1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/ASTLambda.h"
15#include "clang/AST/DeclCXX.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Sema/Lookup.h"
22#include "clang/Sema/Scope.h"
23#include "clang/Sema/ScopeInfo.h"
24
25using namespace clang;
26using namespace sema;
27
28typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29static bool BaseIsNotInSet(const CXXRecordDecl *Base, void *BasesPtr) {
30  const BaseSet &Bases = *reinterpret_cast<const BaseSet*>(BasesPtr);
31  return !Bases.count(Base->getCanonicalDecl());
32}
33
34/// Determines if the given class is provably not derived from all of
35/// the prospective base classes.
36static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
37                                     const BaseSet &Bases) {
38  void *BasesPtr = const_cast<void*>(reinterpret_cast<const void*>(&Bases));
39  return BaseIsNotInSet(Record, BasesPtr) &&
40         Record->forallBases(BaseIsNotInSet, BasesPtr);
41}
42
43enum IMAKind {
44  /// The reference is definitely not an instance member access.
45  IMA_Static,
46
47  /// The reference may be an implicit instance member access.
48  IMA_Mixed,
49
50  /// The reference may be to an instance member, but it might be invalid if
51  /// so, because the context is not an instance method.
52  IMA_Mixed_StaticContext,
53
54  /// The reference may be to an instance member, but it is invalid if
55  /// so, because the context is from an unrelated class.
56  IMA_Mixed_Unrelated,
57
58  /// The reference is definitely an implicit instance member access.
59  IMA_Instance,
60
61  /// The reference may be to an unresolved using declaration.
62  IMA_Unresolved,
63
64  /// The reference is a contextually-permitted abstract member reference.
65  IMA_Abstract,
66
67  /// The reference may be to an unresolved using declaration and the
68  /// context is not an instance method.
69  IMA_Unresolved_StaticContext,
70
71  // The reference refers to a field which is not a member of the containing
72  // class, which is allowed because we're in C++11 mode and the context is
73  // unevaluated.
74  IMA_Field_Uneval_Context,
75
76  /// All possible referrents are instance members and the current
77  /// context is not an instance method.
78  IMA_Error_StaticContext,
79
80  /// All possible referrents are instance members of an unrelated
81  /// class.
82  IMA_Error_Unrelated
83};
84
85/// The given lookup names class member(s) and is not being used for
86/// an address-of-member expression.  Classify the type of access
87/// according to whether it's possible that this reference names an
88/// instance member.  This is best-effort in dependent contexts; it is okay to
89/// conservatively answer "yes", in which case some errors will simply
90/// not be caught until template-instantiation.
91static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
92                                            Scope *CurScope,
93                                            const LookupResult &R) {
94  assert(!R.empty() && (*R.begin())->isCXXClassMember());
95
96  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
97
98  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
99    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
100
101  if (R.isUnresolvableResult())
102    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
103
104  // Collect all the declaring classes of instance members we find.
105  bool hasNonInstance = false;
106  bool isField = false;
107  BaseSet Classes;
108  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
109    NamedDecl *D = *I;
110
111    if (D->isCXXInstanceMember()) {
112      if (dyn_cast<FieldDecl>(D) || dyn_cast<MSPropertyDecl>(D)
113          || dyn_cast<IndirectFieldDecl>(D))
114        isField = true;
115
116      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
117      Classes.insert(R->getCanonicalDecl());
118    }
119    else
120      hasNonInstance = true;
121  }
122
123  // If we didn't find any instance members, it can't be an implicit
124  // member reference.
125  if (Classes.empty())
126    return IMA_Static;
127
128  // C++11 [expr.prim.general]p12:
129  //   An id-expression that denotes a non-static data member or non-static
130  //   member function of a class can only be used:
131  //   (...)
132  //   - if that id-expression denotes a non-static data member and it
133  //     appears in an unevaluated operand.
134  //
135  // This rule is specific to C++11.  However, we also permit this form
136  // in unevaluated inline assembly operands, like the operand to a SIZE.
137  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
138  assert(!AbstractInstanceResult);
139  switch (SemaRef.ExprEvalContexts.back().Context) {
140  case Sema::Unevaluated:
141    if (isField && SemaRef.getLangOpts().CPlusPlus11)
142      AbstractInstanceResult = IMA_Field_Uneval_Context;
143    break;
144
145  case Sema::UnevaluatedAbstract:
146    AbstractInstanceResult = IMA_Abstract;
147    break;
148
149  case Sema::ConstantEvaluated:
150  case Sema::PotentiallyEvaluated:
151  case Sema::PotentiallyEvaluatedIfUsed:
152    break;
153  }
154
155  // If the current context is not an instance method, it can't be
156  // an implicit member reference.
157  if (isStaticContext) {
158    if (hasNonInstance)
159      return IMA_Mixed_StaticContext;
160
161    return AbstractInstanceResult ? AbstractInstanceResult
162                                  : IMA_Error_StaticContext;
163  }
164
165  CXXRecordDecl *contextClass;
166  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
167    contextClass = MD->getParent()->getCanonicalDecl();
168  else
169    contextClass = cast<CXXRecordDecl>(DC);
170
171  // [class.mfct.non-static]p3:
172  // ...is used in the body of a non-static member function of class X,
173  // if name lookup (3.4.1) resolves the name in the id-expression to a
174  // non-static non-type member of some class C [...]
175  // ...if C is not X or a base class of X, the class member access expression
176  // is ill-formed.
177  if (R.getNamingClass() &&
178      contextClass->getCanonicalDecl() !=
179        R.getNamingClass()->getCanonicalDecl()) {
180    // If the naming class is not the current context, this was a qualified
181    // member name lookup, and it's sufficient to check that we have the naming
182    // class as a base class.
183    Classes.clear();
184    Classes.insert(R.getNamingClass()->getCanonicalDecl());
185  }
186
187  // If we can prove that the current context is unrelated to all the
188  // declaring classes, it can't be an implicit member reference (in
189  // which case it's an error if any of those members are selected).
190  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
191    return hasNonInstance ? IMA_Mixed_Unrelated :
192           AbstractInstanceResult ? AbstractInstanceResult :
193                                    IMA_Error_Unrelated;
194
195  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
196}
197
198/// Diagnose a reference to a field with no object available.
199static void diagnoseInstanceReference(Sema &SemaRef,
200                                      const CXXScopeSpec &SS,
201                                      NamedDecl *Rep,
202                                      const DeclarationNameInfo &nameInfo) {
203  SourceLocation Loc = nameInfo.getLoc();
204  SourceRange Range(Loc);
205  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
206
207  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
208  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
209  CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
210  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
211
212  bool InStaticMethod = Method && Method->isStatic();
213  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
214
215  if (IsField && InStaticMethod)
216    // "invalid use of member 'x' in static member function"
217    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
218        << Range << nameInfo.getName();
219  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
220           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
221    // Unqualified lookup in a non-static member function found a member of an
222    // enclosing class.
223    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
224      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
225  else if (IsField)
226    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
227      << nameInfo.getName() << Range;
228  else
229    SemaRef.Diag(Loc, diag::err_member_call_without_object)
230      << Range;
231}
232
233/// Builds an expression which might be an implicit member expression.
234ExprResult
235Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
236                                      SourceLocation TemplateKWLoc,
237                                      LookupResult &R,
238                                const TemplateArgumentListInfo *TemplateArgs) {
239  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
240  case IMA_Instance:
241    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
242
243  case IMA_Mixed:
244  case IMA_Mixed_Unrelated:
245  case IMA_Unresolved:
246    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
247
248  case IMA_Field_Uneval_Context:
249    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
250      << R.getLookupNameInfo().getName();
251    // Fall through.
252  case IMA_Static:
253  case IMA_Abstract:
254  case IMA_Mixed_StaticContext:
255  case IMA_Unresolved_StaticContext:
256    if (TemplateArgs || TemplateKWLoc.isValid())
257      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
258    return BuildDeclarationNameExpr(SS, R, false);
259
260  case IMA_Error_StaticContext:
261  case IMA_Error_Unrelated:
262    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
263                              R.getLookupNameInfo());
264    return ExprError();
265  }
266
267  llvm_unreachable("unexpected instance member access kind");
268}
269
270/// Check an ext-vector component access expression.
271///
272/// VK should be set in advance to the value kind of the base
273/// expression.
274static QualType
275CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
276                        SourceLocation OpLoc, const IdentifierInfo *CompName,
277                        SourceLocation CompLoc) {
278  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
279  // see FIXME there.
280  //
281  // FIXME: This logic can be greatly simplified by splitting it along
282  // halving/not halving and reworking the component checking.
283  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
284
285  // The vector accessor can't exceed the number of elements.
286  const char *compStr = CompName->getNameStart();
287
288  // This flag determines whether or not the component is one of the four
289  // special names that indicate a subset of exactly half the elements are
290  // to be selected.
291  bool HalvingSwizzle = false;
292
293  // This flag determines whether or not CompName has an 's' char prefix,
294  // indicating that it is a string of hex values to be used as vector indices.
295  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
296
297  bool HasRepeated = false;
298  bool HasIndex[16] = {};
299
300  int Idx;
301
302  // Check that we've found one of the special components, or that the component
303  // names must come from the same set.
304  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
305      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
306    HalvingSwizzle = true;
307  } else if (!HexSwizzle &&
308             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
309    do {
310      if (HasIndex[Idx]) HasRepeated = true;
311      HasIndex[Idx] = true;
312      compStr++;
313    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
314  } else {
315    if (HexSwizzle) compStr++;
316    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
317      if (HasIndex[Idx]) HasRepeated = true;
318      HasIndex[Idx] = true;
319      compStr++;
320    }
321  }
322
323  if (!HalvingSwizzle && *compStr) {
324    // We didn't get to the end of the string. This means the component names
325    // didn't come from the same set *or* we encountered an illegal name.
326    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
327      << StringRef(compStr, 1) << SourceRange(CompLoc);
328    return QualType();
329  }
330
331  // Ensure no component accessor exceeds the width of the vector type it
332  // operates on.
333  if (!HalvingSwizzle) {
334    compStr = CompName->getNameStart();
335
336    if (HexSwizzle)
337      compStr++;
338
339    while (*compStr) {
340      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
341        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
342          << baseType << SourceRange(CompLoc);
343        return QualType();
344      }
345    }
346  }
347
348  // The component accessor looks fine - now we need to compute the actual type.
349  // The vector type is implied by the component accessor. For example,
350  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
351  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
352  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
353  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
354                                     : CompName->getLength();
355  if (HexSwizzle)
356    CompSize--;
357
358  if (CompSize == 1)
359    return vecType->getElementType();
360
361  if (HasRepeated) VK = VK_RValue;
362
363  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
364  // Now look up the TypeDefDecl from the vector type. Without this,
365  // diagostics look bad. We want extended vector types to appear built-in.
366  for (Sema::ExtVectorDeclsType::iterator
367         I = S.ExtVectorDecls.begin(S.getExternalSource()),
368         E = S.ExtVectorDecls.end();
369       I != E; ++I) {
370    if ((*I)->getUnderlyingType() == VT)
371      return S.Context.getTypedefType(*I);
372  }
373
374  return VT; // should never get here (a typedef type should always be found).
375}
376
377static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
378                                                IdentifierInfo *Member,
379                                                const Selector &Sel,
380                                                ASTContext &Context) {
381  if (Member)
382    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
383      return PD;
384  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
385    return OMD;
386
387  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
388       E = PDecl->protocol_end(); I != E; ++I) {
389    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
390                                                           Context))
391      return D;
392  }
393  return 0;
394}
395
396static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
397                                      IdentifierInfo *Member,
398                                      const Selector &Sel,
399                                      ASTContext &Context) {
400  // Check protocols on qualified interfaces.
401  Decl *GDecl = 0;
402  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
403       E = QIdTy->qual_end(); I != E; ++I) {
404    if (Member)
405      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
406        GDecl = PD;
407        break;
408      }
409    // Also must look for a getter or setter name which uses property syntax.
410    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
411      GDecl = OMD;
412      break;
413    }
414  }
415  if (!GDecl) {
416    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
417         E = QIdTy->qual_end(); I != E; ++I) {
418      // Search in the protocol-qualifier list of current protocol.
419      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
420                                                       Context);
421      if (GDecl)
422        return GDecl;
423    }
424  }
425  return GDecl;
426}
427
428ExprResult
429Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
430                               bool IsArrow, SourceLocation OpLoc,
431                               const CXXScopeSpec &SS,
432                               SourceLocation TemplateKWLoc,
433                               NamedDecl *FirstQualifierInScope,
434                               const DeclarationNameInfo &NameInfo,
435                               const TemplateArgumentListInfo *TemplateArgs) {
436  // Even in dependent contexts, try to diagnose base expressions with
437  // obviously wrong types, e.g.:
438  //
439  // T* t;
440  // t.f;
441  //
442  // In Obj-C++, however, the above expression is valid, since it could be
443  // accessing the 'f' property if T is an Obj-C interface. The extra check
444  // allows this, while still reporting an error if T is a struct pointer.
445  if (!IsArrow) {
446    const PointerType *PT = BaseType->getAs<PointerType>();
447    if (PT && (!getLangOpts().ObjC1 ||
448               PT->getPointeeType()->isRecordType())) {
449      assert(BaseExpr && "cannot happen with implicit member accesses");
450      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
451        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
452      return ExprError();
453    }
454  }
455
456  assert(BaseType->isDependentType() ||
457         NameInfo.getName().isDependentName() ||
458         isDependentScopeSpecifier(SS));
459
460  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
461  // must have pointer type, and the accessed type is the pointee.
462  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
463                                                   IsArrow, OpLoc,
464                                               SS.getWithLocInContext(Context),
465                                                   TemplateKWLoc,
466                                                   FirstQualifierInScope,
467                                                   NameInfo, TemplateArgs));
468}
469
470/// We know that the given qualified member reference points only to
471/// declarations which do not belong to the static type of the base
472/// expression.  Diagnose the problem.
473static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
474                                             Expr *BaseExpr,
475                                             QualType BaseType,
476                                             const CXXScopeSpec &SS,
477                                             NamedDecl *rep,
478                                       const DeclarationNameInfo &nameInfo) {
479  // If this is an implicit member access, use a different set of
480  // diagnostics.
481  if (!BaseExpr)
482    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
483
484  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
485    << SS.getRange() << rep << BaseType;
486}
487
488// Check whether the declarations we found through a nested-name
489// specifier in a member expression are actually members of the base
490// type.  The restriction here is:
491//
492//   C++ [expr.ref]p2:
493//     ... In these cases, the id-expression shall name a
494//     member of the class or of one of its base classes.
495//
496// So it's perfectly legitimate for the nested-name specifier to name
497// an unrelated class, and for us to find an overload set including
498// decls from classes which are not superclasses, as long as the decl
499// we actually pick through overload resolution is from a superclass.
500bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
501                                         QualType BaseType,
502                                         const CXXScopeSpec &SS,
503                                         const LookupResult &R) {
504  CXXRecordDecl *BaseRecord =
505    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
506  if (!BaseRecord) {
507    // We can't check this yet because the base type is still
508    // dependent.
509    assert(BaseType->isDependentType());
510    return false;
511  }
512
513  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
514    // If this is an implicit member reference and we find a
515    // non-instance member, it's not an error.
516    if (!BaseExpr && !(*I)->isCXXInstanceMember())
517      return false;
518
519    // Note that we use the DC of the decl, not the underlying decl.
520    DeclContext *DC = (*I)->getDeclContext();
521    while (DC->isTransparentContext())
522      DC = DC->getParent();
523
524    if (!DC->isRecord())
525      continue;
526
527    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
528    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
529        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
530      return false;
531  }
532
533  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
534                                   R.getRepresentativeDecl(),
535                                   R.getLookupNameInfo());
536  return true;
537}
538
539namespace {
540
541// Callback to only accept typo corrections that are either a ValueDecl or a
542// FunctionTemplateDecl and are declared in the current record or, for a C++
543// classes, one of its base classes.
544class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
545 public:
546  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
547      : Record(RTy->getDecl()) {}
548
549  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
550    NamedDecl *ND = candidate.getCorrectionDecl();
551    // Don't accept candidates that cannot be member functions, constants,
552    // variables, or templates.
553    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
554      return false;
555
556    // Accept candidates that occur in the current record.
557    if (Record->containsDecl(ND))
558      return true;
559
560    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record)) {
561      // Accept candidates that occur in any of the current class' base classes.
562      for (CXXRecordDecl::base_class_const_iterator BS = RD->bases_begin(),
563                                                    BSEnd = RD->bases_end();
564           BS != BSEnd; ++BS) {
565        if (const RecordType *BSTy = dyn_cast_or_null<RecordType>(
566                BS->getType().getTypePtrOrNull())) {
567          if (BSTy->getDecl()->containsDecl(ND))
568            return true;
569        }
570      }
571    }
572
573    return false;
574  }
575
576 private:
577  const RecordDecl *const Record;
578};
579
580}
581
582static bool
583LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
584                         SourceRange BaseRange, const RecordType *RTy,
585                         SourceLocation OpLoc, CXXScopeSpec &SS,
586                         bool HasTemplateArgs) {
587  RecordDecl *RDecl = RTy->getDecl();
588  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
589      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
590                                  diag::err_typecheck_incomplete_tag,
591                                  BaseRange))
592    return true;
593
594  if (HasTemplateArgs) {
595    // LookupTemplateName doesn't expect these both to exist simultaneously.
596    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
597
598    bool MOUS;
599    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
600    return false;
601  }
602
603  DeclContext *DC = RDecl;
604  if (SS.isSet()) {
605    // If the member name was a qualified-id, look into the
606    // nested-name-specifier.
607    DC = SemaRef.computeDeclContext(SS, false);
608
609    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
610      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
611        << SS.getRange() << DC;
612      return true;
613    }
614
615    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
616
617    if (!isa<TypeDecl>(DC)) {
618      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
619        << DC << SS.getRange();
620      return true;
621    }
622  }
623
624  // The record definition is complete, now look up the member.
625  SemaRef.LookupQualifiedName(R, DC);
626
627  if (!R.empty())
628    return false;
629
630  // We didn't find anything with the given name, so try to correct
631  // for typos.
632  DeclarationName Name = R.getLookupName();
633  RecordMemberExprValidatorCCC Validator(RTy);
634  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
635                                                 R.getLookupKind(), NULL,
636                                                 &SS, Validator, DC);
637  R.clear();
638  if (Corrected.isResolved() && !Corrected.isKeyword()) {
639    R.setLookupName(Corrected.getCorrection());
640    for (TypoCorrection::decl_iterator DI = Corrected.begin(),
641                                       DIEnd = Corrected.end();
642         DI != DIEnd; ++DI) {
643      R.addDecl(*DI);
644    }
645    R.resolveKind();
646
647    // If we're typo-correcting to an overloaded name, we don't yet have enough
648    // information to do overload resolution, so we don't know which previous
649    // declaration to point to.
650    if (Corrected.isOverloaded())
651      Corrected.setCorrectionDecl(0);
652    bool DroppedSpecifier =
653        Corrected.WillReplaceSpecifier() &&
654        Name.getAsString() == Corrected.getAsString(SemaRef.getLangOpts());
655    SemaRef.diagnoseTypo(Corrected,
656                         SemaRef.PDiag(diag::err_no_member_suggest)
657                           << Name << DC << DroppedSpecifier << SS.getRange());
658  }
659
660  return false;
661}
662
663ExprResult
664Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
665                               SourceLocation OpLoc, bool IsArrow,
666                               CXXScopeSpec &SS,
667                               SourceLocation TemplateKWLoc,
668                               NamedDecl *FirstQualifierInScope,
669                               const DeclarationNameInfo &NameInfo,
670                               const TemplateArgumentListInfo *TemplateArgs) {
671  if (BaseType->isDependentType() ||
672      (SS.isSet() && isDependentScopeSpecifier(SS)))
673    return ActOnDependentMemberExpr(Base, BaseType,
674                                    IsArrow, OpLoc,
675                                    SS, TemplateKWLoc, FirstQualifierInScope,
676                                    NameInfo, TemplateArgs);
677
678  LookupResult R(*this, NameInfo, LookupMemberName);
679
680  // Implicit member accesses.
681  if (!Base) {
682    QualType RecordTy = BaseType;
683    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
684    if (LookupMemberExprInRecord(*this, R, SourceRange(),
685                                 RecordTy->getAs<RecordType>(),
686                                 OpLoc, SS, TemplateArgs != 0))
687      return ExprError();
688
689  // Explicit member accesses.
690  } else {
691    ExprResult BaseResult = Owned(Base);
692    ExprResult Result =
693      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
694                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
695
696    if (BaseResult.isInvalid())
697      return ExprError();
698    Base = BaseResult.take();
699
700    if (Result.isInvalid()) {
701      Owned(Base);
702      return ExprError();
703    }
704
705    if (Result.get())
706      return Result;
707
708    // LookupMemberExpr can modify Base, and thus change BaseType
709    BaseType = Base->getType();
710  }
711
712  return BuildMemberReferenceExpr(Base, BaseType,
713                                  OpLoc, IsArrow, SS, TemplateKWLoc,
714                                  FirstQualifierInScope, R, TemplateArgs);
715}
716
717static ExprResult
718BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
719                        const CXXScopeSpec &SS, FieldDecl *Field,
720                        DeclAccessPair FoundDecl,
721                        const DeclarationNameInfo &MemberNameInfo);
722
723ExprResult
724Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
725                                               SourceLocation loc,
726                                               IndirectFieldDecl *indirectField,
727                                               DeclAccessPair foundDecl,
728                                               Expr *baseObjectExpr,
729                                               SourceLocation opLoc) {
730  // First, build the expression that refers to the base object.
731
732  bool baseObjectIsPointer = false;
733  Qualifiers baseQuals;
734
735  // Case 1:  the base of the indirect field is not a field.
736  VarDecl *baseVariable = indirectField->getVarDecl();
737  CXXScopeSpec EmptySS;
738  if (baseVariable) {
739    assert(baseVariable->getType()->isRecordType());
740
741    // In principle we could have a member access expression that
742    // accesses an anonymous struct/union that's a static member of
743    // the base object's class.  However, under the current standard,
744    // static data members cannot be anonymous structs or unions.
745    // Supporting this is as easy as building a MemberExpr here.
746    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
747
748    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
749
750    ExprResult result
751      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
752    if (result.isInvalid()) return ExprError();
753
754    baseObjectExpr = result.take();
755    baseObjectIsPointer = false;
756    baseQuals = baseObjectExpr->getType().getQualifiers();
757
758    // Case 2: the base of the indirect field is a field and the user
759    // wrote a member expression.
760  } else if (baseObjectExpr) {
761    // The caller provided the base object expression. Determine
762    // whether its a pointer and whether it adds any qualifiers to the
763    // anonymous struct/union fields we're looking into.
764    QualType objectType = baseObjectExpr->getType();
765
766    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
767      baseObjectIsPointer = true;
768      objectType = ptr->getPointeeType();
769    } else {
770      baseObjectIsPointer = false;
771    }
772    baseQuals = objectType.getQualifiers();
773
774    // Case 3: the base of the indirect field is a field and we should
775    // build an implicit member access.
776  } else {
777    // We've found a member of an anonymous struct/union that is
778    // inside a non-anonymous struct/union, so in a well-formed
779    // program our base object expression is "this".
780    QualType ThisTy = getCurrentThisType();
781    if (ThisTy.isNull()) {
782      Diag(loc, diag::err_invalid_member_use_in_static_method)
783        << indirectField->getDeclName();
784      return ExprError();
785    }
786
787    // Our base object expression is "this".
788    CheckCXXThisCapture(loc);
789    baseObjectExpr
790      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
791    baseObjectIsPointer = true;
792    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
793  }
794
795  // Build the implicit member references to the field of the
796  // anonymous struct/union.
797  Expr *result = baseObjectExpr;
798  IndirectFieldDecl::chain_iterator
799  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
800
801  // Build the first member access in the chain with full information.
802  if (!baseVariable) {
803    FieldDecl *field = cast<FieldDecl>(*FI);
804
805    // Make a nameInfo that properly uses the anonymous name.
806    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
807
808    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
809                                     EmptySS, field, foundDecl,
810                                     memberNameInfo).take();
811    if (!result)
812      return ExprError();
813
814    baseObjectIsPointer = false;
815
816    // FIXME: check qualified member access
817  }
818
819  // In all cases, we should now skip the first declaration in the chain.
820  ++FI;
821
822  while (FI != FEnd) {
823    FieldDecl *field = cast<FieldDecl>(*FI++);
824
825    // FIXME: these are somewhat meaningless
826    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
827    DeclAccessPair fakeFoundDecl =
828        DeclAccessPair::make(field, field->getAccess());
829
830    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
831                                     (FI == FEnd? SS : EmptySS), field,
832                                     fakeFoundDecl, memberNameInfo).take();
833  }
834
835  return Owned(result);
836}
837
838static ExprResult
839BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
840                       const CXXScopeSpec &SS,
841                       MSPropertyDecl *PD,
842                       const DeclarationNameInfo &NameInfo) {
843  // Property names are always simple identifiers and therefore never
844  // require any interesting additional storage.
845  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
846                                           S.Context.PseudoObjectTy, VK_LValue,
847                                           SS.getWithLocInContext(S.Context),
848                                           NameInfo.getLoc());
849}
850
851/// \brief Build a MemberExpr AST node.
852static MemberExpr *BuildMemberExpr(Sema &SemaRef,
853                                   ASTContext &C, Expr *Base, bool isArrow,
854                                   const CXXScopeSpec &SS,
855                                   SourceLocation TemplateKWLoc,
856                                   ValueDecl *Member,
857                                   DeclAccessPair FoundDecl,
858                                   const DeclarationNameInfo &MemberNameInfo,
859                                   QualType Ty,
860                                   ExprValueKind VK, ExprObjectKind OK,
861                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
862  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
863  MemberExpr *E =
864      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
865                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
866                         TemplateArgs, Ty, VK, OK);
867  SemaRef.MarkMemberReferenced(E);
868  return E;
869}
870
871ExprResult
872Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
873                               SourceLocation OpLoc, bool IsArrow,
874                               const CXXScopeSpec &SS,
875                               SourceLocation TemplateKWLoc,
876                               NamedDecl *FirstQualifierInScope,
877                               LookupResult &R,
878                               const TemplateArgumentListInfo *TemplateArgs,
879                               bool SuppressQualifierCheck,
880                               ActOnMemberAccessExtraArgs *ExtraArgs) {
881  QualType BaseType = BaseExprType;
882  if (IsArrow) {
883    assert(BaseType->isPointerType());
884    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
885  }
886  R.setBaseObjectType(BaseType);
887
888  LambdaScopeInfo *const CurLSI = getCurLambda();
889  // If this is an implicit member reference and the overloaded
890  // name refers to both static and non-static member functions
891  // (i.e. BaseExpr is null) and if we are currently processing a lambda,
892  // check if we should/can capture 'this'...
893  // Keep this example in mind:
894  //  struct X {
895  //   void f(int) { }
896  //   static void f(double) { }
897  //
898  //   int g() {
899  //     auto L = [=](auto a) {
900  //       return [](int i) {
901  //         return [=](auto b) {
902  //           f(b);
903  //           //f(decltype(a){});
904  //         };
905  //       };
906  //     };
907  //     auto M = L(0.0);
908  //     auto N = M(3);
909  //     N(5.32); // OK, must not error.
910  //     return 0;
911  //   }
912  //  };
913  //
914  if (!BaseExpr && CurLSI) {
915    SourceLocation Loc = R.getNameLoc();
916    if (SS.getRange().isValid())
917      Loc = SS.getRange().getBegin();
918    DeclContext *EnclosingFunctionCtx = CurContext->getParent()->getParent();
919    // If the enclosing function is not dependent, then this lambda is
920    // capture ready, so if we can capture this, do so.
921    if (!EnclosingFunctionCtx->isDependentContext()) {
922      // If the current lambda and all enclosing lambdas can capture 'this' -
923      // then go ahead and capture 'this' (since our unresolved overload set
924      // contains both static and non-static member functions).
925      if (!CheckCXXThisCapture(Loc, /*Explcit*/false, /*Diagnose*/false))
926        CheckCXXThisCapture(Loc);
927    } else if (CurContext->isDependentContext()) {
928      // ... since this is an implicit member reference, that might potentially
929      // involve a 'this' capture, mark 'this' for potential capture in
930      // enclosing lambdas.
931      if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
932        CurLSI->addPotentialThisCapture(Loc);
933    }
934  }
935  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
936  DeclarationName MemberName = MemberNameInfo.getName();
937  SourceLocation MemberLoc = MemberNameInfo.getLoc();
938
939  if (R.isAmbiguous())
940    return ExprError();
941
942  if (R.empty()) {
943    // Rederive where we looked up.
944    DeclContext *DC = (SS.isSet()
945                       ? computeDeclContext(SS, false)
946                       : BaseType->getAs<RecordType>()->getDecl());
947
948    if (ExtraArgs) {
949      ExprResult RetryExpr;
950      if (!IsArrow && BaseExpr) {
951        SFINAETrap Trap(*this, true);
952        ParsedType ObjectType;
953        bool MayBePseudoDestructor = false;
954        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
955                                                 OpLoc, tok::arrow, ObjectType,
956                                                 MayBePseudoDestructor);
957        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
958          CXXScopeSpec TempSS(SS);
959          RetryExpr = ActOnMemberAccessExpr(
960              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
961              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
962              ExtraArgs->HasTrailingLParen);
963        }
964        if (Trap.hasErrorOccurred())
965          RetryExpr = ExprError();
966      }
967      if (RetryExpr.isUsable()) {
968        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
969          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
970        return RetryExpr;
971      }
972    }
973
974    Diag(R.getNameLoc(), diag::err_no_member)
975      << MemberName << DC
976      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
977    return ExprError();
978  }
979
980  // Diagnose lookups that find only declarations from a non-base
981  // type.  This is possible for either qualified lookups (which may
982  // have been qualified with an unrelated type) or implicit member
983  // expressions (which were found with unqualified lookup and thus
984  // may have come from an enclosing scope).  Note that it's okay for
985  // lookup to find declarations from a non-base type as long as those
986  // aren't the ones picked by overload resolution.
987  if ((SS.isSet() || !BaseExpr ||
988       (isa<CXXThisExpr>(BaseExpr) &&
989        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
990      !SuppressQualifierCheck &&
991      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
992    return ExprError();
993
994  // Construct an unresolved result if we in fact got an unresolved
995  // result.
996  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
997    // Suppress any lookup-related diagnostics; we'll do these when we
998    // pick a member.
999    R.suppressDiagnostics();
1000
1001    UnresolvedMemberExpr *MemExpr
1002      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1003                                     BaseExpr, BaseExprType,
1004                                     IsArrow, OpLoc,
1005                                     SS.getWithLocInContext(Context),
1006                                     TemplateKWLoc, MemberNameInfo,
1007                                     TemplateArgs, R.begin(), R.end());
1008
1009    return Owned(MemExpr);
1010  }
1011
1012  assert(R.isSingleResult());
1013  DeclAccessPair FoundDecl = R.begin().getPair();
1014  NamedDecl *MemberDecl = R.getFoundDecl();
1015
1016  // FIXME: diagnose the presence of template arguments now.
1017
1018  // If the decl being referenced had an error, return an error for this
1019  // sub-expr without emitting another error, in order to avoid cascading
1020  // error cases.
1021  if (MemberDecl->isInvalidDecl())
1022    return ExprError();
1023
1024  // Handle the implicit-member-access case.
1025  if (!BaseExpr) {
1026    // If this is not an instance member, convert to a non-member access.
1027    if (!MemberDecl->isCXXInstanceMember())
1028      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
1029
1030    SourceLocation Loc = R.getNameLoc();
1031    if (SS.getRange().isValid())
1032      Loc = SS.getRange().getBegin();
1033    CheckCXXThisCapture(Loc);
1034    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
1035  }
1036
1037  bool ShouldCheckUse = true;
1038  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1039    // Don't diagnose the use of a virtual member function unless it's
1040    // explicitly qualified.
1041    if (MD->isVirtual() && !SS.isSet())
1042      ShouldCheckUse = false;
1043  }
1044
1045  // Check the use of this member.
1046  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
1047    Owned(BaseExpr);
1048    return ExprError();
1049  }
1050
1051  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1052    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
1053                                   SS, FD, FoundDecl, MemberNameInfo);
1054
1055  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1056    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1057                                  MemberNameInfo);
1058
1059  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1060    // We may have found a field within an anonymous union or struct
1061    // (C++ [class.union]).
1062    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1063                                                    FoundDecl, BaseExpr,
1064                                                    OpLoc);
1065
1066  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1067    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
1068                                 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
1069                                 Var->getType().getNonReferenceType(),
1070                                 VK_LValue, OK_Ordinary));
1071  }
1072
1073  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1074    ExprValueKind valueKind;
1075    QualType type;
1076    if (MemberFn->isInstance()) {
1077      valueKind = VK_RValue;
1078      type = Context.BoundMemberTy;
1079    } else {
1080      valueKind = VK_LValue;
1081      type = MemberFn->getType();
1082    }
1083
1084    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
1085                                 TemplateKWLoc, MemberFn, FoundDecl,
1086                                 MemberNameInfo, type, valueKind,
1087                                 OK_Ordinary));
1088  }
1089  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1090
1091  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1092    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
1093                                 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
1094                                 Enum->getType(), VK_RValue, OK_Ordinary));
1095  }
1096
1097  Owned(BaseExpr);
1098
1099  // We found something that we didn't expect. Complain.
1100  if (isa<TypeDecl>(MemberDecl))
1101    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1102      << MemberName << BaseType << int(IsArrow);
1103  else
1104    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1105      << MemberName << BaseType << int(IsArrow);
1106
1107  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1108    << MemberName;
1109  R.suppressDiagnostics();
1110  return ExprError();
1111}
1112
1113/// Given that normal member access failed on the given expression,
1114/// and given that the expression's type involves builtin-id or
1115/// builtin-Class, decide whether substituting in the redefinition
1116/// types would be profitable.  The redefinition type is whatever
1117/// this translation unit tried to typedef to id/Class;  we store
1118/// it to the side and then re-use it in places like this.
1119static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1120  const ObjCObjectPointerType *opty
1121    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1122  if (!opty) return false;
1123
1124  const ObjCObjectType *ty = opty->getObjectType();
1125
1126  QualType redef;
1127  if (ty->isObjCId()) {
1128    redef = S.Context.getObjCIdRedefinitionType();
1129  } else if (ty->isObjCClass()) {
1130    redef = S.Context.getObjCClassRedefinitionType();
1131  } else {
1132    return false;
1133  }
1134
1135  // Do the substitution as long as the redefinition type isn't just a
1136  // possibly-qualified pointer to builtin-id or builtin-Class again.
1137  opty = redef->getAs<ObjCObjectPointerType>();
1138  if (opty && !opty->getObjectType()->getInterface())
1139    return false;
1140
1141  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1142  return true;
1143}
1144
1145static bool isRecordType(QualType T) {
1146  return T->isRecordType();
1147}
1148static bool isPointerToRecordType(QualType T) {
1149  if (const PointerType *PT = T->getAs<PointerType>())
1150    return PT->getPointeeType()->isRecordType();
1151  return false;
1152}
1153
1154/// Perform conversions on the LHS of a member access expression.
1155ExprResult
1156Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1157  if (IsArrow && !Base->getType()->isFunctionType())
1158    return DefaultFunctionArrayLvalueConversion(Base);
1159
1160  return CheckPlaceholderExpr(Base);
1161}
1162
1163/// Look up the given member of the given non-type-dependent
1164/// expression.  This can return in one of two ways:
1165///  * If it returns a sentinel null-but-valid result, the caller will
1166///    assume that lookup was performed and the results written into
1167///    the provided structure.  It will take over from there.
1168///  * Otherwise, the returned expression will be produced in place of
1169///    an ordinary member expression.
1170///
1171/// The ObjCImpDecl bit is a gross hack that will need to be properly
1172/// fixed for ObjC++.
1173ExprResult
1174Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1175                       bool &IsArrow, SourceLocation OpLoc,
1176                       CXXScopeSpec &SS,
1177                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
1178  assert(BaseExpr.get() && "no base expression");
1179
1180  // Perform default conversions.
1181  BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1182  if (BaseExpr.isInvalid())
1183    return ExprError();
1184
1185  QualType BaseType = BaseExpr.get()->getType();
1186  assert(!BaseType->isDependentType());
1187
1188  DeclarationName MemberName = R.getLookupName();
1189  SourceLocation MemberLoc = R.getNameLoc();
1190
1191  // For later type-checking purposes, turn arrow accesses into dot
1192  // accesses.  The only access type we support that doesn't follow
1193  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1194  // and those never use arrows, so this is unaffected.
1195  if (IsArrow) {
1196    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1197      BaseType = Ptr->getPointeeType();
1198    else if (const ObjCObjectPointerType *Ptr
1199               = BaseType->getAs<ObjCObjectPointerType>())
1200      BaseType = Ptr->getPointeeType();
1201    else if (BaseType->isRecordType()) {
1202      // Recover from arrow accesses to records, e.g.:
1203      //   struct MyRecord foo;
1204      //   foo->bar
1205      // This is actually well-formed in C++ if MyRecord has an
1206      // overloaded operator->, but that should have been dealt with
1207      // by now--or a diagnostic message already issued if a problem
1208      // was encountered while looking for the overloaded operator->.
1209      if (!getLangOpts().CPlusPlus) {
1210        Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1211          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1212          << FixItHint::CreateReplacement(OpLoc, ".");
1213      }
1214      IsArrow = false;
1215    } else if (BaseType->isFunctionType()) {
1216      goto fail;
1217    } else {
1218      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1219        << BaseType << BaseExpr.get()->getSourceRange();
1220      return ExprError();
1221    }
1222  }
1223
1224  // Handle field access to simple records.
1225  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1226    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1227                                 RTy, OpLoc, SS, HasTemplateArgs))
1228      return ExprError();
1229
1230    // Returning valid-but-null is how we indicate to the caller that
1231    // the lookup result was filled in.
1232    return Owned((Expr*) 0);
1233  }
1234
1235  // Handle ivar access to Objective-C objects.
1236  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1237    if (!SS.isEmpty() && !SS.isInvalid()) {
1238      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1239        << 1 << SS.getScopeRep()
1240        << FixItHint::CreateRemoval(SS.getRange());
1241      SS.clear();
1242    }
1243
1244    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1245
1246    // There are three cases for the base type:
1247    //   - builtin id (qualified or unqualified)
1248    //   - builtin Class (qualified or unqualified)
1249    //   - an interface
1250    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1251    if (!IDecl) {
1252      if (getLangOpts().ObjCAutoRefCount &&
1253          (OTy->isObjCId() || OTy->isObjCClass()))
1254        goto fail;
1255      // There's an implicit 'isa' ivar on all objects.
1256      // But we only actually find it this way on objects of type 'id',
1257      // apparently.
1258      if (OTy->isObjCId() && Member->isStr("isa"))
1259        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1260                                               OpLoc,
1261                                               Context.getObjCClassType()));
1262      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1263        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1264                                ObjCImpDecl, HasTemplateArgs);
1265      goto fail;
1266    }
1267
1268    if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
1269                            BaseExpr.get()))
1270      return ExprError();
1271
1272    ObjCInterfaceDecl *ClassDeclared = 0;
1273    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1274
1275    if (!IV) {
1276      // Attempt to correct for typos in ivar names.
1277      DeclFilterCCC<ObjCIvarDecl> Validator;
1278      Validator.IsObjCIvarLookup = IsArrow;
1279      if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1280                                                 LookupMemberName, NULL, NULL,
1281                                                 Validator, IDecl)) {
1282        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1283        diagnoseTypo(Corrected,
1284                     PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1285                          << IDecl->getDeclName() << MemberName);
1286
1287        // Figure out the class that declares the ivar.
1288        assert(!ClassDeclared);
1289        Decl *D = cast<Decl>(IV->getDeclContext());
1290        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1291          D = CAT->getClassInterface();
1292        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1293      } else {
1294        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1295          Diag(MemberLoc,
1296          diag::err_property_found_suggest)
1297          << Member << BaseExpr.get()->getType()
1298          << FixItHint::CreateReplacement(OpLoc, ".");
1299          return ExprError();
1300        }
1301
1302        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1303          << IDecl->getDeclName() << MemberName
1304          << BaseExpr.get()->getSourceRange();
1305        return ExprError();
1306      }
1307    }
1308
1309    assert(ClassDeclared);
1310
1311    // If the decl being referenced had an error, return an error for this
1312    // sub-expr without emitting another error, in order to avoid cascading
1313    // error cases.
1314    if (IV->isInvalidDecl())
1315      return ExprError();
1316
1317    // Check whether we can reference this field.
1318    if (DiagnoseUseOfDecl(IV, MemberLoc))
1319      return ExprError();
1320    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1321        IV->getAccessControl() != ObjCIvarDecl::Package) {
1322      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1323      if (ObjCMethodDecl *MD = getCurMethodDecl())
1324        ClassOfMethodDecl =  MD->getClassInterface();
1325      else if (ObjCImpDecl && getCurFunctionDecl()) {
1326        // Case of a c-function declared inside an objc implementation.
1327        // FIXME: For a c-style function nested inside an objc implementation
1328        // class, there is no implementation context available, so we pass
1329        // down the context as argument to this routine. Ideally, this context
1330        // need be passed down in the AST node and somehow calculated from the
1331        // AST for a function decl.
1332        if (ObjCImplementationDecl *IMPD =
1333              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1334          ClassOfMethodDecl = IMPD->getClassInterface();
1335        else if (ObjCCategoryImplDecl* CatImplClass =
1336                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1337          ClassOfMethodDecl = CatImplClass->getClassInterface();
1338      }
1339      if (!getLangOpts().DebuggerSupport) {
1340        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1341          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1342              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1343            Diag(MemberLoc, diag::error_private_ivar_access)
1344              << IV->getDeclName();
1345        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1346          // @protected
1347          Diag(MemberLoc, diag::error_protected_ivar_access)
1348            << IV->getDeclName();
1349      }
1350    }
1351    bool warn = true;
1352    if (getLangOpts().ObjCAutoRefCount) {
1353      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1354      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1355        if (UO->getOpcode() == UO_Deref)
1356          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1357
1358      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1359        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1360          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1361          warn = false;
1362        }
1363    }
1364    if (warn) {
1365      if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1366        ObjCMethodFamily MF = MD->getMethodFamily();
1367        warn = (MF != OMF_init && MF != OMF_dealloc &&
1368                MF != OMF_finalize &&
1369                !IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1370      }
1371      if (warn)
1372        Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1373    }
1374
1375    ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1376                                                            MemberLoc, OpLoc,
1377                                                            BaseExpr.take(),
1378                                                            IsArrow);
1379
1380    if (getLangOpts().ObjCAutoRefCount) {
1381      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1382        DiagnosticsEngine::Level Level =
1383          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1384                                   MemberLoc);
1385        if (Level != DiagnosticsEngine::Ignored)
1386          recordUseOfEvaluatedWeak(Result);
1387      }
1388    }
1389
1390    return Owned(Result);
1391  }
1392
1393  // Objective-C property access.
1394  const ObjCObjectPointerType *OPT;
1395  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1396    if (!SS.isEmpty() && !SS.isInvalid()) {
1397      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1398        << 0 << SS.getScopeRep()
1399        << FixItHint::CreateRemoval(SS.getRange());
1400      SS.clear();
1401    }
1402
1403    // This actually uses the base as an r-value.
1404    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1405    if (BaseExpr.isInvalid())
1406      return ExprError();
1407
1408    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1409
1410    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1411
1412    const ObjCObjectType *OT = OPT->getObjectType();
1413
1414    // id, with and without qualifiers.
1415    if (OT->isObjCId()) {
1416      // Check protocols on qualified interfaces.
1417      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1418      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1419        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1420          // Check the use of this declaration
1421          if (DiagnoseUseOfDecl(PD, MemberLoc))
1422            return ExprError();
1423
1424          return Owned(new (Context) ObjCPropertyRefExpr(PD,
1425                                                         Context.PseudoObjectTy,
1426                                                         VK_LValue,
1427                                                         OK_ObjCProperty,
1428                                                         MemberLoc,
1429                                                         BaseExpr.take()));
1430        }
1431
1432        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1433          // Check the use of this method.
1434          if (DiagnoseUseOfDecl(OMD, MemberLoc))
1435            return ExprError();
1436          Selector SetterSel =
1437            SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1438                                                   PP.getSelectorTable(),
1439                                                   Member);
1440          ObjCMethodDecl *SMD = 0;
1441          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1442                                                     SetterSel, Context))
1443            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1444
1445          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1446                                                         Context.PseudoObjectTy,
1447                                                         VK_LValue, OK_ObjCProperty,
1448                                                         MemberLoc, BaseExpr.take()));
1449        }
1450      }
1451      // Use of id.member can only be for a property reference. Do not
1452      // use the 'id' redefinition in this case.
1453      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1454        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1455                                ObjCImpDecl, HasTemplateArgs);
1456
1457      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1458                         << MemberName << BaseType);
1459    }
1460
1461    // 'Class', unqualified only.
1462    if (OT->isObjCClass()) {
1463      // Only works in a method declaration (??!).
1464      ObjCMethodDecl *MD = getCurMethodDecl();
1465      if (!MD) {
1466        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1467          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1468                                  ObjCImpDecl, HasTemplateArgs);
1469
1470        goto fail;
1471      }
1472
1473      // Also must look for a getter name which uses property syntax.
1474      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1475      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1476      ObjCMethodDecl *Getter;
1477      if ((Getter = IFace->lookupClassMethod(Sel))) {
1478        // Check the use of this method.
1479        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1480          return ExprError();
1481      } else
1482        Getter = IFace->lookupPrivateMethod(Sel, false);
1483      // If we found a getter then this may be a valid dot-reference, we
1484      // will look for the matching setter, in case it is needed.
1485      Selector SetterSel =
1486        SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1487                                               PP.getSelectorTable(),
1488                                               Member);
1489      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1490      if (!Setter) {
1491        // If this reference is in an @implementation, also check for 'private'
1492        // methods.
1493        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1494      }
1495
1496      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1497        return ExprError();
1498
1499      if (Getter || Setter) {
1500        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1501                                                       Context.PseudoObjectTy,
1502                                                       VK_LValue, OK_ObjCProperty,
1503                                                       MemberLoc, BaseExpr.take()));
1504      }
1505
1506      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1507        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1508                                ObjCImpDecl, HasTemplateArgs);
1509
1510      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1511                         << MemberName << BaseType);
1512    }
1513
1514    // Normal property access.
1515    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1516                                     MemberName, MemberLoc,
1517                                     SourceLocation(), QualType(), false);
1518  }
1519
1520  // Handle 'field access' to vectors, such as 'V.xx'.
1521  if (BaseType->isExtVectorType()) {
1522    // FIXME: this expr should store IsArrow.
1523    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1524    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1525    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1526                                           Member, MemberLoc);
1527    if (ret.isNull())
1528      return ExprError();
1529
1530    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1531                                                    *Member, MemberLoc));
1532  }
1533
1534  // Adjust builtin-sel to the appropriate redefinition type if that's
1535  // not just a pointer to builtin-sel again.
1536  if (IsArrow &&
1537      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1538      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1539    BaseExpr = ImpCastExprToType(BaseExpr.take(),
1540                                 Context.getObjCSelRedefinitionType(),
1541                                 CK_BitCast);
1542    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1543                            ObjCImpDecl, HasTemplateArgs);
1544  }
1545
1546  // Failure cases.
1547 fail:
1548
1549  // Recover from dot accesses to pointers, e.g.:
1550  //   type *foo;
1551  //   foo.bar
1552  // This is actually well-formed in two cases:
1553  //   - 'type' is an Objective C type
1554  //   - 'bar' is a pseudo-destructor name which happens to refer to
1555  //     the appropriate pointer type
1556  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1557    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1558        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1559      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1560        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1561          << FixItHint::CreateReplacement(OpLoc, "->");
1562
1563      // Recurse as an -> access.
1564      IsArrow = true;
1565      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1566                              ObjCImpDecl, HasTemplateArgs);
1567    }
1568  }
1569
1570  // If the user is trying to apply -> or . to a function name, it's probably
1571  // because they forgot parentheses to call that function.
1572  if (tryToRecoverWithCall(BaseExpr,
1573                           PDiag(diag::err_member_reference_needs_call),
1574                           /*complain*/ false,
1575                           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1576    if (BaseExpr.isInvalid())
1577      return ExprError();
1578    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1579    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1580                            ObjCImpDecl, HasTemplateArgs);
1581  }
1582
1583  Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1584    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1585
1586  return ExprError();
1587}
1588
1589/// The main callback when the parser finds something like
1590///   expression . [nested-name-specifier] identifier
1591///   expression -> [nested-name-specifier] identifier
1592/// where 'identifier' encompasses a fairly broad spectrum of
1593/// possibilities, including destructor and operator references.
1594///
1595/// \param OpKind either tok::arrow or tok::period
1596/// \param HasTrailingLParen whether the next token is '(', which
1597///   is used to diagnose mis-uses of special members that can
1598///   only be called
1599/// \param ObjCImpDecl the current Objective-C \@implementation
1600///   decl; this is an ugly hack around the fact that Objective-C
1601///   \@implementations aren't properly put in the context chain
1602ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1603                                       SourceLocation OpLoc,
1604                                       tok::TokenKind OpKind,
1605                                       CXXScopeSpec &SS,
1606                                       SourceLocation TemplateKWLoc,
1607                                       UnqualifiedId &Id,
1608                                       Decl *ObjCImpDecl,
1609                                       bool HasTrailingLParen) {
1610  if (SS.isSet() && SS.isInvalid())
1611    return ExprError();
1612
1613  // Warn about the explicit constructor calls Microsoft extension.
1614  if (getLangOpts().MicrosoftExt &&
1615      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1616    Diag(Id.getSourceRange().getBegin(),
1617         diag::ext_ms_explicit_constructor_call);
1618
1619  TemplateArgumentListInfo TemplateArgsBuffer;
1620
1621  // Decompose the name into its component parts.
1622  DeclarationNameInfo NameInfo;
1623  const TemplateArgumentListInfo *TemplateArgs;
1624  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1625                         NameInfo, TemplateArgs);
1626
1627  DeclarationName Name = NameInfo.getName();
1628  bool IsArrow = (OpKind == tok::arrow);
1629
1630  NamedDecl *FirstQualifierInScope
1631    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1632                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1633
1634  // This is a postfix expression, so get rid of ParenListExprs.
1635  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1636  if (Result.isInvalid()) return ExprError();
1637  Base = Result.take();
1638
1639  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1640      isDependentScopeSpecifier(SS)) {
1641    Result = ActOnDependentMemberExpr(Base, Base->getType(),
1642                                      IsArrow, OpLoc,
1643                                      SS, TemplateKWLoc, FirstQualifierInScope,
1644                                      NameInfo, TemplateArgs);
1645  } else {
1646    LookupResult R(*this, NameInfo, LookupMemberName);
1647    ExprResult BaseResult = Owned(Base);
1648    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1649                              SS, ObjCImpDecl, TemplateArgs != 0);
1650    if (BaseResult.isInvalid())
1651      return ExprError();
1652    Base = BaseResult.take();
1653
1654    if (Result.isInvalid()) {
1655      Owned(Base);
1656      return ExprError();
1657    }
1658
1659    if (Result.get()) {
1660      // The only way a reference to a destructor can be used is to
1661      // immediately call it, which falls into this case.  If the
1662      // next token is not a '(', produce a diagnostic and build the
1663      // call now.
1664      if (!HasTrailingLParen &&
1665          Id.getKind() == UnqualifiedId::IK_DestructorName)
1666        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1667
1668      return Result;
1669    }
1670
1671    ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
1672    Result = BuildMemberReferenceExpr(Base, Base->getType(),
1673                                      OpLoc, IsArrow, SS, TemplateKWLoc,
1674                                      FirstQualifierInScope, R, TemplateArgs,
1675                                      false, &ExtraArgs);
1676  }
1677
1678  return Result;
1679}
1680
1681static ExprResult
1682BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1683                        const CXXScopeSpec &SS, FieldDecl *Field,
1684                        DeclAccessPair FoundDecl,
1685                        const DeclarationNameInfo &MemberNameInfo) {
1686  // x.a is an l-value if 'a' has a reference type. Otherwise:
1687  // x.a is an l-value/x-value/pr-value if the base is (and note
1688  //   that *x is always an l-value), except that if the base isn't
1689  //   an ordinary object then we must have an rvalue.
1690  ExprValueKind VK = VK_LValue;
1691  ExprObjectKind OK = OK_Ordinary;
1692  if (!IsArrow) {
1693    if (BaseExpr->getObjectKind() == OK_Ordinary)
1694      VK = BaseExpr->getValueKind();
1695    else
1696      VK = VK_RValue;
1697  }
1698  if (VK != VK_RValue && Field->isBitField())
1699    OK = OK_BitField;
1700
1701  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1702  QualType MemberType = Field->getType();
1703  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1704    MemberType = Ref->getPointeeType();
1705    VK = VK_LValue;
1706  } else {
1707    QualType BaseType = BaseExpr->getType();
1708    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1709
1710    Qualifiers BaseQuals = BaseType.getQualifiers();
1711
1712    // GC attributes are never picked up by members.
1713    BaseQuals.removeObjCGCAttr();
1714
1715    // CVR attributes from the base are picked up by members,
1716    // except that 'mutable' members don't pick up 'const'.
1717    if (Field->isMutable()) BaseQuals.removeConst();
1718
1719    Qualifiers MemberQuals
1720    = S.Context.getCanonicalType(MemberType).getQualifiers();
1721
1722    assert(!MemberQuals.hasAddressSpace());
1723
1724
1725    Qualifiers Combined = BaseQuals + MemberQuals;
1726    if (Combined != MemberQuals)
1727      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1728  }
1729
1730  S.UnusedPrivateFields.remove(Field);
1731
1732  ExprResult Base =
1733  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1734                                  FoundDecl, Field);
1735  if (Base.isInvalid())
1736    return ExprError();
1737  return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1738                                 /*TemplateKWLoc=*/SourceLocation(),
1739                                 Field, FoundDecl, MemberNameInfo,
1740                                 MemberType, VK, OK));
1741}
1742
1743/// Builds an implicit member access expression.  The current context
1744/// is known to be an instance method, and the given unqualified lookup
1745/// set is known to contain only instance members, at least one of which
1746/// is from an appropriate type.
1747ExprResult
1748Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1749                              SourceLocation TemplateKWLoc,
1750                              LookupResult &R,
1751                              const TemplateArgumentListInfo *TemplateArgs,
1752                              bool IsKnownInstance) {
1753  assert(!R.empty() && !R.isAmbiguous());
1754
1755  SourceLocation loc = R.getNameLoc();
1756
1757  // We may have found a field within an anonymous union or struct
1758  // (C++ [class.union]).
1759  // FIXME: template-ids inside anonymous structs?
1760  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1761    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD,
1762                                                    R.begin().getPair());
1763
1764  // If this is known to be an instance access, go ahead and build an
1765  // implicit 'this' expression now.
1766  // 'this' expression now.
1767  QualType ThisTy = getCurrentThisType();
1768  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1769
1770  Expr *baseExpr = 0; // null signifies implicit access
1771  if (IsKnownInstance) {
1772    SourceLocation Loc = R.getNameLoc();
1773    if (SS.getRange().isValid())
1774      Loc = SS.getRange().getBegin();
1775    CheckCXXThisCapture(Loc);
1776    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1777  }
1778
1779  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1780                                  /*OpLoc*/ SourceLocation(),
1781                                  /*IsArrow*/ true,
1782                                  SS, TemplateKWLoc,
1783                                  /*FirstQualifierInScope*/ 0,
1784                                  R, TemplateArgs);
1785}
1786