SemaExprCXX.cpp revision 235633
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/Preprocessor.h"
32#include "TypeLocBuilder.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace clang;
37using namespace sema;
38
39ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
40                                   IdentifierInfo &II,
41                                   SourceLocation NameLoc,
42                                   Scope *S, CXXScopeSpec &SS,
43                                   ParsedType ObjectTypePtr,
44                                   bool EnteringContext) {
45  // Determine where to perform name lookup.
46
47  // FIXME: This area of the standard is very messy, and the current
48  // wording is rather unclear about which scopes we search for the
49  // destructor name; see core issues 399 and 555. Issue 399 in
50  // particular shows where the current description of destructor name
51  // lookup is completely out of line with existing practice, e.g.,
52  // this appears to be ill-formed:
53  //
54  //   namespace N {
55  //     template <typename T> struct S {
56  //       ~S();
57  //     };
58  //   }
59  //
60  //   void f(N::S<int>* s) {
61  //     s->N::S<int>::~S();
62  //   }
63  //
64  // See also PR6358 and PR6359.
65  // For this reason, we're currently only doing the C++03 version of this
66  // code; the C++0x version has to wait until we get a proper spec.
67  QualType SearchType;
68  DeclContext *LookupCtx = 0;
69  bool isDependent = false;
70  bool LookInScope = false;
71
72  // If we have an object type, it's because we are in a
73  // pseudo-destructor-expression or a member access expression, and
74  // we know what type we're looking for.
75  if (ObjectTypePtr)
76    SearchType = GetTypeFromParser(ObjectTypePtr);
77
78  if (SS.isSet()) {
79    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
80
81    bool AlreadySearched = false;
82    bool LookAtPrefix = true;
83    // C++ [basic.lookup.qual]p6:
84    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
85    //   the type-names are looked up as types in the scope designated by the
86    //   nested-name-specifier. In a qualified-id of the form:
87    //
88    //     ::[opt] nested-name-specifier  ~ class-name
89    //
90    //   where the nested-name-specifier designates a namespace scope, and in
91    //   a qualified-id of the form:
92    //
93    //     ::opt nested-name-specifier class-name ::  ~ class-name
94    //
95    //   the class-names are looked up as types in the scope designated by
96    //   the nested-name-specifier.
97    //
98    // Here, we check the first case (completely) and determine whether the
99    // code below is permitted to look at the prefix of the
100    // nested-name-specifier.
101    DeclContext *DC = computeDeclContext(SS, EnteringContext);
102    if (DC && DC->isFileContext()) {
103      AlreadySearched = true;
104      LookupCtx = DC;
105      isDependent = false;
106    } else if (DC && isa<CXXRecordDecl>(DC))
107      LookAtPrefix = false;
108
109    // The second case from the C++03 rules quoted further above.
110    NestedNameSpecifier *Prefix = 0;
111    if (AlreadySearched) {
112      // Nothing left to do.
113    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
114      CXXScopeSpec PrefixSS;
115      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
116      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
117      isDependent = isDependentScopeSpecifier(PrefixSS);
118    } else if (ObjectTypePtr) {
119      LookupCtx = computeDeclContext(SearchType);
120      isDependent = SearchType->isDependentType();
121    } else {
122      LookupCtx = computeDeclContext(SS, EnteringContext);
123      isDependent = LookupCtx && LookupCtx->isDependentContext();
124    }
125
126    LookInScope = false;
127  } else if (ObjectTypePtr) {
128    // C++ [basic.lookup.classref]p3:
129    //   If the unqualified-id is ~type-name, the type-name is looked up
130    //   in the context of the entire postfix-expression. If the type T
131    //   of the object expression is of a class type C, the type-name is
132    //   also looked up in the scope of class C. At least one of the
133    //   lookups shall find a name that refers to (possibly
134    //   cv-qualified) T.
135    LookupCtx = computeDeclContext(SearchType);
136    isDependent = SearchType->isDependentType();
137    assert((isDependent || !SearchType->isIncompleteType()) &&
138           "Caller should have completed object type");
139
140    LookInScope = true;
141  } else {
142    // Perform lookup into the current scope (only).
143    LookInScope = true;
144  }
145
146  TypeDecl *NonMatchingTypeDecl = 0;
147  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
148  for (unsigned Step = 0; Step != 2; ++Step) {
149    // Look for the name first in the computed lookup context (if we
150    // have one) and, if that fails to find a match, in the scope (if
151    // we're allowed to look there).
152    Found.clear();
153    if (Step == 0 && LookupCtx)
154      LookupQualifiedName(Found, LookupCtx);
155    else if (Step == 1 && LookInScope && S)
156      LookupName(Found, S);
157    else
158      continue;
159
160    // FIXME: Should we be suppressing ambiguities here?
161    if (Found.isAmbiguous())
162      return ParsedType();
163
164    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
165      QualType T = Context.getTypeDeclType(Type);
166
167      if (SearchType.isNull() || SearchType->isDependentType() ||
168          Context.hasSameUnqualifiedType(T, SearchType)) {
169        // We found our type!
170
171        return ParsedType::make(T);
172      }
173
174      if (!SearchType.isNull())
175        NonMatchingTypeDecl = Type;
176    }
177
178    // If the name that we found is a class template name, and it is
179    // the same name as the template name in the last part of the
180    // nested-name-specifier (if present) or the object type, then
181    // this is the destructor for that class.
182    // FIXME: This is a workaround until we get real drafting for core
183    // issue 399, for which there isn't even an obvious direction.
184    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
185      QualType MemberOfType;
186      if (SS.isSet()) {
187        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
188          // Figure out the type of the context, if it has one.
189          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
190            MemberOfType = Context.getTypeDeclType(Record);
191        }
192      }
193      if (MemberOfType.isNull())
194        MemberOfType = SearchType;
195
196      if (MemberOfType.isNull())
197        continue;
198
199      // We're referring into a class template specialization. If the
200      // class template we found is the same as the template being
201      // specialized, we found what we are looking for.
202      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
203        if (ClassTemplateSpecializationDecl *Spec
204              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
205          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
206                Template->getCanonicalDecl())
207            return ParsedType::make(MemberOfType);
208        }
209
210        continue;
211      }
212
213      // We're referring to an unresolved class template
214      // specialization. Determine whether we class template we found
215      // is the same as the template being specialized or, if we don't
216      // know which template is being specialized, that it at least
217      // has the same name.
218      if (const TemplateSpecializationType *SpecType
219            = MemberOfType->getAs<TemplateSpecializationType>()) {
220        TemplateName SpecName = SpecType->getTemplateName();
221
222        // The class template we found is the same template being
223        // specialized.
224        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
225          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
226            return ParsedType::make(MemberOfType);
227
228          continue;
229        }
230
231        // The class template we found has the same name as the
232        // (dependent) template name being specialized.
233        if (DependentTemplateName *DepTemplate
234                                    = SpecName.getAsDependentTemplateName()) {
235          if (DepTemplate->isIdentifier() &&
236              DepTemplate->getIdentifier() == Template->getIdentifier())
237            return ParsedType::make(MemberOfType);
238
239          continue;
240        }
241      }
242    }
243  }
244
245  if (isDependent) {
246    // We didn't find our type, but that's okay: it's dependent
247    // anyway.
248
249    // FIXME: What if we have no nested-name-specifier?
250    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
251                                   SS.getWithLocInContext(Context),
252                                   II, NameLoc);
253    return ParsedType::make(T);
254  }
255
256  if (NonMatchingTypeDecl) {
257    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
258    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
259      << T << SearchType;
260    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
261      << T;
262  } else if (ObjectTypePtr)
263    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
264      << &II;
265  else
266    Diag(NameLoc, diag::err_destructor_class_name);
267
268  return ParsedType();
269}
270
271ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
272    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
273      return ParsedType();
274    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
275           && "only get destructor types from declspecs");
276    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
277    QualType SearchType = GetTypeFromParser(ObjectType);
278    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
279      return ParsedType::make(T);
280    }
281
282    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
283      << T << SearchType;
284    return ParsedType();
285}
286
287/// \brief Build a C++ typeid expression with a type operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                TypeSourceInfo *Operand,
291                                SourceLocation RParenLoc) {
292  // C++ [expr.typeid]p4:
293  //   The top-level cv-qualifiers of the lvalue expression or the type-id
294  //   that is the operand of typeid are always ignored.
295  //   If the type of the type-id is a class type or a reference to a class
296  //   type, the class shall be completely-defined.
297  Qualifiers Quals;
298  QualType T
299    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
300                                      Quals);
301  if (T->getAs<RecordType>() &&
302      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303    return ExprError();
304
305  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
306                                           Operand,
307                                           SourceRange(TypeidLoc, RParenLoc)));
308}
309
310/// \brief Build a C++ typeid expression with an expression operand.
311ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
312                                SourceLocation TypeidLoc,
313                                Expr *E,
314                                SourceLocation RParenLoc) {
315  if (E && !E->isTypeDependent()) {
316    if (E->getType()->isPlaceholderType()) {
317      ExprResult result = CheckPlaceholderExpr(E);
318      if (result.isInvalid()) return ExprError();
319      E = result.take();
320    }
321
322    QualType T = E->getType();
323    if (const RecordType *RecordT = T->getAs<RecordType>()) {
324      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
325      // C++ [expr.typeid]p3:
326      //   [...] If the type of the expression is a class type, the class
327      //   shall be completely-defined.
328      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
329        return ExprError();
330
331      // C++ [expr.typeid]p3:
332      //   When typeid is applied to an expression other than an glvalue of a
333      //   polymorphic class type [...] [the] expression is an unevaluated
334      //   operand. [...]
335      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
336        // The subexpression is potentially evaluated; switch the context
337        // and recheck the subexpression.
338        ExprResult Result = TranformToPotentiallyEvaluated(E);
339        if (Result.isInvalid()) return ExprError();
340        E = Result.take();
341
342        // We require a vtable to query the type at run time.
343        MarkVTableUsed(TypeidLoc, RecordD);
344      }
345    }
346
347    // C++ [expr.typeid]p4:
348    //   [...] If the type of the type-id is a reference to a possibly
349    //   cv-qualified type, the result of the typeid expression refers to a
350    //   std::type_info object representing the cv-unqualified referenced
351    //   type.
352    Qualifiers Quals;
353    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
354    if (!Context.hasSameType(T, UnqualT)) {
355      T = UnqualT;
356      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
357    }
358  }
359
360  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
361                                           E,
362                                           SourceRange(TypeidLoc, RParenLoc)));
363}
364
365/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
366ExprResult
367Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
368                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
369  // Find the std::type_info type.
370  if (!getStdNamespace())
371    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
372
373  if (!CXXTypeInfoDecl) {
374    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
375    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
376    LookupQualifiedName(R, getStdNamespace());
377    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
378    if (!CXXTypeInfoDecl)
379      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
380  }
381
382  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
383
384  if (isType) {
385    // The operand is a type; handle it as such.
386    TypeSourceInfo *TInfo = 0;
387    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
388                                   &TInfo);
389    if (T.isNull())
390      return ExprError();
391
392    if (!TInfo)
393      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
394
395    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
396  }
397
398  // The operand is an expression.
399  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
400}
401
402/// Retrieve the UuidAttr associated with QT.
403static UuidAttr *GetUuidAttrOfType(QualType QT) {
404  // Optionally remove one level of pointer, reference or array indirection.
405  const Type *Ty = QT.getTypePtr();;
406  if (QT->isPointerType() || QT->isReferenceType())
407    Ty = QT->getPointeeType().getTypePtr();
408  else if (QT->isArrayType())
409    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
410
411  // Loop all record redeclaration looking for an uuid attribute.
412  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
413  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
414       E = RD->redecls_end(); I != E; ++I) {
415    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
416      return Uuid;
417  }
418
419  return 0;
420}
421
422/// \brief Build a Microsoft __uuidof expression with a type operand.
423ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
424                                SourceLocation TypeidLoc,
425                                TypeSourceInfo *Operand,
426                                SourceLocation RParenLoc) {
427  if (!Operand->getType()->isDependentType()) {
428    if (!GetUuidAttrOfType(Operand->getType()))
429      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
430  }
431
432  // FIXME: add __uuidof semantic analysis for type operand.
433  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
434                                           Operand,
435                                           SourceRange(TypeidLoc, RParenLoc)));
436}
437
438/// \brief Build a Microsoft __uuidof expression with an expression operand.
439ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
440                                SourceLocation TypeidLoc,
441                                Expr *E,
442                                SourceLocation RParenLoc) {
443  if (!E->getType()->isDependentType()) {
444    if (!GetUuidAttrOfType(E->getType()) &&
445        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
446      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
447  }
448  // FIXME: add __uuidof semantic analysis for type operand.
449  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
450                                           E,
451                                           SourceRange(TypeidLoc, RParenLoc)));
452}
453
454/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
455ExprResult
456Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
457                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
458  // If MSVCGuidDecl has not been cached, do the lookup.
459  if (!MSVCGuidDecl) {
460    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
461    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
462    LookupQualifiedName(R, Context.getTranslationUnitDecl());
463    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
464    if (!MSVCGuidDecl)
465      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
466  }
467
468  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
469
470  if (isType) {
471    // The operand is a type; handle it as such.
472    TypeSourceInfo *TInfo = 0;
473    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474                                   &TInfo);
475    if (T.isNull())
476      return ExprError();
477
478    if (!TInfo)
479      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480
481    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
482  }
483
484  // The operand is an expression.
485  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486}
487
488/// ActOnCXXBoolLiteral - Parse {true,false} literals.
489ExprResult
490Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
491  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
492         "Unknown C++ Boolean value!");
493  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
494                                                Context.BoolTy, OpLoc));
495}
496
497/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
498ExprResult
499Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
500  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
501}
502
503/// ActOnCXXThrow - Parse throw expressions.
504ExprResult
505Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
506  bool IsThrownVarInScope = false;
507  if (Ex) {
508    // C++0x [class.copymove]p31:
509    //   When certain criteria are met, an implementation is allowed to omit the
510    //   copy/move construction of a class object [...]
511    //
512    //     - in a throw-expression, when the operand is the name of a
513    //       non-volatile automatic object (other than a function or catch-
514    //       clause parameter) whose scope does not extend beyond the end of the
515    //       innermost enclosing try-block (if there is one), the copy/move
516    //       operation from the operand to the exception object (15.1) can be
517    //       omitted by constructing the automatic object directly into the
518    //       exception object
519    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
520      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
521        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
522          for( ; S; S = S->getParent()) {
523            if (S->isDeclScope(Var)) {
524              IsThrownVarInScope = true;
525              break;
526            }
527
528            if (S->getFlags() &
529                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
530                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
531                 Scope::TryScope))
532              break;
533          }
534        }
535      }
536  }
537
538  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
539}
540
541ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
542                               bool IsThrownVarInScope) {
543  // Don't report an error if 'throw' is used in system headers.
544  if (!getLangOpts().CXXExceptions &&
545      !getSourceManager().isInSystemHeader(OpLoc))
546    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
547
548  if (Ex && !Ex->isTypeDependent()) {
549    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
550    if (ExRes.isInvalid())
551      return ExprError();
552    Ex = ExRes.take();
553  }
554
555  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
556                                          IsThrownVarInScope));
557}
558
559/// CheckCXXThrowOperand - Validate the operand of a throw.
560ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
561                                      bool IsThrownVarInScope) {
562  // C++ [except.throw]p3:
563  //   A throw-expression initializes a temporary object, called the exception
564  //   object, the type of which is determined by removing any top-level
565  //   cv-qualifiers from the static type of the operand of throw and adjusting
566  //   the type from "array of T" or "function returning T" to "pointer to T"
567  //   or "pointer to function returning T", [...]
568  if (E->getType().hasQualifiers())
569    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
570                          E->getValueKind()).take();
571
572  ExprResult Res = DefaultFunctionArrayConversion(E);
573  if (Res.isInvalid())
574    return ExprError();
575  E = Res.take();
576
577  //   If the type of the exception would be an incomplete type or a pointer
578  //   to an incomplete type other than (cv) void the program is ill-formed.
579  QualType Ty = E->getType();
580  bool isPointer = false;
581  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
582    Ty = Ptr->getPointeeType();
583    isPointer = true;
584  }
585  if (!isPointer || !Ty->isVoidType()) {
586    if (RequireCompleteType(ThrowLoc, Ty,
587                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
588                                            : diag::err_throw_incomplete)
589                              << E->getSourceRange()))
590      return ExprError();
591
592    if (RequireNonAbstractType(ThrowLoc, E->getType(),
593                               PDiag(diag::err_throw_abstract_type)
594                                 << E->getSourceRange()))
595      return ExprError();
596  }
597
598  // Initialize the exception result.  This implicitly weeds out
599  // abstract types or types with inaccessible copy constructors.
600
601  // C++0x [class.copymove]p31:
602  //   When certain criteria are met, an implementation is allowed to omit the
603  //   copy/move construction of a class object [...]
604  //
605  //     - in a throw-expression, when the operand is the name of a
606  //       non-volatile automatic object (other than a function or catch-clause
607  //       parameter) whose scope does not extend beyond the end of the
608  //       innermost enclosing try-block (if there is one), the copy/move
609  //       operation from the operand to the exception object (15.1) can be
610  //       omitted by constructing the automatic object directly into the
611  //       exception object
612  const VarDecl *NRVOVariable = 0;
613  if (IsThrownVarInScope)
614    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
615
616  InitializedEntity Entity =
617      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
618                                             /*NRVO=*/NRVOVariable != 0);
619  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
620                                        QualType(), E,
621                                        IsThrownVarInScope);
622  if (Res.isInvalid())
623    return ExprError();
624  E = Res.take();
625
626  // If the exception has class type, we need additional handling.
627  const RecordType *RecordTy = Ty->getAs<RecordType>();
628  if (!RecordTy)
629    return Owned(E);
630  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
631
632  // If we are throwing a polymorphic class type or pointer thereof,
633  // exception handling will make use of the vtable.
634  MarkVTableUsed(ThrowLoc, RD);
635
636  // If a pointer is thrown, the referenced object will not be destroyed.
637  if (isPointer)
638    return Owned(E);
639
640  // If the class has a destructor, we must be able to call it.
641  if (RD->hasIrrelevantDestructor())
642    return Owned(E);
643
644  CXXDestructorDecl *Destructor = LookupDestructor(RD);
645  if (!Destructor)
646    return Owned(E);
647
648  MarkFunctionReferenced(E->getExprLoc(), Destructor);
649  CheckDestructorAccess(E->getExprLoc(), Destructor,
650                        PDiag(diag::err_access_dtor_exception) << Ty);
651  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
652  return Owned(E);
653}
654
655QualType Sema::getCurrentThisType() {
656  DeclContext *DC = getFunctionLevelDeclContext();
657  QualType ThisTy = CXXThisTypeOverride;
658  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
659    if (method && method->isInstance())
660      ThisTy = method->getThisType(Context);
661  }
662
663  return ThisTy;
664}
665
666Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
667                                         Decl *ContextDecl,
668                                         unsigned CXXThisTypeQuals,
669                                         bool Enabled)
670  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
671{
672  if (!Enabled || !ContextDecl)
673    return;
674
675  CXXRecordDecl *Record = 0;
676  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
677    Record = Template->getTemplatedDecl();
678  else
679    Record = cast<CXXRecordDecl>(ContextDecl);
680
681  S.CXXThisTypeOverride
682    = S.Context.getPointerType(
683        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
684
685  this->Enabled = true;
686}
687
688
689Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
690  if (Enabled) {
691    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
692  }
693}
694
695void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
696  // We don't need to capture this in an unevaluated context.
697  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
698    return;
699
700  // Otherwise, check that we can capture 'this'.
701  unsigned NumClosures = 0;
702  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
703    if (CapturingScopeInfo *CSI =
704            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
705      if (CSI->CXXThisCaptureIndex != 0) {
706        // 'this' is already being captured; there isn't anything more to do.
707        break;
708      }
709
710      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
711          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
712          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
713          Explicit) {
714        // This closure can capture 'this'; continue looking upwards.
715        NumClosures++;
716        Explicit = false;
717        continue;
718      }
719      // This context can't implicitly capture 'this'; fail out.
720      Diag(Loc, diag::err_this_capture) << Explicit;
721      return;
722    }
723    break;
724  }
725
726  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
727  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
728  // contexts.
729  for (unsigned idx = FunctionScopes.size() - 1;
730       NumClosures; --idx, --NumClosures) {
731    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
732    Expr *ThisExpr = 0;
733    QualType ThisTy = getCurrentThisType();
734    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
735      // For lambda expressions, build a field and an initializing expression.
736      CXXRecordDecl *Lambda = LSI->Lambda;
737      FieldDecl *Field
738        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
739                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
740                            0, false, false);
741      Field->setImplicit(true);
742      Field->setAccess(AS_private);
743      Lambda->addDecl(Field);
744      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
745    }
746    bool isNested = NumClosures > 1;
747    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
748  }
749}
750
751ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
752  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
753  /// is a non-lvalue expression whose value is the address of the object for
754  /// which the function is called.
755
756  QualType ThisTy = getCurrentThisType();
757  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
758
759  CheckCXXThisCapture(Loc);
760  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
761}
762
763bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
764  // If we're outside the body of a member function, then we'll have a specified
765  // type for 'this'.
766  if (CXXThisTypeOverride.isNull())
767    return false;
768
769  // Determine whether we're looking into a class that's currently being
770  // defined.
771  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
772  return Class && Class->isBeingDefined();
773}
774
775ExprResult
776Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
777                                SourceLocation LParenLoc,
778                                MultiExprArg exprs,
779                                SourceLocation RParenLoc) {
780  if (!TypeRep)
781    return ExprError();
782
783  TypeSourceInfo *TInfo;
784  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
785  if (!TInfo)
786    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
787
788  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
789}
790
791/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
792/// Can be interpreted either as function-style casting ("int(x)")
793/// or class type construction ("ClassType(x,y,z)")
794/// or creation of a value-initialized type ("int()").
795ExprResult
796Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
797                                SourceLocation LParenLoc,
798                                MultiExprArg exprs,
799                                SourceLocation RParenLoc) {
800  QualType Ty = TInfo->getType();
801  unsigned NumExprs = exprs.size();
802  Expr **Exprs = (Expr**)exprs.get();
803  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
804
805  if (Ty->isDependentType() ||
806      CallExpr::hasAnyTypeDependentArguments(
807        llvm::makeArrayRef(Exprs, NumExprs))) {
808    exprs.release();
809
810    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
811                                                    LParenLoc,
812                                                    Exprs, NumExprs,
813                                                    RParenLoc));
814  }
815
816  bool ListInitialization = LParenLoc.isInvalid();
817  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
818         && "List initialization must have initializer list as expression.");
819  SourceRange FullRange = SourceRange(TyBeginLoc,
820      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
821
822  // C++ [expr.type.conv]p1:
823  // If the expression list is a single expression, the type conversion
824  // expression is equivalent (in definedness, and if defined in meaning) to the
825  // corresponding cast expression.
826  if (NumExprs == 1 && !ListInitialization) {
827    Expr *Arg = Exprs[0];
828    exprs.release();
829    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
830  }
831
832  QualType ElemTy = Ty;
833  if (Ty->isArrayType()) {
834    if (!ListInitialization)
835      return ExprError(Diag(TyBeginLoc,
836                            diag::err_value_init_for_array_type) << FullRange);
837    ElemTy = Context.getBaseElementType(Ty);
838  }
839
840  if (!Ty->isVoidType() &&
841      RequireCompleteType(TyBeginLoc, ElemTy,
842                          PDiag(diag::err_invalid_incomplete_type_use)
843                            << FullRange))
844    return ExprError();
845
846  if (RequireNonAbstractType(TyBeginLoc, Ty,
847                             diag::err_allocation_of_abstract_type))
848    return ExprError();
849
850  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
851  InitializationKind Kind
852    = NumExprs ? ListInitialization
853                    ? InitializationKind::CreateDirectList(TyBeginLoc)
854                    : InitializationKind::CreateDirect(TyBeginLoc,
855                                                       LParenLoc, RParenLoc)
856               : InitializationKind::CreateValue(TyBeginLoc,
857                                                 LParenLoc, RParenLoc);
858  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
859  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
860
861  if (!Result.isInvalid() && ListInitialization &&
862      isa<InitListExpr>(Result.get())) {
863    // If the list-initialization doesn't involve a constructor call, we'll get
864    // the initializer-list (with corrected type) back, but that's not what we
865    // want, since it will be treated as an initializer list in further
866    // processing. Explicitly insert a cast here.
867    InitListExpr *List = cast<InitListExpr>(Result.take());
868    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
869                                    Expr::getValueKindForType(TInfo->getType()),
870                                                 TInfo, TyBeginLoc, CK_NoOp,
871                                                 List, /*Path=*/0, RParenLoc));
872  }
873
874  // FIXME: Improve AST representation?
875  return move(Result);
876}
877
878/// doesUsualArrayDeleteWantSize - Answers whether the usual
879/// operator delete[] for the given type has a size_t parameter.
880static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
881                                         QualType allocType) {
882  const RecordType *record =
883    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
884  if (!record) return false;
885
886  // Try to find an operator delete[] in class scope.
887
888  DeclarationName deleteName =
889    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
890  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
891  S.LookupQualifiedName(ops, record->getDecl());
892
893  // We're just doing this for information.
894  ops.suppressDiagnostics();
895
896  // Very likely: there's no operator delete[].
897  if (ops.empty()) return false;
898
899  // If it's ambiguous, it should be illegal to call operator delete[]
900  // on this thing, so it doesn't matter if we allocate extra space or not.
901  if (ops.isAmbiguous()) return false;
902
903  LookupResult::Filter filter = ops.makeFilter();
904  while (filter.hasNext()) {
905    NamedDecl *del = filter.next()->getUnderlyingDecl();
906
907    // C++0x [basic.stc.dynamic.deallocation]p2:
908    //   A template instance is never a usual deallocation function,
909    //   regardless of its signature.
910    if (isa<FunctionTemplateDecl>(del)) {
911      filter.erase();
912      continue;
913    }
914
915    // C++0x [basic.stc.dynamic.deallocation]p2:
916    //   If class T does not declare [an operator delete[] with one
917    //   parameter] but does declare a member deallocation function
918    //   named operator delete[] with exactly two parameters, the
919    //   second of which has type std::size_t, then this function
920    //   is a usual deallocation function.
921    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
922      filter.erase();
923      continue;
924    }
925  }
926  filter.done();
927
928  if (!ops.isSingleResult()) return false;
929
930  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
931  return (del->getNumParams() == 2);
932}
933
934/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
935
936/// E.g.:
937/// @code new (memory) int[size][4] @endcode
938/// or
939/// @code ::new Foo(23, "hello") @endcode
940///
941/// \param StartLoc The first location of the expression.
942/// \param UseGlobal True if 'new' was prefixed with '::'.
943/// \param PlacementLParen Opening paren of the placement arguments.
944/// \param PlacementArgs Placement new arguments.
945/// \param PlacementRParen Closing paren of the placement arguments.
946/// \param TypeIdParens If the type is in parens, the source range.
947/// \param D The type to be allocated, as well as array dimensions.
948/// \param ConstructorLParen Opening paren of the constructor args, empty if
949///                          initializer-list syntax is used.
950/// \param ConstructorArgs Constructor/initialization arguments.
951/// \param ConstructorRParen Closing paren of the constructor args.
952ExprResult
953Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
954                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
955                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
956                  Declarator &D, Expr *Initializer) {
957  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
958
959  Expr *ArraySize = 0;
960  // If the specified type is an array, unwrap it and save the expression.
961  if (D.getNumTypeObjects() > 0 &&
962      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
963    DeclaratorChunk &Chunk = D.getTypeObject(0);
964    if (TypeContainsAuto)
965      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
966        << D.getSourceRange());
967    if (Chunk.Arr.hasStatic)
968      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
969        << D.getSourceRange());
970    if (!Chunk.Arr.NumElts)
971      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
972        << D.getSourceRange());
973
974    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
975    D.DropFirstTypeObject();
976  }
977
978  // Every dimension shall be of constant size.
979  if (ArraySize) {
980    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
981      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
982        break;
983
984      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
985      if (Expr *NumElts = (Expr *)Array.NumElts) {
986        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
987          Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
988            PDiag(diag::err_new_array_nonconst)).take();
989          if (!Array.NumElts)
990            return ExprError();
991        }
992      }
993    }
994  }
995
996  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
997  QualType AllocType = TInfo->getType();
998  if (D.isInvalidType())
999    return ExprError();
1000
1001  SourceRange DirectInitRange;
1002  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1003    DirectInitRange = List->getSourceRange();
1004
1005  return BuildCXXNew(StartLoc, UseGlobal,
1006                     PlacementLParen,
1007                     move(PlacementArgs),
1008                     PlacementRParen,
1009                     TypeIdParens,
1010                     AllocType,
1011                     TInfo,
1012                     ArraySize,
1013                     DirectInitRange,
1014                     Initializer,
1015                     TypeContainsAuto);
1016}
1017
1018static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1019                                       Expr *Init) {
1020  if (!Init)
1021    return true;
1022  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1023    return PLE->getNumExprs() == 0;
1024  if (isa<ImplicitValueInitExpr>(Init))
1025    return true;
1026  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1027    return !CCE->isListInitialization() &&
1028           CCE->getConstructor()->isDefaultConstructor();
1029  else if (Style == CXXNewExpr::ListInit) {
1030    assert(isa<InitListExpr>(Init) &&
1031           "Shouldn't create list CXXConstructExprs for arrays.");
1032    return true;
1033  }
1034  return false;
1035}
1036
1037ExprResult
1038Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1039                  SourceLocation PlacementLParen,
1040                  MultiExprArg PlacementArgs,
1041                  SourceLocation PlacementRParen,
1042                  SourceRange TypeIdParens,
1043                  QualType AllocType,
1044                  TypeSourceInfo *AllocTypeInfo,
1045                  Expr *ArraySize,
1046                  SourceRange DirectInitRange,
1047                  Expr *Initializer,
1048                  bool TypeMayContainAuto) {
1049  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1050
1051  CXXNewExpr::InitializationStyle initStyle;
1052  if (DirectInitRange.isValid()) {
1053    assert(Initializer && "Have parens but no initializer.");
1054    initStyle = CXXNewExpr::CallInit;
1055  } else if (Initializer && isa<InitListExpr>(Initializer))
1056    initStyle = CXXNewExpr::ListInit;
1057  else {
1058    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1059    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1060    // particularly sane way we can handle this (especially since it can even
1061    // occur for array new), so we throw the initializer away and have it be
1062    // rebuilt.
1063    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1064      Initializer = 0;
1065    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1066            isa<CXXConstructExpr>(Initializer)) &&
1067           "Initializer expression that cannot have been implicitly created.");
1068    initStyle = CXXNewExpr::NoInit;
1069  }
1070
1071  Expr **Inits = &Initializer;
1072  unsigned NumInits = Initializer ? 1 : 0;
1073  if (initStyle == CXXNewExpr::CallInit) {
1074    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1075      Inits = List->getExprs();
1076      NumInits = List->getNumExprs();
1077    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1078      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1079        // Can happen in template instantiation. Since this is just an implicit
1080        // construction, we just take it apart and rebuild it.
1081        Inits = CCE->getArgs();
1082        NumInits = CCE->getNumArgs();
1083      }
1084    }
1085  }
1086
1087  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1088  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
1089    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1090      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1091                       << AllocType << TypeRange);
1092    if (initStyle == CXXNewExpr::ListInit)
1093      return ExprError(Diag(Inits[0]->getLocStart(),
1094                            diag::err_auto_new_requires_parens)
1095                       << AllocType << TypeRange);
1096    if (NumInits > 1) {
1097      Expr *FirstBad = Inits[1];
1098      return ExprError(Diag(FirstBad->getLocStart(),
1099                            diag::err_auto_new_ctor_multiple_expressions)
1100                       << AllocType << TypeRange);
1101    }
1102    Expr *Deduce = Inits[0];
1103    TypeSourceInfo *DeducedType = 0;
1104    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
1105            DAR_Failed)
1106      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1107                       << AllocType << Deduce->getType()
1108                       << TypeRange << Deduce->getSourceRange());
1109    if (!DeducedType)
1110      return ExprError();
1111
1112    AllocTypeInfo = DeducedType;
1113    AllocType = AllocTypeInfo->getType();
1114  }
1115
1116  // Per C++0x [expr.new]p5, the type being constructed may be a
1117  // typedef of an array type.
1118  if (!ArraySize) {
1119    if (const ConstantArrayType *Array
1120                              = Context.getAsConstantArrayType(AllocType)) {
1121      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1122                                         Context.getSizeType(),
1123                                         TypeRange.getEnd());
1124      AllocType = Array->getElementType();
1125    }
1126  }
1127
1128  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1129    return ExprError();
1130
1131  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1132    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1133         diag::warn_dangling_std_initializer_list)
1134        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1135  }
1136
1137  // In ARC, infer 'retaining' for the allocated
1138  if (getLangOpts().ObjCAutoRefCount &&
1139      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1140      AllocType->isObjCLifetimeType()) {
1141    AllocType = Context.getLifetimeQualifiedType(AllocType,
1142                                    AllocType->getObjCARCImplicitLifetime());
1143  }
1144
1145  QualType ResultType = Context.getPointerType(AllocType);
1146
1147  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1148  //   integral or enumeration type with a non-negative value."
1149  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1150  //   enumeration type, or a class type for which a single non-explicit
1151  //   conversion function to integral or unscoped enumeration type exists.
1152  if (ArraySize && !ArraySize->isTypeDependent()) {
1153    ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
1154      StartLoc, ArraySize,
1155      PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x,
1156      PDiag(diag::err_array_size_incomplete_type)
1157        << ArraySize->getSourceRange(),
1158      PDiag(diag::err_array_size_explicit_conversion),
1159      PDiag(diag::note_array_size_conversion),
1160      PDiag(diag::err_array_size_ambiguous_conversion),
1161      PDiag(diag::note_array_size_conversion),
1162      PDiag(getLangOpts().CPlusPlus0x ?
1163              diag::warn_cxx98_compat_array_size_conversion :
1164              diag::ext_array_size_conversion),
1165      /*AllowScopedEnumerations*/ false);
1166    if (ConvertedSize.isInvalid())
1167      return ExprError();
1168
1169    ArraySize = ConvertedSize.take();
1170    QualType SizeType = ArraySize->getType();
1171    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1172      return ExprError();
1173
1174    // C++98 [expr.new]p7:
1175    //   The expression in a direct-new-declarator shall have integral type
1176    //   with a non-negative value.
1177    //
1178    // Let's see if this is a constant < 0. If so, we reject it out of
1179    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1180    // array type.
1181    //
1182    // Note: such a construct has well-defined semantics in C++11: it throws
1183    // std::bad_array_new_length.
1184    if (!ArraySize->isValueDependent()) {
1185      llvm::APSInt Value;
1186      // We've already performed any required implicit conversion to integer or
1187      // unscoped enumeration type.
1188      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1189        if (Value < llvm::APSInt(
1190                        llvm::APInt::getNullValue(Value.getBitWidth()),
1191                                 Value.isUnsigned())) {
1192          if (getLangOpts().CPlusPlus0x)
1193            Diag(ArraySize->getLocStart(),
1194                 diag::warn_typecheck_negative_array_new_size)
1195              << ArraySize->getSourceRange();
1196          else
1197            return ExprError(Diag(ArraySize->getLocStart(),
1198                                  diag::err_typecheck_negative_array_size)
1199                             << ArraySize->getSourceRange());
1200        } else if (!AllocType->isDependentType()) {
1201          unsigned ActiveSizeBits =
1202            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1203          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1204            if (getLangOpts().CPlusPlus0x)
1205              Diag(ArraySize->getLocStart(),
1206                   diag::warn_array_new_too_large)
1207                << Value.toString(10)
1208                << ArraySize->getSourceRange();
1209            else
1210              return ExprError(Diag(ArraySize->getLocStart(),
1211                                    diag::err_array_too_large)
1212                               << Value.toString(10)
1213                               << ArraySize->getSourceRange());
1214          }
1215        }
1216      } else if (TypeIdParens.isValid()) {
1217        // Can't have dynamic array size when the type-id is in parentheses.
1218        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1219          << ArraySize->getSourceRange()
1220          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1221          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1222
1223        TypeIdParens = SourceRange();
1224      }
1225    }
1226
1227    // ARC: warn about ABI issues.
1228    if (getLangOpts().ObjCAutoRefCount) {
1229      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1230      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1231        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1232          << 0 << BaseAllocType;
1233    }
1234
1235    // Note that we do *not* convert the argument in any way.  It can
1236    // be signed, larger than size_t, whatever.
1237  }
1238
1239  FunctionDecl *OperatorNew = 0;
1240  FunctionDecl *OperatorDelete = 0;
1241  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1242  unsigned NumPlaceArgs = PlacementArgs.size();
1243
1244  if (!AllocType->isDependentType() &&
1245      !Expr::hasAnyTypeDependentArguments(
1246        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1247      FindAllocationFunctions(StartLoc,
1248                              SourceRange(PlacementLParen, PlacementRParen),
1249                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1250                              NumPlaceArgs, OperatorNew, OperatorDelete))
1251    return ExprError();
1252
1253  // If this is an array allocation, compute whether the usual array
1254  // deallocation function for the type has a size_t parameter.
1255  bool UsualArrayDeleteWantsSize = false;
1256  if (ArraySize && !AllocType->isDependentType())
1257    UsualArrayDeleteWantsSize
1258      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1259
1260  SmallVector<Expr *, 8> AllPlaceArgs;
1261  if (OperatorNew) {
1262    // Add default arguments, if any.
1263    const FunctionProtoType *Proto =
1264      OperatorNew->getType()->getAs<FunctionProtoType>();
1265    VariadicCallType CallType =
1266      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1267
1268    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1269                               Proto, 1, PlaceArgs, NumPlaceArgs,
1270                               AllPlaceArgs, CallType))
1271      return ExprError();
1272
1273    NumPlaceArgs = AllPlaceArgs.size();
1274    if (NumPlaceArgs > 0)
1275      PlaceArgs = &AllPlaceArgs[0];
1276
1277    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1278                          PlaceArgs, NumPlaceArgs);
1279
1280    // FIXME: Missing call to CheckFunctionCall or equivalent
1281  }
1282
1283  // Warn if the type is over-aligned and is being allocated by global operator
1284  // new.
1285  if (NumPlaceArgs == 0 && OperatorNew &&
1286      (OperatorNew->isImplicit() ||
1287       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1288    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1289      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1290      if (Align > SuitableAlign)
1291        Diag(StartLoc, diag::warn_overaligned_type)
1292            << AllocType
1293            << unsigned(Align / Context.getCharWidth())
1294            << unsigned(SuitableAlign / Context.getCharWidth());
1295    }
1296  }
1297
1298  QualType InitType = AllocType;
1299  // Array 'new' can't have any initializers except empty parentheses.
1300  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1301  // dialect distinction.
1302  if (ResultType->isArrayType() || ArraySize) {
1303    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1304      SourceRange InitRange(Inits[0]->getLocStart(),
1305                            Inits[NumInits - 1]->getLocEnd());
1306      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1307      return ExprError();
1308    }
1309    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1310      // We do the initialization typechecking against the array type
1311      // corresponding to the number of initializers + 1 (to also check
1312      // default-initialization).
1313      unsigned NumElements = ILE->getNumInits() + 1;
1314      InitType = Context.getConstantArrayType(AllocType,
1315          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1316                                              ArrayType::Normal, 0);
1317    }
1318  }
1319
1320  if (!AllocType->isDependentType() &&
1321      !Expr::hasAnyTypeDependentArguments(
1322        llvm::makeArrayRef(Inits, NumInits))) {
1323    // C++11 [expr.new]p15:
1324    //   A new-expression that creates an object of type T initializes that
1325    //   object as follows:
1326    InitializationKind Kind
1327    //     - If the new-initializer is omitted, the object is default-
1328    //       initialized (8.5); if no initialization is performed,
1329    //       the object has indeterminate value
1330      = initStyle == CXXNewExpr::NoInit
1331          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1332    //     - Otherwise, the new-initializer is interpreted according to the
1333    //       initialization rules of 8.5 for direct-initialization.
1334          : initStyle == CXXNewExpr::ListInit
1335              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1336              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1337                                                 DirectInitRange.getBegin(),
1338                                                 DirectInitRange.getEnd());
1339
1340    InitializedEntity Entity
1341      = InitializedEntity::InitializeNew(StartLoc, InitType);
1342    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1343    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1344                                          MultiExprArg(Inits, NumInits));
1345    if (FullInit.isInvalid())
1346      return ExprError();
1347
1348    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1349    // we don't want the initialized object to be destructed.
1350    if (CXXBindTemporaryExpr *Binder =
1351            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1352      FullInit = Owned(Binder->getSubExpr());
1353
1354    Initializer = FullInit.take();
1355  }
1356
1357  // Mark the new and delete operators as referenced.
1358  if (OperatorNew)
1359    MarkFunctionReferenced(StartLoc, OperatorNew);
1360  if (OperatorDelete)
1361    MarkFunctionReferenced(StartLoc, OperatorDelete);
1362
1363  // C++0x [expr.new]p17:
1364  //   If the new expression creates an array of objects of class type,
1365  //   access and ambiguity control are done for the destructor.
1366  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1367  if (ArraySize && !BaseAllocType->isDependentType()) {
1368    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1369      if (CXXDestructorDecl *dtor = LookupDestructor(
1370              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1371        MarkFunctionReferenced(StartLoc, dtor);
1372        CheckDestructorAccess(StartLoc, dtor,
1373                              PDiag(diag::err_access_dtor)
1374                                << BaseAllocType);
1375        DiagnoseUseOfDecl(dtor, StartLoc);
1376      }
1377    }
1378  }
1379
1380  PlacementArgs.release();
1381
1382  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1383                                        OperatorDelete,
1384                                        UsualArrayDeleteWantsSize,
1385                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1386                                        ArraySize, initStyle, Initializer,
1387                                        ResultType, AllocTypeInfo,
1388                                        StartLoc, DirectInitRange));
1389}
1390
1391/// \brief Checks that a type is suitable as the allocated type
1392/// in a new-expression.
1393bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1394                              SourceRange R) {
1395  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1396  //   abstract class type or array thereof.
1397  if (AllocType->isFunctionType())
1398    return Diag(Loc, diag::err_bad_new_type)
1399      << AllocType << 0 << R;
1400  else if (AllocType->isReferenceType())
1401    return Diag(Loc, diag::err_bad_new_type)
1402      << AllocType << 1 << R;
1403  else if (!AllocType->isDependentType() &&
1404           RequireCompleteType(Loc, AllocType,
1405                               PDiag(diag::err_new_incomplete_type)
1406                                 << R))
1407    return true;
1408  else if (RequireNonAbstractType(Loc, AllocType,
1409                                  diag::err_allocation_of_abstract_type))
1410    return true;
1411  else if (AllocType->isVariablyModifiedType())
1412    return Diag(Loc, diag::err_variably_modified_new_type)
1413             << AllocType;
1414  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1415    return Diag(Loc, diag::err_address_space_qualified_new)
1416      << AllocType.getUnqualifiedType() << AddressSpace;
1417  else if (getLangOpts().ObjCAutoRefCount) {
1418    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1419      QualType BaseAllocType = Context.getBaseElementType(AT);
1420      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1421          BaseAllocType->isObjCLifetimeType())
1422        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1423          << BaseAllocType;
1424    }
1425  }
1426
1427  return false;
1428}
1429
1430/// \brief Determine whether the given function is a non-placement
1431/// deallocation function.
1432static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1433  if (FD->isInvalidDecl())
1434    return false;
1435
1436  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1437    return Method->isUsualDeallocationFunction();
1438
1439  return ((FD->getOverloadedOperator() == OO_Delete ||
1440           FD->getOverloadedOperator() == OO_Array_Delete) &&
1441          FD->getNumParams() == 1);
1442}
1443
1444/// FindAllocationFunctions - Finds the overloads of operator new and delete
1445/// that are appropriate for the allocation.
1446bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1447                                   bool UseGlobal, QualType AllocType,
1448                                   bool IsArray, Expr **PlaceArgs,
1449                                   unsigned NumPlaceArgs,
1450                                   FunctionDecl *&OperatorNew,
1451                                   FunctionDecl *&OperatorDelete) {
1452  // --- Choosing an allocation function ---
1453  // C++ 5.3.4p8 - 14 & 18
1454  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1455  //   in the scope of the allocated class.
1456  // 2) If an array size is given, look for operator new[], else look for
1457  //   operator new.
1458  // 3) The first argument is always size_t. Append the arguments from the
1459  //   placement form.
1460
1461  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1462  // We don't care about the actual value of this argument.
1463  // FIXME: Should the Sema create the expression and embed it in the syntax
1464  // tree? Or should the consumer just recalculate the value?
1465  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1466                      Context.getTargetInfo().getPointerWidth(0)),
1467                      Context.getSizeType(),
1468                      SourceLocation());
1469  AllocArgs[0] = &Size;
1470  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1471
1472  // C++ [expr.new]p8:
1473  //   If the allocated type is a non-array type, the allocation
1474  //   function's name is operator new and the deallocation function's
1475  //   name is operator delete. If the allocated type is an array
1476  //   type, the allocation function's name is operator new[] and the
1477  //   deallocation function's name is operator delete[].
1478  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1479                                        IsArray ? OO_Array_New : OO_New);
1480  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1481                                        IsArray ? OO_Array_Delete : OO_Delete);
1482
1483  QualType AllocElemType = Context.getBaseElementType(AllocType);
1484
1485  if (AllocElemType->isRecordType() && !UseGlobal) {
1486    CXXRecordDecl *Record
1487      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1488    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1489                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1490                          OperatorNew))
1491      return true;
1492  }
1493  if (!OperatorNew) {
1494    // Didn't find a member overload. Look for a global one.
1495    DeclareGlobalNewDelete();
1496    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1497    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1498                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1499                          OperatorNew))
1500      return true;
1501  }
1502
1503  // We don't need an operator delete if we're running under
1504  // -fno-exceptions.
1505  if (!getLangOpts().Exceptions) {
1506    OperatorDelete = 0;
1507    return false;
1508  }
1509
1510  // FindAllocationOverload can change the passed in arguments, so we need to
1511  // copy them back.
1512  if (NumPlaceArgs > 0)
1513    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1514
1515  // C++ [expr.new]p19:
1516  //
1517  //   If the new-expression begins with a unary :: operator, the
1518  //   deallocation function's name is looked up in the global
1519  //   scope. Otherwise, if the allocated type is a class type T or an
1520  //   array thereof, the deallocation function's name is looked up in
1521  //   the scope of T. If this lookup fails to find the name, or if
1522  //   the allocated type is not a class type or array thereof, the
1523  //   deallocation function's name is looked up in the global scope.
1524  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1525  if (AllocElemType->isRecordType() && !UseGlobal) {
1526    CXXRecordDecl *RD
1527      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1528    LookupQualifiedName(FoundDelete, RD);
1529  }
1530  if (FoundDelete.isAmbiguous())
1531    return true; // FIXME: clean up expressions?
1532
1533  if (FoundDelete.empty()) {
1534    DeclareGlobalNewDelete();
1535    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1536  }
1537
1538  FoundDelete.suppressDiagnostics();
1539
1540  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1541
1542  // Whether we're looking for a placement operator delete is dictated
1543  // by whether we selected a placement operator new, not by whether
1544  // we had explicit placement arguments.  This matters for things like
1545  //   struct A { void *operator new(size_t, int = 0); ... };
1546  //   A *a = new A()
1547  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1548
1549  if (isPlacementNew) {
1550    // C++ [expr.new]p20:
1551    //   A declaration of a placement deallocation function matches the
1552    //   declaration of a placement allocation function if it has the
1553    //   same number of parameters and, after parameter transformations
1554    //   (8.3.5), all parameter types except the first are
1555    //   identical. [...]
1556    //
1557    // To perform this comparison, we compute the function type that
1558    // the deallocation function should have, and use that type both
1559    // for template argument deduction and for comparison purposes.
1560    //
1561    // FIXME: this comparison should ignore CC and the like.
1562    QualType ExpectedFunctionType;
1563    {
1564      const FunctionProtoType *Proto
1565        = OperatorNew->getType()->getAs<FunctionProtoType>();
1566
1567      SmallVector<QualType, 4> ArgTypes;
1568      ArgTypes.push_back(Context.VoidPtrTy);
1569      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1570        ArgTypes.push_back(Proto->getArgType(I));
1571
1572      FunctionProtoType::ExtProtoInfo EPI;
1573      EPI.Variadic = Proto->isVariadic();
1574
1575      ExpectedFunctionType
1576        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1577                                  ArgTypes.size(), EPI);
1578    }
1579
1580    for (LookupResult::iterator D = FoundDelete.begin(),
1581                             DEnd = FoundDelete.end();
1582         D != DEnd; ++D) {
1583      FunctionDecl *Fn = 0;
1584      if (FunctionTemplateDecl *FnTmpl
1585            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1586        // Perform template argument deduction to try to match the
1587        // expected function type.
1588        TemplateDeductionInfo Info(Context, StartLoc);
1589        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1590          continue;
1591      } else
1592        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1593
1594      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1595        Matches.push_back(std::make_pair(D.getPair(), Fn));
1596    }
1597  } else {
1598    // C++ [expr.new]p20:
1599    //   [...] Any non-placement deallocation function matches a
1600    //   non-placement allocation function. [...]
1601    for (LookupResult::iterator D = FoundDelete.begin(),
1602                             DEnd = FoundDelete.end();
1603         D != DEnd; ++D) {
1604      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1605        if (isNonPlacementDeallocationFunction(Fn))
1606          Matches.push_back(std::make_pair(D.getPair(), Fn));
1607    }
1608  }
1609
1610  // C++ [expr.new]p20:
1611  //   [...] If the lookup finds a single matching deallocation
1612  //   function, that function will be called; otherwise, no
1613  //   deallocation function will be called.
1614  if (Matches.size() == 1) {
1615    OperatorDelete = Matches[0].second;
1616
1617    // C++0x [expr.new]p20:
1618    //   If the lookup finds the two-parameter form of a usual
1619    //   deallocation function (3.7.4.2) and that function, considered
1620    //   as a placement deallocation function, would have been
1621    //   selected as a match for the allocation function, the program
1622    //   is ill-formed.
1623    if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1624        isNonPlacementDeallocationFunction(OperatorDelete)) {
1625      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1626        << SourceRange(PlaceArgs[0]->getLocStart(),
1627                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1628      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1629        << DeleteName;
1630    } else {
1631      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1632                            Matches[0].first);
1633    }
1634  }
1635
1636  return false;
1637}
1638
1639/// FindAllocationOverload - Find an fitting overload for the allocation
1640/// function in the specified scope.
1641bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1642                                  DeclarationName Name, Expr** Args,
1643                                  unsigned NumArgs, DeclContext *Ctx,
1644                                  bool AllowMissing, FunctionDecl *&Operator,
1645                                  bool Diagnose) {
1646  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1647  LookupQualifiedName(R, Ctx);
1648  if (R.empty()) {
1649    if (AllowMissing || !Diagnose)
1650      return false;
1651    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1652      << Name << Range;
1653  }
1654
1655  if (R.isAmbiguous())
1656    return true;
1657
1658  R.suppressDiagnostics();
1659
1660  OverloadCandidateSet Candidates(StartLoc);
1661  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1662       Alloc != AllocEnd; ++Alloc) {
1663    // Even member operator new/delete are implicitly treated as
1664    // static, so don't use AddMemberCandidate.
1665    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1666
1667    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1668      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1669                                   /*ExplicitTemplateArgs=*/0,
1670                                   llvm::makeArrayRef(Args, NumArgs),
1671                                   Candidates,
1672                                   /*SuppressUserConversions=*/false);
1673      continue;
1674    }
1675
1676    FunctionDecl *Fn = cast<FunctionDecl>(D);
1677    AddOverloadCandidate(Fn, Alloc.getPair(),
1678                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1679                         /*SuppressUserConversions=*/false);
1680  }
1681
1682  // Do the resolution.
1683  OverloadCandidateSet::iterator Best;
1684  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1685  case OR_Success: {
1686    // Got one!
1687    FunctionDecl *FnDecl = Best->Function;
1688    MarkFunctionReferenced(StartLoc, FnDecl);
1689    // The first argument is size_t, and the first parameter must be size_t,
1690    // too. This is checked on declaration and can be assumed. (It can't be
1691    // asserted on, though, since invalid decls are left in there.)
1692    // Watch out for variadic allocator function.
1693    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1694    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1695      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1696                                                       FnDecl->getParamDecl(i));
1697
1698      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1699        return true;
1700
1701      ExprResult Result
1702        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1703      if (Result.isInvalid())
1704        return true;
1705
1706      Args[i] = Result.takeAs<Expr>();
1707    }
1708
1709    Operator = FnDecl;
1710
1711    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1712                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1713      return true;
1714
1715    return false;
1716  }
1717
1718  case OR_No_Viable_Function:
1719    if (Diagnose) {
1720      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1721        << Name << Range;
1722      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1723                                llvm::makeArrayRef(Args, NumArgs));
1724    }
1725    return true;
1726
1727  case OR_Ambiguous:
1728    if (Diagnose) {
1729      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1730        << Name << Range;
1731      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1732                                llvm::makeArrayRef(Args, NumArgs));
1733    }
1734    return true;
1735
1736  case OR_Deleted: {
1737    if (Diagnose) {
1738      Diag(StartLoc, diag::err_ovl_deleted_call)
1739        << Best->Function->isDeleted()
1740        << Name
1741        << getDeletedOrUnavailableSuffix(Best->Function)
1742        << Range;
1743      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1744                                llvm::makeArrayRef(Args, NumArgs));
1745    }
1746    return true;
1747  }
1748  }
1749  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1750}
1751
1752
1753/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1754/// delete. These are:
1755/// @code
1756///   // C++03:
1757///   void* operator new(std::size_t) throw(std::bad_alloc);
1758///   void* operator new[](std::size_t) throw(std::bad_alloc);
1759///   void operator delete(void *) throw();
1760///   void operator delete[](void *) throw();
1761///   // C++0x:
1762///   void* operator new(std::size_t);
1763///   void* operator new[](std::size_t);
1764///   void operator delete(void *);
1765///   void operator delete[](void *);
1766/// @endcode
1767/// C++0x operator delete is implicitly noexcept.
1768/// Note that the placement and nothrow forms of new are *not* implicitly
1769/// declared. Their use requires including \<new\>.
1770void Sema::DeclareGlobalNewDelete() {
1771  if (GlobalNewDeleteDeclared)
1772    return;
1773
1774  // C++ [basic.std.dynamic]p2:
1775  //   [...] The following allocation and deallocation functions (18.4) are
1776  //   implicitly declared in global scope in each translation unit of a
1777  //   program
1778  //
1779  //     C++03:
1780  //     void* operator new(std::size_t) throw(std::bad_alloc);
1781  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1782  //     void  operator delete(void*) throw();
1783  //     void  operator delete[](void*) throw();
1784  //     C++0x:
1785  //     void* operator new(std::size_t);
1786  //     void* operator new[](std::size_t);
1787  //     void  operator delete(void*);
1788  //     void  operator delete[](void*);
1789  //
1790  //   These implicit declarations introduce only the function names operator
1791  //   new, operator new[], operator delete, operator delete[].
1792  //
1793  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1794  // "std" or "bad_alloc" as necessary to form the exception specification.
1795  // However, we do not make these implicit declarations visible to name
1796  // lookup.
1797  // Note that the C++0x versions of operator delete are deallocation functions,
1798  // and thus are implicitly noexcept.
1799  if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1800    // The "std::bad_alloc" class has not yet been declared, so build it
1801    // implicitly.
1802    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1803                                        getOrCreateStdNamespace(),
1804                                        SourceLocation(), SourceLocation(),
1805                                      &PP.getIdentifierTable().get("bad_alloc"),
1806                                        0);
1807    getStdBadAlloc()->setImplicit(true);
1808  }
1809
1810  GlobalNewDeleteDeclared = true;
1811
1812  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1813  QualType SizeT = Context.getSizeType();
1814  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1815
1816  DeclareGlobalAllocationFunction(
1817      Context.DeclarationNames.getCXXOperatorName(OO_New),
1818      VoidPtr, SizeT, AssumeSaneOperatorNew);
1819  DeclareGlobalAllocationFunction(
1820      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1821      VoidPtr, SizeT, AssumeSaneOperatorNew);
1822  DeclareGlobalAllocationFunction(
1823      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1824      Context.VoidTy, VoidPtr);
1825  DeclareGlobalAllocationFunction(
1826      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1827      Context.VoidTy, VoidPtr);
1828}
1829
1830/// DeclareGlobalAllocationFunction - Declares a single implicit global
1831/// allocation function if it doesn't already exist.
1832void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1833                                           QualType Return, QualType Argument,
1834                                           bool AddMallocAttr) {
1835  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1836
1837  // Check if this function is already declared.
1838  {
1839    DeclContext::lookup_iterator Alloc, AllocEnd;
1840    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1841         Alloc != AllocEnd; ++Alloc) {
1842      // Only look at non-template functions, as it is the predefined,
1843      // non-templated allocation function we are trying to declare here.
1844      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1845        QualType InitialParamType =
1846          Context.getCanonicalType(
1847            Func->getParamDecl(0)->getType().getUnqualifiedType());
1848        // FIXME: Do we need to check for default arguments here?
1849        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1850          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1851            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1852          return;
1853        }
1854      }
1855    }
1856  }
1857
1858  QualType BadAllocType;
1859  bool HasBadAllocExceptionSpec
1860    = (Name.getCXXOverloadedOperator() == OO_New ||
1861       Name.getCXXOverloadedOperator() == OO_Array_New);
1862  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1863    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1864    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1865  }
1866
1867  FunctionProtoType::ExtProtoInfo EPI;
1868  if (HasBadAllocExceptionSpec) {
1869    if (!getLangOpts().CPlusPlus0x) {
1870      EPI.ExceptionSpecType = EST_Dynamic;
1871      EPI.NumExceptions = 1;
1872      EPI.Exceptions = &BadAllocType;
1873    }
1874  } else {
1875    EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1876                                EST_BasicNoexcept : EST_DynamicNone;
1877  }
1878
1879  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1880  FunctionDecl *Alloc =
1881    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1882                         SourceLocation(), Name,
1883                         FnType, /*TInfo=*/0, SC_None,
1884                         SC_None, false, true);
1885  Alloc->setImplicit();
1886
1887  if (AddMallocAttr)
1888    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1889
1890  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1891                                           SourceLocation(), 0,
1892                                           Argument, /*TInfo=*/0,
1893                                           SC_None, SC_None, 0);
1894  Alloc->setParams(Param);
1895
1896  // FIXME: Also add this declaration to the IdentifierResolver, but
1897  // make sure it is at the end of the chain to coincide with the
1898  // global scope.
1899  Context.getTranslationUnitDecl()->addDecl(Alloc);
1900}
1901
1902bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1903                                    DeclarationName Name,
1904                                    FunctionDecl* &Operator, bool Diagnose) {
1905  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1906  // Try to find operator delete/operator delete[] in class scope.
1907  LookupQualifiedName(Found, RD);
1908
1909  if (Found.isAmbiguous())
1910    return true;
1911
1912  Found.suppressDiagnostics();
1913
1914  SmallVector<DeclAccessPair,4> Matches;
1915  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1916       F != FEnd; ++F) {
1917    NamedDecl *ND = (*F)->getUnderlyingDecl();
1918
1919    // Ignore template operator delete members from the check for a usual
1920    // deallocation function.
1921    if (isa<FunctionTemplateDecl>(ND))
1922      continue;
1923
1924    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1925      Matches.push_back(F.getPair());
1926  }
1927
1928  // There's exactly one suitable operator;  pick it.
1929  if (Matches.size() == 1) {
1930    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1931
1932    if (Operator->isDeleted()) {
1933      if (Diagnose) {
1934        Diag(StartLoc, diag::err_deleted_function_use);
1935        NoteDeletedFunction(Operator);
1936      }
1937      return true;
1938    }
1939
1940    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1941                              Matches[0], Diagnose) == AR_inaccessible)
1942      return true;
1943
1944    return false;
1945
1946  // We found multiple suitable operators;  complain about the ambiguity.
1947  } else if (!Matches.empty()) {
1948    if (Diagnose) {
1949      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1950        << Name << RD;
1951
1952      for (SmallVectorImpl<DeclAccessPair>::iterator
1953             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1954        Diag((*F)->getUnderlyingDecl()->getLocation(),
1955             diag::note_member_declared_here) << Name;
1956    }
1957    return true;
1958  }
1959
1960  // We did find operator delete/operator delete[] declarations, but
1961  // none of them were suitable.
1962  if (!Found.empty()) {
1963    if (Diagnose) {
1964      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1965        << Name << RD;
1966
1967      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1968           F != FEnd; ++F)
1969        Diag((*F)->getUnderlyingDecl()->getLocation(),
1970             diag::note_member_declared_here) << Name;
1971    }
1972    return true;
1973  }
1974
1975  // Look for a global declaration.
1976  DeclareGlobalNewDelete();
1977  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1978
1979  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1980  Expr* DeallocArgs[1];
1981  DeallocArgs[0] = &Null;
1982  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1983                             DeallocArgs, 1, TUDecl, !Diagnose,
1984                             Operator, Diagnose))
1985    return true;
1986
1987  assert(Operator && "Did not find a deallocation function!");
1988  return false;
1989}
1990
1991/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1992/// @code ::delete ptr; @endcode
1993/// or
1994/// @code delete [] ptr; @endcode
1995ExprResult
1996Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1997                     bool ArrayForm, Expr *ExE) {
1998  // C++ [expr.delete]p1:
1999  //   The operand shall have a pointer type, or a class type having a single
2000  //   conversion function to a pointer type. The result has type void.
2001  //
2002  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2003
2004  ExprResult Ex = Owned(ExE);
2005  FunctionDecl *OperatorDelete = 0;
2006  bool ArrayFormAsWritten = ArrayForm;
2007  bool UsualArrayDeleteWantsSize = false;
2008
2009  if (!Ex.get()->isTypeDependent()) {
2010    // Perform lvalue-to-rvalue cast, if needed.
2011    Ex = DefaultLvalueConversion(Ex.take());
2012
2013    QualType Type = Ex.get()->getType();
2014
2015    if (const RecordType *Record = Type->getAs<RecordType>()) {
2016      if (RequireCompleteType(StartLoc, Type,
2017                              PDiag(diag::err_delete_incomplete_class_type)))
2018        return ExprError();
2019
2020      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2021
2022      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2023      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2024      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2025             E = Conversions->end(); I != E; ++I) {
2026        NamedDecl *D = I.getDecl();
2027        if (isa<UsingShadowDecl>(D))
2028          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2029
2030        // Skip over templated conversion functions; they aren't considered.
2031        if (isa<FunctionTemplateDecl>(D))
2032          continue;
2033
2034        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2035
2036        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2037        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2038          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2039            ObjectPtrConversions.push_back(Conv);
2040      }
2041      if (ObjectPtrConversions.size() == 1) {
2042        // We have a single conversion to a pointer-to-object type. Perform
2043        // that conversion.
2044        // TODO: don't redo the conversion calculation.
2045        ExprResult Res =
2046          PerformImplicitConversion(Ex.get(),
2047                            ObjectPtrConversions.front()->getConversionType(),
2048                                    AA_Converting);
2049        if (Res.isUsable()) {
2050          Ex = move(Res);
2051          Type = Ex.get()->getType();
2052        }
2053      }
2054      else if (ObjectPtrConversions.size() > 1) {
2055        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2056              << Type << Ex.get()->getSourceRange();
2057        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2058          NoteOverloadCandidate(ObjectPtrConversions[i]);
2059        return ExprError();
2060      }
2061    }
2062
2063    if (!Type->isPointerType())
2064      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2065        << Type << Ex.get()->getSourceRange());
2066
2067    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2068    QualType PointeeElem = Context.getBaseElementType(Pointee);
2069
2070    if (unsigned AddressSpace = Pointee.getAddressSpace())
2071      return Diag(Ex.get()->getLocStart(),
2072                  diag::err_address_space_qualified_delete)
2073               << Pointee.getUnqualifiedType() << AddressSpace;
2074
2075    CXXRecordDecl *PointeeRD = 0;
2076    if (Pointee->isVoidType() && !isSFINAEContext()) {
2077      // The C++ standard bans deleting a pointer to a non-object type, which
2078      // effectively bans deletion of "void*". However, most compilers support
2079      // this, so we treat it as a warning unless we're in a SFINAE context.
2080      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2081        << Type << Ex.get()->getSourceRange();
2082    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2083      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2084        << Type << Ex.get()->getSourceRange());
2085    } else if (!Pointee->isDependentType()) {
2086      if (!RequireCompleteType(StartLoc, Pointee,
2087                               PDiag(diag::warn_delete_incomplete)
2088                                 << Ex.get()->getSourceRange())) {
2089        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2090          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2091      }
2092    }
2093
2094    // C++ [expr.delete]p2:
2095    //   [Note: a pointer to a const type can be the operand of a
2096    //   delete-expression; it is not necessary to cast away the constness
2097    //   (5.2.11) of the pointer expression before it is used as the operand
2098    //   of the delete-expression. ]
2099    if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
2100      Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2101                                          CK_BitCast, Ex.take(), 0, VK_RValue));
2102
2103    if (Pointee->isArrayType() && !ArrayForm) {
2104      Diag(StartLoc, diag::warn_delete_array_type)
2105          << Type << Ex.get()->getSourceRange()
2106          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2107      ArrayForm = true;
2108    }
2109
2110    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2111                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2112
2113    if (PointeeRD) {
2114      if (!UseGlobal &&
2115          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2116                                   OperatorDelete))
2117        return ExprError();
2118
2119      // If we're allocating an array of records, check whether the
2120      // usual operator delete[] has a size_t parameter.
2121      if (ArrayForm) {
2122        // If the user specifically asked to use the global allocator,
2123        // we'll need to do the lookup into the class.
2124        if (UseGlobal)
2125          UsualArrayDeleteWantsSize =
2126            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2127
2128        // Otherwise, the usual operator delete[] should be the
2129        // function we just found.
2130        else if (isa<CXXMethodDecl>(OperatorDelete))
2131          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2132      }
2133
2134      if (!PointeeRD->hasIrrelevantDestructor())
2135        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2136          MarkFunctionReferenced(StartLoc,
2137                                    const_cast<CXXDestructorDecl*>(Dtor));
2138          DiagnoseUseOfDecl(Dtor, StartLoc);
2139        }
2140
2141      // C++ [expr.delete]p3:
2142      //   In the first alternative (delete object), if the static type of the
2143      //   object to be deleted is different from its dynamic type, the static
2144      //   type shall be a base class of the dynamic type of the object to be
2145      //   deleted and the static type shall have a virtual destructor or the
2146      //   behavior is undefined.
2147      //
2148      // Note: a final class cannot be derived from, no issue there
2149      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2150        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2151        if (dtor && !dtor->isVirtual()) {
2152          if (PointeeRD->isAbstract()) {
2153            // If the class is abstract, we warn by default, because we're
2154            // sure the code has undefined behavior.
2155            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2156                << PointeeElem;
2157          } else if (!ArrayForm) {
2158            // Otherwise, if this is not an array delete, it's a bit suspect,
2159            // but not necessarily wrong.
2160            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2161          }
2162        }
2163      }
2164
2165    } else if (getLangOpts().ObjCAutoRefCount &&
2166               PointeeElem->isObjCLifetimeType() &&
2167               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2168                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2169               ArrayForm) {
2170      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2171        << 1 << PointeeElem;
2172    }
2173
2174    if (!OperatorDelete) {
2175      // Look for a global declaration.
2176      DeclareGlobalNewDelete();
2177      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2178      Expr *Arg = Ex.get();
2179      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2180                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2181                                 OperatorDelete))
2182        return ExprError();
2183    }
2184
2185    MarkFunctionReferenced(StartLoc, OperatorDelete);
2186
2187    // Check access and ambiguity of operator delete and destructor.
2188    if (PointeeRD) {
2189      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2190          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2191                      PDiag(diag::err_access_dtor) << PointeeElem);
2192      }
2193    }
2194
2195  }
2196
2197  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2198                                           ArrayFormAsWritten,
2199                                           UsualArrayDeleteWantsSize,
2200                                           OperatorDelete, Ex.take(), StartLoc));
2201}
2202
2203/// \brief Check the use of the given variable as a C++ condition in an if,
2204/// while, do-while, or switch statement.
2205ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2206                                        SourceLocation StmtLoc,
2207                                        bool ConvertToBoolean) {
2208  QualType T = ConditionVar->getType();
2209
2210  // C++ [stmt.select]p2:
2211  //   The declarator shall not specify a function or an array.
2212  if (T->isFunctionType())
2213    return ExprError(Diag(ConditionVar->getLocation(),
2214                          diag::err_invalid_use_of_function_type)
2215                       << ConditionVar->getSourceRange());
2216  else if (T->isArrayType())
2217    return ExprError(Diag(ConditionVar->getLocation(),
2218                          diag::err_invalid_use_of_array_type)
2219                     << ConditionVar->getSourceRange());
2220
2221  ExprResult Condition =
2222    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2223                              SourceLocation(),
2224                              ConditionVar,
2225                              /*enclosing*/ false,
2226                              ConditionVar->getLocation(),
2227                              ConditionVar->getType().getNonReferenceType(),
2228                              VK_LValue));
2229
2230  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2231
2232  if (ConvertToBoolean) {
2233    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2234    if (Condition.isInvalid())
2235      return ExprError();
2236  }
2237
2238  return move(Condition);
2239}
2240
2241/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2242ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2243  // C++ 6.4p4:
2244  // The value of a condition that is an initialized declaration in a statement
2245  // other than a switch statement is the value of the declared variable
2246  // implicitly converted to type bool. If that conversion is ill-formed, the
2247  // program is ill-formed.
2248  // The value of a condition that is an expression is the value of the
2249  // expression, implicitly converted to bool.
2250  //
2251  return PerformContextuallyConvertToBool(CondExpr);
2252}
2253
2254/// Helper function to determine whether this is the (deprecated) C++
2255/// conversion from a string literal to a pointer to non-const char or
2256/// non-const wchar_t (for narrow and wide string literals,
2257/// respectively).
2258bool
2259Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2260  // Look inside the implicit cast, if it exists.
2261  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2262    From = Cast->getSubExpr();
2263
2264  // A string literal (2.13.4) that is not a wide string literal can
2265  // be converted to an rvalue of type "pointer to char"; a wide
2266  // string literal can be converted to an rvalue of type "pointer
2267  // to wchar_t" (C++ 4.2p2).
2268  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2269    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2270      if (const BuiltinType *ToPointeeType
2271          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2272        // This conversion is considered only when there is an
2273        // explicit appropriate pointer target type (C++ 4.2p2).
2274        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2275          switch (StrLit->getKind()) {
2276            case StringLiteral::UTF8:
2277            case StringLiteral::UTF16:
2278            case StringLiteral::UTF32:
2279              // We don't allow UTF literals to be implicitly converted
2280              break;
2281            case StringLiteral::Ascii:
2282              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2283                      ToPointeeType->getKind() == BuiltinType::Char_S);
2284            case StringLiteral::Wide:
2285              return ToPointeeType->isWideCharType();
2286          }
2287        }
2288      }
2289
2290  return false;
2291}
2292
2293static ExprResult BuildCXXCastArgument(Sema &S,
2294                                       SourceLocation CastLoc,
2295                                       QualType Ty,
2296                                       CastKind Kind,
2297                                       CXXMethodDecl *Method,
2298                                       DeclAccessPair FoundDecl,
2299                                       bool HadMultipleCandidates,
2300                                       Expr *From) {
2301  switch (Kind) {
2302  default: llvm_unreachable("Unhandled cast kind!");
2303  case CK_ConstructorConversion: {
2304    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2305    ASTOwningVector<Expr*> ConstructorArgs(S);
2306
2307    if (S.CompleteConstructorCall(Constructor,
2308                                  MultiExprArg(&From, 1),
2309                                  CastLoc, ConstructorArgs))
2310      return ExprError();
2311
2312    S.CheckConstructorAccess(CastLoc, Constructor,
2313                             InitializedEntity::InitializeTemporary(Ty),
2314                             Constructor->getAccess());
2315
2316    ExprResult Result
2317      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2318                                move_arg(ConstructorArgs),
2319                                HadMultipleCandidates, /*ZeroInit*/ false,
2320                                CXXConstructExpr::CK_Complete, SourceRange());
2321    if (Result.isInvalid())
2322      return ExprError();
2323
2324    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2325  }
2326
2327  case CK_UserDefinedConversion: {
2328    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2329
2330    // Create an implicit call expr that calls it.
2331    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2332    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2333                                                 HadMultipleCandidates);
2334    if (Result.isInvalid())
2335      return ExprError();
2336    // Record usage of conversion in an implicit cast.
2337    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2338                                              Result.get()->getType(),
2339                                              CK_UserDefinedConversion,
2340                                              Result.get(), 0,
2341                                              Result.get()->getValueKind()));
2342
2343    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2344
2345    return S.MaybeBindToTemporary(Result.get());
2346  }
2347  }
2348}
2349
2350/// PerformImplicitConversion - Perform an implicit conversion of the
2351/// expression From to the type ToType using the pre-computed implicit
2352/// conversion sequence ICS. Returns the converted
2353/// expression. Action is the kind of conversion we're performing,
2354/// used in the error message.
2355ExprResult
2356Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2357                                const ImplicitConversionSequence &ICS,
2358                                AssignmentAction Action,
2359                                CheckedConversionKind CCK) {
2360  switch (ICS.getKind()) {
2361  case ImplicitConversionSequence::StandardConversion: {
2362    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2363                                               Action, CCK);
2364    if (Res.isInvalid())
2365      return ExprError();
2366    From = Res.take();
2367    break;
2368  }
2369
2370  case ImplicitConversionSequence::UserDefinedConversion: {
2371
2372      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2373      CastKind CastKind;
2374      QualType BeforeToType;
2375      assert(FD && "FIXME: aggregate initialization from init list");
2376      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2377        CastKind = CK_UserDefinedConversion;
2378
2379        // If the user-defined conversion is specified by a conversion function,
2380        // the initial standard conversion sequence converts the source type to
2381        // the implicit object parameter of the conversion function.
2382        BeforeToType = Context.getTagDeclType(Conv->getParent());
2383      } else {
2384        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2385        CastKind = CK_ConstructorConversion;
2386        // Do no conversion if dealing with ... for the first conversion.
2387        if (!ICS.UserDefined.EllipsisConversion) {
2388          // If the user-defined conversion is specified by a constructor, the
2389          // initial standard conversion sequence converts the source type to the
2390          // type required by the argument of the constructor
2391          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2392        }
2393      }
2394      // Watch out for elipsis conversion.
2395      if (!ICS.UserDefined.EllipsisConversion) {
2396        ExprResult Res =
2397          PerformImplicitConversion(From, BeforeToType,
2398                                    ICS.UserDefined.Before, AA_Converting,
2399                                    CCK);
2400        if (Res.isInvalid())
2401          return ExprError();
2402        From = Res.take();
2403      }
2404
2405      ExprResult CastArg
2406        = BuildCXXCastArgument(*this,
2407                               From->getLocStart(),
2408                               ToType.getNonReferenceType(),
2409                               CastKind, cast<CXXMethodDecl>(FD),
2410                               ICS.UserDefined.FoundConversionFunction,
2411                               ICS.UserDefined.HadMultipleCandidates,
2412                               From);
2413
2414      if (CastArg.isInvalid())
2415        return ExprError();
2416
2417      From = CastArg.take();
2418
2419      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2420                                       AA_Converting, CCK);
2421  }
2422
2423  case ImplicitConversionSequence::AmbiguousConversion:
2424    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2425                          PDiag(diag::err_typecheck_ambiguous_condition)
2426                            << From->getSourceRange());
2427     return ExprError();
2428
2429  case ImplicitConversionSequence::EllipsisConversion:
2430    llvm_unreachable("Cannot perform an ellipsis conversion");
2431
2432  case ImplicitConversionSequence::BadConversion:
2433    return ExprError();
2434  }
2435
2436  // Everything went well.
2437  return Owned(From);
2438}
2439
2440/// PerformImplicitConversion - Perform an implicit conversion of the
2441/// expression From to the type ToType by following the standard
2442/// conversion sequence SCS. Returns the converted
2443/// expression. Flavor is the context in which we're performing this
2444/// conversion, for use in error messages.
2445ExprResult
2446Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2447                                const StandardConversionSequence& SCS,
2448                                AssignmentAction Action,
2449                                CheckedConversionKind CCK) {
2450  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2451
2452  // Overall FIXME: we are recomputing too many types here and doing far too
2453  // much extra work. What this means is that we need to keep track of more
2454  // information that is computed when we try the implicit conversion initially,
2455  // so that we don't need to recompute anything here.
2456  QualType FromType = From->getType();
2457
2458  if (SCS.CopyConstructor) {
2459    // FIXME: When can ToType be a reference type?
2460    assert(!ToType->isReferenceType());
2461    if (SCS.Second == ICK_Derived_To_Base) {
2462      ASTOwningVector<Expr*> ConstructorArgs(*this);
2463      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2464                                  MultiExprArg(*this, &From, 1),
2465                                  /*FIXME:ConstructLoc*/SourceLocation(),
2466                                  ConstructorArgs))
2467        return ExprError();
2468      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2469                                   ToType, SCS.CopyConstructor,
2470                                   move_arg(ConstructorArgs),
2471                                   /*HadMultipleCandidates*/ false,
2472                                   /*ZeroInit*/ false,
2473                                   CXXConstructExpr::CK_Complete,
2474                                   SourceRange());
2475    }
2476    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2477                                 ToType, SCS.CopyConstructor,
2478                                 MultiExprArg(*this, &From, 1),
2479                                 /*HadMultipleCandidates*/ false,
2480                                 /*ZeroInit*/ false,
2481                                 CXXConstructExpr::CK_Complete,
2482                                 SourceRange());
2483  }
2484
2485  // Resolve overloaded function references.
2486  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2487    DeclAccessPair Found;
2488    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2489                                                          true, Found);
2490    if (!Fn)
2491      return ExprError();
2492
2493    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2494      return ExprError();
2495
2496    From = FixOverloadedFunctionReference(From, Found, Fn);
2497    FromType = From->getType();
2498  }
2499
2500  // Perform the first implicit conversion.
2501  switch (SCS.First) {
2502  case ICK_Identity:
2503    // Nothing to do.
2504    break;
2505
2506  case ICK_Lvalue_To_Rvalue: {
2507    assert(From->getObjectKind() != OK_ObjCProperty);
2508    FromType = FromType.getUnqualifiedType();
2509    ExprResult FromRes = DefaultLvalueConversion(From);
2510    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2511    From = FromRes.take();
2512    break;
2513  }
2514
2515  case ICK_Array_To_Pointer:
2516    FromType = Context.getArrayDecayedType(FromType);
2517    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2518                             VK_RValue, /*BasePath=*/0, CCK).take();
2519    break;
2520
2521  case ICK_Function_To_Pointer:
2522    FromType = Context.getPointerType(FromType);
2523    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2524                             VK_RValue, /*BasePath=*/0, CCK).take();
2525    break;
2526
2527  default:
2528    llvm_unreachable("Improper first standard conversion");
2529  }
2530
2531  // Perform the second implicit conversion
2532  switch (SCS.Second) {
2533  case ICK_Identity:
2534    // If both sides are functions (or pointers/references to them), there could
2535    // be incompatible exception declarations.
2536    if (CheckExceptionSpecCompatibility(From, ToType))
2537      return ExprError();
2538    // Nothing else to do.
2539    break;
2540
2541  case ICK_NoReturn_Adjustment:
2542    // If both sides are functions (or pointers/references to them), there could
2543    // be incompatible exception declarations.
2544    if (CheckExceptionSpecCompatibility(From, ToType))
2545      return ExprError();
2546
2547    From = ImpCastExprToType(From, ToType, CK_NoOp,
2548                             VK_RValue, /*BasePath=*/0, CCK).take();
2549    break;
2550
2551  case ICK_Integral_Promotion:
2552  case ICK_Integral_Conversion:
2553    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2554                             VK_RValue, /*BasePath=*/0, CCK).take();
2555    break;
2556
2557  case ICK_Floating_Promotion:
2558  case ICK_Floating_Conversion:
2559    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2560                             VK_RValue, /*BasePath=*/0, CCK).take();
2561    break;
2562
2563  case ICK_Complex_Promotion:
2564  case ICK_Complex_Conversion: {
2565    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2566    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2567    CastKind CK;
2568    if (FromEl->isRealFloatingType()) {
2569      if (ToEl->isRealFloatingType())
2570        CK = CK_FloatingComplexCast;
2571      else
2572        CK = CK_FloatingComplexToIntegralComplex;
2573    } else if (ToEl->isRealFloatingType()) {
2574      CK = CK_IntegralComplexToFloatingComplex;
2575    } else {
2576      CK = CK_IntegralComplexCast;
2577    }
2578    From = ImpCastExprToType(From, ToType, CK,
2579                             VK_RValue, /*BasePath=*/0, CCK).take();
2580    break;
2581  }
2582
2583  case ICK_Floating_Integral:
2584    if (ToType->isRealFloatingType())
2585      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2586                               VK_RValue, /*BasePath=*/0, CCK).take();
2587    else
2588      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2589                               VK_RValue, /*BasePath=*/0, CCK).take();
2590    break;
2591
2592  case ICK_Compatible_Conversion:
2593      From = ImpCastExprToType(From, ToType, CK_NoOp,
2594                               VK_RValue, /*BasePath=*/0, CCK).take();
2595    break;
2596
2597  case ICK_Writeback_Conversion:
2598  case ICK_Pointer_Conversion: {
2599    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2600      // Diagnose incompatible Objective-C conversions
2601      if (Action == AA_Initializing || Action == AA_Assigning)
2602        Diag(From->getLocStart(),
2603             diag::ext_typecheck_convert_incompatible_pointer)
2604          << ToType << From->getType() << Action
2605          << From->getSourceRange() << 0;
2606      else
2607        Diag(From->getLocStart(),
2608             diag::ext_typecheck_convert_incompatible_pointer)
2609          << From->getType() << ToType << Action
2610          << From->getSourceRange() << 0;
2611
2612      if (From->getType()->isObjCObjectPointerType() &&
2613          ToType->isObjCObjectPointerType())
2614        EmitRelatedResultTypeNote(From);
2615    }
2616    else if (getLangOpts().ObjCAutoRefCount &&
2617             !CheckObjCARCUnavailableWeakConversion(ToType,
2618                                                    From->getType())) {
2619      if (Action == AA_Initializing)
2620        Diag(From->getLocStart(),
2621             diag::err_arc_weak_unavailable_assign);
2622      else
2623        Diag(From->getLocStart(),
2624             diag::err_arc_convesion_of_weak_unavailable)
2625          << (Action == AA_Casting) << From->getType() << ToType
2626          << From->getSourceRange();
2627    }
2628
2629    CastKind Kind = CK_Invalid;
2630    CXXCastPath BasePath;
2631    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2632      return ExprError();
2633
2634    // Make sure we extend blocks if necessary.
2635    // FIXME: doing this here is really ugly.
2636    if (Kind == CK_BlockPointerToObjCPointerCast) {
2637      ExprResult E = From;
2638      (void) PrepareCastToObjCObjectPointer(E);
2639      From = E.take();
2640    }
2641
2642    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2643             .take();
2644    break;
2645  }
2646
2647  case ICK_Pointer_Member: {
2648    CastKind Kind = CK_Invalid;
2649    CXXCastPath BasePath;
2650    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2651      return ExprError();
2652    if (CheckExceptionSpecCompatibility(From, ToType))
2653      return ExprError();
2654    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2655             .take();
2656    break;
2657  }
2658
2659  case ICK_Boolean_Conversion:
2660    // Perform half-to-boolean conversion via float.
2661    if (From->getType()->isHalfType()) {
2662      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2663      FromType = Context.FloatTy;
2664    }
2665
2666    From = ImpCastExprToType(From, Context.BoolTy,
2667                             ScalarTypeToBooleanCastKind(FromType),
2668                             VK_RValue, /*BasePath=*/0, CCK).take();
2669    break;
2670
2671  case ICK_Derived_To_Base: {
2672    CXXCastPath BasePath;
2673    if (CheckDerivedToBaseConversion(From->getType(),
2674                                     ToType.getNonReferenceType(),
2675                                     From->getLocStart(),
2676                                     From->getSourceRange(),
2677                                     &BasePath,
2678                                     CStyle))
2679      return ExprError();
2680
2681    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2682                      CK_DerivedToBase, From->getValueKind(),
2683                      &BasePath, CCK).take();
2684    break;
2685  }
2686
2687  case ICK_Vector_Conversion:
2688    From = ImpCastExprToType(From, ToType, CK_BitCast,
2689                             VK_RValue, /*BasePath=*/0, CCK).take();
2690    break;
2691
2692  case ICK_Vector_Splat:
2693    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2694                             VK_RValue, /*BasePath=*/0, CCK).take();
2695    break;
2696
2697  case ICK_Complex_Real:
2698    // Case 1.  x -> _Complex y
2699    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2700      QualType ElType = ToComplex->getElementType();
2701      bool isFloatingComplex = ElType->isRealFloatingType();
2702
2703      // x -> y
2704      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2705        // do nothing
2706      } else if (From->getType()->isRealFloatingType()) {
2707        From = ImpCastExprToType(From, ElType,
2708                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2709      } else {
2710        assert(From->getType()->isIntegerType());
2711        From = ImpCastExprToType(From, ElType,
2712                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2713      }
2714      // y -> _Complex y
2715      From = ImpCastExprToType(From, ToType,
2716                   isFloatingComplex ? CK_FloatingRealToComplex
2717                                     : CK_IntegralRealToComplex).take();
2718
2719    // Case 2.  _Complex x -> y
2720    } else {
2721      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2722      assert(FromComplex);
2723
2724      QualType ElType = FromComplex->getElementType();
2725      bool isFloatingComplex = ElType->isRealFloatingType();
2726
2727      // _Complex x -> x
2728      From = ImpCastExprToType(From, ElType,
2729                   isFloatingComplex ? CK_FloatingComplexToReal
2730                                     : CK_IntegralComplexToReal,
2731                               VK_RValue, /*BasePath=*/0, CCK).take();
2732
2733      // x -> y
2734      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2735        // do nothing
2736      } else if (ToType->isRealFloatingType()) {
2737        From = ImpCastExprToType(From, ToType,
2738                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2739                                 VK_RValue, /*BasePath=*/0, CCK).take();
2740      } else {
2741        assert(ToType->isIntegerType());
2742        From = ImpCastExprToType(From, ToType,
2743                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2744                                 VK_RValue, /*BasePath=*/0, CCK).take();
2745      }
2746    }
2747    break;
2748
2749  case ICK_Block_Pointer_Conversion: {
2750    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2751                             VK_RValue, /*BasePath=*/0, CCK).take();
2752    break;
2753  }
2754
2755  case ICK_TransparentUnionConversion: {
2756    ExprResult FromRes = Owned(From);
2757    Sema::AssignConvertType ConvTy =
2758      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2759    if (FromRes.isInvalid())
2760      return ExprError();
2761    From = FromRes.take();
2762    assert ((ConvTy == Sema::Compatible) &&
2763            "Improper transparent union conversion");
2764    (void)ConvTy;
2765    break;
2766  }
2767
2768  case ICK_Lvalue_To_Rvalue:
2769  case ICK_Array_To_Pointer:
2770  case ICK_Function_To_Pointer:
2771  case ICK_Qualification:
2772  case ICK_Num_Conversion_Kinds:
2773    llvm_unreachable("Improper second standard conversion");
2774  }
2775
2776  switch (SCS.Third) {
2777  case ICK_Identity:
2778    // Nothing to do.
2779    break;
2780
2781  case ICK_Qualification: {
2782    // The qualification keeps the category of the inner expression, unless the
2783    // target type isn't a reference.
2784    ExprValueKind VK = ToType->isReferenceType() ?
2785                                  From->getValueKind() : VK_RValue;
2786    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2787                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2788
2789    if (SCS.DeprecatedStringLiteralToCharPtr &&
2790        !getLangOpts().WritableStrings)
2791      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2792        << ToType.getNonReferenceType();
2793
2794    break;
2795    }
2796
2797  default:
2798    llvm_unreachable("Improper third standard conversion");
2799  }
2800
2801  // If this conversion sequence involved a scalar -> atomic conversion, perform
2802  // that conversion now.
2803  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2804    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2805      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2806                               CCK).take();
2807
2808  return Owned(From);
2809}
2810
2811ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2812                                     SourceLocation KWLoc,
2813                                     ParsedType Ty,
2814                                     SourceLocation RParen) {
2815  TypeSourceInfo *TSInfo;
2816  QualType T = GetTypeFromParser(Ty, &TSInfo);
2817
2818  if (!TSInfo)
2819    TSInfo = Context.getTrivialTypeSourceInfo(T);
2820  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2821}
2822
2823/// \brief Check the completeness of a type in a unary type trait.
2824///
2825/// If the particular type trait requires a complete type, tries to complete
2826/// it. If completing the type fails, a diagnostic is emitted and false
2827/// returned. If completing the type succeeds or no completion was required,
2828/// returns true.
2829static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2830                                                UnaryTypeTrait UTT,
2831                                                SourceLocation Loc,
2832                                                QualType ArgTy) {
2833  // C++0x [meta.unary.prop]p3:
2834  //   For all of the class templates X declared in this Clause, instantiating
2835  //   that template with a template argument that is a class template
2836  //   specialization may result in the implicit instantiation of the template
2837  //   argument if and only if the semantics of X require that the argument
2838  //   must be a complete type.
2839  // We apply this rule to all the type trait expressions used to implement
2840  // these class templates. We also try to follow any GCC documented behavior
2841  // in these expressions to ensure portability of standard libraries.
2842  switch (UTT) {
2843    // is_complete_type somewhat obviously cannot require a complete type.
2844  case UTT_IsCompleteType:
2845    // Fall-through
2846
2847    // These traits are modeled on the type predicates in C++0x
2848    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2849    // requiring a complete type, as whether or not they return true cannot be
2850    // impacted by the completeness of the type.
2851  case UTT_IsVoid:
2852  case UTT_IsIntegral:
2853  case UTT_IsFloatingPoint:
2854  case UTT_IsArray:
2855  case UTT_IsPointer:
2856  case UTT_IsLvalueReference:
2857  case UTT_IsRvalueReference:
2858  case UTT_IsMemberFunctionPointer:
2859  case UTT_IsMemberObjectPointer:
2860  case UTT_IsEnum:
2861  case UTT_IsUnion:
2862  case UTT_IsClass:
2863  case UTT_IsFunction:
2864  case UTT_IsReference:
2865  case UTT_IsArithmetic:
2866  case UTT_IsFundamental:
2867  case UTT_IsObject:
2868  case UTT_IsScalar:
2869  case UTT_IsCompound:
2870  case UTT_IsMemberPointer:
2871    // Fall-through
2872
2873    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2874    // which requires some of its traits to have the complete type. However,
2875    // the completeness of the type cannot impact these traits' semantics, and
2876    // so they don't require it. This matches the comments on these traits in
2877    // Table 49.
2878  case UTT_IsConst:
2879  case UTT_IsVolatile:
2880  case UTT_IsSigned:
2881  case UTT_IsUnsigned:
2882    return true;
2883
2884    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2885    // applied to a complete type.
2886  case UTT_IsTrivial:
2887  case UTT_IsTriviallyCopyable:
2888  case UTT_IsStandardLayout:
2889  case UTT_IsPOD:
2890  case UTT_IsLiteral:
2891  case UTT_IsEmpty:
2892  case UTT_IsPolymorphic:
2893  case UTT_IsAbstract:
2894    // Fall-through
2895
2896  // These traits require a complete type.
2897  case UTT_IsFinal:
2898
2899    // These trait expressions are designed to help implement predicates in
2900    // [meta.unary.prop] despite not being named the same. They are specified
2901    // by both GCC and the Embarcadero C++ compiler, and require the complete
2902    // type due to the overarching C++0x type predicates being implemented
2903    // requiring the complete type.
2904  case UTT_HasNothrowAssign:
2905  case UTT_HasNothrowConstructor:
2906  case UTT_HasNothrowCopy:
2907  case UTT_HasTrivialAssign:
2908  case UTT_HasTrivialDefaultConstructor:
2909  case UTT_HasTrivialCopy:
2910  case UTT_HasTrivialDestructor:
2911  case UTT_HasVirtualDestructor:
2912    // Arrays of unknown bound are expressly allowed.
2913    QualType ElTy = ArgTy;
2914    if (ArgTy->isIncompleteArrayType())
2915      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2916
2917    // The void type is expressly allowed.
2918    if (ElTy->isVoidType())
2919      return true;
2920
2921    return !S.RequireCompleteType(
2922      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2923  }
2924  llvm_unreachable("Type trait not handled by switch");
2925}
2926
2927static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2928                                   SourceLocation KeyLoc, QualType T) {
2929  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2930
2931  ASTContext &C = Self.Context;
2932  switch(UTT) {
2933    // Type trait expressions corresponding to the primary type category
2934    // predicates in C++0x [meta.unary.cat].
2935  case UTT_IsVoid:
2936    return T->isVoidType();
2937  case UTT_IsIntegral:
2938    return T->isIntegralType(C);
2939  case UTT_IsFloatingPoint:
2940    return T->isFloatingType();
2941  case UTT_IsArray:
2942    return T->isArrayType();
2943  case UTT_IsPointer:
2944    return T->isPointerType();
2945  case UTT_IsLvalueReference:
2946    return T->isLValueReferenceType();
2947  case UTT_IsRvalueReference:
2948    return T->isRValueReferenceType();
2949  case UTT_IsMemberFunctionPointer:
2950    return T->isMemberFunctionPointerType();
2951  case UTT_IsMemberObjectPointer:
2952    return T->isMemberDataPointerType();
2953  case UTT_IsEnum:
2954    return T->isEnumeralType();
2955  case UTT_IsUnion:
2956    return T->isUnionType();
2957  case UTT_IsClass:
2958    return T->isClassType() || T->isStructureType();
2959  case UTT_IsFunction:
2960    return T->isFunctionType();
2961
2962    // Type trait expressions which correspond to the convenient composition
2963    // predicates in C++0x [meta.unary.comp].
2964  case UTT_IsReference:
2965    return T->isReferenceType();
2966  case UTT_IsArithmetic:
2967    return T->isArithmeticType() && !T->isEnumeralType();
2968  case UTT_IsFundamental:
2969    return T->isFundamentalType();
2970  case UTT_IsObject:
2971    return T->isObjectType();
2972  case UTT_IsScalar:
2973    // Note: semantic analysis depends on Objective-C lifetime types to be
2974    // considered scalar types. However, such types do not actually behave
2975    // like scalar types at run time (since they may require retain/release
2976    // operations), so we report them as non-scalar.
2977    if (T->isObjCLifetimeType()) {
2978      switch (T.getObjCLifetime()) {
2979      case Qualifiers::OCL_None:
2980      case Qualifiers::OCL_ExplicitNone:
2981        return true;
2982
2983      case Qualifiers::OCL_Strong:
2984      case Qualifiers::OCL_Weak:
2985      case Qualifiers::OCL_Autoreleasing:
2986        return false;
2987      }
2988    }
2989
2990    return T->isScalarType();
2991  case UTT_IsCompound:
2992    return T->isCompoundType();
2993  case UTT_IsMemberPointer:
2994    return T->isMemberPointerType();
2995
2996    // Type trait expressions which correspond to the type property predicates
2997    // in C++0x [meta.unary.prop].
2998  case UTT_IsConst:
2999    return T.isConstQualified();
3000  case UTT_IsVolatile:
3001    return T.isVolatileQualified();
3002  case UTT_IsTrivial:
3003    return T.isTrivialType(Self.Context);
3004  case UTT_IsTriviallyCopyable:
3005    return T.isTriviallyCopyableType(Self.Context);
3006  case UTT_IsStandardLayout:
3007    return T->isStandardLayoutType();
3008  case UTT_IsPOD:
3009    return T.isPODType(Self.Context);
3010  case UTT_IsLiteral:
3011    return T->isLiteralType();
3012  case UTT_IsEmpty:
3013    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3014      return !RD->isUnion() && RD->isEmpty();
3015    return false;
3016  case UTT_IsPolymorphic:
3017    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3018      return RD->isPolymorphic();
3019    return false;
3020  case UTT_IsAbstract:
3021    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3022      return RD->isAbstract();
3023    return false;
3024  case UTT_IsFinal:
3025    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3026      return RD->hasAttr<FinalAttr>();
3027    return false;
3028  case UTT_IsSigned:
3029    return T->isSignedIntegerType();
3030  case UTT_IsUnsigned:
3031    return T->isUnsignedIntegerType();
3032
3033    // Type trait expressions which query classes regarding their construction,
3034    // destruction, and copying. Rather than being based directly on the
3035    // related type predicates in the standard, they are specified by both
3036    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3037    // specifications.
3038    //
3039    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3040    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3041  case UTT_HasTrivialDefaultConstructor:
3042    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3043    //   If __is_pod (type) is true then the trait is true, else if type is
3044    //   a cv class or union type (or array thereof) with a trivial default
3045    //   constructor ([class.ctor]) then the trait is true, else it is false.
3046    if (T.isPODType(Self.Context))
3047      return true;
3048    if (const RecordType *RT =
3049          C.getBaseElementType(T)->getAs<RecordType>())
3050      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3051    return false;
3052  case UTT_HasTrivialCopy:
3053    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3054    //   If __is_pod (type) is true or type is a reference type then
3055    //   the trait is true, else if type is a cv class or union type
3056    //   with a trivial copy constructor ([class.copy]) then the trait
3057    //   is true, else it is false.
3058    if (T.isPODType(Self.Context) || T->isReferenceType())
3059      return true;
3060    if (const RecordType *RT = T->getAs<RecordType>())
3061      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3062    return false;
3063  case UTT_HasTrivialAssign:
3064    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3065    //   If type is const qualified or is a reference type then the
3066    //   trait is false. Otherwise if __is_pod (type) is true then the
3067    //   trait is true, else if type is a cv class or union type with
3068    //   a trivial copy assignment ([class.copy]) then the trait is
3069    //   true, else it is false.
3070    // Note: the const and reference restrictions are interesting,
3071    // given that const and reference members don't prevent a class
3072    // from having a trivial copy assignment operator (but do cause
3073    // errors if the copy assignment operator is actually used, q.v.
3074    // [class.copy]p12).
3075
3076    if (C.getBaseElementType(T).isConstQualified())
3077      return false;
3078    if (T.isPODType(Self.Context))
3079      return true;
3080    if (const RecordType *RT = T->getAs<RecordType>())
3081      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3082    return false;
3083  case UTT_HasTrivialDestructor:
3084    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3085    //   If __is_pod (type) is true or type is a reference type
3086    //   then the trait is true, else if type is a cv class or union
3087    //   type (or array thereof) with a trivial destructor
3088    //   ([class.dtor]) then the trait is true, else it is
3089    //   false.
3090    if (T.isPODType(Self.Context) || T->isReferenceType())
3091      return true;
3092
3093    // Objective-C++ ARC: autorelease types don't require destruction.
3094    if (T->isObjCLifetimeType() &&
3095        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3096      return true;
3097
3098    if (const RecordType *RT =
3099          C.getBaseElementType(T)->getAs<RecordType>())
3100      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3101    return false;
3102  // TODO: Propagate nothrowness for implicitly declared special members.
3103  case UTT_HasNothrowAssign:
3104    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3105    //   If type is const qualified or is a reference type then the
3106    //   trait is false. Otherwise if __has_trivial_assign (type)
3107    //   is true then the trait is true, else if type is a cv class
3108    //   or union type with copy assignment operators that are known
3109    //   not to throw an exception then the trait is true, else it is
3110    //   false.
3111    if (C.getBaseElementType(T).isConstQualified())
3112      return false;
3113    if (T->isReferenceType())
3114      return false;
3115    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3116      return true;
3117    if (const RecordType *RT = T->getAs<RecordType>()) {
3118      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3119      if (RD->hasTrivialCopyAssignment())
3120        return true;
3121
3122      bool FoundAssign = false;
3123      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3124      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3125                       Sema::LookupOrdinaryName);
3126      if (Self.LookupQualifiedName(Res, RD)) {
3127        Res.suppressDiagnostics();
3128        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3129             Op != OpEnd; ++Op) {
3130          if (isa<FunctionTemplateDecl>(*Op))
3131            continue;
3132
3133          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3134          if (Operator->isCopyAssignmentOperator()) {
3135            FoundAssign = true;
3136            const FunctionProtoType *CPT
3137                = Operator->getType()->getAs<FunctionProtoType>();
3138            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3139            if (!CPT)
3140              return false;
3141            if (CPT->getExceptionSpecType() == EST_Delayed)
3142              return false;
3143            if (!CPT->isNothrow(Self.Context))
3144              return false;
3145          }
3146        }
3147      }
3148
3149      return FoundAssign;
3150    }
3151    return false;
3152  case UTT_HasNothrowCopy:
3153    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3154    //   If __has_trivial_copy (type) is true then the trait is true, else
3155    //   if type is a cv class or union type with copy constructors that are
3156    //   known not to throw an exception then the trait is true, else it is
3157    //   false.
3158    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3159      return true;
3160    if (const RecordType *RT = T->getAs<RecordType>()) {
3161      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3162      if (RD->hasTrivialCopyConstructor())
3163        return true;
3164
3165      bool FoundConstructor = false;
3166      unsigned FoundTQs;
3167      DeclContext::lookup_const_iterator Con, ConEnd;
3168      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3169           Con != ConEnd; ++Con) {
3170        // A template constructor is never a copy constructor.
3171        // FIXME: However, it may actually be selected at the actual overload
3172        // resolution point.
3173        if (isa<FunctionTemplateDecl>(*Con))
3174          continue;
3175        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3176        if (Constructor->isCopyConstructor(FoundTQs)) {
3177          FoundConstructor = true;
3178          const FunctionProtoType *CPT
3179              = Constructor->getType()->getAs<FunctionProtoType>();
3180          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3181          if (!CPT)
3182            return false;
3183          if (CPT->getExceptionSpecType() == EST_Delayed)
3184            return false;
3185          // FIXME: check whether evaluating default arguments can throw.
3186          // For now, we'll be conservative and assume that they can throw.
3187          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3188            return false;
3189        }
3190      }
3191
3192      return FoundConstructor;
3193    }
3194    return false;
3195  case UTT_HasNothrowConstructor:
3196    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3197    //   If __has_trivial_constructor (type) is true then the trait is
3198    //   true, else if type is a cv class or union type (or array
3199    //   thereof) with a default constructor that is known not to
3200    //   throw an exception then the trait is true, else it is false.
3201    if (T.isPODType(C) || T->isObjCLifetimeType())
3202      return true;
3203    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3204      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3205      if (RD->hasTrivialDefaultConstructor())
3206        return true;
3207
3208      DeclContext::lookup_const_iterator Con, ConEnd;
3209      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3210           Con != ConEnd; ++Con) {
3211        // FIXME: In C++0x, a constructor template can be a default constructor.
3212        if (isa<FunctionTemplateDecl>(*Con))
3213          continue;
3214        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3215        if (Constructor->isDefaultConstructor()) {
3216          const FunctionProtoType *CPT
3217              = Constructor->getType()->getAs<FunctionProtoType>();
3218          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3219          if (!CPT)
3220            return false;
3221          if (CPT->getExceptionSpecType() == EST_Delayed)
3222            return false;
3223          // TODO: check whether evaluating default arguments can throw.
3224          // For now, we'll be conservative and assume that they can throw.
3225          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3226        }
3227      }
3228    }
3229    return false;
3230  case UTT_HasVirtualDestructor:
3231    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3232    //   If type is a class type with a virtual destructor ([class.dtor])
3233    //   then the trait is true, else it is false.
3234    if (const RecordType *Record = T->getAs<RecordType>()) {
3235      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3236      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3237        return Destructor->isVirtual();
3238    }
3239    return false;
3240
3241    // These type trait expressions are modeled on the specifications for the
3242    // Embarcadero C++0x type trait functions:
3243    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3244  case UTT_IsCompleteType:
3245    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3246    //   Returns True if and only if T is a complete type at the point of the
3247    //   function call.
3248    return !T->isIncompleteType();
3249  }
3250  llvm_unreachable("Type trait not covered by switch");
3251}
3252
3253ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3254                                     SourceLocation KWLoc,
3255                                     TypeSourceInfo *TSInfo,
3256                                     SourceLocation RParen) {
3257  QualType T = TSInfo->getType();
3258  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3259    return ExprError();
3260
3261  bool Value = false;
3262  if (!T->isDependentType())
3263    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3264
3265  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3266                                                RParen, Context.BoolTy));
3267}
3268
3269ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3270                                      SourceLocation KWLoc,
3271                                      ParsedType LhsTy,
3272                                      ParsedType RhsTy,
3273                                      SourceLocation RParen) {
3274  TypeSourceInfo *LhsTSInfo;
3275  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3276  if (!LhsTSInfo)
3277    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3278
3279  TypeSourceInfo *RhsTSInfo;
3280  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3281  if (!RhsTSInfo)
3282    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3283
3284  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3285}
3286
3287static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3288                              ArrayRef<TypeSourceInfo *> Args,
3289                              SourceLocation RParenLoc) {
3290  switch (Kind) {
3291  case clang::TT_IsTriviallyConstructible: {
3292    // C++11 [meta.unary.prop]:
3293    //   is_trivially_constructible is defined as:
3294    //
3295    //     is_constructible<T, Args...>::value is true and the variable
3296    //     definition for is_constructible, as defined below, is known to call no
3297    //     operation that is not trivial.
3298    //
3299    //   The predicate condition for a template specialization
3300    //   is_constructible<T, Args...> shall be satisfied if and only if the
3301    //   following variable definition would be well-formed for some invented
3302    //   variable t:
3303    //
3304    //     T t(create<Args>()...);
3305    if (Args.empty()) {
3306      S.Diag(KWLoc, diag::err_type_trait_arity)
3307        << 1 << 1 << 1 << (int)Args.size();
3308      return false;
3309    }
3310
3311    bool SawVoid = false;
3312    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3313      if (Args[I]->getType()->isVoidType()) {
3314        SawVoid = true;
3315        continue;
3316      }
3317
3318      if (!Args[I]->getType()->isIncompleteType() &&
3319        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3320          diag::err_incomplete_type_used_in_type_trait_expr))
3321        return false;
3322    }
3323
3324    // If any argument was 'void', of course it won't type-check.
3325    if (SawVoid)
3326      return false;
3327
3328    llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3329    llvm::SmallVector<Expr *, 2> ArgExprs;
3330    ArgExprs.reserve(Args.size() - 1);
3331    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3332      QualType T = Args[I]->getType();
3333      if (T->isObjectType() || T->isFunctionType())
3334        T = S.Context.getRValueReferenceType(T);
3335      OpaqueArgExprs.push_back(
3336        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3337                        T.getNonLValueExprType(S.Context),
3338                        Expr::getValueKindForType(T)));
3339      ArgExprs.push_back(&OpaqueArgExprs.back());
3340    }
3341
3342    // Perform the initialization in an unevaluated context within a SFINAE
3343    // trap at translation unit scope.
3344    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3345    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3346    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3347    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3348    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3349                                                                 RParenLoc));
3350    InitializationSequence Init(S, To, InitKind,
3351                                ArgExprs.begin(), ArgExprs.size());
3352    if (Init.Failed())
3353      return false;
3354
3355    ExprResult Result = Init.Perform(S, To, InitKind,
3356                                     MultiExprArg(ArgExprs.data(),
3357                                                  ArgExprs.size()));
3358    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3359      return false;
3360
3361    // The initialization succeeded; not make sure there are no non-trivial
3362    // calls.
3363    return !Result.get()->hasNonTrivialCall(S.Context);
3364  }
3365  }
3366
3367  return false;
3368}
3369
3370ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3371                                ArrayRef<TypeSourceInfo *> Args,
3372                                SourceLocation RParenLoc) {
3373  bool Dependent = false;
3374  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3375    if (Args[I]->getType()->isDependentType()) {
3376      Dependent = true;
3377      break;
3378    }
3379  }
3380
3381  bool Value = false;
3382  if (!Dependent)
3383    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3384
3385  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3386                               Args, RParenLoc, Value);
3387}
3388
3389ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3390                                ArrayRef<ParsedType> Args,
3391                                SourceLocation RParenLoc) {
3392  llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3393  ConvertedArgs.reserve(Args.size());
3394
3395  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3396    TypeSourceInfo *TInfo;
3397    QualType T = GetTypeFromParser(Args[I], &TInfo);
3398    if (!TInfo)
3399      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3400
3401    ConvertedArgs.push_back(TInfo);
3402  }
3403
3404  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3405}
3406
3407static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3408                                    QualType LhsT, QualType RhsT,
3409                                    SourceLocation KeyLoc) {
3410  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3411         "Cannot evaluate traits of dependent types");
3412
3413  switch(BTT) {
3414  case BTT_IsBaseOf: {
3415    // C++0x [meta.rel]p2
3416    // Base is a base class of Derived without regard to cv-qualifiers or
3417    // Base and Derived are not unions and name the same class type without
3418    // regard to cv-qualifiers.
3419
3420    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3421    if (!lhsRecord) return false;
3422
3423    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3424    if (!rhsRecord) return false;
3425
3426    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3427             == (lhsRecord == rhsRecord));
3428
3429    if (lhsRecord == rhsRecord)
3430      return !lhsRecord->getDecl()->isUnion();
3431
3432    // C++0x [meta.rel]p2:
3433    //   If Base and Derived are class types and are different types
3434    //   (ignoring possible cv-qualifiers) then Derived shall be a
3435    //   complete type.
3436    if (Self.RequireCompleteType(KeyLoc, RhsT,
3437                          diag::err_incomplete_type_used_in_type_trait_expr))
3438      return false;
3439
3440    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3441      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3442  }
3443  case BTT_IsSame:
3444    return Self.Context.hasSameType(LhsT, RhsT);
3445  case BTT_TypeCompatible:
3446    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3447                                           RhsT.getUnqualifiedType());
3448  case BTT_IsConvertible:
3449  case BTT_IsConvertibleTo: {
3450    // C++0x [meta.rel]p4:
3451    //   Given the following function prototype:
3452    //
3453    //     template <class T>
3454    //       typename add_rvalue_reference<T>::type create();
3455    //
3456    //   the predicate condition for a template specialization
3457    //   is_convertible<From, To> shall be satisfied if and only if
3458    //   the return expression in the following code would be
3459    //   well-formed, including any implicit conversions to the return
3460    //   type of the function:
3461    //
3462    //     To test() {
3463    //       return create<From>();
3464    //     }
3465    //
3466    //   Access checking is performed as if in a context unrelated to To and
3467    //   From. Only the validity of the immediate context of the expression
3468    //   of the return-statement (including conversions to the return type)
3469    //   is considered.
3470    //
3471    // We model the initialization as a copy-initialization of a temporary
3472    // of the appropriate type, which for this expression is identical to the
3473    // return statement (since NRVO doesn't apply).
3474    if (LhsT->isObjectType() || LhsT->isFunctionType())
3475      LhsT = Self.Context.getRValueReferenceType(LhsT);
3476
3477    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3478    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3479                         Expr::getValueKindForType(LhsT));
3480    Expr *FromPtr = &From;
3481    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3482                                                           SourceLocation()));
3483
3484    // Perform the initialization in an unevaluated context within a SFINAE
3485    // trap at translation unit scope.
3486    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3487    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3488    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3489    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3490    if (Init.Failed())
3491      return false;
3492
3493    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3494    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3495  }
3496
3497  case BTT_IsTriviallyAssignable: {
3498    // C++11 [meta.unary.prop]p3:
3499    //   is_trivially_assignable is defined as:
3500    //     is_assignable<T, U>::value is true and the assignment, as defined by
3501    //     is_assignable, is known to call no operation that is not trivial
3502    //
3503    //   is_assignable is defined as:
3504    //     The expression declval<T>() = declval<U>() is well-formed when
3505    //     treated as an unevaluated operand (Clause 5).
3506    //
3507    //   For both, T and U shall be complete types, (possibly cv-qualified)
3508    //   void, or arrays of unknown bound.
3509    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3510        Self.RequireCompleteType(KeyLoc, LhsT,
3511          diag::err_incomplete_type_used_in_type_trait_expr))
3512      return false;
3513    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3514        Self.RequireCompleteType(KeyLoc, RhsT,
3515          diag::err_incomplete_type_used_in_type_trait_expr))
3516      return false;
3517
3518    // cv void is never assignable.
3519    if (LhsT->isVoidType() || RhsT->isVoidType())
3520      return false;
3521
3522    // Build expressions that emulate the effect of declval<T>() and
3523    // declval<U>().
3524    if (LhsT->isObjectType() || LhsT->isFunctionType())
3525      LhsT = Self.Context.getRValueReferenceType(LhsT);
3526    if (RhsT->isObjectType() || RhsT->isFunctionType())
3527      RhsT = Self.Context.getRValueReferenceType(RhsT);
3528    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3529                        Expr::getValueKindForType(LhsT));
3530    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3531                        Expr::getValueKindForType(RhsT));
3532
3533    // Attempt the assignment in an unevaluated context within a SFINAE
3534    // trap at translation unit scope.
3535    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3536    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3537    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3538    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3539    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3540      return false;
3541
3542    return !Result.get()->hasNonTrivialCall(Self.Context);
3543  }
3544  }
3545  llvm_unreachable("Unknown type trait or not implemented");
3546}
3547
3548ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3549                                      SourceLocation KWLoc,
3550                                      TypeSourceInfo *LhsTSInfo,
3551                                      TypeSourceInfo *RhsTSInfo,
3552                                      SourceLocation RParen) {
3553  QualType LhsT = LhsTSInfo->getType();
3554  QualType RhsT = RhsTSInfo->getType();
3555
3556  if (BTT == BTT_TypeCompatible) {
3557    if (getLangOpts().CPlusPlus) {
3558      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3559        << SourceRange(KWLoc, RParen);
3560      return ExprError();
3561    }
3562  }
3563
3564  bool Value = false;
3565  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3566    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3567
3568  // Select trait result type.
3569  QualType ResultType;
3570  switch (BTT) {
3571  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3572  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3573  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3574  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3575  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3576  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3577  }
3578
3579  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3580                                                 RhsTSInfo, Value, RParen,
3581                                                 ResultType));
3582}
3583
3584ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3585                                     SourceLocation KWLoc,
3586                                     ParsedType Ty,
3587                                     Expr* DimExpr,
3588                                     SourceLocation RParen) {
3589  TypeSourceInfo *TSInfo;
3590  QualType T = GetTypeFromParser(Ty, &TSInfo);
3591  if (!TSInfo)
3592    TSInfo = Context.getTrivialTypeSourceInfo(T);
3593
3594  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3595}
3596
3597static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3598                                           QualType T, Expr *DimExpr,
3599                                           SourceLocation KeyLoc) {
3600  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3601
3602  switch(ATT) {
3603  case ATT_ArrayRank:
3604    if (T->isArrayType()) {
3605      unsigned Dim = 0;
3606      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3607        ++Dim;
3608        T = AT->getElementType();
3609      }
3610      return Dim;
3611    }
3612    return 0;
3613
3614  case ATT_ArrayExtent: {
3615    llvm::APSInt Value;
3616    uint64_t Dim;
3617    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3618          Self.PDiag(diag::err_dimension_expr_not_constant_integer),
3619          false).isInvalid())
3620      return 0;
3621    if (Value.isSigned() && Value.isNegative()) {
3622      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3623        << DimExpr->getSourceRange();
3624      return 0;
3625    }
3626    Dim = Value.getLimitedValue();
3627
3628    if (T->isArrayType()) {
3629      unsigned D = 0;
3630      bool Matched = false;
3631      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3632        if (Dim == D) {
3633          Matched = true;
3634          break;
3635        }
3636        ++D;
3637        T = AT->getElementType();
3638      }
3639
3640      if (Matched && T->isArrayType()) {
3641        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3642          return CAT->getSize().getLimitedValue();
3643      }
3644    }
3645    return 0;
3646  }
3647  }
3648  llvm_unreachable("Unknown type trait or not implemented");
3649}
3650
3651ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3652                                     SourceLocation KWLoc,
3653                                     TypeSourceInfo *TSInfo,
3654                                     Expr* DimExpr,
3655                                     SourceLocation RParen) {
3656  QualType T = TSInfo->getType();
3657
3658  // FIXME: This should likely be tracked as an APInt to remove any host
3659  // assumptions about the width of size_t on the target.
3660  uint64_t Value = 0;
3661  if (!T->isDependentType())
3662    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3663
3664  // While the specification for these traits from the Embarcadero C++
3665  // compiler's documentation says the return type is 'unsigned int', Clang
3666  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3667  // compiler, there is no difference. On several other platforms this is an
3668  // important distinction.
3669  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3670                                                DimExpr, RParen,
3671                                                Context.getSizeType()));
3672}
3673
3674ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3675                                      SourceLocation KWLoc,
3676                                      Expr *Queried,
3677                                      SourceLocation RParen) {
3678  // If error parsing the expression, ignore.
3679  if (!Queried)
3680    return ExprError();
3681
3682  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3683
3684  return move(Result);
3685}
3686
3687static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3688  switch (ET) {
3689  case ET_IsLValueExpr: return E->isLValue();
3690  case ET_IsRValueExpr: return E->isRValue();
3691  }
3692  llvm_unreachable("Expression trait not covered by switch");
3693}
3694
3695ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3696                                      SourceLocation KWLoc,
3697                                      Expr *Queried,
3698                                      SourceLocation RParen) {
3699  if (Queried->isTypeDependent()) {
3700    // Delay type-checking for type-dependent expressions.
3701  } else if (Queried->getType()->isPlaceholderType()) {
3702    ExprResult PE = CheckPlaceholderExpr(Queried);
3703    if (PE.isInvalid()) return ExprError();
3704    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3705  }
3706
3707  bool Value = EvaluateExpressionTrait(ET, Queried);
3708
3709  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3710                                                 RParen, Context.BoolTy));
3711}
3712
3713QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3714                                            ExprValueKind &VK,
3715                                            SourceLocation Loc,
3716                                            bool isIndirect) {
3717  assert(!LHS.get()->getType()->isPlaceholderType() &&
3718         !RHS.get()->getType()->isPlaceholderType() &&
3719         "placeholders should have been weeded out by now");
3720
3721  // The LHS undergoes lvalue conversions if this is ->*.
3722  if (isIndirect) {
3723    LHS = DefaultLvalueConversion(LHS.take());
3724    if (LHS.isInvalid()) return QualType();
3725  }
3726
3727  // The RHS always undergoes lvalue conversions.
3728  RHS = DefaultLvalueConversion(RHS.take());
3729  if (RHS.isInvalid()) return QualType();
3730
3731  const char *OpSpelling = isIndirect ? "->*" : ".*";
3732  // C++ 5.5p2
3733  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3734  //   be of type "pointer to member of T" (where T is a completely-defined
3735  //   class type) [...]
3736  QualType RHSType = RHS.get()->getType();
3737  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3738  if (!MemPtr) {
3739    Diag(Loc, diag::err_bad_memptr_rhs)
3740      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3741    return QualType();
3742  }
3743
3744  QualType Class(MemPtr->getClass(), 0);
3745
3746  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3747  // member pointer points must be completely-defined. However, there is no
3748  // reason for this semantic distinction, and the rule is not enforced by
3749  // other compilers. Therefore, we do not check this property, as it is
3750  // likely to be considered a defect.
3751
3752  // C++ 5.5p2
3753  //   [...] to its first operand, which shall be of class T or of a class of
3754  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3755  //   such a class]
3756  QualType LHSType = LHS.get()->getType();
3757  if (isIndirect) {
3758    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3759      LHSType = Ptr->getPointeeType();
3760    else {
3761      Diag(Loc, diag::err_bad_memptr_lhs)
3762        << OpSpelling << 1 << LHSType
3763        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3764      return QualType();
3765    }
3766  }
3767
3768  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3769    // If we want to check the hierarchy, we need a complete type.
3770    if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
3771        << OpSpelling << (int)isIndirect)) {
3772      return QualType();
3773    }
3774    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3775                       /*DetectVirtual=*/false);
3776    // FIXME: Would it be useful to print full ambiguity paths, or is that
3777    // overkill?
3778    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3779        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3780      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3781        << (int)isIndirect << LHS.get()->getType();
3782      return QualType();
3783    }
3784    // Cast LHS to type of use.
3785    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3786    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3787
3788    CXXCastPath BasePath;
3789    BuildBasePathArray(Paths, BasePath);
3790    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3791                            &BasePath);
3792  }
3793
3794  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3795    // Diagnose use of pointer-to-member type which when used as
3796    // the functional cast in a pointer-to-member expression.
3797    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3798     return QualType();
3799  }
3800
3801  // C++ 5.5p2
3802  //   The result is an object or a function of the type specified by the
3803  //   second operand.
3804  // The cv qualifiers are the union of those in the pointer and the left side,
3805  // in accordance with 5.5p5 and 5.2.5.
3806  QualType Result = MemPtr->getPointeeType();
3807  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3808
3809  // C++0x [expr.mptr.oper]p6:
3810  //   In a .* expression whose object expression is an rvalue, the program is
3811  //   ill-formed if the second operand is a pointer to member function with
3812  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3813  //   expression is an lvalue, the program is ill-formed if the second operand
3814  //   is a pointer to member function with ref-qualifier &&.
3815  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3816    switch (Proto->getRefQualifier()) {
3817    case RQ_None:
3818      // Do nothing
3819      break;
3820
3821    case RQ_LValue:
3822      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3823        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3824          << RHSType << 1 << LHS.get()->getSourceRange();
3825      break;
3826
3827    case RQ_RValue:
3828      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3829        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3830          << RHSType << 0 << LHS.get()->getSourceRange();
3831      break;
3832    }
3833  }
3834
3835  // C++ [expr.mptr.oper]p6:
3836  //   The result of a .* expression whose second operand is a pointer
3837  //   to a data member is of the same value category as its
3838  //   first operand. The result of a .* expression whose second
3839  //   operand is a pointer to a member function is a prvalue. The
3840  //   result of an ->* expression is an lvalue if its second operand
3841  //   is a pointer to data member and a prvalue otherwise.
3842  if (Result->isFunctionType()) {
3843    VK = VK_RValue;
3844    return Context.BoundMemberTy;
3845  } else if (isIndirect) {
3846    VK = VK_LValue;
3847  } else {
3848    VK = LHS.get()->getValueKind();
3849  }
3850
3851  return Result;
3852}
3853
3854/// \brief Try to convert a type to another according to C++0x 5.16p3.
3855///
3856/// This is part of the parameter validation for the ? operator. If either
3857/// value operand is a class type, the two operands are attempted to be
3858/// converted to each other. This function does the conversion in one direction.
3859/// It returns true if the program is ill-formed and has already been diagnosed
3860/// as such.
3861static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3862                                SourceLocation QuestionLoc,
3863                                bool &HaveConversion,
3864                                QualType &ToType) {
3865  HaveConversion = false;
3866  ToType = To->getType();
3867
3868  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3869                                                           SourceLocation());
3870  // C++0x 5.16p3
3871  //   The process for determining whether an operand expression E1 of type T1
3872  //   can be converted to match an operand expression E2 of type T2 is defined
3873  //   as follows:
3874  //   -- If E2 is an lvalue:
3875  bool ToIsLvalue = To->isLValue();
3876  if (ToIsLvalue) {
3877    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3878    //   type "lvalue reference to T2", subject to the constraint that in the
3879    //   conversion the reference must bind directly to E1.
3880    QualType T = Self.Context.getLValueReferenceType(ToType);
3881    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3882
3883    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3884    if (InitSeq.isDirectReferenceBinding()) {
3885      ToType = T;
3886      HaveConversion = true;
3887      return false;
3888    }
3889
3890    if (InitSeq.isAmbiguous())
3891      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3892  }
3893
3894  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3895  //      -- if E1 and E2 have class type, and the underlying class types are
3896  //         the same or one is a base class of the other:
3897  QualType FTy = From->getType();
3898  QualType TTy = To->getType();
3899  const RecordType *FRec = FTy->getAs<RecordType>();
3900  const RecordType *TRec = TTy->getAs<RecordType>();
3901  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3902                       Self.IsDerivedFrom(FTy, TTy);
3903  if (FRec && TRec &&
3904      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3905    //         E1 can be converted to match E2 if the class of T2 is the
3906    //         same type as, or a base class of, the class of T1, and
3907    //         [cv2 > cv1].
3908    if (FRec == TRec || FDerivedFromT) {
3909      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3910        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3911        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3912        if (InitSeq) {
3913          HaveConversion = true;
3914          return false;
3915        }
3916
3917        if (InitSeq.isAmbiguous())
3918          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3919      }
3920    }
3921
3922    return false;
3923  }
3924
3925  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3926  //        implicitly converted to the type that expression E2 would have
3927  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3928  //        an rvalue).
3929  //
3930  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3931  // to the array-to-pointer or function-to-pointer conversions.
3932  if (!TTy->getAs<TagType>())
3933    TTy = TTy.getUnqualifiedType();
3934
3935  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3936  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3937  HaveConversion = !InitSeq.Failed();
3938  ToType = TTy;
3939  if (InitSeq.isAmbiguous())
3940    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3941
3942  return false;
3943}
3944
3945/// \brief Try to find a common type for two according to C++0x 5.16p5.
3946///
3947/// This is part of the parameter validation for the ? operator. If either
3948/// value operand is a class type, overload resolution is used to find a
3949/// conversion to a common type.
3950static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3951                                    SourceLocation QuestionLoc) {
3952  Expr *Args[2] = { LHS.get(), RHS.get() };
3953  OverloadCandidateSet CandidateSet(QuestionLoc);
3954  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3955                                    CandidateSet);
3956
3957  OverloadCandidateSet::iterator Best;
3958  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3959    case OR_Success: {
3960      // We found a match. Perform the conversions on the arguments and move on.
3961      ExprResult LHSRes =
3962        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3963                                       Best->Conversions[0], Sema::AA_Converting);
3964      if (LHSRes.isInvalid())
3965        break;
3966      LHS = move(LHSRes);
3967
3968      ExprResult RHSRes =
3969        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3970                                       Best->Conversions[1], Sema::AA_Converting);
3971      if (RHSRes.isInvalid())
3972        break;
3973      RHS = move(RHSRes);
3974      if (Best->Function)
3975        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
3976      return false;
3977    }
3978
3979    case OR_No_Viable_Function:
3980
3981      // Emit a better diagnostic if one of the expressions is a null pointer
3982      // constant and the other is a pointer type. In this case, the user most
3983      // likely forgot to take the address of the other expression.
3984      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3985        return true;
3986
3987      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3988        << LHS.get()->getType() << RHS.get()->getType()
3989        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3990      return true;
3991
3992    case OR_Ambiguous:
3993      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3994        << LHS.get()->getType() << RHS.get()->getType()
3995        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3996      // FIXME: Print the possible common types by printing the return types of
3997      // the viable candidates.
3998      break;
3999
4000    case OR_Deleted:
4001      llvm_unreachable("Conditional operator has only built-in overloads");
4002  }
4003  return true;
4004}
4005
4006/// \brief Perform an "extended" implicit conversion as returned by
4007/// TryClassUnification.
4008static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4009  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4010  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4011                                                           SourceLocation());
4012  Expr *Arg = E.take();
4013  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4014  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
4015  if (Result.isInvalid())
4016    return true;
4017
4018  E = Result;
4019  return false;
4020}
4021
4022/// \brief Check the operands of ?: under C++ semantics.
4023///
4024/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4025/// extension. In this case, LHS == Cond. (But they're not aliases.)
4026QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
4027                                           ExprValueKind &VK, ExprObjectKind &OK,
4028                                           SourceLocation QuestionLoc) {
4029  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4030  // interface pointers.
4031
4032  // C++0x 5.16p1
4033  //   The first expression is contextually converted to bool.
4034  if (!Cond.get()->isTypeDependent()) {
4035    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4036    if (CondRes.isInvalid())
4037      return QualType();
4038    Cond = move(CondRes);
4039  }
4040
4041  // Assume r-value.
4042  VK = VK_RValue;
4043  OK = OK_Ordinary;
4044
4045  // Either of the arguments dependent?
4046  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4047    return Context.DependentTy;
4048
4049  // C++0x 5.16p2
4050  //   If either the second or the third operand has type (cv) void, ...
4051  QualType LTy = LHS.get()->getType();
4052  QualType RTy = RHS.get()->getType();
4053  bool LVoid = LTy->isVoidType();
4054  bool RVoid = RTy->isVoidType();
4055  if (LVoid || RVoid) {
4056    //   ... then the [l2r] conversions are performed on the second and third
4057    //   operands ...
4058    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4059    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4060    if (LHS.isInvalid() || RHS.isInvalid())
4061      return QualType();
4062    LTy = LHS.get()->getType();
4063    RTy = RHS.get()->getType();
4064
4065    //   ... and one of the following shall hold:
4066    //   -- The second or the third operand (but not both) is a throw-
4067    //      expression; the result is of the type of the other and is an rvalue.
4068    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4069    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4070    if (LThrow && !RThrow)
4071      return RTy;
4072    if (RThrow && !LThrow)
4073      return LTy;
4074
4075    //   -- Both the second and third operands have type void; the result is of
4076    //      type void and is an rvalue.
4077    if (LVoid && RVoid)
4078      return Context.VoidTy;
4079
4080    // Neither holds, error.
4081    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4082      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4083      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4084    return QualType();
4085  }
4086
4087  // Neither is void.
4088
4089  // C++0x 5.16p3
4090  //   Otherwise, if the second and third operand have different types, and
4091  //   either has (cv) class type, and attempt is made to convert each of those
4092  //   operands to the other.
4093  if (!Context.hasSameType(LTy, RTy) &&
4094      (LTy->isRecordType() || RTy->isRecordType())) {
4095    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4096    // These return true if a single direction is already ambiguous.
4097    QualType L2RType, R2LType;
4098    bool HaveL2R, HaveR2L;
4099    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4100      return QualType();
4101    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4102      return QualType();
4103
4104    //   If both can be converted, [...] the program is ill-formed.
4105    if (HaveL2R && HaveR2L) {
4106      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4107        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4108      return QualType();
4109    }
4110
4111    //   If exactly one conversion is possible, that conversion is applied to
4112    //   the chosen operand and the converted operands are used in place of the
4113    //   original operands for the remainder of this section.
4114    if (HaveL2R) {
4115      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4116        return QualType();
4117      LTy = LHS.get()->getType();
4118    } else if (HaveR2L) {
4119      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4120        return QualType();
4121      RTy = RHS.get()->getType();
4122    }
4123  }
4124
4125  // C++0x 5.16p4
4126  //   If the second and third operands are glvalues of the same value
4127  //   category and have the same type, the result is of that type and
4128  //   value category and it is a bit-field if the second or the third
4129  //   operand is a bit-field, or if both are bit-fields.
4130  // We only extend this to bitfields, not to the crazy other kinds of
4131  // l-values.
4132  bool Same = Context.hasSameType(LTy, RTy);
4133  if (Same &&
4134      LHS.get()->isGLValue() &&
4135      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
4136      LHS.get()->isOrdinaryOrBitFieldObject() &&
4137      RHS.get()->isOrdinaryOrBitFieldObject()) {
4138    VK = LHS.get()->getValueKind();
4139    if (LHS.get()->getObjectKind() == OK_BitField ||
4140        RHS.get()->getObjectKind() == OK_BitField)
4141      OK = OK_BitField;
4142    return LTy;
4143  }
4144
4145  // C++0x 5.16p5
4146  //   Otherwise, the result is an rvalue. If the second and third operands
4147  //   do not have the same type, and either has (cv) class type, ...
4148  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4149    //   ... overload resolution is used to determine the conversions (if any)
4150    //   to be applied to the operands. If the overload resolution fails, the
4151    //   program is ill-formed.
4152    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4153      return QualType();
4154  }
4155
4156  // C++0x 5.16p6
4157  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
4158  //   conversions are performed on the second and third operands.
4159  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4160  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4161  if (LHS.isInvalid() || RHS.isInvalid())
4162    return QualType();
4163  LTy = LHS.get()->getType();
4164  RTy = RHS.get()->getType();
4165
4166  //   After those conversions, one of the following shall hold:
4167  //   -- The second and third operands have the same type; the result
4168  //      is of that type. If the operands have class type, the result
4169  //      is a prvalue temporary of the result type, which is
4170  //      copy-initialized from either the second operand or the third
4171  //      operand depending on the value of the first operand.
4172  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4173    if (LTy->isRecordType()) {
4174      // The operands have class type. Make a temporary copy.
4175      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4176      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4177                                                     SourceLocation(),
4178                                                     LHS);
4179      if (LHSCopy.isInvalid())
4180        return QualType();
4181
4182      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4183                                                     SourceLocation(),
4184                                                     RHS);
4185      if (RHSCopy.isInvalid())
4186        return QualType();
4187
4188      LHS = LHSCopy;
4189      RHS = RHSCopy;
4190    }
4191
4192    return LTy;
4193  }
4194
4195  // Extension: conditional operator involving vector types.
4196  if (LTy->isVectorType() || RTy->isVectorType())
4197    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4198
4199  //   -- The second and third operands have arithmetic or enumeration type;
4200  //      the usual arithmetic conversions are performed to bring them to a
4201  //      common type, and the result is of that type.
4202  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4203    UsualArithmeticConversions(LHS, RHS);
4204    if (LHS.isInvalid() || RHS.isInvalid())
4205      return QualType();
4206    return LHS.get()->getType();
4207  }
4208
4209  //   -- The second and third operands have pointer type, or one has pointer
4210  //      type and the other is a null pointer constant; pointer conversions
4211  //      and qualification conversions are performed to bring them to their
4212  //      composite pointer type. The result is of the composite pointer type.
4213  //   -- The second and third operands have pointer to member type, or one has
4214  //      pointer to member type and the other is a null pointer constant;
4215  //      pointer to member conversions and qualification conversions are
4216  //      performed to bring them to a common type, whose cv-qualification
4217  //      shall match the cv-qualification of either the second or the third
4218  //      operand. The result is of the common type.
4219  bool NonStandardCompositeType = false;
4220  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4221                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4222  if (!Composite.isNull()) {
4223    if (NonStandardCompositeType)
4224      Diag(QuestionLoc,
4225           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4226        << LTy << RTy << Composite
4227        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4228
4229    return Composite;
4230  }
4231
4232  // Similarly, attempt to find composite type of two objective-c pointers.
4233  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4234  if (!Composite.isNull())
4235    return Composite;
4236
4237  // Check if we are using a null with a non-pointer type.
4238  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4239    return QualType();
4240
4241  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4242    << LHS.get()->getType() << RHS.get()->getType()
4243    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4244  return QualType();
4245}
4246
4247/// \brief Find a merged pointer type and convert the two expressions to it.
4248///
4249/// This finds the composite pointer type (or member pointer type) for @p E1
4250/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
4251/// type and returns it.
4252/// It does not emit diagnostics.
4253///
4254/// \param Loc The location of the operator requiring these two expressions to
4255/// be converted to the composite pointer type.
4256///
4257/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4258/// a non-standard (but still sane) composite type to which both expressions
4259/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4260/// will be set true.
4261QualType Sema::FindCompositePointerType(SourceLocation Loc,
4262                                        Expr *&E1, Expr *&E2,
4263                                        bool *NonStandardCompositeType) {
4264  if (NonStandardCompositeType)
4265    *NonStandardCompositeType = false;
4266
4267  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4268  QualType T1 = E1->getType(), T2 = E2->getType();
4269
4270  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4271      !T2->isAnyPointerType() && !T2->isMemberPointerType())
4272   return QualType();
4273
4274  // C++0x 5.9p2
4275  //   Pointer conversions and qualification conversions are performed on
4276  //   pointer operands to bring them to their composite pointer type. If
4277  //   one operand is a null pointer constant, the composite pointer type is
4278  //   the type of the other operand.
4279  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4280    if (T2->isMemberPointerType())
4281      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4282    else
4283      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4284    return T2;
4285  }
4286  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4287    if (T1->isMemberPointerType())
4288      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4289    else
4290      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4291    return T1;
4292  }
4293
4294  // Now both have to be pointers or member pointers.
4295  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4296      (!T2->isPointerType() && !T2->isMemberPointerType()))
4297    return QualType();
4298
4299  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4300  //   the other has type "pointer to cv2 T" and the composite pointer type is
4301  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4302  //   Otherwise, the composite pointer type is a pointer type similar to the
4303  //   type of one of the operands, with a cv-qualification signature that is
4304  //   the union of the cv-qualification signatures of the operand types.
4305  // In practice, the first part here is redundant; it's subsumed by the second.
4306  // What we do here is, we build the two possible composite types, and try the
4307  // conversions in both directions. If only one works, or if the two composite
4308  // types are the same, we have succeeded.
4309  // FIXME: extended qualifiers?
4310  typedef SmallVector<unsigned, 4> QualifierVector;
4311  QualifierVector QualifierUnion;
4312  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4313      ContainingClassVector;
4314  ContainingClassVector MemberOfClass;
4315  QualType Composite1 = Context.getCanonicalType(T1),
4316           Composite2 = Context.getCanonicalType(T2);
4317  unsigned NeedConstBefore = 0;
4318  do {
4319    const PointerType *Ptr1, *Ptr2;
4320    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4321        (Ptr2 = Composite2->getAs<PointerType>())) {
4322      Composite1 = Ptr1->getPointeeType();
4323      Composite2 = Ptr2->getPointeeType();
4324
4325      // If we're allowed to create a non-standard composite type, keep track
4326      // of where we need to fill in additional 'const' qualifiers.
4327      if (NonStandardCompositeType &&
4328          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4329        NeedConstBefore = QualifierUnion.size();
4330
4331      QualifierUnion.push_back(
4332                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4333      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4334      continue;
4335    }
4336
4337    const MemberPointerType *MemPtr1, *MemPtr2;
4338    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4339        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4340      Composite1 = MemPtr1->getPointeeType();
4341      Composite2 = MemPtr2->getPointeeType();
4342
4343      // If we're allowed to create a non-standard composite type, keep track
4344      // of where we need to fill in additional 'const' qualifiers.
4345      if (NonStandardCompositeType &&
4346          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4347        NeedConstBefore = QualifierUnion.size();
4348
4349      QualifierUnion.push_back(
4350                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4351      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4352                                             MemPtr2->getClass()));
4353      continue;
4354    }
4355
4356    // FIXME: block pointer types?
4357
4358    // Cannot unwrap any more types.
4359    break;
4360  } while (true);
4361
4362  if (NeedConstBefore && NonStandardCompositeType) {
4363    // Extension: Add 'const' to qualifiers that come before the first qualifier
4364    // mismatch, so that our (non-standard!) composite type meets the
4365    // requirements of C++ [conv.qual]p4 bullet 3.
4366    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4367      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4368        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4369        *NonStandardCompositeType = true;
4370      }
4371    }
4372  }
4373
4374  // Rewrap the composites as pointers or member pointers with the union CVRs.
4375  ContainingClassVector::reverse_iterator MOC
4376    = MemberOfClass.rbegin();
4377  for (QualifierVector::reverse_iterator
4378         I = QualifierUnion.rbegin(),
4379         E = QualifierUnion.rend();
4380       I != E; (void)++I, ++MOC) {
4381    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4382    if (MOC->first && MOC->second) {
4383      // Rebuild member pointer type
4384      Composite1 = Context.getMemberPointerType(
4385                                    Context.getQualifiedType(Composite1, Quals),
4386                                    MOC->first);
4387      Composite2 = Context.getMemberPointerType(
4388                                    Context.getQualifiedType(Composite2, Quals),
4389                                    MOC->second);
4390    } else {
4391      // Rebuild pointer type
4392      Composite1
4393        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4394      Composite2
4395        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4396    }
4397  }
4398
4399  // Try to convert to the first composite pointer type.
4400  InitializedEntity Entity1
4401    = InitializedEntity::InitializeTemporary(Composite1);
4402  InitializationKind Kind
4403    = InitializationKind::CreateCopy(Loc, SourceLocation());
4404  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4405  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4406
4407  if (E1ToC1 && E2ToC1) {
4408    // Conversion to Composite1 is viable.
4409    if (!Context.hasSameType(Composite1, Composite2)) {
4410      // Composite2 is a different type from Composite1. Check whether
4411      // Composite2 is also viable.
4412      InitializedEntity Entity2
4413        = InitializedEntity::InitializeTemporary(Composite2);
4414      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4415      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4416      if (E1ToC2 && E2ToC2) {
4417        // Both Composite1 and Composite2 are viable and are different;
4418        // this is an ambiguity.
4419        return QualType();
4420      }
4421    }
4422
4423    // Convert E1 to Composite1
4424    ExprResult E1Result
4425      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4426    if (E1Result.isInvalid())
4427      return QualType();
4428    E1 = E1Result.takeAs<Expr>();
4429
4430    // Convert E2 to Composite1
4431    ExprResult E2Result
4432      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4433    if (E2Result.isInvalid())
4434      return QualType();
4435    E2 = E2Result.takeAs<Expr>();
4436
4437    return Composite1;
4438  }
4439
4440  // Check whether Composite2 is viable.
4441  InitializedEntity Entity2
4442    = InitializedEntity::InitializeTemporary(Composite2);
4443  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4444  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4445  if (!E1ToC2 || !E2ToC2)
4446    return QualType();
4447
4448  // Convert E1 to Composite2
4449  ExprResult E1Result
4450    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4451  if (E1Result.isInvalid())
4452    return QualType();
4453  E1 = E1Result.takeAs<Expr>();
4454
4455  // Convert E2 to Composite2
4456  ExprResult E2Result
4457    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4458  if (E2Result.isInvalid())
4459    return QualType();
4460  E2 = E2Result.takeAs<Expr>();
4461
4462  return Composite2;
4463}
4464
4465ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4466  if (!E)
4467    return ExprError();
4468
4469  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4470
4471  // If the result is a glvalue, we shouldn't bind it.
4472  if (!E->isRValue())
4473    return Owned(E);
4474
4475  // In ARC, calls that return a retainable type can return retained,
4476  // in which case we have to insert a consuming cast.
4477  if (getLangOpts().ObjCAutoRefCount &&
4478      E->getType()->isObjCRetainableType()) {
4479
4480    bool ReturnsRetained;
4481
4482    // For actual calls, we compute this by examining the type of the
4483    // called value.
4484    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4485      Expr *Callee = Call->getCallee()->IgnoreParens();
4486      QualType T = Callee->getType();
4487
4488      if (T == Context.BoundMemberTy) {
4489        // Handle pointer-to-members.
4490        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4491          T = BinOp->getRHS()->getType();
4492        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4493          T = Mem->getMemberDecl()->getType();
4494      }
4495
4496      if (const PointerType *Ptr = T->getAs<PointerType>())
4497        T = Ptr->getPointeeType();
4498      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4499        T = Ptr->getPointeeType();
4500      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4501        T = MemPtr->getPointeeType();
4502
4503      const FunctionType *FTy = T->getAs<FunctionType>();
4504      assert(FTy && "call to value not of function type?");
4505      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4506
4507    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4508    // type always produce a +1 object.
4509    } else if (isa<StmtExpr>(E)) {
4510      ReturnsRetained = true;
4511
4512    // We hit this case with the lambda conversion-to-block optimization;
4513    // we don't want any extra casts here.
4514    } else if (isa<CastExpr>(E) &&
4515               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4516      return Owned(E);
4517
4518    // For message sends and property references, we try to find an
4519    // actual method.  FIXME: we should infer retention by selector in
4520    // cases where we don't have an actual method.
4521    } else {
4522      ObjCMethodDecl *D = 0;
4523      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4524        D = Send->getMethodDecl();
4525      } else if (ObjCNumericLiteral *NumLit = dyn_cast<ObjCNumericLiteral>(E)) {
4526        D = NumLit->getObjCNumericLiteralMethod();
4527      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4528        D = ArrayLit->getArrayWithObjectsMethod();
4529      } else if (ObjCDictionaryLiteral *DictLit
4530                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4531        D = DictLit->getDictWithObjectsMethod();
4532      }
4533
4534      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4535
4536      // Don't do reclaims on performSelector calls; despite their
4537      // return type, the invoked method doesn't necessarily actually
4538      // return an object.
4539      if (!ReturnsRetained &&
4540          D && D->getMethodFamily() == OMF_performSelector)
4541        return Owned(E);
4542    }
4543
4544    // Don't reclaim an object of Class type.
4545    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4546      return Owned(E);
4547
4548    ExprNeedsCleanups = true;
4549
4550    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4551                                   : CK_ARCReclaimReturnedObject);
4552    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4553                                          VK_RValue));
4554  }
4555
4556  if (!getLangOpts().CPlusPlus)
4557    return Owned(E);
4558
4559  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4560  // a fast path for the common case that the type is directly a RecordType.
4561  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4562  const RecordType *RT = 0;
4563  while (!RT) {
4564    switch (T->getTypeClass()) {
4565    case Type::Record:
4566      RT = cast<RecordType>(T);
4567      break;
4568    case Type::ConstantArray:
4569    case Type::IncompleteArray:
4570    case Type::VariableArray:
4571    case Type::DependentSizedArray:
4572      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4573      break;
4574    default:
4575      return Owned(E);
4576    }
4577  }
4578
4579  // That should be enough to guarantee that this type is complete, if we're
4580  // not processing a decltype expression.
4581  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4582  if (RD->isInvalidDecl() || RD->isDependentContext())
4583    return Owned(E);
4584
4585  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4586  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4587
4588  if (Destructor) {
4589    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4590    CheckDestructorAccess(E->getExprLoc(), Destructor,
4591                          PDiag(diag::err_access_dtor_temp)
4592                            << E->getType());
4593    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4594
4595    // If destructor is trivial, we can avoid the extra copy.
4596    if (Destructor->isTrivial())
4597      return Owned(E);
4598
4599    // We need a cleanup, but we don't need to remember the temporary.
4600    ExprNeedsCleanups = true;
4601  }
4602
4603  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4604  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4605
4606  if (IsDecltype)
4607    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4608
4609  return Owned(Bind);
4610}
4611
4612ExprResult
4613Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4614  if (SubExpr.isInvalid())
4615    return ExprError();
4616
4617  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4618}
4619
4620Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4621  assert(SubExpr && "sub expression can't be null!");
4622
4623  CleanupVarDeclMarking();
4624
4625  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4626  assert(ExprCleanupObjects.size() >= FirstCleanup);
4627  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4628  if (!ExprNeedsCleanups)
4629    return SubExpr;
4630
4631  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4632    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4633                         ExprCleanupObjects.size() - FirstCleanup);
4634
4635  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4636  DiscardCleanupsInEvaluationContext();
4637
4638  return E;
4639}
4640
4641Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4642  assert(SubStmt && "sub statement can't be null!");
4643
4644  CleanupVarDeclMarking();
4645
4646  if (!ExprNeedsCleanups)
4647    return SubStmt;
4648
4649  // FIXME: In order to attach the temporaries, wrap the statement into
4650  // a StmtExpr; currently this is only used for asm statements.
4651  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4652  // a new AsmStmtWithTemporaries.
4653  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4654                                                      SourceLocation(),
4655                                                      SourceLocation());
4656  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4657                                   SourceLocation());
4658  return MaybeCreateExprWithCleanups(E);
4659}
4660
4661/// Process the expression contained within a decltype. For such expressions,
4662/// certain semantic checks on temporaries are delayed until this point, and
4663/// are omitted for the 'topmost' call in the decltype expression. If the
4664/// topmost call bound a temporary, strip that temporary off the expression.
4665ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4666  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4667  assert(Rec.IsDecltype && "not in a decltype expression");
4668
4669  // C++11 [expr.call]p11:
4670  //   If a function call is a prvalue of object type,
4671  // -- if the function call is either
4672  //   -- the operand of a decltype-specifier, or
4673  //   -- the right operand of a comma operator that is the operand of a
4674  //      decltype-specifier,
4675  //   a temporary object is not introduced for the prvalue.
4676
4677  // Recursively rebuild ParenExprs and comma expressions to strip out the
4678  // outermost CXXBindTemporaryExpr, if any.
4679  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4680    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4681    if (SubExpr.isInvalid())
4682      return ExprError();
4683    if (SubExpr.get() == PE->getSubExpr())
4684      return Owned(E);
4685    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4686  }
4687  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4688    if (BO->getOpcode() == BO_Comma) {
4689      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4690      if (RHS.isInvalid())
4691        return ExprError();
4692      if (RHS.get() == BO->getRHS())
4693        return Owned(E);
4694      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4695                                                BO_Comma, BO->getType(),
4696                                                BO->getValueKind(),
4697                                                BO->getObjectKind(),
4698                                                BO->getOperatorLoc()));
4699    }
4700  }
4701
4702  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4703  if (TopBind)
4704    E = TopBind->getSubExpr();
4705
4706  // Disable the special decltype handling now.
4707  Rec.IsDecltype = false;
4708
4709  // Perform the semantic checks we delayed until this point.
4710  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4711  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4712    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4713    if (Call == TopCall)
4714      continue;
4715
4716    if (CheckCallReturnType(Call->getCallReturnType(),
4717                            Call->getLocStart(),
4718                            Call, Call->getDirectCallee()))
4719      return ExprError();
4720  }
4721
4722  // Now all relevant types are complete, check the destructors are accessible
4723  // and non-deleted, and annotate them on the temporaries.
4724  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4725    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4726    if (Bind == TopBind)
4727      continue;
4728
4729    CXXTemporary *Temp = Bind->getTemporary();
4730
4731    CXXRecordDecl *RD =
4732      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4733    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4734    Temp->setDestructor(Destructor);
4735
4736    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4737    CheckDestructorAccess(E->getExprLoc(), Destructor,
4738                          PDiag(diag::err_access_dtor_temp)
4739                            << E->getType());
4740    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4741
4742    // We need a cleanup, but we don't need to remember the temporary.
4743    ExprNeedsCleanups = true;
4744  }
4745
4746  // Possibly strip off the top CXXBindTemporaryExpr.
4747  return Owned(E);
4748}
4749
4750ExprResult
4751Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4752                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4753                                   bool &MayBePseudoDestructor) {
4754  // Since this might be a postfix expression, get rid of ParenListExprs.
4755  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4756  if (Result.isInvalid()) return ExprError();
4757  Base = Result.get();
4758
4759  Result = CheckPlaceholderExpr(Base);
4760  if (Result.isInvalid()) return ExprError();
4761  Base = Result.take();
4762
4763  QualType BaseType = Base->getType();
4764  MayBePseudoDestructor = false;
4765  if (BaseType->isDependentType()) {
4766    // If we have a pointer to a dependent type and are using the -> operator,
4767    // the object type is the type that the pointer points to. We might still
4768    // have enough information about that type to do something useful.
4769    if (OpKind == tok::arrow)
4770      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4771        BaseType = Ptr->getPointeeType();
4772
4773    ObjectType = ParsedType::make(BaseType);
4774    MayBePseudoDestructor = true;
4775    return Owned(Base);
4776  }
4777
4778  // C++ [over.match.oper]p8:
4779  //   [...] When operator->returns, the operator-> is applied  to the value
4780  //   returned, with the original second operand.
4781  if (OpKind == tok::arrow) {
4782    // The set of types we've considered so far.
4783    llvm::SmallPtrSet<CanQualType,8> CTypes;
4784    SmallVector<SourceLocation, 8> Locations;
4785    CTypes.insert(Context.getCanonicalType(BaseType));
4786
4787    while (BaseType->isRecordType()) {
4788      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4789      if (Result.isInvalid())
4790        return ExprError();
4791      Base = Result.get();
4792      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4793        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4794      BaseType = Base->getType();
4795      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4796      if (!CTypes.insert(CBaseType)) {
4797        Diag(OpLoc, diag::err_operator_arrow_circular);
4798        for (unsigned i = 0; i < Locations.size(); i++)
4799          Diag(Locations[i], diag::note_declared_at);
4800        return ExprError();
4801      }
4802    }
4803
4804    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4805      BaseType = BaseType->getPointeeType();
4806  }
4807
4808  // Objective-C properties allow "." access on Objective-C pointer types,
4809  // so adjust the base type to the object type itself.
4810  if (BaseType->isObjCObjectPointerType())
4811    BaseType = BaseType->getPointeeType();
4812
4813  // C++ [basic.lookup.classref]p2:
4814  //   [...] If the type of the object expression is of pointer to scalar
4815  //   type, the unqualified-id is looked up in the context of the complete
4816  //   postfix-expression.
4817  //
4818  // This also indicates that we could be parsing a pseudo-destructor-name.
4819  // Note that Objective-C class and object types can be pseudo-destructor
4820  // expressions or normal member (ivar or property) access expressions.
4821  if (BaseType->isObjCObjectOrInterfaceType()) {
4822    MayBePseudoDestructor = true;
4823  } else if (!BaseType->isRecordType()) {
4824    ObjectType = ParsedType();
4825    MayBePseudoDestructor = true;
4826    return Owned(Base);
4827  }
4828
4829  // The object type must be complete (or dependent), or
4830  // C++11 [expr.prim.general]p3:
4831  //   Unlike the object expression in other contexts, *this is not required to
4832  //   be of complete type for purposes of class member access (5.2.5) outside
4833  //   the member function body.
4834  if (!BaseType->isDependentType() &&
4835      !isThisOutsideMemberFunctionBody(BaseType) &&
4836      RequireCompleteType(OpLoc, BaseType,
4837                          PDiag(diag::err_incomplete_member_access)))
4838    return ExprError();
4839
4840  // C++ [basic.lookup.classref]p2:
4841  //   If the id-expression in a class member access (5.2.5) is an
4842  //   unqualified-id, and the type of the object expression is of a class
4843  //   type C (or of pointer to a class type C), the unqualified-id is looked
4844  //   up in the scope of class C. [...]
4845  ObjectType = ParsedType::make(BaseType);
4846  return move(Base);
4847}
4848
4849ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4850                                                   Expr *MemExpr) {
4851  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4852  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4853    << isa<CXXPseudoDestructorExpr>(MemExpr)
4854    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4855
4856  return ActOnCallExpr(/*Scope*/ 0,
4857                       MemExpr,
4858                       /*LPLoc*/ ExpectedLParenLoc,
4859                       MultiExprArg(),
4860                       /*RPLoc*/ ExpectedLParenLoc);
4861}
4862
4863static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
4864                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
4865  if (Base->hasPlaceholderType()) {
4866    ExprResult result = S.CheckPlaceholderExpr(Base);
4867    if (result.isInvalid()) return true;
4868    Base = result.take();
4869  }
4870  ObjectType = Base->getType();
4871
4872  // C++ [expr.pseudo]p2:
4873  //   The left-hand side of the dot operator shall be of scalar type. The
4874  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4875  //   This scalar type is the object type.
4876  // Note that this is rather different from the normal handling for the
4877  // arrow operator.
4878  if (OpKind == tok::arrow) {
4879    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4880      ObjectType = Ptr->getPointeeType();
4881    } else if (!Base->isTypeDependent()) {
4882      // The user wrote "p->" when she probably meant "p."; fix it.
4883      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4884        << ObjectType << true
4885        << FixItHint::CreateReplacement(OpLoc, ".");
4886      if (S.isSFINAEContext())
4887        return true;
4888
4889      OpKind = tok::period;
4890    }
4891  }
4892
4893  return false;
4894}
4895
4896ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4897                                           SourceLocation OpLoc,
4898                                           tok::TokenKind OpKind,
4899                                           const CXXScopeSpec &SS,
4900                                           TypeSourceInfo *ScopeTypeInfo,
4901                                           SourceLocation CCLoc,
4902                                           SourceLocation TildeLoc,
4903                                         PseudoDestructorTypeStorage Destructed,
4904                                           bool HasTrailingLParen) {
4905  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4906
4907  QualType ObjectType;
4908  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4909    return ExprError();
4910
4911  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4912    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
4913      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
4914    else
4915      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4916        << ObjectType << Base->getSourceRange();
4917    return ExprError();
4918  }
4919
4920  // C++ [expr.pseudo]p2:
4921  //   [...] The cv-unqualified versions of the object type and of the type
4922  //   designated by the pseudo-destructor-name shall be the same type.
4923  if (DestructedTypeInfo) {
4924    QualType DestructedType = DestructedTypeInfo->getType();
4925    SourceLocation DestructedTypeStart
4926      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4927    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4928      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4929        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4930          << ObjectType << DestructedType << Base->getSourceRange()
4931          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4932
4933        // Recover by setting the destructed type to the object type.
4934        DestructedType = ObjectType;
4935        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4936                                                           DestructedTypeStart);
4937        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4938      } else if (DestructedType.getObjCLifetime() !=
4939                                                ObjectType.getObjCLifetime()) {
4940
4941        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4942          // Okay: just pretend that the user provided the correctly-qualified
4943          // type.
4944        } else {
4945          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4946            << ObjectType << DestructedType << Base->getSourceRange()
4947            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4948        }
4949
4950        // Recover by setting the destructed type to the object type.
4951        DestructedType = ObjectType;
4952        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4953                                                           DestructedTypeStart);
4954        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4955      }
4956    }
4957  }
4958
4959  // C++ [expr.pseudo]p2:
4960  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4961  //   form
4962  //
4963  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4964  //
4965  //   shall designate the same scalar type.
4966  if (ScopeTypeInfo) {
4967    QualType ScopeType = ScopeTypeInfo->getType();
4968    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4969        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4970
4971      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4972           diag::err_pseudo_dtor_type_mismatch)
4973        << ObjectType << ScopeType << Base->getSourceRange()
4974        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4975
4976      ScopeType = QualType();
4977      ScopeTypeInfo = 0;
4978    }
4979  }
4980
4981  Expr *Result
4982    = new (Context) CXXPseudoDestructorExpr(Context, Base,
4983                                            OpKind == tok::arrow, OpLoc,
4984                                            SS.getWithLocInContext(Context),
4985                                            ScopeTypeInfo,
4986                                            CCLoc,
4987                                            TildeLoc,
4988                                            Destructed);
4989
4990  if (HasTrailingLParen)
4991    return Owned(Result);
4992
4993  return DiagnoseDtorReference(Destructed.getLocation(), Result);
4994}
4995
4996ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4997                                           SourceLocation OpLoc,
4998                                           tok::TokenKind OpKind,
4999                                           CXXScopeSpec &SS,
5000                                           UnqualifiedId &FirstTypeName,
5001                                           SourceLocation CCLoc,
5002                                           SourceLocation TildeLoc,
5003                                           UnqualifiedId &SecondTypeName,
5004                                           bool HasTrailingLParen) {
5005  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5006          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5007         "Invalid first type name in pseudo-destructor");
5008  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5009          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5010         "Invalid second type name in pseudo-destructor");
5011
5012  QualType ObjectType;
5013  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5014    return ExprError();
5015
5016  // Compute the object type that we should use for name lookup purposes. Only
5017  // record types and dependent types matter.
5018  ParsedType ObjectTypePtrForLookup;
5019  if (!SS.isSet()) {
5020    if (ObjectType->isRecordType())
5021      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5022    else if (ObjectType->isDependentType())
5023      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5024  }
5025
5026  // Convert the name of the type being destructed (following the ~) into a
5027  // type (with source-location information).
5028  QualType DestructedType;
5029  TypeSourceInfo *DestructedTypeInfo = 0;
5030  PseudoDestructorTypeStorage Destructed;
5031  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5032    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5033                               SecondTypeName.StartLocation,
5034                               S, &SS, true, false, ObjectTypePtrForLookup);
5035    if (!T &&
5036        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5037         (!SS.isSet() && ObjectType->isDependentType()))) {
5038      // The name of the type being destroyed is a dependent name, and we
5039      // couldn't find anything useful in scope. Just store the identifier and
5040      // it's location, and we'll perform (qualified) name lookup again at
5041      // template instantiation time.
5042      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5043                                               SecondTypeName.StartLocation);
5044    } else if (!T) {
5045      Diag(SecondTypeName.StartLocation,
5046           diag::err_pseudo_dtor_destructor_non_type)
5047        << SecondTypeName.Identifier << ObjectType;
5048      if (isSFINAEContext())
5049        return ExprError();
5050
5051      // Recover by assuming we had the right type all along.
5052      DestructedType = ObjectType;
5053    } else
5054      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5055  } else {
5056    // Resolve the template-id to a type.
5057    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5058    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5059                                       TemplateId->getTemplateArgs(),
5060                                       TemplateId->NumArgs);
5061    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5062                                       TemplateId->TemplateKWLoc,
5063                                       TemplateId->Template,
5064                                       TemplateId->TemplateNameLoc,
5065                                       TemplateId->LAngleLoc,
5066                                       TemplateArgsPtr,
5067                                       TemplateId->RAngleLoc);
5068    if (T.isInvalid() || !T.get()) {
5069      // Recover by assuming we had the right type all along.
5070      DestructedType = ObjectType;
5071    } else
5072      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5073  }
5074
5075  // If we've performed some kind of recovery, (re-)build the type source
5076  // information.
5077  if (!DestructedType.isNull()) {
5078    if (!DestructedTypeInfo)
5079      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5080                                                  SecondTypeName.StartLocation);
5081    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5082  }
5083
5084  // Convert the name of the scope type (the type prior to '::') into a type.
5085  TypeSourceInfo *ScopeTypeInfo = 0;
5086  QualType ScopeType;
5087  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5088      FirstTypeName.Identifier) {
5089    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5090      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5091                                 FirstTypeName.StartLocation,
5092                                 S, &SS, true, false, ObjectTypePtrForLookup);
5093      if (!T) {
5094        Diag(FirstTypeName.StartLocation,
5095             diag::err_pseudo_dtor_destructor_non_type)
5096          << FirstTypeName.Identifier << ObjectType;
5097
5098        if (isSFINAEContext())
5099          return ExprError();
5100
5101        // Just drop this type. It's unnecessary anyway.
5102        ScopeType = QualType();
5103      } else
5104        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5105    } else {
5106      // Resolve the template-id to a type.
5107      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5108      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5109                                         TemplateId->getTemplateArgs(),
5110                                         TemplateId->NumArgs);
5111      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5112                                         TemplateId->TemplateKWLoc,
5113                                         TemplateId->Template,
5114                                         TemplateId->TemplateNameLoc,
5115                                         TemplateId->LAngleLoc,
5116                                         TemplateArgsPtr,
5117                                         TemplateId->RAngleLoc);
5118      if (T.isInvalid() || !T.get()) {
5119        // Recover by dropping this type.
5120        ScopeType = QualType();
5121      } else
5122        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5123    }
5124  }
5125
5126  if (!ScopeType.isNull() && !ScopeTypeInfo)
5127    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5128                                                  FirstTypeName.StartLocation);
5129
5130
5131  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5132                                   ScopeTypeInfo, CCLoc, TildeLoc,
5133                                   Destructed, HasTrailingLParen);
5134}
5135
5136ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5137                                           SourceLocation OpLoc,
5138                                           tok::TokenKind OpKind,
5139                                           SourceLocation TildeLoc,
5140                                           const DeclSpec& DS,
5141                                           bool HasTrailingLParen) {
5142  QualType ObjectType;
5143  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5144    return ExprError();
5145
5146  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5147
5148  TypeLocBuilder TLB;
5149  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5150  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5151  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5152  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5153
5154  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5155                                   0, SourceLocation(), TildeLoc,
5156                                   Destructed, HasTrailingLParen);
5157}
5158
5159ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5160                                        CXXConversionDecl *Method,
5161                                        bool HadMultipleCandidates) {
5162  if (Method->getParent()->isLambda() &&
5163      Method->getConversionType()->isBlockPointerType()) {
5164    // This is a lambda coversion to block pointer; check if the argument
5165    // is a LambdaExpr.
5166    Expr *SubE = E;
5167    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5168    if (CE && CE->getCastKind() == CK_NoOp)
5169      SubE = CE->getSubExpr();
5170    SubE = SubE->IgnoreParens();
5171    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5172      SubE = BE->getSubExpr();
5173    if (isa<LambdaExpr>(SubE)) {
5174      // For the conversion to block pointer on a lambda expression, we
5175      // construct a special BlockLiteral instead; this doesn't really make
5176      // a difference in ARC, but outside of ARC the resulting block literal
5177      // follows the normal lifetime rules for block literals instead of being
5178      // autoreleased.
5179      DiagnosticErrorTrap Trap(Diags);
5180      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5181                                                     E->getExprLoc(),
5182                                                     Method, E);
5183      if (Exp.isInvalid())
5184        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5185      return Exp;
5186    }
5187  }
5188
5189
5190  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5191                                          FoundDecl, Method);
5192  if (Exp.isInvalid())
5193    return true;
5194
5195  MemberExpr *ME =
5196      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5197                               SourceLocation(), Context.BoundMemberTy,
5198                               VK_RValue, OK_Ordinary);
5199  if (HadMultipleCandidates)
5200    ME->setHadMultipleCandidates(true);
5201
5202  QualType ResultType = Method->getResultType();
5203  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5204  ResultType = ResultType.getNonLValueExprType(Context);
5205
5206  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5207  CXXMemberCallExpr *CE =
5208    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
5209                                    Exp.get()->getLocEnd());
5210  return CE;
5211}
5212
5213ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5214                                      SourceLocation RParen) {
5215  CanThrowResult CanThrow = canThrow(Operand);
5216  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5217                                             CanThrow, KeyLoc, RParen));
5218}
5219
5220ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5221                                   Expr *Operand, SourceLocation RParen) {
5222  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5223}
5224
5225/// Perform the conversions required for an expression used in a
5226/// context that ignores the result.
5227ExprResult Sema::IgnoredValueConversions(Expr *E) {
5228  if (E->hasPlaceholderType()) {
5229    ExprResult result = CheckPlaceholderExpr(E);
5230    if (result.isInvalid()) return Owned(E);
5231    E = result.take();
5232  }
5233
5234  // C99 6.3.2.1:
5235  //   [Except in specific positions,] an lvalue that does not have
5236  //   array type is converted to the value stored in the
5237  //   designated object (and is no longer an lvalue).
5238  if (E->isRValue()) {
5239    // In C, function designators (i.e. expressions of function type)
5240    // are r-values, but we still want to do function-to-pointer decay
5241    // on them.  This is both technically correct and convenient for
5242    // some clients.
5243    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5244      return DefaultFunctionArrayConversion(E);
5245
5246    return Owned(E);
5247  }
5248
5249  // Otherwise, this rule does not apply in C++, at least not for the moment.
5250  if (getLangOpts().CPlusPlus) return Owned(E);
5251
5252  // GCC seems to also exclude expressions of incomplete enum type.
5253  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5254    if (!T->getDecl()->isComplete()) {
5255      // FIXME: stupid workaround for a codegen bug!
5256      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5257      return Owned(E);
5258    }
5259  }
5260
5261  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5262  if (Res.isInvalid())
5263    return Owned(E);
5264  E = Res.take();
5265
5266  if (!E->getType()->isVoidType())
5267    RequireCompleteType(E->getExprLoc(), E->getType(),
5268                        diag::err_incomplete_type);
5269  return Owned(E);
5270}
5271
5272ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
5273  ExprResult FullExpr = Owned(FE);
5274
5275  if (!FullExpr.get())
5276    return ExprError();
5277
5278  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5279    return ExprError();
5280
5281  // Top-level message sends default to 'id' when we're in a debugger.
5282  if (getLangOpts().DebuggerCastResultToId &&
5283      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5284      isa<ObjCMessageExpr>(FullExpr.get())) {
5285    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5286    if (FullExpr.isInvalid())
5287      return ExprError();
5288  }
5289
5290  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5291  if (FullExpr.isInvalid())
5292    return ExprError();
5293
5294  FullExpr = IgnoredValueConversions(FullExpr.take());
5295  if (FullExpr.isInvalid())
5296    return ExprError();
5297
5298  CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
5299  return MaybeCreateExprWithCleanups(FullExpr);
5300}
5301
5302StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5303  if (!FullStmt) return StmtError();
5304
5305  return MaybeCreateStmtWithCleanups(FullStmt);
5306}
5307
5308Sema::IfExistsResult
5309Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5310                                   CXXScopeSpec &SS,
5311                                   const DeclarationNameInfo &TargetNameInfo) {
5312  DeclarationName TargetName = TargetNameInfo.getName();
5313  if (!TargetName)
5314    return IER_DoesNotExist;
5315
5316  // If the name itself is dependent, then the result is dependent.
5317  if (TargetName.isDependentName())
5318    return IER_Dependent;
5319
5320  // Do the redeclaration lookup in the current scope.
5321  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5322                 Sema::NotForRedeclaration);
5323  LookupParsedName(R, S, &SS);
5324  R.suppressDiagnostics();
5325
5326  switch (R.getResultKind()) {
5327  case LookupResult::Found:
5328  case LookupResult::FoundOverloaded:
5329  case LookupResult::FoundUnresolvedValue:
5330  case LookupResult::Ambiguous:
5331    return IER_Exists;
5332
5333  case LookupResult::NotFound:
5334    return IER_DoesNotExist;
5335
5336  case LookupResult::NotFoundInCurrentInstantiation:
5337    return IER_Dependent;
5338  }
5339
5340  llvm_unreachable("Invalid LookupResult Kind!");
5341}
5342
5343Sema::IfExistsResult
5344Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5345                                   bool IsIfExists, CXXScopeSpec &SS,
5346                                   UnqualifiedId &Name) {
5347  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5348
5349  // Check for unexpanded parameter packs.
5350  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5351  collectUnexpandedParameterPacks(SS, Unexpanded);
5352  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5353  if (!Unexpanded.empty()) {
5354    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5355                                     IsIfExists? UPPC_IfExists
5356                                               : UPPC_IfNotExists,
5357                                     Unexpanded);
5358    return IER_Error;
5359  }
5360
5361  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5362}
5363