1/*
2 * refclock_chu - clock driver for Canadian CHU time/frequency station
3 */
4#ifdef HAVE_CONFIG_H
5#include <config.h>
6#endif
7
8#include "ntp_types.h"
9
10#if defined(REFCLOCK) && defined(CLOCK_CHU)
11
12#include "ntpd.h"
13#include "ntp_io.h"
14#include "ntp_refclock.h"
15#include "ntp_calendar.h"
16#include "ntp_stdlib.h"
17
18#include <stdio.h>
19#include <ctype.h>
20#include <math.h>
21
22#ifdef HAVE_AUDIO
23#include "audio.h"
24#endif /* HAVE_AUDIO */
25
26#define ICOM 	1		/* undefine to suppress ICOM code */
27
28#ifdef ICOM
29#include "icom.h"
30#endif /* ICOM */
31/*
32 * Audio CHU demodulator/decoder
33 *
34 * This driver synchronizes the computer time using data encoded in
35 * radio transmissions from Canadian time/frequency station CHU in
36 * Ottawa, Ontario. Transmissions are made continuously on 3330 kHz,
37 * 7850 kHz and 14670 kHz in upper sideband, compatible AM mode. An
38 * ordinary shortwave receiver can be tuned manually to one of these
39 * frequencies or, in the case of ICOM receivers, the receiver can be
40 * tuned automatically as propagation conditions change throughout the
41 * day and season.
42 *
43 * The driver requires an audio codec or sound card with sampling rate 8
44 * kHz and mu-law companding. This is the same standard as used by the
45 * telephone industry and is supported by most hardware and operating
46 * systems, including Solaris, SunOS, FreeBSD, NetBSD and Linux. In this
47 * implementation, only one audio driver and codec can be supported on a
48 * single machine.
49 *
50 * The driver can be compiled to use a Bell 103 compatible modem or
51 * modem chip to receive the radio signal and demodulate the data.
52 * Alternatively, the driver can be compiled to use the audio codec of
53 * the workstation or another with compatible audio drivers. In the
54 * latter case, the driver implements the modem using DSP routines, so
55 * the radio can be connected directly to either the microphone on line
56 * input port. In either case, the driver decodes the data using a
57 * maximum-likelihood technique which exploits the considerable degree
58 * of redundancy available to maximize accuracy and minimize errors.
59 *
60 * The CHU time broadcast includes an audio signal compatible with the
61 * Bell 103 modem standard (mark = 2225 Hz, space = 2025 Hz). The signal
62 * consists of nine, ten-character bursts transmitted at 300 bps between
63 * seconds 31 and 39 of each minute. Each character consists of eight
64 * data bits plus one start bit and two stop bits to encode two hex
65 * digits. The burst data consist of five characters (ten hex digits)
66 * followed by a repeat of these characters. In format A, the characters
67 * are repeated in the same polarity; in format B, the characters are
68 * repeated in the opposite polarity.
69 *
70 * Format A bursts are sent at seconds 32 through 39 of the minute in
71 * hex digits (nibble swapped)
72 *
73 *	6dddhhmmss6dddhhmmss
74 *
75 * The first ten digits encode a frame marker (6) followed by the day
76 * (ddd), hour (hh in UTC), minute (mm) and the second (ss). Since
77 * format A bursts are sent during the third decade of seconds the tens
78 * digit of ss is always 3. The driver uses this to determine correct
79 * burst synchronization. These digits are then repeated with the same
80 * polarity.
81 *
82 * Format B bursts are sent at second 31 of the minute in hex digits
83 *
84 *	xdyyyyttaaxdyyyyttaa
85 *
86 * The first ten digits encode a code (x described below) followed by
87 * the DUT1 (d in deciseconds), Gregorian year (yyyy), difference TAI -
88 * UTC (tt) and daylight time indicator (aa) peculiar to Canada. These
89 * digits are then repeated with inverted polarity.
90 *
91 * The x is coded
92 *
93 * 1 Sign of DUT (0 = +)
94 * 2 Leap second warning. One second will be added.
95 * 4 Leap second warning. One second will be subtracted.
96 * 8 Even parity bit for this nibble.
97 *
98 * By design, the last stop bit of the last character in the burst
99 * coincides with 0.5 second. Since characters have 11 bits and are
100 * transmitted at 300 bps, the last stop bit of the first character
101 * coincides with 0.5 - 9 * 11/300 = 0.170 second. Depending on the
102 * UART, character interrupts can vary somewhere between the end of bit
103 * 9 and end of bit 11. These eccentricities can be corrected along with
104 * the radio propagation delay using fudge time 1.
105 *
106 * Debugging aids
107 *
108 * The timecode format used for debugging and data recording includes
109 * data helpful in diagnosing problems with the radio signal and serial
110 * connections. With debugging enabled (-d on the ntpd command line),
111 * the driver produces one line for each burst in two formats
112 * corresponding to format A and B.Each line begins with the format code
113 * chuA or chuB followed by the status code and signal level (0-9999).
114 * The remainder of the line is as follows.
115 *
116 * Following is format A:
117 *
118 *	n b f s m code
119 *
120 * where n is the number of characters in the burst (0-10), b the burst
121 * distance (0-40), f the field alignment (-1, 0, 1), s the
122 * synchronization distance (0-16), m the burst number (2-9) and code
123 * the burst characters as received. Note that the hex digits in each
124 * character are reversed, so the burst
125 *
126 *	10 38 0 16 9 06851292930685129293
127 *
128 * is interpreted as containing 10 characters with burst distance 38,
129 * field alignment 0, synchronization distance 16 and burst number 9.
130 * The nibble-swapped timecode shows day 58, hour 21, minute 29 and
131 * second 39.
132 *
133 * Following is format B:
134 *
135 *	n b s code
136 *
137 * where n is the number of characters in the burst (0-10), b the burst
138 * distance (0-40), s the synchronization distance (0-40) and code the
139 * burst characters as received. Note that the hex digits in each
140 * character are reversed and the last ten digits inverted, so the burst
141 *
142 *	10 40 1091891300ef6e76ec
143 *
144 * is interpreted as containing 10 characters with burst distance 40.
145 * The nibble-swapped timecode shows DUT1 +0.1 second, year 1998 and TAI
146 * - UTC 31 seconds.
147 *
148 * Each line is preceeded by the code chuA or chuB, as appropriate. If
149 * the audio driver is compiled, the current gain (0-255) and relative
150 * signal level (0-9999) follow the code. The receiver volume control
151 * should be set so that the gain is somewhere near the middle of the
152 * range 0-255, which results in a signal level near 1000.
153 *
154 * In addition to the above, the reference timecode is updated and
155 * written to the clockstats file and debug score after the last burst
156 * received in the minute. The format is
157 *
158 *	sq yyyy ddd hh:mm:ss l s dd t agc ident m b
159 *
160 * s	'?' before first synchronized and ' ' after that
161 * q	status code (see below)
162 * yyyy	year
163 * ddd	day of year
164 * hh:mm:ss time of day
165 * l	leap second indicator (space, L or D)
166 * dst	Canadian daylight code (opaque)
167 * t	number of minutes since last synchronized
168 * agc	audio gain (0 - 255)
169 * ident identifier (CHU0 3330 kHz, CHU1 7850 kHz, CHU2 14670 kHz)
170 * m	signal metric (0 - 100)
171 * b	number of timecodes for the previous minute (0 - 59)
172 *
173 * Fudge factors
174 *
175 * For accuracies better than the low millisceconds, fudge time1 can be
176 * set to the radio propagation delay from CHU to the receiver. This can
177 * be done conviently using the minimuf program.
178 *
179 * Fudge flag4 causes the dubugging output described above to be
180 * recorded in the clockstats file. When the audio driver is compiled,
181 * fudge flag2 selects the audio input port, where 0 is the mike port
182 * (default) and 1 is the line-in port. It does not seem useful to
183 * select the compact disc player port. Fudge flag3 enables audio
184 * monitoring of the input signal. For this purpose, the monitor gain is
185 * set to a default value.
186 *
187 * The audio codec code is normally compiled in the driver if the
188 * architecture supports it (HAVE_AUDIO defined), but is used only if
189 * the link /dev/chu_audio is defined and valid. The serial port code is
190 * always compiled in the driver, but is used only if the autdio codec
191 * is not available and the link /dev/chu%d is defined and valid.
192 *
193 * The ICOM code is normally compiled in the driver if selected (ICOM
194 * defined), but is used only if the link /dev/icom%d is defined and
195 * valid and the mode keyword on the server configuration command
196 * specifies a nonzero mode (ICOM ID select code). The C-IV speed is
197 * 9600 bps if the high order 0x80 bit of the mode is zero and 1200 bps
198 * if one. The C-IV trace is turned on if the debug level is greater
199 * than one.
200 *
201 * Alarm codes
202 *
203 * CEVNT_BADTIME	invalid date or time
204 * CEVNT_PROP		propagation failure - no stations heard
205 */
206/*
207 * Interface definitions
208 */
209#define	SPEED232	B300	/* uart speed (300 baud) */
210#define	PRECISION	(-10)	/* precision assumed (about 1 ms) */
211#define	REFID		"CHU"	/* reference ID */
212#define	DEVICE		"/dev/chu%d" /* device name and unit */
213#define	SPEED232	B300	/* UART speed (300 baud) */
214#ifdef ICOM
215#define TUNE		.001	/* offset for narrow filter (MHz) */
216#define DWELL		5	/* minutes in a dwell */
217#define NCHAN		3	/* number of channels */
218#define ISTAGE		3	/* number of integrator stages */
219#endif /* ICOM */
220
221#ifdef HAVE_AUDIO
222/*
223 * Audio demodulator definitions
224 */
225#define SECOND		8000	/* nominal sample rate (Hz) */
226#define BAUD		300	/* modulation rate (bps) */
227#define OFFSET		128	/* companded sample offset */
228#define SIZE		256	/* decompanding table size */
229#define	MAXAMP		6000.	/* maximum signal level */
230#define	MAXCLP		100	/* max clips above reference per s */
231#define	SPAN		800.	/* min envelope span */
232#define LIMIT		1000.	/* soft limiter threshold */
233#define AGAIN		6.	/* baseband gain */
234#define LAG		10	/* discriminator lag */
235#define	DEVICE_AUDIO	"/dev/audio" /* device name */
236#define	DESCRIPTION	"CHU Audio/Modem Receiver" /* WRU */
237#define	AUDIO_BUFSIZ	240	/* audio buffer size (30 ms) */
238#else
239#define	DESCRIPTION	"CHU Modem Receiver" /* WRU */
240#endif /* HAVE_AUDIO */
241
242/*
243 * Decoder definitions
244 */
245#define CHAR		(11. / 300.) /* character time (s) */
246#define BURST		11	/* max characters per burst */
247#define MINCHARS		9	/* min characters per burst */
248#define MINDIST		28	/* min burst distance (of 40)  */
249#define MINSYNC		8	/* min sync distance (of 16) */
250#define MINSTAMP	20	/* min timestamps (of 60) */
251#define MINMETRIC	50	/* min channel metric (of 160) */
252
253/*
254 * The on-time synchronization point for the driver is the last stop bit
255 * of the first character 170 ms. The modem delay is 0.8 ms, while the
256 * receiver delay is approxmately 4.7 ms at 2125 Hz. The fudge value 1.3
257 * ms due to the codec and other causes was determined by calibrating to
258 * a PPS signal from a GPS receiver. The additional propagation delay
259 * specific to each receiver location can be programmed in the fudge
260 * time1.
261 *
262 * The resulting offsets with a 2.4-GHz P4 running FreeBSD 6.1 are
263 * generally within 0.5 ms short term with 0.3 ms jitter. The long-term
264 * offsets vary up to 0.3 ms due to ionospheric layer height variations.
265 * The processor load due to the driver is 0.4 percent.
266 */
267#define	PDELAY	((170 + .8 + 4.7 + 1.3) / 1000)	/* system delay (s) */
268
269/*
270 * Status bits (status)
271 */
272#define RUNT		0x0001	/* runt burst */
273#define NOISE		0x0002	/* noise burst */
274#define BFRAME		0x0004	/* invalid format B frame sync */
275#define BFORMAT		0x0008	/* invalid format B data */
276#define AFRAME		0x0010	/* invalid format A frame sync */
277#define AFORMAT		0x0020	/* invalid format A data */
278#define DECODE		0x0040	/* invalid data decode */
279#define STAMP		0x0080	/* too few timestamps */
280#define AVALID		0x0100	/* valid A frame */
281#define BVALID		0x0200	/* valid B frame */
282#define INSYNC		0x0400	/* clock synchronized */
283#define	METRIC		0x0800	/* one or more stations heard */
284
285/*
286 * Alarm status bits (alarm)
287 *
288 * These alarms are set at the end of a minute in which at least one
289 * burst was received. SYNERR is raised if the AFRAME or BFRAME status
290 * bits are set during the minute, FMTERR is raised if the AFORMAT or
291 * BFORMAT status bits are set, DECERR is raised if the DECODE status
292 * bit is set and TSPERR is raised if the STAMP status bit is set.
293 */
294#define SYNERR		0x01	/* frame sync error */
295#define FMTERR		0x02	/* data format error */
296#define DECERR		0x04	/* data decoding error */
297#define TSPERR		0x08	/* insufficient data */
298
299#ifdef HAVE_AUDIO
300/*
301 * Maximum-likelihood UART structure. There are eight of these
302 * corresponding to the number of phases.
303 */
304struct surv {
305	l_fp	cstamp;		/* last bit timestamp */
306	double	shift[12];	/* sample shift register */
307	double	span;		/* shift register envelope span */
308	double	dist;		/* sample distance */
309	int	uart;		/* decoded character */
310};
311#endif /* HAVE_AUDIO */
312
313#ifdef ICOM
314/*
315 * CHU station structure. There are three of these corresponding to the
316 * three frequencies.
317 */
318struct xmtr {
319	double	integ[ISTAGE];	/* circular integrator */
320	double	metric;		/* integrator sum */
321	int	iptr;		/* integrator pointer */
322	int	probe;		/* dwells since last probe */
323};
324#endif /* ICOM */
325
326/*
327 * CHU unit control structure
328 */
329struct chuunit {
330	u_char	decode[20][16];	/* maximum-likelihood decoding matrix */
331	l_fp	cstamp[BURST];	/* character timestamps */
332	l_fp	tstamp[MAXSTAGE]; /* timestamp samples */
333	l_fp	timestamp;	/* current buffer timestamp */
334	l_fp	laststamp;	/* last buffer timestamp */
335	l_fp	charstamp;	/* character time as a l_fp */
336	int	second;		/* counts the seconds of the minute */
337	int	errflg;		/* error flags */
338	int	status;		/* status bits */
339	char	ident[5];	/* station ID and channel */
340#ifdef ICOM
341	int	fd_icom;	/* ICOM file descriptor */
342	int	chan;		/* radio channel */
343	int	dwell;		/* dwell cycle */
344	struct xmtr xmtr[NCHAN]; /* station metric */
345#endif /* ICOM */
346
347	/*
348	 * Character burst variables
349	 */
350	int	cbuf[BURST];	/* character buffer */
351	int	ntstamp;	/* number of timestamp samples */
352	int	ndx;		/* buffer start index */
353	int	prevsec;	/* previous burst second */
354	int	burdist;	/* burst distance */
355	int	syndist;	/* sync distance */
356	int	burstcnt;	/* format A bursts this minute */
357	double	maxsignal;	/* signal level (modem only) */
358	int	gain;		/* codec gain (modem only) */
359
360	/*
361	 * Format particulars
362	 */
363	int	leap;		/* leap/dut code */
364	int	dut;		/* UTC1 correction */
365	int	tai;		/* TAI - UTC correction */
366	int	dst;		/* Canadian DST code */
367
368#ifdef HAVE_AUDIO
369	/*
370	 * Audio codec variables
371	 */
372	int	fd_audio;	/* audio port file descriptor */
373	double	comp[SIZE];	/* decompanding table */
374	int	port;		/* codec port */
375	int	mongain;	/* codec monitor gain */
376	int	clipcnt;	/* sample clip count */
377	int	seccnt;		/* second interval counter */
378
379	/*
380	 * Modem variables
381	 */
382	l_fp	tick;		/* audio sample increment */
383	double	bpf[9];		/* IIR bandpass filter */
384	double	disc[LAG];	/* discriminator shift register */
385	double	lpf[27];	/* FIR lowpass filter */
386	double	monitor;	/* audio monitor */
387	int	discptr;	/* discriminator pointer */
388
389	/*
390	 * Maximum-likelihood UART variables
391	 */
392	double	baud;		/* baud interval */
393	struct surv surv[8];	/* UART survivor structures */
394	int	decptr;		/* decode pointer */
395	int	decpha;		/* decode phase */
396	int	dbrk;		/* holdoff counter */
397#endif /* HAVE_AUDIO */
398};
399
400/*
401 * Function prototypes
402 */
403static	int	chu_start	(int, struct peer *);
404static	void	chu_shutdown	(int, struct peer *);
405static	void	chu_receive	(struct recvbuf *);
406static	void	chu_second	(int, struct peer *);
407static	void	chu_poll	(int, struct peer *);
408
409/*
410 * More function prototypes
411 */
412static	void	chu_decode	(struct peer *, int, l_fp);
413static	void	chu_burst	(struct peer *);
414static	void	chu_clear	(struct peer *);
415static	void	chu_a		(struct peer *, int);
416static	void	chu_b		(struct peer *, int);
417static	int	chu_dist	(int, int);
418static	double	chu_major	(struct peer *);
419#ifdef HAVE_AUDIO
420static	void	chu_uart	(struct surv *, double);
421static	void	chu_rf		(struct peer *, double);
422static	void	chu_gain	(struct peer *);
423static	void	chu_audio_receive (struct recvbuf *rbufp);
424#endif /* HAVE_AUDIO */
425#ifdef ICOM
426static	int	chu_newchan	(struct peer *, double);
427#endif /* ICOM */
428static	void	chu_serial_receive (struct recvbuf *rbufp);
429
430/*
431 * Global variables
432 */
433static char hexchar[] = "0123456789abcdef_*=";
434
435#ifdef ICOM
436/*
437 * Note the tuned frequencies are 1 kHz higher than the carrier. CHU
438 * transmits on USB with carrier so we can use AM and the narrow SSB
439 * filter.
440 */
441static double qsy[NCHAN] = {3.330, 7.850, 14.670}; /* freq (MHz) */
442#endif /* ICOM */
443
444/*
445 * Transfer vector
446 */
447struct	refclock refclock_chu = {
448	chu_start,		/* start up driver */
449	chu_shutdown,		/* shut down driver */
450	chu_poll,		/* transmit poll message */
451	noentry,		/* not used (old chu_control) */
452	noentry,		/* initialize driver (not used) */
453	noentry,		/* not used (old chu_buginfo) */
454	chu_second		/* housekeeping timer */
455};
456
457
458/*
459 * chu_start - open the devices and initialize data for processing
460 */
461static int
462chu_start(
463	int	unit,		/* instance number (not used) */
464	struct peer *peer	/* peer structure pointer */
465	)
466{
467	struct chuunit *up;
468	struct refclockproc *pp;
469	char device[20];	/* device name */
470	int	fd;		/* file descriptor */
471#ifdef ICOM
472	int	temp;
473#endif /* ICOM */
474#ifdef HAVE_AUDIO
475	int	fd_audio;	/* audio port file descriptor */
476	int	i;		/* index */
477	double	step;		/* codec adjustment */
478
479	/*
480	 * Open audio device. Don't complain if not there.
481	 */
482	fd_audio = audio_init(DEVICE_AUDIO, AUDIO_BUFSIZ, unit);
483
484#ifdef DEBUG
485	if (fd_audio >= 0 && debug)
486		audio_show();
487#endif
488
489	/*
490	 * If audio is unavailable, Open serial port in raw mode.
491	 */
492	if (fd_audio >= 0) {
493		fd = fd_audio;
494	} else {
495		snprintf(device, sizeof(device), DEVICE, unit);
496		fd = refclock_open(device, SPEED232, LDISC_RAW);
497	}
498#else /* HAVE_AUDIO */
499
500	/*
501	 * Open serial port in raw mode.
502	 */
503	snprintf(device, sizeof(device), DEVICE, unit);
504	fd = refclock_open(device, SPEED232, LDISC_RAW);
505#endif /* HAVE_AUDIO */
506
507	if (fd < 0)
508		return (0);
509
510	/*
511	 * Allocate and initialize unit structure
512	 */
513	up = emalloc_zero(sizeof(*up));
514	pp = peer->procptr;
515	pp->unitptr = up;
516	pp->io.clock_recv = chu_receive;
517	pp->io.srcclock = peer;
518	pp->io.datalen = 0;
519	pp->io.fd = fd;
520	if (!io_addclock(&pp->io)) {
521		close(fd);
522		pp->io.fd = -1;
523		free(up);
524		pp->unitptr = NULL;
525		return (0);
526	}
527
528	/*
529	 * Initialize miscellaneous variables
530	 */
531	peer->precision = PRECISION;
532	pp->clockdesc = DESCRIPTION;
533	strlcpy(up->ident, "CHU", sizeof(up->ident));
534	memcpy(&pp->refid, up->ident, 4);
535	DTOLFP(CHAR, &up->charstamp);
536#ifdef HAVE_AUDIO
537
538	/*
539	 * The companded samples are encoded sign-magnitude. The table
540	 * contains all the 256 values in the interest of speed. We do
541	 * this even if the audio codec is not available. C'est la lazy.
542	 */
543	up->fd_audio = fd_audio;
544	up->gain = 127;
545	up->comp[0] = up->comp[OFFSET] = 0.;
546	up->comp[1] = 1; up->comp[OFFSET + 1] = -1.;
547	up->comp[2] = 3; up->comp[OFFSET + 2] = -3.;
548	step = 2.;
549	for (i = 3; i < OFFSET; i++) {
550		up->comp[i] = up->comp[i - 1] + step;
551		up->comp[OFFSET + i] = -up->comp[i];
552                if (i % 16 == 0)
553                	step *= 2.;
554	}
555	DTOLFP(1. / SECOND, &up->tick);
556#endif /* HAVE_AUDIO */
557#ifdef ICOM
558	temp = 0;
559#ifdef DEBUG
560	if (debug > 1)
561		temp = P_TRACE;
562#endif
563	if (peer->ttl > 0) {
564		if (peer->ttl & 0x80)
565			up->fd_icom = icom_init("/dev/icom", B1200,
566			    temp);
567		else
568			up->fd_icom = icom_init("/dev/icom", B9600,
569			    temp);
570	}
571	if (up->fd_icom > 0) {
572		if (chu_newchan(peer, 0) != 0) {
573			msyslog(LOG_NOTICE, "icom: radio not found");
574			close(up->fd_icom);
575			up->fd_icom = 0;
576		} else {
577			msyslog(LOG_NOTICE, "icom: autotune enabled");
578		}
579	}
580#endif /* ICOM */
581	return (1);
582}
583
584
585/*
586 * chu_shutdown - shut down the clock
587 */
588static void
589chu_shutdown(
590	int	unit,		/* instance number (not used) */
591	struct peer *peer	/* peer structure pointer */
592	)
593{
594	struct chuunit *up;
595	struct refclockproc *pp;
596
597	pp = peer->procptr;
598	up = pp->unitptr;
599	if (up == NULL)
600		return;
601
602	io_closeclock(&pp->io);
603#ifdef ICOM
604	if (up->fd_icom > 0)
605		close(up->fd_icom);
606#endif /* ICOM */
607	free(up);
608}
609
610
611/*
612 * chu_receive - receive data from the audio or serial device
613 */
614static void
615chu_receive(
616	struct recvbuf *rbufp	/* receive buffer structure pointer */
617	)
618{
619#ifdef HAVE_AUDIO
620	struct chuunit *up;
621	struct refclockproc *pp;
622	struct peer *peer;
623
624	peer = rbufp->recv_peer;
625	pp = peer->procptr;
626	up = pp->unitptr;
627
628	/*
629	 * If the audio codec is warmed up, the buffer contains codec
630	 * samples which need to be demodulated and decoded into CHU
631	 * characters using the software UART. Otherwise, the buffer
632	 * contains CHU characters from the serial port, so the software
633	 * UART is bypassed. In this case the CPU will probably run a
634	 * few degrees cooler.
635	 */
636	if (up->fd_audio > 0)
637		chu_audio_receive(rbufp);
638	else
639		chu_serial_receive(rbufp);
640#else
641	chu_serial_receive(rbufp);
642#endif /* HAVE_AUDIO */
643}
644
645
646#ifdef HAVE_AUDIO
647/*
648 * chu_audio_receive - receive data from the audio device
649 */
650static void
651chu_audio_receive(
652	struct recvbuf *rbufp	/* receive buffer structure pointer */
653	)
654{
655	struct chuunit *up;
656	struct refclockproc *pp;
657	struct peer *peer;
658
659	double	sample;		/* codec sample */
660	u_char	*dpt;		/* buffer pointer */
661	int	bufcnt;		/* buffer counter */
662	l_fp	ltemp;		/* l_fp temp */
663
664	peer = rbufp->recv_peer;
665	pp = peer->procptr;
666	up = pp->unitptr;
667
668	/*
669	 * Main loop - read until there ain't no more. Note codec
670	 * samples are bit-inverted.
671	 */
672	DTOLFP((double)rbufp->recv_length / SECOND, &ltemp);
673	L_SUB(&rbufp->recv_time, &ltemp);
674	up->timestamp = rbufp->recv_time;
675	dpt = rbufp->recv_buffer;
676	for (bufcnt = 0; bufcnt < rbufp->recv_length; bufcnt++) {
677		sample = up->comp[~*dpt++ & 0xff];
678
679		/*
680		 * Clip noise spikes greater than MAXAMP. If no clips,
681		 * increase the gain a tad; if the clips are too high,
682		 * decrease a tad.
683		 */
684		if (sample > MAXAMP) {
685			sample = MAXAMP;
686			up->clipcnt++;
687		} else if (sample < -MAXAMP) {
688			sample = -MAXAMP;
689			up->clipcnt++;
690		}
691		chu_rf(peer, sample);
692		L_ADD(&up->timestamp, &up->tick);
693
694		/*
695		 * Once each second ride gain.
696		 */
697		up->seccnt = (up->seccnt + 1) % SECOND;
698		if (up->seccnt == 0) {
699			chu_gain(peer);
700		}
701	}
702
703	/*
704	 * Set the input port and monitor gain for the next buffer.
705	 */
706	if (pp->sloppyclockflag & CLK_FLAG2)
707		up->port = 2;
708	else
709		up->port = 1;
710	if (pp->sloppyclockflag & CLK_FLAG3)
711		up->mongain = MONGAIN;
712	else
713		up->mongain = 0;
714}
715
716
717/*
718 * chu_rf - filter and demodulate the FSK signal
719 *
720 * This routine implements a 300-baud Bell 103 modem with mark 2225 Hz
721 * and space 2025 Hz. It uses a bandpass filter followed by a soft
722 * limiter, FM discriminator and lowpass filter. A maximum-likelihood
723 * decoder samples the baseband signal at eight times the baud rate and
724 * detects the start bit of each character.
725 *
726 * The filters are built for speed, which explains the rather clumsy
727 * code. Hopefully, the compiler will efficiently implement the move-
728 * and-muiltiply-and-add operations.
729 */
730static void
731chu_rf(
732	struct peer *peer,	/* peer structure pointer */
733	double	sample		/* analog sample */
734	)
735{
736	struct refclockproc *pp;
737	struct chuunit *up;
738	struct surv *sp;
739
740	/*
741	 * Local variables
742	 */
743	double	signal;		/* bandpass signal */
744	double	limit;		/* limiter signal */
745	double	disc;		/* discriminator signal */
746	double	lpf;		/* lowpass signal */
747	double	dist;		/* UART signal distance */
748	int	i, j;
749
750	pp = peer->procptr;
751	up = pp->unitptr;
752
753	/*
754	 * Bandpass filter. 4th-order elliptic, 500-Hz bandpass centered
755	 * at 2125 Hz. Passband ripple 0.3 dB, stopband ripple 50 dB,
756	 * phase delay 0.24 ms.
757	 */
758	signal = (up->bpf[8] = up->bpf[7]) * 5.844676e-01;
759	signal += (up->bpf[7] = up->bpf[6]) * 4.884860e-01;
760	signal += (up->bpf[6] = up->bpf[5]) * 2.704384e+00;
761	signal += (up->bpf[5] = up->bpf[4]) * 1.645032e+00;
762	signal += (up->bpf[4] = up->bpf[3]) * 4.644557e+00;
763	signal += (up->bpf[3] = up->bpf[2]) * 1.879165e+00;
764	signal += (up->bpf[2] = up->bpf[1]) * 3.522634e+00;
765	signal += (up->bpf[1] = up->bpf[0]) * 7.315738e-01;
766	up->bpf[0] = sample - signal;
767	signal = up->bpf[0] * 6.176213e-03
768	    + up->bpf[1] * 3.156599e-03
769	    + up->bpf[2] * 7.567487e-03
770	    + up->bpf[3] * 4.344580e-03
771	    + up->bpf[4] * 1.190128e-02
772	    + up->bpf[5] * 4.344580e-03
773	    + up->bpf[6] * 7.567487e-03
774	    + up->bpf[7] * 3.156599e-03
775	    + up->bpf[8] * 6.176213e-03;
776
777	up->monitor = signal / 4.;	/* note monitor after filter */
778
779	/*
780	 * Soft limiter/discriminator. The 11-sample discriminator lag
781	 * interval corresponds to three cycles of 2125 Hz, which
782	 * requires the sample frequency to be 2125 * 11 / 3 = 7791.7
783	 * Hz. The discriminator output varies +-0.5 interval for input
784	 * frequency 2025-2225 Hz. However, we don't get to sample at
785	 * this frequency, so the discriminator output is biased. Life
786	 * at 8000 Hz sucks.
787	 */
788	limit = signal;
789	if (limit > LIMIT)
790		limit = LIMIT;
791	else if (limit < -LIMIT)
792		limit = -LIMIT;
793	disc = up->disc[up->discptr] * -limit;
794	up->disc[up->discptr] = limit;
795	up->discptr = (up->discptr + 1 ) % LAG;
796	if (disc >= 0)
797		disc = SQRT(disc);
798	else
799		disc = -SQRT(-disc);
800
801	/*
802	 * Lowpass filter. Raised cosine FIR, Ts = 1 / 300, beta = 0.1.
803	 */
804	lpf = (up->lpf[26] = up->lpf[25]) * 2.538771e-02;
805	lpf += (up->lpf[25] = up->lpf[24]) * 1.084671e-01;
806	lpf += (up->lpf[24] = up->lpf[23]) * 2.003159e-01;
807	lpf += (up->lpf[23] = up->lpf[22]) * 2.985303e-01;
808	lpf += (up->lpf[22] = up->lpf[21]) * 4.003697e-01;
809	lpf += (up->lpf[21] = up->lpf[20]) * 5.028552e-01;
810	lpf += (up->lpf[20] = up->lpf[19]) * 6.028795e-01;
811	lpf += (up->lpf[19] = up->lpf[18]) * 6.973249e-01;
812	lpf += (up->lpf[18] = up->lpf[17]) * 7.831828e-01;
813	lpf += (up->lpf[17] = up->lpf[16]) * 8.576717e-01;
814	lpf += (up->lpf[16] = up->lpf[15]) * 9.183463e-01;
815	lpf += (up->lpf[15] = up->lpf[14]) * 9.631951e-01;
816	lpf += (up->lpf[14] = up->lpf[13]) * 9.907208e-01;
817	lpf += (up->lpf[13] = up->lpf[12]) * 1.000000e+00;
818	lpf += (up->lpf[12] = up->lpf[11]) * 9.907208e-01;
819	lpf += (up->lpf[11] = up->lpf[10]) * 9.631951e-01;
820	lpf += (up->lpf[10] = up->lpf[9]) * 9.183463e-01;
821	lpf += (up->lpf[9] = up->lpf[8]) * 8.576717e-01;
822	lpf += (up->lpf[8] = up->lpf[7]) * 7.831828e-01;
823	lpf += (up->lpf[7] = up->lpf[6]) * 6.973249e-01;
824	lpf += (up->lpf[6] = up->lpf[5]) * 6.028795e-01;
825	lpf += (up->lpf[5] = up->lpf[4]) * 5.028552e-01;
826	lpf += (up->lpf[4] = up->lpf[3]) * 4.003697e-01;
827	lpf += (up->lpf[3] = up->lpf[2]) * 2.985303e-01;
828	lpf += (up->lpf[2] = up->lpf[1]) * 2.003159e-01;
829	lpf += (up->lpf[1] = up->lpf[0]) * 1.084671e-01;
830	lpf += up->lpf[0] = disc * 2.538771e-02;
831
832	/*
833	 * Maximum-likelihood decoder. The UART updates each of the
834	 * eight survivors and determines the span, slice level and
835	 * tentative decoded character. Valid 11-bit characters are
836	 * framed so that bit 10 and bit 11 (stop bits) are mark and bit
837	 * 1 (start bit) is space. When a valid character is found, the
838	 * survivor with maximum distance determines the final decoded
839	 * character.
840	 */
841	up->baud += 1. / SECOND;
842	if (up->baud > 1. / (BAUD * 8.)) {
843		up->baud -= 1. / (BAUD * 8.);
844		up->decptr = (up->decptr + 1) % 8;
845		sp = &up->surv[up->decptr];
846		sp->cstamp = up->timestamp;
847		chu_uart(sp, -lpf * AGAIN);
848		if (up->dbrk > 0) {
849			up->dbrk--;
850			if (up->dbrk > 0)
851				return;
852
853			up->decpha = up->decptr;
854		}
855		if (up->decptr != up->decpha)
856			return;
857
858		dist = 0;
859		j = -1;
860		for (i = 0; i < 8; i++) {
861
862			/*
863			 * The timestamp is taken at the last bit, so
864			 * for correct decoding we reqire sufficient
865			 * span and correct start bit and two stop bits.
866			 */
867			if ((up->surv[i].uart & 0x601) != 0x600 ||
868			    up->surv[i].span < SPAN)
869				continue;
870
871			if (up->surv[i].dist > dist) {
872				dist = up->surv[i].dist;
873				j = i;
874			}
875		}
876		if (j < 0)
877			return;
878
879		/*
880		 * Process the character, then blank the decoder until
881		 * the end of the next character.This sets the decoding
882		 * phase of the entire burst from the phase of the first
883		 * character.
884		 */
885		up->maxsignal = up->surv[j].span;
886		chu_decode(peer, (up->surv[j].uart >> 1) & 0xff,
887		    up->surv[j].cstamp);
888		up->dbrk = 88;
889	}
890}
891
892
893/*
894 * chu_uart - maximum-likelihood UART
895 *
896 * This routine updates a shift register holding the last 11 envelope
897 * samples. It then computes the slice level and span over these samples
898 * and determines the tentative data bits and distance. The calling
899 * program selects over the last eight survivors the one with maximum
900 * distance to determine the decoded character.
901 */
902static void
903chu_uart(
904	struct surv *sp,	/* survivor structure pointer */
905	double	sample		/* baseband signal */
906	)
907{
908	double	es_max, es_min;	/* max/min envelope */
909	double	slice;		/* slice level */
910	double	dist;		/* distance */
911	double	dtemp;
912	int	i;
913
914	/*
915	 * Save the sample and shift right. At the same time, measure
916	 * the maximum and minimum over all eleven samples.
917	 */
918	es_max = -1e6;
919	es_min = 1e6;
920	sp->shift[0] = sample;
921	for (i = 11; i > 0; i--) {
922		sp->shift[i] = sp->shift[i - 1];
923		if (sp->shift[i] > es_max)
924			es_max = sp->shift[i];
925		if (sp->shift[i] < es_min)
926			es_min = sp->shift[i];
927	}
928
929	/*
930	 * Determine the span as the maximum less the minimum and the
931	 * slice level as the minimum plus a fraction of the span. Note
932	 * the slight bias toward mark to correct for the modem tendency
933	 * to make more mark than space errors. Compute the distance on
934	 * the assumption the last two bits must be mark, the first
935	 * space and the rest either mark or space.
936	 */
937	sp->span = es_max - es_min;
938	slice = es_min + .45 * sp->span;
939	dist = 0;
940	sp->uart = 0;
941	for (i = 1; i < 12; i++) {
942		sp->uart <<= 1;
943		dtemp = sp->shift[i];
944		if (dtemp > slice)
945			sp->uart |= 0x1;
946		if (i == 1 || i == 2) {
947			dist += dtemp - es_min;
948		} else if (i == 11) {
949			dist += es_max - dtemp;
950		} else {
951			if (dtemp > slice)
952				dist += dtemp - es_min;
953			else
954				dist += es_max - dtemp;
955		}
956	}
957	sp->dist = dist / (11 * sp->span);
958}
959#endif /* HAVE_AUDIO */
960
961
962/*
963 * chu_serial_receive - receive data from the serial device
964 */
965static void
966chu_serial_receive(
967	struct recvbuf *rbufp	/* receive buffer structure pointer */
968	)
969{
970	struct peer *peer;
971
972	u_char	*dpt;		/* receive buffer pointer */
973
974	peer = rbufp->recv_peer;
975
976	dpt = (u_char *)&rbufp->recv_space;
977	chu_decode(peer, *dpt, rbufp->recv_time);
978}
979
980
981/*
982 * chu_decode - decode the character data
983 */
984static void
985chu_decode(
986	struct peer *peer,	/* peer structure pointer */
987	int	hexhex,		/* data character */
988	l_fp	cstamp		/* data character timestamp */
989	)
990{
991	struct refclockproc *pp;
992	struct chuunit *up;
993
994	l_fp	tstmp;		/* timestamp temp */
995	double	dtemp;
996
997	pp = peer->procptr;
998	up = pp->unitptr;
999
1000	/*
1001	 * If the interval since the last character is greater than the
1002	 * longest burst, process the last burst and start a new one. If
1003	 * the interval is less than this but greater than two
1004	 * characters, consider this a noise burst and reject it.
1005	 */
1006	tstmp = up->timestamp;
1007	if (L_ISZERO(&up->laststamp))
1008		up->laststamp = up->timestamp;
1009	L_SUB(&tstmp, &up->laststamp);
1010	up->laststamp = up->timestamp;
1011	LFPTOD(&tstmp, dtemp);
1012	if (dtemp > BURST * CHAR) {
1013		chu_burst(peer);
1014		up->ndx = 0;
1015	} else if (dtemp > 2.5 * CHAR) {
1016		up->ndx = 0;
1017	}
1018
1019	/*
1020	 * Append the character to the current burst and append the
1021	 * character timestamp to the timestamp list.
1022	 */
1023	if (up->ndx < BURST) {
1024		up->cbuf[up->ndx] = hexhex & 0xff;
1025		up->cstamp[up->ndx] = cstamp;
1026		up->ndx++;
1027
1028	}
1029}
1030
1031
1032/*
1033 * chu_burst - search for valid burst format
1034 */
1035static void
1036chu_burst(
1037	struct peer *peer
1038	)
1039{
1040	struct chuunit *up;
1041	struct refclockproc *pp;
1042
1043	int	i;
1044
1045	pp = peer->procptr;
1046	up = pp->unitptr;
1047
1048	/*
1049	 * Correlate a block of five characters with the next block of
1050	 * five characters. The burst distance is defined as the number
1051	 * of bits that match in the two blocks for format A and that
1052	 * match the inverse for format B.
1053	 */
1054	if (up->ndx < MINCHARS) {
1055		up->status |= RUNT;
1056		return;
1057	}
1058	up->burdist = 0;
1059	for (i = 0; i < 5 && i < up->ndx - 5; i++)
1060		up->burdist += chu_dist(up->cbuf[i], up->cbuf[i + 5]);
1061
1062	/*
1063	 * If the burst distance is at least MINDIST, this must be a
1064	 * format A burst; if the value is not greater than -MINDIST, it
1065	 * must be a format B burst. If the B burst is perfect, we
1066	 * believe it; otherwise, it is a noise burst and of no use to
1067	 * anybody.
1068	 */
1069	if (up->burdist >= MINDIST) {
1070		chu_a(peer, up->ndx);
1071	} else if (up->burdist <= -MINDIST) {
1072		chu_b(peer, up->ndx);
1073	} else {
1074		up->status |= NOISE;
1075		return;
1076	}
1077
1078	/*
1079	 * If this is a valid burst, wait a guard time of ten seconds to
1080	 * allow for more bursts, then arm the poll update routine to
1081	 * process the minute. Don't do this if this is called from the
1082	 * timer interrupt routine.
1083	 */
1084	if (peer->outdate != current_time)
1085		peer->nextdate = current_time + 10;
1086}
1087
1088
1089/*
1090 * chu_b - decode format B burst
1091 */
1092static void
1093chu_b(
1094	struct peer *peer,
1095	int	nchar
1096	)
1097{
1098	struct	refclockproc *pp;
1099	struct	chuunit *up;
1100
1101	u_char	code[11];	/* decoded timecode */
1102	char	tbuf[80];	/* trace buffer */
1103	char *	p;
1104	size_t	chars;
1105	size_t	cb;
1106	int	i;
1107
1108	pp = peer->procptr;
1109	up = pp->unitptr;
1110
1111	/*
1112	 * In a format B burst, a character is considered valid only if
1113	 * the first occurence matches the last occurence. The burst is
1114	 * considered valid only if all characters are valid; that is,
1115	 * only if the distance is 40. Note that once a valid frame has
1116	 * been found errors are ignored.
1117	 */
1118	snprintf(tbuf, sizeof(tbuf), "chuB %04x %4.0f %2d %2d ",
1119		 up->status, up->maxsignal, nchar, -up->burdist);
1120	cb = sizeof(tbuf);
1121	p = tbuf;
1122	for (i = 0; i < nchar; i++) {
1123		chars = strlen(p);
1124		if (cb < chars + 1) {
1125			msyslog(LOG_ERR, "chu_b() fatal out buffer");
1126			exit(1);
1127		}
1128		cb -= chars;
1129		p += chars;
1130		snprintf(p, cb, "%02x", up->cbuf[i]);
1131	}
1132	if (pp->sloppyclockflag & CLK_FLAG4)
1133		record_clock_stats(&peer->srcadr, tbuf);
1134#ifdef DEBUG
1135	if (debug)
1136		printf("%s\n", tbuf);
1137#endif
1138	if (up->burdist > -40) {
1139		up->status |= BFRAME;
1140		return;
1141	}
1142
1143	/*
1144	 * Convert the burst data to internal format. Don't bother with
1145	 * the timestamps.
1146	 */
1147	for (i = 0; i < 5; i++) {
1148		code[2 * i] = hexchar[up->cbuf[i] & 0xf];
1149		code[2 * i + 1] = hexchar[(up->cbuf[i] >>
1150		    4) & 0xf];
1151	}
1152	if (sscanf((char *)code, "%1x%1d%4d%2d%2x", &up->leap, &up->dut,
1153	    &pp->year, &up->tai, &up->dst) != 5) {
1154		up->status |= BFORMAT;
1155		return;
1156	}
1157	up->status |= BVALID;
1158	if (up->leap & 0x8)
1159		up->dut = -up->dut;
1160}
1161
1162
1163/*
1164 * chu_a - decode format A burst
1165 */
1166static void
1167chu_a(
1168	struct peer *peer,
1169	int nchar
1170	)
1171{
1172	struct refclockproc *pp;
1173	struct chuunit *up;
1174
1175	char	tbuf[80];	/* trace buffer */
1176	char *	p;
1177	size_t	chars;
1178	size_t	cb;
1179	l_fp	offset;		/* timestamp offset */
1180	int	val;		/* distance */
1181	int	temp;
1182	int	i, j, k;
1183
1184	pp = peer->procptr;
1185	up = pp->unitptr;
1186
1187	/*
1188	 * Determine correct burst phase. There are three cases
1189	 * corresponding to in-phase, one character early or one
1190	 * character late. These cases are distinguished by the position
1191	 * of the framing digits 0x6 at positions 0 and 5 and 0x3 at
1192	 * positions 4 and 9. The correct phase is when the distance
1193	 * relative to the framing digits is maximum. The burst is valid
1194	 * only if the maximum distance is at least MINSYNC.
1195	 */
1196	up->syndist = k = 0;
1197	// val = -16;
1198	for (i = -1; i < 2; i++) {
1199		temp = up->cbuf[i + 4] & 0xf;
1200		if (i >= 0)
1201			temp |= (up->cbuf[i] & 0xf) << 4;
1202		val = chu_dist(temp, 0x63);
1203		temp = (up->cbuf[i + 5] & 0xf) << 4;
1204		if (i + 9 < nchar)
1205			temp |= up->cbuf[i + 9] & 0xf;
1206		val += chu_dist(temp, 0x63);
1207		if (val > up->syndist) {
1208			up->syndist = val;
1209			k = i;
1210		}
1211	}
1212
1213	/*
1214	 * Extract the second number; it must be in the range 2 through
1215	 * 9 and the two repititions must be the same.
1216	 */
1217	temp = (up->cbuf[k + 4] >> 4) & 0xf;
1218	if (temp < 2 || temp > 9 || k + 9 >= nchar || temp !=
1219	    ((up->cbuf[k + 9] >> 4) & 0xf))
1220		temp = 0;
1221	snprintf(tbuf, sizeof(tbuf),
1222		 "chuA %04x %4.0f %2d %2d %2d %2d %1d ", up->status,
1223		 up->maxsignal, nchar, up->burdist, k, up->syndist,
1224		 temp);
1225	cb = sizeof(tbuf);
1226	p = tbuf;
1227	for (i = 0; i < nchar; i++) {
1228		chars = strlen(p);
1229		if (cb < chars + 1) {
1230			msyslog(LOG_ERR, "chu_a() fatal out buffer");
1231			exit(1);
1232		}
1233		cb -= chars;
1234		p += chars;
1235		snprintf(p, cb, "%02x", up->cbuf[i]);
1236	}
1237	if (pp->sloppyclockflag & CLK_FLAG4)
1238		record_clock_stats(&peer->srcadr, tbuf);
1239#ifdef DEBUG
1240	if (debug)
1241		printf("%s\n", tbuf);
1242#endif
1243	if (up->syndist < MINSYNC) {
1244		up->status |= AFRAME;
1245		return;
1246	}
1247
1248	/*
1249	 * A valid burst requires the first seconds number to match the
1250	 * last seconds number. If so, the burst timestamps are
1251	 * corrected to the current minute and saved for later
1252	 * processing. In addition, the seconds decode is advanced from
1253	 * the previous burst to the current one.
1254	 */
1255	if (temp == 0) {
1256		up->status |= AFORMAT;
1257	} else {
1258		up->status |= AVALID;
1259		up->second = pp->second = 30 + temp;
1260		offset.l_ui = 30 + temp;
1261		offset.l_uf = 0;
1262		i = 0;
1263		if (k < 0)
1264			offset = up->charstamp;
1265		else if (k > 0)
1266			i = 1;
1267		for (; i < nchar && (i - 10) < k; i++) {
1268			up->tstamp[up->ntstamp] = up->cstamp[i];
1269			L_SUB(&up->tstamp[up->ntstamp], &offset);
1270			L_ADD(&offset, &up->charstamp);
1271			if (up->ntstamp < MAXSTAGE - 1)
1272				up->ntstamp++;
1273		}
1274		while (temp > up->prevsec) {
1275			for (j = 15; j > 0; j--) {
1276				up->decode[9][j] = up->decode[9][j - 1];
1277				up->decode[19][j] =
1278				    up->decode[19][j - 1];
1279			}
1280			up->decode[9][j] = up->decode[19][j] = 0;
1281			up->prevsec++;
1282		}
1283	}
1284
1285	/*
1286	 * Stash the data in the decoding matrix.
1287	 */
1288	i = -(2 * k);
1289	for (j = 0; j < nchar; j++) {
1290		if (i < 0 || i > 18) {
1291			i += 2;
1292			continue;
1293		}
1294		up->decode[i][up->cbuf[j] & 0xf]++;
1295		i++;
1296		up->decode[i][(up->cbuf[j] >> 4) & 0xf]++;
1297		i++;
1298	}
1299	up->burstcnt++;
1300}
1301
1302
1303/*
1304 * chu_poll - called by the transmit procedure
1305 */
1306static void
1307chu_poll(
1308	int unit,
1309	struct peer *peer	/* peer structure pointer */
1310	)
1311{
1312	struct refclockproc *pp;
1313
1314	pp = peer->procptr;
1315	pp->polls++;
1316}
1317
1318
1319/*
1320 * chu_second - process minute data
1321 */
1322static void
1323chu_second(
1324	int unit,
1325	struct peer *peer	/* peer structure pointer */
1326	)
1327{
1328	struct refclockproc *pp;
1329	struct chuunit *up;
1330	l_fp	offset;
1331	char	synchar, qual, leapchar;
1332	int	minset, i;
1333	double	dtemp;
1334
1335	pp = peer->procptr;
1336	up = pp->unitptr;
1337
1338	/*
1339	 * This routine is called once per minute to process the
1340	 * accumulated burst data. We do a bit of fancy footwork so that
1341	 * this doesn't run while burst data are being accumulated.
1342	 */
1343	up->second = (up->second + 1) % 60;
1344	if (up->second != 0)
1345		return;
1346
1347	/*
1348	 * Process the last burst, if still in the burst buffer.
1349	 * If the minute contains a valid B frame with sufficient A
1350	 * frame metric, it is considered valid. However, the timecode
1351	 * is sent to clockstats even if invalid.
1352	 */
1353	chu_burst(peer);
1354	minset = ((current_time - peer->update) + 30) / 60;
1355	dtemp = chu_major(peer);
1356	qual = 0;
1357	if (up->status & (BFRAME | AFRAME))
1358		qual |= SYNERR;
1359	if (up->status & (BFORMAT | AFORMAT))
1360		qual |= FMTERR;
1361	if (up->status & DECODE)
1362		qual |= DECERR;
1363	if (up->status & STAMP)
1364		qual |= TSPERR;
1365	if (up->status & BVALID && dtemp >= MINMETRIC)
1366		up->status |= INSYNC;
1367	synchar = leapchar = ' ';
1368	if (!(up->status & INSYNC)) {
1369		pp->leap = LEAP_NOTINSYNC;
1370		synchar = '?';
1371	} else if (up->leap & 0x2) {
1372		pp->leap = LEAP_ADDSECOND;
1373		leapchar = 'L';
1374	} else if (up->leap & 0x4) {
1375		pp->leap = LEAP_DELSECOND;
1376		leapchar = 'l';
1377	} else {
1378		pp->leap = LEAP_NOWARNING;
1379	}
1380	snprintf(pp->a_lastcode, sizeof(pp->a_lastcode),
1381	    "%c%1X %04d %03d %02d:%02d:%02d %c%x %+d %d %d %s %.0f %d",
1382	    synchar, qual, pp->year, pp->day, pp->hour, pp->minute,
1383	    pp->second, leapchar, up->dst, up->dut, minset, up->gain,
1384	    up->ident, dtemp, up->ntstamp);
1385	pp->lencode = strlen(pp->a_lastcode);
1386
1387	/*
1388	 * If in sync and the signal metric is above threshold, the
1389	 * timecode is ipso fatso valid and can be selected to
1390	 * discipline the clock.
1391	 */
1392	if (up->status & INSYNC && !(up->status & (DECODE | STAMP)) &&
1393	    dtemp > MINMETRIC) {
1394		if (!clocktime(pp->day, pp->hour, pp->minute, 0, GMT,
1395		    up->tstamp[0].l_ui, &pp->yearstart, &offset.l_ui)) {
1396			up->errflg = CEVNT_BADTIME;
1397		} else {
1398			offset.l_uf = 0;
1399			for (i = 0; i < up->ntstamp; i++)
1400				refclock_process_offset(pp, offset,
1401				up->tstamp[i], PDELAY +
1402				    pp->fudgetime1);
1403			pp->lastref = up->timestamp;
1404			refclock_receive(peer);
1405		}
1406	}
1407	if (dtemp > 0)
1408		record_clock_stats(&peer->srcadr, pp->a_lastcode);
1409#ifdef DEBUG
1410	if (debug)
1411		printf("chu: timecode %d %s\n", pp->lencode,
1412		    pp->a_lastcode);
1413#endif
1414#ifdef ICOM
1415	chu_newchan(peer, dtemp);
1416#endif /* ICOM */
1417	chu_clear(peer);
1418	if (up->errflg)
1419		refclock_report(peer, up->errflg);
1420	up->errflg = 0;
1421}
1422
1423
1424/*
1425 * chu_major - majority decoder
1426 */
1427static double
1428chu_major(
1429	struct peer *peer	/* peer structure pointer */
1430	)
1431{
1432	struct refclockproc *pp;
1433	struct chuunit *up;
1434
1435	u_char	code[11];	/* decoded timecode */
1436	int	metric;		/* distance metric */
1437	int	val1;		/* maximum distance */
1438	int	synchar;	/* stray cat */
1439	int	temp;
1440	int	i, j, k;
1441
1442	pp = peer->procptr;
1443	up = pp->unitptr;
1444
1445	/*
1446	 * Majority decoder. Each burst encodes two replications at each
1447	 * digit position in the timecode. Each row of the decoding
1448	 * matrix encodes the number of occurences of each digit found
1449	 * at the corresponding position. The maximum over all
1450	 * occurrences at each position is the distance for this
1451	 * position and the corresponding digit is the maximum-
1452	 * likelihood candidate. If the distance is not more than half
1453	 * the total number of occurences, a majority has not been found
1454	 * and the data are discarded. The decoding distance is defined
1455	 * as the sum of the distances over the first nine digits. The
1456	 * tenth digit varies over the seconds, so we don't count it.
1457	 */
1458	metric = 0;
1459	for (i = 0; i < 9; i++) {
1460		val1 = 0;
1461		k = 0;
1462		for (j = 0; j < 16; j++) {
1463			temp = up->decode[i][j] + up->decode[i + 10][j];
1464			if (temp > val1) {
1465				val1 = temp;
1466				k = j;
1467			}
1468		}
1469		if (val1 <= up->burstcnt)
1470			up->status |= DECODE;
1471		metric += val1;
1472		code[i] = hexchar[k];
1473	}
1474
1475	/*
1476	 * Compute the timecode timestamp from the days, hours and
1477	 * minutes of the timecode. Use clocktime() for the aggregate
1478	 * minutes and the minute offset computed from the burst
1479	 * seconds. Note that this code relies on the filesystem time
1480	 * for the years and does not use the years of the timecode.
1481	 */
1482	if (sscanf((char *)code, "%1x%3d%2d%2d", &synchar, &pp->day,
1483	    &pp->hour, &pp->minute) != 4)
1484		up->status |= DECODE;
1485	if (up->ntstamp < MINSTAMP)
1486		up->status |= STAMP;
1487	return (metric);
1488}
1489
1490
1491/*
1492 * chu_clear - clear decoding matrix
1493 */
1494static void
1495chu_clear(
1496	struct peer *peer	/* peer structure pointer */
1497	)
1498{
1499	struct refclockproc *pp;
1500	struct chuunit *up;
1501	int	i, j;
1502
1503	pp = peer->procptr;
1504	up = pp->unitptr;
1505
1506	/*
1507	 * Clear stuff for the minute.
1508	 */
1509	up->ndx = up->prevsec = 0;
1510	up->burstcnt = up->ntstamp = 0;
1511	up->status &= INSYNC | METRIC;
1512	for (i = 0; i < 20; i++) {
1513		for (j = 0; j < 16; j++)
1514			up->decode[i][j] = 0;
1515	}
1516}
1517
1518#ifdef ICOM
1519/*
1520 * chu_newchan - called once per minute to find the best channel;
1521 * returns zero on success, nonzero if ICOM error.
1522 */
1523static int
1524chu_newchan(
1525	struct peer *peer,
1526	double	met
1527	)
1528{
1529	struct chuunit *up;
1530	struct refclockproc *pp;
1531	struct xmtr *sp;
1532	int	rval;
1533	double	metric;
1534	int	i;
1535
1536	pp = peer->procptr;
1537	up = pp->unitptr;
1538
1539	/*
1540	 * The radio can be tuned to three channels: 0 (3330 kHz), 1
1541	 * (7850 kHz) and 2 (14670 kHz). There are five one-minute
1542	 * dwells in each cycle. During the first dwell the radio is
1543	 * tuned to one of the three channels to measure the channel
1544	 * metric. The channel is selected as the one least recently
1545	 * measured. During the remaining four dwells the radio is tuned
1546	 * to the channel with the highest channel metric.
1547	 */
1548	if (up->fd_icom <= 0)
1549		return (0);
1550
1551	/*
1552	 * Update the current channel metric and age of all channels.
1553	 * Scan all channels for the highest metric.
1554	 */
1555	sp = &up->xmtr[up->chan];
1556	sp->metric -= sp->integ[sp->iptr];
1557	sp->integ[sp->iptr] = met;
1558	sp->metric += sp->integ[sp->iptr];
1559	sp->probe = 0;
1560	sp->iptr = (sp->iptr + 1) % ISTAGE;
1561	metric = 0;
1562	for (i = 0; i < NCHAN; i++) {
1563		up->xmtr[i].probe++;
1564		if (up->xmtr[i].metric > metric) {
1565			up->status |= METRIC;
1566			metric = up->xmtr[i].metric;
1567			up->chan = i;
1568		}
1569	}
1570
1571	/*
1572	 * Start the next dwell. If the first dwell or no stations have
1573	 * been heard, continue round-robin scan.
1574	 */
1575	up->dwell = (up->dwell + 1) % DWELL;
1576	if (up->dwell == 0 || metric == 0) {
1577		rval = 0;
1578		for (i = 0; i < NCHAN; i++) {
1579			if (up->xmtr[i].probe > rval) {
1580				rval = up->xmtr[i].probe;
1581				up->chan = i;
1582			}
1583		}
1584	}
1585
1586	/* Retune the radio at each dwell in case somebody nudges the
1587	 * tuning knob.
1588	 */
1589	rval = icom_freq(up->fd_icom, peer->ttl & 0x7f, qsy[up->chan] +
1590	    TUNE);
1591	snprintf(up->ident, sizeof(up->ident), "CHU%d", up->chan);
1592	memcpy(&pp->refid, up->ident, 4);
1593	memcpy(&peer->refid, up->ident, 4);
1594	if (metric == 0 && up->status & METRIC) {
1595		up->status &= ~METRIC;
1596		refclock_report(peer, CEVNT_PROP);
1597	}
1598	return (rval);
1599}
1600#endif /* ICOM */
1601
1602
1603/*
1604 * chu_dist - determine the distance of two octet arguments
1605 */
1606static int
1607chu_dist(
1608	int	x,		/* an octet of bits */
1609	int	y		/* another octet of bits */
1610	)
1611{
1612	int	val;		/* bit count */
1613	int	temp;
1614	int	i;
1615
1616	/*
1617	 * The distance is determined as the weight of the exclusive OR
1618	 * of the two arguments. The weight is determined by the number
1619	 * of one bits in the result. Each one bit increases the weight,
1620	 * while each zero bit decreases it.
1621	 */
1622	temp = x ^ y;
1623	val = 0;
1624	for (i = 0; i < 8; i++) {
1625		if ((temp & 0x1) == 0)
1626			val++;
1627		else
1628			val--;
1629		temp >>= 1;
1630	}
1631	return (val);
1632}
1633
1634
1635#ifdef HAVE_AUDIO
1636/*
1637 * chu_gain - adjust codec gain
1638 *
1639 * This routine is called at the end of each second. During the second
1640 * the number of signal clips above the MAXAMP threshold (6000). If
1641 * there are no clips, the gain is bumped up; if there are more than
1642 * MAXCLP clips (100), it is bumped down. The decoder is relatively
1643 * insensitive to amplitude, so this crudity works just peachy. The
1644 * routine also jiggles the input port and selectively mutes the
1645 */
1646static void
1647chu_gain(
1648	struct peer *peer	/* peer structure pointer */
1649	)
1650{
1651	struct refclockproc *pp;
1652	struct chuunit *up;
1653
1654	pp = peer->procptr;
1655	up = pp->unitptr;
1656
1657	/*
1658	 * Apparently, the codec uses only the high order bits of the
1659	 * gain control field. Thus, it may take awhile for changes to
1660	 * wiggle the hardware bits.
1661	 */
1662	if (up->clipcnt == 0) {
1663		up->gain += 4;
1664		if (up->gain > MAXGAIN)
1665			up->gain = MAXGAIN;
1666	} else if (up->clipcnt > MAXCLP) {
1667		up->gain -= 4;
1668		if (up->gain < 0)
1669			up->gain = 0;
1670	}
1671	audio_gain(up->gain, up->mongain, up->port);
1672	up->clipcnt = 0;
1673}
1674#endif /* HAVE_AUDIO */
1675
1676
1677#else
1678NONEMPTY_TRANSLATION_UNIT
1679#endif /* REFCLOCK */
1680