SemaExprCXX.cpp revision 224145
1100969Siwasaki//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2254305Sjkim//
3100969Siwasaki//                     The LLVM Compiler Infrastructure
4254305Sjkim//
5100969Siwasaki// This file is distributed under the University of Illinois Open Source
6254305Sjkim// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "llvm/ADT/STLExtras.h"
32#include "llvm/Support/ErrorHandling.h"
33using namespace clang;
34using namespace sema;
35
36ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
37                                   IdentifierInfo &II,
38                                   SourceLocation NameLoc,
39                                   Scope *S, CXXScopeSpec &SS,
40                                   ParsedType ObjectTypePtr,
41                                   bool EnteringContext) {
42  // Determine where to perform name lookup.
43
44  // FIXME: This area of the standard is very messy, and the current
45  // wording is rather unclear about which scopes we search for the
46  // destructor name; see core issues 399 and 555. Issue 399 in
47  // particular shows where the current description of destructor name
48  // lookup is completely out of line with existing practice, e.g.,
49  // this appears to be ill-formed:
50  //
51  //   namespace N {
52  //     template <typename T> struct S {
53  //       ~S();
54  //     };
55  //   }
56  //
57  //   void f(N::S<int>* s) {
58  //     s->N::S<int>::~S();
59  //   }
60  //
61  // See also PR6358 and PR6359.
62  // For this reason, we're currently only doing the C++03 version of this
63  // code; the C++0x version has to wait until we get a proper spec.
64  QualType SearchType;
65  DeclContext *LookupCtx = 0;
66  bool isDependent = false;
67  bool LookInScope = false;
68
69  // If we have an object type, it's because we are in a
70  // pseudo-destructor-expression or a member access expression, and
71  // we know what type we're looking for.
72  if (ObjectTypePtr)
73    SearchType = GetTypeFromParser(ObjectTypePtr);
74
75  if (SS.isSet()) {
76    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
77
78    bool AlreadySearched = false;
79    bool LookAtPrefix = true;
80    // C++ [basic.lookup.qual]p6:
81    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
82    //   the type-names are looked up as types in the scope designated by the
83    //   nested-name-specifier. In a qualified-id of the form:
84    //
85    //     ::[opt] nested-name-specifier  ~ class-name
86    //
87    //   where the nested-name-specifier designates a namespace scope, and in
88    //   a qualified-id of the form:
89    //
90    //     ::opt nested-name-specifier class-name ::  ~ class-name
91    //
92    //   the class-names are looked up as types in the scope designated by
93    //   the nested-name-specifier.
94    //
95    // Here, we check the first case (completely) and determine whether the
96    // code below is permitted to look at the prefix of the
97    // nested-name-specifier.
98    DeclContext *DC = computeDeclContext(SS, EnteringContext);
99    if (DC && DC->isFileContext()) {
100      AlreadySearched = true;
101      LookupCtx = DC;
102      isDependent = false;
103    } else if (DC && isa<CXXRecordDecl>(DC))
104      LookAtPrefix = false;
105
106    // The second case from the C++03 rules quoted further above.
107    NestedNameSpecifier *Prefix = 0;
108    if (AlreadySearched) {
109      // Nothing left to do.
110    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
111      CXXScopeSpec PrefixSS;
112      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
113      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
114      isDependent = isDependentScopeSpecifier(PrefixSS);
115    } else if (ObjectTypePtr) {
116      LookupCtx = computeDeclContext(SearchType);
117      isDependent = SearchType->isDependentType();
118    } else {
119      LookupCtx = computeDeclContext(SS, EnteringContext);
120      isDependent = LookupCtx && LookupCtx->isDependentContext();
121    }
122
123    LookInScope = false;
124  } else if (ObjectTypePtr) {
125    // C++ [basic.lookup.classref]p3:
126    //   If the unqualified-id is ~type-name, the type-name is looked up
127    //   in the context of the entire postfix-expression. If the type T
128    //   of the object expression is of a class type C, the type-name is
129    //   also looked up in the scope of class C. At least one of the
130    //   lookups shall find a name that refers to (possibly
131    //   cv-qualified) T.
132    LookupCtx = computeDeclContext(SearchType);
133    isDependent = SearchType->isDependentType();
134    assert((isDependent || !SearchType->isIncompleteType()) &&
135           "Caller should have completed object type");
136
137    LookInScope = true;
138  } else {
139    // Perform lookup into the current scope (only).
140    LookInScope = true;
141  }
142
143  TypeDecl *NonMatchingTypeDecl = 0;
144  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
145  for (unsigned Step = 0; Step != 2; ++Step) {
146    // Look for the name first in the computed lookup context (if we
147    // have one) and, if that fails to find a match, in the scope (if
148    // we're allowed to look there).
149    Found.clear();
150    if (Step == 0 && LookupCtx)
151      LookupQualifiedName(Found, LookupCtx);
152    else if (Step == 1 && LookInScope && S)
153      LookupName(Found, S);
154    else
155      continue;
156
157    // FIXME: Should we be suppressing ambiguities here?
158    if (Found.isAmbiguous())
159      return ParsedType();
160
161    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
162      QualType T = Context.getTypeDeclType(Type);
163
164      if (SearchType.isNull() || SearchType->isDependentType() ||
165          Context.hasSameUnqualifiedType(T, SearchType)) {
166        // We found our type!
167
168        return ParsedType::make(T);
169      }
170
171      if (!SearchType.isNull())
172        NonMatchingTypeDecl = Type;
173    }
174
175    // If the name that we found is a class template name, and it is
176    // the same name as the template name in the last part of the
177    // nested-name-specifier (if present) or the object type, then
178    // this is the destructor for that class.
179    // FIXME: This is a workaround until we get real drafting for core
180    // issue 399, for which there isn't even an obvious direction.
181    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
182      QualType MemberOfType;
183      if (SS.isSet()) {
184        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
185          // Figure out the type of the context, if it has one.
186          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
187            MemberOfType = Context.getTypeDeclType(Record);
188        }
189      }
190      if (MemberOfType.isNull())
191        MemberOfType = SearchType;
192
193      if (MemberOfType.isNull())
194        continue;
195
196      // We're referring into a class template specialization. If the
197      // class template we found is the same as the template being
198      // specialized, we found what we are looking for.
199      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
200        if (ClassTemplateSpecializationDecl *Spec
201              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
202          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
203                Template->getCanonicalDecl())
204            return ParsedType::make(MemberOfType);
205        }
206
207        continue;
208      }
209
210      // We're referring to an unresolved class template
211      // specialization. Determine whether we class template we found
212      // is the same as the template being specialized or, if we don't
213      // know which template is being specialized, that it at least
214      // has the same name.
215      if (const TemplateSpecializationType *SpecType
216            = MemberOfType->getAs<TemplateSpecializationType>()) {
217        TemplateName SpecName = SpecType->getTemplateName();
218
219        // The class template we found is the same template being
220        // specialized.
221        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
222          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
223            return ParsedType::make(MemberOfType);
224
225          continue;
226        }
227
228        // The class template we found has the same name as the
229        // (dependent) template name being specialized.
230        if (DependentTemplateName *DepTemplate
231                                    = SpecName.getAsDependentTemplateName()) {
232          if (DepTemplate->isIdentifier() &&
233              DepTemplate->getIdentifier() == Template->getIdentifier())
234            return ParsedType::make(MemberOfType);
235
236          continue;
237        }
238      }
239    }
240  }
241
242  if (isDependent) {
243    // We didn't find our type, but that's okay: it's dependent
244    // anyway.
245
246    // FIXME: What if we have no nested-name-specifier?
247    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
248                                   SS.getWithLocInContext(Context),
249                                   II, NameLoc);
250    return ParsedType::make(T);
251  }
252
253  if (NonMatchingTypeDecl) {
254    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
255    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
256      << T << SearchType;
257    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
258      << T;
259  } else if (ObjectTypePtr)
260    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
261      << &II;
262  else
263    Diag(NameLoc, diag::err_destructor_class_name);
264
265  return ParsedType();
266}
267
268/// \brief Build a C++ typeid expression with a type operand.
269ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
270                                SourceLocation TypeidLoc,
271                                TypeSourceInfo *Operand,
272                                SourceLocation RParenLoc) {
273  // C++ [expr.typeid]p4:
274  //   The top-level cv-qualifiers of the lvalue expression or the type-id
275  //   that is the operand of typeid are always ignored.
276  //   If the type of the type-id is a class type or a reference to a class
277  //   type, the class shall be completely-defined.
278  Qualifiers Quals;
279  QualType T
280    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
281                                      Quals);
282  if (T->getAs<RecordType>() &&
283      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
284    return ExprError();
285
286  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
287                                           Operand,
288                                           SourceRange(TypeidLoc, RParenLoc)));
289}
290
291/// \brief Build a C++ typeid expression with an expression operand.
292ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
293                                SourceLocation TypeidLoc,
294                                Expr *E,
295                                SourceLocation RParenLoc) {
296  bool isUnevaluatedOperand = true;
297  if (E && !E->isTypeDependent()) {
298    QualType T = E->getType();
299    if (const RecordType *RecordT = T->getAs<RecordType>()) {
300      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
301      // C++ [expr.typeid]p3:
302      //   [...] If the type of the expression is a class type, the class
303      //   shall be completely-defined.
304      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305        return ExprError();
306
307      // C++ [expr.typeid]p3:
308      //   When typeid is applied to an expression other than an glvalue of a
309      //   polymorphic class type [...] [the] expression is an unevaluated
310      //   operand. [...]
311      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
312        isUnevaluatedOperand = false;
313
314        // We require a vtable to query the type at run time.
315        MarkVTableUsed(TypeidLoc, RecordD);
316      }
317    }
318
319    // C++ [expr.typeid]p4:
320    //   [...] If the type of the type-id is a reference to a possibly
321    //   cv-qualified type, the result of the typeid expression refers to a
322    //   std::type_info object representing the cv-unqualified referenced
323    //   type.
324    Qualifiers Quals;
325    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
326    if (!Context.hasSameType(T, UnqualT)) {
327      T = UnqualT;
328      E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
329    }
330  }
331
332  // If this is an unevaluated operand, clear out the set of
333  // declaration references we have been computing and eliminate any
334  // temporaries introduced in its computation.
335  if (isUnevaluatedOperand)
336    ExprEvalContexts.back().Context = Unevaluated;
337
338  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
339                                           E,
340                                           SourceRange(TypeidLoc, RParenLoc)));
341}
342
343/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
344ExprResult
345Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
346                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
347  // Find the std::type_info type.
348  if (!getStdNamespace())
349    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
350
351  if (!CXXTypeInfoDecl) {
352    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
353    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
354    LookupQualifiedName(R, getStdNamespace());
355    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
356    if (!CXXTypeInfoDecl)
357      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
358  }
359
360  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
361
362  if (isType) {
363    // The operand is a type; handle it as such.
364    TypeSourceInfo *TInfo = 0;
365    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
366                                   &TInfo);
367    if (T.isNull())
368      return ExprError();
369
370    if (!TInfo)
371      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
372
373    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
374  }
375
376  // The operand is an expression.
377  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
378}
379
380/// Retrieve the UuidAttr associated with QT.
381static UuidAttr *GetUuidAttrOfType(QualType QT) {
382  // Optionally remove one level of pointer, reference or array indirection.
383  const Type *Ty = QT.getTypePtr();;
384  if (QT->isPointerType() || QT->isReferenceType())
385    Ty = QT->getPointeeType().getTypePtr();
386  else if (QT->isArrayType())
387    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
388
389  // Loop all record redeclaration looking for an uuid attribute.
390  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
391  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
392       E = RD->redecls_end(); I != E; ++I) {
393    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
394      return Uuid;
395  }
396
397  return 0;
398}
399
400/// \brief Build a Microsoft __uuidof expression with a type operand.
401ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
402                                SourceLocation TypeidLoc,
403                                TypeSourceInfo *Operand,
404                                SourceLocation RParenLoc) {
405  if (!Operand->getType()->isDependentType()) {
406    if (!GetUuidAttrOfType(Operand->getType()))
407      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
408  }
409
410  // FIXME: add __uuidof semantic analysis for type operand.
411  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
412                                           Operand,
413                                           SourceRange(TypeidLoc, RParenLoc)));
414}
415
416/// \brief Build a Microsoft __uuidof expression with an expression operand.
417ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
418                                SourceLocation TypeidLoc,
419                                Expr *E,
420                                SourceLocation RParenLoc) {
421  if (!E->getType()->isDependentType()) {
422    if (!GetUuidAttrOfType(E->getType()) &&
423        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
424      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
425  }
426  // FIXME: add __uuidof semantic analysis for type operand.
427  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
428                                           E,
429                                           SourceRange(TypeidLoc, RParenLoc)));
430}
431
432/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
433ExprResult
434Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
435                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
436  // If MSVCGuidDecl has not been cached, do the lookup.
437  if (!MSVCGuidDecl) {
438    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
439    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
440    LookupQualifiedName(R, Context.getTranslationUnitDecl());
441    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
442    if (!MSVCGuidDecl)
443      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
444  }
445
446  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
447
448  if (isType) {
449    // The operand is a type; handle it as such.
450    TypeSourceInfo *TInfo = 0;
451    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
452                                   &TInfo);
453    if (T.isNull())
454      return ExprError();
455
456    if (!TInfo)
457      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
458
459    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
460  }
461
462  // The operand is an expression.
463  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
464}
465
466/// ActOnCXXBoolLiteral - Parse {true,false} literals.
467ExprResult
468Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
469  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
470         "Unknown C++ Boolean value!");
471  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
472                                                Context.BoolTy, OpLoc));
473}
474
475/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
476ExprResult
477Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
478  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
479}
480
481/// ActOnCXXThrow - Parse throw expressions.
482ExprResult
483Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
484  bool IsThrownVarInScope = false;
485  if (Ex) {
486    // C++0x [class.copymove]p31:
487    //   When certain criteria are met, an implementation is allowed to omit the
488    //   copy/move construction of a class object [...]
489    //
490    //     - in a throw-expression, when the operand is the name of a
491    //       non-volatile automatic object (other than a function or catch-
492    //       clause parameter) whose scope does not extend beyond the end of the
493    //       innermost enclosing try-block (if there is one), the copy/move
494    //       operation from the operand to the exception object (15.1) can be
495    //       omitted by constructing the automatic object directly into the
496    //       exception object
497    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
498      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
499        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
500          for( ; S; S = S->getParent()) {
501            if (S->isDeclScope(Var)) {
502              IsThrownVarInScope = true;
503              break;
504            }
505
506            if (S->getFlags() &
507                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
508                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
509                 Scope::TryScope))
510              break;
511          }
512        }
513      }
514  }
515
516  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
517}
518
519ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
520                               bool IsThrownVarInScope) {
521  // Don't report an error if 'throw' is used in system headers.
522  if (!getLangOptions().CXXExceptions &&
523      !getSourceManager().isInSystemHeader(OpLoc))
524    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
525
526  if (Ex && !Ex->isTypeDependent()) {
527    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
528    if (ExRes.isInvalid())
529      return ExprError();
530    Ex = ExRes.take();
531  }
532
533  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
534                                          IsThrownVarInScope));
535}
536
537/// CheckCXXThrowOperand - Validate the operand of a throw.
538ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
539                                      bool IsThrownVarInScope) {
540  // C++ [except.throw]p3:
541  //   A throw-expression initializes a temporary object, called the exception
542  //   object, the type of which is determined by removing any top-level
543  //   cv-qualifiers from the static type of the operand of throw and adjusting
544  //   the type from "array of T" or "function returning T" to "pointer to T"
545  //   or "pointer to function returning T", [...]
546  if (E->getType().hasQualifiers())
547    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
548                      CastCategory(E)).take();
549
550  ExprResult Res = DefaultFunctionArrayConversion(E);
551  if (Res.isInvalid())
552    return ExprError();
553  E = Res.take();
554
555  //   If the type of the exception would be an incomplete type or a pointer
556  //   to an incomplete type other than (cv) void the program is ill-formed.
557  QualType Ty = E->getType();
558  bool isPointer = false;
559  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
560    Ty = Ptr->getPointeeType();
561    isPointer = true;
562  }
563  if (!isPointer || !Ty->isVoidType()) {
564    if (RequireCompleteType(ThrowLoc, Ty,
565                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
566                                            : diag::err_throw_incomplete)
567                              << E->getSourceRange()))
568      return ExprError();
569
570    if (RequireNonAbstractType(ThrowLoc, E->getType(),
571                               PDiag(diag::err_throw_abstract_type)
572                                 << E->getSourceRange()))
573      return ExprError();
574  }
575
576  // Initialize the exception result.  This implicitly weeds out
577  // abstract types or types with inaccessible copy constructors.
578
579  // C++0x [class.copymove]p31:
580  //   When certain criteria are met, an implementation is allowed to omit the
581  //   copy/move construction of a class object [...]
582  //
583  //     - in a throw-expression, when the operand is the name of a
584  //       non-volatile automatic object (other than a function or catch-clause
585  //       parameter) whose scope does not extend beyond the end of the
586  //       innermost enclosing try-block (if there is one), the copy/move
587  //       operation from the operand to the exception object (15.1) can be
588  //       omitted by constructing the automatic object directly into the
589  //       exception object
590  const VarDecl *NRVOVariable = 0;
591  if (IsThrownVarInScope)
592    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
593
594  InitializedEntity Entity =
595      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
596                                             /*NRVO=*/NRVOVariable != 0);
597  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
598                                        QualType(), E,
599                                        IsThrownVarInScope);
600  if (Res.isInvalid())
601    return ExprError();
602  E = Res.take();
603
604  // If the exception has class type, we need additional handling.
605  const RecordType *RecordTy = Ty->getAs<RecordType>();
606  if (!RecordTy)
607    return Owned(E);
608  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
609
610  // If we are throwing a polymorphic class type or pointer thereof,
611  // exception handling will make use of the vtable.
612  MarkVTableUsed(ThrowLoc, RD);
613
614  // If a pointer is thrown, the referenced object will not be destroyed.
615  if (isPointer)
616    return Owned(E);
617
618  // If the class has a non-trivial destructor, we must be able to call it.
619  if (RD->hasTrivialDestructor())
620    return Owned(E);
621
622  CXXDestructorDecl *Destructor
623    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
624  if (!Destructor)
625    return Owned(E);
626
627  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
628  CheckDestructorAccess(E->getExprLoc(), Destructor,
629                        PDiag(diag::err_access_dtor_exception) << Ty);
630  return Owned(E);
631}
632
633QualType Sema::getAndCaptureCurrentThisType() {
634  // Ignore block scopes: we can capture through them.
635  // Ignore nested enum scopes: we'll diagnose non-constant expressions
636  // where they're invalid, and other uses are legitimate.
637  // Don't ignore nested class scopes: you can't use 'this' in a local class.
638  DeclContext *DC = CurContext;
639  unsigned NumBlocks = 0;
640  while (true) {
641    if (isa<BlockDecl>(DC)) {
642      DC = cast<BlockDecl>(DC)->getDeclContext();
643      ++NumBlocks;
644    } else if (isa<EnumDecl>(DC))
645      DC = cast<EnumDecl>(DC)->getDeclContext();
646    else break;
647  }
648
649  QualType ThisTy;
650  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
651    if (method && method->isInstance())
652      ThisTy = method->getThisType(Context);
653  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
654    // C++0x [expr.prim]p4:
655    //   Otherwise, if a member-declarator declares a non-static data member
656    // of a class X, the expression this is a prvalue of type "pointer to X"
657    // within the optional brace-or-equal-initializer.
658    Scope *S = getScopeForContext(DC);
659    if (!S || S->getFlags() & Scope::ThisScope)
660      ThisTy = Context.getPointerType(Context.getRecordType(RD));
661  }
662
663  // Mark that we're closing on 'this' in all the block scopes we ignored.
664  if (!ThisTy.isNull())
665    for (unsigned idx = FunctionScopes.size() - 1;
666         NumBlocks; --idx, --NumBlocks)
667      cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
668
669  return ThisTy;
670}
671
672ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
673  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
674  /// is a non-lvalue expression whose value is the address of the object for
675  /// which the function is called.
676
677  QualType ThisTy = getAndCaptureCurrentThisType();
678  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
679
680  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
681}
682
683ExprResult
684Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
685                                SourceLocation LParenLoc,
686                                MultiExprArg exprs,
687                                SourceLocation RParenLoc) {
688  if (!TypeRep)
689    return ExprError();
690
691  TypeSourceInfo *TInfo;
692  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
693  if (!TInfo)
694    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
695
696  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
697}
698
699/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
700/// Can be interpreted either as function-style casting ("int(x)")
701/// or class type construction ("ClassType(x,y,z)")
702/// or creation of a value-initialized type ("int()").
703ExprResult
704Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
705                                SourceLocation LParenLoc,
706                                MultiExprArg exprs,
707                                SourceLocation RParenLoc) {
708  QualType Ty = TInfo->getType();
709  unsigned NumExprs = exprs.size();
710  Expr **Exprs = (Expr**)exprs.get();
711  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
712  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
713
714  if (Ty->isDependentType() ||
715      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
716    exprs.release();
717
718    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
719                                                    LParenLoc,
720                                                    Exprs, NumExprs,
721                                                    RParenLoc));
722  }
723
724  if (Ty->isArrayType())
725    return ExprError(Diag(TyBeginLoc,
726                          diag::err_value_init_for_array_type) << FullRange);
727  if (!Ty->isVoidType() &&
728      RequireCompleteType(TyBeginLoc, Ty,
729                          PDiag(diag::err_invalid_incomplete_type_use)
730                            << FullRange))
731    return ExprError();
732
733  if (RequireNonAbstractType(TyBeginLoc, Ty,
734                             diag::err_allocation_of_abstract_type))
735    return ExprError();
736
737
738  // C++ [expr.type.conv]p1:
739  // If the expression list is a single expression, the type conversion
740  // expression is equivalent (in definedness, and if defined in meaning) to the
741  // corresponding cast expression.
742  //
743  if (NumExprs == 1) {
744    CastKind Kind = CK_Invalid;
745    ExprValueKind VK = VK_RValue;
746    CXXCastPath BasePath;
747    ExprResult CastExpr =
748      CheckCastTypes(TInfo->getTypeLoc().getBeginLoc(),
749                     TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
750                     Kind, VK, BasePath,
751                     /*FunctionalStyle=*/true);
752    if (CastExpr.isInvalid())
753      return ExprError();
754    Exprs[0] = CastExpr.take();
755
756    exprs.release();
757
758    return Owned(CXXFunctionalCastExpr::Create(Context,
759                                               Ty.getNonLValueExprType(Context),
760                                               VK, TInfo, TyBeginLoc, Kind,
761                                               Exprs[0], &BasePath,
762                                               RParenLoc));
763  }
764
765  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
766  InitializationKind Kind
767    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
768                                                  LParenLoc, RParenLoc)
769               : InitializationKind::CreateValue(TyBeginLoc,
770                                                 LParenLoc, RParenLoc);
771  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
772  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
773
774  // FIXME: Improve AST representation?
775  return move(Result);
776}
777
778/// doesUsualArrayDeleteWantSize - Answers whether the usual
779/// operator delete[] for the given type has a size_t parameter.
780static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
781                                         QualType allocType) {
782  const RecordType *record =
783    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
784  if (!record) return false;
785
786  // Try to find an operator delete[] in class scope.
787
788  DeclarationName deleteName =
789    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
790  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
791  S.LookupQualifiedName(ops, record->getDecl());
792
793  // We're just doing this for information.
794  ops.suppressDiagnostics();
795
796  // Very likely: there's no operator delete[].
797  if (ops.empty()) return false;
798
799  // If it's ambiguous, it should be illegal to call operator delete[]
800  // on this thing, so it doesn't matter if we allocate extra space or not.
801  if (ops.isAmbiguous()) return false;
802
803  LookupResult::Filter filter = ops.makeFilter();
804  while (filter.hasNext()) {
805    NamedDecl *del = filter.next()->getUnderlyingDecl();
806
807    // C++0x [basic.stc.dynamic.deallocation]p2:
808    //   A template instance is never a usual deallocation function,
809    //   regardless of its signature.
810    if (isa<FunctionTemplateDecl>(del)) {
811      filter.erase();
812      continue;
813    }
814
815    // C++0x [basic.stc.dynamic.deallocation]p2:
816    //   If class T does not declare [an operator delete[] with one
817    //   parameter] but does declare a member deallocation function
818    //   named operator delete[] with exactly two parameters, the
819    //   second of which has type std::size_t, then this function
820    //   is a usual deallocation function.
821    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
822      filter.erase();
823      continue;
824    }
825  }
826  filter.done();
827
828  if (!ops.isSingleResult()) return false;
829
830  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
831  return (del->getNumParams() == 2);
832}
833
834/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
835/// @code new (memory) int[size][4] @endcode
836/// or
837/// @code ::new Foo(23, "hello") @endcode
838/// For the interpretation of this heap of arguments, consult the base version.
839ExprResult
840Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
841                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
842                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
843                  Declarator &D, SourceLocation ConstructorLParen,
844                  MultiExprArg ConstructorArgs,
845                  SourceLocation ConstructorRParen) {
846  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
847
848  Expr *ArraySize = 0;
849  // If the specified type is an array, unwrap it and save the expression.
850  if (D.getNumTypeObjects() > 0 &&
851      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
852    DeclaratorChunk &Chunk = D.getTypeObject(0);
853    if (TypeContainsAuto)
854      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
855        << D.getSourceRange());
856    if (Chunk.Arr.hasStatic)
857      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
858        << D.getSourceRange());
859    if (!Chunk.Arr.NumElts)
860      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
861        << D.getSourceRange());
862
863    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
864    D.DropFirstTypeObject();
865  }
866
867  // Every dimension shall be of constant size.
868  if (ArraySize) {
869    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
870      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
871        break;
872
873      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
874      if (Expr *NumElts = (Expr *)Array.NumElts) {
875        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
876            !NumElts->isIntegerConstantExpr(Context)) {
877          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
878            << NumElts->getSourceRange();
879          return ExprError();
880        }
881      }
882    }
883  }
884
885  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
886  QualType AllocType = TInfo->getType();
887  if (D.isInvalidType())
888    return ExprError();
889
890  return BuildCXXNew(StartLoc, UseGlobal,
891                     PlacementLParen,
892                     move(PlacementArgs),
893                     PlacementRParen,
894                     TypeIdParens,
895                     AllocType,
896                     TInfo,
897                     ArraySize,
898                     ConstructorLParen,
899                     move(ConstructorArgs),
900                     ConstructorRParen,
901                     TypeContainsAuto);
902}
903
904ExprResult
905Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
906                  SourceLocation PlacementLParen,
907                  MultiExprArg PlacementArgs,
908                  SourceLocation PlacementRParen,
909                  SourceRange TypeIdParens,
910                  QualType AllocType,
911                  TypeSourceInfo *AllocTypeInfo,
912                  Expr *ArraySize,
913                  SourceLocation ConstructorLParen,
914                  MultiExprArg ConstructorArgs,
915                  SourceLocation ConstructorRParen,
916                  bool TypeMayContainAuto) {
917  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
918
919  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
920  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
921    if (ConstructorArgs.size() == 0)
922      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
923                       << AllocType << TypeRange);
924    if (ConstructorArgs.size() != 1) {
925      Expr *FirstBad = ConstructorArgs.get()[1];
926      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
927                            diag::err_auto_new_ctor_multiple_expressions)
928                       << AllocType << TypeRange);
929    }
930    TypeSourceInfo *DeducedType = 0;
931    if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
932      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
933                       << AllocType
934                       << ConstructorArgs.get()[0]->getType()
935                       << TypeRange
936                       << ConstructorArgs.get()[0]->getSourceRange());
937    if (!DeducedType)
938      return ExprError();
939
940    AllocTypeInfo = DeducedType;
941    AllocType = AllocTypeInfo->getType();
942  }
943
944  // Per C++0x [expr.new]p5, the type being constructed may be a
945  // typedef of an array type.
946  if (!ArraySize) {
947    if (const ConstantArrayType *Array
948                              = Context.getAsConstantArrayType(AllocType)) {
949      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
950                                         Context.getSizeType(),
951                                         TypeRange.getEnd());
952      AllocType = Array->getElementType();
953    }
954  }
955
956  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
957    return ExprError();
958
959  // In ARC, infer 'retaining' for the allocated
960  if (getLangOptions().ObjCAutoRefCount &&
961      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
962      AllocType->isObjCLifetimeType()) {
963    AllocType = Context.getLifetimeQualifiedType(AllocType,
964                                    AllocType->getObjCARCImplicitLifetime());
965  }
966
967  QualType ResultType = Context.getPointerType(AllocType);
968
969  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
970  //   or enumeration type with a non-negative value."
971  if (ArraySize && !ArraySize->isTypeDependent()) {
972
973    QualType SizeType = ArraySize->getType();
974
975    ExprResult ConvertedSize
976      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
977                                       PDiag(diag::err_array_size_not_integral),
978                                     PDiag(diag::err_array_size_incomplete_type)
979                                       << ArraySize->getSourceRange(),
980                               PDiag(diag::err_array_size_explicit_conversion),
981                                       PDiag(diag::note_array_size_conversion),
982                               PDiag(diag::err_array_size_ambiguous_conversion),
983                                       PDiag(diag::note_array_size_conversion),
984                          PDiag(getLangOptions().CPlusPlus0x? 0
985                                            : diag::ext_array_size_conversion));
986    if (ConvertedSize.isInvalid())
987      return ExprError();
988
989    ArraySize = ConvertedSize.take();
990    SizeType = ArraySize->getType();
991    if (!SizeType->isIntegralOrUnscopedEnumerationType())
992      return ExprError();
993
994    // Let's see if this is a constant < 0. If so, we reject it out of hand.
995    // We don't care about special rules, so we tell the machinery it's not
996    // evaluated - it gives us a result in more cases.
997    if (!ArraySize->isValueDependent()) {
998      llvm::APSInt Value;
999      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
1000        if (Value < llvm::APSInt(
1001                        llvm::APInt::getNullValue(Value.getBitWidth()),
1002                                 Value.isUnsigned()))
1003          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
1004                                diag::err_typecheck_negative_array_size)
1005            << ArraySize->getSourceRange());
1006
1007        if (!AllocType->isDependentType()) {
1008          unsigned ActiveSizeBits
1009            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1010          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1011            Diag(ArraySize->getSourceRange().getBegin(),
1012                 diag::err_array_too_large)
1013              << Value.toString(10)
1014              << ArraySize->getSourceRange();
1015            return ExprError();
1016          }
1017        }
1018      } else if (TypeIdParens.isValid()) {
1019        // Can't have dynamic array size when the type-id is in parentheses.
1020        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1021          << ArraySize->getSourceRange()
1022          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1023          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1024
1025        TypeIdParens = SourceRange();
1026      }
1027    }
1028
1029    // ARC: warn about ABI issues.
1030    if (getLangOptions().ObjCAutoRefCount) {
1031      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1032      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1033        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1034          << 0 << BaseAllocType;
1035    }
1036
1037    // Note that we do *not* convert the argument in any way.  It can
1038    // be signed, larger than size_t, whatever.
1039  }
1040
1041  FunctionDecl *OperatorNew = 0;
1042  FunctionDecl *OperatorDelete = 0;
1043  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1044  unsigned NumPlaceArgs = PlacementArgs.size();
1045
1046  if (!AllocType->isDependentType() &&
1047      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
1048      FindAllocationFunctions(StartLoc,
1049                              SourceRange(PlacementLParen, PlacementRParen),
1050                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1051                              NumPlaceArgs, OperatorNew, OperatorDelete))
1052    return ExprError();
1053
1054  // If this is an array allocation, compute whether the usual array
1055  // deallocation function for the type has a size_t parameter.
1056  bool UsualArrayDeleteWantsSize = false;
1057  if (ArraySize && !AllocType->isDependentType())
1058    UsualArrayDeleteWantsSize
1059      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1060
1061  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
1062  if (OperatorNew) {
1063    // Add default arguments, if any.
1064    const FunctionProtoType *Proto =
1065      OperatorNew->getType()->getAs<FunctionProtoType>();
1066    VariadicCallType CallType =
1067      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1068
1069    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1070                               Proto, 1, PlaceArgs, NumPlaceArgs,
1071                               AllPlaceArgs, CallType))
1072      return ExprError();
1073
1074    NumPlaceArgs = AllPlaceArgs.size();
1075    if (NumPlaceArgs > 0)
1076      PlaceArgs = &AllPlaceArgs[0];
1077  }
1078
1079  bool Init = ConstructorLParen.isValid();
1080  // --- Choosing a constructor ---
1081  CXXConstructorDecl *Constructor = 0;
1082  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
1083  unsigned NumConsArgs = ConstructorArgs.size();
1084  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
1085
1086  // Array 'new' can't have any initializers.
1087  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
1088    SourceRange InitRange(ConsArgs[0]->getLocStart(),
1089                          ConsArgs[NumConsArgs - 1]->getLocEnd());
1090
1091    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1092    return ExprError();
1093  }
1094
1095  if (!AllocType->isDependentType() &&
1096      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1097    // C++0x [expr.new]p15:
1098    //   A new-expression that creates an object of type T initializes that
1099    //   object as follows:
1100    InitializationKind Kind
1101    //     - If the new-initializer is omitted, the object is default-
1102    //       initialized (8.5); if no initialization is performed,
1103    //       the object has indeterminate value
1104      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1105    //     - Otherwise, the new-initializer is interpreted according to the
1106    //       initialization rules of 8.5 for direct-initialization.
1107             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1108                                                ConstructorLParen,
1109                                                ConstructorRParen);
1110
1111    InitializedEntity Entity
1112      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1113    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1114    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1115                                                move(ConstructorArgs));
1116    if (FullInit.isInvalid())
1117      return ExprError();
1118
1119    // FullInit is our initializer; walk through it to determine if it's a
1120    // constructor call, which CXXNewExpr handles directly.
1121    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1122      if (CXXBindTemporaryExpr *Binder
1123            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1124        FullInitExpr = Binder->getSubExpr();
1125      if (CXXConstructExpr *Construct
1126                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1127        Constructor = Construct->getConstructor();
1128        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1129                                         AEnd = Construct->arg_end();
1130             A != AEnd; ++A)
1131          ConvertedConstructorArgs.push_back(*A);
1132      } else {
1133        // Take the converted initializer.
1134        ConvertedConstructorArgs.push_back(FullInit.release());
1135      }
1136    } else {
1137      // No initialization required.
1138    }
1139
1140    // Take the converted arguments and use them for the new expression.
1141    NumConsArgs = ConvertedConstructorArgs.size();
1142    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1143  }
1144
1145  // Mark the new and delete operators as referenced.
1146  if (OperatorNew)
1147    MarkDeclarationReferenced(StartLoc, OperatorNew);
1148  if (OperatorDelete)
1149    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1150
1151  // C++0x [expr.new]p17:
1152  //   If the new expression creates an array of objects of class type,
1153  //   access and ambiguity control are done for the destructor.
1154  if (ArraySize && Constructor) {
1155    if (CXXDestructorDecl *dtor = LookupDestructor(Constructor->getParent())) {
1156      MarkDeclarationReferenced(StartLoc, dtor);
1157      CheckDestructorAccess(StartLoc, dtor,
1158                            PDiag(diag::err_access_dtor)
1159                              << Context.getBaseElementType(AllocType));
1160    }
1161  }
1162
1163  PlacementArgs.release();
1164  ConstructorArgs.release();
1165
1166  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1167                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1168                                        ArraySize, Constructor, Init,
1169                                        ConsArgs, NumConsArgs, OperatorDelete,
1170                                        UsualArrayDeleteWantsSize,
1171                                        ResultType, AllocTypeInfo,
1172                                        StartLoc,
1173                                        Init ? ConstructorRParen :
1174                                               TypeRange.getEnd(),
1175                                        ConstructorLParen, ConstructorRParen));
1176}
1177
1178/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1179/// in a new-expression.
1180/// dimension off and stores the size expression in ArraySize.
1181bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1182                              SourceRange R) {
1183  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1184  //   abstract class type or array thereof.
1185  if (AllocType->isFunctionType())
1186    return Diag(Loc, diag::err_bad_new_type)
1187      << AllocType << 0 << R;
1188  else if (AllocType->isReferenceType())
1189    return Diag(Loc, diag::err_bad_new_type)
1190      << AllocType << 1 << R;
1191  else if (!AllocType->isDependentType() &&
1192           RequireCompleteType(Loc, AllocType,
1193                               PDiag(diag::err_new_incomplete_type)
1194                                 << R))
1195    return true;
1196  else if (RequireNonAbstractType(Loc, AllocType,
1197                                  diag::err_allocation_of_abstract_type))
1198    return true;
1199  else if (AllocType->isVariablyModifiedType())
1200    return Diag(Loc, diag::err_variably_modified_new_type)
1201             << AllocType;
1202  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1203    return Diag(Loc, diag::err_address_space_qualified_new)
1204      << AllocType.getUnqualifiedType() << AddressSpace;
1205  else if (getLangOptions().ObjCAutoRefCount) {
1206    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1207      QualType BaseAllocType = Context.getBaseElementType(AT);
1208      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1209          BaseAllocType->isObjCLifetimeType())
1210        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1211          << BaseAllocType;
1212    }
1213  }
1214
1215  return false;
1216}
1217
1218/// \brief Determine whether the given function is a non-placement
1219/// deallocation function.
1220static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1221  if (FD->isInvalidDecl())
1222    return false;
1223
1224  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1225    return Method->isUsualDeallocationFunction();
1226
1227  return ((FD->getOverloadedOperator() == OO_Delete ||
1228           FD->getOverloadedOperator() == OO_Array_Delete) &&
1229          FD->getNumParams() == 1);
1230}
1231
1232/// FindAllocationFunctions - Finds the overloads of operator new and delete
1233/// that are appropriate for the allocation.
1234bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1235                                   bool UseGlobal, QualType AllocType,
1236                                   bool IsArray, Expr **PlaceArgs,
1237                                   unsigned NumPlaceArgs,
1238                                   FunctionDecl *&OperatorNew,
1239                                   FunctionDecl *&OperatorDelete) {
1240  // --- Choosing an allocation function ---
1241  // C++ 5.3.4p8 - 14 & 18
1242  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1243  //   in the scope of the allocated class.
1244  // 2) If an array size is given, look for operator new[], else look for
1245  //   operator new.
1246  // 3) The first argument is always size_t. Append the arguments from the
1247  //   placement form.
1248
1249  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1250  // We don't care about the actual value of this argument.
1251  // FIXME: Should the Sema create the expression and embed it in the syntax
1252  // tree? Or should the consumer just recalculate the value?
1253  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1254                      Context.Target.getPointerWidth(0)),
1255                      Context.getSizeType(),
1256                      SourceLocation());
1257  AllocArgs[0] = &Size;
1258  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1259
1260  // C++ [expr.new]p8:
1261  //   If the allocated type is a non-array type, the allocation
1262  //   function's name is operator new and the deallocation function's
1263  //   name is operator delete. If the allocated type is an array
1264  //   type, the allocation function's name is operator new[] and the
1265  //   deallocation function's name is operator delete[].
1266  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1267                                        IsArray ? OO_Array_New : OO_New);
1268  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1269                                        IsArray ? OO_Array_Delete : OO_Delete);
1270
1271  QualType AllocElemType = Context.getBaseElementType(AllocType);
1272
1273  if (AllocElemType->isRecordType() && !UseGlobal) {
1274    CXXRecordDecl *Record
1275      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1276    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1277                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1278                          OperatorNew))
1279      return true;
1280  }
1281  if (!OperatorNew) {
1282    // Didn't find a member overload. Look for a global one.
1283    DeclareGlobalNewDelete();
1284    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1285    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1286                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1287                          OperatorNew))
1288      return true;
1289  }
1290
1291  // We don't need an operator delete if we're running under
1292  // -fno-exceptions.
1293  if (!getLangOptions().Exceptions) {
1294    OperatorDelete = 0;
1295    return false;
1296  }
1297
1298  // FindAllocationOverload can change the passed in arguments, so we need to
1299  // copy them back.
1300  if (NumPlaceArgs > 0)
1301    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1302
1303  // C++ [expr.new]p19:
1304  //
1305  //   If the new-expression begins with a unary :: operator, the
1306  //   deallocation function's name is looked up in the global
1307  //   scope. Otherwise, if the allocated type is a class type T or an
1308  //   array thereof, the deallocation function's name is looked up in
1309  //   the scope of T. If this lookup fails to find the name, or if
1310  //   the allocated type is not a class type or array thereof, the
1311  //   deallocation function's name is looked up in the global scope.
1312  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1313  if (AllocElemType->isRecordType() && !UseGlobal) {
1314    CXXRecordDecl *RD
1315      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1316    LookupQualifiedName(FoundDelete, RD);
1317  }
1318  if (FoundDelete.isAmbiguous())
1319    return true; // FIXME: clean up expressions?
1320
1321  if (FoundDelete.empty()) {
1322    DeclareGlobalNewDelete();
1323    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1324  }
1325
1326  FoundDelete.suppressDiagnostics();
1327
1328  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1329
1330  // Whether we're looking for a placement operator delete is dictated
1331  // by whether we selected a placement operator new, not by whether
1332  // we had explicit placement arguments.  This matters for things like
1333  //   struct A { void *operator new(size_t, int = 0); ... };
1334  //   A *a = new A()
1335  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1336
1337  if (isPlacementNew) {
1338    // C++ [expr.new]p20:
1339    //   A declaration of a placement deallocation function matches the
1340    //   declaration of a placement allocation function if it has the
1341    //   same number of parameters and, after parameter transformations
1342    //   (8.3.5), all parameter types except the first are
1343    //   identical. [...]
1344    //
1345    // To perform this comparison, we compute the function type that
1346    // the deallocation function should have, and use that type both
1347    // for template argument deduction and for comparison purposes.
1348    //
1349    // FIXME: this comparison should ignore CC and the like.
1350    QualType ExpectedFunctionType;
1351    {
1352      const FunctionProtoType *Proto
1353        = OperatorNew->getType()->getAs<FunctionProtoType>();
1354
1355      llvm::SmallVector<QualType, 4> ArgTypes;
1356      ArgTypes.push_back(Context.VoidPtrTy);
1357      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1358        ArgTypes.push_back(Proto->getArgType(I));
1359
1360      FunctionProtoType::ExtProtoInfo EPI;
1361      EPI.Variadic = Proto->isVariadic();
1362
1363      ExpectedFunctionType
1364        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1365                                  ArgTypes.size(), EPI);
1366    }
1367
1368    for (LookupResult::iterator D = FoundDelete.begin(),
1369                             DEnd = FoundDelete.end();
1370         D != DEnd; ++D) {
1371      FunctionDecl *Fn = 0;
1372      if (FunctionTemplateDecl *FnTmpl
1373            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1374        // Perform template argument deduction to try to match the
1375        // expected function type.
1376        TemplateDeductionInfo Info(Context, StartLoc);
1377        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1378          continue;
1379      } else
1380        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1381
1382      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1383        Matches.push_back(std::make_pair(D.getPair(), Fn));
1384    }
1385  } else {
1386    // C++ [expr.new]p20:
1387    //   [...] Any non-placement deallocation function matches a
1388    //   non-placement allocation function. [...]
1389    for (LookupResult::iterator D = FoundDelete.begin(),
1390                             DEnd = FoundDelete.end();
1391         D != DEnd; ++D) {
1392      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1393        if (isNonPlacementDeallocationFunction(Fn))
1394          Matches.push_back(std::make_pair(D.getPair(), Fn));
1395    }
1396  }
1397
1398  // C++ [expr.new]p20:
1399  //   [...] If the lookup finds a single matching deallocation
1400  //   function, that function will be called; otherwise, no
1401  //   deallocation function will be called.
1402  if (Matches.size() == 1) {
1403    OperatorDelete = Matches[0].second;
1404
1405    // C++0x [expr.new]p20:
1406    //   If the lookup finds the two-parameter form of a usual
1407    //   deallocation function (3.7.4.2) and that function, considered
1408    //   as a placement deallocation function, would have been
1409    //   selected as a match for the allocation function, the program
1410    //   is ill-formed.
1411    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1412        isNonPlacementDeallocationFunction(OperatorDelete)) {
1413      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1414        << SourceRange(PlaceArgs[0]->getLocStart(),
1415                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1416      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1417        << DeleteName;
1418    } else {
1419      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1420                            Matches[0].first);
1421    }
1422  }
1423
1424  return false;
1425}
1426
1427/// FindAllocationOverload - Find an fitting overload for the allocation
1428/// function in the specified scope.
1429bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1430                                  DeclarationName Name, Expr** Args,
1431                                  unsigned NumArgs, DeclContext *Ctx,
1432                                  bool AllowMissing, FunctionDecl *&Operator,
1433                                  bool Diagnose) {
1434  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1435  LookupQualifiedName(R, Ctx);
1436  if (R.empty()) {
1437    if (AllowMissing || !Diagnose)
1438      return false;
1439    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1440      << Name << Range;
1441  }
1442
1443  if (R.isAmbiguous())
1444    return true;
1445
1446  R.suppressDiagnostics();
1447
1448  OverloadCandidateSet Candidates(StartLoc);
1449  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1450       Alloc != AllocEnd; ++Alloc) {
1451    // Even member operator new/delete are implicitly treated as
1452    // static, so don't use AddMemberCandidate.
1453    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1454
1455    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1456      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1457                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1458                                   Candidates,
1459                                   /*SuppressUserConversions=*/false);
1460      continue;
1461    }
1462
1463    FunctionDecl *Fn = cast<FunctionDecl>(D);
1464    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1465                         /*SuppressUserConversions=*/false);
1466  }
1467
1468  // Do the resolution.
1469  OverloadCandidateSet::iterator Best;
1470  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1471  case OR_Success: {
1472    // Got one!
1473    FunctionDecl *FnDecl = Best->Function;
1474    MarkDeclarationReferenced(StartLoc, FnDecl);
1475    // The first argument is size_t, and the first parameter must be size_t,
1476    // too. This is checked on declaration and can be assumed. (It can't be
1477    // asserted on, though, since invalid decls are left in there.)
1478    // Watch out for variadic allocator function.
1479    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1480    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1481      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1482                                                       FnDecl->getParamDecl(i));
1483
1484      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1485        return true;
1486
1487      ExprResult Result
1488        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1489      if (Result.isInvalid())
1490        return true;
1491
1492      Args[i] = Result.takeAs<Expr>();
1493    }
1494    Operator = FnDecl;
1495    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1496                          Diagnose);
1497    return false;
1498  }
1499
1500  case OR_No_Viable_Function:
1501    if (Diagnose) {
1502      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1503        << Name << Range;
1504      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1505    }
1506    return true;
1507
1508  case OR_Ambiguous:
1509    if (Diagnose) {
1510      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1511        << Name << Range;
1512      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1513    }
1514    return true;
1515
1516  case OR_Deleted: {
1517    if (Diagnose) {
1518      Diag(StartLoc, diag::err_ovl_deleted_call)
1519        << Best->Function->isDeleted()
1520        << Name
1521        << getDeletedOrUnavailableSuffix(Best->Function)
1522        << Range;
1523      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1524    }
1525    return true;
1526  }
1527  }
1528  assert(false && "Unreachable, bad result from BestViableFunction");
1529  return true;
1530}
1531
1532
1533/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1534/// delete. These are:
1535/// @code
1536///   // C++03:
1537///   void* operator new(std::size_t) throw(std::bad_alloc);
1538///   void* operator new[](std::size_t) throw(std::bad_alloc);
1539///   void operator delete(void *) throw();
1540///   void operator delete[](void *) throw();
1541///   // C++0x:
1542///   void* operator new(std::size_t);
1543///   void* operator new[](std::size_t);
1544///   void operator delete(void *);
1545///   void operator delete[](void *);
1546/// @endcode
1547/// C++0x operator delete is implicitly noexcept.
1548/// Note that the placement and nothrow forms of new are *not* implicitly
1549/// declared. Their use requires including \<new\>.
1550void Sema::DeclareGlobalNewDelete() {
1551  if (GlobalNewDeleteDeclared)
1552    return;
1553
1554  // C++ [basic.std.dynamic]p2:
1555  //   [...] The following allocation and deallocation functions (18.4) are
1556  //   implicitly declared in global scope in each translation unit of a
1557  //   program
1558  //
1559  //     C++03:
1560  //     void* operator new(std::size_t) throw(std::bad_alloc);
1561  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1562  //     void  operator delete(void*) throw();
1563  //     void  operator delete[](void*) throw();
1564  //     C++0x:
1565  //     void* operator new(std::size_t);
1566  //     void* operator new[](std::size_t);
1567  //     void  operator delete(void*);
1568  //     void  operator delete[](void*);
1569  //
1570  //   These implicit declarations introduce only the function names operator
1571  //   new, operator new[], operator delete, operator delete[].
1572  //
1573  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1574  // "std" or "bad_alloc" as necessary to form the exception specification.
1575  // However, we do not make these implicit declarations visible to name
1576  // lookup.
1577  // Note that the C++0x versions of operator delete are deallocation functions,
1578  // and thus are implicitly noexcept.
1579  if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1580    // The "std::bad_alloc" class has not yet been declared, so build it
1581    // implicitly.
1582    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1583                                        getOrCreateStdNamespace(),
1584                                        SourceLocation(), SourceLocation(),
1585                                      &PP.getIdentifierTable().get("bad_alloc"),
1586                                        0);
1587    getStdBadAlloc()->setImplicit(true);
1588  }
1589
1590  GlobalNewDeleteDeclared = true;
1591
1592  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1593  QualType SizeT = Context.getSizeType();
1594  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1595
1596  DeclareGlobalAllocationFunction(
1597      Context.DeclarationNames.getCXXOperatorName(OO_New),
1598      VoidPtr, SizeT, AssumeSaneOperatorNew);
1599  DeclareGlobalAllocationFunction(
1600      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1601      VoidPtr, SizeT, AssumeSaneOperatorNew);
1602  DeclareGlobalAllocationFunction(
1603      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1604      Context.VoidTy, VoidPtr);
1605  DeclareGlobalAllocationFunction(
1606      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1607      Context.VoidTy, VoidPtr);
1608}
1609
1610/// DeclareGlobalAllocationFunction - Declares a single implicit global
1611/// allocation function if it doesn't already exist.
1612void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1613                                           QualType Return, QualType Argument,
1614                                           bool AddMallocAttr) {
1615  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1616
1617  // Check if this function is already declared.
1618  {
1619    DeclContext::lookup_iterator Alloc, AllocEnd;
1620    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1621         Alloc != AllocEnd; ++Alloc) {
1622      // Only look at non-template functions, as it is the predefined,
1623      // non-templated allocation function we are trying to declare here.
1624      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1625        QualType InitialParamType =
1626          Context.getCanonicalType(
1627            Func->getParamDecl(0)->getType().getUnqualifiedType());
1628        // FIXME: Do we need to check for default arguments here?
1629        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1630          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1631            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1632          return;
1633        }
1634      }
1635    }
1636  }
1637
1638  QualType BadAllocType;
1639  bool HasBadAllocExceptionSpec
1640    = (Name.getCXXOverloadedOperator() == OO_New ||
1641       Name.getCXXOverloadedOperator() == OO_Array_New);
1642  if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1643    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1644    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1645  }
1646
1647  FunctionProtoType::ExtProtoInfo EPI;
1648  if (HasBadAllocExceptionSpec) {
1649    if (!getLangOptions().CPlusPlus0x) {
1650      EPI.ExceptionSpecType = EST_Dynamic;
1651      EPI.NumExceptions = 1;
1652      EPI.Exceptions = &BadAllocType;
1653    }
1654  } else {
1655    EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1656                                EST_BasicNoexcept : EST_DynamicNone;
1657  }
1658
1659  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1660  FunctionDecl *Alloc =
1661    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1662                         SourceLocation(), Name,
1663                         FnType, /*TInfo=*/0, SC_None,
1664                         SC_None, false, true);
1665  Alloc->setImplicit();
1666
1667  if (AddMallocAttr)
1668    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1669
1670  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1671                                           SourceLocation(), 0,
1672                                           Argument, /*TInfo=*/0,
1673                                           SC_None, SC_None, 0);
1674  Alloc->setParams(&Param, 1);
1675
1676  // FIXME: Also add this declaration to the IdentifierResolver, but
1677  // make sure it is at the end of the chain to coincide with the
1678  // global scope.
1679  Context.getTranslationUnitDecl()->addDecl(Alloc);
1680}
1681
1682bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1683                                    DeclarationName Name,
1684                                    FunctionDecl* &Operator, bool Diagnose) {
1685  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1686  // Try to find operator delete/operator delete[] in class scope.
1687  LookupQualifiedName(Found, RD);
1688
1689  if (Found.isAmbiguous())
1690    return true;
1691
1692  Found.suppressDiagnostics();
1693
1694  llvm::SmallVector<DeclAccessPair,4> Matches;
1695  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1696       F != FEnd; ++F) {
1697    NamedDecl *ND = (*F)->getUnderlyingDecl();
1698
1699    // Ignore template operator delete members from the check for a usual
1700    // deallocation function.
1701    if (isa<FunctionTemplateDecl>(ND))
1702      continue;
1703
1704    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1705      Matches.push_back(F.getPair());
1706  }
1707
1708  // There's exactly one suitable operator;  pick it.
1709  if (Matches.size() == 1) {
1710    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1711
1712    if (Operator->isDeleted()) {
1713      if (Diagnose) {
1714        Diag(StartLoc, diag::err_deleted_function_use);
1715        Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1716      }
1717      return true;
1718    }
1719
1720    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1721                          Matches[0], Diagnose);
1722    return false;
1723
1724  // We found multiple suitable operators;  complain about the ambiguity.
1725  } else if (!Matches.empty()) {
1726    if (Diagnose) {
1727      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1728        << Name << RD;
1729
1730      for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1731             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1732        Diag((*F)->getUnderlyingDecl()->getLocation(),
1733             diag::note_member_declared_here) << Name;
1734    }
1735    return true;
1736  }
1737
1738  // We did find operator delete/operator delete[] declarations, but
1739  // none of them were suitable.
1740  if (!Found.empty()) {
1741    if (Diagnose) {
1742      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1743        << Name << RD;
1744
1745      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1746           F != FEnd; ++F)
1747        Diag((*F)->getUnderlyingDecl()->getLocation(),
1748             diag::note_member_declared_here) << Name;
1749    }
1750    return true;
1751  }
1752
1753  // Look for a global declaration.
1754  DeclareGlobalNewDelete();
1755  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1756
1757  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1758  Expr* DeallocArgs[1];
1759  DeallocArgs[0] = &Null;
1760  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1761                             DeallocArgs, 1, TUDecl, !Diagnose,
1762                             Operator, Diagnose))
1763    return true;
1764
1765  assert(Operator && "Did not find a deallocation function!");
1766  return false;
1767}
1768
1769/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1770/// @code ::delete ptr; @endcode
1771/// or
1772/// @code delete [] ptr; @endcode
1773ExprResult
1774Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1775                     bool ArrayForm, Expr *ExE) {
1776  // C++ [expr.delete]p1:
1777  //   The operand shall have a pointer type, or a class type having a single
1778  //   conversion function to a pointer type. The result has type void.
1779  //
1780  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1781
1782  ExprResult Ex = Owned(ExE);
1783  FunctionDecl *OperatorDelete = 0;
1784  bool ArrayFormAsWritten = ArrayForm;
1785  bool UsualArrayDeleteWantsSize = false;
1786
1787  if (!Ex.get()->isTypeDependent()) {
1788    QualType Type = Ex.get()->getType();
1789
1790    if (const RecordType *Record = Type->getAs<RecordType>()) {
1791      if (RequireCompleteType(StartLoc, Type,
1792                              PDiag(diag::err_delete_incomplete_class_type)))
1793        return ExprError();
1794
1795      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1796
1797      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1798      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1799      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1800             E = Conversions->end(); I != E; ++I) {
1801        NamedDecl *D = I.getDecl();
1802        if (isa<UsingShadowDecl>(D))
1803          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1804
1805        // Skip over templated conversion functions; they aren't considered.
1806        if (isa<FunctionTemplateDecl>(D))
1807          continue;
1808
1809        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1810
1811        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1812        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1813          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1814            ObjectPtrConversions.push_back(Conv);
1815      }
1816      if (ObjectPtrConversions.size() == 1) {
1817        // We have a single conversion to a pointer-to-object type. Perform
1818        // that conversion.
1819        // TODO: don't redo the conversion calculation.
1820        ExprResult Res =
1821          PerformImplicitConversion(Ex.get(),
1822                            ObjectPtrConversions.front()->getConversionType(),
1823                                    AA_Converting);
1824        if (Res.isUsable()) {
1825          Ex = move(Res);
1826          Type = Ex.get()->getType();
1827        }
1828      }
1829      else if (ObjectPtrConversions.size() > 1) {
1830        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1831              << Type << Ex.get()->getSourceRange();
1832        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1833          NoteOverloadCandidate(ObjectPtrConversions[i]);
1834        return ExprError();
1835      }
1836    }
1837
1838    if (!Type->isPointerType())
1839      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1840        << Type << Ex.get()->getSourceRange());
1841
1842    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1843    if (Pointee->isVoidType() && !isSFINAEContext()) {
1844      // The C++ standard bans deleting a pointer to a non-object type, which
1845      // effectively bans deletion of "void*". However, most compilers support
1846      // this, so we treat it as a warning unless we're in a SFINAE context.
1847      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1848        << Type << Ex.get()->getSourceRange();
1849    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1850      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1851        << Type << Ex.get()->getSourceRange());
1852    else if (!Pointee->isDependentType() &&
1853             RequireCompleteType(StartLoc, Pointee,
1854                                 PDiag(diag::warn_delete_incomplete)
1855                                   << Ex.get()->getSourceRange()))
1856      return ExprError();
1857    else if (unsigned AddressSpace = Pointee.getAddressSpace())
1858      return Diag(Ex.get()->getLocStart(),
1859                  diag::err_address_space_qualified_delete)
1860               << Pointee.getUnqualifiedType() << AddressSpace;
1861    // C++ [expr.delete]p2:
1862    //   [Note: a pointer to a const type can be the operand of a
1863    //   delete-expression; it is not necessary to cast away the constness
1864    //   (5.2.11) of the pointer expression before it is used as the operand
1865    //   of the delete-expression. ]
1866    if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
1867      Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy, CK_NoOp,
1868                                          Ex.take(), 0, VK_RValue));
1869
1870    if (Pointee->isArrayType() && !ArrayForm) {
1871      Diag(StartLoc, diag::warn_delete_array_type)
1872          << Type << Ex.get()->getSourceRange()
1873          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1874      ArrayForm = true;
1875    }
1876
1877    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1878                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1879
1880    QualType PointeeElem = Context.getBaseElementType(Pointee);
1881    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1882      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1883
1884      if (!UseGlobal &&
1885          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1886        return ExprError();
1887
1888      // If we're allocating an array of records, check whether the
1889      // usual operator delete[] has a size_t parameter.
1890      if (ArrayForm) {
1891        // If the user specifically asked to use the global allocator,
1892        // we'll need to do the lookup into the class.
1893        if (UseGlobal)
1894          UsualArrayDeleteWantsSize =
1895            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1896
1897        // Otherwise, the usual operator delete[] should be the
1898        // function we just found.
1899        else if (isa<CXXMethodDecl>(OperatorDelete))
1900          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1901      }
1902
1903      if (!RD->hasTrivialDestructor())
1904        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1905          MarkDeclarationReferenced(StartLoc,
1906                                    const_cast<CXXDestructorDecl*>(Dtor));
1907          DiagnoseUseOfDecl(Dtor, StartLoc);
1908        }
1909
1910      // C++ [expr.delete]p3:
1911      //   In the first alternative (delete object), if the static type of the
1912      //   object to be deleted is different from its dynamic type, the static
1913      //   type shall be a base class of the dynamic type of the object to be
1914      //   deleted and the static type shall have a virtual destructor or the
1915      //   behavior is undefined.
1916      //
1917      // Note: a final class cannot be derived from, no issue there
1918      if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
1919        CXXDestructorDecl *dtor = RD->getDestructor();
1920        if (!dtor || !dtor->isVirtual())
1921          Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
1922      }
1923
1924    } else if (getLangOptions().ObjCAutoRefCount &&
1925               PointeeElem->isObjCLifetimeType() &&
1926               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
1927                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
1928               ArrayForm) {
1929      Diag(StartLoc, diag::warn_err_new_delete_object_array)
1930        << 1 << PointeeElem;
1931    }
1932
1933    if (!OperatorDelete) {
1934      // Look for a global declaration.
1935      DeclareGlobalNewDelete();
1936      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1937      Expr *Arg = Ex.get();
1938      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1939                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
1940                                 OperatorDelete))
1941        return ExprError();
1942    }
1943
1944    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1945
1946    // Check access and ambiguity of operator delete and destructor.
1947    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1948      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1949      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1950          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
1951                      PDiag(diag::err_access_dtor) << PointeeElem);
1952      }
1953    }
1954
1955  }
1956
1957  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1958                                           ArrayFormAsWritten,
1959                                           UsualArrayDeleteWantsSize,
1960                                           OperatorDelete, Ex.take(), StartLoc));
1961}
1962
1963/// \brief Check the use of the given variable as a C++ condition in an if,
1964/// while, do-while, or switch statement.
1965ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1966                                        SourceLocation StmtLoc,
1967                                        bool ConvertToBoolean) {
1968  QualType T = ConditionVar->getType();
1969
1970  // C++ [stmt.select]p2:
1971  //   The declarator shall not specify a function or an array.
1972  if (T->isFunctionType())
1973    return ExprError(Diag(ConditionVar->getLocation(),
1974                          diag::err_invalid_use_of_function_type)
1975                       << ConditionVar->getSourceRange());
1976  else if (T->isArrayType())
1977    return ExprError(Diag(ConditionVar->getLocation(),
1978                          diag::err_invalid_use_of_array_type)
1979                     << ConditionVar->getSourceRange());
1980
1981  ExprResult Condition =
1982    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1983                                        ConditionVar,
1984                                        ConditionVar->getLocation(),
1985                            ConditionVar->getType().getNonReferenceType(),
1986                              VK_LValue));
1987  if (ConvertToBoolean) {
1988    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
1989    if (Condition.isInvalid())
1990      return ExprError();
1991  }
1992
1993  return move(Condition);
1994}
1995
1996/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1997ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
1998  // C++ 6.4p4:
1999  // The value of a condition that is an initialized declaration in a statement
2000  // other than a switch statement is the value of the declared variable
2001  // implicitly converted to type bool. If that conversion is ill-formed, the
2002  // program is ill-formed.
2003  // The value of a condition that is an expression is the value of the
2004  // expression, implicitly converted to bool.
2005  //
2006  return PerformContextuallyConvertToBool(CondExpr);
2007}
2008
2009/// Helper function to determine whether this is the (deprecated) C++
2010/// conversion from a string literal to a pointer to non-const char or
2011/// non-const wchar_t (for narrow and wide string literals,
2012/// respectively).
2013bool
2014Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2015  // Look inside the implicit cast, if it exists.
2016  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2017    From = Cast->getSubExpr();
2018
2019  // A string literal (2.13.4) that is not a wide string literal can
2020  // be converted to an rvalue of type "pointer to char"; a wide
2021  // string literal can be converted to an rvalue of type "pointer
2022  // to wchar_t" (C++ 4.2p2).
2023  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2024    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2025      if (const BuiltinType *ToPointeeType
2026          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2027        // This conversion is considered only when there is an
2028        // explicit appropriate pointer target type (C++ 4.2p2).
2029        if (!ToPtrType->getPointeeType().hasQualifiers() &&
2030            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
2031             (!StrLit->isWide() &&
2032              (ToPointeeType->getKind() == BuiltinType::Char_U ||
2033               ToPointeeType->getKind() == BuiltinType::Char_S))))
2034          return true;
2035      }
2036
2037  return false;
2038}
2039
2040static ExprResult BuildCXXCastArgument(Sema &S,
2041                                       SourceLocation CastLoc,
2042                                       QualType Ty,
2043                                       CastKind Kind,
2044                                       CXXMethodDecl *Method,
2045                                       NamedDecl *FoundDecl,
2046                                       Expr *From) {
2047  switch (Kind) {
2048  default: assert(0 && "Unhandled cast kind!");
2049  case CK_ConstructorConversion: {
2050    ASTOwningVector<Expr*> ConstructorArgs(S);
2051
2052    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
2053                                  MultiExprArg(&From, 1),
2054                                  CastLoc, ConstructorArgs))
2055      return ExprError();
2056
2057    ExprResult Result =
2058    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2059                            move_arg(ConstructorArgs),
2060                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
2061                            SourceRange());
2062    if (Result.isInvalid())
2063      return ExprError();
2064
2065    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2066  }
2067
2068  case CK_UserDefinedConversion: {
2069    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2070
2071    // Create an implicit call expr that calls it.
2072    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
2073    if (Result.isInvalid())
2074      return ExprError();
2075
2076    return S.MaybeBindToTemporary(Result.get());
2077  }
2078  }
2079}
2080
2081/// PerformImplicitConversion - Perform an implicit conversion of the
2082/// expression From to the type ToType using the pre-computed implicit
2083/// conversion sequence ICS. Returns the converted
2084/// expression. Action is the kind of conversion we're performing,
2085/// used in the error message.
2086ExprResult
2087Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2088                                const ImplicitConversionSequence &ICS,
2089                                AssignmentAction Action,
2090                                CheckedConversionKind CCK) {
2091  switch (ICS.getKind()) {
2092  case ImplicitConversionSequence::StandardConversion: {
2093    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2094                                               Action, CCK);
2095    if (Res.isInvalid())
2096      return ExprError();
2097    From = Res.take();
2098    break;
2099  }
2100
2101  case ImplicitConversionSequence::UserDefinedConversion: {
2102
2103      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2104      CastKind CastKind;
2105      QualType BeforeToType;
2106      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2107        CastKind = CK_UserDefinedConversion;
2108
2109        // If the user-defined conversion is specified by a conversion function,
2110        // the initial standard conversion sequence converts the source type to
2111        // the implicit object parameter of the conversion function.
2112        BeforeToType = Context.getTagDeclType(Conv->getParent());
2113      } else {
2114        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2115        CastKind = CK_ConstructorConversion;
2116        // Do no conversion if dealing with ... for the first conversion.
2117        if (!ICS.UserDefined.EllipsisConversion) {
2118          // If the user-defined conversion is specified by a constructor, the
2119          // initial standard conversion sequence converts the source type to the
2120          // type required by the argument of the constructor
2121          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2122        }
2123      }
2124      // Watch out for elipsis conversion.
2125      if (!ICS.UserDefined.EllipsisConversion) {
2126        ExprResult Res =
2127          PerformImplicitConversion(From, BeforeToType,
2128                                    ICS.UserDefined.Before, AA_Converting,
2129                                    CCK);
2130        if (Res.isInvalid())
2131          return ExprError();
2132        From = Res.take();
2133      }
2134
2135      ExprResult CastArg
2136        = BuildCXXCastArgument(*this,
2137                               From->getLocStart(),
2138                               ToType.getNonReferenceType(),
2139                               CastKind, cast<CXXMethodDecl>(FD),
2140                               ICS.UserDefined.FoundConversionFunction,
2141                               From);
2142
2143      if (CastArg.isInvalid())
2144        return ExprError();
2145
2146      From = CastArg.take();
2147
2148      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2149                                       AA_Converting, CCK);
2150  }
2151
2152  case ImplicitConversionSequence::AmbiguousConversion:
2153    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2154                          PDiag(diag::err_typecheck_ambiguous_condition)
2155                            << From->getSourceRange());
2156     return ExprError();
2157
2158  case ImplicitConversionSequence::EllipsisConversion:
2159    assert(false && "Cannot perform an ellipsis conversion");
2160    return Owned(From);
2161
2162  case ImplicitConversionSequence::BadConversion:
2163    return ExprError();
2164  }
2165
2166  // Everything went well.
2167  return Owned(From);
2168}
2169
2170/// PerformImplicitConversion - Perform an implicit conversion of the
2171/// expression From to the type ToType by following the standard
2172/// conversion sequence SCS. Returns the converted
2173/// expression. Flavor is the context in which we're performing this
2174/// conversion, for use in error messages.
2175ExprResult
2176Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2177                                const StandardConversionSequence& SCS,
2178                                AssignmentAction Action,
2179                                CheckedConversionKind CCK) {
2180  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2181
2182  // Overall FIXME: we are recomputing too many types here and doing far too
2183  // much extra work. What this means is that we need to keep track of more
2184  // information that is computed when we try the implicit conversion initially,
2185  // so that we don't need to recompute anything here.
2186  QualType FromType = From->getType();
2187
2188  if (SCS.CopyConstructor) {
2189    // FIXME: When can ToType be a reference type?
2190    assert(!ToType->isReferenceType());
2191    if (SCS.Second == ICK_Derived_To_Base) {
2192      ASTOwningVector<Expr*> ConstructorArgs(*this);
2193      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2194                                  MultiExprArg(*this, &From, 1),
2195                                  /*FIXME:ConstructLoc*/SourceLocation(),
2196                                  ConstructorArgs))
2197        return ExprError();
2198      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2199                                   ToType, SCS.CopyConstructor,
2200                                   move_arg(ConstructorArgs),
2201                                   /*ZeroInit*/ false,
2202                                   CXXConstructExpr::CK_Complete,
2203                                   SourceRange());
2204    }
2205    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2206                                 ToType, SCS.CopyConstructor,
2207                                 MultiExprArg(*this, &From, 1),
2208                                 /*ZeroInit*/ false,
2209                                 CXXConstructExpr::CK_Complete,
2210                                 SourceRange());
2211  }
2212
2213  // Resolve overloaded function references.
2214  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2215    DeclAccessPair Found;
2216    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2217                                                          true, Found);
2218    if (!Fn)
2219      return ExprError();
2220
2221    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2222      return ExprError();
2223
2224    From = FixOverloadedFunctionReference(From, Found, Fn);
2225    FromType = From->getType();
2226  }
2227
2228  // Perform the first implicit conversion.
2229  switch (SCS.First) {
2230  case ICK_Identity:
2231    // Nothing to do.
2232    break;
2233
2234  case ICK_Lvalue_To_Rvalue:
2235    // Should this get its own ICK?
2236    if (From->getObjectKind() == OK_ObjCProperty) {
2237      ExprResult FromRes = ConvertPropertyForRValue(From);
2238      if (FromRes.isInvalid())
2239        return ExprError();
2240      From = FromRes.take();
2241      if (!From->isGLValue()) break;
2242    }
2243
2244    // Check for trivial buffer overflows.
2245    CheckArrayAccess(From);
2246
2247    FromType = FromType.getUnqualifiedType();
2248    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2249                                    From, 0, VK_RValue);
2250    break;
2251
2252  case ICK_Array_To_Pointer:
2253    FromType = Context.getArrayDecayedType(FromType);
2254    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2255                             VK_RValue, /*BasePath=*/0, CCK).take();
2256    break;
2257
2258  case ICK_Function_To_Pointer:
2259    FromType = Context.getPointerType(FromType);
2260    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2261                             VK_RValue, /*BasePath=*/0, CCK).take();
2262    break;
2263
2264  default:
2265    assert(false && "Improper first standard conversion");
2266    break;
2267  }
2268
2269  // Perform the second implicit conversion
2270  switch (SCS.Second) {
2271  case ICK_Identity:
2272    // If both sides are functions (or pointers/references to them), there could
2273    // be incompatible exception declarations.
2274    if (CheckExceptionSpecCompatibility(From, ToType))
2275      return ExprError();
2276    // Nothing else to do.
2277    break;
2278
2279  case ICK_NoReturn_Adjustment:
2280    // If both sides are functions (or pointers/references to them), there could
2281    // be incompatible exception declarations.
2282    if (CheckExceptionSpecCompatibility(From, ToType))
2283      return ExprError();
2284
2285    From = ImpCastExprToType(From, ToType, CK_NoOp,
2286                             VK_RValue, /*BasePath=*/0, CCK).take();
2287    break;
2288
2289  case ICK_Integral_Promotion:
2290  case ICK_Integral_Conversion:
2291    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2292                             VK_RValue, /*BasePath=*/0, CCK).take();
2293    break;
2294
2295  case ICK_Floating_Promotion:
2296  case ICK_Floating_Conversion:
2297    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2298                             VK_RValue, /*BasePath=*/0, CCK).take();
2299    break;
2300
2301  case ICK_Complex_Promotion:
2302  case ICK_Complex_Conversion: {
2303    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2304    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2305    CastKind CK;
2306    if (FromEl->isRealFloatingType()) {
2307      if (ToEl->isRealFloatingType())
2308        CK = CK_FloatingComplexCast;
2309      else
2310        CK = CK_FloatingComplexToIntegralComplex;
2311    } else if (ToEl->isRealFloatingType()) {
2312      CK = CK_IntegralComplexToFloatingComplex;
2313    } else {
2314      CK = CK_IntegralComplexCast;
2315    }
2316    From = ImpCastExprToType(From, ToType, CK,
2317                             VK_RValue, /*BasePath=*/0, CCK).take();
2318    break;
2319  }
2320
2321  case ICK_Floating_Integral:
2322    if (ToType->isRealFloatingType())
2323      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2324                               VK_RValue, /*BasePath=*/0, CCK).take();
2325    else
2326      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2327                               VK_RValue, /*BasePath=*/0, CCK).take();
2328    break;
2329
2330  case ICK_Compatible_Conversion:
2331      From = ImpCastExprToType(From, ToType, CK_NoOp,
2332                               VK_RValue, /*BasePath=*/0, CCK).take();
2333    break;
2334
2335  case ICK_Writeback_Conversion:
2336  case ICK_Pointer_Conversion: {
2337    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2338      // Diagnose incompatible Objective-C conversions
2339      if (Action == AA_Initializing || Action == AA_Assigning)
2340        Diag(From->getSourceRange().getBegin(),
2341             diag::ext_typecheck_convert_incompatible_pointer)
2342          << ToType << From->getType() << Action
2343          << From->getSourceRange();
2344      else
2345        Diag(From->getSourceRange().getBegin(),
2346             diag::ext_typecheck_convert_incompatible_pointer)
2347          << From->getType() << ToType << Action
2348          << From->getSourceRange();
2349
2350      if (From->getType()->isObjCObjectPointerType() &&
2351          ToType->isObjCObjectPointerType())
2352        EmitRelatedResultTypeNote(From);
2353    }
2354    else if (getLangOptions().ObjCAutoRefCount &&
2355             !CheckObjCARCUnavailableWeakConversion(ToType,
2356                                                    From->getType())) {
2357           if (Action == AA_Initializing)
2358             Diag(From->getSourceRange().getBegin(),
2359                  diag::err_arc_weak_unavailable_assign);
2360           else
2361             Diag(From->getSourceRange().getBegin(),
2362                  diag::err_arc_convesion_of_weak_unavailable)
2363                  << (Action == AA_Casting) << From->getType() << ToType
2364                  << From->getSourceRange();
2365         }
2366
2367    CastKind Kind = CK_Invalid;
2368    CXXCastPath BasePath;
2369    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2370      return ExprError();
2371    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2372             .take();
2373    break;
2374  }
2375
2376  case ICK_Pointer_Member: {
2377    CastKind Kind = CK_Invalid;
2378    CXXCastPath BasePath;
2379    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2380      return ExprError();
2381    if (CheckExceptionSpecCompatibility(From, ToType))
2382      return ExprError();
2383    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2384             .take();
2385    break;
2386  }
2387
2388  case ICK_Boolean_Conversion:
2389    From = ImpCastExprToType(From, Context.BoolTy,
2390                             ScalarTypeToBooleanCastKind(FromType),
2391                             VK_RValue, /*BasePath=*/0, CCK).take();
2392    break;
2393
2394  case ICK_Derived_To_Base: {
2395    CXXCastPath BasePath;
2396    if (CheckDerivedToBaseConversion(From->getType(),
2397                                     ToType.getNonReferenceType(),
2398                                     From->getLocStart(),
2399                                     From->getSourceRange(),
2400                                     &BasePath,
2401                                     CStyle))
2402      return ExprError();
2403
2404    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2405                      CK_DerivedToBase, CastCategory(From),
2406                      &BasePath, CCK).take();
2407    break;
2408  }
2409
2410  case ICK_Vector_Conversion:
2411    From = ImpCastExprToType(From, ToType, CK_BitCast,
2412                             VK_RValue, /*BasePath=*/0, CCK).take();
2413    break;
2414
2415  case ICK_Vector_Splat:
2416    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2417                             VK_RValue, /*BasePath=*/0, CCK).take();
2418    break;
2419
2420  case ICK_Complex_Real:
2421    // Case 1.  x -> _Complex y
2422    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2423      QualType ElType = ToComplex->getElementType();
2424      bool isFloatingComplex = ElType->isRealFloatingType();
2425
2426      // x -> y
2427      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2428        // do nothing
2429      } else if (From->getType()->isRealFloatingType()) {
2430        From = ImpCastExprToType(From, ElType,
2431                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2432      } else {
2433        assert(From->getType()->isIntegerType());
2434        From = ImpCastExprToType(From, ElType,
2435                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2436      }
2437      // y -> _Complex y
2438      From = ImpCastExprToType(From, ToType,
2439                   isFloatingComplex ? CK_FloatingRealToComplex
2440                                     : CK_IntegralRealToComplex).take();
2441
2442    // Case 2.  _Complex x -> y
2443    } else {
2444      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2445      assert(FromComplex);
2446
2447      QualType ElType = FromComplex->getElementType();
2448      bool isFloatingComplex = ElType->isRealFloatingType();
2449
2450      // _Complex x -> x
2451      From = ImpCastExprToType(From, ElType,
2452                   isFloatingComplex ? CK_FloatingComplexToReal
2453                                     : CK_IntegralComplexToReal,
2454                               VK_RValue, /*BasePath=*/0, CCK).take();
2455
2456      // x -> y
2457      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2458        // do nothing
2459      } else if (ToType->isRealFloatingType()) {
2460        From = ImpCastExprToType(From, ToType,
2461                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2462                                 VK_RValue, /*BasePath=*/0, CCK).take();
2463      } else {
2464        assert(ToType->isIntegerType());
2465        From = ImpCastExprToType(From, ToType,
2466                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2467                                 VK_RValue, /*BasePath=*/0, CCK).take();
2468      }
2469    }
2470    break;
2471
2472  case ICK_Block_Pointer_Conversion: {
2473    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2474                             VK_RValue, /*BasePath=*/0, CCK).take();
2475    break;
2476  }
2477
2478  case ICK_TransparentUnionConversion: {
2479    ExprResult FromRes = Owned(From);
2480    Sema::AssignConvertType ConvTy =
2481      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2482    if (FromRes.isInvalid())
2483      return ExprError();
2484    From = FromRes.take();
2485    assert ((ConvTy == Sema::Compatible) &&
2486            "Improper transparent union conversion");
2487    (void)ConvTy;
2488    break;
2489  }
2490
2491  case ICK_Lvalue_To_Rvalue:
2492  case ICK_Array_To_Pointer:
2493  case ICK_Function_To_Pointer:
2494  case ICK_Qualification:
2495  case ICK_Num_Conversion_Kinds:
2496    assert(false && "Improper second standard conversion");
2497    break;
2498  }
2499
2500  switch (SCS.Third) {
2501  case ICK_Identity:
2502    // Nothing to do.
2503    break;
2504
2505  case ICK_Qualification: {
2506    // The qualification keeps the category of the inner expression, unless the
2507    // target type isn't a reference.
2508    ExprValueKind VK = ToType->isReferenceType() ?
2509                                  CastCategory(From) : VK_RValue;
2510    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2511                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2512
2513    if (SCS.DeprecatedStringLiteralToCharPtr &&
2514        !getLangOptions().WritableStrings)
2515      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2516        << ToType.getNonReferenceType();
2517
2518    break;
2519    }
2520
2521  default:
2522    assert(false && "Improper third standard conversion");
2523    break;
2524  }
2525
2526  return Owned(From);
2527}
2528
2529ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2530                                     SourceLocation KWLoc,
2531                                     ParsedType Ty,
2532                                     SourceLocation RParen) {
2533  TypeSourceInfo *TSInfo;
2534  QualType T = GetTypeFromParser(Ty, &TSInfo);
2535
2536  if (!TSInfo)
2537    TSInfo = Context.getTrivialTypeSourceInfo(T);
2538  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2539}
2540
2541/// \brief Check the completeness of a type in a unary type trait.
2542///
2543/// If the particular type trait requires a complete type, tries to complete
2544/// it. If completing the type fails, a diagnostic is emitted and false
2545/// returned. If completing the type succeeds or no completion was required,
2546/// returns true.
2547static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2548                                                UnaryTypeTrait UTT,
2549                                                SourceLocation Loc,
2550                                                QualType ArgTy) {
2551  // C++0x [meta.unary.prop]p3:
2552  //   For all of the class templates X declared in this Clause, instantiating
2553  //   that template with a template argument that is a class template
2554  //   specialization may result in the implicit instantiation of the template
2555  //   argument if and only if the semantics of X require that the argument
2556  //   must be a complete type.
2557  // We apply this rule to all the type trait expressions used to implement
2558  // these class templates. We also try to follow any GCC documented behavior
2559  // in these expressions to ensure portability of standard libraries.
2560  switch (UTT) {
2561    // is_complete_type somewhat obviously cannot require a complete type.
2562  case UTT_IsCompleteType:
2563    // Fall-through
2564
2565    // These traits are modeled on the type predicates in C++0x
2566    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2567    // requiring a complete type, as whether or not they return true cannot be
2568    // impacted by the completeness of the type.
2569  case UTT_IsVoid:
2570  case UTT_IsIntegral:
2571  case UTT_IsFloatingPoint:
2572  case UTT_IsArray:
2573  case UTT_IsPointer:
2574  case UTT_IsLvalueReference:
2575  case UTT_IsRvalueReference:
2576  case UTT_IsMemberFunctionPointer:
2577  case UTT_IsMemberObjectPointer:
2578  case UTT_IsEnum:
2579  case UTT_IsUnion:
2580  case UTT_IsClass:
2581  case UTT_IsFunction:
2582  case UTT_IsReference:
2583  case UTT_IsArithmetic:
2584  case UTT_IsFundamental:
2585  case UTT_IsObject:
2586  case UTT_IsScalar:
2587  case UTT_IsCompound:
2588  case UTT_IsMemberPointer:
2589    // Fall-through
2590
2591    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2592    // which requires some of its traits to have the complete type. However,
2593    // the completeness of the type cannot impact these traits' semantics, and
2594    // so they don't require it. This matches the comments on these traits in
2595    // Table 49.
2596  case UTT_IsConst:
2597  case UTT_IsVolatile:
2598  case UTT_IsSigned:
2599  case UTT_IsUnsigned:
2600    return true;
2601
2602    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2603    // applied to a complete type.
2604  case UTT_IsTrivial:
2605  case UTT_IsTriviallyCopyable:
2606  case UTT_IsStandardLayout:
2607  case UTT_IsPOD:
2608  case UTT_IsLiteral:
2609  case UTT_IsEmpty:
2610  case UTT_IsPolymorphic:
2611  case UTT_IsAbstract:
2612    // Fall-through
2613
2614    // These trait expressions are designed to help implement predicates in
2615    // [meta.unary.prop] despite not being named the same. They are specified
2616    // by both GCC and the Embarcadero C++ compiler, and require the complete
2617    // type due to the overarching C++0x type predicates being implemented
2618    // requiring the complete type.
2619  case UTT_HasNothrowAssign:
2620  case UTT_HasNothrowConstructor:
2621  case UTT_HasNothrowCopy:
2622  case UTT_HasTrivialAssign:
2623  case UTT_HasTrivialDefaultConstructor:
2624  case UTT_HasTrivialCopy:
2625  case UTT_HasTrivialDestructor:
2626  case UTT_HasVirtualDestructor:
2627    // Arrays of unknown bound are expressly allowed.
2628    QualType ElTy = ArgTy;
2629    if (ArgTy->isIncompleteArrayType())
2630      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2631
2632    // The void type is expressly allowed.
2633    if (ElTy->isVoidType())
2634      return true;
2635
2636    return !S.RequireCompleteType(
2637      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2638  }
2639  llvm_unreachable("Type trait not handled by switch");
2640}
2641
2642static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2643                                   SourceLocation KeyLoc, QualType T) {
2644  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2645
2646  ASTContext &C = Self.Context;
2647  switch(UTT) {
2648    // Type trait expressions corresponding to the primary type category
2649    // predicates in C++0x [meta.unary.cat].
2650  case UTT_IsVoid:
2651    return T->isVoidType();
2652  case UTT_IsIntegral:
2653    return T->isIntegralType(C);
2654  case UTT_IsFloatingPoint:
2655    return T->isFloatingType();
2656  case UTT_IsArray:
2657    return T->isArrayType();
2658  case UTT_IsPointer:
2659    return T->isPointerType();
2660  case UTT_IsLvalueReference:
2661    return T->isLValueReferenceType();
2662  case UTT_IsRvalueReference:
2663    return T->isRValueReferenceType();
2664  case UTT_IsMemberFunctionPointer:
2665    return T->isMemberFunctionPointerType();
2666  case UTT_IsMemberObjectPointer:
2667    return T->isMemberDataPointerType();
2668  case UTT_IsEnum:
2669    return T->isEnumeralType();
2670  case UTT_IsUnion:
2671    return T->isUnionType();
2672  case UTT_IsClass:
2673    return T->isClassType() || T->isStructureType();
2674  case UTT_IsFunction:
2675    return T->isFunctionType();
2676
2677    // Type trait expressions which correspond to the convenient composition
2678    // predicates in C++0x [meta.unary.comp].
2679  case UTT_IsReference:
2680    return T->isReferenceType();
2681  case UTT_IsArithmetic:
2682    return T->isArithmeticType() && !T->isEnumeralType();
2683  case UTT_IsFundamental:
2684    return T->isFundamentalType();
2685  case UTT_IsObject:
2686    return T->isObjectType();
2687  case UTT_IsScalar:
2688    // Note: semantic analysis depends on Objective-C lifetime types to be
2689    // considered scalar types. However, such types do not actually behave
2690    // like scalar types at run time (since they may require retain/release
2691    // operations), so we report them as non-scalar.
2692    if (T->isObjCLifetimeType()) {
2693      switch (T.getObjCLifetime()) {
2694      case Qualifiers::OCL_None:
2695      case Qualifiers::OCL_ExplicitNone:
2696        return true;
2697
2698      case Qualifiers::OCL_Strong:
2699      case Qualifiers::OCL_Weak:
2700      case Qualifiers::OCL_Autoreleasing:
2701        return false;
2702      }
2703    }
2704
2705    return T->isScalarType();
2706  case UTT_IsCompound:
2707    return T->isCompoundType();
2708  case UTT_IsMemberPointer:
2709    return T->isMemberPointerType();
2710
2711    // Type trait expressions which correspond to the type property predicates
2712    // in C++0x [meta.unary.prop].
2713  case UTT_IsConst:
2714    return T.isConstQualified();
2715  case UTT_IsVolatile:
2716    return T.isVolatileQualified();
2717  case UTT_IsTrivial:
2718    return T.isTrivialType(Self.Context);
2719  case UTT_IsTriviallyCopyable:
2720    return T.isTriviallyCopyableType(Self.Context);
2721  case UTT_IsStandardLayout:
2722    return T->isStandardLayoutType();
2723  case UTT_IsPOD:
2724    return T.isPODType(Self.Context);
2725  case UTT_IsLiteral:
2726    return T->isLiteralType();
2727  case UTT_IsEmpty:
2728    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2729      return !RD->isUnion() && RD->isEmpty();
2730    return false;
2731  case UTT_IsPolymorphic:
2732    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2733      return RD->isPolymorphic();
2734    return false;
2735  case UTT_IsAbstract:
2736    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2737      return RD->isAbstract();
2738    return false;
2739  case UTT_IsSigned:
2740    return T->isSignedIntegerType();
2741  case UTT_IsUnsigned:
2742    return T->isUnsignedIntegerType();
2743
2744    // Type trait expressions which query classes regarding their construction,
2745    // destruction, and copying. Rather than being based directly on the
2746    // related type predicates in the standard, they are specified by both
2747    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2748    // specifications.
2749    //
2750    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2751    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2752  case UTT_HasTrivialDefaultConstructor:
2753    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2754    //   If __is_pod (type) is true then the trait is true, else if type is
2755    //   a cv class or union type (or array thereof) with a trivial default
2756    //   constructor ([class.ctor]) then the trait is true, else it is false.
2757    if (T.isPODType(Self.Context))
2758      return true;
2759    if (const RecordType *RT =
2760          C.getBaseElementType(T)->getAs<RecordType>())
2761      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2762    return false;
2763  case UTT_HasTrivialCopy:
2764    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2765    //   If __is_pod (type) is true or type is a reference type then
2766    //   the trait is true, else if type is a cv class or union type
2767    //   with a trivial copy constructor ([class.copy]) then the trait
2768    //   is true, else it is false.
2769    if (T.isPODType(Self.Context) || T->isReferenceType())
2770      return true;
2771    if (const RecordType *RT = T->getAs<RecordType>())
2772      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2773    return false;
2774  case UTT_HasTrivialAssign:
2775    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2776    //   If type is const qualified or is a reference type then the
2777    //   trait is false. Otherwise if __is_pod (type) is true then the
2778    //   trait is true, else if type is a cv class or union type with
2779    //   a trivial copy assignment ([class.copy]) then the trait is
2780    //   true, else it is false.
2781    // Note: the const and reference restrictions are interesting,
2782    // given that const and reference members don't prevent a class
2783    // from having a trivial copy assignment operator (but do cause
2784    // errors if the copy assignment operator is actually used, q.v.
2785    // [class.copy]p12).
2786
2787    if (C.getBaseElementType(T).isConstQualified())
2788      return false;
2789    if (T.isPODType(Self.Context))
2790      return true;
2791    if (const RecordType *RT = T->getAs<RecordType>())
2792      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2793    return false;
2794  case UTT_HasTrivialDestructor:
2795    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2796    //   If __is_pod (type) is true or type is a reference type
2797    //   then the trait is true, else if type is a cv class or union
2798    //   type (or array thereof) with a trivial destructor
2799    //   ([class.dtor]) then the trait is true, else it is
2800    //   false.
2801    if (T.isPODType(Self.Context) || T->isReferenceType())
2802      return true;
2803
2804    // Objective-C++ ARC: autorelease types don't require destruction.
2805    if (T->isObjCLifetimeType() &&
2806        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
2807      return true;
2808
2809    if (const RecordType *RT =
2810          C.getBaseElementType(T)->getAs<RecordType>())
2811      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2812    return false;
2813  // TODO: Propagate nothrowness for implicitly declared special members.
2814  case UTT_HasNothrowAssign:
2815    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2816    //   If type is const qualified or is a reference type then the
2817    //   trait is false. Otherwise if __has_trivial_assign (type)
2818    //   is true then the trait is true, else if type is a cv class
2819    //   or union type with copy assignment operators that are known
2820    //   not to throw an exception then the trait is true, else it is
2821    //   false.
2822    if (C.getBaseElementType(T).isConstQualified())
2823      return false;
2824    if (T->isReferenceType())
2825      return false;
2826    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
2827      return true;
2828    if (const RecordType *RT = T->getAs<RecordType>()) {
2829      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2830      if (RD->hasTrivialCopyAssignment())
2831        return true;
2832
2833      bool FoundAssign = false;
2834      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2835      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2836                       Sema::LookupOrdinaryName);
2837      if (Self.LookupQualifiedName(Res, RD)) {
2838        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2839             Op != OpEnd; ++Op) {
2840          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2841          if (Operator->isCopyAssignmentOperator()) {
2842            FoundAssign = true;
2843            const FunctionProtoType *CPT
2844                = Operator->getType()->getAs<FunctionProtoType>();
2845            if (CPT->getExceptionSpecType() == EST_Delayed)
2846              return false;
2847            if (!CPT->isNothrow(Self.Context))
2848              return false;
2849          }
2850        }
2851      }
2852
2853      return FoundAssign;
2854    }
2855    return false;
2856  case UTT_HasNothrowCopy:
2857    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2858    //   If __has_trivial_copy (type) is true then the trait is true, else
2859    //   if type is a cv class or union type with copy constructors that are
2860    //   known not to throw an exception then the trait is true, else it is
2861    //   false.
2862    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
2863      return true;
2864    if (const RecordType *RT = T->getAs<RecordType>()) {
2865      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2866      if (RD->hasTrivialCopyConstructor())
2867        return true;
2868
2869      bool FoundConstructor = false;
2870      unsigned FoundTQs;
2871      DeclContext::lookup_const_iterator Con, ConEnd;
2872      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2873           Con != ConEnd; ++Con) {
2874        // A template constructor is never a copy constructor.
2875        // FIXME: However, it may actually be selected at the actual overload
2876        // resolution point.
2877        if (isa<FunctionTemplateDecl>(*Con))
2878          continue;
2879        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2880        if (Constructor->isCopyConstructor(FoundTQs)) {
2881          FoundConstructor = true;
2882          const FunctionProtoType *CPT
2883              = Constructor->getType()->getAs<FunctionProtoType>();
2884          if (CPT->getExceptionSpecType() == EST_Delayed)
2885            return false;
2886          // FIXME: check whether evaluating default arguments can throw.
2887          // For now, we'll be conservative and assume that they can throw.
2888          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
2889            return false;
2890        }
2891      }
2892
2893      return FoundConstructor;
2894    }
2895    return false;
2896  case UTT_HasNothrowConstructor:
2897    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2898    //   If __has_trivial_constructor (type) is true then the trait is
2899    //   true, else if type is a cv class or union type (or array
2900    //   thereof) with a default constructor that is known not to
2901    //   throw an exception then the trait is true, else it is false.
2902    if (T.isPODType(C) || T->isObjCLifetimeType())
2903      return true;
2904    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2905      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2906      if (RD->hasTrivialDefaultConstructor())
2907        return true;
2908
2909      DeclContext::lookup_const_iterator Con, ConEnd;
2910      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2911           Con != ConEnd; ++Con) {
2912        // FIXME: In C++0x, a constructor template can be a default constructor.
2913        if (isa<FunctionTemplateDecl>(*Con))
2914          continue;
2915        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2916        if (Constructor->isDefaultConstructor()) {
2917          const FunctionProtoType *CPT
2918              = Constructor->getType()->getAs<FunctionProtoType>();
2919          if (CPT->getExceptionSpecType() == EST_Delayed)
2920            return false;
2921          // TODO: check whether evaluating default arguments can throw.
2922          // For now, we'll be conservative and assume that they can throw.
2923          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2924        }
2925      }
2926    }
2927    return false;
2928  case UTT_HasVirtualDestructor:
2929    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2930    //   If type is a class type with a virtual destructor ([class.dtor])
2931    //   then the trait is true, else it is false.
2932    if (const RecordType *Record = T->getAs<RecordType>()) {
2933      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2934      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2935        return Destructor->isVirtual();
2936    }
2937    return false;
2938
2939    // These type trait expressions are modeled on the specifications for the
2940    // Embarcadero C++0x type trait functions:
2941    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2942  case UTT_IsCompleteType:
2943    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
2944    //   Returns True if and only if T is a complete type at the point of the
2945    //   function call.
2946    return !T->isIncompleteType();
2947  }
2948  llvm_unreachable("Type trait not covered by switch");
2949}
2950
2951ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2952                                     SourceLocation KWLoc,
2953                                     TypeSourceInfo *TSInfo,
2954                                     SourceLocation RParen) {
2955  QualType T = TSInfo->getType();
2956  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
2957    return ExprError();
2958
2959  bool Value = false;
2960  if (!T->isDependentType())
2961    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
2962
2963  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2964                                                RParen, Context.BoolTy));
2965}
2966
2967ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2968                                      SourceLocation KWLoc,
2969                                      ParsedType LhsTy,
2970                                      ParsedType RhsTy,
2971                                      SourceLocation RParen) {
2972  TypeSourceInfo *LhsTSInfo;
2973  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2974  if (!LhsTSInfo)
2975    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2976
2977  TypeSourceInfo *RhsTSInfo;
2978  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2979  if (!RhsTSInfo)
2980    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2981
2982  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2983}
2984
2985static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2986                                    QualType LhsT, QualType RhsT,
2987                                    SourceLocation KeyLoc) {
2988  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
2989         "Cannot evaluate traits of dependent types");
2990
2991  switch(BTT) {
2992  case BTT_IsBaseOf: {
2993    // C++0x [meta.rel]p2
2994    // Base is a base class of Derived without regard to cv-qualifiers or
2995    // Base and Derived are not unions and name the same class type without
2996    // regard to cv-qualifiers.
2997
2998    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2999    if (!lhsRecord) return false;
3000
3001    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3002    if (!rhsRecord) return false;
3003
3004    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3005             == (lhsRecord == rhsRecord));
3006
3007    if (lhsRecord == rhsRecord)
3008      return !lhsRecord->getDecl()->isUnion();
3009
3010    // C++0x [meta.rel]p2:
3011    //   If Base and Derived are class types and are different types
3012    //   (ignoring possible cv-qualifiers) then Derived shall be a
3013    //   complete type.
3014    if (Self.RequireCompleteType(KeyLoc, RhsT,
3015                          diag::err_incomplete_type_used_in_type_trait_expr))
3016      return false;
3017
3018    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3019      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3020  }
3021  case BTT_IsSame:
3022    return Self.Context.hasSameType(LhsT, RhsT);
3023  case BTT_TypeCompatible:
3024    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3025                                           RhsT.getUnqualifiedType());
3026  case BTT_IsConvertible:
3027  case BTT_IsConvertibleTo: {
3028    // C++0x [meta.rel]p4:
3029    //   Given the following function prototype:
3030    //
3031    //     template <class T>
3032    //       typename add_rvalue_reference<T>::type create();
3033    //
3034    //   the predicate condition for a template specialization
3035    //   is_convertible<From, To> shall be satisfied if and only if
3036    //   the return expression in the following code would be
3037    //   well-formed, including any implicit conversions to the return
3038    //   type of the function:
3039    //
3040    //     To test() {
3041    //       return create<From>();
3042    //     }
3043    //
3044    //   Access checking is performed as if in a context unrelated to To and
3045    //   From. Only the validity of the immediate context of the expression
3046    //   of the return-statement (including conversions to the return type)
3047    //   is considered.
3048    //
3049    // We model the initialization as a copy-initialization of a temporary
3050    // of the appropriate type, which for this expression is identical to the
3051    // return statement (since NRVO doesn't apply).
3052    if (LhsT->isObjectType() || LhsT->isFunctionType())
3053      LhsT = Self.Context.getRValueReferenceType(LhsT);
3054
3055    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3056    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3057                         Expr::getValueKindForType(LhsT));
3058    Expr *FromPtr = &From;
3059    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3060                                                           SourceLocation()));
3061
3062    // Perform the initialization within a SFINAE trap at translation unit
3063    // scope.
3064    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3065    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3066    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3067    if (Init.Failed())
3068      return false;
3069
3070    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3071    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3072  }
3073  }
3074  llvm_unreachable("Unknown type trait or not implemented");
3075}
3076
3077ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3078                                      SourceLocation KWLoc,
3079                                      TypeSourceInfo *LhsTSInfo,
3080                                      TypeSourceInfo *RhsTSInfo,
3081                                      SourceLocation RParen) {
3082  QualType LhsT = LhsTSInfo->getType();
3083  QualType RhsT = RhsTSInfo->getType();
3084
3085  if (BTT == BTT_TypeCompatible) {
3086    if (getLangOptions().CPlusPlus) {
3087      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3088        << SourceRange(KWLoc, RParen);
3089      return ExprError();
3090    }
3091  }
3092
3093  bool Value = false;
3094  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3095    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3096
3097  // Select trait result type.
3098  QualType ResultType;
3099  switch (BTT) {
3100  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3101  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3102  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3103  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3104  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3105  }
3106
3107  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3108                                                 RhsTSInfo, Value, RParen,
3109                                                 ResultType));
3110}
3111
3112ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3113                                     SourceLocation KWLoc,
3114                                     ParsedType Ty,
3115                                     Expr* DimExpr,
3116                                     SourceLocation RParen) {
3117  TypeSourceInfo *TSInfo;
3118  QualType T = GetTypeFromParser(Ty, &TSInfo);
3119  if (!TSInfo)
3120    TSInfo = Context.getTrivialTypeSourceInfo(T);
3121
3122  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3123}
3124
3125static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3126                                           QualType T, Expr *DimExpr,
3127                                           SourceLocation KeyLoc) {
3128  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3129
3130  switch(ATT) {
3131  case ATT_ArrayRank:
3132    if (T->isArrayType()) {
3133      unsigned Dim = 0;
3134      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3135        ++Dim;
3136        T = AT->getElementType();
3137      }
3138      return Dim;
3139    }
3140    return 0;
3141
3142  case ATT_ArrayExtent: {
3143    llvm::APSInt Value;
3144    uint64_t Dim;
3145    if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
3146      if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
3147        Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3148          DimExpr->getSourceRange();
3149        return false;
3150      }
3151      Dim = Value.getLimitedValue();
3152    } else {
3153      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
3154        DimExpr->getSourceRange();
3155      return false;
3156    }
3157
3158    if (T->isArrayType()) {
3159      unsigned D = 0;
3160      bool Matched = false;
3161      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3162        if (Dim == D) {
3163          Matched = true;
3164          break;
3165        }
3166        ++D;
3167        T = AT->getElementType();
3168      }
3169
3170      if (Matched && T->isArrayType()) {
3171        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3172          return CAT->getSize().getLimitedValue();
3173      }
3174    }
3175    return 0;
3176  }
3177  }
3178  llvm_unreachable("Unknown type trait or not implemented");
3179}
3180
3181ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3182                                     SourceLocation KWLoc,
3183                                     TypeSourceInfo *TSInfo,
3184                                     Expr* DimExpr,
3185                                     SourceLocation RParen) {
3186  QualType T = TSInfo->getType();
3187
3188  // FIXME: This should likely be tracked as an APInt to remove any host
3189  // assumptions about the width of size_t on the target.
3190  uint64_t Value = 0;
3191  if (!T->isDependentType())
3192    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3193
3194  // While the specification for these traits from the Embarcadero C++
3195  // compiler's documentation says the return type is 'unsigned int', Clang
3196  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3197  // compiler, there is no difference. On several other platforms this is an
3198  // important distinction.
3199  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3200                                                DimExpr, RParen,
3201                                                Context.getSizeType()));
3202}
3203
3204ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3205                                      SourceLocation KWLoc,
3206                                      Expr *Queried,
3207                                      SourceLocation RParen) {
3208  // If error parsing the expression, ignore.
3209  if (!Queried)
3210    return ExprError();
3211
3212  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3213
3214  return move(Result);
3215}
3216
3217static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3218  switch (ET) {
3219  case ET_IsLValueExpr: return E->isLValue();
3220  case ET_IsRValueExpr: return E->isRValue();
3221  }
3222  llvm_unreachable("Expression trait not covered by switch");
3223}
3224
3225ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3226                                      SourceLocation KWLoc,
3227                                      Expr *Queried,
3228                                      SourceLocation RParen) {
3229  if (Queried->isTypeDependent()) {
3230    // Delay type-checking for type-dependent expressions.
3231  } else if (Queried->getType()->isPlaceholderType()) {
3232    ExprResult PE = CheckPlaceholderExpr(Queried);
3233    if (PE.isInvalid()) return ExprError();
3234    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3235  }
3236
3237  bool Value = EvaluateExpressionTrait(ET, Queried);
3238
3239  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3240                                                 RParen, Context.BoolTy));
3241}
3242
3243QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
3244                                            ExprValueKind &VK,
3245                                            SourceLocation Loc,
3246                                            bool isIndirect) {
3247  assert(!lex.get()->getType()->isPlaceholderType() &&
3248         !rex.get()->getType()->isPlaceholderType() &&
3249         "placeholders should have been weeded out by now");
3250
3251  // The LHS undergoes lvalue conversions if this is ->*.
3252  if (isIndirect) {
3253    lex = DefaultLvalueConversion(lex.take());
3254    if (lex.isInvalid()) return QualType();
3255  }
3256
3257  // The RHS always undergoes lvalue conversions.
3258  rex = DefaultLvalueConversion(rex.take());
3259  if (rex.isInvalid()) return QualType();
3260
3261  const char *OpSpelling = isIndirect ? "->*" : ".*";
3262  // C++ 5.5p2
3263  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3264  //   be of type "pointer to member of T" (where T is a completely-defined
3265  //   class type) [...]
3266  QualType RType = rex.get()->getType();
3267  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
3268  if (!MemPtr) {
3269    Diag(Loc, diag::err_bad_memptr_rhs)
3270      << OpSpelling << RType << rex.get()->getSourceRange();
3271    return QualType();
3272  }
3273
3274  QualType Class(MemPtr->getClass(), 0);
3275
3276  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3277  // member pointer points must be completely-defined. However, there is no
3278  // reason for this semantic distinction, and the rule is not enforced by
3279  // other compilers. Therefore, we do not check this property, as it is
3280  // likely to be considered a defect.
3281
3282  // C++ 5.5p2
3283  //   [...] to its first operand, which shall be of class T or of a class of
3284  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3285  //   such a class]
3286  QualType LType = lex.get()->getType();
3287  if (isIndirect) {
3288    if (const PointerType *Ptr = LType->getAs<PointerType>())
3289      LType = Ptr->getPointeeType();
3290    else {
3291      Diag(Loc, diag::err_bad_memptr_lhs)
3292        << OpSpelling << 1 << LType
3293        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3294      return QualType();
3295    }
3296  }
3297
3298  if (!Context.hasSameUnqualifiedType(Class, LType)) {
3299    // If we want to check the hierarchy, we need a complete type.
3300    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
3301        << OpSpelling << (int)isIndirect)) {
3302      return QualType();
3303    }
3304    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3305                       /*DetectVirtual=*/false);
3306    // FIXME: Would it be useful to print full ambiguity paths, or is that
3307    // overkill?
3308    if (!IsDerivedFrom(LType, Class, Paths) ||
3309        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3310      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3311        << (int)isIndirect << lex.get()->getType();
3312      return QualType();
3313    }
3314    // Cast LHS to type of use.
3315    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3316    ExprValueKind VK =
3317        isIndirect ? VK_RValue : CastCategory(lex.get());
3318
3319    CXXCastPath BasePath;
3320    BuildBasePathArray(Paths, BasePath);
3321    lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
3322  }
3323
3324  if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
3325    // Diagnose use of pointer-to-member type which when used as
3326    // the functional cast in a pointer-to-member expression.
3327    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3328     return QualType();
3329  }
3330
3331  // C++ 5.5p2
3332  //   The result is an object or a function of the type specified by the
3333  //   second operand.
3334  // The cv qualifiers are the union of those in the pointer and the left side,
3335  // in accordance with 5.5p5 and 5.2.5.
3336  QualType Result = MemPtr->getPointeeType();
3337  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
3338
3339  // C++0x [expr.mptr.oper]p6:
3340  //   In a .* expression whose object expression is an rvalue, the program is
3341  //   ill-formed if the second operand is a pointer to member function with
3342  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3343  //   expression is an lvalue, the program is ill-formed if the second operand
3344  //   is a pointer to member function with ref-qualifier &&.
3345  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3346    switch (Proto->getRefQualifier()) {
3347    case RQ_None:
3348      // Do nothing
3349      break;
3350
3351    case RQ_LValue:
3352      if (!isIndirect && !lex.get()->Classify(Context).isLValue())
3353        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3354          << RType << 1 << lex.get()->getSourceRange();
3355      break;
3356
3357    case RQ_RValue:
3358      if (isIndirect || !lex.get()->Classify(Context).isRValue())
3359        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3360          << RType << 0 << lex.get()->getSourceRange();
3361      break;
3362    }
3363  }
3364
3365  // C++ [expr.mptr.oper]p6:
3366  //   The result of a .* expression whose second operand is a pointer
3367  //   to a data member is of the same value category as its
3368  //   first operand. The result of a .* expression whose second
3369  //   operand is a pointer to a member function is a prvalue. The
3370  //   result of an ->* expression is an lvalue if its second operand
3371  //   is a pointer to data member and a prvalue otherwise.
3372  if (Result->isFunctionType()) {
3373    VK = VK_RValue;
3374    return Context.BoundMemberTy;
3375  } else if (isIndirect) {
3376    VK = VK_LValue;
3377  } else {
3378    VK = lex.get()->getValueKind();
3379  }
3380
3381  return Result;
3382}
3383
3384/// \brief Try to convert a type to another according to C++0x 5.16p3.
3385///
3386/// This is part of the parameter validation for the ? operator. If either
3387/// value operand is a class type, the two operands are attempted to be
3388/// converted to each other. This function does the conversion in one direction.
3389/// It returns true if the program is ill-formed and has already been diagnosed
3390/// as such.
3391static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3392                                SourceLocation QuestionLoc,
3393                                bool &HaveConversion,
3394                                QualType &ToType) {
3395  HaveConversion = false;
3396  ToType = To->getType();
3397
3398  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3399                                                           SourceLocation());
3400  // C++0x 5.16p3
3401  //   The process for determining whether an operand expression E1 of type T1
3402  //   can be converted to match an operand expression E2 of type T2 is defined
3403  //   as follows:
3404  //   -- If E2 is an lvalue:
3405  bool ToIsLvalue = To->isLValue();
3406  if (ToIsLvalue) {
3407    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3408    //   type "lvalue reference to T2", subject to the constraint that in the
3409    //   conversion the reference must bind directly to E1.
3410    QualType T = Self.Context.getLValueReferenceType(ToType);
3411    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3412
3413    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3414    if (InitSeq.isDirectReferenceBinding()) {
3415      ToType = T;
3416      HaveConversion = true;
3417      return false;
3418    }
3419
3420    if (InitSeq.isAmbiguous())
3421      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3422  }
3423
3424  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3425  //      -- if E1 and E2 have class type, and the underlying class types are
3426  //         the same or one is a base class of the other:
3427  QualType FTy = From->getType();
3428  QualType TTy = To->getType();
3429  const RecordType *FRec = FTy->getAs<RecordType>();
3430  const RecordType *TRec = TTy->getAs<RecordType>();
3431  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3432                       Self.IsDerivedFrom(FTy, TTy);
3433  if (FRec && TRec &&
3434      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3435    //         E1 can be converted to match E2 if the class of T2 is the
3436    //         same type as, or a base class of, the class of T1, and
3437    //         [cv2 > cv1].
3438    if (FRec == TRec || FDerivedFromT) {
3439      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3440        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3441        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3442        if (InitSeq) {
3443          HaveConversion = true;
3444          return false;
3445        }
3446
3447        if (InitSeq.isAmbiguous())
3448          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3449      }
3450    }
3451
3452    return false;
3453  }
3454
3455  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3456  //        implicitly converted to the type that expression E2 would have
3457  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3458  //        an rvalue).
3459  //
3460  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3461  // to the array-to-pointer or function-to-pointer conversions.
3462  if (!TTy->getAs<TagType>())
3463    TTy = TTy.getUnqualifiedType();
3464
3465  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3466  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3467  HaveConversion = !InitSeq.Failed();
3468  ToType = TTy;
3469  if (InitSeq.isAmbiguous())
3470    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3471
3472  return false;
3473}
3474
3475/// \brief Try to find a common type for two according to C++0x 5.16p5.
3476///
3477/// This is part of the parameter validation for the ? operator. If either
3478/// value operand is a class type, overload resolution is used to find a
3479/// conversion to a common type.
3480static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3481                                    SourceLocation QuestionLoc) {
3482  Expr *Args[2] = { LHS.get(), RHS.get() };
3483  OverloadCandidateSet CandidateSet(QuestionLoc);
3484  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3485                                    CandidateSet);
3486
3487  OverloadCandidateSet::iterator Best;
3488  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3489    case OR_Success: {
3490      // We found a match. Perform the conversions on the arguments and move on.
3491      ExprResult LHSRes =
3492        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3493                                       Best->Conversions[0], Sema::AA_Converting);
3494      if (LHSRes.isInvalid())
3495        break;
3496      LHS = move(LHSRes);
3497
3498      ExprResult RHSRes =
3499        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3500                                       Best->Conversions[1], Sema::AA_Converting);
3501      if (RHSRes.isInvalid())
3502        break;
3503      RHS = move(RHSRes);
3504      if (Best->Function)
3505        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
3506      return false;
3507    }
3508
3509    case OR_No_Viable_Function:
3510
3511      // Emit a better diagnostic if one of the expressions is a null pointer
3512      // constant and the other is a pointer type. In this case, the user most
3513      // likely forgot to take the address of the other expression.
3514      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3515        return true;
3516
3517      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3518        << LHS.get()->getType() << RHS.get()->getType()
3519        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3520      return true;
3521
3522    case OR_Ambiguous:
3523      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3524        << LHS.get()->getType() << RHS.get()->getType()
3525        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3526      // FIXME: Print the possible common types by printing the return types of
3527      // the viable candidates.
3528      break;
3529
3530    case OR_Deleted:
3531      assert(false && "Conditional operator has only built-in overloads");
3532      break;
3533  }
3534  return true;
3535}
3536
3537/// \brief Perform an "extended" implicit conversion as returned by
3538/// TryClassUnification.
3539static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3540  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3541  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3542                                                           SourceLocation());
3543  Expr *Arg = E.take();
3544  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3545  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3546  if (Result.isInvalid())
3547    return true;
3548
3549  E = Result;
3550  return false;
3551}
3552
3553/// \brief Check the operands of ?: under C++ semantics.
3554///
3555/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3556/// extension. In this case, LHS == Cond. (But they're not aliases.)
3557QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3558                                           ExprValueKind &VK, ExprObjectKind &OK,
3559                                           SourceLocation QuestionLoc) {
3560  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3561  // interface pointers.
3562
3563  // C++0x 5.16p1
3564  //   The first expression is contextually converted to bool.
3565  if (!Cond.get()->isTypeDependent()) {
3566    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3567    if (CondRes.isInvalid())
3568      return QualType();
3569    Cond = move(CondRes);
3570  }
3571
3572  // Assume r-value.
3573  VK = VK_RValue;
3574  OK = OK_Ordinary;
3575
3576  // Either of the arguments dependent?
3577  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3578    return Context.DependentTy;
3579
3580  // C++0x 5.16p2
3581  //   If either the second or the third operand has type (cv) void, ...
3582  QualType LTy = LHS.get()->getType();
3583  QualType RTy = RHS.get()->getType();
3584  bool LVoid = LTy->isVoidType();
3585  bool RVoid = RTy->isVoidType();
3586  if (LVoid || RVoid) {
3587    //   ... then the [l2r] conversions are performed on the second and third
3588    //   operands ...
3589    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3590    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3591    if (LHS.isInvalid() || RHS.isInvalid())
3592      return QualType();
3593    LTy = LHS.get()->getType();
3594    RTy = RHS.get()->getType();
3595
3596    //   ... and one of the following shall hold:
3597    //   -- The second or the third operand (but not both) is a throw-
3598    //      expression; the result is of the type of the other and is an rvalue.
3599    bool LThrow = isa<CXXThrowExpr>(LHS.get());
3600    bool RThrow = isa<CXXThrowExpr>(RHS.get());
3601    if (LThrow && !RThrow)
3602      return RTy;
3603    if (RThrow && !LThrow)
3604      return LTy;
3605
3606    //   -- Both the second and third operands have type void; the result is of
3607    //      type void and is an rvalue.
3608    if (LVoid && RVoid)
3609      return Context.VoidTy;
3610
3611    // Neither holds, error.
3612    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3613      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3614      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3615    return QualType();
3616  }
3617
3618  // Neither is void.
3619
3620  // C++0x 5.16p3
3621  //   Otherwise, if the second and third operand have different types, and
3622  //   either has (cv) class type, and attempt is made to convert each of those
3623  //   operands to the other.
3624  if (!Context.hasSameType(LTy, RTy) &&
3625      (LTy->isRecordType() || RTy->isRecordType())) {
3626    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3627    // These return true if a single direction is already ambiguous.
3628    QualType L2RType, R2LType;
3629    bool HaveL2R, HaveR2L;
3630    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3631      return QualType();
3632    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3633      return QualType();
3634
3635    //   If both can be converted, [...] the program is ill-formed.
3636    if (HaveL2R && HaveR2L) {
3637      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3638        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3639      return QualType();
3640    }
3641
3642    //   If exactly one conversion is possible, that conversion is applied to
3643    //   the chosen operand and the converted operands are used in place of the
3644    //   original operands for the remainder of this section.
3645    if (HaveL2R) {
3646      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3647        return QualType();
3648      LTy = LHS.get()->getType();
3649    } else if (HaveR2L) {
3650      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3651        return QualType();
3652      RTy = RHS.get()->getType();
3653    }
3654  }
3655
3656  // C++0x 5.16p4
3657  //   If the second and third operands are glvalues of the same value
3658  //   category and have the same type, the result is of that type and
3659  //   value category and it is a bit-field if the second or the third
3660  //   operand is a bit-field, or if both are bit-fields.
3661  // We only extend this to bitfields, not to the crazy other kinds of
3662  // l-values.
3663  bool Same = Context.hasSameType(LTy, RTy);
3664  if (Same &&
3665      LHS.get()->isGLValue() &&
3666      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3667      LHS.get()->isOrdinaryOrBitFieldObject() &&
3668      RHS.get()->isOrdinaryOrBitFieldObject()) {
3669    VK = LHS.get()->getValueKind();
3670    if (LHS.get()->getObjectKind() == OK_BitField ||
3671        RHS.get()->getObjectKind() == OK_BitField)
3672      OK = OK_BitField;
3673    return LTy;
3674  }
3675
3676  // C++0x 5.16p5
3677  //   Otherwise, the result is an rvalue. If the second and third operands
3678  //   do not have the same type, and either has (cv) class type, ...
3679  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3680    //   ... overload resolution is used to determine the conversions (if any)
3681    //   to be applied to the operands. If the overload resolution fails, the
3682    //   program is ill-formed.
3683    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3684      return QualType();
3685  }
3686
3687  // C++0x 5.16p6
3688  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3689  //   conversions are performed on the second and third operands.
3690  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3691  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3692  if (LHS.isInvalid() || RHS.isInvalid())
3693    return QualType();
3694  LTy = LHS.get()->getType();
3695  RTy = RHS.get()->getType();
3696
3697  //   After those conversions, one of the following shall hold:
3698  //   -- The second and third operands have the same type; the result
3699  //      is of that type. If the operands have class type, the result
3700  //      is a prvalue temporary of the result type, which is
3701  //      copy-initialized from either the second operand or the third
3702  //      operand depending on the value of the first operand.
3703  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3704    if (LTy->isRecordType()) {
3705      // The operands have class type. Make a temporary copy.
3706      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3707      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3708                                                     SourceLocation(),
3709                                                     LHS);
3710      if (LHSCopy.isInvalid())
3711        return QualType();
3712
3713      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3714                                                     SourceLocation(),
3715                                                     RHS);
3716      if (RHSCopy.isInvalid())
3717        return QualType();
3718
3719      LHS = LHSCopy;
3720      RHS = RHSCopy;
3721    }
3722
3723    return LTy;
3724  }
3725
3726  // Extension: conditional operator involving vector types.
3727  if (LTy->isVectorType() || RTy->isVectorType())
3728    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
3729
3730  //   -- The second and third operands have arithmetic or enumeration type;
3731  //      the usual arithmetic conversions are performed to bring them to a
3732  //      common type, and the result is of that type.
3733  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3734    UsualArithmeticConversions(LHS, RHS);
3735    if (LHS.isInvalid() || RHS.isInvalid())
3736      return QualType();
3737    return LHS.get()->getType();
3738  }
3739
3740  //   -- The second and third operands have pointer type, or one has pointer
3741  //      type and the other is a null pointer constant; pointer conversions
3742  //      and qualification conversions are performed to bring them to their
3743  //      composite pointer type. The result is of the composite pointer type.
3744  //   -- The second and third operands have pointer to member type, or one has
3745  //      pointer to member type and the other is a null pointer constant;
3746  //      pointer to member conversions and qualification conversions are
3747  //      performed to bring them to a common type, whose cv-qualification
3748  //      shall match the cv-qualification of either the second or the third
3749  //      operand. The result is of the common type.
3750  bool NonStandardCompositeType = false;
3751  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3752                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3753  if (!Composite.isNull()) {
3754    if (NonStandardCompositeType)
3755      Diag(QuestionLoc,
3756           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3757        << LTy << RTy << Composite
3758        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3759
3760    return Composite;
3761  }
3762
3763  // Similarly, attempt to find composite type of two objective-c pointers.
3764  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3765  if (!Composite.isNull())
3766    return Composite;
3767
3768  // Check if we are using a null with a non-pointer type.
3769  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3770    return QualType();
3771
3772  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3773    << LHS.get()->getType() << RHS.get()->getType()
3774    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3775  return QualType();
3776}
3777
3778/// \brief Find a merged pointer type and convert the two expressions to it.
3779///
3780/// This finds the composite pointer type (or member pointer type) for @p E1
3781/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3782/// type and returns it.
3783/// It does not emit diagnostics.
3784///
3785/// \param Loc The location of the operator requiring these two expressions to
3786/// be converted to the composite pointer type.
3787///
3788/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3789/// a non-standard (but still sane) composite type to which both expressions
3790/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3791/// will be set true.
3792QualType Sema::FindCompositePointerType(SourceLocation Loc,
3793                                        Expr *&E1, Expr *&E2,
3794                                        bool *NonStandardCompositeType) {
3795  if (NonStandardCompositeType)
3796    *NonStandardCompositeType = false;
3797
3798  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3799  QualType T1 = E1->getType(), T2 = E2->getType();
3800
3801  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3802      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3803   return QualType();
3804
3805  // C++0x 5.9p2
3806  //   Pointer conversions and qualification conversions are performed on
3807  //   pointer operands to bring them to their composite pointer type. If
3808  //   one operand is a null pointer constant, the composite pointer type is
3809  //   the type of the other operand.
3810  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3811    if (T2->isMemberPointerType())
3812      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
3813    else
3814      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
3815    return T2;
3816  }
3817  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3818    if (T1->isMemberPointerType())
3819      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
3820    else
3821      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
3822    return T1;
3823  }
3824
3825  // Now both have to be pointers or member pointers.
3826  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3827      (!T2->isPointerType() && !T2->isMemberPointerType()))
3828    return QualType();
3829
3830  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3831  //   the other has type "pointer to cv2 T" and the composite pointer type is
3832  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3833  //   Otherwise, the composite pointer type is a pointer type similar to the
3834  //   type of one of the operands, with a cv-qualification signature that is
3835  //   the union of the cv-qualification signatures of the operand types.
3836  // In practice, the first part here is redundant; it's subsumed by the second.
3837  // What we do here is, we build the two possible composite types, and try the
3838  // conversions in both directions. If only one works, or if the two composite
3839  // types are the same, we have succeeded.
3840  // FIXME: extended qualifiers?
3841  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3842  QualifierVector QualifierUnion;
3843  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3844      ContainingClassVector;
3845  ContainingClassVector MemberOfClass;
3846  QualType Composite1 = Context.getCanonicalType(T1),
3847           Composite2 = Context.getCanonicalType(T2);
3848  unsigned NeedConstBefore = 0;
3849  do {
3850    const PointerType *Ptr1, *Ptr2;
3851    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3852        (Ptr2 = Composite2->getAs<PointerType>())) {
3853      Composite1 = Ptr1->getPointeeType();
3854      Composite2 = Ptr2->getPointeeType();
3855
3856      // If we're allowed to create a non-standard composite type, keep track
3857      // of where we need to fill in additional 'const' qualifiers.
3858      if (NonStandardCompositeType &&
3859          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3860        NeedConstBefore = QualifierUnion.size();
3861
3862      QualifierUnion.push_back(
3863                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3864      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3865      continue;
3866    }
3867
3868    const MemberPointerType *MemPtr1, *MemPtr2;
3869    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3870        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3871      Composite1 = MemPtr1->getPointeeType();
3872      Composite2 = MemPtr2->getPointeeType();
3873
3874      // If we're allowed to create a non-standard composite type, keep track
3875      // of where we need to fill in additional 'const' qualifiers.
3876      if (NonStandardCompositeType &&
3877          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3878        NeedConstBefore = QualifierUnion.size();
3879
3880      QualifierUnion.push_back(
3881                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3882      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3883                                             MemPtr2->getClass()));
3884      continue;
3885    }
3886
3887    // FIXME: block pointer types?
3888
3889    // Cannot unwrap any more types.
3890    break;
3891  } while (true);
3892
3893  if (NeedConstBefore && NonStandardCompositeType) {
3894    // Extension: Add 'const' to qualifiers that come before the first qualifier
3895    // mismatch, so that our (non-standard!) composite type meets the
3896    // requirements of C++ [conv.qual]p4 bullet 3.
3897    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3898      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3899        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3900        *NonStandardCompositeType = true;
3901      }
3902    }
3903  }
3904
3905  // Rewrap the composites as pointers or member pointers with the union CVRs.
3906  ContainingClassVector::reverse_iterator MOC
3907    = MemberOfClass.rbegin();
3908  for (QualifierVector::reverse_iterator
3909         I = QualifierUnion.rbegin(),
3910         E = QualifierUnion.rend();
3911       I != E; (void)++I, ++MOC) {
3912    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3913    if (MOC->first && MOC->second) {
3914      // Rebuild member pointer type
3915      Composite1 = Context.getMemberPointerType(
3916                                    Context.getQualifiedType(Composite1, Quals),
3917                                    MOC->first);
3918      Composite2 = Context.getMemberPointerType(
3919                                    Context.getQualifiedType(Composite2, Quals),
3920                                    MOC->second);
3921    } else {
3922      // Rebuild pointer type
3923      Composite1
3924        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3925      Composite2
3926        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3927    }
3928  }
3929
3930  // Try to convert to the first composite pointer type.
3931  InitializedEntity Entity1
3932    = InitializedEntity::InitializeTemporary(Composite1);
3933  InitializationKind Kind
3934    = InitializationKind::CreateCopy(Loc, SourceLocation());
3935  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3936  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3937
3938  if (E1ToC1 && E2ToC1) {
3939    // Conversion to Composite1 is viable.
3940    if (!Context.hasSameType(Composite1, Composite2)) {
3941      // Composite2 is a different type from Composite1. Check whether
3942      // Composite2 is also viable.
3943      InitializedEntity Entity2
3944        = InitializedEntity::InitializeTemporary(Composite2);
3945      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3946      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3947      if (E1ToC2 && E2ToC2) {
3948        // Both Composite1 and Composite2 are viable and are different;
3949        // this is an ambiguity.
3950        return QualType();
3951      }
3952    }
3953
3954    // Convert E1 to Composite1
3955    ExprResult E1Result
3956      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3957    if (E1Result.isInvalid())
3958      return QualType();
3959    E1 = E1Result.takeAs<Expr>();
3960
3961    // Convert E2 to Composite1
3962    ExprResult E2Result
3963      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3964    if (E2Result.isInvalid())
3965      return QualType();
3966    E2 = E2Result.takeAs<Expr>();
3967
3968    return Composite1;
3969  }
3970
3971  // Check whether Composite2 is viable.
3972  InitializedEntity Entity2
3973    = InitializedEntity::InitializeTemporary(Composite2);
3974  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3975  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3976  if (!E1ToC2 || !E2ToC2)
3977    return QualType();
3978
3979  // Convert E1 to Composite2
3980  ExprResult E1Result
3981    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3982  if (E1Result.isInvalid())
3983    return QualType();
3984  E1 = E1Result.takeAs<Expr>();
3985
3986  // Convert E2 to Composite2
3987  ExprResult E2Result
3988    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3989  if (E2Result.isInvalid())
3990    return QualType();
3991  E2 = E2Result.takeAs<Expr>();
3992
3993  return Composite2;
3994}
3995
3996ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3997  if (!E)
3998    return ExprError();
3999
4000  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4001
4002  // If the result is a glvalue, we shouldn't bind it.
4003  if (!E->isRValue())
4004    return Owned(E);
4005
4006  // In ARC, calls that return a retainable type can return retained,
4007  // in which case we have to insert a consuming cast.
4008  if (getLangOptions().ObjCAutoRefCount &&
4009      E->getType()->isObjCRetainableType()) {
4010
4011    bool ReturnsRetained;
4012
4013    // For actual calls, we compute this by examining the type of the
4014    // called value.
4015    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4016      Expr *Callee = Call->getCallee()->IgnoreParens();
4017      QualType T = Callee->getType();
4018
4019      if (T == Context.BoundMemberTy) {
4020        // Handle pointer-to-members.
4021        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4022          T = BinOp->getRHS()->getType();
4023        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4024          T = Mem->getMemberDecl()->getType();
4025      }
4026
4027      if (const PointerType *Ptr = T->getAs<PointerType>())
4028        T = Ptr->getPointeeType();
4029      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4030        T = Ptr->getPointeeType();
4031      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4032        T = MemPtr->getPointeeType();
4033
4034      const FunctionType *FTy = T->getAs<FunctionType>();
4035      assert(FTy && "call to value not of function type?");
4036      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4037
4038    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4039    // type always produce a +1 object.
4040    } else if (isa<StmtExpr>(E)) {
4041      ReturnsRetained = true;
4042
4043    // For message sends and property references, we try to find an
4044    // actual method.  FIXME: we should infer retention by selector in
4045    // cases where we don't have an actual method.
4046    } else {
4047      Decl *D = 0;
4048      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4049        D = Send->getMethodDecl();
4050      } else {
4051        CastExpr *CE = cast<CastExpr>(E);
4052        // FIXME. What other cast kinds to check for?
4053        if (CE->getCastKind() == CK_ObjCProduceObject ||
4054            CE->getCastKind() == CK_LValueToRValue)
4055          return MaybeBindToTemporary(CE->getSubExpr());
4056        assert(CE->getCastKind() == CK_GetObjCProperty);
4057        const ObjCPropertyRefExpr *PRE = CE->getSubExpr()->getObjCProperty();
4058        D = (PRE->isImplicitProperty() ? PRE->getImplicitPropertyGetter() : 0);
4059      }
4060
4061      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4062    }
4063
4064    ExprNeedsCleanups = true;
4065
4066    CastKind ck = (ReturnsRetained ? CK_ObjCConsumeObject
4067                                   : CK_ObjCReclaimReturnedObject);
4068    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4069                                          VK_RValue));
4070  }
4071
4072  if (!getLangOptions().CPlusPlus)
4073    return Owned(E);
4074
4075  const RecordType *RT = E->getType()->getAs<RecordType>();
4076  if (!RT)
4077    return Owned(E);
4078
4079  // That should be enough to guarantee that this type is complete.
4080  // If it has a trivial destructor, we can avoid the extra copy.
4081  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4082  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
4083    return Owned(E);
4084
4085  CXXDestructorDecl *Destructor = LookupDestructor(RD);
4086
4087  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4088  if (Destructor) {
4089    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
4090    CheckDestructorAccess(E->getExprLoc(), Destructor,
4091                          PDiag(diag::err_access_dtor_temp)
4092                            << E->getType());
4093
4094    ExprTemporaries.push_back(Temp);
4095    ExprNeedsCleanups = true;
4096  }
4097  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
4098}
4099
4100Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4101  assert(SubExpr && "sub expression can't be null!");
4102
4103  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
4104  assert(ExprTemporaries.size() >= FirstTemporary);
4105  assert(ExprNeedsCleanups || ExprTemporaries.size() == FirstTemporary);
4106  if (!ExprNeedsCleanups)
4107    return SubExpr;
4108
4109  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
4110                                     ExprTemporaries.begin() + FirstTemporary,
4111                                     ExprTemporaries.size() - FirstTemporary);
4112  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
4113                        ExprTemporaries.end());
4114  ExprNeedsCleanups = false;
4115
4116  return E;
4117}
4118
4119ExprResult
4120Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4121  if (SubExpr.isInvalid())
4122    return ExprError();
4123
4124  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4125}
4126
4127Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4128  assert(SubStmt && "sub statement can't be null!");
4129
4130  if (!ExprNeedsCleanups)
4131    return SubStmt;
4132
4133  // FIXME: In order to attach the temporaries, wrap the statement into
4134  // a StmtExpr; currently this is only used for asm statements.
4135  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4136  // a new AsmStmtWithTemporaries.
4137  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4138                                                      SourceLocation(),
4139                                                      SourceLocation());
4140  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4141                                   SourceLocation());
4142  return MaybeCreateExprWithCleanups(E);
4143}
4144
4145ExprResult
4146Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4147                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4148                                   bool &MayBePseudoDestructor) {
4149  // Since this might be a postfix expression, get rid of ParenListExprs.
4150  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4151  if (Result.isInvalid()) return ExprError();
4152  Base = Result.get();
4153
4154  QualType BaseType = Base->getType();
4155  MayBePseudoDestructor = false;
4156  if (BaseType->isDependentType()) {
4157    // If we have a pointer to a dependent type and are using the -> operator,
4158    // the object type is the type that the pointer points to. We might still
4159    // have enough information about that type to do something useful.
4160    if (OpKind == tok::arrow)
4161      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4162        BaseType = Ptr->getPointeeType();
4163
4164    ObjectType = ParsedType::make(BaseType);
4165    MayBePseudoDestructor = true;
4166    return Owned(Base);
4167  }
4168
4169  // C++ [over.match.oper]p8:
4170  //   [...] When operator->returns, the operator-> is applied  to the value
4171  //   returned, with the original second operand.
4172  if (OpKind == tok::arrow) {
4173    // The set of types we've considered so far.
4174    llvm::SmallPtrSet<CanQualType,8> CTypes;
4175    llvm::SmallVector<SourceLocation, 8> Locations;
4176    CTypes.insert(Context.getCanonicalType(BaseType));
4177
4178    while (BaseType->isRecordType()) {
4179      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4180      if (Result.isInvalid())
4181        return ExprError();
4182      Base = Result.get();
4183      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4184        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4185      BaseType = Base->getType();
4186      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4187      if (!CTypes.insert(CBaseType)) {
4188        Diag(OpLoc, diag::err_operator_arrow_circular);
4189        for (unsigned i = 0; i < Locations.size(); i++)
4190          Diag(Locations[i], diag::note_declared_at);
4191        return ExprError();
4192      }
4193    }
4194
4195    if (BaseType->isPointerType())
4196      BaseType = BaseType->getPointeeType();
4197  }
4198
4199  // We could end up with various non-record types here, such as extended
4200  // vector types or Objective-C interfaces. Just return early and let
4201  // ActOnMemberReferenceExpr do the work.
4202  if (!BaseType->isRecordType()) {
4203    // C++ [basic.lookup.classref]p2:
4204    //   [...] If the type of the object expression is of pointer to scalar
4205    //   type, the unqualified-id is looked up in the context of the complete
4206    //   postfix-expression.
4207    //
4208    // This also indicates that we should be parsing a
4209    // pseudo-destructor-name.
4210    ObjectType = ParsedType();
4211    MayBePseudoDestructor = true;
4212    return Owned(Base);
4213  }
4214
4215  // The object type must be complete (or dependent).
4216  if (!BaseType->isDependentType() &&
4217      RequireCompleteType(OpLoc, BaseType,
4218                          PDiag(diag::err_incomplete_member_access)))
4219    return ExprError();
4220
4221  // C++ [basic.lookup.classref]p2:
4222  //   If the id-expression in a class member access (5.2.5) is an
4223  //   unqualified-id, and the type of the object expression is of a class
4224  //   type C (or of pointer to a class type C), the unqualified-id is looked
4225  //   up in the scope of class C. [...]
4226  ObjectType = ParsedType::make(BaseType);
4227  return move(Base);
4228}
4229
4230ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4231                                                   Expr *MemExpr) {
4232  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4233  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4234    << isa<CXXPseudoDestructorExpr>(MemExpr)
4235    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4236
4237  return ActOnCallExpr(/*Scope*/ 0,
4238                       MemExpr,
4239                       /*LPLoc*/ ExpectedLParenLoc,
4240                       MultiExprArg(),
4241                       /*RPLoc*/ ExpectedLParenLoc);
4242}
4243
4244ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4245                                           SourceLocation OpLoc,
4246                                           tok::TokenKind OpKind,
4247                                           const CXXScopeSpec &SS,
4248                                           TypeSourceInfo *ScopeTypeInfo,
4249                                           SourceLocation CCLoc,
4250                                           SourceLocation TildeLoc,
4251                                         PseudoDestructorTypeStorage Destructed,
4252                                           bool HasTrailingLParen) {
4253  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4254
4255  // C++ [expr.pseudo]p2:
4256  //   The left-hand side of the dot operator shall be of scalar type. The
4257  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4258  //   This scalar type is the object type.
4259  QualType ObjectType = Base->getType();
4260  if (OpKind == tok::arrow) {
4261    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4262      ObjectType = Ptr->getPointeeType();
4263    } else if (!Base->isTypeDependent()) {
4264      // The user wrote "p->" when she probably meant "p."; fix it.
4265      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4266        << ObjectType << true
4267        << FixItHint::CreateReplacement(OpLoc, ".");
4268      if (isSFINAEContext())
4269        return ExprError();
4270
4271      OpKind = tok::period;
4272    }
4273  }
4274
4275  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4276    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4277      << ObjectType << Base->getSourceRange();
4278    return ExprError();
4279  }
4280
4281  // C++ [expr.pseudo]p2:
4282  //   [...] The cv-unqualified versions of the object type and of the type
4283  //   designated by the pseudo-destructor-name shall be the same type.
4284  if (DestructedTypeInfo) {
4285    QualType DestructedType = DestructedTypeInfo->getType();
4286    SourceLocation DestructedTypeStart
4287      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4288    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4289      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4290        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4291          << ObjectType << DestructedType << Base->getSourceRange()
4292          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4293
4294        // Recover by setting the destructed type to the object type.
4295        DestructedType = ObjectType;
4296        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4297                                                           DestructedTypeStart);
4298        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4299      } else if (DestructedType.getObjCLifetime() !=
4300                                                ObjectType.getObjCLifetime()) {
4301
4302        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4303          // Okay: just pretend that the user provided the correctly-qualified
4304          // type.
4305        } else {
4306          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4307            << ObjectType << DestructedType << Base->getSourceRange()
4308            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4309        }
4310
4311        // Recover by setting the destructed type to the object type.
4312        DestructedType = ObjectType;
4313        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4314                                                           DestructedTypeStart);
4315        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4316      }
4317    }
4318  }
4319
4320  // C++ [expr.pseudo]p2:
4321  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4322  //   form
4323  //
4324  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4325  //
4326  //   shall designate the same scalar type.
4327  if (ScopeTypeInfo) {
4328    QualType ScopeType = ScopeTypeInfo->getType();
4329    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4330        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4331
4332      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4333           diag::err_pseudo_dtor_type_mismatch)
4334        << ObjectType << ScopeType << Base->getSourceRange()
4335        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4336
4337      ScopeType = QualType();
4338      ScopeTypeInfo = 0;
4339    }
4340  }
4341
4342  Expr *Result
4343    = new (Context) CXXPseudoDestructorExpr(Context, Base,
4344                                            OpKind == tok::arrow, OpLoc,
4345                                            SS.getWithLocInContext(Context),
4346                                            ScopeTypeInfo,
4347                                            CCLoc,
4348                                            TildeLoc,
4349                                            Destructed);
4350
4351  if (HasTrailingLParen)
4352    return Owned(Result);
4353
4354  return DiagnoseDtorReference(Destructed.getLocation(), Result);
4355}
4356
4357ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4358                                           SourceLocation OpLoc,
4359                                           tok::TokenKind OpKind,
4360                                           CXXScopeSpec &SS,
4361                                           UnqualifiedId &FirstTypeName,
4362                                           SourceLocation CCLoc,
4363                                           SourceLocation TildeLoc,
4364                                           UnqualifiedId &SecondTypeName,
4365                                           bool HasTrailingLParen) {
4366  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4367          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4368         "Invalid first type name in pseudo-destructor");
4369  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4370          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4371         "Invalid second type name in pseudo-destructor");
4372
4373  // C++ [expr.pseudo]p2:
4374  //   The left-hand side of the dot operator shall be of scalar type. The
4375  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4376  //   This scalar type is the object type.
4377  QualType ObjectType = Base->getType();
4378  if (OpKind == tok::arrow) {
4379    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4380      ObjectType = Ptr->getPointeeType();
4381    } else if (!ObjectType->isDependentType()) {
4382      // The user wrote "p->" when she probably meant "p."; fix it.
4383      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4384        << ObjectType << true
4385        << FixItHint::CreateReplacement(OpLoc, ".");
4386      if (isSFINAEContext())
4387        return ExprError();
4388
4389      OpKind = tok::period;
4390    }
4391  }
4392
4393  // Compute the object type that we should use for name lookup purposes. Only
4394  // record types and dependent types matter.
4395  ParsedType ObjectTypePtrForLookup;
4396  if (!SS.isSet()) {
4397    if (ObjectType->isRecordType())
4398      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4399    else if (ObjectType->isDependentType())
4400      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4401  }
4402
4403  // Convert the name of the type being destructed (following the ~) into a
4404  // type (with source-location information).
4405  QualType DestructedType;
4406  TypeSourceInfo *DestructedTypeInfo = 0;
4407  PseudoDestructorTypeStorage Destructed;
4408  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4409    ParsedType T = getTypeName(*SecondTypeName.Identifier,
4410                               SecondTypeName.StartLocation,
4411                               S, &SS, true, false, ObjectTypePtrForLookup);
4412    if (!T &&
4413        ((SS.isSet() && !computeDeclContext(SS, false)) ||
4414         (!SS.isSet() && ObjectType->isDependentType()))) {
4415      // The name of the type being destroyed is a dependent name, and we
4416      // couldn't find anything useful in scope. Just store the identifier and
4417      // it's location, and we'll perform (qualified) name lookup again at
4418      // template instantiation time.
4419      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4420                                               SecondTypeName.StartLocation);
4421    } else if (!T) {
4422      Diag(SecondTypeName.StartLocation,
4423           diag::err_pseudo_dtor_destructor_non_type)
4424        << SecondTypeName.Identifier << ObjectType;
4425      if (isSFINAEContext())
4426        return ExprError();
4427
4428      // Recover by assuming we had the right type all along.
4429      DestructedType = ObjectType;
4430    } else
4431      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4432  } else {
4433    // Resolve the template-id to a type.
4434    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4435    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4436                                       TemplateId->getTemplateArgs(),
4437                                       TemplateId->NumArgs);
4438    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4439                                       TemplateId->Template,
4440                                       TemplateId->TemplateNameLoc,
4441                                       TemplateId->LAngleLoc,
4442                                       TemplateArgsPtr,
4443                                       TemplateId->RAngleLoc);
4444    if (T.isInvalid() || !T.get()) {
4445      // Recover by assuming we had the right type all along.
4446      DestructedType = ObjectType;
4447    } else
4448      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4449  }
4450
4451  // If we've performed some kind of recovery, (re-)build the type source
4452  // information.
4453  if (!DestructedType.isNull()) {
4454    if (!DestructedTypeInfo)
4455      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4456                                                  SecondTypeName.StartLocation);
4457    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4458  }
4459
4460  // Convert the name of the scope type (the type prior to '::') into a type.
4461  TypeSourceInfo *ScopeTypeInfo = 0;
4462  QualType ScopeType;
4463  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4464      FirstTypeName.Identifier) {
4465    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4466      ParsedType T = getTypeName(*FirstTypeName.Identifier,
4467                                 FirstTypeName.StartLocation,
4468                                 S, &SS, true, false, ObjectTypePtrForLookup);
4469      if (!T) {
4470        Diag(FirstTypeName.StartLocation,
4471             diag::err_pseudo_dtor_destructor_non_type)
4472          << FirstTypeName.Identifier << ObjectType;
4473
4474        if (isSFINAEContext())
4475          return ExprError();
4476
4477        // Just drop this type. It's unnecessary anyway.
4478        ScopeType = QualType();
4479      } else
4480        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4481    } else {
4482      // Resolve the template-id to a type.
4483      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4484      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4485                                         TemplateId->getTemplateArgs(),
4486                                         TemplateId->NumArgs);
4487      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4488                                         TemplateId->Template,
4489                                         TemplateId->TemplateNameLoc,
4490                                         TemplateId->LAngleLoc,
4491                                         TemplateArgsPtr,
4492                                         TemplateId->RAngleLoc);
4493      if (T.isInvalid() || !T.get()) {
4494        // Recover by dropping this type.
4495        ScopeType = QualType();
4496      } else
4497        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4498    }
4499  }
4500
4501  if (!ScopeType.isNull() && !ScopeTypeInfo)
4502    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4503                                                  FirstTypeName.StartLocation);
4504
4505
4506  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4507                                   ScopeTypeInfo, CCLoc, TildeLoc,
4508                                   Destructed, HasTrailingLParen);
4509}
4510
4511ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4512                                        CXXMethodDecl *Method) {
4513  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4514                                          FoundDecl, Method);
4515  if (Exp.isInvalid())
4516    return true;
4517
4518  MemberExpr *ME =
4519      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4520                               SourceLocation(), Method->getType(),
4521                               VK_RValue, OK_Ordinary);
4522  QualType ResultType = Method->getResultType();
4523  ExprValueKind VK = Expr::getValueKindForType(ResultType);
4524  ResultType = ResultType.getNonLValueExprType(Context);
4525
4526  MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
4527  CXXMemberCallExpr *CE =
4528    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4529                                    Exp.get()->getLocEnd());
4530  return CE;
4531}
4532
4533ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4534                                      SourceLocation RParen) {
4535  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4536                                             Operand->CanThrow(Context),
4537                                             KeyLoc, RParen));
4538}
4539
4540ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4541                                   Expr *Operand, SourceLocation RParen) {
4542  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4543}
4544
4545/// Perform the conversions required for an expression used in a
4546/// context that ignores the result.
4547ExprResult Sema::IgnoredValueConversions(Expr *E) {
4548  // C99 6.3.2.1:
4549  //   [Except in specific positions,] an lvalue that does not have
4550  //   array type is converted to the value stored in the
4551  //   designated object (and is no longer an lvalue).
4552  if (E->isRValue()) {
4553    // In C, function designators (i.e. expressions of function type)
4554    // are r-values, but we still want to do function-to-pointer decay
4555    // on them.  This is both technically correct and convenient for
4556    // some clients.
4557    if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType())
4558      return DefaultFunctionArrayConversion(E);
4559
4560    return Owned(E);
4561  }
4562
4563  // We always want to do this on ObjC property references.
4564  if (E->getObjectKind() == OK_ObjCProperty) {
4565    ExprResult Res = ConvertPropertyForRValue(E);
4566    if (Res.isInvalid()) return Owned(E);
4567    E = Res.take();
4568    if (E->isRValue()) return Owned(E);
4569  }
4570
4571  // Otherwise, this rule does not apply in C++, at least not for the moment.
4572  if (getLangOptions().CPlusPlus) return Owned(E);
4573
4574  // GCC seems to also exclude expressions of incomplete enum type.
4575  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4576    if (!T->getDecl()->isComplete()) {
4577      // FIXME: stupid workaround for a codegen bug!
4578      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4579      return Owned(E);
4580    }
4581  }
4582
4583  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4584  if (Res.isInvalid())
4585    return Owned(E);
4586  E = Res.take();
4587
4588  if (!E->getType()->isVoidType())
4589    RequireCompleteType(E->getExprLoc(), E->getType(),
4590                        diag::err_incomplete_type);
4591  return Owned(E);
4592}
4593
4594ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4595  ExprResult FullExpr = Owned(FE);
4596
4597  if (!FullExpr.get())
4598    return ExprError();
4599
4600  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4601    return ExprError();
4602
4603  FullExpr = CheckPlaceholderExpr(FullExpr.take());
4604  if (FullExpr.isInvalid())
4605    return ExprError();
4606
4607  FullExpr = IgnoredValueConversions(FullExpr.take());
4608  if (FullExpr.isInvalid())
4609    return ExprError();
4610
4611  CheckImplicitConversions(FullExpr.get());
4612  return MaybeCreateExprWithCleanups(FullExpr);
4613}
4614
4615StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
4616  if (!FullStmt) return StmtError();
4617
4618  return MaybeCreateStmtWithCleanups(FullStmt);
4619}
4620
4621bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
4622                                        UnqualifiedId &Name) {
4623  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4624  DeclarationName TargetName = TargetNameInfo.getName();
4625  if (!TargetName)
4626    return false;
4627
4628  // Do the redeclaration lookup in the current scope.
4629  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
4630                 Sema::NotForRedeclaration);
4631  R.suppressDiagnostics();
4632  LookupParsedName(R, getCurScope(), &SS);
4633  return !R.empty();
4634}
4635