RSA(pkey, rsa);
1018	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1019	    passwd1);
1020	fclose(str);
1021	if (debug)
1022		RSA_print_fp(stderr, rsa, 0);
1023	return (pkey);
1024}
1025
1026
1027/*
1028 * Generate DSA public/private key pair
1029 */
1030EVP_PKEY *			/* public/private key pair */
1031gen_dsa(
1032	const char *id		/* file name id */
1033	)
1034{
1035	EVP_PKEY *pkey;		/* private key */
1036	DSA	*dsa;		/* DSA parameters */
1037	FILE	*str;
1038
1039	/*
1040	 * Generate DSA parameters.
1041	 */
1042	fprintf(stderr,
1043	    "Generating DSA parameters (%d bits)...\n", modulus);
1044	dsa = genDsaParams(modulus, _UC("DSA"));
1045	fprintf(stderr, "\n");
1046	if (dsa == NULL) {
1047		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1048		    ERR_error_string(ERR_get_error(), NULL));
1049		return (NULL);
1050	}
1051
1052	/*
1053	 * Generate DSA keys.
1054	 */
1055	fprintf(stderr, "Generating DSA keys (%d bits)...\n", modulus);
1056	if (!DSA_generate_key(dsa)) {
1057		fprintf(stderr, "DSA generate keys fails\n%s\n",
1058		    ERR_error_string(ERR_get_error(), NULL));
1059		DSA_free(dsa);
1060		return (NULL);
1061	}
1062
1063	/*
1064	 * Write the DSA parameters and keys as a DSA private key
1065	 * encoded in PEM.
1066	 */
1067	str = fheader("DSAsign", id, hostname);
1068	pkey = EVP_PKEY_new();
1069	EVP_PKEY_assign_DSA(pkey, dsa);
1070	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1071	    passwd1);
1072	fclose(str);
1073	if (debug)
1074		DSA_print_fp(stderr, dsa, 0);
1075	return (pkey);
1076}
1077
1078
1079/*
1080 ***********************************************************************
1081 *								       *
1082 * The following routines implement the Schnorr (IFF) identity scheme  *
1083 *								       *
1084 ***********************************************************************
1085 *
1086 * The Schnorr (IFF) identity scheme is intended for use when
1087 * certificates are generated by some other trusted certificate
1088 * authority and the certificate cannot be used to convey public
1089 * parameters. There are two kinds of files: encrypted server files that
1090 * contain private and public values and nonencrypted client files that
1091 * contain only public values. New generations of server files must be
1092 * securely transmitted to all servers of the group; client files can be
1093 * distributed by any means. The scheme is self contained and
1094 * independent of new generations of host keys, sign keys and
1095 * certificates.
1096 *
1097 * The IFF values hide in a DSA cuckoo structure which uses the same
1098 * parameters. The values are used by an identity scheme based on DSA
1099 * cryptography and described in Stimson p. 285. The p is a 512-bit
1100 * prime, g a generator of Zp* and q a 160-bit prime that divides p - 1
1101 * and is a qth root of 1 mod p; that is, g^q = 1 mod p. The TA rolls a
1102 * private random group key b (0 < b < q) and public key v = g^b, then
1103 * sends (p, q, g, b) to the servers and (p, q, g, v) to the clients.
1104 * Alice challenges Bob to confirm identity using the protocol described
1105 * below.
1106 *
1107 * How it works
1108 *
1109 * The scheme goes like this. Both Alice and Bob have the public primes
1110 * p, q and generator g. The TA gives private key b to Bob and public
1111 * key v to Alice.
1112 *
1113 * Alice rolls new random challenge r (o < r < q) and sends to Bob in
1114 * the IFF request message. Bob rolls new random k (0 < k < q), then
1115 * computes y = k + b r mod q and x = g^k mod p and sends (y, hash(x))
1116 * to Alice in the response message. Besides making the response
1117 * shorter, the hash makes it effectivey impossible for an intruder to
1118 * solve for b by observing a number of these messages.
1119 *
1120 * Alice receives the response and computes g^y v^r mod p. After a bit
1121 * of algebra, this simplifies to g^k. If the hash of this result
1122 * matches hash(x), Alice knows that Bob has the group key b. The signed
1123 * response binds this knowledge to Bob's private key and the public key
1124 * previously received in his certificate.
1125 */
1126/*
1127 * Generate Schnorr (IFF) keys.
1128 */
1129EVP_PKEY *			/* DSA cuckoo nest */
1130gen_iffkey(
1131	const char *id		/* file name id */
1132	)
1133{
1134	EVP_PKEY *pkey;		/* private key */
1135	DSA	*dsa;		/* DSA parameters */
1136	BN_CTX	*ctx;		/* BN working space */
1137	BIGNUM	*b, *r, *k, *u, *v, *w; /* BN temp */
1138	FILE	*str;
1139	u_int	temp;
1140	const BIGNUM *p, *q, *g;
1141	BIGNUM *pub_key, *priv_key;
1142
1143	/*
1144	 * Generate DSA parameters for use as IFF parameters.
1145	 */
1146	fprintf(stderr, "Generating IFF keys (%d bits)...\n",
1147	    modulus2);
1148	dsa = genDsaParams(modulus2, _UC("IFF"));
1149	fprintf(stderr, "\n");
1150	if (dsa == NULL) {
1151		fprintf(stderr, "DSA generate parameters fails\n%s\n",
1152		    ERR_error_string(ERR_get_error(), NULL));
1153		return (NULL);
1154	}
1155	DSA_get0_pqg(dsa, &p, &q, &g);
1156
1157	/*
1158	 * Generate the private and public keys. The DSA parameters and
1159	 * private key are distributed to the servers, while all except
1160	 * the private key are distributed to the clients.
1161	 */
1162	b = BN_new(); r = BN_new(); k = BN_new();
1163	u = BN_new(); v = BN_new(); w = BN_new(); ctx = BN_CTX_new();
1164	BN_rand(b, BN_num_bits(q), -1, 0);	/* a */
1165	BN_mod(b, b, q, ctx);
1166	BN_sub(v, q, b);
1167	BN_mod_exp(v, g, v, p, ctx); /* g^(q - b) mod p */
1168	BN_mod_exp(u, g, b, p, ctx);	/* g^b mod p */
1169	BN_mod_mul(u, u, v, p, ctx);
1170	temp = BN_is_one(u);
1171	fprintf(stderr,
1172	    "Confirm g^(q - b) g^b = 1 mod p: %s\n", temp == 1 ?
1173	    "yes" : "no");
1174	if (!temp) {
1175		BN_free(b); BN_free(r); BN_free(k);
1176		BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1177		return (NULL);
1178	}
1179	pub_key = BN_dup(v);
1180	priv_key = BN_dup(b);
1181	DSA_set0_key(dsa, pub_key, priv_key);
1182
1183	/*
1184	 * Here is a trial round of the protocol. First, Alice rolls
1185	 * random nonce r mod q and sends it to Bob. She needs only
1186	 * q from parameters.
1187	 */
1188	BN_rand(r, BN_num_bits(q), -1, 0);	/* r */
1189	BN_mod(r, r, q, ctx);
1190
1191	/*
1192	 * Bob rolls random nonce k mod q, computes y = k + b r mod q
1193	 * and x = g^k mod p, then sends (y, x) to Alice. He needs
1194	 * p, q and b from parameters and r from Alice.
1195	 */
1196	BN_rand(k, BN_num_bits(q), -1, 0);	/* k, 0 < k < q  */
1197	BN_mod(k, k, q, ctx);
1198	BN_mod_mul(v, priv_key, r, q, ctx); /* b r mod q */
1199	BN_add(v, v, k);
1200	BN_mod(v, v, q, ctx);		/* y = k + b r mod q */
1201	BN_mod_exp(u, g, k, p, ctx);	/* x = g^k mod p */
1202
1203	/*
1204	 * Alice verifies x = g^y v^r to confirm that Bob has group key
1205	 * b. She needs p, q, g from parameters, (y, x) from Bob and the
1206	 * original r. We omit the detail here thatt only the hash of y
1207	 * is sent.
1208	 */
1209	BN_mod_exp(v, g, v, p, ctx); /* g^y mod p */
1210	BN_mod_exp(w, pub_key, r, p, ctx); /* v^r */
1211	BN_mod_mul(v, w, v, p, ctx);	/* product mod p */
1212	temp = BN_cmp(u, v);
1213	fprintf(stderr,
1214	    "Confirm g^k = g^(k + b r) g^(q - b) r: %s\n", temp ==
1215	    0 ? "yes" : "no");
1216	BN_free(b); BN_free(r);	BN_free(k);
1217	BN_free(u); BN_free(v); BN_free(w); BN_CTX_free(ctx);
1218	if (temp != 0) {
1219		DSA_free(dsa);
1220		return (NULL);
1221	}
1222
1223	/*
1224	 * Write the IFF keys as an encrypted DSA private key encoded in
1225	 * PEM.
1226	 *
1227	 * p	modulus p
1228	 * q	modulus q
1229	 * g	generator g
1230	 * priv_key b
1231	 * public_key v
1232	 * kinv	not used
1233	 * r	not used
1234	 */
1235	str = fheader("IFFkey", id, groupname);
1236	pkey = EVP_PKEY_new();
1237	EVP_PKEY_assign_DSA(pkey, dsa);
1238	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1239	    passwd1);
1240	fclose(str);
1241	if (debug)
1242		DSA_print_fp(stderr, dsa, 0);
1243	return (pkey);
1244}
1245
1246
1247/*
1248 ***********************************************************************
1249 *								       *
1250 * The following routines implement the Guillou-Quisquater (GQ)        *
1251 * identity scheme                                                     *
1252 *								       *
1253 ***********************************************************************
1254 *
1255 * The Guillou-Quisquater (GQ) identity scheme is intended for use when
1256 * the certificate can be used to convey public parameters. The scheme
1257 * uses a X509v3 certificate extension field do convey the public key of
1258 * a private key known only to servers. There are two kinds of files:
1259 * encrypted server files that contain private and public values and
1260 * nonencrypted client files that contain only public values. New
1261 * generations of server files must be securely transmitted to all
1262 * servers of the group; client files can be distributed by any means.
1263 * The scheme is self contained and independent of new generations of
1264 * host keys and sign keys. The scheme is self contained and independent
1265 * of new generations of host keys and sign keys.
1266 *
1267 * The GQ parameters hide in a RSA cuckoo structure which uses the same
1268 * parameters. The values are used by an identity scheme based on RSA
1269 * cryptography and described in Stimson p. 300 (with errors). The 512-
1270 * bit public modulus is n = p q, where p and q are secret large primes.
1271 * The TA rolls private random group key b as RSA exponent. These values
1272 * are known to all group members.
1273 *
1274 * When rolling new certificates, a server recomputes the private and
1275 * public keys. The private key u is a random roll, while the public key
1276 * is the inverse obscured by the group key v = (u^-1)^b. These values
1277 * replace the private and public keys normally generated by the RSA
1278 * scheme. Alice challenges Bob to confirm identity using the protocol
1279 * described below.
1280 *
1281 * How it works
1282 *
1283 * The scheme goes like this. Both Alice and Bob have the same modulus n
1284 * and some random b as the group key. These values are computed and
1285 * distributed in advance via secret means, although only the group key
1286 * b is truly secret. Each has a private random private key u and public
1287 * key (u^-1)^b, although not necessarily the same ones. Bob and Alice
1288 * can regenerate the key pair from time to time without affecting
1289 * operations. The public key is conveyed on the certificate in an
1290 * extension field; the private key is never revealed.
1291 *
1292 * Alice rolls new random challenge r and sends to Bob in the GQ
1293 * request message. Bob rolls new random k, then computes y = k u^r mod
1294 * n and x = k^b mod n and sends (y, hash(x)) to Alice in the response
1295 * message. Besides making the response shorter, the hash makes it
1296 * effectivey impossible for an intruder to solve for b by observing
1297 * a number of these messages.
1298 *
1299 * Alice receives the response and computes y^b v^r mod n. After a bit
1300 * of algebra, this simplifies to k^b. If the hash of this result
1301 * matches hash(x), Alice knows that Bob has the group key b. The signed
1302 * response binds this knowledge to Bob's private key and the public key
1303 * previously received in his certificate.
1304 */
1305/*
1306 * Generate Guillou-Quisquater (GQ) parameters file.
1307 */
1308EVP_PKEY *			/* RSA cuckoo nest */
1309gen_gqkey(
1310	const char *id		/* file name id */
1311	)
1312{
1313	EVP_PKEY *pkey;		/* private key */
1314	RSA	*rsa;		/* RSA parameters */
1315	BN_CTX	*ctx;		/* BN working space */
1316	BIGNUM	*u, *v, *g, *k, *r, *y; /* BN temps */
1317	FILE	*str;
1318	u_int	temp;
1319	BIGNUM	*b;
1320	const BIGNUM	*n;
1321
1322	/*
1323	 * Generate RSA parameters for use as GQ parameters.
1324	 */
1325	fprintf(stderr,
1326	    "Generating GQ parameters (%d bits)...\n",
1327	     modulus2);
1328	rsa = genRsaKeyPair(modulus2, _UC("GQ"));
1329	fprintf(stderr, "\n");
1330	if (rsa == NULL) {
1331		fprintf(stderr, "RSA generate keys fails\n%s\n",
1332		    ERR_error_string(ERR_get_error(), NULL));
1333		return (NULL);
1334	}
1335	RSA_get0_key(rsa, &n, NULL, NULL);
1336	u = BN_new(); v = BN_new(); g = BN_new();
1337	k = BN_new(); r = BN_new(); y = BN_new();
1338	b = BN_new();
1339
1340	/*
1341	 * Generate the group key b, which is saved in the e member of
1342	 * the RSA structure. The group key is transmitted to each group
1343	 * member encrypted by the member private key.
1344	 */
1345	ctx = BN_CTX_new();
1346	BN_rand(b, BN_num_bits(n), -1, 0); /* b */
1347	BN_mod(b, b, n, ctx);
1348
1349	/*
1350	 * When generating his certificate, Bob rolls random private key
1351	 * u, then computes inverse v = u^-1.
1352	 */
1353	BN_rand(u, BN_num_bits(n), -1, 0); /* u */
1354	BN_mod(u, u, n, ctx);
1355	BN_mod_inverse(v, u, n, ctx);	/* u^-1 mod n */
1356	BN_mod_mul(k, v, u, n, ctx);
1357
1358	/*
1359	 * Bob computes public key v = (u^-1)^b, which is saved in an
1360	 * extension field on his certificate. We check that u^b v =
1361	 * 1 mod n.
1362	 */
1363	BN_mod_exp(v, v, b, n, ctx);
1364	BN_mod_exp(g, u, b, n, ctx); /* u^b */
1365	BN_mod_mul(g, g, v, n, ctx); /* u^b (u^-1)^b */
1366	temp = BN_is_one(g);
1367	fprintf(stderr,
1368	    "Confirm u^b (u^-1)^b = 1 mod n: %s\n", temp ? "yes" :
1369	    "no");
1370	if (!temp) {
1371		BN_free(u); BN_free(v);
1372		BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1373		BN_CTX_free(ctx);
1374		RSA_free(rsa);
1375		return (NULL);
1376	}
1377	/* setting 'u' and 'v' into a RSA object takes over ownership.
1378	 * Since we use these values again, we have to pass in dupes,
1379	 * or we'll corrupt the program!
1380	 */
1381	RSA_set0_factors(rsa, BN_dup(u), BN_dup(v));
1382
1383	/*
1384	 * Here is a trial run of the protocol. First, Alice rolls
1385	 * random nonce r mod n and sends it to Bob. She needs only n
1386	 * from parameters.
1387	 */
1388	BN_rand(r, BN_num_bits(n), -1, 0);	/* r */
1389	BN_mod(r, r, n, ctx);
1390
1391	/*
1392	 * Bob rolls random nonce k mod n, computes y = k u^r mod n and
1393	 * g = k^b mod n, then sends (y, g) to Alice. He needs n, u, b
1394	 * from parameters and r from Alice.
1395	 */
1396	BN_rand(k, BN_num_bits(n), -1, 0);	/* k */
1397	BN_mod(k, k, n, ctx);
1398	BN_mod_exp(y, u, r, n, ctx);	/* u^r mod n */
1399	BN_mod_mul(y, k, y, n, ctx);	/* y = k u^r mod n */
1400	BN_mod_exp(g, k, b, n, ctx);	/* g = k^b mod n */
1401
1402	/*
1403	 * Alice verifies g = v^r y^b mod n to confirm that Bob has
1404	 * private key u. She needs n, g from parameters, public key v =
1405	 * (u^-1)^b from the certificate, (y, g) from Bob and the
1406	 * original r. We omit the detaul here that only the hash of g
1407	 * is sent.
1408	 */
1409	BN_mod_exp(v, v, r, n, ctx);	/* v^r mod n */
1410	BN_mod_exp(y, y, b, n, ctx);	/* y^b mod n */
1411	BN_mod_mul(y, v, y, n, ctx);	/* v^r y^b mod n */
1412	temp = BN_cmp(y, g);
1413	fprintf(stderr, "Confirm g^k = v^r y^b mod n: %s\n", temp == 0 ?
1414	    "yes" : "no");
1415	BN_CTX_free(ctx); BN_free(u); BN_free(v);
1416	BN_free(g); BN_free(k); BN_free(r); BN_free(y);
1417	if (temp != 0) {
1418		RSA_free(rsa);
1419		return (NULL);
1420	}
1421
1422	/*
1423	 * Write the GQ parameter file as an encrypted RSA private key
1424	 * encoded in PEM.
1425	 *
1426	 * n	modulus n
1427	 * e	group key b
1428	 * d	not used
1429	 * p	private key u
1430	 * q	public key (u^-1)^b
1431	 * dmp1	not used
1432	 * dmq1	not used
1433	 * iqmp	not used
1434	 */
1435	RSA_set0_key(rsa, NULL, b, BN_dup(BN_value_one()));
1436	RSA_set0_crt_params(rsa, BN_dup(BN_value_one()), BN_dup(BN_value_one()),
1437		BN_dup(BN_value_one()));
1438	str = fheader("GQkey", id, groupname);
1439	pkey = EVP_PKEY_new();
1440	EVP_PKEY_assign_RSA(pkey, rsa);
1441	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1442	    passwd1);
1443	fclose(str);
1444	if (debug)
1445		RSA_print_fp(stderr, rsa, 0);
1446	return (pkey);
1447}
1448
1449
1450/*
1451 ***********************************************************************
1452 *								       *
1453 * The following routines implement the Mu-Varadharajan (MV) identity  *
1454 * scheme                                                              *
1455 *								       *
1456 ***********************************************************************
1457 *
1458 * The Mu-Varadharajan (MV) cryptosystem was originally intended when
1459 * servers broadcast messages to clients, but clients never send
1460 * messages to servers. There is one encryption key for the server and a
1461 * separate decryption key for each client. It operated something like a
1462 * pay-per-view satellite broadcasting system where the session key is
1463 * encrypted by the broadcaster and the decryption keys are held in a
1464 * tamperproof set-top box.
1465 *
1466 * The MV parameters and private encryption key hide in a DSA cuckoo
1467 * structure which uses the same parameters, but generated in a
1468 * different way. The values are used in an encryption scheme similar to
1469 * El Gamal cryptography and a polynomial formed from the expansion of
1470 * product terms (x - x[j]), as described in Mu, Y., and V.
1471 * Varadharajan: Robust and Secure Broadcasting, Proc. Indocrypt 2001,
1472 * 223-231. The paper has significant errors and serious omissions.
1473 *
1474 * Let q be the product of n distinct primes s1[j] (j = 1...n), where
1475 * each s1[j] has m significant bits. Let p be a prime p = 2 * q + 1, so
1476 * that q and each s1[j] divide p - 1 and p has M = n * m + 1
1477 * significant bits. Let g be a generator of Zp; that is, gcd(g, p - 1)
1478 * = 1 and g^q = 1 mod p. We do modular arithmetic over Zq and then
1479 * project into Zp* as exponents of g. Sometimes we have to compute an
1480 * inverse b^-1 of random b in Zq, but for that purpose we require
1481 * gcd(b, q) = 1. We expect M to be in the 500-bit range and n
1482 * relatively small, like 30. These are the parameters of the scheme and
1483 * they are expensive to compute.
1484 *
1485 * We set up an instance of the scheme as follows. A set of random
1486 * values x[j] mod q (j = 1...n), are generated as the zeros of a
1487 * polynomial of order n. The product terms (x - x[j]) are expanded to
1488 * form coefficients a[i] mod q (i = 0...n) in powers of x. These are
1489 * used as exponents of the generator g mod p to generate the private
1490 * encryption key A. The pair (gbar, ghat) of public server keys and the
1491 * pairs (xbar[j], xhat[j]) (j = 1...n) of private client keys are used
1492 * to construct the decryption keys. The devil is in the details.
1493 *
1494 * This routine generates a private server encryption file including the
1495 * private encryption key E and partial decryption keys gbar and ghat.
1496 * It then generates public client decryption files including the public
1497 * keys xbar[j] and xhat[j] for each client j. The partial decryption
1498 * files are used to compute the inverse of E. These values are suitably
1499 * blinded so secrets are not revealed.
1500 *
1501 * The distinguishing characteristic of this scheme is the capability to
1502 * revoke keys. Included in the calculation of E, gbar and ghat is the
1503 * product s = prod(s1[j]) (j = 1...n) above. If the factor s1[j] is
1504 * subsequently removed from the product and E, gbar and ghat
1505 * recomputed, the jth client will no longer be able to compute E^-1 and
1506 * thus unable to decrypt the messageblock.
1507 *
1508 * How it works
1509 *
1510 * The scheme goes like this. Bob has the server values (p, E, q,
1511 * gbar, ghat) and Alice has the client values (p, xbar, xhat).
1512 *
1513 * Alice rolls new random nonce r mod p and sends to Bob in the MV
1514 * request message. Bob rolls random nonce k mod q, encrypts y = r E^k
1515 * mod p and sends (y, gbar^k, ghat^k) to Alice.
1516 *
1517 * Alice receives the response and computes the inverse (E^k)^-1 from
1518 * the partial decryption keys gbar^k, ghat^k, xbar and xhat. She then
1519 * decrypts y and verifies it matches the original r. The signed
1520 * response binds this knowledge to Bob's private key and the public key
1521 * previously received in his certificate.
1522 */
1523EVP_PKEY *			/* DSA cuckoo nest */
1524gen_mvkey(
1525	const char *id,		/* file name id */
1526	EVP_PKEY **evpars	/* parameter list pointer */
1527	)
1528{
1529	EVP_PKEY *pkey, *pkey1;	/* private keys */
1530	DSA	*dsa, *dsa2, *sdsa; /* DSA parameters */
1531	BN_CTX	*ctx;		/* BN working space */
1532	BIGNUM	*a[MVMAX];	/* polynomial coefficient vector */
1533	BIGNUM	*gs[MVMAX];	/* public key vector */
1534	BIGNUM	*s1[MVMAX];	/* private enabling keys */
1535	BIGNUM	*x[MVMAX];	/* polynomial zeros vector */
1536	BIGNUM	*xbar[MVMAX], *xhat[MVMAX]; /* private keys vector */
1537	BIGNUM	*b;		/* group key */
1538	BIGNUM	*b1;		/* inverse group key */
1539	BIGNUM	*s;		/* enabling key */
1540	BIGNUM	*biga;		/* master encryption key */
1541	BIGNUM	*bige;		/* session encryption key */
1542	BIGNUM	*gbar, *ghat;	/* public key */
1543	BIGNUM	*u, *v, *w;	/* BN scratch */
1544	BIGNUM	*p, *q, *g, *priv_key, *pub_key;
1545	int	i, j, n;
1546	FILE	*str;
1547	u_int	temp;
1548
1549	/*
1550	 * Generate MV parameters.
1551	 *
1552	 * The object is to generate a multiplicative group Zp* modulo a
1553	 * prime p and a subset Zq mod q, where q is the product of n
1554	 * distinct primes s1[j] (j = 1...n) and q divides p - 1. We
1555	 * first generate n m-bit primes, where the product n m is in
1556	 * the order of 512 bits. One or more of these may have to be
1557	 * replaced later. As a practical matter, it is tough to find
1558	 * more than 31 distinct primes for 512 bits or 61 primes for
1559	 * 1024 bits. The latter can take several hundred iterations
1560	 * and several minutes on a Sun Blade 1000.
1561	 */
1562	n = nkeys;
1563	fprintf(stderr,
1564	    "Generating MV parameters for %d keys (%d bits)...\n", n,
1565	    modulus2 / n);
1566	ctx = BN_CTX_new(); u = BN_new(); v = BN_new(); w = BN_new();
1567	b = BN_new(); b1 = BN_new();
1568	dsa = DSA_new();
1569	p = BN_new(); q = BN_new(); g = BN_new();
1570	priv_key = BN_new(); pub_key = BN_new();
1571	temp = 0;
1572	for (j = 1; j <= n; j++) {
1573		s1[j] = BN_new();
1574		while (1) {
1575			BN_generate_prime_ex(s1[j], modulus2 / n, 0,
1576					     NULL, NULL, NULL);
1577			for (i = 1; i < j; i++) {
1578				if (BN_cmp(s1[i], s1[j]) == 0)
1579					break;
1580			}
1581			if (i == j)
1582				break;
1583			temp++;
1584		}
1585	}
1586	fprintf(stderr, "Birthday keys regenerated %d\n", temp);
1587
1588	/*
1589	 * Compute the modulus q as the product of the primes. Compute
1590	 * the modulus p as 2 * q + 1 and test p for primality. If p
1591	 * is composite, replace one of the primes with a new distinct
1592	 * one and try again. Note that q will hardly be a secret since
1593	 * we have to reveal p to servers, but not clients. However,
1594	 * factoring q to find the primes should be adequately hard, as
1595	 * this is the same problem considered hard in RSA. Question: is
1596	 * it as hard to find n small prime factors totalling n bits as
1597	 * it is to find two large prime factors totalling n bits?
1598	 * Remember, the bad guy doesn't know n.
1599	 */
1600	temp = 0;
1601	while (1) {
1602		BN_one(q);
1603		for (j = 1; j <= n; j++)
1604			BN_mul(q, q, s1[j], ctx);
1605		BN_copy(p, q);
1606		BN_add(p, p, p);
1607		BN_add_word(p, 1);
1608		if (BN_is_prime_ex(p, BN_prime_checks, ctx, NULL))
1609			break;
1610
1611		temp++;
1612		j = temp % n + 1;
1613		while (1) {
1614			BN_generate_prime_ex(u, modulus2 / n, 0,
1615					     NULL, NULL, NULL);
1616			for (i = 1; i <= n; i++) {
1617				if (BN_cmp(u, s1[i]) == 0)
1618					break;
1619			}
1620			if (i > n)
1621				break;
1622		}
1623		BN_copy(s1[j], u);
1624	}
1625	fprintf(stderr, "Defective keys regenerated %d\n", temp);
1626
1627	/*
1628	 * Compute the generator g using a random roll such that
1629	 * gcd(g, p - 1) = 1 and g^q = 1. This is a generator of p, not
1630	 * q. This may take several iterations.
1631	 */
1632	BN_copy(v, p);
1633	BN_sub_word(v, 1);
1634	while (1) {
1635		BN_rand(g, BN_num_bits(p) - 1, 0, 0);
1636		BN_mod(g, g, p, ctx);
1637		BN_gcd(u, g, v, ctx);
1638		if (!BN_is_one(u))
1639			continue;
1640
1641		BN_mod_exp(u, g, q, p, ctx);
1642		if (BN_is_one(u))
1643			break;
1644	}
1645
1646	DSA_set0_pqg(dsa, p, q, g);
1647
1648	/*
1649	 * Setup is now complete. Roll random polynomial roots x[j]
1650	 * (j = 1...n) for all j. While it may not be strictly
1651	 * necessary, Make sure each root has no factors in common with
1652	 * q.
1653	 */
1654	fprintf(stderr,
1655	    "Generating polynomial coefficients for %d roots (%d bits)\n",
1656	    n, BN_num_bits(q));
1657	for (j = 1; j <= n; j++) {
1658		x[j] = BN_new();
1659
1660		while (1) {
1661			BN_rand(x[j], BN_num_bits(q), 0, 0);
1662			BN_mod(x[j], x[j], q, ctx);
1663			BN_gcd(u, x[j], q, ctx);
1664			if (BN_is_one(u))
1665				break;
1666		}
1667	}
1668
1669	/*
1670	 * Generate polynomial coefficients a[i] (i = 0...n) from the
1671	 * expansion of root products (x - x[j]) mod q for all j. The
1672	 * method is a present from Charlie Boncelet.
1673	 */
1674	for (i = 0; i <= n; i++) {
1675		a[i] = BN_new();
1676		BN_one(a[i]);
1677	}
1678	for (j = 1; j <= n; j++) {
1679		BN_zero(w);
1680		for (i = 0; i < j; i++) {
1681			BN_copy(u, q);
1682			BN_mod_mul(v, a[i], x[j], q, ctx);
1683			BN_sub(u, u, v);
1684			BN_add(u, u, w);
1685			BN_copy(w, a[i]);
1686			BN_mod(a[i], u, q, ctx);
1687		}
1688	}
1689
1690	/*
1691	 * Generate gs[i] = g^a[i] mod p for all i and the generator g.
1692	 */
1693	for (i = 0; i <= n; i++) {
1694		gs[i] = BN_new();
1695		BN_mod_exp(gs[i], g, a[i], p, ctx);
1696	}
1697
1698	/*
1699	 * Verify prod(gs[i]^(a[i] x[j]^i)) = 1 for all i, j. Note the
1700	 * a[i] x[j]^i exponent is computed mod q, but the gs[i] is
1701	 * computed mod p. also note the expression given in the paper
1702	 * is incorrect.
1703	 */
1704	temp = 1;
1705	for (j = 1; j <= n; j++) {
1706		BN_one(u);
1707		for (i = 0; i <= n; i++) {
1708			BN_set_word(v, i);
1709			BN_mod_exp(v, x[j], v, q, ctx);
1710			BN_mod_mul(v, v, a[i], q, ctx);
1711			BN_mod_exp(v, g, v, p, ctx);
1712			BN_mod_mul(u, u, v, p, ctx);
1713		}
1714		if (!BN_is_one(u))
1715			temp = 0;
1716	}
1717	fprintf(stderr,
1718	    "Confirm prod(gs[i]^(x[j]^i)) = 1 for all i, j: %s\n", temp ?
1719	    "yes" : "no");
1720	if (!temp) {
1721		return (NULL);
1722	}
1723
1724	/*
1725	 * Make private encryption key A. Keep it around for awhile,
1726	 * since it is expensive to compute.
1727	 */
1728	biga = BN_new();
1729
1730	BN_one(biga);
1731	for (j = 1; j <= n; j++) {
1732		for (i = 0; i < n; i++) {
1733			BN_set_word(v, i);
1734			BN_mod_exp(v, x[j], v, q, ctx);
1735			BN_mod_exp(v, gs[i], v, p, ctx);
1736			BN_mod_mul(biga, biga, v, p, ctx);
1737		}
1738	}
1739
1740	/*
1741	 * Roll private random group key b mod q (0 < b < q), where
1742	 * gcd(b, q) = 1 to guarantee b^-1 exists, then compute b^-1
1743	 * mod q. If b is changed, the client keys must be recomputed.
1744	 */
1745	while (1) {
1746		BN_rand(b, BN_num_bits(q), 0, 0);
1747		BN_mod(b, b, q, ctx);
1748		BN_gcd(u, b, q, ctx);
1749		if (BN_is_one(u))
1750			break;
1751	}
1752	BN_mod_inverse(b1, b, q, ctx);
1753
1754	/*
1755	 * Make private client keys (xbar[j], xhat[j]) for all j. Note
1756	 * that the keys for the jth client do not s1[j] or the product
1757	 * s1[j]) (j = 1...n) which is q by construction.
1758	 *
1759	 * Compute the factor w such that w s1[j] = s1[j] for all j. The
1760	 * easy way to do this is to compute (q + s1[j]) / s1[j].
1761	 * Exercise for the student: prove the remainder is always zero.
1762	 */
1763	for (j = 1; j <= n; j++) {
1764		xbar[j] = BN_new(); xhat[j] = BN_new();
1765
1766		BN_add(w, q, s1[j]);
1767		BN_div(w, u, w, s1[j], ctx);
1768		BN_zero(xbar[j]);
1769		BN_set_word(v, n);
1770		for (i = 1; i <= n; i++) {
1771			if (i == j)
1772				continue;
1773
1774			BN_mod_exp(u, x[i], v, q, ctx);
1775			BN_add(xbar[j], xbar[j], u);
1776		}
1777		BN_mod_mul(xbar[j], xbar[j], b1, q, ctx);
1778		BN_mod_exp(xhat[j], x[j], v, q, ctx);
1779		BN_mod_mul(xhat[j], xhat[j], w, q, ctx);
1780	}
1781
1782	/*
1783	 * We revoke client j by dividing q by s1[j]. The quotient
1784	 * becomes the enabling key s. Note we always have to revoke
1785	 * one key; otherwise, the plaintext and cryptotext would be
1786	 * identical. For the present there are no provisions to revoke
1787	 * additional keys, so we sail on with only token revocations.
1788	 */
1789	s = BN_new();
1790	BN_copy(s, q);
1791	BN_div(s, u, s, s1[n], ctx);
1792
1793	/*
1794	 * For each combination of clients to be revoked, make private
1795	 * encryption key E = A^s and partial decryption keys gbar = g^s
1796	 * and ghat = g^(s b), all mod p. The servers use these keys to
1797	 * compute the session encryption key and partial decryption
1798	 * keys. These values must be regenerated if the enabling key is
1799	 * changed.
1800	 */
1801	bige = BN_new(); gbar = BN_new(); ghat = BN_new();
1802	BN_mod_exp(bige, biga, s, p, ctx);
1803	BN_mod_exp(gbar, g, s, p, ctx);
1804	BN_mod_mul(v, s, b, q, ctx);
1805	BN_mod_exp(ghat, g, v, p, ctx);
1806
1807	/*
1808	 * Notes: We produce the key media in three steps. The first
1809	 * step is to generate the system parameters p, q, g, b, A and
1810	 * the enabling keys s1[j]. Associated with each s1[j] are
1811	 * parameters xbar[j] and xhat[j]. All of these parameters are
1812	 * retained in a data structure protecteted by the trusted-agent
1813	 * password. The p, xbar[j] and xhat[j] paremeters are
1814	 * distributed to the j clients. When the client keys are to be
1815	 * activated, the enabled keys are multipied together to form
1816	 * the master enabling key s. This and the other parameters are
1817	 * used to compute the server encryption key E and the partial
1818	 * decryption keys gbar and ghat.
1819	 *
1820	 * In the identity exchange the client rolls random r and sends
1821	 * it to the server. The server rolls random k, which is used
1822	 * only once, then computes the session key E^k and partial
1823	 * decryption keys gbar^k and ghat^k. The server sends the
1824	 * encrypted r along with gbar^k and ghat^k to the client. The
1825	 * client completes the decryption and verifies it matches r.
1826	 */
1827	/*
1828	 * Write the MV trusted-agent parameters and keys as a DSA
1829	 * private key encoded in PEM.
1830	 *
1831	 * p	modulus p
1832	 * q	modulus q
1833	 * g	generator g
1834	 * priv_key A mod p
1835	 * pub_key b mod q
1836	 * (remaining values are not used)
1837	 */
1838	i = 0;
1839	str = fheader("MVta", "mvta", groupname);
1840	fprintf(stderr, "Generating MV trusted-authority keys\n");
1841	BN_copy(priv_key, biga);
1842	BN_copy(pub_key, b);
1843	DSA_set0_key(dsa, pub_key, priv_key);
1844	pkey = EVP_PKEY_new();
1845	EVP_PKEY_assign_DSA(pkey, dsa);
1846	PEM_write_PKCS8PrivateKey(str, pkey, cipher, NULL, 0, NULL,
1847	    passwd1);
1848	evpars[i++] = pkey;
1849	if (debug)
1850		DSA_print_fp(stderr, dsa, 0);
1851
1852	/*
1853	 * Append the MV server parameters and keys as a DSA key encoded
1854	 * in PEM.
1855	 *
1856	 * p	modulus p
1857	 * q	modulus q (used only when generating k)
1858	 * g	bige
1859	 * priv_key gbar
1860	 * pub_key ghat
1861	 * (remaining values are not used)
1862	 */
1863	fprintf(stderr, "Generating MV server keys\n");
1864	dsa2 = DSA_new();
1865	DSA_set0_pqg(dsa2, BN_dup(p), BN_dup(q), BN_dup(bige));
1866	DSA_set0_key(dsa2, BN_dup(ghat), BN_dup(gbar));
1867	pkey1 = EVP_PKEY_new();
1868	EVP_PKEY_assign_DSA(pkey1, dsa2);
1869	PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0, NULL,
1870	    passwd1);
1871	evpars[i++] = pkey1;
1872	if (debug)
1873		DSA_print_fp(stderr, dsa2, 0);
1874
1875	/*
1876	 * Append the MV client parameters for each client j as DSA keys
1877	 * encoded in PEM.
1878	 *
1879	 * p	modulus p
1880	 * priv_key xbar[j] mod q
1881	 * pub_key xhat[j] mod q
1882	 * (remaining values are not used)
1883	 */
1884	fprintf(stderr, "Generating %d MV client keys\n", n);
1885	for (j = 1; j <= n; j++) {
1886		sdsa = DSA_new();
1887		DSA_set0_pqg(sdsa, BN_dup(p), BN_dup(BN_value_one()),
1888			BN_dup(BN_value_one()));
1889		DSA_set0_key(sdsa, BN_dup(xhat[j]), BN_dup(xbar[j]));
1890		pkey1 = EVP_PKEY_new();
1891		EVP_PKEY_set1_DSA(pkey1, sdsa);
1892		PEM_write_PKCS8PrivateKey(str, pkey1, cipher, NULL, 0,
1893		    NULL, passwd1);
1894		evpars[i++] = pkey1;
1895		if (debug)
1896			DSA_print_fp(stderr, sdsa, 0);
1897
1898		/*
1899		 * The product (gbar^k)^xbar[j] (ghat^k)^xhat[j] and E
1900		 * are inverses of each other. We check that the product
1901		 * is one for each client except the ones that have been
1902		 * revoked.
1903		 */
1904		BN_mod_exp(v, gbar, xhat[j], p, ctx);
1905		BN_mod_exp(u, ghat, xbar[j], p, ctx);
1906		BN_mod_mul(u, u, v, p, ctx);
1907		BN_mod_mul(u, u, bige, p, ctx);
1908		if (!BN_is_one(u)) {
1909			fprintf(stderr, "Revoke key %d\n", j);
1910			continue;
1911		}
1912	}
1913	evpars[i++] = NULL;
1914	fclose(str);
1915
1916	/*
1917	 * Free the countries.
1918	 */
1919	for (i = 0; i <= n; i++) {
1920		BN_free(a[i]); BN_free(gs[i]);
1921	}
1922	for (j = 1; j <= n; j++) {
1923		BN_free(x[j]); BN_free(xbar[j]); BN_free(xhat[j]);
1924		BN_free(s1[j]);
1925	}
1926	return (pkey);
1927}
1928
1929
1930/*
1931 * Generate X509v3 certificate.
1932 *
1933 * The certificate consists of the version number, serial number,
1934 * validity interval, issuer name, subject name and public key. For a
1935 * self-signed certificate, the issuer name is the same as the subject
1936 * name and these items are signed using the subject private key. The
1937 * validity interval extends from the current time to the same time one
1938 * year hence. For NTP purposes, it is convenient to use the NTP seconds
1939 * of the current time as the serial number.
1940 */
1941int
1942x509	(
1943	EVP_PKEY *pkey,		/* signing key */
1944	const EVP_MD *md,	/* signature/digest scheme */
1945	char	*gqpub,		/* identity extension (hex string) */
1946	const char *exten,	/* private cert extension */
1947	char	*name		/* subject/issuer name */
1948	)
1949{
1950	X509	*cert;		/* X509 certificate */
1951	X509_NAME *subj;	/* distinguished (common) name */
1952	X509_EXTENSION *ex;	/* X509v3 extension */
1953	FILE	*str;		/* file handle */
1954	ASN1_INTEGER *serial;	/* serial number */
1955	const char *id;		/* digest/signature scheme name */
1956	char	pathbuf[MAXFILENAME + 1];
1957
1958	/*
1959	 * Generate X509 self-signed certificate.
1960	 *
1961	 * Set the certificate serial to the NTP seconds for grins. Set
1962	 * the version to 3. Set the initial validity to the current
1963	 * time and the finalvalidity one year hence.
1964	 */
1965 	id = OBJ_nid2sn(EVP_MD_pkey_type(md));
1966	fprintf(stderr, "Generating new certificate %s %s\n", name, id);
1967	cert = X509_new();
1968	X509_set_version(cert, 2L);
1969	serial = ASN1_INTEGER_new();
1970	ASN1_INTEGER_set(serial, (long)epoch + JAN_1970);
1971	X509_set_serialNumber(cert, serial);
1972	ASN1_INTEGER_free(serial);
1973	X509_time_adj(X509_get_notBefore(cert), 0L, &epoch);
1974	X509_time_adj(X509_get_notAfter(cert), lifetime * SECSPERDAY, &epoch);
1975	subj = X509_get_subject_name(cert);
1976	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1977	    (u_char *)name, -1, -1, 0);
1978	subj = X509_get_issuer_name(cert);
1979	X509_NAME_add_entry_by_txt(subj, "commonName", MBSTRING_ASC,
1980	    (u_char *)name, -1, -1, 0);
1981	if (!X509_set_pubkey(cert, pkey)) {
1982		fprintf(stderr, "Assign certificate signing key fails\n%s\n",
1983		    ERR_error_string(ERR_get_error(), NULL));
1984		X509_free(cert);
1985		return (0);
1986	}
1987
1988	/*
1989	 * Add X509v3 extensions if present. These represent the minimum
1990	 * set defined in RFC3280 less the certificate_policy extension,
1991	 * which is seriously obfuscated in OpenSSL.
1992	 */
1993	/*
1994	 * The basic_constraints extension CA:TRUE allows servers to
1995	 * sign client certficitates.
1996	 */
1997	fprintf(stderr, "%s: %s\n", LN_basic_constraints,
1998	    BASIC_CONSTRAINTS);
1999	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_basic_constraints,
2000	    _UC(BASIC_CONSTRAINTS));
2001	if (!X509_add_ext(cert, ex, -1)) {
2002		fprintf(stderr, "Add extension field fails\n%s\n",
2003		    ERR_error_string(ERR_get_error(), NULL));
2004		return (0);
2005	}
2006	X509_EXTENSION_free(ex);
2007
2008	/*
2009	 * The key_usage extension designates the purposes the key can
2010	 * be used for.
2011	 */
2012	fprintf(stderr, "%s: %s\n", LN_key_usage, KEY_USAGE);
2013	ex = X509V3_EXT_conf_nid(NULL, NULL, NID_key_usage, _UC(KEY_USAGE));
2014	if (!X509_add_ext(cert, ex, -1)) {
2015		fprintf(stderr, "Add extension field fails\n%s\n",
2016		    ERR_error_string(ERR_get_error(), NULL));
2017		return (0);
2018	}
2019	X509_EXTENSION_free(ex);
2020	/*
2021	 * The subject_key_identifier is used for the GQ public key.
2022	 * This should not be controversial.
2023	 */
2024	if (gqpub != NULL) {
2025		fprintf(stderr, "%s\n", LN_subject_key_identifier);
2026		ex = X509V3_EXT_conf_nid(NULL, NULL,
2027		    NID_subject_key_identifier, gqpub);
2028		if (!X509_add_ext(cert, ex, -1)) {
2029			fprintf(stderr,
2030			    "Add extension field fails\n%s\n",
2031			    ERR_error_string(ERR_get_error(), NULL));
2032			return (0);
2033		}
2034		X509_EXTENSION_free(ex);
2035	}
2036
2037	/*
2038	 * The extended key usage extension is used for special purpose
2039	 * here. The semantics probably do not conform to the designer's
2040	 * intent and will likely change in future.
2041	 *
2042	 * "trustRoot" designates a root authority
2043	 * "private" designates a private certificate
2044	 */
2045	if (exten != NULL) {
2046		fprintf(stderr, "%s: %s\n", LN_ext_key_usage, exten);
2047		ex = X509V3_EXT_conf_nid(NULL, NULL,
2048		    NID_ext_key_usage, _UC(exten));
2049		if (!X509_add_ext(cert, ex, -1)) {
2050			fprintf(stderr,
2051			    "Add extension field fails\n%s\n",
2052			    ERR_error_string(ERR_get_error(), NULL));
2053			return (0);
2054		}
2055		X509_EXTENSION_free(ex);
2056	}
2057
2058	/*
2059	 * Sign and verify.
2060	 */
2061	X509_sign(cert, pkey, md);
2062	if (X509_verify(cert, pkey) <= 0) {
2063		fprintf(stderr, "Verify %s certificate fails\n%s\n", id,
2064		    ERR_error_string(ERR_get_error(), NULL));
2065		X509_free(cert);
2066		return (0);
2067	}
2068
2069	/*
2070	 * Write the certificate encoded in PEM.
2071	 */
2072	snprintf(pathbuf, sizeof(pathbuf), "%scert", id);
2073	str = fheader(pathbuf, "cert", hostname);
2074	PEM_write_X509(str, cert);
2075	fclose(str);
2076	if (debug)
2077		X509_print_fp(stderr, cert);
2078	X509_free(cert);
2079	return (1);
2080}
2081
2082#if 0	/* asn2ntp is used only with commercial certificates */
2083/*
2084 * asn2ntp - convert ASN1_TIME time structure to NTP time
2085 */
2086u_long
2087asn2ntp	(
2088	ASN1_TIME *asn1time	/* pointer to ASN1_TIME structure */
2089	)
2090{
2091	char	*v;		/* pointer to ASN1_TIME string */
2092	struct	tm tm;		/* time decode structure time */
2093
2094	/*
2095	 * Extract time string YYMMDDHHMMSSZ from ASN.1 time structure.
2096	 * Note that the YY, MM, DD fields start with one, the HH, MM,
2097	 * SS fiels start with zero and the Z character should be 'Z'
2098	 * for UTC. Also note that years less than 50 map to years
2099	 * greater than 100. Dontcha love ASN.1?
2100	 */
2101	if (asn1time->length > 13)
2102		return (-1);
2103	v = (char *)asn1time->data;
2104	tm.tm_year = (v[0] - '0') * 10 + v[1] - '0';
2105	if (tm.tm_year < 50)
2106		tm.tm_year += 100;
2107	tm.tm_mon = (v[2] - '0') * 10 + v[3] - '0' - 1;
2108	tm.tm_mday = (v[4] - '0') * 10 + v[5] - '0';
2109	tm.tm_hour = (v[6] - '0') * 10 + v[7] - '0';
2110	tm.tm_min = (v[8] - '0') * 10 + v[9] - '0';
2111	tm.tm_sec = (v[10] - '0') * 10 + v[11] - '0';
2112	tm.tm_wday = 0;
2113	tm.tm_yday = 0;
2114	tm.tm_isdst = 0;
2115	return (mktime(&tm) + JAN_1970);
2116}
2117#endif
2118
2119/*
2120 * Callback routine
2121 */
2122void
2123cb	(
2124	int	n1,		/* arg 1 */
2125	int	n2,		/* arg 2 */
2126	void	*chr		/* arg 3 */
2127	)
2128{
2129	switch (n1) {
2130	case 0:
2131		d0++;
2132		fprintf(stderr, "%s %d %d %lu\r", (char *)chr, n1, n2,
2133		    d0);
2134		break;
2135	case 1:
2136		d1++;
2137		fprintf(stderr, "%s\t\t%d %d %lu\r", (char *)chr, n1,
2138		    n2, d1);
2139		break;
2140	case 2:
2141		d2++;
2142		fprintf(stderr, "%s\t\t\t\t%d %d %lu\r", (char *)chr,
2143		    n1, n2, d2);
2144		break;
2145	case 3:
2146		d3++;
2147		fprintf(stderr, "%s\t\t\t\t\t\t%d %d %lu\r",
2148		    (char *)chr, n1, n2, d3);
2149		break;
2150	}
2151}
2152
2153
2154/*
2155 * Generate key
2156 */
2157EVP_PKEY *			/* public/private key pair */
2158genkey(
2159	const char *type,	/* key type (RSA or DSA) */
2160	const char *id		/* file name id */
2161	)
2162{
2163	if (type == NULL)
2164		return (NULL);
2165	if (strcmp(type, "RSA") == 0)
2166		return (gen_rsa(id));
2167
2168	else if (strcmp(type, "DSA") == 0)
2169		return (gen_dsa(id));
2170
2171	fprintf(stderr, "Invalid %s key type %s\n", id, type);
2172	return (NULL);
2173}
2174
2175static RSA*
2176genRsaKeyPair(
2177	int	bits,
2178	char *	what
2179	)
2180{
2181	RSA *		rsa = RSA_new();
2182	BN_GENCB *	gcb = BN_GENCB_new();
2183	BIGNUM *	bne = BN_new();
2184
2185	if (gcb)
2186		BN_GENCB_set_old(gcb, cb, what);
2187	if (bne)
2188		BN_set_word(bne, 65537);
2189	if (!(rsa && gcb && bne && RSA_generate_key_ex(
2190		      rsa, bits, bne, gcb)))
2191	{
2192		RSA_free(rsa);
2193		rsa = NULL;
2194	}
2195	BN_GENCB_free(gcb);
2196	BN_free(bne);
2197	return rsa;
2198}
2199
2200static DSA*
2201genDsaParams(
2202	int	bits,
2203	char *	what
2204	)
2205{
2206
2207	DSA *		dsa = DSA_new();
2208	BN_GENCB *	gcb = BN_GENCB_new();
2209	u_char		seed[20];
2210
2211	if (gcb)
2212		BN_GENCB_set_old(gcb, cb, what);
2213	RAND_bytes(seed, sizeof(seed));
2214	if (!(dsa && gcb && DSA_generate_parameters_ex(
2215		      dsa, bits, seed, sizeof(seed), NULL, NULL, gcb)))
2216	{
2217		DSA_free(dsa);
2218		dsa = NULL;
2219	}
2220	BN_GENCB_free(gcb);
2221	return dsa;
2222}
2223
2224#endif	/* AUTOKEY */
2225
2226
2227/*
2228 * Generate file header and link
2229 */
2230FILE *
2231fheader	(
2232	const char *file,	/* file name id */
2233	const char *ulink,	/* linkname */
2234	const char *owner	/* owner name */
2235	)
2236{
2237	FILE	*str;		/* file handle */
2238	char	linkname[MAXFILENAME]; /* link name */
2239	int	temp;
2240#ifdef HAVE_UMASK
2241        mode_t  orig_umask;
2242#endif
2243
2244	snprintf(filename, sizeof(filename), "ntpkey_%s_%s.%u", file,
2245	    owner, fstamp);
2246#ifdef HAVE_UMASK
2247        orig_umask = umask( S_IWGRP | S_IRWXO );
2248        str = fopen(filename, "w");
2249        (void) umask(orig_umask);
2250#else
2251        str = fopen(filename, "w");
2252#endif
2253	if (str == NULL) {
2254		perror("Write");
2255		exit (-1);
2256	}
2257        if (strcmp(ulink, "md5") == 0) {
2258          strcpy(linkname,"ntp.keys");
2259        } else {
2260          snprintf(linkname, sizeof(linkname), "ntpkey_%s_%s", ulink,
2261                   hostname);
2262        }
2263	(void)remove(linkname);		/* The symlink() line below matters */
2264	temp = symlink(filename, linkname);
2265	if (temp < 0)
2266		perror(file);
2267	fprintf(stderr, "Generating new %s file and link\n", ulink);
2268	fprintf(stderr, "%s->%s\n", linkname, filename);
2269	fprintf(str, "# %s\n# %s\n", filename, ctime(&epoch));
2270	return (str);
2271}
2272