1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Initialization.h"
31#include "clang/Sema/Lookup.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "clang/Sema/SemaLambda.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "llvm/ADT/APInt.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/Support/ErrorHandling.h"
40using namespace clang;
41using namespace sema;
42
43/// \brief Handle the result of the special case name lookup for inheriting
44/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
45/// constructor names in member using declarations, even if 'X' is not the
46/// name of the corresponding type.
47ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
48                                              SourceLocation NameLoc,
49                                              IdentifierInfo &Name) {
50  NestedNameSpecifier *NNS = SS.getScopeRep();
51
52  // Convert the nested-name-specifier into a type.
53  QualType Type;
54  switch (NNS->getKind()) {
55  case NestedNameSpecifier::TypeSpec:
56  case NestedNameSpecifier::TypeSpecWithTemplate:
57    Type = QualType(NNS->getAsType(), 0);
58    break;
59
60  case NestedNameSpecifier::Identifier:
61    // Strip off the last layer of the nested-name-specifier and build a
62    // typename type for it.
63    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
64    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
65                                        NNS->getAsIdentifier());
66    break;
67
68  case NestedNameSpecifier::Global:
69  case NestedNameSpecifier::Namespace:
70  case NestedNameSpecifier::NamespaceAlias:
71    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
72  }
73
74  // This reference to the type is located entirely at the location of the
75  // final identifier in the qualified-id.
76  return CreateParsedType(Type,
77                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
78}
79
80ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
81                                   IdentifierInfo &II,
82                                   SourceLocation NameLoc,
83                                   Scope *S, CXXScopeSpec &SS,
84                                   ParsedType ObjectTypePtr,
85                                   bool EnteringContext) {
86  // Determine where to perform name lookup.
87
88  // FIXME: This area of the standard is very messy, and the current
89  // wording is rather unclear about which scopes we search for the
90  // destructor name; see core issues 399 and 555. Issue 399 in
91  // particular shows where the current description of destructor name
92  // lookup is completely out of line with existing practice, e.g.,
93  // this appears to be ill-formed:
94  //
95  //   namespace N {
96  //     template <typename T> struct S {
97  //       ~S();
98  //     };
99  //   }
100  //
101  //   void f(N::S<int>* s) {
102  //     s->N::S<int>::~S();
103  //   }
104  //
105  // See also PR6358 and PR6359.
106  // For this reason, we're currently only doing the C++03 version of this
107  // code; the C++0x version has to wait until we get a proper spec.
108  QualType SearchType;
109  DeclContext *LookupCtx = 0;
110  bool isDependent = false;
111  bool LookInScope = false;
112
113  // If we have an object type, it's because we are in a
114  // pseudo-destructor-expression or a member access expression, and
115  // we know what type we're looking for.
116  if (ObjectTypePtr)
117    SearchType = GetTypeFromParser(ObjectTypePtr);
118
119  if (SS.isSet()) {
120    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
121
122    bool AlreadySearched = false;
123    bool LookAtPrefix = true;
124    // C++ [basic.lookup.qual]p6:
125    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
126    //   the type-names are looked up as types in the scope designated by the
127    //   nested-name-specifier. In a qualified-id of the form:
128    //
129    //     ::[opt] nested-name-specifier  ~ class-name
130    //
131    //   where the nested-name-specifier designates a namespace scope, and in
132    //   a qualified-id of the form:
133    //
134    //     ::opt nested-name-specifier class-name ::  ~ class-name
135    //
136    //   the class-names are looked up as types in the scope designated by
137    //   the nested-name-specifier.
138    //
139    // Here, we check the first case (completely) and determine whether the
140    // code below is permitted to look at the prefix of the
141    // nested-name-specifier.
142    DeclContext *DC = computeDeclContext(SS, EnteringContext);
143    if (DC && DC->isFileContext()) {
144      AlreadySearched = true;
145      LookupCtx = DC;
146      isDependent = false;
147    } else if (DC && isa<CXXRecordDecl>(DC))
148      LookAtPrefix = false;
149
150    // The second case from the C++03 rules quoted further above.
151    NestedNameSpecifier *Prefix = 0;
152    if (AlreadySearched) {
153      // Nothing left to do.
154    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155      CXXScopeSpec PrefixSS;
156      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158      isDependent = isDependentScopeSpecifier(PrefixSS);
159    } else if (ObjectTypePtr) {
160      LookupCtx = computeDeclContext(SearchType);
161      isDependent = SearchType->isDependentType();
162    } else {
163      LookupCtx = computeDeclContext(SS, EnteringContext);
164      isDependent = LookupCtx && LookupCtx->isDependentContext();
165    }
166
167    LookInScope = false;
168  } else if (ObjectTypePtr) {
169    // C++ [basic.lookup.classref]p3:
170    //   If the unqualified-id is ~type-name, the type-name is looked up
171    //   in the context of the entire postfix-expression. If the type T
172    //   of the object expression is of a class type C, the type-name is
173    //   also looked up in the scope of class C. At least one of the
174    //   lookups shall find a name that refers to (possibly
175    //   cv-qualified) T.
176    LookupCtx = computeDeclContext(SearchType);
177    isDependent = SearchType->isDependentType();
178    assert((isDependent || !SearchType->isIncompleteType()) &&
179           "Caller should have completed object type");
180
181    LookInScope = true;
182  } else {
183    // Perform lookup into the current scope (only).
184    LookInScope = true;
185  }
186
187  TypeDecl *NonMatchingTypeDecl = 0;
188  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
189  for (unsigned Step = 0; Step != 2; ++Step) {
190    // Look for the name first in the computed lookup context (if we
191    // have one) and, if that fails to find a match, in the scope (if
192    // we're allowed to look there).
193    Found.clear();
194    if (Step == 0 && LookupCtx)
195      LookupQualifiedName(Found, LookupCtx);
196    else if (Step == 1 && LookInScope && S)
197      LookupName(Found, S);
198    else
199      continue;
200
201    // FIXME: Should we be suppressing ambiguities here?
202    if (Found.isAmbiguous())
203      return ParsedType();
204
205    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
206      QualType T = Context.getTypeDeclType(Type);
207
208      if (SearchType.isNull() || SearchType->isDependentType() ||
209          Context.hasSameUnqualifiedType(T, SearchType)) {
210        // We found our type!
211
212        return ParsedType::make(T);
213      }
214
215      if (!SearchType.isNull())
216        NonMatchingTypeDecl = Type;
217    }
218
219    // If the name that we found is a class template name, and it is
220    // the same name as the template name in the last part of the
221    // nested-name-specifier (if present) or the object type, then
222    // this is the destructor for that class.
223    // FIXME: This is a workaround until we get real drafting for core
224    // issue 399, for which there isn't even an obvious direction.
225    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226      QualType MemberOfType;
227      if (SS.isSet()) {
228        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229          // Figure out the type of the context, if it has one.
230          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231            MemberOfType = Context.getTypeDeclType(Record);
232        }
233      }
234      if (MemberOfType.isNull())
235        MemberOfType = SearchType;
236
237      if (MemberOfType.isNull())
238        continue;
239
240      // We're referring into a class template specialization. If the
241      // class template we found is the same as the template being
242      // specialized, we found what we are looking for.
243      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244        if (ClassTemplateSpecializationDecl *Spec
245              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247                Template->getCanonicalDecl())
248            return ParsedType::make(MemberOfType);
249        }
250
251        continue;
252      }
253
254      // We're referring to an unresolved class template
255      // specialization. Determine whether we class template we found
256      // is the same as the template being specialized or, if we don't
257      // know which template is being specialized, that it at least
258      // has the same name.
259      if (const TemplateSpecializationType *SpecType
260            = MemberOfType->getAs<TemplateSpecializationType>()) {
261        TemplateName SpecName = SpecType->getTemplateName();
262
263        // The class template we found is the same template being
264        // specialized.
265        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
266          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
267            return ParsedType::make(MemberOfType);
268
269          continue;
270        }
271
272        // The class template we found has the same name as the
273        // (dependent) template name being specialized.
274        if (DependentTemplateName *DepTemplate
275                                    = SpecName.getAsDependentTemplateName()) {
276          if (DepTemplate->isIdentifier() &&
277              DepTemplate->getIdentifier() == Template->getIdentifier())
278            return ParsedType::make(MemberOfType);
279
280          continue;
281        }
282      }
283    }
284  }
285
286  if (isDependent) {
287    // We didn't find our type, but that's okay: it's dependent
288    // anyway.
289
290    // FIXME: What if we have no nested-name-specifier?
291    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
292                                   SS.getWithLocInContext(Context),
293                                   II, NameLoc);
294    return ParsedType::make(T);
295  }
296
297  if (NonMatchingTypeDecl) {
298    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
299    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
300      << T << SearchType;
301    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
302      << T;
303  } else if (ObjectTypePtr)
304    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
305      << &II;
306  else {
307    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
308                                          diag::err_destructor_class_name);
309    if (S) {
310      const DeclContext *Ctx = S->getEntity();
311      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
312        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
313                                                 Class->getNameAsString());
314    }
315  }
316
317  return ParsedType();
318}
319
320ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
321    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
322      return ParsedType();
323    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
324           && "only get destructor types from declspecs");
325    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
326    QualType SearchType = GetTypeFromParser(ObjectType);
327    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
328      return ParsedType::make(T);
329    }
330
331    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
332      << T << SearchType;
333    return ParsedType();
334}
335
336/// \brief Build a C++ typeid expression with a type operand.
337ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
338                                SourceLocation TypeidLoc,
339                                TypeSourceInfo *Operand,
340                                SourceLocation RParenLoc) {
341  // C++ [expr.typeid]p4:
342  //   The top-level cv-qualifiers of the lvalue expression or the type-id
343  //   that is the operand of typeid are always ignored.
344  //   If the type of the type-id is a class type or a reference to a class
345  //   type, the class shall be completely-defined.
346  Qualifiers Quals;
347  QualType T
348    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
349                                      Quals);
350  if (T->getAs<RecordType>() &&
351      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
352    return ExprError();
353
354  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
355                                           Operand,
356                                           SourceRange(TypeidLoc, RParenLoc)));
357}
358
359/// \brief Build a C++ typeid expression with an expression operand.
360ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
361                                SourceLocation TypeidLoc,
362                                Expr *E,
363                                SourceLocation RParenLoc) {
364  if (E && !E->isTypeDependent()) {
365    if (E->getType()->isPlaceholderType()) {
366      ExprResult result = CheckPlaceholderExpr(E);
367      if (result.isInvalid()) return ExprError();
368      E = result.take();
369    }
370
371    QualType T = E->getType();
372    if (const RecordType *RecordT = T->getAs<RecordType>()) {
373      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
374      // C++ [expr.typeid]p3:
375      //   [...] If the type of the expression is a class type, the class
376      //   shall be completely-defined.
377      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
378        return ExprError();
379
380      // C++ [expr.typeid]p3:
381      //   When typeid is applied to an expression other than an glvalue of a
382      //   polymorphic class type [...] [the] expression is an unevaluated
383      //   operand. [...]
384      if (RecordD->isPolymorphic() && E->isGLValue()) {
385        // The subexpression is potentially evaluated; switch the context
386        // and recheck the subexpression.
387        ExprResult Result = TransformToPotentiallyEvaluated(E);
388        if (Result.isInvalid()) return ExprError();
389        E = Result.take();
390
391        // We require a vtable to query the type at run time.
392        MarkVTableUsed(TypeidLoc, RecordD);
393      }
394    }
395
396    // C++ [expr.typeid]p4:
397    //   [...] If the type of the type-id is a reference to a possibly
398    //   cv-qualified type, the result of the typeid expression refers to a
399    //   std::type_info object representing the cv-unqualified referenced
400    //   type.
401    Qualifiers Quals;
402    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
403    if (!Context.hasSameType(T, UnqualT)) {
404      T = UnqualT;
405      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
406    }
407  }
408
409  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
410                                           E,
411                                           SourceRange(TypeidLoc, RParenLoc)));
412}
413
414/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
415ExprResult
416Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
417                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
418  // Find the std::type_info type.
419  if (!getStdNamespace())
420    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
421
422  if (!CXXTypeInfoDecl) {
423    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
424    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
425    LookupQualifiedName(R, getStdNamespace());
426    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
427    // Microsoft's typeinfo doesn't have type_info in std but in the global
428    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
429    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
430      LookupQualifiedName(R, Context.getTranslationUnitDecl());
431      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
432    }
433    if (!CXXTypeInfoDecl)
434      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
435  }
436
437  if (!getLangOpts().RTTI) {
438    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
439  }
440
441  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
442
443  if (isType) {
444    // The operand is a type; handle it as such.
445    TypeSourceInfo *TInfo = 0;
446    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
447                                   &TInfo);
448    if (T.isNull())
449      return ExprError();
450
451    if (!TInfo)
452      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
453
454    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
455  }
456
457  // The operand is an expression.
458  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
459}
460
461/// \brief Build a Microsoft __uuidof expression with a type operand.
462ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
463                                SourceLocation TypeidLoc,
464                                TypeSourceInfo *Operand,
465                                SourceLocation RParenLoc) {
466  if (!Operand->getType()->isDependentType()) {
467    bool HasMultipleGUIDs = false;
468    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
469                                          &HasMultipleGUIDs)) {
470      if (HasMultipleGUIDs)
471        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
472      else
473        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
474    }
475  }
476
477  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
478                                           Operand,
479                                           SourceRange(TypeidLoc, RParenLoc)));
480}
481
482/// \brief Build a Microsoft __uuidof expression with an expression operand.
483ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
484                                SourceLocation TypeidLoc,
485                                Expr *E,
486                                SourceLocation RParenLoc) {
487  if (!E->getType()->isDependentType()) {
488    bool HasMultipleGUIDs = false;
489    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
490        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
491      if (HasMultipleGUIDs)
492        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
493      else
494        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
495    }
496  }
497
498  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
499                                           E,
500                                           SourceRange(TypeidLoc, RParenLoc)));
501}
502
503/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
504ExprResult
505Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
506                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
507  // If MSVCGuidDecl has not been cached, do the lookup.
508  if (!MSVCGuidDecl) {
509    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
510    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
511    LookupQualifiedName(R, Context.getTranslationUnitDecl());
512    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
513    if (!MSVCGuidDecl)
514      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
515  }
516
517  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
518
519  if (isType) {
520    // The operand is a type; handle it as such.
521    TypeSourceInfo *TInfo = 0;
522    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
523                                   &TInfo);
524    if (T.isNull())
525      return ExprError();
526
527    if (!TInfo)
528      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
529
530    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
531  }
532
533  // The operand is an expression.
534  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
535}
536
537/// ActOnCXXBoolLiteral - Parse {true,false} literals.
538ExprResult
539Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
540  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
541         "Unknown C++ Boolean value!");
542  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
543                                                Context.BoolTy, OpLoc));
544}
545
546/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
547ExprResult
548Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
549  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
550}
551
552/// ActOnCXXThrow - Parse throw expressions.
553ExprResult
554Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
555  bool IsThrownVarInScope = false;
556  if (Ex) {
557    // C++0x [class.copymove]p31:
558    //   When certain criteria are met, an implementation is allowed to omit the
559    //   copy/move construction of a class object [...]
560    //
561    //     - in a throw-expression, when the operand is the name of a
562    //       non-volatile automatic object (other than a function or catch-
563    //       clause parameter) whose scope does not extend beyond the end of the
564    //       innermost enclosing try-block (if there is one), the copy/move
565    //       operation from the operand to the exception object (15.1) can be
566    //       omitted by constructing the automatic object directly into the
567    //       exception object
568    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
569      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
570        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
571          for( ; S; S = S->getParent()) {
572            if (S->isDeclScope(Var)) {
573              IsThrownVarInScope = true;
574              break;
575            }
576
577            if (S->getFlags() &
578                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
579                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
580                 Scope::TryScope))
581              break;
582          }
583        }
584      }
585  }
586
587  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
588}
589
590ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
591                               bool IsThrownVarInScope) {
592  // Don't report an error if 'throw' is used in system headers.
593  if (!getLangOpts().CXXExceptions &&
594      !getSourceManager().isInSystemHeader(OpLoc))
595    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
596
597  if (Ex && !Ex->isTypeDependent()) {
598    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
599    if (ExRes.isInvalid())
600      return ExprError();
601    Ex = ExRes.take();
602  }
603
604  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
605                                          IsThrownVarInScope));
606}
607
608/// CheckCXXThrowOperand - Validate the operand of a throw.
609ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
610                                      bool IsThrownVarInScope) {
611  // C++ [except.throw]p3:
612  //   A throw-expression initializes a temporary object, called the exception
613  //   object, the type of which is determined by removing any top-level
614  //   cv-qualifiers from the static type of the operand of throw and adjusting
615  //   the type from "array of T" or "function returning T" to "pointer to T"
616  //   or "pointer to function returning T", [...]
617  if (E->getType().hasQualifiers())
618    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
619                          E->getValueKind()).take();
620
621  ExprResult Res = DefaultFunctionArrayConversion(E);
622  if (Res.isInvalid())
623    return ExprError();
624  E = Res.take();
625
626  //   If the type of the exception would be an incomplete type or a pointer
627  //   to an incomplete type other than (cv) void the program is ill-formed.
628  QualType Ty = E->getType();
629  bool isPointer = false;
630  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
631    Ty = Ptr->getPointeeType();
632    isPointer = true;
633  }
634  if (!isPointer || !Ty->isVoidType()) {
635    if (RequireCompleteType(ThrowLoc, Ty,
636                            isPointer? diag::err_throw_incomplete_ptr
637                                     : diag::err_throw_incomplete,
638                            E->getSourceRange()))
639      return ExprError();
640
641    if (RequireNonAbstractType(ThrowLoc, E->getType(),
642                               diag::err_throw_abstract_type, E))
643      return ExprError();
644  }
645
646  // Initialize the exception result.  This implicitly weeds out
647  // abstract types or types with inaccessible copy constructors.
648
649  // C++0x [class.copymove]p31:
650  //   When certain criteria are met, an implementation is allowed to omit the
651  //   copy/move construction of a class object [...]
652  //
653  //     - in a throw-expression, when the operand is the name of a
654  //       non-volatile automatic object (other than a function or catch-clause
655  //       parameter) whose scope does not extend beyond the end of the
656  //       innermost enclosing try-block (if there is one), the copy/move
657  //       operation from the operand to the exception object (15.1) can be
658  //       omitted by constructing the automatic object directly into the
659  //       exception object
660  const VarDecl *NRVOVariable = 0;
661  if (IsThrownVarInScope)
662    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
663
664  InitializedEntity Entity =
665      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
666                                             /*NRVO=*/NRVOVariable != 0);
667  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
668                                        QualType(), E,
669                                        IsThrownVarInScope);
670  if (Res.isInvalid())
671    return ExprError();
672  E = Res.take();
673
674  // If the exception has class type, we need additional handling.
675  const RecordType *RecordTy = Ty->getAs<RecordType>();
676  if (!RecordTy)
677    return Owned(E);
678  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
679
680  // If we are throwing a polymorphic class type or pointer thereof,
681  // exception handling will make use of the vtable.
682  MarkVTableUsed(ThrowLoc, RD);
683
684  // If a pointer is thrown, the referenced object will not be destroyed.
685  if (isPointer)
686    return Owned(E);
687
688  // If the class has a destructor, we must be able to call it.
689  if (RD->hasIrrelevantDestructor())
690    return Owned(E);
691
692  CXXDestructorDecl *Destructor = LookupDestructor(RD);
693  if (!Destructor)
694    return Owned(E);
695
696  MarkFunctionReferenced(E->getExprLoc(), Destructor);
697  CheckDestructorAccess(E->getExprLoc(), Destructor,
698                        PDiag(diag::err_access_dtor_exception) << Ty);
699  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
700    return ExprError();
701  return Owned(E);
702}
703
704QualType Sema::getCurrentThisType() {
705  DeclContext *DC = getFunctionLevelDeclContext();
706  QualType ThisTy = CXXThisTypeOverride;
707  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
708    if (method && method->isInstance())
709      ThisTy = method->getThisType(Context);
710  }
711
712  return ThisTy;
713}
714
715Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
716                                         Decl *ContextDecl,
717                                         unsigned CXXThisTypeQuals,
718                                         bool Enabled)
719  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
720{
721  if (!Enabled || !ContextDecl)
722    return;
723
724  CXXRecordDecl *Record = 0;
725  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
726    Record = Template->getTemplatedDecl();
727  else
728    Record = cast<CXXRecordDecl>(ContextDecl);
729
730  S.CXXThisTypeOverride
731    = S.Context.getPointerType(
732        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
733
734  this->Enabled = true;
735}
736
737
738Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
739  if (Enabled) {
740    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
741  }
742}
743
744static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
745                         QualType ThisTy, SourceLocation Loc) {
746  FieldDecl *Field
747    = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
748                        Context.getTrivialTypeSourceInfo(ThisTy, Loc),
749                        0, false, ICIS_NoInit);
750  Field->setImplicit(true);
751  Field->setAccess(AS_private);
752  RD->addDecl(Field);
753  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
754}
755
756bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
757    bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
758  // We don't need to capture this in an unevaluated context.
759  if (isUnevaluatedContext() && !Explicit)
760    return true;
761
762  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
763    *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
764 // Otherwise, check that we can capture 'this'.
765  unsigned NumClosures = 0;
766  for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
767    if (CapturingScopeInfo *CSI =
768            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
769      if (CSI->CXXThisCaptureIndex != 0) {
770        // 'this' is already being captured; there isn't anything more to do.
771        break;
772      }
773      LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
774      if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
775        // This context can't implicitly capture 'this'; fail out.
776        if (BuildAndDiagnose)
777          Diag(Loc, diag::err_this_capture) << Explicit;
778        return true;
779      }
780      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
781          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
782          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
783          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
784          Explicit) {
785        // This closure can capture 'this'; continue looking upwards.
786        NumClosures++;
787        Explicit = false;
788        continue;
789      }
790      // This context can't implicitly capture 'this'; fail out.
791      if (BuildAndDiagnose)
792        Diag(Loc, diag::err_this_capture) << Explicit;
793      return true;
794    }
795    break;
796  }
797  if (!BuildAndDiagnose) return false;
798  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
799  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
800  // contexts.
801  for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
802      --idx, --NumClosures) {
803    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
804    Expr *ThisExpr = 0;
805    QualType ThisTy = getCurrentThisType();
806    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
807      // For lambda expressions, build a field and an initializing expression.
808      ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
809    else if (CapturedRegionScopeInfo *RSI
810        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
811      ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
812
813    bool isNested = NumClosures > 1;
814    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
815  }
816  return false;
817}
818
819ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
820  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
821  /// is a non-lvalue expression whose value is the address of the object for
822  /// which the function is called.
823
824  QualType ThisTy = getCurrentThisType();
825  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
826
827  CheckCXXThisCapture(Loc);
828  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
829}
830
831bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
832  // If we're outside the body of a member function, then we'll have a specified
833  // type for 'this'.
834  if (CXXThisTypeOverride.isNull())
835    return false;
836
837  // Determine whether we're looking into a class that's currently being
838  // defined.
839  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
840  return Class && Class->isBeingDefined();
841}
842
843ExprResult
844Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
845                                SourceLocation LParenLoc,
846                                MultiExprArg exprs,
847                                SourceLocation RParenLoc) {
848  if (!TypeRep)
849    return ExprError();
850
851  TypeSourceInfo *TInfo;
852  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
853  if (!TInfo)
854    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
855
856  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
857}
858
859/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
860/// Can be interpreted either as function-style casting ("int(x)")
861/// or class type construction ("ClassType(x,y,z)")
862/// or creation of a value-initialized type ("int()").
863ExprResult
864Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
865                                SourceLocation LParenLoc,
866                                MultiExprArg Exprs,
867                                SourceLocation RParenLoc) {
868  QualType Ty = TInfo->getType();
869  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
870
871  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
872    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
873                                                    LParenLoc,
874                                                    Exprs,
875                                                    RParenLoc));
876  }
877
878  bool ListInitialization = LParenLoc.isInvalid();
879  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
880         && "List initialization must have initializer list as expression.");
881  SourceRange FullRange = SourceRange(TyBeginLoc,
882      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
883
884  // C++ [expr.type.conv]p1:
885  // If the expression list is a single expression, the type conversion
886  // expression is equivalent (in definedness, and if defined in meaning) to the
887  // corresponding cast expression.
888  if (Exprs.size() == 1 && !ListInitialization) {
889    Expr *Arg = Exprs[0];
890    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
891  }
892
893  QualType ElemTy = Ty;
894  if (Ty->isArrayType()) {
895    if (!ListInitialization)
896      return ExprError(Diag(TyBeginLoc,
897                            diag::err_value_init_for_array_type) << FullRange);
898    ElemTy = Context.getBaseElementType(Ty);
899  }
900
901  if (!Ty->isVoidType() &&
902      RequireCompleteType(TyBeginLoc, ElemTy,
903                          diag::err_invalid_incomplete_type_use, FullRange))
904    return ExprError();
905
906  if (RequireNonAbstractType(TyBeginLoc, Ty,
907                             diag::err_allocation_of_abstract_type))
908    return ExprError();
909
910  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
911  InitializationKind Kind =
912      Exprs.size() ? ListInitialization
913      ? InitializationKind::CreateDirectList(TyBeginLoc)
914      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
915      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
916  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
917  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
918
919  if (Result.isInvalid() || !ListInitialization)
920    return Result;
921
922  Expr *Inner = Result.get();
923  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
924    Inner = BTE->getSubExpr();
925  if (isa<InitListExpr>(Inner)) {
926    // If the list-initialization doesn't involve a constructor call, we'll get
927    // the initializer-list (with corrected type) back, but that's not what we
928    // want, since it will be treated as an initializer list in further
929    // processing. Explicitly insert a cast here.
930    QualType ResultType = Result.get()->getType();
931    Result = Owned(CXXFunctionalCastExpr::Create(
932        Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
933        CK_NoOp, Result.take(), /*Path=*/ 0, LParenLoc, RParenLoc));
934  }
935
936  // FIXME: Improve AST representation?
937  return Result;
938}
939
940/// doesUsualArrayDeleteWantSize - Answers whether the usual
941/// operator delete[] for the given type has a size_t parameter.
942static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
943                                         QualType allocType) {
944  const RecordType *record =
945    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
946  if (!record) return false;
947
948  // Try to find an operator delete[] in class scope.
949
950  DeclarationName deleteName =
951    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
952  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
953  S.LookupQualifiedName(ops, record->getDecl());
954
955  // We're just doing this for information.
956  ops.suppressDiagnostics();
957
958  // Very likely: there's no operator delete[].
959  if (ops.empty()) return false;
960
961  // If it's ambiguous, it should be illegal to call operator delete[]
962  // on this thing, so it doesn't matter if we allocate extra space or not.
963  if (ops.isAmbiguous()) return false;
964
965  LookupResult::Filter filter = ops.makeFilter();
966  while (filter.hasNext()) {
967    NamedDecl *del = filter.next()->getUnderlyingDecl();
968
969    // C++0x [basic.stc.dynamic.deallocation]p2:
970    //   A template instance is never a usual deallocation function,
971    //   regardless of its signature.
972    if (isa<FunctionTemplateDecl>(del)) {
973      filter.erase();
974      continue;
975    }
976
977    // C++0x [basic.stc.dynamic.deallocation]p2:
978    //   If class T does not declare [an operator delete[] with one
979    //   parameter] but does declare a member deallocation function
980    //   named operator delete[] with exactly two parameters, the
981    //   second of which has type std::size_t, then this function
982    //   is a usual deallocation function.
983    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
984      filter.erase();
985      continue;
986    }
987  }
988  filter.done();
989
990  if (!ops.isSingleResult()) return false;
991
992  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
993  return (del->getNumParams() == 2);
994}
995
996/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
997///
998/// E.g.:
999/// @code new (memory) int[size][4] @endcode
1000/// or
1001/// @code ::new Foo(23, "hello") @endcode
1002///
1003/// \param StartLoc The first location of the expression.
1004/// \param UseGlobal True if 'new' was prefixed with '::'.
1005/// \param PlacementLParen Opening paren of the placement arguments.
1006/// \param PlacementArgs Placement new arguments.
1007/// \param PlacementRParen Closing paren of the placement arguments.
1008/// \param TypeIdParens If the type is in parens, the source range.
1009/// \param D The type to be allocated, as well as array dimensions.
1010/// \param Initializer The initializing expression or initializer-list, or null
1011///   if there is none.
1012ExprResult
1013Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1014                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1015                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1016                  Declarator &D, Expr *Initializer) {
1017  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1018
1019  Expr *ArraySize = 0;
1020  // If the specified type is an array, unwrap it and save the expression.
1021  if (D.getNumTypeObjects() > 0 &&
1022      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1023     DeclaratorChunk &Chunk = D.getTypeObject(0);
1024    if (TypeContainsAuto)
1025      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1026        << D.getSourceRange());
1027    if (Chunk.Arr.hasStatic)
1028      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1029        << D.getSourceRange());
1030    if (!Chunk.Arr.NumElts)
1031      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1032        << D.getSourceRange());
1033
1034    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1035    D.DropFirstTypeObject();
1036  }
1037
1038  // Every dimension shall be of constant size.
1039  if (ArraySize) {
1040    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1041      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1042        break;
1043
1044      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1045      if (Expr *NumElts = (Expr *)Array.NumElts) {
1046        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1047          if (getLangOpts().CPlusPlus1y) {
1048	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1049	    //   shall be a converted constant expression (5.19) of type std::size_t
1050	    //   and shall evaluate to a strictly positive value.
1051            unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1052            assert(IntWidth && "Builtin type of size 0?");
1053            llvm::APSInt Value(IntWidth);
1054            Array.NumElts
1055             = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1056                                                CCEK_NewExpr)
1057                 .take();
1058          } else {
1059            Array.NumElts
1060              = VerifyIntegerConstantExpression(NumElts, 0,
1061                                                diag::err_new_array_nonconst)
1062                  .take();
1063          }
1064          if (!Array.NumElts)
1065            return ExprError();
1066        }
1067      }
1068    }
1069  }
1070
1071  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1072  QualType AllocType = TInfo->getType();
1073  if (D.isInvalidType())
1074    return ExprError();
1075
1076  SourceRange DirectInitRange;
1077  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1078    DirectInitRange = List->getSourceRange();
1079
1080  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1081                     PlacementLParen,
1082                     PlacementArgs,
1083                     PlacementRParen,
1084                     TypeIdParens,
1085                     AllocType,
1086                     TInfo,
1087                     ArraySize,
1088                     DirectInitRange,
1089                     Initializer,
1090                     TypeContainsAuto);
1091}
1092
1093static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1094                                       Expr *Init) {
1095  if (!Init)
1096    return true;
1097  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1098    return PLE->getNumExprs() == 0;
1099  if (isa<ImplicitValueInitExpr>(Init))
1100    return true;
1101  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1102    return !CCE->isListInitialization() &&
1103           CCE->getConstructor()->isDefaultConstructor();
1104  else if (Style == CXXNewExpr::ListInit) {
1105    assert(isa<InitListExpr>(Init) &&
1106           "Shouldn't create list CXXConstructExprs for arrays.");
1107    return true;
1108  }
1109  return false;
1110}
1111
1112ExprResult
1113Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1114                  SourceLocation PlacementLParen,
1115                  MultiExprArg PlacementArgs,
1116                  SourceLocation PlacementRParen,
1117                  SourceRange TypeIdParens,
1118                  QualType AllocType,
1119                  TypeSourceInfo *AllocTypeInfo,
1120                  Expr *ArraySize,
1121                  SourceRange DirectInitRange,
1122                  Expr *Initializer,
1123                  bool TypeMayContainAuto) {
1124  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1125  SourceLocation StartLoc = Range.getBegin();
1126
1127  CXXNewExpr::InitializationStyle initStyle;
1128  if (DirectInitRange.isValid()) {
1129    assert(Initializer && "Have parens but no initializer.");
1130    initStyle = CXXNewExpr::CallInit;
1131  } else if (Initializer && isa<InitListExpr>(Initializer))
1132    initStyle = CXXNewExpr::ListInit;
1133  else {
1134    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1135            isa<CXXConstructExpr>(Initializer)) &&
1136           "Initializer expression that cannot have been implicitly created.");
1137    initStyle = CXXNewExpr::NoInit;
1138  }
1139
1140  Expr **Inits = &Initializer;
1141  unsigned NumInits = Initializer ? 1 : 0;
1142  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1143    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1144    Inits = List->getExprs();
1145    NumInits = List->getNumExprs();
1146  }
1147
1148  // Determine whether we've already built the initializer.
1149  bool HaveCompleteInit = false;
1150  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1151      !isa<CXXTemporaryObjectExpr>(Initializer))
1152    HaveCompleteInit = true;
1153  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1154    HaveCompleteInit = true;
1155
1156  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1157  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1158    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1159      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1160                       << AllocType << TypeRange);
1161    if (initStyle == CXXNewExpr::ListInit)
1162      return ExprError(Diag(Inits[0]->getLocStart(),
1163                            diag::err_auto_new_requires_parens)
1164                       << AllocType << TypeRange);
1165    if (NumInits > 1) {
1166      Expr *FirstBad = Inits[1];
1167      return ExprError(Diag(FirstBad->getLocStart(),
1168                            diag::err_auto_new_ctor_multiple_expressions)
1169                       << AllocType << TypeRange);
1170    }
1171    Expr *Deduce = Inits[0];
1172    QualType DeducedType;
1173    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1174      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1175                       << AllocType << Deduce->getType()
1176                       << TypeRange << Deduce->getSourceRange());
1177    if (DeducedType.isNull())
1178      return ExprError();
1179    AllocType = DeducedType;
1180  }
1181
1182  // Per C++0x [expr.new]p5, the type being constructed may be a
1183  // typedef of an array type.
1184  if (!ArraySize) {
1185    if (const ConstantArrayType *Array
1186                              = Context.getAsConstantArrayType(AllocType)) {
1187      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1188                                         Context.getSizeType(),
1189                                         TypeRange.getEnd());
1190      AllocType = Array->getElementType();
1191    }
1192  }
1193
1194  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1195    return ExprError();
1196
1197  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1198    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1199         diag::warn_dangling_std_initializer_list)
1200        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1201  }
1202
1203  // In ARC, infer 'retaining' for the allocated
1204  if (getLangOpts().ObjCAutoRefCount &&
1205      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1206      AllocType->isObjCLifetimeType()) {
1207    AllocType = Context.getLifetimeQualifiedType(AllocType,
1208                                    AllocType->getObjCARCImplicitLifetime());
1209  }
1210
1211  QualType ResultType = Context.getPointerType(AllocType);
1212
1213  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1214    ExprResult result = CheckPlaceholderExpr(ArraySize);
1215    if (result.isInvalid()) return ExprError();
1216    ArraySize = result.take();
1217  }
1218  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1219  //   integral or enumeration type with a non-negative value."
1220  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1221  //   enumeration type, or a class type for which a single non-explicit
1222  //   conversion function to integral or unscoped enumeration type exists.
1223  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1224  //   std::size_t.
1225  if (ArraySize && !ArraySize->isTypeDependent()) {
1226    ExprResult ConvertedSize;
1227    if (getLangOpts().CPlusPlus1y) {
1228      unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1229      assert(IntWidth && "Builtin type of size 0?");
1230      llvm::APSInt Value(IntWidth);
1231      ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1232						AA_Converting);
1233
1234      if (!ConvertedSize.isInvalid() &&
1235          ArraySize->getType()->getAs<RecordType>())
1236        // Diagnose the compatibility of this conversion.
1237        Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1238          << ArraySize->getType() << 0 << "'size_t'";
1239    } else {
1240      class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1241      protected:
1242        Expr *ArraySize;
1243
1244      public:
1245        SizeConvertDiagnoser(Expr *ArraySize)
1246            : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1247              ArraySize(ArraySize) {}
1248
1249        virtual SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1250                                                     QualType T) {
1251          return S.Diag(Loc, diag::err_array_size_not_integral)
1252                   << S.getLangOpts().CPlusPlus11 << T;
1253        }
1254
1255        virtual SemaDiagnosticBuilder diagnoseIncomplete(
1256            Sema &S, SourceLocation Loc, QualType T) {
1257          return S.Diag(Loc, diag::err_array_size_incomplete_type)
1258                   << T << ArraySize->getSourceRange();
1259        }
1260
1261        virtual SemaDiagnosticBuilder diagnoseExplicitConv(
1262            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1263          return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1264        }
1265
1266        virtual SemaDiagnosticBuilder noteExplicitConv(
1267            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1268          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1269                   << ConvTy->isEnumeralType() << ConvTy;
1270        }
1271
1272        virtual SemaDiagnosticBuilder diagnoseAmbiguous(
1273            Sema &S, SourceLocation Loc, QualType T) {
1274          return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1275        }
1276
1277        virtual SemaDiagnosticBuilder noteAmbiguous(
1278            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) {
1279          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1280                   << ConvTy->isEnumeralType() << ConvTy;
1281        }
1282
1283        virtual SemaDiagnosticBuilder diagnoseConversion(
1284            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) {
1285          return S.Diag(Loc,
1286                        S.getLangOpts().CPlusPlus11
1287                          ? diag::warn_cxx98_compat_array_size_conversion
1288                          : diag::ext_array_size_conversion)
1289                   << T << ConvTy->isEnumeralType() << ConvTy;
1290        }
1291      } SizeDiagnoser(ArraySize);
1292
1293      ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1294                                                          SizeDiagnoser);
1295    }
1296    if (ConvertedSize.isInvalid())
1297      return ExprError();
1298
1299    ArraySize = ConvertedSize.take();
1300    QualType SizeType = ArraySize->getType();
1301
1302    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1303      return ExprError();
1304
1305    // C++98 [expr.new]p7:
1306    //   The expression in a direct-new-declarator shall have integral type
1307    //   with a non-negative value.
1308    //
1309    // Let's see if this is a constant < 0. If so, we reject it out of
1310    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1311    // array type.
1312    //
1313    // Note: such a construct has well-defined semantics in C++11: it throws
1314    // std::bad_array_new_length.
1315    if (!ArraySize->isValueDependent()) {
1316      llvm::APSInt Value;
1317      // We've already performed any required implicit conversion to integer or
1318      // unscoped enumeration type.
1319      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1320        if (Value < llvm::APSInt(
1321                        llvm::APInt::getNullValue(Value.getBitWidth()),
1322                                 Value.isUnsigned())) {
1323          if (getLangOpts().CPlusPlus11)
1324            Diag(ArraySize->getLocStart(),
1325                 diag::warn_typecheck_negative_array_new_size)
1326              << ArraySize->getSourceRange();
1327          else
1328            return ExprError(Diag(ArraySize->getLocStart(),
1329                                  diag::err_typecheck_negative_array_size)
1330                             << ArraySize->getSourceRange());
1331        } else if (!AllocType->isDependentType()) {
1332          unsigned ActiveSizeBits =
1333            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1334          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1335            if (getLangOpts().CPlusPlus11)
1336              Diag(ArraySize->getLocStart(),
1337                   diag::warn_array_new_too_large)
1338                << Value.toString(10)
1339                << ArraySize->getSourceRange();
1340            else
1341              return ExprError(Diag(ArraySize->getLocStart(),
1342                                    diag::err_array_too_large)
1343                               << Value.toString(10)
1344                               << ArraySize->getSourceRange());
1345          }
1346        }
1347      } else if (TypeIdParens.isValid()) {
1348        // Can't have dynamic array size when the type-id is in parentheses.
1349        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1350          << ArraySize->getSourceRange()
1351          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1352          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1353
1354        TypeIdParens = SourceRange();
1355      }
1356    }
1357
1358    // Note that we do *not* convert the argument in any way.  It can
1359    // be signed, larger than size_t, whatever.
1360  }
1361
1362  FunctionDecl *OperatorNew = 0;
1363  FunctionDecl *OperatorDelete = 0;
1364
1365  if (!AllocType->isDependentType() &&
1366      !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1367      FindAllocationFunctions(StartLoc,
1368                              SourceRange(PlacementLParen, PlacementRParen),
1369                              UseGlobal, AllocType, ArraySize, PlacementArgs,
1370                              OperatorNew, OperatorDelete))
1371    return ExprError();
1372
1373  // If this is an array allocation, compute whether the usual array
1374  // deallocation function for the type has a size_t parameter.
1375  bool UsualArrayDeleteWantsSize = false;
1376  if (ArraySize && !AllocType->isDependentType())
1377    UsualArrayDeleteWantsSize
1378      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1379
1380  SmallVector<Expr *, 8> AllPlaceArgs;
1381  if (OperatorNew) {
1382    // Add default arguments, if any.
1383    const FunctionProtoType *Proto =
1384      OperatorNew->getType()->getAs<FunctionProtoType>();
1385    VariadicCallType CallType =
1386      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1387
1388    if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1389                               PlacementArgs, AllPlaceArgs, CallType))
1390      return ExprError();
1391
1392    if (!AllPlaceArgs.empty())
1393      PlacementArgs = AllPlaceArgs;
1394
1395    DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1396
1397    // FIXME: Missing call to CheckFunctionCall or equivalent
1398  }
1399
1400  // Warn if the type is over-aligned and is being allocated by global operator
1401  // new.
1402  if (PlacementArgs.empty() && OperatorNew &&
1403      (OperatorNew->isImplicit() ||
1404       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1405    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1406      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1407      if (Align > SuitableAlign)
1408        Diag(StartLoc, diag::warn_overaligned_type)
1409            << AllocType
1410            << unsigned(Align / Context.getCharWidth())
1411            << unsigned(SuitableAlign / Context.getCharWidth());
1412    }
1413  }
1414
1415  QualType InitType = AllocType;
1416  // Array 'new' can't have any initializers except empty parentheses.
1417  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1418  // dialect distinction.
1419  if (ResultType->isArrayType() || ArraySize) {
1420    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1421      SourceRange InitRange(Inits[0]->getLocStart(),
1422                            Inits[NumInits - 1]->getLocEnd());
1423      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1424      return ExprError();
1425    }
1426    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1427      // We do the initialization typechecking against the array type
1428      // corresponding to the number of initializers + 1 (to also check
1429      // default-initialization).
1430      unsigned NumElements = ILE->getNumInits() + 1;
1431      InitType = Context.getConstantArrayType(AllocType,
1432          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1433                                              ArrayType::Normal, 0);
1434    }
1435  }
1436
1437  // If we can perform the initialization, and we've not already done so,
1438  // do it now.
1439  if (!AllocType->isDependentType() &&
1440      !Expr::hasAnyTypeDependentArguments(
1441        llvm::makeArrayRef(Inits, NumInits)) &&
1442      !HaveCompleteInit) {
1443    // C++11 [expr.new]p15:
1444    //   A new-expression that creates an object of type T initializes that
1445    //   object as follows:
1446    InitializationKind Kind
1447    //     - If the new-initializer is omitted, the object is default-
1448    //       initialized (8.5); if no initialization is performed,
1449    //       the object has indeterminate value
1450      = initStyle == CXXNewExpr::NoInit
1451          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1452    //     - Otherwise, the new-initializer is interpreted according to the
1453    //       initialization rules of 8.5 for direct-initialization.
1454          : initStyle == CXXNewExpr::ListInit
1455              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1456              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1457                                                 DirectInitRange.getBegin(),
1458                                                 DirectInitRange.getEnd());
1459
1460    InitializedEntity Entity
1461      = InitializedEntity::InitializeNew(StartLoc, InitType);
1462    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1463    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1464                                          MultiExprArg(Inits, NumInits));
1465    if (FullInit.isInvalid())
1466      return ExprError();
1467
1468    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1469    // we don't want the initialized object to be destructed.
1470    if (CXXBindTemporaryExpr *Binder =
1471            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1472      FullInit = Owned(Binder->getSubExpr());
1473
1474    Initializer = FullInit.take();
1475  }
1476
1477  // Mark the new and delete operators as referenced.
1478  if (OperatorNew) {
1479    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1480      return ExprError();
1481    MarkFunctionReferenced(StartLoc, OperatorNew);
1482  }
1483  if (OperatorDelete) {
1484    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1485      return ExprError();
1486    MarkFunctionReferenced(StartLoc, OperatorDelete);
1487  }
1488
1489  // C++0x [expr.new]p17:
1490  //   If the new expression creates an array of objects of class type,
1491  //   access and ambiguity control are done for the destructor.
1492  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1493  if (ArraySize && !BaseAllocType->isDependentType()) {
1494    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1495      if (CXXDestructorDecl *dtor = LookupDestructor(
1496              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1497        MarkFunctionReferenced(StartLoc, dtor);
1498        CheckDestructorAccess(StartLoc, dtor,
1499                              PDiag(diag::err_access_dtor)
1500                                << BaseAllocType);
1501        if (DiagnoseUseOfDecl(dtor, StartLoc))
1502          return ExprError();
1503      }
1504    }
1505  }
1506
1507  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1508                                        OperatorDelete,
1509                                        UsualArrayDeleteWantsSize,
1510                                        PlacementArgs, TypeIdParens,
1511                                        ArraySize, initStyle, Initializer,
1512                                        ResultType, AllocTypeInfo,
1513                                        Range, DirectInitRange));
1514}
1515
1516/// \brief Checks that a type is suitable as the allocated type
1517/// in a new-expression.
1518bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1519                              SourceRange R) {
1520  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1521  //   abstract class type or array thereof.
1522  if (AllocType->isFunctionType())
1523    return Diag(Loc, diag::err_bad_new_type)
1524      << AllocType << 0 << R;
1525  else if (AllocType->isReferenceType())
1526    return Diag(Loc, diag::err_bad_new_type)
1527      << AllocType << 1 << R;
1528  else if (!AllocType->isDependentType() &&
1529           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1530    return true;
1531  else if (RequireNonAbstractType(Loc, AllocType,
1532                                  diag::err_allocation_of_abstract_type))
1533    return true;
1534  else if (AllocType->isVariablyModifiedType())
1535    return Diag(Loc, diag::err_variably_modified_new_type)
1536             << AllocType;
1537  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1538    return Diag(Loc, diag::err_address_space_qualified_new)
1539      << AllocType.getUnqualifiedType() << AddressSpace;
1540  else if (getLangOpts().ObjCAutoRefCount) {
1541    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1542      QualType BaseAllocType = Context.getBaseElementType(AT);
1543      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1544          BaseAllocType->isObjCLifetimeType())
1545        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1546          << BaseAllocType;
1547    }
1548  }
1549
1550  return false;
1551}
1552
1553/// \brief Determine whether the given function is a non-placement
1554/// deallocation function.
1555static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1556  if (FD->isInvalidDecl())
1557    return false;
1558
1559  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1560    return Method->isUsualDeallocationFunction();
1561
1562  if (FD->getOverloadedOperator() != OO_Delete &&
1563      FD->getOverloadedOperator() != OO_Array_Delete)
1564    return false;
1565
1566  if (FD->getNumParams() == 1)
1567    return true;
1568
1569  return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1570         S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1571                                          S.Context.getSizeType());
1572}
1573
1574/// FindAllocationFunctions - Finds the overloads of operator new and delete
1575/// that are appropriate for the allocation.
1576bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1577                                   bool UseGlobal, QualType AllocType,
1578                                   bool IsArray, MultiExprArg PlaceArgs,
1579                                   FunctionDecl *&OperatorNew,
1580                                   FunctionDecl *&OperatorDelete) {
1581  // --- Choosing an allocation function ---
1582  // C++ 5.3.4p8 - 14 & 18
1583  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1584  //   in the scope of the allocated class.
1585  // 2) If an array size is given, look for operator new[], else look for
1586  //   operator new.
1587  // 3) The first argument is always size_t. Append the arguments from the
1588  //   placement form.
1589
1590  SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1591  // We don't care about the actual value of this argument.
1592  // FIXME: Should the Sema create the expression and embed it in the syntax
1593  // tree? Or should the consumer just recalculate the value?
1594  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1595                      Context.getTargetInfo().getPointerWidth(0)),
1596                      Context.getSizeType(),
1597                      SourceLocation());
1598  AllocArgs[0] = &Size;
1599  std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1600
1601  // C++ [expr.new]p8:
1602  //   If the allocated type is a non-array type, the allocation
1603  //   function's name is operator new and the deallocation function's
1604  //   name is operator delete. If the allocated type is an array
1605  //   type, the allocation function's name is operator new[] and the
1606  //   deallocation function's name is operator delete[].
1607  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1608                                        IsArray ? OO_Array_New : OO_New);
1609  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1610                                        IsArray ? OO_Array_Delete : OO_Delete);
1611
1612  QualType AllocElemType = Context.getBaseElementType(AllocType);
1613
1614  if (AllocElemType->isRecordType() && !UseGlobal) {
1615    CXXRecordDecl *Record
1616      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1617    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1618                               /*AllowMissing=*/true, OperatorNew))
1619      return true;
1620  }
1621
1622  if (!OperatorNew) {
1623    // Didn't find a member overload. Look for a global one.
1624    DeclareGlobalNewDelete();
1625    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1626    bool FallbackEnabled = IsArray && Context.getLangOpts().MicrosoftMode;
1627    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1628                               /*AllowMissing=*/FallbackEnabled, OperatorNew,
1629                               /*Diagnose=*/!FallbackEnabled)) {
1630      if (!FallbackEnabled)
1631        return true;
1632
1633      // MSVC will fall back on trying to find a matching global operator new
1634      // if operator new[] cannot be found.  Also, MSVC will leak by not
1635      // generating a call to operator delete or operator delete[], but we
1636      // will not replicate that bug.
1637      NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1638      DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1639      if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1640                               /*AllowMissing=*/false, OperatorNew))
1641      return true;
1642    }
1643  }
1644
1645  // We don't need an operator delete if we're running under
1646  // -fno-exceptions.
1647  if (!getLangOpts().Exceptions) {
1648    OperatorDelete = 0;
1649    return false;
1650  }
1651
1652  // FindAllocationOverload can change the passed in arguments, so we need to
1653  // copy them back.
1654  if (!PlaceArgs.empty())
1655    std::copy(AllocArgs.begin() + 1, AllocArgs.end(), PlaceArgs.data());
1656
1657  // C++ [expr.new]p19:
1658  //
1659  //   If the new-expression begins with a unary :: operator, the
1660  //   deallocation function's name is looked up in the global
1661  //   scope. Otherwise, if the allocated type is a class type T or an
1662  //   array thereof, the deallocation function's name is looked up in
1663  //   the scope of T. If this lookup fails to find the name, or if
1664  //   the allocated type is not a class type or array thereof, the
1665  //   deallocation function's name is looked up in the global scope.
1666  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1667  if (AllocElemType->isRecordType() && !UseGlobal) {
1668    CXXRecordDecl *RD
1669      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1670    LookupQualifiedName(FoundDelete, RD);
1671  }
1672  if (FoundDelete.isAmbiguous())
1673    return true; // FIXME: clean up expressions?
1674
1675  if (FoundDelete.empty()) {
1676    DeclareGlobalNewDelete();
1677    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1678  }
1679
1680  FoundDelete.suppressDiagnostics();
1681
1682  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1683
1684  // Whether we're looking for a placement operator delete is dictated
1685  // by whether we selected a placement operator new, not by whether
1686  // we had explicit placement arguments.  This matters for things like
1687  //   struct A { void *operator new(size_t, int = 0); ... };
1688  //   A *a = new A()
1689  bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1690
1691  if (isPlacementNew) {
1692    // C++ [expr.new]p20:
1693    //   A declaration of a placement deallocation function matches the
1694    //   declaration of a placement allocation function if it has the
1695    //   same number of parameters and, after parameter transformations
1696    //   (8.3.5), all parameter types except the first are
1697    //   identical. [...]
1698    //
1699    // To perform this comparison, we compute the function type that
1700    // the deallocation function should have, and use that type both
1701    // for template argument deduction and for comparison purposes.
1702    //
1703    // FIXME: this comparison should ignore CC and the like.
1704    QualType ExpectedFunctionType;
1705    {
1706      const FunctionProtoType *Proto
1707        = OperatorNew->getType()->getAs<FunctionProtoType>();
1708
1709      SmallVector<QualType, 4> ArgTypes;
1710      ArgTypes.push_back(Context.VoidPtrTy);
1711      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1712        ArgTypes.push_back(Proto->getArgType(I));
1713
1714      FunctionProtoType::ExtProtoInfo EPI;
1715      EPI.Variadic = Proto->isVariadic();
1716
1717      ExpectedFunctionType
1718        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1719    }
1720
1721    for (LookupResult::iterator D = FoundDelete.begin(),
1722                             DEnd = FoundDelete.end();
1723         D != DEnd; ++D) {
1724      FunctionDecl *Fn = 0;
1725      if (FunctionTemplateDecl *FnTmpl
1726            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1727        // Perform template argument deduction to try to match the
1728        // expected function type.
1729        TemplateDeductionInfo Info(StartLoc);
1730        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1731          continue;
1732      } else
1733        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1734
1735      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1736        Matches.push_back(std::make_pair(D.getPair(), Fn));
1737    }
1738  } else {
1739    // C++ [expr.new]p20:
1740    //   [...] Any non-placement deallocation function matches a
1741    //   non-placement allocation function. [...]
1742    for (LookupResult::iterator D = FoundDelete.begin(),
1743                             DEnd = FoundDelete.end();
1744         D != DEnd; ++D) {
1745      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1746        if (isNonPlacementDeallocationFunction(*this, Fn))
1747          Matches.push_back(std::make_pair(D.getPair(), Fn));
1748    }
1749
1750    // C++1y [expr.new]p22:
1751    //   For a non-placement allocation function, the normal deallocation
1752    //   function lookup is used
1753    // C++1y [expr.delete]p?:
1754    //   If [...] deallocation function lookup finds both a usual deallocation
1755    //   function with only a pointer parameter and a usual deallocation
1756    //   function with both a pointer parameter and a size parameter, then the
1757    //   selected deallocation function shall be the one with two parameters.
1758    //   Otherwise, the selected deallocation function shall be the function
1759    //   with one parameter.
1760    if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1761      if (Matches[0].second->getNumParams() == 1)
1762        Matches.erase(Matches.begin());
1763      else
1764        Matches.erase(Matches.begin() + 1);
1765      assert(Matches[0].second->getNumParams() == 2 &&
1766             "found an unexpected uusal deallocation function");
1767    }
1768  }
1769
1770  // C++ [expr.new]p20:
1771  //   [...] If the lookup finds a single matching deallocation
1772  //   function, that function will be called; otherwise, no
1773  //   deallocation function will be called.
1774  if (Matches.size() == 1) {
1775    OperatorDelete = Matches[0].second;
1776
1777    // C++0x [expr.new]p20:
1778    //   If the lookup finds the two-parameter form of a usual
1779    //   deallocation function (3.7.4.2) and that function, considered
1780    //   as a placement deallocation function, would have been
1781    //   selected as a match for the allocation function, the program
1782    //   is ill-formed.
1783    if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1784        isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1785      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1786        << SourceRange(PlaceArgs.front()->getLocStart(),
1787                       PlaceArgs.back()->getLocEnd());
1788      if (!OperatorDelete->isImplicit())
1789        Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1790          << DeleteName;
1791    } else {
1792      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1793                            Matches[0].first);
1794    }
1795  }
1796
1797  return false;
1798}
1799
1800/// FindAllocationOverload - Find an fitting overload for the allocation
1801/// function in the specified scope.
1802bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1803                                  DeclarationName Name, MultiExprArg Args,
1804                                  DeclContext *Ctx,
1805                                  bool AllowMissing, FunctionDecl *&Operator,
1806                                  bool Diagnose) {
1807  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1808  LookupQualifiedName(R, Ctx);
1809  if (R.empty()) {
1810    if (AllowMissing || !Diagnose)
1811      return false;
1812    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1813      << Name << Range;
1814  }
1815
1816  if (R.isAmbiguous())
1817    return true;
1818
1819  R.suppressDiagnostics();
1820
1821  OverloadCandidateSet Candidates(StartLoc);
1822  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1823       Alloc != AllocEnd; ++Alloc) {
1824    // Even member operator new/delete are implicitly treated as
1825    // static, so don't use AddMemberCandidate.
1826    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1827
1828    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1829      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1830                                   /*ExplicitTemplateArgs=*/0,
1831                                   Args, Candidates,
1832                                   /*SuppressUserConversions=*/false);
1833      continue;
1834    }
1835
1836    FunctionDecl *Fn = cast<FunctionDecl>(D);
1837    AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1838                         /*SuppressUserConversions=*/false);
1839  }
1840
1841  // Do the resolution.
1842  OverloadCandidateSet::iterator Best;
1843  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1844  case OR_Success: {
1845    // Got one!
1846    FunctionDecl *FnDecl = Best->Function;
1847    MarkFunctionReferenced(StartLoc, FnDecl);
1848    // The first argument is size_t, and the first parameter must be size_t,
1849    // too. This is checked on declaration and can be assumed. (It can't be
1850    // asserted on, though, since invalid decls are left in there.)
1851    // Watch out for variadic allocator function.
1852    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1853    for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
1854      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1855                                                       FnDecl->getParamDecl(i));
1856
1857      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1858        return true;
1859
1860      ExprResult Result
1861        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1862      if (Result.isInvalid())
1863        return true;
1864
1865      Args[i] = Result.takeAs<Expr>();
1866    }
1867
1868    Operator = FnDecl;
1869
1870    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1871                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1872      return true;
1873
1874    return false;
1875  }
1876
1877  case OR_No_Viable_Function:
1878    if (Diagnose) {
1879      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1880        << Name << Range;
1881      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1882    }
1883    return true;
1884
1885  case OR_Ambiguous:
1886    if (Diagnose) {
1887      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1888        << Name << Range;
1889      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1890    }
1891    return true;
1892
1893  case OR_Deleted: {
1894    if (Diagnose) {
1895      Diag(StartLoc, diag::err_ovl_deleted_call)
1896        << Best->Function->isDeleted()
1897        << Name
1898        << getDeletedOrUnavailableSuffix(Best->Function)
1899        << Range;
1900      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1901    }
1902    return true;
1903  }
1904  }
1905  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1906}
1907
1908
1909/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1910/// delete. These are:
1911/// @code
1912///   // C++03:
1913///   void* operator new(std::size_t) throw(std::bad_alloc);
1914///   void* operator new[](std::size_t) throw(std::bad_alloc);
1915///   void operator delete(void *) throw();
1916///   void operator delete[](void *) throw();
1917///   // C++11:
1918///   void* operator new(std::size_t);
1919///   void* operator new[](std::size_t);
1920///   void operator delete(void *) noexcept;
1921///   void operator delete[](void *) noexcept;
1922///   // C++1y:
1923///   void* operator new(std::size_t);
1924///   void* operator new[](std::size_t);
1925///   void operator delete(void *) noexcept;
1926///   void operator delete[](void *) noexcept;
1927///   void operator delete(void *, std::size_t) noexcept;
1928///   void operator delete[](void *, std::size_t) noexcept;
1929/// @endcode
1930/// Note that the placement and nothrow forms of new are *not* implicitly
1931/// declared. Their use requires including \<new\>.
1932void Sema::DeclareGlobalNewDelete() {
1933  if (GlobalNewDeleteDeclared)
1934    return;
1935
1936  // C++ [basic.std.dynamic]p2:
1937  //   [...] The following allocation and deallocation functions (18.4) are
1938  //   implicitly declared in global scope in each translation unit of a
1939  //   program
1940  //
1941  //     C++03:
1942  //     void* operator new(std::size_t) throw(std::bad_alloc);
1943  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1944  //     void  operator delete(void*) throw();
1945  //     void  operator delete[](void*) throw();
1946  //     C++11:
1947  //     void* operator new(std::size_t);
1948  //     void* operator new[](std::size_t);
1949  //     void  operator delete(void*) noexcept;
1950  //     void  operator delete[](void*) noexcept;
1951  //     C++1y:
1952  //     void* operator new(std::size_t);
1953  //     void* operator new[](std::size_t);
1954  //     void  operator delete(void*) noexcept;
1955  //     void  operator delete[](void*) noexcept;
1956  //     void  operator delete(void*, std::size_t) noexcept;
1957  //     void  operator delete[](void*, std::size_t) noexcept;
1958  //
1959  //   These implicit declarations introduce only the function names operator
1960  //   new, operator new[], operator delete, operator delete[].
1961  //
1962  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1963  // "std" or "bad_alloc" as necessary to form the exception specification.
1964  // However, we do not make these implicit declarations visible to name
1965  // lookup.
1966  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1967    // The "std::bad_alloc" class has not yet been declared, so build it
1968    // implicitly.
1969    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1970                                        getOrCreateStdNamespace(),
1971                                        SourceLocation(), SourceLocation(),
1972                                      &PP.getIdentifierTable().get("bad_alloc"),
1973                                        0);
1974    getStdBadAlloc()->setImplicit(true);
1975  }
1976
1977  GlobalNewDeleteDeclared = true;
1978
1979  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1980  QualType SizeT = Context.getSizeType();
1981  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1982
1983  DeclareGlobalAllocationFunction(
1984      Context.DeclarationNames.getCXXOperatorName(OO_New),
1985      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
1986  DeclareGlobalAllocationFunction(
1987      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1988      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
1989  DeclareGlobalAllocationFunction(
1990      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1991      Context.VoidTy, VoidPtr);
1992  DeclareGlobalAllocationFunction(
1993      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1994      Context.VoidTy, VoidPtr);
1995  if (getLangOpts().SizedDeallocation) {
1996    DeclareGlobalAllocationFunction(
1997        Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1998        Context.VoidTy, VoidPtr, Context.getSizeType());
1999    DeclareGlobalAllocationFunction(
2000        Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2001        Context.VoidTy, VoidPtr, Context.getSizeType());
2002  }
2003}
2004
2005/// DeclareGlobalAllocationFunction - Declares a single implicit global
2006/// allocation function if it doesn't already exist.
2007void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2008                                           QualType Return,
2009                                           QualType Param1, QualType Param2,
2010                                           bool AddMallocAttr) {
2011  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2012  unsigned NumParams = Param2.isNull() ? 1 : 2;
2013
2014  // Check if this function is already declared.
2015  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2016  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2017       Alloc != AllocEnd; ++Alloc) {
2018    // Only look at non-template functions, as it is the predefined,
2019    // non-templated allocation function we are trying to declare here.
2020    if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2021      if (Func->getNumParams() == NumParams) {
2022        QualType InitialParam1Type =
2023            Context.getCanonicalType(Func->getParamDecl(0)
2024                                         ->getType().getUnqualifiedType());
2025        QualType InitialParam2Type =
2026            NumParams == 2
2027                ? Context.getCanonicalType(Func->getParamDecl(1)
2028                                               ->getType().getUnqualifiedType())
2029                : QualType();
2030        // FIXME: Do we need to check for default arguments here?
2031        if (InitialParam1Type == Param1 &&
2032            (NumParams == 1 || InitialParam2Type == Param2)) {
2033          if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
2034            Func->addAttr(::new (Context) MallocAttr(SourceLocation(),
2035                                                     Context));
2036          // Make the function visible to name lookup, even if we found it in
2037          // an unimported module. It either is an implicitly-declared global
2038          // allocation function, or is suppressing that function.
2039          Func->setHidden(false);
2040          return;
2041        }
2042      }
2043    }
2044  }
2045
2046  QualType BadAllocType;
2047  bool HasBadAllocExceptionSpec
2048    = (Name.getCXXOverloadedOperator() == OO_New ||
2049       Name.getCXXOverloadedOperator() == OO_Array_New);
2050  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
2051    assert(StdBadAlloc && "Must have std::bad_alloc declared");
2052    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2053  }
2054
2055  FunctionProtoType::ExtProtoInfo EPI;
2056  if (HasBadAllocExceptionSpec) {
2057    if (!getLangOpts().CPlusPlus11) {
2058      EPI.ExceptionSpecType = EST_Dynamic;
2059      EPI.NumExceptions = 1;
2060      EPI.Exceptions = &BadAllocType;
2061    }
2062  } else {
2063    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
2064                                EST_BasicNoexcept : EST_DynamicNone;
2065  }
2066
2067  QualType Params[] = { Param1, Param2 };
2068
2069  QualType FnType = Context.getFunctionType(
2070      Return, ArrayRef<QualType>(Params, NumParams), EPI);
2071  FunctionDecl *Alloc =
2072    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2073                         SourceLocation(), Name,
2074                         FnType, /*TInfo=*/0, SC_None, false, true);
2075  Alloc->setImplicit();
2076
2077  if (AddMallocAttr)
2078    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
2079
2080  ParmVarDecl *ParamDecls[2];
2081  for (unsigned I = 0; I != NumParams; ++I)
2082    ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2083                                        SourceLocation(), 0,
2084                                        Params[I], /*TInfo=*/0,
2085                                        SC_None, 0);
2086  Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
2087
2088  // FIXME: Also add this declaration to the IdentifierResolver, but
2089  // make sure it is at the end of the chain to coincide with the
2090  // global scope.
2091  Context.getTranslationUnitDecl()->addDecl(Alloc);
2092}
2093
2094FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2095                                                  bool CanProvideSize,
2096                                                  DeclarationName Name) {
2097  DeclareGlobalNewDelete();
2098
2099  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2100  LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2101
2102  // C++ [expr.new]p20:
2103  //   [...] Any non-placement deallocation function matches a
2104  //   non-placement allocation function. [...]
2105  llvm::SmallVector<FunctionDecl*, 2> Matches;
2106  for (LookupResult::iterator D = FoundDelete.begin(),
2107                           DEnd = FoundDelete.end();
2108       D != DEnd; ++D) {
2109    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2110      if (isNonPlacementDeallocationFunction(*this, Fn))
2111        Matches.push_back(Fn);
2112  }
2113
2114  // C++1y [expr.delete]p?:
2115  //   If the type is complete and deallocation function lookup finds both a
2116  //   usual deallocation function with only a pointer parameter and a usual
2117  //   deallocation function with both a pointer parameter and a size
2118  //   parameter, then the selected deallocation function shall be the one
2119  //   with two parameters.  Otherwise, the selected deallocation function
2120  //   shall be the function with one parameter.
2121  if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2122    unsigned NumArgs = CanProvideSize ? 2 : 1;
2123    if (Matches[0]->getNumParams() != NumArgs)
2124      Matches.erase(Matches.begin());
2125    else
2126      Matches.erase(Matches.begin() + 1);
2127    assert(Matches[0]->getNumParams() == NumArgs &&
2128           "found an unexpected uusal deallocation function");
2129  }
2130
2131  assert(Matches.size() == 1 &&
2132         "unexpectedly have multiple usual deallocation functions");
2133  return Matches.front();
2134}
2135
2136bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2137                                    DeclarationName Name,
2138                                    FunctionDecl* &Operator, bool Diagnose) {
2139  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2140  // Try to find operator delete/operator delete[] in class scope.
2141  LookupQualifiedName(Found, RD);
2142
2143  if (Found.isAmbiguous())
2144    return true;
2145
2146  Found.suppressDiagnostics();
2147
2148  SmallVector<DeclAccessPair,4> Matches;
2149  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2150       F != FEnd; ++F) {
2151    NamedDecl *ND = (*F)->getUnderlyingDecl();
2152
2153    // Ignore template operator delete members from the check for a usual
2154    // deallocation function.
2155    if (isa<FunctionTemplateDecl>(ND))
2156      continue;
2157
2158    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2159      Matches.push_back(F.getPair());
2160  }
2161
2162  // There's exactly one suitable operator;  pick it.
2163  if (Matches.size() == 1) {
2164    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2165
2166    if (Operator->isDeleted()) {
2167      if (Diagnose) {
2168        Diag(StartLoc, diag::err_deleted_function_use);
2169        NoteDeletedFunction(Operator);
2170      }
2171      return true;
2172    }
2173
2174    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2175                              Matches[0], Diagnose) == AR_inaccessible)
2176      return true;
2177
2178    return false;
2179
2180  // We found multiple suitable operators;  complain about the ambiguity.
2181  } else if (!Matches.empty()) {
2182    if (Diagnose) {
2183      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2184        << Name << RD;
2185
2186      for (SmallVectorImpl<DeclAccessPair>::iterator
2187             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2188        Diag((*F)->getUnderlyingDecl()->getLocation(),
2189             diag::note_member_declared_here) << Name;
2190    }
2191    return true;
2192  }
2193
2194  // We did find operator delete/operator delete[] declarations, but
2195  // none of them were suitable.
2196  if (!Found.empty()) {
2197    if (Diagnose) {
2198      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2199        << Name << RD;
2200
2201      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2202           F != FEnd; ++F)
2203        Diag((*F)->getUnderlyingDecl()->getLocation(),
2204             diag::note_member_declared_here) << Name;
2205    }
2206    return true;
2207  }
2208
2209  Operator = 0;
2210  return false;
2211}
2212
2213/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2214/// @code ::delete ptr; @endcode
2215/// or
2216/// @code delete [] ptr; @endcode
2217ExprResult
2218Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2219                     bool ArrayForm, Expr *ExE) {
2220  // C++ [expr.delete]p1:
2221  //   The operand shall have a pointer type, or a class type having a single
2222  //   non-explicit conversion function to a pointer type. The result has type
2223  //   void.
2224  //
2225  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2226
2227  ExprResult Ex = Owned(ExE);
2228  FunctionDecl *OperatorDelete = 0;
2229  bool ArrayFormAsWritten = ArrayForm;
2230  bool UsualArrayDeleteWantsSize = false;
2231
2232  if (!Ex.get()->isTypeDependent()) {
2233    // Perform lvalue-to-rvalue cast, if needed.
2234    Ex = DefaultLvalueConversion(Ex.take());
2235    if (Ex.isInvalid())
2236      return ExprError();
2237
2238    QualType Type = Ex.get()->getType();
2239
2240    class DeleteConverter : public ContextualImplicitConverter {
2241    public:
2242      DeleteConverter() : ContextualImplicitConverter(false, true) {}
2243
2244      bool match(QualType ConvType) {
2245        // FIXME: If we have an operator T* and an operator void*, we must pick
2246        // the operator T*.
2247        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2248          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2249            return true;
2250        return false;
2251      }
2252
2253      SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2254                                            QualType T) {
2255        return S.Diag(Loc, diag::err_delete_operand) << T;
2256      }
2257
2258      SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2259                                               QualType T) {
2260        return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2261      }
2262
2263      SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2264                                                 QualType T, QualType ConvTy) {
2265        return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2266      }
2267
2268      SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2269                                             QualType ConvTy) {
2270        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2271          << ConvTy;
2272      }
2273
2274      SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2275                                              QualType T) {
2276        return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2277      }
2278
2279      SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2280                                          QualType ConvTy) {
2281        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2282          << ConvTy;
2283      }
2284
2285      SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2286                                               QualType T, QualType ConvTy) {
2287        llvm_unreachable("conversion functions are permitted");
2288      }
2289    } Converter;
2290
2291    Ex = PerformContextualImplicitConversion(StartLoc, Ex.take(), Converter);
2292    if (Ex.isInvalid())
2293      return ExprError();
2294    Type = Ex.get()->getType();
2295    if (!Converter.match(Type))
2296      // FIXME: PerformContextualImplicitConversion should return ExprError
2297      //        itself in this case.
2298      return ExprError();
2299
2300    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2301    QualType PointeeElem = Context.getBaseElementType(Pointee);
2302
2303    if (unsigned AddressSpace = Pointee.getAddressSpace())
2304      return Diag(Ex.get()->getLocStart(),
2305                  diag::err_address_space_qualified_delete)
2306               << Pointee.getUnqualifiedType() << AddressSpace;
2307
2308    CXXRecordDecl *PointeeRD = 0;
2309    if (Pointee->isVoidType() && !isSFINAEContext()) {
2310      // The C++ standard bans deleting a pointer to a non-object type, which
2311      // effectively bans deletion of "void*". However, most compilers support
2312      // this, so we treat it as a warning unless we're in a SFINAE context.
2313      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2314        << Type << Ex.get()->getSourceRange();
2315    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2316      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2317        << Type << Ex.get()->getSourceRange());
2318    } else if (!Pointee->isDependentType()) {
2319      if (!RequireCompleteType(StartLoc, Pointee,
2320                               diag::warn_delete_incomplete, Ex.get())) {
2321        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2322          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2323      }
2324    }
2325
2326    // C++ [expr.delete]p2:
2327    //   [Note: a pointer to a const type can be the operand of a
2328    //   delete-expression; it is not necessary to cast away the constness
2329    //   (5.2.11) of the pointer expression before it is used as the operand
2330    //   of the delete-expression. ]
2331
2332    if (Pointee->isArrayType() && !ArrayForm) {
2333      Diag(StartLoc, diag::warn_delete_array_type)
2334          << Type << Ex.get()->getSourceRange()
2335          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2336      ArrayForm = true;
2337    }
2338
2339    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2340                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2341
2342    if (PointeeRD) {
2343      if (!UseGlobal &&
2344          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2345                                   OperatorDelete))
2346        return ExprError();
2347
2348      // If we're allocating an array of records, check whether the
2349      // usual operator delete[] has a size_t parameter.
2350      if (ArrayForm) {
2351        // If the user specifically asked to use the global allocator,
2352        // we'll need to do the lookup into the class.
2353        if (UseGlobal)
2354          UsualArrayDeleteWantsSize =
2355            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2356
2357        // Otherwise, the usual operator delete[] should be the
2358        // function we just found.
2359        else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2360          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2361      }
2362
2363      if (!PointeeRD->hasIrrelevantDestructor())
2364        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2365          MarkFunctionReferenced(StartLoc,
2366                                    const_cast<CXXDestructorDecl*>(Dtor));
2367          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2368            return ExprError();
2369        }
2370
2371      // C++ [expr.delete]p3:
2372      //   In the first alternative (delete object), if the static type of the
2373      //   object to be deleted is different from its dynamic type, the static
2374      //   type shall be a base class of the dynamic type of the object to be
2375      //   deleted and the static type shall have a virtual destructor or the
2376      //   behavior is undefined.
2377      //
2378      // Note: a final class cannot be derived from, no issue there
2379      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2380        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2381        if (dtor && !dtor->isVirtual()) {
2382          if (PointeeRD->isAbstract()) {
2383            // If the class is abstract, we warn by default, because we're
2384            // sure the code has undefined behavior.
2385            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2386                << PointeeElem;
2387          } else if (!ArrayForm) {
2388            // Otherwise, if this is not an array delete, it's a bit suspect,
2389            // but not necessarily wrong.
2390            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2391          }
2392        }
2393      }
2394
2395    }
2396
2397    if (!OperatorDelete)
2398      // Look for a global declaration.
2399      OperatorDelete = FindUsualDeallocationFunction(
2400          StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
2401                    (!ArrayForm || UsualArrayDeleteWantsSize ||
2402                     Pointee.isDestructedType()),
2403          DeleteName);
2404
2405    MarkFunctionReferenced(StartLoc, OperatorDelete);
2406
2407    // Check access and ambiguity of operator delete and destructor.
2408    if (PointeeRD) {
2409      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2410          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2411                      PDiag(diag::err_access_dtor) << PointeeElem);
2412      }
2413    }
2414  }
2415
2416  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2417                                           ArrayFormAsWritten,
2418                                           UsualArrayDeleteWantsSize,
2419                                           OperatorDelete, Ex.take(), StartLoc));
2420}
2421
2422/// \brief Check the use of the given variable as a C++ condition in an if,
2423/// while, do-while, or switch statement.
2424ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2425                                        SourceLocation StmtLoc,
2426                                        bool ConvertToBoolean) {
2427  if (ConditionVar->isInvalidDecl())
2428    return ExprError();
2429
2430  QualType T = ConditionVar->getType();
2431
2432  // C++ [stmt.select]p2:
2433  //   The declarator shall not specify a function or an array.
2434  if (T->isFunctionType())
2435    return ExprError(Diag(ConditionVar->getLocation(),
2436                          diag::err_invalid_use_of_function_type)
2437                       << ConditionVar->getSourceRange());
2438  else if (T->isArrayType())
2439    return ExprError(Diag(ConditionVar->getLocation(),
2440                          diag::err_invalid_use_of_array_type)
2441                     << ConditionVar->getSourceRange());
2442
2443  ExprResult Condition =
2444    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2445                              SourceLocation(),
2446                              ConditionVar,
2447                              /*enclosing*/ false,
2448                              ConditionVar->getLocation(),
2449                              ConditionVar->getType().getNonReferenceType(),
2450                              VK_LValue));
2451
2452  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2453
2454  if (ConvertToBoolean) {
2455    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2456    if (Condition.isInvalid())
2457      return ExprError();
2458  }
2459
2460  return Condition;
2461}
2462
2463/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2464ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2465  // C++ 6.4p4:
2466  // The value of a condition that is an initialized declaration in a statement
2467  // other than a switch statement is the value of the declared variable
2468  // implicitly converted to type bool. If that conversion is ill-formed, the
2469  // program is ill-formed.
2470  // The value of a condition that is an expression is the value of the
2471  // expression, implicitly converted to bool.
2472  //
2473  return PerformContextuallyConvertToBool(CondExpr);
2474}
2475
2476/// Helper function to determine whether this is the (deprecated) C++
2477/// conversion from a string literal to a pointer to non-const char or
2478/// non-const wchar_t (for narrow and wide string literals,
2479/// respectively).
2480bool
2481Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2482  // Look inside the implicit cast, if it exists.
2483  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2484    From = Cast->getSubExpr();
2485
2486  // A string literal (2.13.4) that is not a wide string literal can
2487  // be converted to an rvalue of type "pointer to char"; a wide
2488  // string literal can be converted to an rvalue of type "pointer
2489  // to wchar_t" (C++ 4.2p2).
2490  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2491    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2492      if (const BuiltinType *ToPointeeType
2493          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2494        // This conversion is considered only when there is an
2495        // explicit appropriate pointer target type (C++ 4.2p2).
2496        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2497          switch (StrLit->getKind()) {
2498            case StringLiteral::UTF8:
2499            case StringLiteral::UTF16:
2500            case StringLiteral::UTF32:
2501              // We don't allow UTF literals to be implicitly converted
2502              break;
2503            case StringLiteral::Ascii:
2504              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2505                      ToPointeeType->getKind() == BuiltinType::Char_S);
2506            case StringLiteral::Wide:
2507              return ToPointeeType->isWideCharType();
2508          }
2509        }
2510      }
2511
2512  return false;
2513}
2514
2515static ExprResult BuildCXXCastArgument(Sema &S,
2516                                       SourceLocation CastLoc,
2517                                       QualType Ty,
2518                                       CastKind Kind,
2519                                       CXXMethodDecl *Method,
2520                                       DeclAccessPair FoundDecl,
2521                                       bool HadMultipleCandidates,
2522                                       Expr *From) {
2523  switch (Kind) {
2524  default: llvm_unreachable("Unhandled cast kind!");
2525  case CK_ConstructorConversion: {
2526    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2527    SmallVector<Expr*, 8> ConstructorArgs;
2528
2529    if (S.RequireNonAbstractType(CastLoc, Ty,
2530                                 diag::err_allocation_of_abstract_type))
2531      return ExprError();
2532
2533    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2534      return ExprError();
2535
2536    S.CheckConstructorAccess(CastLoc, Constructor,
2537                             InitializedEntity::InitializeTemporary(Ty),
2538                             Constructor->getAccess());
2539
2540    ExprResult Result
2541      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2542                                ConstructorArgs, HadMultipleCandidates,
2543                                /*ListInit*/ false, /*ZeroInit*/ false,
2544                                CXXConstructExpr::CK_Complete, SourceRange());
2545    if (Result.isInvalid())
2546      return ExprError();
2547
2548    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2549  }
2550
2551  case CK_UserDefinedConversion: {
2552    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2553
2554    // Create an implicit call expr that calls it.
2555    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2556    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2557                                                 HadMultipleCandidates);
2558    if (Result.isInvalid())
2559      return ExprError();
2560    // Record usage of conversion in an implicit cast.
2561    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2562                                              Result.get()->getType(),
2563                                              CK_UserDefinedConversion,
2564                                              Result.get(), 0,
2565                                              Result.get()->getValueKind()));
2566
2567    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2568
2569    return S.MaybeBindToTemporary(Result.get());
2570  }
2571  }
2572}
2573
2574/// PerformImplicitConversion - Perform an implicit conversion of the
2575/// expression From to the type ToType using the pre-computed implicit
2576/// conversion sequence ICS. Returns the converted
2577/// expression. Action is the kind of conversion we're performing,
2578/// used in the error message.
2579ExprResult
2580Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2581                                const ImplicitConversionSequence &ICS,
2582                                AssignmentAction Action,
2583                                CheckedConversionKind CCK) {
2584  switch (ICS.getKind()) {
2585  case ImplicitConversionSequence::StandardConversion: {
2586    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2587                                               Action, CCK);
2588    if (Res.isInvalid())
2589      return ExprError();
2590    From = Res.take();
2591    break;
2592  }
2593
2594  case ImplicitConversionSequence::UserDefinedConversion: {
2595
2596      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2597      CastKind CastKind;
2598      QualType BeforeToType;
2599      assert(FD && "FIXME: aggregate initialization from init list");
2600      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2601        CastKind = CK_UserDefinedConversion;
2602
2603        // If the user-defined conversion is specified by a conversion function,
2604        // the initial standard conversion sequence converts the source type to
2605        // the implicit object parameter of the conversion function.
2606        BeforeToType = Context.getTagDeclType(Conv->getParent());
2607      } else {
2608        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2609        CastKind = CK_ConstructorConversion;
2610        // Do no conversion if dealing with ... for the first conversion.
2611        if (!ICS.UserDefined.EllipsisConversion) {
2612          // If the user-defined conversion is specified by a constructor, the
2613          // initial standard conversion sequence converts the source type to the
2614          // type required by the argument of the constructor
2615          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2616        }
2617      }
2618      // Watch out for ellipsis conversion.
2619      if (!ICS.UserDefined.EllipsisConversion) {
2620        ExprResult Res =
2621          PerformImplicitConversion(From, BeforeToType,
2622                                    ICS.UserDefined.Before, AA_Converting,
2623                                    CCK);
2624        if (Res.isInvalid())
2625          return ExprError();
2626        From = Res.take();
2627      }
2628
2629      ExprResult CastArg
2630        = BuildCXXCastArgument(*this,
2631                               From->getLocStart(),
2632                               ToType.getNonReferenceType(),
2633                               CastKind, cast<CXXMethodDecl>(FD),
2634                               ICS.UserDefined.FoundConversionFunction,
2635                               ICS.UserDefined.HadMultipleCandidates,
2636                               From);
2637
2638      if (CastArg.isInvalid())
2639        return ExprError();
2640
2641      From = CastArg.take();
2642
2643      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2644                                       AA_Converting, CCK);
2645  }
2646
2647  case ImplicitConversionSequence::AmbiguousConversion:
2648    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2649                          PDiag(diag::err_typecheck_ambiguous_condition)
2650                            << From->getSourceRange());
2651     return ExprError();
2652
2653  case ImplicitConversionSequence::EllipsisConversion:
2654    llvm_unreachable("Cannot perform an ellipsis conversion");
2655
2656  case ImplicitConversionSequence::BadConversion:
2657    return ExprError();
2658  }
2659
2660  // Everything went well.
2661  return Owned(From);
2662}
2663
2664/// PerformImplicitConversion - Perform an implicit conversion of the
2665/// expression From to the type ToType by following the standard
2666/// conversion sequence SCS. Returns the converted
2667/// expression. Flavor is the context in which we're performing this
2668/// conversion, for use in error messages.
2669ExprResult
2670Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2671                                const StandardConversionSequence& SCS,
2672                                AssignmentAction Action,
2673                                CheckedConversionKind CCK) {
2674  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2675
2676  // Overall FIXME: we are recomputing too many types here and doing far too
2677  // much extra work. What this means is that we need to keep track of more
2678  // information that is computed when we try the implicit conversion initially,
2679  // so that we don't need to recompute anything here.
2680  QualType FromType = From->getType();
2681
2682  if (SCS.CopyConstructor) {
2683    // FIXME: When can ToType be a reference type?
2684    assert(!ToType->isReferenceType());
2685    if (SCS.Second == ICK_Derived_To_Base) {
2686      SmallVector<Expr*, 8> ConstructorArgs;
2687      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2688                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2689                                  ConstructorArgs))
2690        return ExprError();
2691      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2692                                   ToType, SCS.CopyConstructor,
2693                                   ConstructorArgs,
2694                                   /*HadMultipleCandidates*/ false,
2695                                   /*ListInit*/ false, /*ZeroInit*/ false,
2696                                   CXXConstructExpr::CK_Complete,
2697                                   SourceRange());
2698    }
2699    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2700                                 ToType, SCS.CopyConstructor,
2701                                 From, /*HadMultipleCandidates*/ false,
2702                                 /*ListInit*/ false, /*ZeroInit*/ false,
2703                                 CXXConstructExpr::CK_Complete,
2704                                 SourceRange());
2705  }
2706
2707  // Resolve overloaded function references.
2708  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2709    DeclAccessPair Found;
2710    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2711                                                          true, Found);
2712    if (!Fn)
2713      return ExprError();
2714
2715    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2716      return ExprError();
2717
2718    From = FixOverloadedFunctionReference(From, Found, Fn);
2719    FromType = From->getType();
2720  }
2721
2722  // If we're converting to an atomic type, first convert to the corresponding
2723  // non-atomic type.
2724  QualType ToAtomicType;
2725  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2726    ToAtomicType = ToType;
2727    ToType = ToAtomic->getValueType();
2728  }
2729
2730  // Perform the first implicit conversion.
2731  switch (SCS.First) {
2732  case ICK_Identity:
2733    // Nothing to do.
2734    break;
2735
2736  case ICK_Lvalue_To_Rvalue: {
2737    assert(From->getObjectKind() != OK_ObjCProperty);
2738    FromType = FromType.getUnqualifiedType();
2739    ExprResult FromRes = DefaultLvalueConversion(From);
2740    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2741    From = FromRes.take();
2742    break;
2743  }
2744
2745  case ICK_Array_To_Pointer:
2746    FromType = Context.getArrayDecayedType(FromType);
2747    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2748                             VK_RValue, /*BasePath=*/0, CCK).take();
2749    break;
2750
2751  case ICK_Function_To_Pointer:
2752    FromType = Context.getPointerType(FromType);
2753    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2754                             VK_RValue, /*BasePath=*/0, CCK).take();
2755    break;
2756
2757  default:
2758    llvm_unreachable("Improper first standard conversion");
2759  }
2760
2761  // Perform the second implicit conversion
2762  switch (SCS.Second) {
2763  case ICK_Identity:
2764    // If both sides are functions (or pointers/references to them), there could
2765    // be incompatible exception declarations.
2766    if (CheckExceptionSpecCompatibility(From, ToType))
2767      return ExprError();
2768    // Nothing else to do.
2769    break;
2770
2771  case ICK_NoReturn_Adjustment:
2772    // If both sides are functions (or pointers/references to them), there could
2773    // be incompatible exception declarations.
2774    if (CheckExceptionSpecCompatibility(From, ToType))
2775      return ExprError();
2776
2777    From = ImpCastExprToType(From, ToType, CK_NoOp,
2778                             VK_RValue, /*BasePath=*/0, CCK).take();
2779    break;
2780
2781  case ICK_Integral_Promotion:
2782  case ICK_Integral_Conversion:
2783    if (ToType->isBooleanType()) {
2784      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2785             SCS.Second == ICK_Integral_Promotion &&
2786             "only enums with fixed underlying type can promote to bool");
2787      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2788                               VK_RValue, /*BasePath=*/0, CCK).take();
2789    } else {
2790      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2791                               VK_RValue, /*BasePath=*/0, CCK).take();
2792    }
2793    break;
2794
2795  case ICK_Floating_Promotion:
2796  case ICK_Floating_Conversion:
2797    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2798                             VK_RValue, /*BasePath=*/0, CCK).take();
2799    break;
2800
2801  case ICK_Complex_Promotion:
2802  case ICK_Complex_Conversion: {
2803    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2804    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2805    CastKind CK;
2806    if (FromEl->isRealFloatingType()) {
2807      if (ToEl->isRealFloatingType())
2808        CK = CK_FloatingComplexCast;
2809      else
2810        CK = CK_FloatingComplexToIntegralComplex;
2811    } else if (ToEl->isRealFloatingType()) {
2812      CK = CK_IntegralComplexToFloatingComplex;
2813    } else {
2814      CK = CK_IntegralComplexCast;
2815    }
2816    From = ImpCastExprToType(From, ToType, CK,
2817                             VK_RValue, /*BasePath=*/0, CCK).take();
2818    break;
2819  }
2820
2821  case ICK_Floating_Integral:
2822    if (ToType->isRealFloatingType())
2823      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2824                               VK_RValue, /*BasePath=*/0, CCK).take();
2825    else
2826      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2827                               VK_RValue, /*BasePath=*/0, CCK).take();
2828    break;
2829
2830  case ICK_Compatible_Conversion:
2831      From = ImpCastExprToType(From, ToType, CK_NoOp,
2832                               VK_RValue, /*BasePath=*/0, CCK).take();
2833    break;
2834
2835  case ICK_Writeback_Conversion:
2836  case ICK_Pointer_Conversion: {
2837    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2838      // Diagnose incompatible Objective-C conversions
2839      if (Action == AA_Initializing || Action == AA_Assigning)
2840        Diag(From->getLocStart(),
2841             diag::ext_typecheck_convert_incompatible_pointer)
2842          << ToType << From->getType() << Action
2843          << From->getSourceRange() << 0;
2844      else
2845        Diag(From->getLocStart(),
2846             diag::ext_typecheck_convert_incompatible_pointer)
2847          << From->getType() << ToType << Action
2848          << From->getSourceRange() << 0;
2849
2850      if (From->getType()->isObjCObjectPointerType() &&
2851          ToType->isObjCObjectPointerType())
2852        EmitRelatedResultTypeNote(From);
2853    }
2854    else if (getLangOpts().ObjCAutoRefCount &&
2855             !CheckObjCARCUnavailableWeakConversion(ToType,
2856                                                    From->getType())) {
2857      if (Action == AA_Initializing)
2858        Diag(From->getLocStart(),
2859             diag::err_arc_weak_unavailable_assign);
2860      else
2861        Diag(From->getLocStart(),
2862             diag::err_arc_convesion_of_weak_unavailable)
2863          << (Action == AA_Casting) << From->getType() << ToType
2864          << From->getSourceRange();
2865    }
2866
2867    CastKind Kind = CK_Invalid;
2868    CXXCastPath BasePath;
2869    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2870      return ExprError();
2871
2872    // Make sure we extend blocks if necessary.
2873    // FIXME: doing this here is really ugly.
2874    if (Kind == CK_BlockPointerToObjCPointerCast) {
2875      ExprResult E = From;
2876      (void) PrepareCastToObjCObjectPointer(E);
2877      From = E.take();
2878    }
2879    if (getLangOpts().ObjCAutoRefCount)
2880      CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2881    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2882             .take();
2883    break;
2884  }
2885
2886  case ICK_Pointer_Member: {
2887    CastKind Kind = CK_Invalid;
2888    CXXCastPath BasePath;
2889    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2890      return ExprError();
2891    if (CheckExceptionSpecCompatibility(From, ToType))
2892      return ExprError();
2893    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2894             .take();
2895    break;
2896  }
2897
2898  case ICK_Boolean_Conversion:
2899    // Perform half-to-boolean conversion via float.
2900    if (From->getType()->isHalfType()) {
2901      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2902      FromType = Context.FloatTy;
2903    }
2904
2905    From = ImpCastExprToType(From, Context.BoolTy,
2906                             ScalarTypeToBooleanCastKind(FromType),
2907                             VK_RValue, /*BasePath=*/0, CCK).take();
2908    break;
2909
2910  case ICK_Derived_To_Base: {
2911    CXXCastPath BasePath;
2912    if (CheckDerivedToBaseConversion(From->getType(),
2913                                     ToType.getNonReferenceType(),
2914                                     From->getLocStart(),
2915                                     From->getSourceRange(),
2916                                     &BasePath,
2917                                     CStyle))
2918      return ExprError();
2919
2920    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2921                      CK_DerivedToBase, From->getValueKind(),
2922                      &BasePath, CCK).take();
2923    break;
2924  }
2925
2926  case ICK_Vector_Conversion:
2927    From = ImpCastExprToType(From, ToType, CK_BitCast,
2928                             VK_RValue, /*BasePath=*/0, CCK).take();
2929    break;
2930
2931  case ICK_Vector_Splat:
2932    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2933                             VK_RValue, /*BasePath=*/0, CCK).take();
2934    break;
2935
2936  case ICK_Complex_Real:
2937    // Case 1.  x -> _Complex y
2938    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2939      QualType ElType = ToComplex->getElementType();
2940      bool isFloatingComplex = ElType->isRealFloatingType();
2941
2942      // x -> y
2943      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2944        // do nothing
2945      } else if (From->getType()->isRealFloatingType()) {
2946        From = ImpCastExprToType(From, ElType,
2947                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2948      } else {
2949        assert(From->getType()->isIntegerType());
2950        From = ImpCastExprToType(From, ElType,
2951                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2952      }
2953      // y -> _Complex y
2954      From = ImpCastExprToType(From, ToType,
2955                   isFloatingComplex ? CK_FloatingRealToComplex
2956                                     : CK_IntegralRealToComplex).take();
2957
2958    // Case 2.  _Complex x -> y
2959    } else {
2960      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2961      assert(FromComplex);
2962
2963      QualType ElType = FromComplex->getElementType();
2964      bool isFloatingComplex = ElType->isRealFloatingType();
2965
2966      // _Complex x -> x
2967      From = ImpCastExprToType(From, ElType,
2968                   isFloatingComplex ? CK_FloatingComplexToReal
2969                                     : CK_IntegralComplexToReal,
2970                               VK_RValue, /*BasePath=*/0, CCK).take();
2971
2972      // x -> y
2973      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2974        // do nothing
2975      } else if (ToType->isRealFloatingType()) {
2976        From = ImpCastExprToType(From, ToType,
2977                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2978                                 VK_RValue, /*BasePath=*/0, CCK).take();
2979      } else {
2980        assert(ToType->isIntegerType());
2981        From = ImpCastExprToType(From, ToType,
2982                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2983                                 VK_RValue, /*BasePath=*/0, CCK).take();
2984      }
2985    }
2986    break;
2987
2988  case ICK_Block_Pointer_Conversion: {
2989    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2990                             VK_RValue, /*BasePath=*/0, CCK).take();
2991    break;
2992  }
2993
2994  case ICK_TransparentUnionConversion: {
2995    ExprResult FromRes = Owned(From);
2996    Sema::AssignConvertType ConvTy =
2997      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2998    if (FromRes.isInvalid())
2999      return ExprError();
3000    From = FromRes.take();
3001    assert ((ConvTy == Sema::Compatible) &&
3002            "Improper transparent union conversion");
3003    (void)ConvTy;
3004    break;
3005  }
3006
3007  case ICK_Zero_Event_Conversion:
3008    From = ImpCastExprToType(From, ToType,
3009                             CK_ZeroToOCLEvent,
3010                             From->getValueKind()).take();
3011    break;
3012
3013  case ICK_Lvalue_To_Rvalue:
3014  case ICK_Array_To_Pointer:
3015  case ICK_Function_To_Pointer:
3016  case ICK_Qualification:
3017  case ICK_Num_Conversion_Kinds:
3018    llvm_unreachable("Improper second standard conversion");
3019  }
3020
3021  switch (SCS.Third) {
3022  case ICK_Identity:
3023    // Nothing to do.
3024    break;
3025
3026  case ICK_Qualification: {
3027    // The qualification keeps the category of the inner expression, unless the
3028    // target type isn't a reference.
3029    ExprValueKind VK = ToType->isReferenceType() ?
3030                                  From->getValueKind() : VK_RValue;
3031    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3032                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
3033
3034    if (SCS.DeprecatedStringLiteralToCharPtr &&
3035        !getLangOpts().WritableStrings)
3036      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
3037        << ToType.getNonReferenceType();
3038
3039    break;
3040  }
3041
3042  default:
3043    llvm_unreachable("Improper third standard conversion");
3044  }
3045
3046  // If this conversion sequence involved a scalar -> atomic conversion, perform
3047  // that conversion now.
3048  if (!ToAtomicType.isNull()) {
3049    assert(Context.hasSameType(
3050        ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3051    From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3052                             VK_RValue, 0, CCK).take();
3053  }
3054
3055  return Owned(From);
3056}
3057
3058ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
3059                                     SourceLocation KWLoc,
3060                                     ParsedType Ty,
3061                                     SourceLocation RParen) {
3062  TypeSourceInfo *TSInfo;
3063  QualType T = GetTypeFromParser(Ty, &TSInfo);
3064
3065  if (!TSInfo)
3066    TSInfo = Context.getTrivialTypeSourceInfo(T);
3067  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
3068}
3069
3070/// \brief Check the completeness of a type in a unary type trait.
3071///
3072/// If the particular type trait requires a complete type, tries to complete
3073/// it. If completing the type fails, a diagnostic is emitted and false
3074/// returned. If completing the type succeeds or no completion was required,
3075/// returns true.
3076static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
3077                                                UnaryTypeTrait UTT,
3078                                                SourceLocation Loc,
3079                                                QualType ArgTy) {
3080  // C++0x [meta.unary.prop]p3:
3081  //   For all of the class templates X declared in this Clause, instantiating
3082  //   that template with a template argument that is a class template
3083  //   specialization may result in the implicit instantiation of the template
3084  //   argument if and only if the semantics of X require that the argument
3085  //   must be a complete type.
3086  // We apply this rule to all the type trait expressions used to implement
3087  // these class templates. We also try to follow any GCC documented behavior
3088  // in these expressions to ensure portability of standard libraries.
3089  switch (UTT) {
3090    // is_complete_type somewhat obviously cannot require a complete type.
3091  case UTT_IsCompleteType:
3092    // Fall-through
3093
3094    // These traits are modeled on the type predicates in C++0x
3095    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3096    // requiring a complete type, as whether or not they return true cannot be
3097    // impacted by the completeness of the type.
3098  case UTT_IsVoid:
3099  case UTT_IsIntegral:
3100  case UTT_IsFloatingPoint:
3101  case UTT_IsArray:
3102  case UTT_IsPointer:
3103  case UTT_IsLvalueReference:
3104  case UTT_IsRvalueReference:
3105  case UTT_IsMemberFunctionPointer:
3106  case UTT_IsMemberObjectPointer:
3107  case UTT_IsEnum:
3108  case UTT_IsUnion:
3109  case UTT_IsClass:
3110  case UTT_IsFunction:
3111  case UTT_IsReference:
3112  case UTT_IsArithmetic:
3113  case UTT_IsFundamental:
3114  case UTT_IsObject:
3115  case UTT_IsScalar:
3116  case UTT_IsCompound:
3117  case UTT_IsMemberPointer:
3118    // Fall-through
3119
3120    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3121    // which requires some of its traits to have the complete type. However,
3122    // the completeness of the type cannot impact these traits' semantics, and
3123    // so they don't require it. This matches the comments on these traits in
3124    // Table 49.
3125  case UTT_IsConst:
3126  case UTT_IsVolatile:
3127  case UTT_IsSigned:
3128  case UTT_IsUnsigned:
3129    return true;
3130
3131    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3132    // applied to a complete type.
3133  case UTT_IsTrivial:
3134  case UTT_IsTriviallyCopyable:
3135  case UTT_IsStandardLayout:
3136  case UTT_IsPOD:
3137  case UTT_IsLiteral:
3138  case UTT_IsEmpty:
3139  case UTT_IsPolymorphic:
3140  case UTT_IsAbstract:
3141  case UTT_IsInterfaceClass:
3142    // Fall-through
3143
3144  // These traits require a complete type.
3145  case UTT_IsFinal:
3146  case UTT_IsSealed:
3147
3148    // These trait expressions are designed to help implement predicates in
3149    // [meta.unary.prop] despite not being named the same. They are specified
3150    // by both GCC and the Embarcadero C++ compiler, and require the complete
3151    // type due to the overarching C++0x type predicates being implemented
3152    // requiring the complete type.
3153  case UTT_HasNothrowAssign:
3154  case UTT_HasNothrowMoveAssign:
3155  case UTT_HasNothrowConstructor:
3156  case UTT_HasNothrowCopy:
3157  case UTT_HasTrivialAssign:
3158  case UTT_HasTrivialMoveAssign:
3159  case UTT_HasTrivialDefaultConstructor:
3160  case UTT_HasTrivialMoveConstructor:
3161  case UTT_HasTrivialCopy:
3162  case UTT_HasTrivialDestructor:
3163  case UTT_HasVirtualDestructor:
3164    // Arrays of unknown bound are expressly allowed.
3165    QualType ElTy = ArgTy;
3166    if (ArgTy->isIncompleteArrayType())
3167      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3168
3169    // The void type is expressly allowed.
3170    if (ElTy->isVoidType())
3171      return true;
3172
3173    return !S.RequireCompleteType(
3174      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3175  }
3176  llvm_unreachable("Type trait not handled by switch");
3177}
3178
3179static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3180                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3181                               bool (CXXRecordDecl::*HasTrivial)() const,
3182                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3183                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3184{
3185  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3186  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3187    return true;
3188
3189  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3190  DeclarationNameInfo NameInfo(Name, KeyLoc);
3191  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3192  if (Self.LookupQualifiedName(Res, RD)) {
3193    bool FoundOperator = false;
3194    Res.suppressDiagnostics();
3195    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3196         Op != OpEnd; ++Op) {
3197      if (isa<FunctionTemplateDecl>(*Op))
3198        continue;
3199
3200      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3201      if((Operator->*IsDesiredOp)()) {
3202        FoundOperator = true;
3203        const FunctionProtoType *CPT =
3204          Operator->getType()->getAs<FunctionProtoType>();
3205        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3206        if (!CPT || !CPT->isNothrow(Self.Context))
3207          return false;
3208      }
3209    }
3210    return FoundOperator;
3211  }
3212  return false;
3213}
3214
3215static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
3216                                   SourceLocation KeyLoc, QualType T) {
3217  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3218
3219  ASTContext &C = Self.Context;
3220  switch(UTT) {
3221    // Type trait expressions corresponding to the primary type category
3222    // predicates in C++0x [meta.unary.cat].
3223  case UTT_IsVoid:
3224    return T->isVoidType();
3225  case UTT_IsIntegral:
3226    return T->isIntegralType(C);
3227  case UTT_IsFloatingPoint:
3228    return T->isFloatingType();
3229  case UTT_IsArray:
3230    return T->isArrayType();
3231  case UTT_IsPointer:
3232    return T->isPointerType();
3233  case UTT_IsLvalueReference:
3234    return T->isLValueReferenceType();
3235  case UTT_IsRvalueReference:
3236    return T->isRValueReferenceType();
3237  case UTT_IsMemberFunctionPointer:
3238    return T->isMemberFunctionPointerType();
3239  case UTT_IsMemberObjectPointer:
3240    return T->isMemberDataPointerType();
3241  case UTT_IsEnum:
3242    return T->isEnumeralType();
3243  case UTT_IsUnion:
3244    return T->isUnionType();
3245  case UTT_IsClass:
3246    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3247  case UTT_IsFunction:
3248    return T->isFunctionType();
3249
3250    // Type trait expressions which correspond to the convenient composition
3251    // predicates in C++0x [meta.unary.comp].
3252  case UTT_IsReference:
3253    return T->isReferenceType();
3254  case UTT_IsArithmetic:
3255    return T->isArithmeticType() && !T->isEnumeralType();
3256  case UTT_IsFundamental:
3257    return T->isFundamentalType();
3258  case UTT_IsObject:
3259    return T->isObjectType();
3260  case UTT_IsScalar:
3261    // Note: semantic analysis depends on Objective-C lifetime types to be
3262    // considered scalar types. However, such types do not actually behave
3263    // like scalar types at run time (since they may require retain/release
3264    // operations), so we report them as non-scalar.
3265    if (T->isObjCLifetimeType()) {
3266      switch (T.getObjCLifetime()) {
3267      case Qualifiers::OCL_None:
3268      case Qualifiers::OCL_ExplicitNone:
3269        return true;
3270
3271      case Qualifiers::OCL_Strong:
3272      case Qualifiers::OCL_Weak:
3273      case Qualifiers::OCL_Autoreleasing:
3274        return false;
3275      }
3276    }
3277
3278    return T->isScalarType();
3279  case UTT_IsCompound:
3280    return T->isCompoundType();
3281  case UTT_IsMemberPointer:
3282    return T->isMemberPointerType();
3283
3284    // Type trait expressions which correspond to the type property predicates
3285    // in C++0x [meta.unary.prop].
3286  case UTT_IsConst:
3287    return T.isConstQualified();
3288  case UTT_IsVolatile:
3289    return T.isVolatileQualified();
3290  case UTT_IsTrivial:
3291    return T.isTrivialType(Self.Context);
3292  case UTT_IsTriviallyCopyable:
3293    return T.isTriviallyCopyableType(Self.Context);
3294  case UTT_IsStandardLayout:
3295    return T->isStandardLayoutType();
3296  case UTT_IsPOD:
3297    return T.isPODType(Self.Context);
3298  case UTT_IsLiteral:
3299    return T->isLiteralType(Self.Context);
3300  case UTT_IsEmpty:
3301    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3302      return !RD->isUnion() && RD->isEmpty();
3303    return false;
3304  case UTT_IsPolymorphic:
3305    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3306      return RD->isPolymorphic();
3307    return false;
3308  case UTT_IsAbstract:
3309    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3310      return RD->isAbstract();
3311    return false;
3312  case UTT_IsInterfaceClass:
3313    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3314      return RD->isInterface();
3315    return false;
3316  case UTT_IsFinal:
3317    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3318      return RD->hasAttr<FinalAttr>();
3319    return false;
3320  case UTT_IsSealed:
3321    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3322      if (FinalAttr *FA = RD->getAttr<FinalAttr>())
3323        return FA->isSpelledAsSealed();
3324    return false;
3325  case UTT_IsSigned:
3326    return T->isSignedIntegerType();
3327  case UTT_IsUnsigned:
3328    return T->isUnsignedIntegerType();
3329
3330    // Type trait expressions which query classes regarding their construction,
3331    // destruction, and copying. Rather than being based directly on the
3332    // related type predicates in the standard, they are specified by both
3333    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3334    // specifications.
3335    //
3336    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3337    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3338    //
3339    // Note that these builtins do not behave as documented in g++: if a class
3340    // has both a trivial and a non-trivial special member of a particular kind,
3341    // they return false! For now, we emulate this behavior.
3342    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3343    // does not correctly compute triviality in the presence of multiple special
3344    // members of the same kind. Revisit this once the g++ bug is fixed.
3345  case UTT_HasTrivialDefaultConstructor:
3346    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3347    //   If __is_pod (type) is true then the trait is true, else if type is
3348    //   a cv class or union type (or array thereof) with a trivial default
3349    //   constructor ([class.ctor]) then the trait is true, else it is false.
3350    if (T.isPODType(Self.Context))
3351      return true;
3352    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3353      return RD->hasTrivialDefaultConstructor() &&
3354             !RD->hasNonTrivialDefaultConstructor();
3355    return false;
3356  case UTT_HasTrivialMoveConstructor:
3357    //  This trait is implemented by MSVC 2012 and needed to parse the
3358    //  standard library headers. Specifically this is used as the logic
3359    //  behind std::is_trivially_move_constructible (20.9.4.3).
3360    if (T.isPODType(Self.Context))
3361      return true;
3362    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3363      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3364    return false;
3365  case UTT_HasTrivialCopy:
3366    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3367    //   If __is_pod (type) is true or type is a reference type then
3368    //   the trait is true, else if type is a cv class or union type
3369    //   with a trivial copy constructor ([class.copy]) then the trait
3370    //   is true, else it is false.
3371    if (T.isPODType(Self.Context) || T->isReferenceType())
3372      return true;
3373    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3374      return RD->hasTrivialCopyConstructor() &&
3375             !RD->hasNonTrivialCopyConstructor();
3376    return false;
3377  case UTT_HasTrivialMoveAssign:
3378    //  This trait is implemented by MSVC 2012 and needed to parse the
3379    //  standard library headers. Specifically it is used as the logic
3380    //  behind std::is_trivially_move_assignable (20.9.4.3)
3381    if (T.isPODType(Self.Context))
3382      return true;
3383    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3384      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3385    return false;
3386  case UTT_HasTrivialAssign:
3387    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3388    //   If type is const qualified or is a reference type then the
3389    //   trait is false. Otherwise if __is_pod (type) is true then the
3390    //   trait is true, else if type is a cv class or union type with
3391    //   a trivial copy assignment ([class.copy]) then the trait is
3392    //   true, else it is false.
3393    // Note: the const and reference restrictions are interesting,
3394    // given that const and reference members don't prevent a class
3395    // from having a trivial copy assignment operator (but do cause
3396    // errors if the copy assignment operator is actually used, q.v.
3397    // [class.copy]p12).
3398
3399    if (T.isConstQualified())
3400      return false;
3401    if (T.isPODType(Self.Context))
3402      return true;
3403    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3404      return RD->hasTrivialCopyAssignment() &&
3405             !RD->hasNonTrivialCopyAssignment();
3406    return false;
3407  case UTT_HasTrivialDestructor:
3408    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3409    //   If __is_pod (type) is true or type is a reference type
3410    //   then the trait is true, else if type is a cv class or union
3411    //   type (or array thereof) with a trivial destructor
3412    //   ([class.dtor]) then the trait is true, else it is
3413    //   false.
3414    if (T.isPODType(Self.Context) || T->isReferenceType())
3415      return true;
3416
3417    // Objective-C++ ARC: autorelease types don't require destruction.
3418    if (T->isObjCLifetimeType() &&
3419        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3420      return true;
3421
3422    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3423      return RD->hasTrivialDestructor();
3424    return false;
3425  // TODO: Propagate nothrowness for implicitly declared special members.
3426  case UTT_HasNothrowAssign:
3427    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3428    //   If type is const qualified or is a reference type then the
3429    //   trait is false. Otherwise if __has_trivial_assign (type)
3430    //   is true then the trait is true, else if type is a cv class
3431    //   or union type with copy assignment operators that are known
3432    //   not to throw an exception then the trait is true, else it is
3433    //   false.
3434    if (C.getBaseElementType(T).isConstQualified())
3435      return false;
3436    if (T->isReferenceType())
3437      return false;
3438    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3439      return true;
3440
3441    if (const RecordType *RT = T->getAs<RecordType>())
3442      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3443                                &CXXRecordDecl::hasTrivialCopyAssignment,
3444                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
3445                                &CXXMethodDecl::isCopyAssignmentOperator);
3446    return false;
3447  case UTT_HasNothrowMoveAssign:
3448    //  This trait is implemented by MSVC 2012 and needed to parse the
3449    //  standard library headers. Specifically this is used as the logic
3450    //  behind std::is_nothrow_move_assignable (20.9.4.3).
3451    if (T.isPODType(Self.Context))
3452      return true;
3453
3454    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3455      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3456                                &CXXRecordDecl::hasTrivialMoveAssignment,
3457                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
3458                                &CXXMethodDecl::isMoveAssignmentOperator);
3459    return false;
3460  case UTT_HasNothrowCopy:
3461    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3462    //   If __has_trivial_copy (type) is true then the trait is true, else
3463    //   if type is a cv class or union type with copy constructors that are
3464    //   known not to throw an exception then the trait is true, else it is
3465    //   false.
3466    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3467      return true;
3468    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3469      if (RD->hasTrivialCopyConstructor() &&
3470          !RD->hasNonTrivialCopyConstructor())
3471        return true;
3472
3473      bool FoundConstructor = false;
3474      unsigned FoundTQs;
3475      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3476      for (DeclContext::lookup_const_iterator Con = R.begin(),
3477           ConEnd = R.end(); Con != ConEnd; ++Con) {
3478        // A template constructor is never a copy constructor.
3479        // FIXME: However, it may actually be selected at the actual overload
3480        // resolution point.
3481        if (isa<FunctionTemplateDecl>(*Con))
3482          continue;
3483        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3484        if (Constructor->isCopyConstructor(FoundTQs)) {
3485          FoundConstructor = true;
3486          const FunctionProtoType *CPT
3487              = Constructor->getType()->getAs<FunctionProtoType>();
3488          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3489          if (!CPT)
3490            return false;
3491          // FIXME: check whether evaluating default arguments can throw.
3492          // For now, we'll be conservative and assume that they can throw.
3493          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3494            return false;
3495        }
3496      }
3497
3498      return FoundConstructor;
3499    }
3500    return false;
3501  case UTT_HasNothrowConstructor:
3502    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3503    //   If __has_trivial_constructor (type) is true then the trait is
3504    //   true, else if type is a cv class or union type (or array
3505    //   thereof) with a default constructor that is known not to
3506    //   throw an exception then the trait is true, else it is false.
3507    if (T.isPODType(C) || T->isObjCLifetimeType())
3508      return true;
3509    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3510      if (RD->hasTrivialDefaultConstructor() &&
3511          !RD->hasNonTrivialDefaultConstructor())
3512        return true;
3513
3514      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3515      for (DeclContext::lookup_const_iterator Con = R.begin(),
3516           ConEnd = R.end(); Con != ConEnd; ++Con) {
3517        // FIXME: In C++0x, a constructor template can be a default constructor.
3518        if (isa<FunctionTemplateDecl>(*Con))
3519          continue;
3520        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3521        if (Constructor->isDefaultConstructor()) {
3522          const FunctionProtoType *CPT
3523              = Constructor->getType()->getAs<FunctionProtoType>();
3524          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3525          if (!CPT)
3526            return false;
3527          // TODO: check whether evaluating default arguments can throw.
3528          // For now, we'll be conservative and assume that they can throw.
3529          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3530        }
3531      }
3532    }
3533    return false;
3534  case UTT_HasVirtualDestructor:
3535    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3536    //   If type is a class type with a virtual destructor ([class.dtor])
3537    //   then the trait is true, else it is false.
3538    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3539      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3540        return Destructor->isVirtual();
3541    return false;
3542
3543    // These type trait expressions are modeled on the specifications for the
3544    // Embarcadero C++0x type trait functions:
3545    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3546  case UTT_IsCompleteType:
3547    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3548    //   Returns True if and only if T is a complete type at the point of the
3549    //   function call.
3550    return !T->isIncompleteType();
3551  }
3552  llvm_unreachable("Type trait not covered by switch");
3553}
3554
3555ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3556                                     SourceLocation KWLoc,
3557                                     TypeSourceInfo *TSInfo,
3558                                     SourceLocation RParen) {
3559  QualType T = TSInfo->getType();
3560  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3561    return ExprError();
3562
3563  bool Value = false;
3564  if (!T->isDependentType())
3565    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3566
3567  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3568                                                RParen, Context.BoolTy));
3569}
3570
3571ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3572                                      SourceLocation KWLoc,
3573                                      ParsedType LhsTy,
3574                                      ParsedType RhsTy,
3575                                      SourceLocation RParen) {
3576  TypeSourceInfo *LhsTSInfo;
3577  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3578  if (!LhsTSInfo)
3579    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3580
3581  TypeSourceInfo *RhsTSInfo;
3582  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3583  if (!RhsTSInfo)
3584    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3585
3586  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3587}
3588
3589/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3590/// ARC mode.
3591static bool hasNontrivialObjCLifetime(QualType T) {
3592  switch (T.getObjCLifetime()) {
3593  case Qualifiers::OCL_ExplicitNone:
3594    return false;
3595
3596  case Qualifiers::OCL_Strong:
3597  case Qualifiers::OCL_Weak:
3598  case Qualifiers::OCL_Autoreleasing:
3599    return true;
3600
3601  case Qualifiers::OCL_None:
3602    return T->isObjCLifetimeType();
3603  }
3604
3605  llvm_unreachable("Unknown ObjC lifetime qualifier");
3606}
3607
3608static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3609                              ArrayRef<TypeSourceInfo *> Args,
3610                              SourceLocation RParenLoc) {
3611  switch (Kind) {
3612  case clang::TT_IsTriviallyConstructible: {
3613    // C++11 [meta.unary.prop]:
3614    //   is_trivially_constructible is defined as:
3615    //
3616    //     is_constructible<T, Args...>::value is true and the variable
3617    //     definition for is_constructible, as defined below, is known to call
3618    //     no operation that is not trivial.
3619    //
3620    //   The predicate condition for a template specialization
3621    //   is_constructible<T, Args...> shall be satisfied if and only if the
3622    //   following variable definition would be well-formed for some invented
3623    //   variable t:
3624    //
3625    //     T t(create<Args>()...);
3626    if (Args.empty()) {
3627      S.Diag(KWLoc, diag::err_type_trait_arity)
3628        << 1 << 1 << 1 << (int)Args.size();
3629      return false;
3630    }
3631
3632    // Precondition: T and all types in the parameter pack Args shall be
3633    // complete types, (possibly cv-qualified) void, or arrays of
3634    // unknown bound.
3635    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3636      QualType ArgTy = Args[I]->getType();
3637      if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
3638        continue;
3639
3640      if (S.RequireCompleteType(KWLoc, ArgTy,
3641          diag::err_incomplete_type_used_in_type_trait_expr))
3642        return false;
3643    }
3644
3645    // Make sure the first argument is a complete type.
3646    if (Args[0]->getType()->isIncompleteType())
3647      return false;
3648
3649    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3650    SmallVector<Expr *, 2> ArgExprs;
3651    ArgExprs.reserve(Args.size() - 1);
3652    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3653      QualType T = Args[I]->getType();
3654      if (T->isObjectType() || T->isFunctionType())
3655        T = S.Context.getRValueReferenceType(T);
3656      OpaqueArgExprs.push_back(
3657        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3658                        T.getNonLValueExprType(S.Context),
3659                        Expr::getValueKindForType(T)));
3660      ArgExprs.push_back(&OpaqueArgExprs.back());
3661    }
3662
3663    // Perform the initialization in an unevaluated context within a SFINAE
3664    // trap at translation unit scope.
3665    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3666    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3667    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3668    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3669    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3670                                                                 RParenLoc));
3671    InitializationSequence Init(S, To, InitKind, ArgExprs);
3672    if (Init.Failed())
3673      return false;
3674
3675    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3676    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3677      return false;
3678
3679    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3680    // lifetime, this is a non-trivial construction.
3681    if (S.getLangOpts().ObjCAutoRefCount &&
3682        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3683      return false;
3684
3685    // The initialization succeeded; now make sure there are no non-trivial
3686    // calls.
3687    return !Result.get()->hasNonTrivialCall(S.Context);
3688  }
3689  }
3690
3691  return false;
3692}
3693
3694ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3695                                ArrayRef<TypeSourceInfo *> Args,
3696                                SourceLocation RParenLoc) {
3697  bool Dependent = false;
3698  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3699    if (Args[I]->getType()->isDependentType()) {
3700      Dependent = true;
3701      break;
3702    }
3703  }
3704
3705  bool Value = false;
3706  if (!Dependent)
3707    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3708
3709  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3710                               Args, RParenLoc, Value);
3711}
3712
3713ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3714                                ArrayRef<ParsedType> Args,
3715                                SourceLocation RParenLoc) {
3716  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3717  ConvertedArgs.reserve(Args.size());
3718
3719  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3720    TypeSourceInfo *TInfo;
3721    QualType T = GetTypeFromParser(Args[I], &TInfo);
3722    if (!TInfo)
3723      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3724
3725    ConvertedArgs.push_back(TInfo);
3726  }
3727
3728  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3729}
3730
3731static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3732                                    QualType LhsT, QualType RhsT,
3733                                    SourceLocation KeyLoc) {
3734  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3735         "Cannot evaluate traits of dependent types");
3736
3737  switch(BTT) {
3738  case BTT_IsBaseOf: {
3739    // C++0x [meta.rel]p2
3740    // Base is a base class of Derived without regard to cv-qualifiers or
3741    // Base and Derived are not unions and name the same class type without
3742    // regard to cv-qualifiers.
3743
3744    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3745    if (!lhsRecord) return false;
3746
3747    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3748    if (!rhsRecord) return false;
3749
3750    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3751             == (lhsRecord == rhsRecord));
3752
3753    if (lhsRecord == rhsRecord)
3754      return !lhsRecord->getDecl()->isUnion();
3755
3756    // C++0x [meta.rel]p2:
3757    //   If Base and Derived are class types and are different types
3758    //   (ignoring possible cv-qualifiers) then Derived shall be a
3759    //   complete type.
3760    if (Self.RequireCompleteType(KeyLoc, RhsT,
3761                          diag::err_incomplete_type_used_in_type_trait_expr))
3762      return false;
3763
3764    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3765      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3766  }
3767  case BTT_IsSame:
3768    return Self.Context.hasSameType(LhsT, RhsT);
3769  case BTT_TypeCompatible:
3770    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3771                                           RhsT.getUnqualifiedType());
3772  case BTT_IsConvertible:
3773  case BTT_IsConvertibleTo: {
3774    // C++0x [meta.rel]p4:
3775    //   Given the following function prototype:
3776    //
3777    //     template <class T>
3778    //       typename add_rvalue_reference<T>::type create();
3779    //
3780    //   the predicate condition for a template specialization
3781    //   is_convertible<From, To> shall be satisfied if and only if
3782    //   the return expression in the following code would be
3783    //   well-formed, including any implicit conversions to the return
3784    //   type of the function:
3785    //
3786    //     To test() {
3787    //       return create<From>();
3788    //     }
3789    //
3790    //   Access checking is performed as if in a context unrelated to To and
3791    //   From. Only the validity of the immediate context of the expression
3792    //   of the return-statement (including conversions to the return type)
3793    //   is considered.
3794    //
3795    // We model the initialization as a copy-initialization of a temporary
3796    // of the appropriate type, which for this expression is identical to the
3797    // return statement (since NRVO doesn't apply).
3798
3799    // Functions aren't allowed to return function or array types.
3800    if (RhsT->isFunctionType() || RhsT->isArrayType())
3801      return false;
3802
3803    // A return statement in a void function must have void type.
3804    if (RhsT->isVoidType())
3805      return LhsT->isVoidType();
3806
3807    // A function definition requires a complete, non-abstract return type.
3808    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3809        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3810      return false;
3811
3812    // Compute the result of add_rvalue_reference.
3813    if (LhsT->isObjectType() || LhsT->isFunctionType())
3814      LhsT = Self.Context.getRValueReferenceType(LhsT);
3815
3816    // Build a fake source and destination for initialization.
3817    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3818    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3819                         Expr::getValueKindForType(LhsT));
3820    Expr *FromPtr = &From;
3821    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3822                                                           SourceLocation()));
3823
3824    // Perform the initialization in an unevaluated context within a SFINAE
3825    // trap at translation unit scope.
3826    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3827    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3828    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3829    InitializationSequence Init(Self, To, Kind, FromPtr);
3830    if (Init.Failed())
3831      return false;
3832
3833    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3834    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3835  }
3836
3837  case BTT_IsTriviallyAssignable: {
3838    // C++11 [meta.unary.prop]p3:
3839    //   is_trivially_assignable is defined as:
3840    //     is_assignable<T, U>::value is true and the assignment, as defined by
3841    //     is_assignable, is known to call no operation that is not trivial
3842    //
3843    //   is_assignable is defined as:
3844    //     The expression declval<T>() = declval<U>() is well-formed when
3845    //     treated as an unevaluated operand (Clause 5).
3846    //
3847    //   For both, T and U shall be complete types, (possibly cv-qualified)
3848    //   void, or arrays of unknown bound.
3849    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3850        Self.RequireCompleteType(KeyLoc, LhsT,
3851          diag::err_incomplete_type_used_in_type_trait_expr))
3852      return false;
3853    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3854        Self.RequireCompleteType(KeyLoc, RhsT,
3855          diag::err_incomplete_type_used_in_type_trait_expr))
3856      return false;
3857
3858    // cv void is never assignable.
3859    if (LhsT->isVoidType() || RhsT->isVoidType())
3860      return false;
3861
3862    // Build expressions that emulate the effect of declval<T>() and
3863    // declval<U>().
3864    if (LhsT->isObjectType() || LhsT->isFunctionType())
3865      LhsT = Self.Context.getRValueReferenceType(LhsT);
3866    if (RhsT->isObjectType() || RhsT->isFunctionType())
3867      RhsT = Self.Context.getRValueReferenceType(RhsT);
3868    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3869                        Expr::getValueKindForType(LhsT));
3870    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3871                        Expr::getValueKindForType(RhsT));
3872
3873    // Attempt the assignment in an unevaluated context within a SFINAE
3874    // trap at translation unit scope.
3875    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3876    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3877    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3878    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3879    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3880      return false;
3881
3882    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3883    // lifetime, this is a non-trivial assignment.
3884    if (Self.getLangOpts().ObjCAutoRefCount &&
3885        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3886      return false;
3887
3888    return !Result.get()->hasNonTrivialCall(Self.Context);
3889  }
3890  }
3891  llvm_unreachable("Unknown type trait or not implemented");
3892}
3893
3894ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3895                                      SourceLocation KWLoc,
3896                                      TypeSourceInfo *LhsTSInfo,
3897                                      TypeSourceInfo *RhsTSInfo,
3898                                      SourceLocation RParen) {
3899  QualType LhsT = LhsTSInfo->getType();
3900  QualType RhsT = RhsTSInfo->getType();
3901
3902  if (BTT == BTT_TypeCompatible) {
3903    if (getLangOpts().CPlusPlus) {
3904      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3905        << SourceRange(KWLoc, RParen);
3906      return ExprError();
3907    }
3908  }
3909
3910  bool Value = false;
3911  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3912    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3913
3914  // Select trait result type.
3915  QualType ResultType;
3916  switch (BTT) {
3917  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3918  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3919  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3920  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3921  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3922  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3923  }
3924
3925  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3926                                                 RhsTSInfo, Value, RParen,
3927                                                 ResultType));
3928}
3929
3930ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3931                                     SourceLocation KWLoc,
3932                                     ParsedType Ty,
3933                                     Expr* DimExpr,
3934                                     SourceLocation RParen) {
3935  TypeSourceInfo *TSInfo;
3936  QualType T = GetTypeFromParser(Ty, &TSInfo);
3937  if (!TSInfo)
3938    TSInfo = Context.getTrivialTypeSourceInfo(T);
3939
3940  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3941}
3942
3943static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3944                                           QualType T, Expr *DimExpr,
3945                                           SourceLocation KeyLoc) {
3946  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3947
3948  switch(ATT) {
3949  case ATT_ArrayRank:
3950    if (T->isArrayType()) {
3951      unsigned Dim = 0;
3952      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3953        ++Dim;
3954        T = AT->getElementType();
3955      }
3956      return Dim;
3957    }
3958    return 0;
3959
3960  case ATT_ArrayExtent: {
3961    llvm::APSInt Value;
3962    uint64_t Dim;
3963    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3964          diag::err_dimension_expr_not_constant_integer,
3965          false).isInvalid())
3966      return 0;
3967    if (Value.isSigned() && Value.isNegative()) {
3968      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3969        << DimExpr->getSourceRange();
3970      return 0;
3971    }
3972    Dim = Value.getLimitedValue();
3973
3974    if (T->isArrayType()) {
3975      unsigned D = 0;
3976      bool Matched = false;
3977      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3978        if (Dim == D) {
3979          Matched = true;
3980          break;
3981        }
3982        ++D;
3983        T = AT->getElementType();
3984      }
3985
3986      if (Matched && T->isArrayType()) {
3987        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3988          return CAT->getSize().getLimitedValue();
3989      }
3990    }
3991    return 0;
3992  }
3993  }
3994  llvm_unreachable("Unknown type trait or not implemented");
3995}
3996
3997ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3998                                     SourceLocation KWLoc,
3999                                     TypeSourceInfo *TSInfo,
4000                                     Expr* DimExpr,
4001                                     SourceLocation RParen) {
4002  QualType T = TSInfo->getType();
4003
4004  // FIXME: This should likely be tracked as an APInt to remove any host
4005  // assumptions about the width of size_t on the target.
4006  uint64_t Value = 0;
4007  if (!T->isDependentType())
4008    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4009
4010  // While the specification for these traits from the Embarcadero C++
4011  // compiler's documentation says the return type is 'unsigned int', Clang
4012  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4013  // compiler, there is no difference. On several other platforms this is an
4014  // important distinction.
4015  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
4016                                                DimExpr, RParen,
4017                                                Context.getSizeType()));
4018}
4019
4020ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4021                                      SourceLocation KWLoc,
4022                                      Expr *Queried,
4023                                      SourceLocation RParen) {
4024  // If error parsing the expression, ignore.
4025  if (!Queried)
4026    return ExprError();
4027
4028  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4029
4030  return Result;
4031}
4032
4033static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4034  switch (ET) {
4035  case ET_IsLValueExpr: return E->isLValue();
4036  case ET_IsRValueExpr: return E->isRValue();
4037  }
4038  llvm_unreachable("Expression trait not covered by switch");
4039}
4040
4041ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4042                                      SourceLocation KWLoc,
4043                                      Expr *Queried,
4044                                      SourceLocation RParen) {
4045  if (Queried->isTypeDependent()) {
4046    // Delay type-checking for type-dependent expressions.
4047  } else if (Queried->getType()->isPlaceholderType()) {
4048    ExprResult PE = CheckPlaceholderExpr(Queried);
4049    if (PE.isInvalid()) return ExprError();
4050    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
4051  }
4052
4053  bool Value = EvaluateExpressionTrait(ET, Queried);
4054
4055  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
4056                                                 RParen, Context.BoolTy));
4057}
4058
4059QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4060                                            ExprValueKind &VK,
4061                                            SourceLocation Loc,
4062                                            bool isIndirect) {
4063  assert(!LHS.get()->getType()->isPlaceholderType() &&
4064         !RHS.get()->getType()->isPlaceholderType() &&
4065         "placeholders should have been weeded out by now");
4066
4067  // The LHS undergoes lvalue conversions if this is ->*.
4068  if (isIndirect) {
4069    LHS = DefaultLvalueConversion(LHS.take());
4070    if (LHS.isInvalid()) return QualType();
4071  }
4072
4073  // The RHS always undergoes lvalue conversions.
4074  RHS = DefaultLvalueConversion(RHS.take());
4075  if (RHS.isInvalid()) return QualType();
4076
4077  const char *OpSpelling = isIndirect ? "->*" : ".*";
4078  // C++ 5.5p2
4079  //   The binary operator .* [p3: ->*] binds its second operand, which shall
4080  //   be of type "pointer to member of T" (where T is a completely-defined
4081  //   class type) [...]
4082  QualType RHSType = RHS.get()->getType();
4083  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4084  if (!MemPtr) {
4085    Diag(Loc, diag::err_bad_memptr_rhs)
4086      << OpSpelling << RHSType << RHS.get()->getSourceRange();
4087    return QualType();
4088  }
4089
4090  QualType Class(MemPtr->getClass(), 0);
4091
4092  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4093  // member pointer points must be completely-defined. However, there is no
4094  // reason for this semantic distinction, and the rule is not enforced by
4095  // other compilers. Therefore, we do not check this property, as it is
4096  // likely to be considered a defect.
4097
4098  // C++ 5.5p2
4099  //   [...] to its first operand, which shall be of class T or of a class of
4100  //   which T is an unambiguous and accessible base class. [p3: a pointer to
4101  //   such a class]
4102  QualType LHSType = LHS.get()->getType();
4103  if (isIndirect) {
4104    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4105      LHSType = Ptr->getPointeeType();
4106    else {
4107      Diag(Loc, diag::err_bad_memptr_lhs)
4108        << OpSpelling << 1 << LHSType
4109        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4110      return QualType();
4111    }
4112  }
4113
4114  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4115    // If we want to check the hierarchy, we need a complete type.
4116    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4117                            OpSpelling, (int)isIndirect)) {
4118      return QualType();
4119    }
4120    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4121                       /*DetectVirtual=*/false);
4122    // FIXME: Would it be useful to print full ambiguity paths, or is that
4123    // overkill?
4124    if (!IsDerivedFrom(LHSType, Class, Paths) ||
4125        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
4126      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4127        << (int)isIndirect << LHS.get()->getType();
4128      return QualType();
4129    }
4130    // Cast LHS to type of use.
4131    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4132    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4133
4134    CXXCastPath BasePath;
4135    BuildBasePathArray(Paths, BasePath);
4136    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
4137                            &BasePath);
4138  }
4139
4140  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4141    // Diagnose use of pointer-to-member type which when used as
4142    // the functional cast in a pointer-to-member expression.
4143    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4144     return QualType();
4145  }
4146
4147  // C++ 5.5p2
4148  //   The result is an object or a function of the type specified by the
4149  //   second operand.
4150  // The cv qualifiers are the union of those in the pointer and the left side,
4151  // in accordance with 5.5p5 and 5.2.5.
4152  QualType Result = MemPtr->getPointeeType();
4153  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4154
4155  // C++0x [expr.mptr.oper]p6:
4156  //   In a .* expression whose object expression is an rvalue, the program is
4157  //   ill-formed if the second operand is a pointer to member function with
4158  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4159  //   expression is an lvalue, the program is ill-formed if the second operand
4160  //   is a pointer to member function with ref-qualifier &&.
4161  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4162    switch (Proto->getRefQualifier()) {
4163    case RQ_None:
4164      // Do nothing
4165      break;
4166
4167    case RQ_LValue:
4168      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4169        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4170          << RHSType << 1 << LHS.get()->getSourceRange();
4171      break;
4172
4173    case RQ_RValue:
4174      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4175        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4176          << RHSType << 0 << LHS.get()->getSourceRange();
4177      break;
4178    }
4179  }
4180
4181  // C++ [expr.mptr.oper]p6:
4182  //   The result of a .* expression whose second operand is a pointer
4183  //   to a data member is of the same value category as its
4184  //   first operand. The result of a .* expression whose second
4185  //   operand is a pointer to a member function is a prvalue. The
4186  //   result of an ->* expression is an lvalue if its second operand
4187  //   is a pointer to data member and a prvalue otherwise.
4188  if (Result->isFunctionType()) {
4189    VK = VK_RValue;
4190    return Context.BoundMemberTy;
4191  } else if (isIndirect) {
4192    VK = VK_LValue;
4193  } else {
4194    VK = LHS.get()->getValueKind();
4195  }
4196
4197  return Result;
4198}
4199
4200/// \brief Try to convert a type to another according to C++0x 5.16p3.
4201///
4202/// This is part of the parameter validation for the ? operator. If either
4203/// value operand is a class type, the two operands are attempted to be
4204/// converted to each other. This function does the conversion in one direction.
4205/// It returns true if the program is ill-formed and has already been diagnosed
4206/// as such.
4207static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4208                                SourceLocation QuestionLoc,
4209                                bool &HaveConversion,
4210                                QualType &ToType) {
4211  HaveConversion = false;
4212  ToType = To->getType();
4213
4214  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4215                                                           SourceLocation());
4216  // C++0x 5.16p3
4217  //   The process for determining whether an operand expression E1 of type T1
4218  //   can be converted to match an operand expression E2 of type T2 is defined
4219  //   as follows:
4220  //   -- If E2 is an lvalue:
4221  bool ToIsLvalue = To->isLValue();
4222  if (ToIsLvalue) {
4223    //   E1 can be converted to match E2 if E1 can be implicitly converted to
4224    //   type "lvalue reference to T2", subject to the constraint that in the
4225    //   conversion the reference must bind directly to E1.
4226    QualType T = Self.Context.getLValueReferenceType(ToType);
4227    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4228
4229    InitializationSequence InitSeq(Self, Entity, Kind, From);
4230    if (InitSeq.isDirectReferenceBinding()) {
4231      ToType = T;
4232      HaveConversion = true;
4233      return false;
4234    }
4235
4236    if (InitSeq.isAmbiguous())
4237      return InitSeq.Diagnose(Self, Entity, Kind, From);
4238  }
4239
4240  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4241  //      -- if E1 and E2 have class type, and the underlying class types are
4242  //         the same or one is a base class of the other:
4243  QualType FTy = From->getType();
4244  QualType TTy = To->getType();
4245  const RecordType *FRec = FTy->getAs<RecordType>();
4246  const RecordType *TRec = TTy->getAs<RecordType>();
4247  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4248                       Self.IsDerivedFrom(FTy, TTy);
4249  if (FRec && TRec &&
4250      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4251    //         E1 can be converted to match E2 if the class of T2 is the
4252    //         same type as, or a base class of, the class of T1, and
4253    //         [cv2 > cv1].
4254    if (FRec == TRec || FDerivedFromT) {
4255      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4256        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4257        InitializationSequence InitSeq(Self, Entity, Kind, From);
4258        if (InitSeq) {
4259          HaveConversion = true;
4260          return false;
4261        }
4262
4263        if (InitSeq.isAmbiguous())
4264          return InitSeq.Diagnose(Self, Entity, Kind, From);
4265      }
4266    }
4267
4268    return false;
4269  }
4270
4271  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4272  //        implicitly converted to the type that expression E2 would have
4273  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4274  //        an rvalue).
4275  //
4276  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4277  // to the array-to-pointer or function-to-pointer conversions.
4278  if (!TTy->getAs<TagType>())
4279    TTy = TTy.getUnqualifiedType();
4280
4281  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4282  InitializationSequence InitSeq(Self, Entity, Kind, From);
4283  HaveConversion = !InitSeq.Failed();
4284  ToType = TTy;
4285  if (InitSeq.isAmbiguous())
4286    return InitSeq.Diagnose(Self, Entity, Kind, From);
4287
4288  return false;
4289}
4290
4291/// \brief Try to find a common type for two according to C++0x 5.16p5.
4292///
4293/// This is part of the parameter validation for the ? operator. If either
4294/// value operand is a class type, overload resolution is used to find a
4295/// conversion to a common type.
4296static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4297                                    SourceLocation QuestionLoc) {
4298  Expr *Args[2] = { LHS.get(), RHS.get() };
4299  OverloadCandidateSet CandidateSet(QuestionLoc);
4300  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4301                                    CandidateSet);
4302
4303  OverloadCandidateSet::iterator Best;
4304  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4305    case OR_Success: {
4306      // We found a match. Perform the conversions on the arguments and move on.
4307      ExprResult LHSRes =
4308        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4309                                       Best->Conversions[0], Sema::AA_Converting);
4310      if (LHSRes.isInvalid())
4311        break;
4312      LHS = LHSRes;
4313
4314      ExprResult RHSRes =
4315        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4316                                       Best->Conversions[1], Sema::AA_Converting);
4317      if (RHSRes.isInvalid())
4318        break;
4319      RHS = RHSRes;
4320      if (Best->Function)
4321        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4322      return false;
4323    }
4324
4325    case OR_No_Viable_Function:
4326
4327      // Emit a better diagnostic if one of the expressions is a null pointer
4328      // constant and the other is a pointer type. In this case, the user most
4329      // likely forgot to take the address of the other expression.
4330      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4331        return true;
4332
4333      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4334        << LHS.get()->getType() << RHS.get()->getType()
4335        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4336      return true;
4337
4338    case OR_Ambiguous:
4339      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4340        << LHS.get()->getType() << RHS.get()->getType()
4341        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4342      // FIXME: Print the possible common types by printing the return types of
4343      // the viable candidates.
4344      break;
4345
4346    case OR_Deleted:
4347      llvm_unreachable("Conditional operator has only built-in overloads");
4348  }
4349  return true;
4350}
4351
4352/// \brief Perform an "extended" implicit conversion as returned by
4353/// TryClassUnification.
4354static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4355  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4356  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4357                                                           SourceLocation());
4358  Expr *Arg = E.take();
4359  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4360  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4361  if (Result.isInvalid())
4362    return true;
4363
4364  E = Result;
4365  return false;
4366}
4367
4368/// \brief Check the operands of ?: under C++ semantics.
4369///
4370/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4371/// extension. In this case, LHS == Cond. (But they're not aliases.)
4372QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4373                                           ExprResult &RHS, ExprValueKind &VK,
4374                                           ExprObjectKind &OK,
4375                                           SourceLocation QuestionLoc) {
4376  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4377  // interface pointers.
4378
4379  // C++11 [expr.cond]p1
4380  //   The first expression is contextually converted to bool.
4381  if (!Cond.get()->isTypeDependent()) {
4382    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4383    if (CondRes.isInvalid())
4384      return QualType();
4385    Cond = CondRes;
4386  }
4387
4388  // Assume r-value.
4389  VK = VK_RValue;
4390  OK = OK_Ordinary;
4391
4392  // Either of the arguments dependent?
4393  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4394    return Context.DependentTy;
4395
4396  // C++11 [expr.cond]p2
4397  //   If either the second or the third operand has type (cv) void, ...
4398  QualType LTy = LHS.get()->getType();
4399  QualType RTy = RHS.get()->getType();
4400  bool LVoid = LTy->isVoidType();
4401  bool RVoid = RTy->isVoidType();
4402  if (LVoid || RVoid) {
4403    //   ... then the [l2r] conversions are performed on the second and third
4404    //   operands ...
4405    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4406    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4407    if (LHS.isInvalid() || RHS.isInvalid())
4408      return QualType();
4409
4410    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4411    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4412    // do this part for us.
4413    ExprResult &NonVoid = LVoid ? RHS : LHS;
4414    if (NonVoid.get()->getType()->isRecordType() &&
4415        NonVoid.get()->isGLValue()) {
4416      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4417                             diag::err_allocation_of_abstract_type))
4418        return QualType();
4419      InitializedEntity Entity =
4420          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4421      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4422      if (NonVoid.isInvalid())
4423        return QualType();
4424    }
4425
4426    LTy = LHS.get()->getType();
4427    RTy = RHS.get()->getType();
4428
4429    //   ... and one of the following shall hold:
4430    //   -- The second or the third operand (but not both) is a throw-
4431    //      expression; the result is of the type of the other and is a prvalue.
4432    bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenCasts());
4433    bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenCasts());
4434    if (LThrow && !RThrow)
4435      return RTy;
4436    if (RThrow && !LThrow)
4437      return LTy;
4438
4439    //   -- Both the second and third operands have type void; the result is of
4440    //      type void and is a prvalue.
4441    if (LVoid && RVoid)
4442      return Context.VoidTy;
4443
4444    // Neither holds, error.
4445    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4446      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4447      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4448    return QualType();
4449  }
4450
4451  // Neither is void.
4452
4453  // C++11 [expr.cond]p3
4454  //   Otherwise, if the second and third operand have different types, and
4455  //   either has (cv) class type [...] an attempt is made to convert each of
4456  //   those operands to the type of the other.
4457  if (!Context.hasSameType(LTy, RTy) &&
4458      (LTy->isRecordType() || RTy->isRecordType())) {
4459    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4460    // These return true if a single direction is already ambiguous.
4461    QualType L2RType, R2LType;
4462    bool HaveL2R, HaveR2L;
4463    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4464      return QualType();
4465    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4466      return QualType();
4467
4468    //   If both can be converted, [...] the program is ill-formed.
4469    if (HaveL2R && HaveR2L) {
4470      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4471        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4472      return QualType();
4473    }
4474
4475    //   If exactly one conversion is possible, that conversion is applied to
4476    //   the chosen operand and the converted operands are used in place of the
4477    //   original operands for the remainder of this section.
4478    if (HaveL2R) {
4479      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4480        return QualType();
4481      LTy = LHS.get()->getType();
4482    } else if (HaveR2L) {
4483      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4484        return QualType();
4485      RTy = RHS.get()->getType();
4486    }
4487  }
4488
4489  // C++11 [expr.cond]p3
4490  //   if both are glvalues of the same value category and the same type except
4491  //   for cv-qualification, an attempt is made to convert each of those
4492  //   operands to the type of the other.
4493  ExprValueKind LVK = LHS.get()->getValueKind();
4494  ExprValueKind RVK = RHS.get()->getValueKind();
4495  if (!Context.hasSameType(LTy, RTy) &&
4496      Context.hasSameUnqualifiedType(LTy, RTy) &&
4497      LVK == RVK && LVK != VK_RValue) {
4498    // Since the unqualified types are reference-related and we require the
4499    // result to be as if a reference bound directly, the only conversion
4500    // we can perform is to add cv-qualifiers.
4501    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4502    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4503    if (RCVR.isStrictSupersetOf(LCVR)) {
4504      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4505      LTy = LHS.get()->getType();
4506    }
4507    else if (LCVR.isStrictSupersetOf(RCVR)) {
4508      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4509      RTy = RHS.get()->getType();
4510    }
4511  }
4512
4513  // C++11 [expr.cond]p4
4514  //   If the second and third operands are glvalues of the same value
4515  //   category and have the same type, the result is of that type and
4516  //   value category and it is a bit-field if the second or the third
4517  //   operand is a bit-field, or if both are bit-fields.
4518  // We only extend this to bitfields, not to the crazy other kinds of
4519  // l-values.
4520  bool Same = Context.hasSameType(LTy, RTy);
4521  if (Same && LVK == RVK && LVK != VK_RValue &&
4522      LHS.get()->isOrdinaryOrBitFieldObject() &&
4523      RHS.get()->isOrdinaryOrBitFieldObject()) {
4524    VK = LHS.get()->getValueKind();
4525    if (LHS.get()->getObjectKind() == OK_BitField ||
4526        RHS.get()->getObjectKind() == OK_BitField)
4527      OK = OK_BitField;
4528    return LTy;
4529  }
4530
4531  // C++11 [expr.cond]p5
4532  //   Otherwise, the result is a prvalue. If the second and third operands
4533  //   do not have the same type, and either has (cv) class type, ...
4534  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4535    //   ... overload resolution is used to determine the conversions (if any)
4536    //   to be applied to the operands. If the overload resolution fails, the
4537    //   program is ill-formed.
4538    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4539      return QualType();
4540  }
4541
4542  // C++11 [expr.cond]p6
4543  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4544  //   conversions are performed on the second and third operands.
4545  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4546  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4547  if (LHS.isInvalid() || RHS.isInvalid())
4548    return QualType();
4549  LTy = LHS.get()->getType();
4550  RTy = RHS.get()->getType();
4551
4552  //   After those conversions, one of the following shall hold:
4553  //   -- The second and third operands have the same type; the result
4554  //      is of that type. If the operands have class type, the result
4555  //      is a prvalue temporary of the result type, which is
4556  //      copy-initialized from either the second operand or the third
4557  //      operand depending on the value of the first operand.
4558  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4559    if (LTy->isRecordType()) {
4560      // The operands have class type. Make a temporary copy.
4561      if (RequireNonAbstractType(QuestionLoc, LTy,
4562                                 diag::err_allocation_of_abstract_type))
4563        return QualType();
4564      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4565
4566      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4567                                                     SourceLocation(),
4568                                                     LHS);
4569      if (LHSCopy.isInvalid())
4570        return QualType();
4571
4572      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4573                                                     SourceLocation(),
4574                                                     RHS);
4575      if (RHSCopy.isInvalid())
4576        return QualType();
4577
4578      LHS = LHSCopy;
4579      RHS = RHSCopy;
4580    }
4581
4582    return LTy;
4583  }
4584
4585  // Extension: conditional operator involving vector types.
4586  if (LTy->isVectorType() || RTy->isVectorType())
4587    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4588
4589  //   -- The second and third operands have arithmetic or enumeration type;
4590  //      the usual arithmetic conversions are performed to bring them to a
4591  //      common type, and the result is of that type.
4592  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4593    UsualArithmeticConversions(LHS, RHS);
4594    if (LHS.isInvalid() || RHS.isInvalid())
4595      return QualType();
4596    return LHS.get()->getType();
4597  }
4598
4599  //   -- The second and third operands have pointer type, or one has pointer
4600  //      type and the other is a null pointer constant, or both are null
4601  //      pointer constants, at least one of which is non-integral; pointer
4602  //      conversions and qualification conversions are performed to bring them
4603  //      to their composite pointer type. The result is of the composite
4604  //      pointer type.
4605  //   -- The second and third operands have pointer to member type, or one has
4606  //      pointer to member type and the other is a null pointer constant;
4607  //      pointer to member conversions and qualification conversions are
4608  //      performed to bring them to a common type, whose cv-qualification
4609  //      shall match the cv-qualification of either the second or the third
4610  //      operand. The result is of the common type.
4611  bool NonStandardCompositeType = false;
4612  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4613                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4614  if (!Composite.isNull()) {
4615    if (NonStandardCompositeType)
4616      Diag(QuestionLoc,
4617           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4618        << LTy << RTy << Composite
4619        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4620
4621    return Composite;
4622  }
4623
4624  // Similarly, attempt to find composite type of two objective-c pointers.
4625  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4626  if (!Composite.isNull())
4627    return Composite;
4628
4629  // Check if we are using a null with a non-pointer type.
4630  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4631    return QualType();
4632
4633  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4634    << LHS.get()->getType() << RHS.get()->getType()
4635    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4636  return QualType();
4637}
4638
4639/// \brief Find a merged pointer type and convert the two expressions to it.
4640///
4641/// This finds the composite pointer type (or member pointer type) for @p E1
4642/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4643/// type and returns it.
4644/// It does not emit diagnostics.
4645///
4646/// \param Loc The location of the operator requiring these two expressions to
4647/// be converted to the composite pointer type.
4648///
4649/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4650/// a non-standard (but still sane) composite type to which both expressions
4651/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4652/// will be set true.
4653QualType Sema::FindCompositePointerType(SourceLocation Loc,
4654                                        Expr *&E1, Expr *&E2,
4655                                        bool *NonStandardCompositeType) {
4656  if (NonStandardCompositeType)
4657    *NonStandardCompositeType = false;
4658
4659  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4660  QualType T1 = E1->getType(), T2 = E2->getType();
4661
4662  // C++11 5.9p2
4663  //   Pointer conversions and qualification conversions are performed on
4664  //   pointer operands to bring them to their composite pointer type. If
4665  //   one operand is a null pointer constant, the composite pointer type is
4666  //   std::nullptr_t if the other operand is also a null pointer constant or,
4667  //   if the other operand is a pointer, the type of the other operand.
4668  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4669      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4670    if (T1->isNullPtrType() &&
4671        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4672      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4673      return T1;
4674    }
4675    if (T2->isNullPtrType() &&
4676        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4677      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4678      return T2;
4679    }
4680    return QualType();
4681  }
4682
4683  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4684    if (T2->isMemberPointerType())
4685      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4686    else
4687      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4688    return T2;
4689  }
4690  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4691    if (T1->isMemberPointerType())
4692      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4693    else
4694      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4695    return T1;
4696  }
4697
4698  // Now both have to be pointers or member pointers.
4699  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4700      (!T2->isPointerType() && !T2->isMemberPointerType()))
4701    return QualType();
4702
4703  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4704  //   the other has type "pointer to cv2 T" and the composite pointer type is
4705  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4706  //   Otherwise, the composite pointer type is a pointer type similar to the
4707  //   type of one of the operands, with a cv-qualification signature that is
4708  //   the union of the cv-qualification signatures of the operand types.
4709  // In practice, the first part here is redundant; it's subsumed by the second.
4710  // What we do here is, we build the two possible composite types, and try the
4711  // conversions in both directions. If only one works, or if the two composite
4712  // types are the same, we have succeeded.
4713  // FIXME: extended qualifiers?
4714  typedef SmallVector<unsigned, 4> QualifierVector;
4715  QualifierVector QualifierUnion;
4716  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4717      ContainingClassVector;
4718  ContainingClassVector MemberOfClass;
4719  QualType Composite1 = Context.getCanonicalType(T1),
4720           Composite2 = Context.getCanonicalType(T2);
4721  unsigned NeedConstBefore = 0;
4722  do {
4723    const PointerType *Ptr1, *Ptr2;
4724    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4725        (Ptr2 = Composite2->getAs<PointerType>())) {
4726      Composite1 = Ptr1->getPointeeType();
4727      Composite2 = Ptr2->getPointeeType();
4728
4729      // If we're allowed to create a non-standard composite type, keep track
4730      // of where we need to fill in additional 'const' qualifiers.
4731      if (NonStandardCompositeType &&
4732          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4733        NeedConstBefore = QualifierUnion.size();
4734
4735      QualifierUnion.push_back(
4736                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4737      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4738      continue;
4739    }
4740
4741    const MemberPointerType *MemPtr1, *MemPtr2;
4742    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4743        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4744      Composite1 = MemPtr1->getPointeeType();
4745      Composite2 = MemPtr2->getPointeeType();
4746
4747      // If we're allowed to create a non-standard composite type, keep track
4748      // of where we need to fill in additional 'const' qualifiers.
4749      if (NonStandardCompositeType &&
4750          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4751        NeedConstBefore = QualifierUnion.size();
4752
4753      QualifierUnion.push_back(
4754                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4755      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4756                                             MemPtr2->getClass()));
4757      continue;
4758    }
4759
4760    // FIXME: block pointer types?
4761
4762    // Cannot unwrap any more types.
4763    break;
4764  } while (true);
4765
4766  if (NeedConstBefore && NonStandardCompositeType) {
4767    // Extension: Add 'const' to qualifiers that come before the first qualifier
4768    // mismatch, so that our (non-standard!) composite type meets the
4769    // requirements of C++ [conv.qual]p4 bullet 3.
4770    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4771      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4772        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4773        *NonStandardCompositeType = true;
4774      }
4775    }
4776  }
4777
4778  // Rewrap the composites as pointers or member pointers with the union CVRs.
4779  ContainingClassVector::reverse_iterator MOC
4780    = MemberOfClass.rbegin();
4781  for (QualifierVector::reverse_iterator
4782         I = QualifierUnion.rbegin(),
4783         E = QualifierUnion.rend();
4784       I != E; (void)++I, ++MOC) {
4785    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4786    if (MOC->first && MOC->second) {
4787      // Rebuild member pointer type
4788      Composite1 = Context.getMemberPointerType(
4789                                    Context.getQualifiedType(Composite1, Quals),
4790                                    MOC->first);
4791      Composite2 = Context.getMemberPointerType(
4792                                    Context.getQualifiedType(Composite2, Quals),
4793                                    MOC->second);
4794    } else {
4795      // Rebuild pointer type
4796      Composite1
4797        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4798      Composite2
4799        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4800    }
4801  }
4802
4803  // Try to convert to the first composite pointer type.
4804  InitializedEntity Entity1
4805    = InitializedEntity::InitializeTemporary(Composite1);
4806  InitializationKind Kind
4807    = InitializationKind::CreateCopy(Loc, SourceLocation());
4808  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4809  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4810
4811  if (E1ToC1 && E2ToC1) {
4812    // Conversion to Composite1 is viable.
4813    if (!Context.hasSameType(Composite1, Composite2)) {
4814      // Composite2 is a different type from Composite1. Check whether
4815      // Composite2 is also viable.
4816      InitializedEntity Entity2
4817        = InitializedEntity::InitializeTemporary(Composite2);
4818      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4819      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4820      if (E1ToC2 && E2ToC2) {
4821        // Both Composite1 and Composite2 are viable and are different;
4822        // this is an ambiguity.
4823        return QualType();
4824      }
4825    }
4826
4827    // Convert E1 to Composite1
4828    ExprResult E1Result
4829      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4830    if (E1Result.isInvalid())
4831      return QualType();
4832    E1 = E1Result.takeAs<Expr>();
4833
4834    // Convert E2 to Composite1
4835    ExprResult E2Result
4836      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4837    if (E2Result.isInvalid())
4838      return QualType();
4839    E2 = E2Result.takeAs<Expr>();
4840
4841    return Composite1;
4842  }
4843
4844  // Check whether Composite2 is viable.
4845  InitializedEntity Entity2
4846    = InitializedEntity::InitializeTemporary(Composite2);
4847  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4848  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4849  if (!E1ToC2 || !E2ToC2)
4850    return QualType();
4851
4852  // Convert E1 to Composite2
4853  ExprResult E1Result
4854    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4855  if (E1Result.isInvalid())
4856    return QualType();
4857  E1 = E1Result.takeAs<Expr>();
4858
4859  // Convert E2 to Composite2
4860  ExprResult E2Result
4861    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4862  if (E2Result.isInvalid())
4863    return QualType();
4864  E2 = E2Result.takeAs<Expr>();
4865
4866  return Composite2;
4867}
4868
4869ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4870  if (!E)
4871    return ExprError();
4872
4873  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4874
4875  // If the result is a glvalue, we shouldn't bind it.
4876  if (!E->isRValue())
4877    return Owned(E);
4878
4879  // In ARC, calls that return a retainable type can return retained,
4880  // in which case we have to insert a consuming cast.
4881  if (getLangOpts().ObjCAutoRefCount &&
4882      E->getType()->isObjCRetainableType()) {
4883
4884    bool ReturnsRetained;
4885
4886    // For actual calls, we compute this by examining the type of the
4887    // called value.
4888    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4889      Expr *Callee = Call->getCallee()->IgnoreParens();
4890      QualType T = Callee->getType();
4891
4892      if (T == Context.BoundMemberTy) {
4893        // Handle pointer-to-members.
4894        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4895          T = BinOp->getRHS()->getType();
4896        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4897          T = Mem->getMemberDecl()->getType();
4898      }
4899
4900      if (const PointerType *Ptr = T->getAs<PointerType>())
4901        T = Ptr->getPointeeType();
4902      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4903        T = Ptr->getPointeeType();
4904      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4905        T = MemPtr->getPointeeType();
4906
4907      const FunctionType *FTy = T->getAs<FunctionType>();
4908      assert(FTy && "call to value not of function type?");
4909      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4910
4911    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4912    // type always produce a +1 object.
4913    } else if (isa<StmtExpr>(E)) {
4914      ReturnsRetained = true;
4915
4916    // We hit this case with the lambda conversion-to-block optimization;
4917    // we don't want any extra casts here.
4918    } else if (isa<CastExpr>(E) &&
4919               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4920      return Owned(E);
4921
4922    // For message sends and property references, we try to find an
4923    // actual method.  FIXME: we should infer retention by selector in
4924    // cases where we don't have an actual method.
4925    } else {
4926      ObjCMethodDecl *D = 0;
4927      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4928        D = Send->getMethodDecl();
4929      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4930        D = BoxedExpr->getBoxingMethod();
4931      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4932        D = ArrayLit->getArrayWithObjectsMethod();
4933      } else if (ObjCDictionaryLiteral *DictLit
4934                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4935        D = DictLit->getDictWithObjectsMethod();
4936      }
4937
4938      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4939
4940      // Don't do reclaims on performSelector calls; despite their
4941      // return type, the invoked method doesn't necessarily actually
4942      // return an object.
4943      if (!ReturnsRetained &&
4944          D && D->getMethodFamily() == OMF_performSelector)
4945        return Owned(E);
4946    }
4947
4948    // Don't reclaim an object of Class type.
4949    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4950      return Owned(E);
4951
4952    ExprNeedsCleanups = true;
4953
4954    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4955                                   : CK_ARCReclaimReturnedObject);
4956    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4957                                          VK_RValue));
4958  }
4959
4960  if (!getLangOpts().CPlusPlus)
4961    return Owned(E);
4962
4963  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4964  // a fast path for the common case that the type is directly a RecordType.
4965  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4966  const RecordType *RT = 0;
4967  while (!RT) {
4968    switch (T->getTypeClass()) {
4969    case Type::Record:
4970      RT = cast<RecordType>(T);
4971      break;
4972    case Type::ConstantArray:
4973    case Type::IncompleteArray:
4974    case Type::VariableArray:
4975    case Type::DependentSizedArray:
4976      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4977      break;
4978    default:
4979      return Owned(E);
4980    }
4981  }
4982
4983  // That should be enough to guarantee that this type is complete, if we're
4984  // not processing a decltype expression.
4985  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4986  if (RD->isInvalidDecl() || RD->isDependentContext())
4987    return Owned(E);
4988
4989  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4990  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4991
4992  if (Destructor) {
4993    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4994    CheckDestructorAccess(E->getExprLoc(), Destructor,
4995                          PDiag(diag::err_access_dtor_temp)
4996                            << E->getType());
4997    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4998      return ExprError();
4999
5000    // If destructor is trivial, we can avoid the extra copy.
5001    if (Destructor->isTrivial())
5002      return Owned(E);
5003
5004    // We need a cleanup, but we don't need to remember the temporary.
5005    ExprNeedsCleanups = true;
5006  }
5007
5008  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5009  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5010
5011  if (IsDecltype)
5012    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5013
5014  return Owned(Bind);
5015}
5016
5017ExprResult
5018Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5019  if (SubExpr.isInvalid())
5020    return ExprError();
5021
5022  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
5023}
5024
5025Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5026  assert(SubExpr && "sub expression can't be null!");
5027
5028  CleanupVarDeclMarking();
5029
5030  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5031  assert(ExprCleanupObjects.size() >= FirstCleanup);
5032  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5033  if (!ExprNeedsCleanups)
5034    return SubExpr;
5035
5036  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
5037    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5038                         ExprCleanupObjects.size() - FirstCleanup);
5039
5040  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5041  DiscardCleanupsInEvaluationContext();
5042
5043  return E;
5044}
5045
5046Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5047  assert(SubStmt && "sub statement can't be null!");
5048
5049  CleanupVarDeclMarking();
5050
5051  if (!ExprNeedsCleanups)
5052    return SubStmt;
5053
5054  // FIXME: In order to attach the temporaries, wrap the statement into
5055  // a StmtExpr; currently this is only used for asm statements.
5056  // This is hacky, either create a new CXXStmtWithTemporaries statement or
5057  // a new AsmStmtWithTemporaries.
5058  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5059                                                      SourceLocation(),
5060                                                      SourceLocation());
5061  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5062                                   SourceLocation());
5063  return MaybeCreateExprWithCleanups(E);
5064}
5065
5066/// Process the expression contained within a decltype. For such expressions,
5067/// certain semantic checks on temporaries are delayed until this point, and
5068/// are omitted for the 'topmost' call in the decltype expression. If the
5069/// topmost call bound a temporary, strip that temporary off the expression.
5070ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5071  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5072
5073  // C++11 [expr.call]p11:
5074  //   If a function call is a prvalue of object type,
5075  // -- if the function call is either
5076  //   -- the operand of a decltype-specifier, or
5077  //   -- the right operand of a comma operator that is the operand of a
5078  //      decltype-specifier,
5079  //   a temporary object is not introduced for the prvalue.
5080
5081  // Recursively rebuild ParenExprs and comma expressions to strip out the
5082  // outermost CXXBindTemporaryExpr, if any.
5083  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5084    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5085    if (SubExpr.isInvalid())
5086      return ExprError();
5087    if (SubExpr.get() == PE->getSubExpr())
5088      return Owned(E);
5089    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
5090  }
5091  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5092    if (BO->getOpcode() == BO_Comma) {
5093      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5094      if (RHS.isInvalid())
5095        return ExprError();
5096      if (RHS.get() == BO->getRHS())
5097        return Owned(E);
5098      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
5099                                                BO_Comma, BO->getType(),
5100                                                BO->getValueKind(),
5101                                                BO->getObjectKind(),
5102                                                BO->getOperatorLoc(),
5103                                                BO->isFPContractable()));
5104    }
5105  }
5106
5107  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5108  if (TopBind)
5109    E = TopBind->getSubExpr();
5110
5111  // Disable the special decltype handling now.
5112  ExprEvalContexts.back().IsDecltype = false;
5113
5114  // In MS mode, don't perform any extra checking of call return types within a
5115  // decltype expression.
5116  if (getLangOpts().MicrosoftMode)
5117    return Owned(E);
5118
5119  // Perform the semantic checks we delayed until this point.
5120  CallExpr *TopCall = dyn_cast<CallExpr>(E);
5121  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5122       I != N; ++I) {
5123    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5124    if (Call == TopCall)
5125      continue;
5126
5127    if (CheckCallReturnType(Call->getCallReturnType(),
5128                            Call->getLocStart(),
5129                            Call, Call->getDirectCallee()))
5130      return ExprError();
5131  }
5132
5133  // Now all relevant types are complete, check the destructors are accessible
5134  // and non-deleted, and annotate them on the temporaries.
5135  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5136       I != N; ++I) {
5137    CXXBindTemporaryExpr *Bind =
5138      ExprEvalContexts.back().DelayedDecltypeBinds[I];
5139    if (Bind == TopBind)
5140      continue;
5141
5142    CXXTemporary *Temp = Bind->getTemporary();
5143
5144    CXXRecordDecl *RD =
5145      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5146    CXXDestructorDecl *Destructor = LookupDestructor(RD);
5147    Temp->setDestructor(Destructor);
5148
5149    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5150    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5151                          PDiag(diag::err_access_dtor_temp)
5152                            << Bind->getType());
5153    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5154      return ExprError();
5155
5156    // We need a cleanup, but we don't need to remember the temporary.
5157    ExprNeedsCleanups = true;
5158  }
5159
5160  // Possibly strip off the top CXXBindTemporaryExpr.
5161  return Owned(E);
5162}
5163
5164/// Note a set of 'operator->' functions that were used for a member access.
5165static void noteOperatorArrows(Sema &S,
5166                               llvm::ArrayRef<FunctionDecl *> OperatorArrows) {
5167  unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5168  // FIXME: Make this configurable?
5169  unsigned Limit = 9;
5170  if (OperatorArrows.size() > Limit) {
5171    // Produce Limit-1 normal notes and one 'skipping' note.
5172    SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5173    SkipCount = OperatorArrows.size() - (Limit - 1);
5174  }
5175
5176  for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5177    if (I == SkipStart) {
5178      S.Diag(OperatorArrows[I]->getLocation(),
5179             diag::note_operator_arrows_suppressed)
5180          << SkipCount;
5181      I += SkipCount;
5182    } else {
5183      S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5184          << OperatorArrows[I]->getCallResultType();
5185      ++I;
5186    }
5187  }
5188}
5189
5190ExprResult
5191Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5192                                   tok::TokenKind OpKind, ParsedType &ObjectType,
5193                                   bool &MayBePseudoDestructor) {
5194  // Since this might be a postfix expression, get rid of ParenListExprs.
5195  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5196  if (Result.isInvalid()) return ExprError();
5197  Base = Result.get();
5198
5199  Result = CheckPlaceholderExpr(Base);
5200  if (Result.isInvalid()) return ExprError();
5201  Base = Result.take();
5202
5203  QualType BaseType = Base->getType();
5204  MayBePseudoDestructor = false;
5205  if (BaseType->isDependentType()) {
5206    // If we have a pointer to a dependent type and are using the -> operator,
5207    // the object type is the type that the pointer points to. We might still
5208    // have enough information about that type to do something useful.
5209    if (OpKind == tok::arrow)
5210      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5211        BaseType = Ptr->getPointeeType();
5212
5213    ObjectType = ParsedType::make(BaseType);
5214    MayBePseudoDestructor = true;
5215    return Owned(Base);
5216  }
5217
5218  // C++ [over.match.oper]p8:
5219  //   [...] When operator->returns, the operator-> is applied  to the value
5220  //   returned, with the original second operand.
5221  if (OpKind == tok::arrow) {
5222    QualType StartingType = BaseType;
5223    bool NoArrowOperatorFound = false;
5224    bool FirstIteration = true;
5225    FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5226    // The set of types we've considered so far.
5227    llvm::SmallPtrSet<CanQualType,8> CTypes;
5228    SmallVector<FunctionDecl*, 8> OperatorArrows;
5229    CTypes.insert(Context.getCanonicalType(BaseType));
5230
5231    while (BaseType->isRecordType()) {
5232      if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5233        Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5234          << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5235        noteOperatorArrows(*this, OperatorArrows);
5236        Diag(OpLoc, diag::note_operator_arrow_depth)
5237          << getLangOpts().ArrowDepth;
5238        return ExprError();
5239      }
5240
5241      Result = BuildOverloadedArrowExpr(
5242          S, Base, OpLoc,
5243          // When in a template specialization and on the first loop iteration,
5244          // potentially give the default diagnostic (with the fixit in a
5245          // separate note) instead of having the error reported back to here
5246          // and giving a diagnostic with a fixit attached to the error itself.
5247          (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5248              ? 0
5249              : &NoArrowOperatorFound);
5250      if (Result.isInvalid()) {
5251        if (NoArrowOperatorFound) {
5252          if (FirstIteration) {
5253            Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5254              << BaseType << 1 << Base->getSourceRange()
5255              << FixItHint::CreateReplacement(OpLoc, ".");
5256            OpKind = tok::period;
5257            break;
5258          }
5259          Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5260            << BaseType << Base->getSourceRange();
5261          CallExpr *CE = dyn_cast<CallExpr>(Base);
5262          if (Decl *CD = (CE ? CE->getCalleeDecl() : 0)) {
5263            Diag(CD->getLocStart(),
5264                 diag::note_member_reference_arrow_from_operator_arrow);
5265          }
5266        }
5267        return ExprError();
5268      }
5269      Base = Result.get();
5270      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5271        OperatorArrows.push_back(OpCall->getDirectCallee());
5272      BaseType = Base->getType();
5273      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5274      if (!CTypes.insert(CBaseType)) {
5275        Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5276        noteOperatorArrows(*this, OperatorArrows);
5277        return ExprError();
5278      }
5279      FirstIteration = false;
5280    }
5281
5282    if (OpKind == tok::arrow &&
5283        (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5284      BaseType = BaseType->getPointeeType();
5285  }
5286
5287  // Objective-C properties allow "." access on Objective-C pointer types,
5288  // so adjust the base type to the object type itself.
5289  if (BaseType->isObjCObjectPointerType())
5290    BaseType = BaseType->getPointeeType();
5291
5292  // C++ [basic.lookup.classref]p2:
5293  //   [...] If the type of the object expression is of pointer to scalar
5294  //   type, the unqualified-id is looked up in the context of the complete
5295  //   postfix-expression.
5296  //
5297  // This also indicates that we could be parsing a pseudo-destructor-name.
5298  // Note that Objective-C class and object types can be pseudo-destructor
5299  // expressions or normal member (ivar or property) access expressions.
5300  if (BaseType->isObjCObjectOrInterfaceType()) {
5301    MayBePseudoDestructor = true;
5302  } else if (!BaseType->isRecordType()) {
5303    ObjectType = ParsedType();
5304    MayBePseudoDestructor = true;
5305    return Owned(Base);
5306  }
5307
5308  // The object type must be complete (or dependent), or
5309  // C++11 [expr.prim.general]p3:
5310  //   Unlike the object expression in other contexts, *this is not required to
5311  //   be of complete type for purposes of class member access (5.2.5) outside
5312  //   the member function body.
5313  if (!BaseType->isDependentType() &&
5314      !isThisOutsideMemberFunctionBody(BaseType) &&
5315      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5316    return ExprError();
5317
5318  // C++ [basic.lookup.classref]p2:
5319  //   If the id-expression in a class member access (5.2.5) is an
5320  //   unqualified-id, and the type of the object expression is of a class
5321  //   type C (or of pointer to a class type C), the unqualified-id is looked
5322  //   up in the scope of class C. [...]
5323  ObjectType = ParsedType::make(BaseType);
5324  return Base;
5325}
5326
5327ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5328                                                   Expr *MemExpr) {
5329  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5330  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5331    << isa<CXXPseudoDestructorExpr>(MemExpr)
5332    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5333
5334  return ActOnCallExpr(/*Scope*/ 0,
5335                       MemExpr,
5336                       /*LPLoc*/ ExpectedLParenLoc,
5337                       None,
5338                       /*RPLoc*/ ExpectedLParenLoc);
5339}
5340
5341static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5342                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5343  if (Base->hasPlaceholderType()) {
5344    ExprResult result = S.CheckPlaceholderExpr(Base);
5345    if (result.isInvalid()) return true;
5346    Base = result.take();
5347  }
5348  ObjectType = Base->getType();
5349
5350  // C++ [expr.pseudo]p2:
5351  //   The left-hand side of the dot operator shall be of scalar type. The
5352  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5353  //   This scalar type is the object type.
5354  // Note that this is rather different from the normal handling for the
5355  // arrow operator.
5356  if (OpKind == tok::arrow) {
5357    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5358      ObjectType = Ptr->getPointeeType();
5359    } else if (!Base->isTypeDependent()) {
5360      // The user wrote "p->" when she probably meant "p."; fix it.
5361      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5362        << ObjectType << true
5363        << FixItHint::CreateReplacement(OpLoc, ".");
5364      if (S.isSFINAEContext())
5365        return true;
5366
5367      OpKind = tok::period;
5368    }
5369  }
5370
5371  return false;
5372}
5373
5374ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5375                                           SourceLocation OpLoc,
5376                                           tok::TokenKind OpKind,
5377                                           const CXXScopeSpec &SS,
5378                                           TypeSourceInfo *ScopeTypeInfo,
5379                                           SourceLocation CCLoc,
5380                                           SourceLocation TildeLoc,
5381                                         PseudoDestructorTypeStorage Destructed,
5382                                           bool HasTrailingLParen) {
5383  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5384
5385  QualType ObjectType;
5386  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5387    return ExprError();
5388
5389  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5390      !ObjectType->isVectorType()) {
5391    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5392      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5393    else
5394      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5395        << ObjectType << Base->getSourceRange();
5396    return ExprError();
5397  }
5398
5399  // C++ [expr.pseudo]p2:
5400  //   [...] The cv-unqualified versions of the object type and of the type
5401  //   designated by the pseudo-destructor-name shall be the same type.
5402  if (DestructedTypeInfo) {
5403    QualType DestructedType = DestructedTypeInfo->getType();
5404    SourceLocation DestructedTypeStart
5405      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5406    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5407      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5408        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5409          << ObjectType << DestructedType << Base->getSourceRange()
5410          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5411
5412        // Recover by setting the destructed type to the object type.
5413        DestructedType = ObjectType;
5414        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5415                                                           DestructedTypeStart);
5416        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5417      } else if (DestructedType.getObjCLifetime() !=
5418                                                ObjectType.getObjCLifetime()) {
5419
5420        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5421          // Okay: just pretend that the user provided the correctly-qualified
5422          // type.
5423        } else {
5424          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5425            << ObjectType << DestructedType << Base->getSourceRange()
5426            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5427        }
5428
5429        // Recover by setting the destructed type to the object type.
5430        DestructedType = ObjectType;
5431        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5432                                                           DestructedTypeStart);
5433        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5434      }
5435    }
5436  }
5437
5438  // C++ [expr.pseudo]p2:
5439  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5440  //   form
5441  //
5442  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5443  //
5444  //   shall designate the same scalar type.
5445  if (ScopeTypeInfo) {
5446    QualType ScopeType = ScopeTypeInfo->getType();
5447    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5448        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5449
5450      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5451           diag::err_pseudo_dtor_type_mismatch)
5452        << ObjectType << ScopeType << Base->getSourceRange()
5453        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5454
5455      ScopeType = QualType();
5456      ScopeTypeInfo = 0;
5457    }
5458  }
5459
5460  Expr *Result
5461    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5462                                            OpKind == tok::arrow, OpLoc,
5463                                            SS.getWithLocInContext(Context),
5464                                            ScopeTypeInfo,
5465                                            CCLoc,
5466                                            TildeLoc,
5467                                            Destructed);
5468
5469  if (HasTrailingLParen)
5470    return Owned(Result);
5471
5472  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5473}
5474
5475ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5476                                           SourceLocation OpLoc,
5477                                           tok::TokenKind OpKind,
5478                                           CXXScopeSpec &SS,
5479                                           UnqualifiedId &FirstTypeName,
5480                                           SourceLocation CCLoc,
5481                                           SourceLocation TildeLoc,
5482                                           UnqualifiedId &SecondTypeName,
5483                                           bool HasTrailingLParen) {
5484  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5485          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5486         "Invalid first type name in pseudo-destructor");
5487  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5488          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5489         "Invalid second type name in pseudo-destructor");
5490
5491  QualType ObjectType;
5492  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5493    return ExprError();
5494
5495  // Compute the object type that we should use for name lookup purposes. Only
5496  // record types and dependent types matter.
5497  ParsedType ObjectTypePtrForLookup;
5498  if (!SS.isSet()) {
5499    if (ObjectType->isRecordType())
5500      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5501    else if (ObjectType->isDependentType())
5502      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5503  }
5504
5505  // Convert the name of the type being destructed (following the ~) into a
5506  // type (with source-location information).
5507  QualType DestructedType;
5508  TypeSourceInfo *DestructedTypeInfo = 0;
5509  PseudoDestructorTypeStorage Destructed;
5510  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5511    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5512                               SecondTypeName.StartLocation,
5513                               S, &SS, true, false, ObjectTypePtrForLookup);
5514    if (!T &&
5515        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5516         (!SS.isSet() && ObjectType->isDependentType()))) {
5517      // The name of the type being destroyed is a dependent name, and we
5518      // couldn't find anything useful in scope. Just store the identifier and
5519      // it's location, and we'll perform (qualified) name lookup again at
5520      // template instantiation time.
5521      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5522                                               SecondTypeName.StartLocation);
5523    } else if (!T) {
5524      Diag(SecondTypeName.StartLocation,
5525           diag::err_pseudo_dtor_destructor_non_type)
5526        << SecondTypeName.Identifier << ObjectType;
5527      if (isSFINAEContext())
5528        return ExprError();
5529
5530      // Recover by assuming we had the right type all along.
5531      DestructedType = ObjectType;
5532    } else
5533      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5534  } else {
5535    // Resolve the template-id to a type.
5536    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5537    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5538                                       TemplateId->NumArgs);
5539    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5540                                       TemplateId->TemplateKWLoc,
5541                                       TemplateId->Template,
5542                                       TemplateId->TemplateNameLoc,
5543                                       TemplateId->LAngleLoc,
5544                                       TemplateArgsPtr,
5545                                       TemplateId->RAngleLoc);
5546    if (T.isInvalid() || !T.get()) {
5547      // Recover by assuming we had the right type all along.
5548      DestructedType = ObjectType;
5549    } else
5550      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5551  }
5552
5553  // If we've performed some kind of recovery, (re-)build the type source
5554  // information.
5555  if (!DestructedType.isNull()) {
5556    if (!DestructedTypeInfo)
5557      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5558                                                  SecondTypeName.StartLocation);
5559    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5560  }
5561
5562  // Convert the name of the scope type (the type prior to '::') into a type.
5563  TypeSourceInfo *ScopeTypeInfo = 0;
5564  QualType ScopeType;
5565  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5566      FirstTypeName.Identifier) {
5567    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5568      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5569                                 FirstTypeName.StartLocation,
5570                                 S, &SS, true, false, ObjectTypePtrForLookup);
5571      if (!T) {
5572        Diag(FirstTypeName.StartLocation,
5573             diag::err_pseudo_dtor_destructor_non_type)
5574          << FirstTypeName.Identifier << ObjectType;
5575
5576        if (isSFINAEContext())
5577          return ExprError();
5578
5579        // Just drop this type. It's unnecessary anyway.
5580        ScopeType = QualType();
5581      } else
5582        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5583    } else {
5584      // Resolve the template-id to a type.
5585      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5586      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5587                                         TemplateId->NumArgs);
5588      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5589                                         TemplateId->TemplateKWLoc,
5590                                         TemplateId->Template,
5591                                         TemplateId->TemplateNameLoc,
5592                                         TemplateId->LAngleLoc,
5593                                         TemplateArgsPtr,
5594                                         TemplateId->RAngleLoc);
5595      if (T.isInvalid() || !T.get()) {
5596        // Recover by dropping this type.
5597        ScopeType = QualType();
5598      } else
5599        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5600    }
5601  }
5602
5603  if (!ScopeType.isNull() && !ScopeTypeInfo)
5604    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5605                                                  FirstTypeName.StartLocation);
5606
5607
5608  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5609                                   ScopeTypeInfo, CCLoc, TildeLoc,
5610                                   Destructed, HasTrailingLParen);
5611}
5612
5613ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5614                                           SourceLocation OpLoc,
5615                                           tok::TokenKind OpKind,
5616                                           SourceLocation TildeLoc,
5617                                           const DeclSpec& DS,
5618                                           bool HasTrailingLParen) {
5619  QualType ObjectType;
5620  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5621    return ExprError();
5622
5623  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5624
5625  TypeLocBuilder TLB;
5626  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5627  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5628  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5629  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5630
5631  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5632                                   0, SourceLocation(), TildeLoc,
5633                                   Destructed, HasTrailingLParen);
5634}
5635
5636ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5637                                        CXXConversionDecl *Method,
5638                                        bool HadMultipleCandidates) {
5639  if (Method->getParent()->isLambda() &&
5640      Method->getConversionType()->isBlockPointerType()) {
5641    // This is a lambda coversion to block pointer; check if the argument
5642    // is a LambdaExpr.
5643    Expr *SubE = E;
5644    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5645    if (CE && CE->getCastKind() == CK_NoOp)
5646      SubE = CE->getSubExpr();
5647    SubE = SubE->IgnoreParens();
5648    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5649      SubE = BE->getSubExpr();
5650    if (isa<LambdaExpr>(SubE)) {
5651      // For the conversion to block pointer on a lambda expression, we
5652      // construct a special BlockLiteral instead; this doesn't really make
5653      // a difference in ARC, but outside of ARC the resulting block literal
5654      // follows the normal lifetime rules for block literals instead of being
5655      // autoreleased.
5656      DiagnosticErrorTrap Trap(Diags);
5657      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5658                                                     E->getExprLoc(),
5659                                                     Method, E);
5660      if (Exp.isInvalid())
5661        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5662      return Exp;
5663    }
5664  }
5665
5666
5667  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5668                                          FoundDecl, Method);
5669  if (Exp.isInvalid())
5670    return true;
5671
5672  MemberExpr *ME =
5673      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5674                               SourceLocation(), Context.BoundMemberTy,
5675                               VK_RValue, OK_Ordinary);
5676  if (HadMultipleCandidates)
5677    ME->setHadMultipleCandidates(true);
5678  MarkMemberReferenced(ME);
5679
5680  QualType ResultType = Method->getResultType();
5681  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5682  ResultType = ResultType.getNonLValueExprType(Context);
5683
5684  CXXMemberCallExpr *CE =
5685    new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5686                                    Exp.get()->getLocEnd());
5687  return CE;
5688}
5689
5690ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5691                                      SourceLocation RParen) {
5692  CanThrowResult CanThrow = canThrow(Operand);
5693  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5694                                             CanThrow, KeyLoc, RParen));
5695}
5696
5697ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5698                                   Expr *Operand, SourceLocation RParen) {
5699  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5700}
5701
5702static bool IsSpecialDiscardedValue(Expr *E) {
5703  // In C++11, discarded-value expressions of a certain form are special,
5704  // according to [expr]p10:
5705  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5706  //   expression is an lvalue of volatile-qualified type and it has
5707  //   one of the following forms:
5708  E = E->IgnoreParens();
5709
5710  //   - id-expression (5.1.1),
5711  if (isa<DeclRefExpr>(E))
5712    return true;
5713
5714  //   - subscripting (5.2.1),
5715  if (isa<ArraySubscriptExpr>(E))
5716    return true;
5717
5718  //   - class member access (5.2.5),
5719  if (isa<MemberExpr>(E))
5720    return true;
5721
5722  //   - indirection (5.3.1),
5723  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5724    if (UO->getOpcode() == UO_Deref)
5725      return true;
5726
5727  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5728    //   - pointer-to-member operation (5.5),
5729    if (BO->isPtrMemOp())
5730      return true;
5731
5732    //   - comma expression (5.18) where the right operand is one of the above.
5733    if (BO->getOpcode() == BO_Comma)
5734      return IsSpecialDiscardedValue(BO->getRHS());
5735  }
5736
5737  //   - conditional expression (5.16) where both the second and the third
5738  //     operands are one of the above, or
5739  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5740    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5741           IsSpecialDiscardedValue(CO->getFalseExpr());
5742  // The related edge case of "*x ?: *x".
5743  if (BinaryConditionalOperator *BCO =
5744          dyn_cast<BinaryConditionalOperator>(E)) {
5745    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5746      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5747             IsSpecialDiscardedValue(BCO->getFalseExpr());
5748  }
5749
5750  // Objective-C++ extensions to the rule.
5751  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5752    return true;
5753
5754  return false;
5755}
5756
5757/// Perform the conversions required for an expression used in a
5758/// context that ignores the result.
5759ExprResult Sema::IgnoredValueConversions(Expr *E) {
5760  if (E->hasPlaceholderType()) {
5761    ExprResult result = CheckPlaceholderExpr(E);
5762    if (result.isInvalid()) return Owned(E);
5763    E = result.take();
5764  }
5765
5766  // C99 6.3.2.1:
5767  //   [Except in specific positions,] an lvalue that does not have
5768  //   array type is converted to the value stored in the
5769  //   designated object (and is no longer an lvalue).
5770  if (E->isRValue()) {
5771    // In C, function designators (i.e. expressions of function type)
5772    // are r-values, but we still want to do function-to-pointer decay
5773    // on them.  This is both technically correct and convenient for
5774    // some clients.
5775    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5776      return DefaultFunctionArrayConversion(E);
5777
5778    return Owned(E);
5779  }
5780
5781  if (getLangOpts().CPlusPlus)  {
5782    // The C++11 standard defines the notion of a discarded-value expression;
5783    // normally, we don't need to do anything to handle it, but if it is a
5784    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5785    // conversion.
5786    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5787        E->getType().isVolatileQualified() &&
5788        IsSpecialDiscardedValue(E)) {
5789      ExprResult Res = DefaultLvalueConversion(E);
5790      if (Res.isInvalid())
5791        return Owned(E);
5792      E = Res.take();
5793    }
5794    return Owned(E);
5795  }
5796
5797  // GCC seems to also exclude expressions of incomplete enum type.
5798  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5799    if (!T->getDecl()->isComplete()) {
5800      // FIXME: stupid workaround for a codegen bug!
5801      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5802      return Owned(E);
5803    }
5804  }
5805
5806  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5807  if (Res.isInvalid())
5808    return Owned(E);
5809  E = Res.take();
5810
5811  if (!E->getType()->isVoidType())
5812    RequireCompleteType(E->getExprLoc(), E->getType(),
5813                        diag::err_incomplete_type);
5814  return Owned(E);
5815}
5816
5817// If we can unambiguously determine whether Var can never be used
5818// in a constant expression, return true.
5819//  - if the variable and its initializer are non-dependent, then
5820//    we can unambiguously check if the variable is a constant expression.
5821//  - if the initializer is not value dependent - we can determine whether
5822//    it can be used to initialize a constant expression.  If Init can not
5823//    be used to initialize a constant expression we conclude that Var can
5824//    never be a constant expression.
5825//  - FXIME: if the initializer is dependent, we can still do some analysis and
5826//    identify certain cases unambiguously as non-const by using a Visitor:
5827//      - such as those that involve odr-use of a ParmVarDecl, involve a new
5828//        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
5829static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
5830    ASTContext &Context) {
5831  if (isa<ParmVarDecl>(Var)) return true;
5832  const VarDecl *DefVD = 0;
5833
5834  // If there is no initializer - this can not be a constant expression.
5835  if (!Var->getAnyInitializer(DefVD)) return true;
5836  assert(DefVD);
5837  if (DefVD->isWeak()) return false;
5838  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
5839
5840  Expr *Init = cast<Expr>(Eval->Value);
5841
5842  if (Var->getType()->isDependentType() || Init->isValueDependent()) {
5843    // FIXME: Teach the constant evaluator to deal with the non-dependent parts
5844    // of value-dependent expressions, and use it here to determine whether the
5845    // initializer is a potential constant expression.
5846    return false;
5847  }
5848
5849  return !IsVariableAConstantExpression(Var, Context);
5850}
5851
5852/// \brief Check if the current lambda scope has any potential captures, and
5853///  whether they can be captured by any of the enclosing lambdas that are
5854///  ready to capture. If there is a lambda that can capture a nested
5855///  potential-capture, go ahead and do so.  Also, check to see if any
5856///  variables are uncaptureable or do not involve an odr-use so do not
5857///  need to be captured.
5858
5859static void CheckLambdaCaptures(Expr *const FE,
5860    LambdaScopeInfo *const CurrentLSI, Sema &S) {
5861
5862  assert(!S.isUnevaluatedContext());
5863  assert(S.CurContext->isDependentContext());
5864  const bool IsFullExprInstantiationDependent =
5865      FE->isInstantiationDependent();
5866  // All the potentially captureable variables in the current nested
5867  // lambda (within a generic outer lambda), must be captured by an
5868  // outer lambda that is enclosed within a non-dependent context.
5869
5870  for (size_t I = 0, N = CurrentLSI->getNumPotentialVariableCaptures();
5871      I != N; ++I) {
5872    Expr *VarExpr = 0;
5873    VarDecl *Var = 0;
5874    CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
5875    //
5876    if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
5877        !IsFullExprInstantiationDependent)
5878      continue;
5879    // Climb up until we find a lambda that can capture:
5880    //   - a generic-or-non-generic lambda call operator that is enclosed
5881    //     within a non-dependent context.
5882    unsigned FunctionScopeIndexOfCapturableLambda = 0;
5883    if (GetInnermostEnclosingCapturableLambda(
5884            S.FunctionScopes, FunctionScopeIndexOfCapturableLambda,
5885            S.CurContext, Var, S)) {
5886      MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(),
5887          S, &FunctionScopeIndexOfCapturableLambda);
5888    }
5889    const bool IsVarNeverAConstantExpression =
5890        VariableCanNeverBeAConstantExpression(Var, S.Context);
5891    if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
5892      // This full expression is not instantiation dependent or the variable
5893      // can not be used in a constant expression - which means
5894      // this variable must be odr-used here, so diagnose a
5895      // capture violation early, if the variable is un-captureable.
5896      // This is purely for diagnosing errors early.  Otherwise, this
5897      // error would get diagnosed when the lambda becomes capture ready.
5898      QualType CaptureType, DeclRefType;
5899      SourceLocation ExprLoc = VarExpr->getExprLoc();
5900      if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5901                          /*EllipsisLoc*/ SourceLocation(),
5902                          /*BuildAndDiagnose*/false, CaptureType,
5903                          DeclRefType, 0)) {
5904        // We will never be able to capture this variable, and we need
5905        // to be able to in any and all instantiations, so diagnose it.
5906        S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5907                          /*EllipsisLoc*/ SourceLocation(),
5908                          /*BuildAndDiagnose*/true, CaptureType,
5909                          DeclRefType, 0);
5910      }
5911    }
5912  }
5913
5914  if (CurrentLSI->hasPotentialThisCapture()) {
5915    unsigned FunctionScopeIndexOfCapturableLambda = 0;
5916    if (GetInnermostEnclosingCapturableLambda(
5917            S.FunctionScopes, FunctionScopeIndexOfCapturableLambda,
5918            S.CurContext, /*0 is 'this'*/ 0, S)) {
5919      S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
5920          /*Explicit*/false, /*BuildAndDiagnose*/true,
5921          &FunctionScopeIndexOfCapturableLambda);
5922    }
5923  }
5924  CurrentLSI->clearPotentialCaptures();
5925}
5926
5927
5928ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5929                                     bool DiscardedValue,
5930                                     bool IsConstexpr,
5931                                     bool IsLambdaInitCaptureInitializer) {
5932  ExprResult FullExpr = Owned(FE);
5933
5934  if (!FullExpr.get())
5935    return ExprError();
5936
5937  // If we are an init-expression in a lambdas init-capture, we should not
5938  // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
5939  // containing full-expression is done).
5940  // template<class ... Ts> void test(Ts ... t) {
5941  //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
5942  //     return a;
5943  //   }() ...);
5944  // }
5945  // FIXME: This is a hack. It would be better if we pushed the lambda scope
5946  // when we parse the lambda introducer, and teach capturing (but not
5947  // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
5948  // corresponding class yet (that is, have LambdaScopeInfo either represent a
5949  // lambda where we've entered the introducer but not the body, or represent a
5950  // lambda where we've entered the body, depending on where the
5951  // parser/instantiation has got to).
5952  if (!IsLambdaInitCaptureInitializer &&
5953      DiagnoseUnexpandedParameterPack(FullExpr.get()))
5954    return ExprError();
5955
5956  // Top-level expressions default to 'id' when we're in a debugger.
5957  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5958      FullExpr.get()->getType() == Context.UnknownAnyTy) {
5959    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5960    if (FullExpr.isInvalid())
5961      return ExprError();
5962  }
5963
5964  if (DiscardedValue) {
5965    FullExpr = CheckPlaceholderExpr(FullExpr.take());
5966    if (FullExpr.isInvalid())
5967      return ExprError();
5968
5969    FullExpr = IgnoredValueConversions(FullExpr.take());
5970    if (FullExpr.isInvalid())
5971      return ExprError();
5972  }
5973
5974  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5975
5976  // At the end of this full expression (which could be a deeply nested
5977  // lambda), if there is a potential capture within the nested lambda,
5978  // have the outer capture-able lambda try and capture it.
5979  // Consider the following code:
5980  // void f(int, int);
5981  // void f(const int&, double);
5982  // void foo() {
5983  //  const int x = 10, y = 20;
5984  //  auto L = [=](auto a) {
5985  //      auto M = [=](auto b) {
5986  //         f(x, b); <-- requires x to be captured by L and M
5987  //         f(y, a); <-- requires y to be captured by L, but not all Ms
5988  //      };
5989  //   };
5990  // }
5991
5992  // FIXME: Also consider what happens for something like this that involves
5993  // the gnu-extension statement-expressions or even lambda-init-captures:
5994  //   void f() {
5995  //     const int n = 0;
5996  //     auto L =  [&](auto a) {
5997  //       +n + ({ 0; a; });
5998  //     };
5999  //   }
6000  //
6001  // Here, we see +n, and then the full-expression 0; ends, so we don't
6002  // capture n (and instead remove it from our list of potential captures),
6003  // and then the full-expression +n + ({ 0; }); ends, but it's too late
6004  // for us to see that we need to capture n after all.
6005
6006  LambdaScopeInfo *const CurrentLSI = getCurLambda();
6007  // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6008  // even if CurContext is not a lambda call operator. Refer to that Bug Report
6009  // for an example of the code that might cause this asynchrony.
6010  // By ensuring we are in the context of a lambda's call operator
6011  // we can fix the bug (we only need to check whether we need to capture
6012  // if we are within a lambda's body); but per the comments in that
6013  // PR, a proper fix would entail :
6014  //   "Alternative suggestion:
6015  //   - Add to Sema an integer holding the smallest (outermost) scope
6016  //     index that we are *lexically* within, and save/restore/set to
6017  //     FunctionScopes.size() in InstantiatingTemplate's
6018  //     constructor/destructor.
6019  //  - Teach the handful of places that iterate over FunctionScopes to
6020  //    stop at the outermost enclosing lexical scope."
6021  const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6022  if (IsInLambdaDeclContext && CurrentLSI &&
6023      CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6024    CheckLambdaCaptures(FE, CurrentLSI, *this);
6025  return MaybeCreateExprWithCleanups(FullExpr);
6026}
6027
6028StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6029  if (!FullStmt) return StmtError();
6030
6031  return MaybeCreateStmtWithCleanups(FullStmt);
6032}
6033
6034Sema::IfExistsResult
6035Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6036                                   CXXScopeSpec &SS,
6037                                   const DeclarationNameInfo &TargetNameInfo) {
6038  DeclarationName TargetName = TargetNameInfo.getName();
6039  if (!TargetName)
6040    return IER_DoesNotExist;
6041
6042  // If the name itself is dependent, then the result is dependent.
6043  if (TargetName.isDependentName())
6044    return IER_Dependent;
6045
6046  // Do the redeclaration lookup in the current scope.
6047  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6048                 Sema::NotForRedeclaration);
6049  LookupParsedName(R, S, &SS);
6050  R.suppressDiagnostics();
6051
6052  switch (R.getResultKind()) {
6053  case LookupResult::Found:
6054  case LookupResult::FoundOverloaded:
6055  case LookupResult::FoundUnresolvedValue:
6056  case LookupResult::Ambiguous:
6057    return IER_Exists;
6058
6059  case LookupResult::NotFound:
6060    return IER_DoesNotExist;
6061
6062  case LookupResult::NotFoundInCurrentInstantiation:
6063    return IER_Dependent;
6064  }
6065
6066  llvm_unreachable("Invalid LookupResult Kind!");
6067}
6068
6069Sema::IfExistsResult
6070Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6071                                   bool IsIfExists, CXXScopeSpec &SS,
6072                                   UnqualifiedId &Name) {
6073  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6074
6075  // Check for unexpanded parameter packs.
6076  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6077  collectUnexpandedParameterPacks(SS, Unexpanded);
6078  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6079  if (!Unexpanded.empty()) {
6080    DiagnoseUnexpandedParameterPacks(KeywordLoc,
6081                                     IsIfExists? UPPC_IfExists
6082                                               : UPPC_IfNotExists,
6083                                     Unexpanded);
6084    return IER_Error;
6085  }
6086
6087  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6088}
6089