SemaExprCXX.cpp revision 218893
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.setScopeRep(Prefix);
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
142  for (unsigned Step = 0; Step != 2; ++Step) {
143    // Look for the name first in the computed lookup context (if we
144    // have one) and, if that fails to find a match, in the sope (if
145    // we're allowed to look there).
146    Found.clear();
147    if (Step == 0 && LookupCtx)
148      LookupQualifiedName(Found, LookupCtx);
149    else if (Step == 1 && LookInScope && S)
150      LookupName(Found, S);
151    else
152      continue;
153
154    // FIXME: Should we be suppressing ambiguities here?
155    if (Found.isAmbiguous())
156      return ParsedType();
157
158    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
159      QualType T = Context.getTypeDeclType(Type);
160
161      if (SearchType.isNull() || SearchType->isDependentType() ||
162          Context.hasSameUnqualifiedType(T, SearchType)) {
163        // We found our type!
164
165        return ParsedType::make(T);
166      }
167    }
168
169    // If the name that we found is a class template name, and it is
170    // the same name as the template name in the last part of the
171    // nested-name-specifier (if present) or the object type, then
172    // this is the destructor for that class.
173    // FIXME: This is a workaround until we get real drafting for core
174    // issue 399, for which there isn't even an obvious direction.
175    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
176      QualType MemberOfType;
177      if (SS.isSet()) {
178        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
179          // Figure out the type of the context, if it has one.
180          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
181            MemberOfType = Context.getTypeDeclType(Record);
182        }
183      }
184      if (MemberOfType.isNull())
185        MemberOfType = SearchType;
186
187      if (MemberOfType.isNull())
188        continue;
189
190      // We're referring into a class template specialization. If the
191      // class template we found is the same as the template being
192      // specialized, we found what we are looking for.
193      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
194        if (ClassTemplateSpecializationDecl *Spec
195              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
196          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
197                Template->getCanonicalDecl())
198            return ParsedType::make(MemberOfType);
199        }
200
201        continue;
202      }
203
204      // We're referring to an unresolved class template
205      // specialization. Determine whether we class template we found
206      // is the same as the template being specialized or, if we don't
207      // know which template is being specialized, that it at least
208      // has the same name.
209      if (const TemplateSpecializationType *SpecType
210            = MemberOfType->getAs<TemplateSpecializationType>()) {
211        TemplateName SpecName = SpecType->getTemplateName();
212
213        // The class template we found is the same template being
214        // specialized.
215        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
216          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
217            return ParsedType::make(MemberOfType);
218
219          continue;
220        }
221
222        // The class template we found has the same name as the
223        // (dependent) template name being specialized.
224        if (DependentTemplateName *DepTemplate
225                                    = SpecName.getAsDependentTemplateName()) {
226          if (DepTemplate->isIdentifier() &&
227              DepTemplate->getIdentifier() == Template->getIdentifier())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232      }
233    }
234  }
235
236  if (isDependent) {
237    // We didn't find our type, but that's okay: it's dependent
238    // anyway.
239    NestedNameSpecifier *NNS = 0;
240    SourceRange Range;
241    if (SS.isSet()) {
242      NNS = (NestedNameSpecifier *)SS.getScopeRep();
243      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
244    } else {
245      NNS = NestedNameSpecifier::Create(Context, &II);
246      Range = SourceRange(NameLoc);
247    }
248
249    QualType T = CheckTypenameType(ETK_None, NNS, II,
250                                   SourceLocation(),
251                                   Range, NameLoc);
252    return ParsedType::make(T);
253  }
254
255  if (ObjectTypePtr)
256    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
257      << &II;
258  else
259    Diag(NameLoc, diag::err_destructor_class_name);
260
261  return ParsedType();
262}
263
264/// \brief Build a C++ typeid expression with a type operand.
265ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
266                                SourceLocation TypeidLoc,
267                                TypeSourceInfo *Operand,
268                                SourceLocation RParenLoc) {
269  // C++ [expr.typeid]p4:
270  //   The top-level cv-qualifiers of the lvalue expression or the type-id
271  //   that is the operand of typeid are always ignored.
272  //   If the type of the type-id is a class type or a reference to a class
273  //   type, the class shall be completely-defined.
274  Qualifiers Quals;
275  QualType T
276    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
277                                      Quals);
278  if (T->getAs<RecordType>() &&
279      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
280    return ExprError();
281
282  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
283                                           Operand,
284                                           SourceRange(TypeidLoc, RParenLoc)));
285}
286
287/// \brief Build a C++ typeid expression with an expression operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                Expr *E,
291                                SourceLocation RParenLoc) {
292  bool isUnevaluatedOperand = true;
293  if (E && !E->isTypeDependent()) {
294    QualType T = E->getType();
295    if (const RecordType *RecordT = T->getAs<RecordType>()) {
296      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
297      // C++ [expr.typeid]p3:
298      //   [...] If the type of the expression is a class type, the class
299      //   shall be completely-defined.
300      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
301        return ExprError();
302
303      // C++ [expr.typeid]p3:
304      //   When typeid is applied to an expression other than an glvalue of a
305      //   polymorphic class type [...] [the] expression is an unevaluated
306      //   operand. [...]
307      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
308        isUnevaluatedOperand = false;
309
310        // We require a vtable to query the type at run time.
311        MarkVTableUsed(TypeidLoc, RecordD);
312      }
313    }
314
315    // C++ [expr.typeid]p4:
316    //   [...] If the type of the type-id is a reference to a possibly
317    //   cv-qualified type, the result of the typeid expression refers to a
318    //   std::type_info object representing the cv-unqualified referenced
319    //   type.
320    Qualifiers Quals;
321    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
322    if (!Context.hasSameType(T, UnqualT)) {
323      T = UnqualT;
324      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
325    }
326  }
327
328  // If this is an unevaluated operand, clear out the set of
329  // declaration references we have been computing and eliminate any
330  // temporaries introduced in its computation.
331  if (isUnevaluatedOperand)
332    ExprEvalContexts.back().Context = Unevaluated;
333
334  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
335                                           E,
336                                           SourceRange(TypeidLoc, RParenLoc)));
337}
338
339/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
340ExprResult
341Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
342                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
343  // Find the std::type_info type.
344  if (!StdNamespace)
345    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
346
347  if (!CXXTypeInfoDecl) {
348    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
349    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
350    LookupQualifiedName(R, getStdNamespace());
351    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
352    if (!CXXTypeInfoDecl)
353      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
354  }
355
356  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
357
358  if (isType) {
359    // The operand is a type; handle it as such.
360    TypeSourceInfo *TInfo = 0;
361    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
362                                   &TInfo);
363    if (T.isNull())
364      return ExprError();
365
366    if (!TInfo)
367      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
368
369    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
370  }
371
372  // The operand is an expression.
373  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
374}
375
376/// Retrieve the UuidAttr associated with QT.
377static UuidAttr *GetUuidAttrOfType(QualType QT) {
378  // Optionally remove one level of pointer, reference or array indirection.
379  const Type *Ty = QT.getTypePtr();;
380  if (QT->isPointerType() || QT->isReferenceType())
381    Ty = QT->getPointeeType().getTypePtr();
382  else if (QT->isArrayType())
383    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
384
385  // Loop all class definition and declaration looking for an uuid attribute.
386  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
387  while (RD) {
388    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
389      return Uuid;
390    RD = RD->getPreviousDeclaration();
391  }
392  return 0;
393}
394
395/// \brief Build a Microsoft __uuidof expression with a type operand.
396ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
397                                SourceLocation TypeidLoc,
398                                TypeSourceInfo *Operand,
399                                SourceLocation RParenLoc) {
400  if (!Operand->getType()->isDependentType()) {
401    if (!GetUuidAttrOfType(Operand->getType()))
402      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
403  }
404
405  // FIXME: add __uuidof semantic analysis for type operand.
406  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
407                                           Operand,
408                                           SourceRange(TypeidLoc, RParenLoc)));
409}
410
411/// \brief Build a Microsoft __uuidof expression with an expression operand.
412ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
413                                SourceLocation TypeidLoc,
414                                Expr *E,
415                                SourceLocation RParenLoc) {
416  if (!E->getType()->isDependentType()) {
417    if (!GetUuidAttrOfType(E->getType()) &&
418        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
419      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
420  }
421  // FIXME: add __uuidof semantic analysis for type operand.
422  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
423                                           E,
424                                           SourceRange(TypeidLoc, RParenLoc)));
425}
426
427/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
428ExprResult
429Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
430                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
431  // If MSVCGuidDecl has not been cached, do the lookup.
432  if (!MSVCGuidDecl) {
433    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
434    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
435    LookupQualifiedName(R, Context.getTranslationUnitDecl());
436    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
437    if (!MSVCGuidDecl)
438      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
439  }
440
441  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
442
443  if (isType) {
444    // The operand is a type; handle it as such.
445    TypeSourceInfo *TInfo = 0;
446    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
447                                   &TInfo);
448    if (T.isNull())
449      return ExprError();
450
451    if (!TInfo)
452      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
453
454    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
455  }
456
457  // The operand is an expression.
458  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
459}
460
461/// ActOnCXXBoolLiteral - Parse {true,false} literals.
462ExprResult
463Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
464  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
465         "Unknown C++ Boolean value!");
466  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
467                                                Context.BoolTy, OpLoc));
468}
469
470/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
471ExprResult
472Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
473  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
474}
475
476/// ActOnCXXThrow - Parse throw expressions.
477ExprResult
478Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
479  if (!getLangOptions().Exceptions)
480    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
481
482  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
483    return ExprError();
484  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
485}
486
487/// CheckCXXThrowOperand - Validate the operand of a throw.
488bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
489  // C++ [except.throw]p3:
490  //   A throw-expression initializes a temporary object, called the exception
491  //   object, the type of which is determined by removing any top-level
492  //   cv-qualifiers from the static type of the operand of throw and adjusting
493  //   the type from "array of T" or "function returning T" to "pointer to T"
494  //   or "pointer to function returning T", [...]
495  if (E->getType().hasQualifiers())
496    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
497                      CastCategory(E));
498
499  DefaultFunctionArrayConversion(E);
500
501  //   If the type of the exception would be an incomplete type or a pointer
502  //   to an incomplete type other than (cv) void the program is ill-formed.
503  QualType Ty = E->getType();
504  bool isPointer = false;
505  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
506    Ty = Ptr->getPointeeType();
507    isPointer = true;
508  }
509  if (!isPointer || !Ty->isVoidType()) {
510    if (RequireCompleteType(ThrowLoc, Ty,
511                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
512                                            : diag::err_throw_incomplete)
513                              << E->getSourceRange()))
514      return true;
515
516    if (RequireNonAbstractType(ThrowLoc, E->getType(),
517                               PDiag(diag::err_throw_abstract_type)
518                                 << E->getSourceRange()))
519      return true;
520  }
521
522  // Initialize the exception result.  This implicitly weeds out
523  // abstract types or types with inaccessible copy constructors.
524  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
525
526  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
527  InitializedEntity Entity =
528      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
529                                             /*NRVO=*/false);
530  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
531                                                   QualType(), E);
532  if (Res.isInvalid())
533    return true;
534  E = Res.takeAs<Expr>();
535
536  // If the exception has class type, we need additional handling.
537  const RecordType *RecordTy = Ty->getAs<RecordType>();
538  if (!RecordTy)
539    return false;
540  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
541
542  // If we are throwing a polymorphic class type or pointer thereof,
543  // exception handling will make use of the vtable.
544  MarkVTableUsed(ThrowLoc, RD);
545
546  // If a pointer is thrown, the referenced object will not be destroyed.
547  if (isPointer)
548    return false;
549
550  // If the class has a non-trivial destructor, we must be able to call it.
551  if (RD->hasTrivialDestructor())
552    return false;
553
554  CXXDestructorDecl *Destructor
555    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
556  if (!Destructor)
557    return false;
558
559  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
560  CheckDestructorAccess(E->getExprLoc(), Destructor,
561                        PDiag(diag::err_access_dtor_exception) << Ty);
562  return false;
563}
564
565CXXMethodDecl *Sema::tryCaptureCXXThis() {
566  // Ignore block scopes: we can capture through them.
567  // Ignore nested enum scopes: we'll diagnose non-constant expressions
568  // where they're invalid, and other uses are legitimate.
569  // Don't ignore nested class scopes: you can't use 'this' in a local class.
570  DeclContext *DC = CurContext;
571  while (true) {
572    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
573    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
574    else break;
575  }
576
577  // If we're not in an instance method, error out.
578  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
579  if (!method || !method->isInstance())
580    return 0;
581
582  // Mark that we're closing on 'this' in all the block scopes, if applicable.
583  for (unsigned idx = FunctionScopes.size() - 1;
584       isa<BlockScopeInfo>(FunctionScopes[idx]);
585       --idx)
586    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
587
588  return method;
589}
590
591ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
592  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
593  /// is a non-lvalue expression whose value is the address of the object for
594  /// which the function is called.
595
596  CXXMethodDecl *method = tryCaptureCXXThis();
597  if (!method) return Diag(loc, diag::err_invalid_this_use);
598
599  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
600                                         /*isImplicit=*/false));
601}
602
603ExprResult
604Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
605                                SourceLocation LParenLoc,
606                                MultiExprArg exprs,
607                                SourceLocation RParenLoc) {
608  if (!TypeRep)
609    return ExprError();
610
611  TypeSourceInfo *TInfo;
612  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
613  if (!TInfo)
614    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
615
616  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
617}
618
619/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
620/// Can be interpreted either as function-style casting ("int(x)")
621/// or class type construction ("ClassType(x,y,z)")
622/// or creation of a value-initialized type ("int()").
623ExprResult
624Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
625                                SourceLocation LParenLoc,
626                                MultiExprArg exprs,
627                                SourceLocation RParenLoc) {
628  QualType Ty = TInfo->getType();
629  unsigned NumExprs = exprs.size();
630  Expr **Exprs = (Expr**)exprs.get();
631  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
632  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
633
634  if (Ty->isDependentType() ||
635      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
636    exprs.release();
637
638    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
639                                                    LParenLoc,
640                                                    Exprs, NumExprs,
641                                                    RParenLoc));
642  }
643
644  if (Ty->isArrayType())
645    return ExprError(Diag(TyBeginLoc,
646                          diag::err_value_init_for_array_type) << FullRange);
647  if (!Ty->isVoidType() &&
648      RequireCompleteType(TyBeginLoc, Ty,
649                          PDiag(diag::err_invalid_incomplete_type_use)
650                            << FullRange))
651    return ExprError();
652
653  if (RequireNonAbstractType(TyBeginLoc, Ty,
654                             diag::err_allocation_of_abstract_type))
655    return ExprError();
656
657
658  // C++ [expr.type.conv]p1:
659  // If the expression list is a single expression, the type conversion
660  // expression is equivalent (in definedness, and if defined in meaning) to the
661  // corresponding cast expression.
662  //
663  if (NumExprs == 1) {
664    CastKind Kind = CK_Invalid;
665    ExprValueKind VK = VK_RValue;
666    CXXCastPath BasePath;
667    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
668                       Kind, VK, BasePath,
669                       /*FunctionalStyle=*/true))
670      return ExprError();
671
672    exprs.release();
673
674    return Owned(CXXFunctionalCastExpr::Create(Context,
675                                               Ty.getNonLValueExprType(Context),
676                                               VK, TInfo, TyBeginLoc, Kind,
677                                               Exprs[0], &BasePath,
678                                               RParenLoc));
679  }
680
681  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
682  InitializationKind Kind
683    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
684                                                  LParenLoc, RParenLoc)
685               : InitializationKind::CreateValue(TyBeginLoc,
686                                                 LParenLoc, RParenLoc);
687  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
688  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
689
690  // FIXME: Improve AST representation?
691  return move(Result);
692}
693
694/// doesUsualArrayDeleteWantSize - Answers whether the usual
695/// operator delete[] for the given type has a size_t parameter.
696static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
697                                         QualType allocType) {
698  const RecordType *record =
699    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
700  if (!record) return false;
701
702  // Try to find an operator delete[] in class scope.
703
704  DeclarationName deleteName =
705    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
706  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
707  S.LookupQualifiedName(ops, record->getDecl());
708
709  // We're just doing this for information.
710  ops.suppressDiagnostics();
711
712  // Very likely: there's no operator delete[].
713  if (ops.empty()) return false;
714
715  // If it's ambiguous, it should be illegal to call operator delete[]
716  // on this thing, so it doesn't matter if we allocate extra space or not.
717  if (ops.isAmbiguous()) return false;
718
719  LookupResult::Filter filter = ops.makeFilter();
720  while (filter.hasNext()) {
721    NamedDecl *del = filter.next()->getUnderlyingDecl();
722
723    // C++0x [basic.stc.dynamic.deallocation]p2:
724    //   A template instance is never a usual deallocation function,
725    //   regardless of its signature.
726    if (isa<FunctionTemplateDecl>(del)) {
727      filter.erase();
728      continue;
729    }
730
731    // C++0x [basic.stc.dynamic.deallocation]p2:
732    //   If class T does not declare [an operator delete[] with one
733    //   parameter] but does declare a member deallocation function
734    //   named operator delete[] with exactly two parameters, the
735    //   second of which has type std::size_t, then this function
736    //   is a usual deallocation function.
737    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
738      filter.erase();
739      continue;
740    }
741  }
742  filter.done();
743
744  if (!ops.isSingleResult()) return false;
745
746  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
747  return (del->getNumParams() == 2);
748}
749
750/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
751/// @code new (memory) int[size][4] @endcode
752/// or
753/// @code ::new Foo(23, "hello") @endcode
754/// For the interpretation of this heap of arguments, consult the base version.
755ExprResult
756Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
757                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
758                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
759                  Declarator &D, SourceLocation ConstructorLParen,
760                  MultiExprArg ConstructorArgs,
761                  SourceLocation ConstructorRParen) {
762  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
763
764  Expr *ArraySize = 0;
765  // If the specified type is an array, unwrap it and save the expression.
766  if (D.getNumTypeObjects() > 0 &&
767      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
768    DeclaratorChunk &Chunk = D.getTypeObject(0);
769    if (TypeContainsAuto)
770      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
771        << D.getSourceRange());
772    if (Chunk.Arr.hasStatic)
773      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
774        << D.getSourceRange());
775    if (!Chunk.Arr.NumElts)
776      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
777        << D.getSourceRange());
778
779    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
780    D.DropFirstTypeObject();
781  }
782
783  // Every dimension shall be of constant size.
784  if (ArraySize) {
785    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
786      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
787        break;
788
789      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
790      if (Expr *NumElts = (Expr *)Array.NumElts) {
791        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
792            !NumElts->isIntegerConstantExpr(Context)) {
793          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
794            << NumElts->getSourceRange();
795          return ExprError();
796        }
797      }
798    }
799  }
800
801  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
802                                               /*AllowAuto=*/true);
803  QualType AllocType = TInfo->getType();
804  if (D.isInvalidType())
805    return ExprError();
806
807  return BuildCXXNew(StartLoc, UseGlobal,
808                     PlacementLParen,
809                     move(PlacementArgs),
810                     PlacementRParen,
811                     TypeIdParens,
812                     AllocType,
813                     TInfo,
814                     ArraySize,
815                     ConstructorLParen,
816                     move(ConstructorArgs),
817                     ConstructorRParen,
818                     TypeContainsAuto);
819}
820
821ExprResult
822Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
823                  SourceLocation PlacementLParen,
824                  MultiExprArg PlacementArgs,
825                  SourceLocation PlacementRParen,
826                  SourceRange TypeIdParens,
827                  QualType AllocType,
828                  TypeSourceInfo *AllocTypeInfo,
829                  Expr *ArraySize,
830                  SourceLocation ConstructorLParen,
831                  MultiExprArg ConstructorArgs,
832                  SourceLocation ConstructorRParen,
833                  bool TypeMayContainAuto) {
834  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
835
836  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
837  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
838    if (ConstructorArgs.size() == 0)
839      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
840                       << AllocType << TypeRange);
841    if (ConstructorArgs.size() != 1) {
842      Expr *FirstBad = ConstructorArgs.get()[1];
843      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
844                            diag::err_auto_new_ctor_multiple_expressions)
845                       << AllocType << TypeRange);
846    }
847    QualType DeducedType;
848    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
849      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
850                       << AllocType
851                       << ConstructorArgs.get()[0]->getType()
852                       << TypeRange
853                       << ConstructorArgs.get()[0]->getSourceRange());
854
855    AllocType = DeducedType;
856    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
857  }
858
859  // Per C++0x [expr.new]p5, the type being constructed may be a
860  // typedef of an array type.
861  if (!ArraySize) {
862    if (const ConstantArrayType *Array
863                              = Context.getAsConstantArrayType(AllocType)) {
864      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
865                                         Context.getSizeType(),
866                                         TypeRange.getEnd());
867      AllocType = Array->getElementType();
868    }
869  }
870
871  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
872    return ExprError();
873
874  QualType ResultType = Context.getPointerType(AllocType);
875
876  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
877  //   or enumeration type with a non-negative value."
878  if (ArraySize && !ArraySize->isTypeDependent()) {
879
880    QualType SizeType = ArraySize->getType();
881
882    ExprResult ConvertedSize
883      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
884                                       PDiag(diag::err_array_size_not_integral),
885                                     PDiag(diag::err_array_size_incomplete_type)
886                                       << ArraySize->getSourceRange(),
887                               PDiag(diag::err_array_size_explicit_conversion),
888                                       PDiag(diag::note_array_size_conversion),
889                               PDiag(diag::err_array_size_ambiguous_conversion),
890                                       PDiag(diag::note_array_size_conversion),
891                          PDiag(getLangOptions().CPlusPlus0x? 0
892                                            : diag::ext_array_size_conversion));
893    if (ConvertedSize.isInvalid())
894      return ExprError();
895
896    ArraySize = ConvertedSize.take();
897    SizeType = ArraySize->getType();
898    if (!SizeType->isIntegralOrUnscopedEnumerationType())
899      return ExprError();
900
901    // Let's see if this is a constant < 0. If so, we reject it out of hand.
902    // We don't care about special rules, so we tell the machinery it's not
903    // evaluated - it gives us a result in more cases.
904    if (!ArraySize->isValueDependent()) {
905      llvm::APSInt Value;
906      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
907        if (Value < llvm::APSInt(
908                        llvm::APInt::getNullValue(Value.getBitWidth()),
909                                 Value.isUnsigned()))
910          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
911                                diag::err_typecheck_negative_array_size)
912            << ArraySize->getSourceRange());
913
914        if (!AllocType->isDependentType()) {
915          unsigned ActiveSizeBits
916            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
917          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
918            Diag(ArraySize->getSourceRange().getBegin(),
919                 diag::err_array_too_large)
920              << Value.toString(10)
921              << ArraySize->getSourceRange();
922            return ExprError();
923          }
924        }
925      } else if (TypeIdParens.isValid()) {
926        // Can't have dynamic array size when the type-id is in parentheses.
927        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
928          << ArraySize->getSourceRange()
929          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
930          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
931
932        TypeIdParens = SourceRange();
933      }
934    }
935
936    ImpCastExprToType(ArraySize, Context.getSizeType(),
937                      CK_IntegralCast);
938  }
939
940  FunctionDecl *OperatorNew = 0;
941  FunctionDecl *OperatorDelete = 0;
942  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
943  unsigned NumPlaceArgs = PlacementArgs.size();
944
945  if (!AllocType->isDependentType() &&
946      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
947      FindAllocationFunctions(StartLoc,
948                              SourceRange(PlacementLParen, PlacementRParen),
949                              UseGlobal, AllocType, ArraySize, PlaceArgs,
950                              NumPlaceArgs, OperatorNew, OperatorDelete))
951    return ExprError();
952
953  // If this is an array allocation, compute whether the usual array
954  // deallocation function for the type has a size_t parameter.
955  bool UsualArrayDeleteWantsSize = false;
956  if (ArraySize && !AllocType->isDependentType())
957    UsualArrayDeleteWantsSize
958      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
959
960  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
961  if (OperatorNew) {
962    // Add default arguments, if any.
963    const FunctionProtoType *Proto =
964      OperatorNew->getType()->getAs<FunctionProtoType>();
965    VariadicCallType CallType =
966      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
967
968    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
969                               Proto, 1, PlaceArgs, NumPlaceArgs,
970                               AllPlaceArgs, CallType))
971      return ExprError();
972
973    NumPlaceArgs = AllPlaceArgs.size();
974    if (NumPlaceArgs > 0)
975      PlaceArgs = &AllPlaceArgs[0];
976  }
977
978  bool Init = ConstructorLParen.isValid();
979  // --- Choosing a constructor ---
980  CXXConstructorDecl *Constructor = 0;
981  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
982  unsigned NumConsArgs = ConstructorArgs.size();
983  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
984
985  // Array 'new' can't have any initializers.
986  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
987    SourceRange InitRange(ConsArgs[0]->getLocStart(),
988                          ConsArgs[NumConsArgs - 1]->getLocEnd());
989
990    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
991    return ExprError();
992  }
993
994  if (!AllocType->isDependentType() &&
995      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
996    // C++0x [expr.new]p15:
997    //   A new-expression that creates an object of type T initializes that
998    //   object as follows:
999    InitializationKind Kind
1000    //     - If the new-initializer is omitted, the object is default-
1001    //       initialized (8.5); if no initialization is performed,
1002    //       the object has indeterminate value
1003      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1004    //     - Otherwise, the new-initializer is interpreted according to the
1005    //       initialization rules of 8.5 for direct-initialization.
1006             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1007                                                ConstructorLParen,
1008                                                ConstructorRParen);
1009
1010    InitializedEntity Entity
1011      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1012    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1013    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1014                                                move(ConstructorArgs));
1015    if (FullInit.isInvalid())
1016      return ExprError();
1017
1018    // FullInit is our initializer; walk through it to determine if it's a
1019    // constructor call, which CXXNewExpr handles directly.
1020    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1021      if (CXXBindTemporaryExpr *Binder
1022            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1023        FullInitExpr = Binder->getSubExpr();
1024      if (CXXConstructExpr *Construct
1025                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1026        Constructor = Construct->getConstructor();
1027        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1028                                         AEnd = Construct->arg_end();
1029             A != AEnd; ++A)
1030          ConvertedConstructorArgs.push_back(*A);
1031      } else {
1032        // Take the converted initializer.
1033        ConvertedConstructorArgs.push_back(FullInit.release());
1034      }
1035    } else {
1036      // No initialization required.
1037    }
1038
1039    // Take the converted arguments and use them for the new expression.
1040    NumConsArgs = ConvertedConstructorArgs.size();
1041    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1042  }
1043
1044  // Mark the new and delete operators as referenced.
1045  if (OperatorNew)
1046    MarkDeclarationReferenced(StartLoc, OperatorNew);
1047  if (OperatorDelete)
1048    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1049
1050  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1051
1052  PlacementArgs.release();
1053  ConstructorArgs.release();
1054
1055  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1056                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1057                                        ArraySize, Constructor, Init,
1058                                        ConsArgs, NumConsArgs, OperatorDelete,
1059                                        UsualArrayDeleteWantsSize,
1060                                        ResultType, AllocTypeInfo,
1061                                        StartLoc,
1062                                        Init ? ConstructorRParen :
1063                                               TypeRange.getEnd(),
1064                                        ConstructorLParen, ConstructorRParen));
1065}
1066
1067/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1068/// in a new-expression.
1069/// dimension off and stores the size expression in ArraySize.
1070bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1071                              SourceRange R) {
1072  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1073  //   abstract class type or array thereof.
1074  if (AllocType->isFunctionType())
1075    return Diag(Loc, diag::err_bad_new_type)
1076      << AllocType << 0 << R;
1077  else if (AllocType->isReferenceType())
1078    return Diag(Loc, diag::err_bad_new_type)
1079      << AllocType << 1 << R;
1080  else if (!AllocType->isDependentType() &&
1081           RequireCompleteType(Loc, AllocType,
1082                               PDiag(diag::err_new_incomplete_type)
1083                                 << R))
1084    return true;
1085  else if (RequireNonAbstractType(Loc, AllocType,
1086                                  diag::err_allocation_of_abstract_type))
1087    return true;
1088  else if (AllocType->isVariablyModifiedType())
1089    return Diag(Loc, diag::err_variably_modified_new_type)
1090             << AllocType;
1091
1092  return false;
1093}
1094
1095/// \brief Determine whether the given function is a non-placement
1096/// deallocation function.
1097static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1098  if (FD->isInvalidDecl())
1099    return false;
1100
1101  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1102    return Method->isUsualDeallocationFunction();
1103
1104  return ((FD->getOverloadedOperator() == OO_Delete ||
1105           FD->getOverloadedOperator() == OO_Array_Delete) &&
1106          FD->getNumParams() == 1);
1107}
1108
1109/// FindAllocationFunctions - Finds the overloads of operator new and delete
1110/// that are appropriate for the allocation.
1111bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1112                                   bool UseGlobal, QualType AllocType,
1113                                   bool IsArray, Expr **PlaceArgs,
1114                                   unsigned NumPlaceArgs,
1115                                   FunctionDecl *&OperatorNew,
1116                                   FunctionDecl *&OperatorDelete) {
1117  // --- Choosing an allocation function ---
1118  // C++ 5.3.4p8 - 14 & 18
1119  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1120  //   in the scope of the allocated class.
1121  // 2) If an array size is given, look for operator new[], else look for
1122  //   operator new.
1123  // 3) The first argument is always size_t. Append the arguments from the
1124  //   placement form.
1125
1126  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1127  // We don't care about the actual value of this argument.
1128  // FIXME: Should the Sema create the expression and embed it in the syntax
1129  // tree? Or should the consumer just recalculate the value?
1130  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1131                      Context.Target.getPointerWidth(0)),
1132                      Context.getSizeType(),
1133                      SourceLocation());
1134  AllocArgs[0] = &Size;
1135  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1136
1137  // C++ [expr.new]p8:
1138  //   If the allocated type is a non-array type, the allocation
1139  //   function's name is operator new and the deallocation function's
1140  //   name is operator delete. If the allocated type is an array
1141  //   type, the allocation function's name is operator new[] and the
1142  //   deallocation function's name is operator delete[].
1143  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1144                                        IsArray ? OO_Array_New : OO_New);
1145  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1146                                        IsArray ? OO_Array_Delete : OO_Delete);
1147
1148  QualType AllocElemType = Context.getBaseElementType(AllocType);
1149
1150  if (AllocElemType->isRecordType() && !UseGlobal) {
1151    CXXRecordDecl *Record
1152      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1153    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1154                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1155                          OperatorNew))
1156      return true;
1157  }
1158  if (!OperatorNew) {
1159    // Didn't find a member overload. Look for a global one.
1160    DeclareGlobalNewDelete();
1161    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1162    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1163                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1164                          OperatorNew))
1165      return true;
1166  }
1167
1168  // We don't need an operator delete if we're running under
1169  // -fno-exceptions.
1170  if (!getLangOptions().Exceptions) {
1171    OperatorDelete = 0;
1172    return false;
1173  }
1174
1175  // FindAllocationOverload can change the passed in arguments, so we need to
1176  // copy them back.
1177  if (NumPlaceArgs > 0)
1178    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1179
1180  // C++ [expr.new]p19:
1181  //
1182  //   If the new-expression begins with a unary :: operator, the
1183  //   deallocation function's name is looked up in the global
1184  //   scope. Otherwise, if the allocated type is a class type T or an
1185  //   array thereof, the deallocation function's name is looked up in
1186  //   the scope of T. If this lookup fails to find the name, or if
1187  //   the allocated type is not a class type or array thereof, the
1188  //   deallocation function's name is looked up in the global scope.
1189  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1190  if (AllocElemType->isRecordType() && !UseGlobal) {
1191    CXXRecordDecl *RD
1192      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1193    LookupQualifiedName(FoundDelete, RD);
1194  }
1195  if (FoundDelete.isAmbiguous())
1196    return true; // FIXME: clean up expressions?
1197
1198  if (FoundDelete.empty()) {
1199    DeclareGlobalNewDelete();
1200    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1201  }
1202
1203  FoundDelete.suppressDiagnostics();
1204
1205  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1206
1207  // Whether we're looking for a placement operator delete is dictated
1208  // by whether we selected a placement operator new, not by whether
1209  // we had explicit placement arguments.  This matters for things like
1210  //   struct A { void *operator new(size_t, int = 0); ... };
1211  //   A *a = new A()
1212  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1213
1214  if (isPlacementNew) {
1215    // C++ [expr.new]p20:
1216    //   A declaration of a placement deallocation function matches the
1217    //   declaration of a placement allocation function if it has the
1218    //   same number of parameters and, after parameter transformations
1219    //   (8.3.5), all parameter types except the first are
1220    //   identical. [...]
1221    //
1222    // To perform this comparison, we compute the function type that
1223    // the deallocation function should have, and use that type both
1224    // for template argument deduction and for comparison purposes.
1225    //
1226    // FIXME: this comparison should ignore CC and the like.
1227    QualType ExpectedFunctionType;
1228    {
1229      const FunctionProtoType *Proto
1230        = OperatorNew->getType()->getAs<FunctionProtoType>();
1231
1232      llvm::SmallVector<QualType, 4> ArgTypes;
1233      ArgTypes.push_back(Context.VoidPtrTy);
1234      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1235        ArgTypes.push_back(Proto->getArgType(I));
1236
1237      FunctionProtoType::ExtProtoInfo EPI;
1238      EPI.Variadic = Proto->isVariadic();
1239
1240      ExpectedFunctionType
1241        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1242                                  ArgTypes.size(), EPI);
1243    }
1244
1245    for (LookupResult::iterator D = FoundDelete.begin(),
1246                             DEnd = FoundDelete.end();
1247         D != DEnd; ++D) {
1248      FunctionDecl *Fn = 0;
1249      if (FunctionTemplateDecl *FnTmpl
1250            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1251        // Perform template argument deduction to try to match the
1252        // expected function type.
1253        TemplateDeductionInfo Info(Context, StartLoc);
1254        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1255          continue;
1256      } else
1257        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1258
1259      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1260        Matches.push_back(std::make_pair(D.getPair(), Fn));
1261    }
1262  } else {
1263    // C++ [expr.new]p20:
1264    //   [...] Any non-placement deallocation function matches a
1265    //   non-placement allocation function. [...]
1266    for (LookupResult::iterator D = FoundDelete.begin(),
1267                             DEnd = FoundDelete.end();
1268         D != DEnd; ++D) {
1269      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1270        if (isNonPlacementDeallocationFunction(Fn))
1271          Matches.push_back(std::make_pair(D.getPair(), Fn));
1272    }
1273  }
1274
1275  // C++ [expr.new]p20:
1276  //   [...] If the lookup finds a single matching deallocation
1277  //   function, that function will be called; otherwise, no
1278  //   deallocation function will be called.
1279  if (Matches.size() == 1) {
1280    OperatorDelete = Matches[0].second;
1281
1282    // C++0x [expr.new]p20:
1283    //   If the lookup finds the two-parameter form of a usual
1284    //   deallocation function (3.7.4.2) and that function, considered
1285    //   as a placement deallocation function, would have been
1286    //   selected as a match for the allocation function, the program
1287    //   is ill-formed.
1288    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1289        isNonPlacementDeallocationFunction(OperatorDelete)) {
1290      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1291        << SourceRange(PlaceArgs[0]->getLocStart(),
1292                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1293      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1294        << DeleteName;
1295    } else {
1296      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1297                            Matches[0].first);
1298    }
1299  }
1300
1301  return false;
1302}
1303
1304/// FindAllocationOverload - Find an fitting overload for the allocation
1305/// function in the specified scope.
1306bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1307                                  DeclarationName Name, Expr** Args,
1308                                  unsigned NumArgs, DeclContext *Ctx,
1309                                  bool AllowMissing, FunctionDecl *&Operator) {
1310  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1311  LookupQualifiedName(R, Ctx);
1312  if (R.empty()) {
1313    if (AllowMissing)
1314      return false;
1315    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1316      << Name << Range;
1317  }
1318
1319  if (R.isAmbiguous())
1320    return true;
1321
1322  R.suppressDiagnostics();
1323
1324  OverloadCandidateSet Candidates(StartLoc);
1325  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1326       Alloc != AllocEnd; ++Alloc) {
1327    // Even member operator new/delete are implicitly treated as
1328    // static, so don't use AddMemberCandidate.
1329    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1330
1331    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1332      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1333                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1334                                   Candidates,
1335                                   /*SuppressUserConversions=*/false);
1336      continue;
1337    }
1338
1339    FunctionDecl *Fn = cast<FunctionDecl>(D);
1340    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1341                         /*SuppressUserConversions=*/false);
1342  }
1343
1344  // Do the resolution.
1345  OverloadCandidateSet::iterator Best;
1346  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1347  case OR_Success: {
1348    // Got one!
1349    FunctionDecl *FnDecl = Best->Function;
1350    // The first argument is size_t, and the first parameter must be size_t,
1351    // too. This is checked on declaration and can be assumed. (It can't be
1352    // asserted on, though, since invalid decls are left in there.)
1353    // Watch out for variadic allocator function.
1354    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1355    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1356      ExprResult Result
1357        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1358                                                       Context,
1359                                                       FnDecl->getParamDecl(i)),
1360                                    SourceLocation(),
1361                                    Owned(Args[i]));
1362      if (Result.isInvalid())
1363        return true;
1364
1365      Args[i] = Result.takeAs<Expr>();
1366    }
1367    Operator = FnDecl;
1368    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1369    return false;
1370  }
1371
1372  case OR_No_Viable_Function:
1373    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1374      << Name << Range;
1375    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1376    return true;
1377
1378  case OR_Ambiguous:
1379    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1380      << Name << Range;
1381    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1382    return true;
1383
1384  case OR_Deleted:
1385    Diag(StartLoc, diag::err_ovl_deleted_call)
1386      << Best->Function->isDeleted()
1387      << Name << Range;
1388    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1389    return true;
1390  }
1391  assert(false && "Unreachable, bad result from BestViableFunction");
1392  return true;
1393}
1394
1395
1396/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1397/// delete. These are:
1398/// @code
1399///   void* operator new(std::size_t) throw(std::bad_alloc);
1400///   void* operator new[](std::size_t) throw(std::bad_alloc);
1401///   void operator delete(void *) throw();
1402///   void operator delete[](void *) throw();
1403/// @endcode
1404/// Note that the placement and nothrow forms of new are *not* implicitly
1405/// declared. Their use requires including \<new\>.
1406void Sema::DeclareGlobalNewDelete() {
1407  if (GlobalNewDeleteDeclared)
1408    return;
1409
1410  // C++ [basic.std.dynamic]p2:
1411  //   [...] The following allocation and deallocation functions (18.4) are
1412  //   implicitly declared in global scope in each translation unit of a
1413  //   program
1414  //
1415  //     void* operator new(std::size_t) throw(std::bad_alloc);
1416  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1417  //     void  operator delete(void*) throw();
1418  //     void  operator delete[](void*) throw();
1419  //
1420  //   These implicit declarations introduce only the function names operator
1421  //   new, operator new[], operator delete, operator delete[].
1422  //
1423  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1424  // "std" or "bad_alloc" as necessary to form the exception specification.
1425  // However, we do not make these implicit declarations visible to name
1426  // lookup.
1427  if (!StdBadAlloc) {
1428    // The "std::bad_alloc" class has not yet been declared, so build it
1429    // implicitly.
1430    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1431                                        getOrCreateStdNamespace(),
1432                                        SourceLocation(),
1433                                      &PP.getIdentifierTable().get("bad_alloc"),
1434                                        SourceLocation(), 0);
1435    getStdBadAlloc()->setImplicit(true);
1436  }
1437
1438  GlobalNewDeleteDeclared = true;
1439
1440  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1441  QualType SizeT = Context.getSizeType();
1442  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1443
1444  DeclareGlobalAllocationFunction(
1445      Context.DeclarationNames.getCXXOperatorName(OO_New),
1446      VoidPtr, SizeT, AssumeSaneOperatorNew);
1447  DeclareGlobalAllocationFunction(
1448      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1449      VoidPtr, SizeT, AssumeSaneOperatorNew);
1450  DeclareGlobalAllocationFunction(
1451      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1452      Context.VoidTy, VoidPtr);
1453  DeclareGlobalAllocationFunction(
1454      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1455      Context.VoidTy, VoidPtr);
1456}
1457
1458/// DeclareGlobalAllocationFunction - Declares a single implicit global
1459/// allocation function if it doesn't already exist.
1460void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1461                                           QualType Return, QualType Argument,
1462                                           bool AddMallocAttr) {
1463  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1464
1465  // Check if this function is already declared.
1466  {
1467    DeclContext::lookup_iterator Alloc, AllocEnd;
1468    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1469         Alloc != AllocEnd; ++Alloc) {
1470      // Only look at non-template functions, as it is the predefined,
1471      // non-templated allocation function we are trying to declare here.
1472      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1473        QualType InitialParamType =
1474          Context.getCanonicalType(
1475            Func->getParamDecl(0)->getType().getUnqualifiedType());
1476        // FIXME: Do we need to check for default arguments here?
1477        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1478          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1479            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1480          return;
1481        }
1482      }
1483    }
1484  }
1485
1486  QualType BadAllocType;
1487  bool HasBadAllocExceptionSpec
1488    = (Name.getCXXOverloadedOperator() == OO_New ||
1489       Name.getCXXOverloadedOperator() == OO_Array_New);
1490  if (HasBadAllocExceptionSpec) {
1491    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1492    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1493  }
1494
1495  FunctionProtoType::ExtProtoInfo EPI;
1496  EPI.HasExceptionSpec = true;
1497  if (HasBadAllocExceptionSpec) {
1498    EPI.NumExceptions = 1;
1499    EPI.Exceptions = &BadAllocType;
1500  }
1501
1502  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1503  FunctionDecl *Alloc =
1504    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1505                         FnType, /*TInfo=*/0, SC_None,
1506                         SC_None, false, true);
1507  Alloc->setImplicit();
1508
1509  if (AddMallocAttr)
1510    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1511
1512  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1513                                           0, Argument, /*TInfo=*/0,
1514                                           SC_None,
1515                                           SC_None, 0);
1516  Alloc->setParams(&Param, 1);
1517
1518  // FIXME: Also add this declaration to the IdentifierResolver, but
1519  // make sure it is at the end of the chain to coincide with the
1520  // global scope.
1521  Context.getTranslationUnitDecl()->addDecl(Alloc);
1522}
1523
1524bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1525                                    DeclarationName Name,
1526                                    FunctionDecl* &Operator) {
1527  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1528  // Try to find operator delete/operator delete[] in class scope.
1529  LookupQualifiedName(Found, RD);
1530
1531  if (Found.isAmbiguous())
1532    return true;
1533
1534  Found.suppressDiagnostics();
1535
1536  llvm::SmallVector<DeclAccessPair,4> Matches;
1537  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1538       F != FEnd; ++F) {
1539    NamedDecl *ND = (*F)->getUnderlyingDecl();
1540
1541    // Ignore template operator delete members from the check for a usual
1542    // deallocation function.
1543    if (isa<FunctionTemplateDecl>(ND))
1544      continue;
1545
1546    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1547      Matches.push_back(F.getPair());
1548  }
1549
1550  // There's exactly one suitable operator;  pick it.
1551  if (Matches.size() == 1) {
1552    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1553    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1554                          Matches[0]);
1555    return false;
1556
1557  // We found multiple suitable operators;  complain about the ambiguity.
1558  } else if (!Matches.empty()) {
1559    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1560      << Name << RD;
1561
1562    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1563           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1564      Diag((*F)->getUnderlyingDecl()->getLocation(),
1565           diag::note_member_declared_here) << Name;
1566    return true;
1567  }
1568
1569  // We did find operator delete/operator delete[] declarations, but
1570  // none of them were suitable.
1571  if (!Found.empty()) {
1572    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1573      << Name << RD;
1574
1575    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1576         F != FEnd; ++F)
1577      Diag((*F)->getUnderlyingDecl()->getLocation(),
1578           diag::note_member_declared_here) << Name;
1579
1580    return true;
1581  }
1582
1583  // Look for a global declaration.
1584  DeclareGlobalNewDelete();
1585  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1586
1587  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1588  Expr* DeallocArgs[1];
1589  DeallocArgs[0] = &Null;
1590  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1591                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1592                             Operator))
1593    return true;
1594
1595  assert(Operator && "Did not find a deallocation function!");
1596  return false;
1597}
1598
1599/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1600/// @code ::delete ptr; @endcode
1601/// or
1602/// @code delete [] ptr; @endcode
1603ExprResult
1604Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1605                     bool ArrayForm, Expr *Ex) {
1606  // C++ [expr.delete]p1:
1607  //   The operand shall have a pointer type, or a class type having a single
1608  //   conversion function to a pointer type. The result has type void.
1609  //
1610  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1611
1612  FunctionDecl *OperatorDelete = 0;
1613  bool ArrayFormAsWritten = ArrayForm;
1614  bool UsualArrayDeleteWantsSize = false;
1615
1616  if (!Ex->isTypeDependent()) {
1617    QualType Type = Ex->getType();
1618
1619    if (const RecordType *Record = Type->getAs<RecordType>()) {
1620      if (RequireCompleteType(StartLoc, Type,
1621                              PDiag(diag::err_delete_incomplete_class_type)))
1622        return ExprError();
1623
1624      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1625
1626      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1627      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1628      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1629             E = Conversions->end(); I != E; ++I) {
1630        NamedDecl *D = I.getDecl();
1631        if (isa<UsingShadowDecl>(D))
1632          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1633
1634        // Skip over templated conversion functions; they aren't considered.
1635        if (isa<FunctionTemplateDecl>(D))
1636          continue;
1637
1638        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1639
1640        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1641        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1642          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1643            ObjectPtrConversions.push_back(Conv);
1644      }
1645      if (ObjectPtrConversions.size() == 1) {
1646        // We have a single conversion to a pointer-to-object type. Perform
1647        // that conversion.
1648        // TODO: don't redo the conversion calculation.
1649        if (!PerformImplicitConversion(Ex,
1650                            ObjectPtrConversions.front()->getConversionType(),
1651                                      AA_Converting)) {
1652          Type = Ex->getType();
1653        }
1654      }
1655      else if (ObjectPtrConversions.size() > 1) {
1656        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1657              << Type << Ex->getSourceRange();
1658        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1659          NoteOverloadCandidate(ObjectPtrConversions[i]);
1660        return ExprError();
1661      }
1662    }
1663
1664    if (!Type->isPointerType())
1665      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1666        << Type << Ex->getSourceRange());
1667
1668    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1669    if (Pointee->isVoidType() && !isSFINAEContext()) {
1670      // The C++ standard bans deleting a pointer to a non-object type, which
1671      // effectively bans deletion of "void*". However, most compilers support
1672      // this, so we treat it as a warning unless we're in a SFINAE context.
1673      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1674        << Type << Ex->getSourceRange();
1675    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1676      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1677        << Type << Ex->getSourceRange());
1678    else if (!Pointee->isDependentType() &&
1679             RequireCompleteType(StartLoc, Pointee,
1680                                 PDiag(diag::warn_delete_incomplete)
1681                                   << Ex->getSourceRange()))
1682      return ExprError();
1683
1684    // C++ [expr.delete]p2:
1685    //   [Note: a pointer to a const type can be the operand of a
1686    //   delete-expression; it is not necessary to cast away the constness
1687    //   (5.2.11) of the pointer expression before it is used as the operand
1688    //   of the delete-expression. ]
1689    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1690                      CK_NoOp);
1691
1692    if (Pointee->isArrayType() && !ArrayForm) {
1693      Diag(StartLoc, diag::warn_delete_array_type)
1694          << Type << Ex->getSourceRange()
1695          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1696      ArrayForm = true;
1697    }
1698
1699    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1700                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1701
1702    QualType PointeeElem = Context.getBaseElementType(Pointee);
1703    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1704      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1705
1706      if (!UseGlobal &&
1707          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1708        return ExprError();
1709
1710      // If we're allocating an array of records, check whether the
1711      // usual operator delete[] has a size_t parameter.
1712      if (ArrayForm) {
1713        // If the user specifically asked to use the global allocator,
1714        // we'll need to do the lookup into the class.
1715        if (UseGlobal)
1716          UsualArrayDeleteWantsSize =
1717            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1718
1719        // Otherwise, the usual operator delete[] should be the
1720        // function we just found.
1721        else if (isa<CXXMethodDecl>(OperatorDelete))
1722          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1723      }
1724
1725      if (!RD->hasTrivialDestructor())
1726        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1727          MarkDeclarationReferenced(StartLoc,
1728                                    const_cast<CXXDestructorDecl*>(Dtor));
1729          DiagnoseUseOfDecl(Dtor, StartLoc);
1730        }
1731    }
1732
1733    if (!OperatorDelete) {
1734      // Look for a global declaration.
1735      DeclareGlobalNewDelete();
1736      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1737      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1738                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1739                                 OperatorDelete))
1740        return ExprError();
1741    }
1742
1743    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1744
1745    // Check access and ambiguity of operator delete and destructor.
1746    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1747      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1748      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1749          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1750                      PDiag(diag::err_access_dtor) << PointeeElem);
1751      }
1752    }
1753
1754  }
1755
1756  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1757                                           ArrayFormAsWritten,
1758                                           UsualArrayDeleteWantsSize,
1759                                           OperatorDelete, Ex, StartLoc));
1760}
1761
1762/// \brief Check the use of the given variable as a C++ condition in an if,
1763/// while, do-while, or switch statement.
1764ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1765                                        SourceLocation StmtLoc,
1766                                        bool ConvertToBoolean) {
1767  QualType T = ConditionVar->getType();
1768
1769  // C++ [stmt.select]p2:
1770  //   The declarator shall not specify a function or an array.
1771  if (T->isFunctionType())
1772    return ExprError(Diag(ConditionVar->getLocation(),
1773                          diag::err_invalid_use_of_function_type)
1774                       << ConditionVar->getSourceRange());
1775  else if (T->isArrayType())
1776    return ExprError(Diag(ConditionVar->getLocation(),
1777                          diag::err_invalid_use_of_array_type)
1778                     << ConditionVar->getSourceRange());
1779
1780  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1781                                        ConditionVar->getLocation(),
1782                            ConditionVar->getType().getNonReferenceType(),
1783                                        VK_LValue);
1784  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1785    return ExprError();
1786
1787  return Owned(Condition);
1788}
1789
1790/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1791bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1792  // C++ 6.4p4:
1793  // The value of a condition that is an initialized declaration in a statement
1794  // other than a switch statement is the value of the declared variable
1795  // implicitly converted to type bool. If that conversion is ill-formed, the
1796  // program is ill-formed.
1797  // The value of a condition that is an expression is the value of the
1798  // expression, implicitly converted to bool.
1799  //
1800  return PerformContextuallyConvertToBool(CondExpr);
1801}
1802
1803/// Helper function to determine whether this is the (deprecated) C++
1804/// conversion from a string literal to a pointer to non-const char or
1805/// non-const wchar_t (for narrow and wide string literals,
1806/// respectively).
1807bool
1808Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1809  // Look inside the implicit cast, if it exists.
1810  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1811    From = Cast->getSubExpr();
1812
1813  // A string literal (2.13.4) that is not a wide string literal can
1814  // be converted to an rvalue of type "pointer to char"; a wide
1815  // string literal can be converted to an rvalue of type "pointer
1816  // to wchar_t" (C++ 4.2p2).
1817  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1818    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1819      if (const BuiltinType *ToPointeeType
1820          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1821        // This conversion is considered only when there is an
1822        // explicit appropriate pointer target type (C++ 4.2p2).
1823        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1824            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1825             (!StrLit->isWide() &&
1826              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1827               ToPointeeType->getKind() == BuiltinType::Char_S))))
1828          return true;
1829      }
1830
1831  return false;
1832}
1833
1834static ExprResult BuildCXXCastArgument(Sema &S,
1835                                       SourceLocation CastLoc,
1836                                       QualType Ty,
1837                                       CastKind Kind,
1838                                       CXXMethodDecl *Method,
1839                                       NamedDecl *FoundDecl,
1840                                       Expr *From) {
1841  switch (Kind) {
1842  default: assert(0 && "Unhandled cast kind!");
1843  case CK_ConstructorConversion: {
1844    ASTOwningVector<Expr*> ConstructorArgs(S);
1845
1846    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1847                                  MultiExprArg(&From, 1),
1848                                  CastLoc, ConstructorArgs))
1849      return ExprError();
1850
1851    ExprResult Result =
1852    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1853                            move_arg(ConstructorArgs),
1854                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1855                            SourceRange());
1856    if (Result.isInvalid())
1857      return ExprError();
1858
1859    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1860  }
1861
1862  case CK_UserDefinedConversion: {
1863    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1864
1865    // Create an implicit call expr that calls it.
1866    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1867    if (Result.isInvalid())
1868      return ExprError();
1869
1870    return S.MaybeBindToTemporary(Result.get());
1871  }
1872  }
1873}
1874
1875/// PerformImplicitConversion - Perform an implicit conversion of the
1876/// expression From to the type ToType using the pre-computed implicit
1877/// conversion sequence ICS. Returns true if there was an error, false
1878/// otherwise. The expression From is replaced with the converted
1879/// expression. Action is the kind of conversion we're performing,
1880/// used in the error message.
1881bool
1882Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1883                                const ImplicitConversionSequence &ICS,
1884                                AssignmentAction Action, bool CStyle) {
1885  switch (ICS.getKind()) {
1886  case ImplicitConversionSequence::StandardConversion:
1887    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1888                                  CStyle))
1889      return true;
1890    break;
1891
1892  case ImplicitConversionSequence::UserDefinedConversion: {
1893
1894      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1895      CastKind CastKind;
1896      QualType BeforeToType;
1897      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1898        CastKind = CK_UserDefinedConversion;
1899
1900        // If the user-defined conversion is specified by a conversion function,
1901        // the initial standard conversion sequence converts the source type to
1902        // the implicit object parameter of the conversion function.
1903        BeforeToType = Context.getTagDeclType(Conv->getParent());
1904      } else {
1905        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1906        CastKind = CK_ConstructorConversion;
1907        // Do no conversion if dealing with ... for the first conversion.
1908        if (!ICS.UserDefined.EllipsisConversion) {
1909          // If the user-defined conversion is specified by a constructor, the
1910          // initial standard conversion sequence converts the source type to the
1911          // type required by the argument of the constructor
1912          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1913        }
1914      }
1915      // Watch out for elipsis conversion.
1916      if (!ICS.UserDefined.EllipsisConversion) {
1917        if (PerformImplicitConversion(From, BeforeToType,
1918                                      ICS.UserDefined.Before, AA_Converting,
1919                                      CStyle))
1920          return true;
1921      }
1922
1923      ExprResult CastArg
1924        = BuildCXXCastArgument(*this,
1925                               From->getLocStart(),
1926                               ToType.getNonReferenceType(),
1927                               CastKind, cast<CXXMethodDecl>(FD),
1928                               ICS.UserDefined.FoundConversionFunction,
1929                               From);
1930
1931      if (CastArg.isInvalid())
1932        return true;
1933
1934      From = CastArg.takeAs<Expr>();
1935
1936      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1937                                       AA_Converting, CStyle);
1938  }
1939
1940  case ImplicitConversionSequence::AmbiguousConversion:
1941    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1942                          PDiag(diag::err_typecheck_ambiguous_condition)
1943                            << From->getSourceRange());
1944     return true;
1945
1946  case ImplicitConversionSequence::EllipsisConversion:
1947    assert(false && "Cannot perform an ellipsis conversion");
1948    return false;
1949
1950  case ImplicitConversionSequence::BadConversion:
1951    return true;
1952  }
1953
1954  // Everything went well.
1955  return false;
1956}
1957
1958/// PerformImplicitConversion - Perform an implicit conversion of the
1959/// expression From to the type ToType by following the standard
1960/// conversion sequence SCS. Returns true if there was an error, false
1961/// otherwise. The expression From is replaced with the converted
1962/// expression. Flavor is the context in which we're performing this
1963/// conversion, for use in error messages.
1964bool
1965Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1966                                const StandardConversionSequence& SCS,
1967                                AssignmentAction Action, bool CStyle) {
1968  // Overall FIXME: we are recomputing too many types here and doing far too
1969  // much extra work. What this means is that we need to keep track of more
1970  // information that is computed when we try the implicit conversion initially,
1971  // so that we don't need to recompute anything here.
1972  QualType FromType = From->getType();
1973
1974  if (SCS.CopyConstructor) {
1975    // FIXME: When can ToType be a reference type?
1976    assert(!ToType->isReferenceType());
1977    if (SCS.Second == ICK_Derived_To_Base) {
1978      ASTOwningVector<Expr*> ConstructorArgs(*this);
1979      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1980                                  MultiExprArg(*this, &From, 1),
1981                                  /*FIXME:ConstructLoc*/SourceLocation(),
1982                                  ConstructorArgs))
1983        return true;
1984      ExprResult FromResult =
1985        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1986                              ToType, SCS.CopyConstructor,
1987                              move_arg(ConstructorArgs),
1988                              /*ZeroInit*/ false,
1989                              CXXConstructExpr::CK_Complete,
1990                              SourceRange());
1991      if (FromResult.isInvalid())
1992        return true;
1993      From = FromResult.takeAs<Expr>();
1994      return false;
1995    }
1996    ExprResult FromResult =
1997      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1998                            ToType, SCS.CopyConstructor,
1999                            MultiExprArg(*this, &From, 1),
2000                            /*ZeroInit*/ false,
2001                            CXXConstructExpr::CK_Complete,
2002                            SourceRange());
2003
2004    if (FromResult.isInvalid())
2005      return true;
2006
2007    From = FromResult.takeAs<Expr>();
2008    return false;
2009  }
2010
2011  // Resolve overloaded function references.
2012  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2013    DeclAccessPair Found;
2014    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2015                                                          true, Found);
2016    if (!Fn)
2017      return true;
2018
2019    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2020      return true;
2021
2022    From = FixOverloadedFunctionReference(From, Found, Fn);
2023    FromType = From->getType();
2024  }
2025
2026  // Perform the first implicit conversion.
2027  switch (SCS.First) {
2028  case ICK_Identity:
2029    // Nothing to do.
2030    break;
2031
2032  case ICK_Lvalue_To_Rvalue:
2033    // Should this get its own ICK?
2034    if (From->getObjectKind() == OK_ObjCProperty) {
2035      ConvertPropertyForRValue(From);
2036      if (!From->isGLValue()) break;
2037    }
2038
2039    // Check for trivial buffer overflows.
2040    if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(From))
2041      CheckArrayAccess(AE);
2042
2043    FromType = FromType.getUnqualifiedType();
2044    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2045                                    From, 0, VK_RValue);
2046    break;
2047
2048  case ICK_Array_To_Pointer:
2049    FromType = Context.getArrayDecayedType(FromType);
2050    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2051    break;
2052
2053  case ICK_Function_To_Pointer:
2054    FromType = Context.getPointerType(FromType);
2055    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2056    break;
2057
2058  default:
2059    assert(false && "Improper first standard conversion");
2060    break;
2061  }
2062
2063  // Perform the second implicit conversion
2064  switch (SCS.Second) {
2065  case ICK_Identity:
2066    // If both sides are functions (or pointers/references to them), there could
2067    // be incompatible exception declarations.
2068    if (CheckExceptionSpecCompatibility(From, ToType))
2069      return true;
2070    // Nothing else to do.
2071    break;
2072
2073  case ICK_NoReturn_Adjustment:
2074    // If both sides are functions (or pointers/references to them), there could
2075    // be incompatible exception declarations.
2076    if (CheckExceptionSpecCompatibility(From, ToType))
2077      return true;
2078
2079    ImpCastExprToType(From, ToType, CK_NoOp);
2080    break;
2081
2082  case ICK_Integral_Promotion:
2083  case ICK_Integral_Conversion:
2084    ImpCastExprToType(From, ToType, CK_IntegralCast);
2085    break;
2086
2087  case ICK_Floating_Promotion:
2088  case ICK_Floating_Conversion:
2089    ImpCastExprToType(From, ToType, CK_FloatingCast);
2090    break;
2091
2092  case ICK_Complex_Promotion:
2093  case ICK_Complex_Conversion: {
2094    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2095    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2096    CastKind CK;
2097    if (FromEl->isRealFloatingType()) {
2098      if (ToEl->isRealFloatingType())
2099        CK = CK_FloatingComplexCast;
2100      else
2101        CK = CK_FloatingComplexToIntegralComplex;
2102    } else if (ToEl->isRealFloatingType()) {
2103      CK = CK_IntegralComplexToFloatingComplex;
2104    } else {
2105      CK = CK_IntegralComplexCast;
2106    }
2107    ImpCastExprToType(From, ToType, CK);
2108    break;
2109  }
2110
2111  case ICK_Floating_Integral:
2112    if (ToType->isRealFloatingType())
2113      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2114    else
2115      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2116    break;
2117
2118  case ICK_Compatible_Conversion:
2119    ImpCastExprToType(From, ToType, CK_NoOp);
2120    break;
2121
2122  case ICK_Pointer_Conversion: {
2123    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2124      // Diagnose incompatible Objective-C conversions
2125      Diag(From->getSourceRange().getBegin(),
2126           diag::ext_typecheck_convert_incompatible_pointer)
2127        << From->getType() << ToType << Action
2128        << From->getSourceRange();
2129    }
2130
2131    CastKind Kind = CK_Invalid;
2132    CXXCastPath BasePath;
2133    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2134      return true;
2135    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2136    break;
2137  }
2138
2139  case ICK_Pointer_Member: {
2140    CastKind Kind = CK_Invalid;
2141    CXXCastPath BasePath;
2142    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2143      return true;
2144    if (CheckExceptionSpecCompatibility(From, ToType))
2145      return true;
2146    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2147    break;
2148  }
2149  case ICK_Boolean_Conversion: {
2150    CastKind Kind = CK_Invalid;
2151    switch (FromType->getScalarTypeKind()) {
2152    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2153    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2154    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2155    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2156    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2157    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2158    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2159    }
2160
2161    ImpCastExprToType(From, Context.BoolTy, Kind);
2162    break;
2163  }
2164
2165  case ICK_Derived_To_Base: {
2166    CXXCastPath BasePath;
2167    if (CheckDerivedToBaseConversion(From->getType(),
2168                                     ToType.getNonReferenceType(),
2169                                     From->getLocStart(),
2170                                     From->getSourceRange(),
2171                                     &BasePath,
2172                                     CStyle))
2173      return true;
2174
2175    ImpCastExprToType(From, ToType.getNonReferenceType(),
2176                      CK_DerivedToBase, CastCategory(From),
2177                      &BasePath);
2178    break;
2179  }
2180
2181  case ICK_Vector_Conversion:
2182    ImpCastExprToType(From, ToType, CK_BitCast);
2183    break;
2184
2185  case ICK_Vector_Splat:
2186    ImpCastExprToType(From, ToType, CK_VectorSplat);
2187    break;
2188
2189  case ICK_Complex_Real:
2190    // Case 1.  x -> _Complex y
2191    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2192      QualType ElType = ToComplex->getElementType();
2193      bool isFloatingComplex = ElType->isRealFloatingType();
2194
2195      // x -> y
2196      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2197        // do nothing
2198      } else if (From->getType()->isRealFloatingType()) {
2199        ImpCastExprToType(From, ElType,
2200                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2201      } else {
2202        assert(From->getType()->isIntegerType());
2203        ImpCastExprToType(From, ElType,
2204                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2205      }
2206      // y -> _Complex y
2207      ImpCastExprToType(From, ToType,
2208                   isFloatingComplex ? CK_FloatingRealToComplex
2209                                     : CK_IntegralRealToComplex);
2210
2211    // Case 2.  _Complex x -> y
2212    } else {
2213      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2214      assert(FromComplex);
2215
2216      QualType ElType = FromComplex->getElementType();
2217      bool isFloatingComplex = ElType->isRealFloatingType();
2218
2219      // _Complex x -> x
2220      ImpCastExprToType(From, ElType,
2221                   isFloatingComplex ? CK_FloatingComplexToReal
2222                                     : CK_IntegralComplexToReal);
2223
2224      // x -> y
2225      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2226        // do nothing
2227      } else if (ToType->isRealFloatingType()) {
2228        ImpCastExprToType(From, ToType,
2229                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2230      } else {
2231        assert(ToType->isIntegerType());
2232        ImpCastExprToType(From, ToType,
2233                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2234      }
2235    }
2236    break;
2237
2238  case ICK_Block_Pointer_Conversion: {
2239      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2240      break;
2241    }
2242
2243  case ICK_Lvalue_To_Rvalue:
2244  case ICK_Array_To_Pointer:
2245  case ICK_Function_To_Pointer:
2246  case ICK_Qualification:
2247  case ICK_Num_Conversion_Kinds:
2248    assert(false && "Improper second standard conversion");
2249    break;
2250  }
2251
2252  switch (SCS.Third) {
2253  case ICK_Identity:
2254    // Nothing to do.
2255    break;
2256
2257  case ICK_Qualification: {
2258    // The qualification keeps the category of the inner expression, unless the
2259    // target type isn't a reference.
2260    ExprValueKind VK = ToType->isReferenceType() ?
2261                                  CastCategory(From) : VK_RValue;
2262    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2263                      CK_NoOp, VK);
2264
2265    if (SCS.DeprecatedStringLiteralToCharPtr)
2266      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2267        << ToType.getNonReferenceType();
2268
2269    break;
2270    }
2271
2272  default:
2273    assert(false && "Improper third standard conversion");
2274    break;
2275  }
2276
2277  return false;
2278}
2279
2280ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2281                                     SourceLocation KWLoc,
2282                                     ParsedType Ty,
2283                                     SourceLocation RParen) {
2284  TypeSourceInfo *TSInfo;
2285  QualType T = GetTypeFromParser(Ty, &TSInfo);
2286
2287  if (!TSInfo)
2288    TSInfo = Context.getTrivialTypeSourceInfo(T);
2289  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2290}
2291
2292static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2293                                   SourceLocation KeyLoc) {
2294  // FIXME: For many of these traits, we need a complete type before we can
2295  // check these properties.
2296  assert(!T->isDependentType() &&
2297         "Cannot evaluate traits for dependent types.");
2298  ASTContext &C = Self.Context;
2299  switch(UTT) {
2300  default: assert(false && "Unknown type trait or not implemented");
2301  case UTT_IsPOD: return T->isPODType();
2302  case UTT_IsLiteral: return T->isLiteralType();
2303  case UTT_IsClass: // Fallthrough
2304  case UTT_IsUnion:
2305    if (const RecordType *Record = T->getAs<RecordType>()) {
2306      bool Union = Record->getDecl()->isUnion();
2307      return UTT == UTT_IsUnion ? Union : !Union;
2308    }
2309    return false;
2310  case UTT_IsEnum: return T->isEnumeralType();
2311  case UTT_IsPolymorphic:
2312    if (const RecordType *Record = T->getAs<RecordType>()) {
2313      // Type traits are only parsed in C++, so we've got CXXRecords.
2314      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2315    }
2316    return false;
2317  case UTT_IsAbstract:
2318    if (const RecordType *RT = T->getAs<RecordType>())
2319      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2320    return false;
2321  case UTT_IsEmpty:
2322    if (const RecordType *Record = T->getAs<RecordType>()) {
2323      return !Record->getDecl()->isUnion()
2324          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2325    }
2326    return false;
2327  case UTT_HasTrivialConstructor:
2328    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2329    //   If __is_pod (type) is true then the trait is true, else if type is
2330    //   a cv class or union type (or array thereof) with a trivial default
2331    //   constructor ([class.ctor]) then the trait is true, else it is false.
2332    if (T->isPODType())
2333      return true;
2334    if (const RecordType *RT =
2335          C.getBaseElementType(T)->getAs<RecordType>())
2336      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2337    return false;
2338  case UTT_HasTrivialCopy:
2339    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2340    //   If __is_pod (type) is true or type is a reference type then
2341    //   the trait is true, else if type is a cv class or union type
2342    //   with a trivial copy constructor ([class.copy]) then the trait
2343    //   is true, else it is false.
2344    if (T->isPODType() || T->isReferenceType())
2345      return true;
2346    if (const RecordType *RT = T->getAs<RecordType>())
2347      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2348    return false;
2349  case UTT_HasTrivialAssign:
2350    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2351    //   If type is const qualified or is a reference type then the
2352    //   trait is false. Otherwise if __is_pod (type) is true then the
2353    //   trait is true, else if type is a cv class or union type with
2354    //   a trivial copy assignment ([class.copy]) then the trait is
2355    //   true, else it is false.
2356    // Note: the const and reference restrictions are interesting,
2357    // given that const and reference members don't prevent a class
2358    // from having a trivial copy assignment operator (but do cause
2359    // errors if the copy assignment operator is actually used, q.v.
2360    // [class.copy]p12).
2361
2362    if (C.getBaseElementType(T).isConstQualified())
2363      return false;
2364    if (T->isPODType())
2365      return true;
2366    if (const RecordType *RT = T->getAs<RecordType>())
2367      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2368    return false;
2369  case UTT_HasTrivialDestructor:
2370    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2371    //   If __is_pod (type) is true or type is a reference type
2372    //   then the trait is true, else if type is a cv class or union
2373    //   type (or array thereof) with a trivial destructor
2374    //   ([class.dtor]) then the trait is true, else it is
2375    //   false.
2376    if (T->isPODType() || T->isReferenceType())
2377      return true;
2378    if (const RecordType *RT =
2379          C.getBaseElementType(T)->getAs<RecordType>())
2380      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2381    return false;
2382  // TODO: Propagate nothrowness for implicitly declared special members.
2383  case UTT_HasNothrowAssign:
2384    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2385    //   If type is const qualified or is a reference type then the
2386    //   trait is false. Otherwise if __has_trivial_assign (type)
2387    //   is true then the trait is true, else if type is a cv class
2388    //   or union type with copy assignment operators that are known
2389    //   not to throw an exception then the trait is true, else it is
2390    //   false.
2391    if (C.getBaseElementType(T).isConstQualified())
2392      return false;
2393    if (T->isReferenceType())
2394      return false;
2395    if (T->isPODType())
2396      return true;
2397    if (const RecordType *RT = T->getAs<RecordType>()) {
2398      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2399      if (RD->hasTrivialCopyAssignment())
2400        return true;
2401
2402      bool FoundAssign = false;
2403      bool AllNoThrow = true;
2404      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2405      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2406                       Sema::LookupOrdinaryName);
2407      if (Self.LookupQualifiedName(Res, RD)) {
2408        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2409             Op != OpEnd; ++Op) {
2410          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2411          if (Operator->isCopyAssignmentOperator()) {
2412            FoundAssign = true;
2413            const FunctionProtoType *CPT
2414                = Operator->getType()->getAs<FunctionProtoType>();
2415            if (!CPT->hasEmptyExceptionSpec()) {
2416              AllNoThrow = false;
2417              break;
2418            }
2419          }
2420        }
2421      }
2422
2423      return FoundAssign && AllNoThrow;
2424    }
2425    return false;
2426  case UTT_HasNothrowCopy:
2427    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2428    //   If __has_trivial_copy (type) is true then the trait is true, else
2429    //   if type is a cv class or union type with copy constructors that are
2430    //   known not to throw an exception then the trait is true, else it is
2431    //   false.
2432    if (T->isPODType() || T->isReferenceType())
2433      return true;
2434    if (const RecordType *RT = T->getAs<RecordType>()) {
2435      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2436      if (RD->hasTrivialCopyConstructor())
2437        return true;
2438
2439      bool FoundConstructor = false;
2440      bool AllNoThrow = true;
2441      unsigned FoundTQs;
2442      DeclContext::lookup_const_iterator Con, ConEnd;
2443      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2444           Con != ConEnd; ++Con) {
2445        // A template constructor is never a copy constructor.
2446        // FIXME: However, it may actually be selected at the actual overload
2447        // resolution point.
2448        if (isa<FunctionTemplateDecl>(*Con))
2449          continue;
2450        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2451        if (Constructor->isCopyConstructor(FoundTQs)) {
2452          FoundConstructor = true;
2453          const FunctionProtoType *CPT
2454              = Constructor->getType()->getAs<FunctionProtoType>();
2455          // TODO: check whether evaluating default arguments can throw.
2456          // For now, we'll be conservative and assume that they can throw.
2457          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2458            AllNoThrow = false;
2459            break;
2460          }
2461        }
2462      }
2463
2464      return FoundConstructor && AllNoThrow;
2465    }
2466    return false;
2467  case UTT_HasNothrowConstructor:
2468    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2469    //   If __has_trivial_constructor (type) is true then the trait is
2470    //   true, else if type is a cv class or union type (or array
2471    //   thereof) with a default constructor that is known not to
2472    //   throw an exception then the trait is true, else it is false.
2473    if (T->isPODType())
2474      return true;
2475    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2476      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2477      if (RD->hasTrivialConstructor())
2478        return true;
2479
2480      DeclContext::lookup_const_iterator Con, ConEnd;
2481      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2482           Con != ConEnd; ++Con) {
2483        // FIXME: In C++0x, a constructor template can be a default constructor.
2484        if (isa<FunctionTemplateDecl>(*Con))
2485          continue;
2486        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2487        if (Constructor->isDefaultConstructor()) {
2488          const FunctionProtoType *CPT
2489              = Constructor->getType()->getAs<FunctionProtoType>();
2490          // TODO: check whether evaluating default arguments can throw.
2491          // For now, we'll be conservative and assume that they can throw.
2492          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2493        }
2494      }
2495    }
2496    return false;
2497  case UTT_HasVirtualDestructor:
2498    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2499    //   If type is a class type with a virtual destructor ([class.dtor])
2500    //   then the trait is true, else it is false.
2501    if (const RecordType *Record = T->getAs<RecordType>()) {
2502      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2503      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2504        return Destructor->isVirtual();
2505    }
2506    return false;
2507  }
2508}
2509
2510ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2511                                     SourceLocation KWLoc,
2512                                     TypeSourceInfo *TSInfo,
2513                                     SourceLocation RParen) {
2514  QualType T = TSInfo->getType();
2515
2516  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2517  // all traits except __is_class, __is_enum and __is_union require a the type
2518  // to be complete, an array of unknown bound, or void.
2519  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2520    QualType E = T;
2521    if (T->isIncompleteArrayType())
2522      E = Context.getAsArrayType(T)->getElementType();
2523    if (!T->isVoidType() &&
2524        RequireCompleteType(KWLoc, E,
2525                            diag::err_incomplete_type_used_in_type_trait_expr))
2526      return ExprError();
2527  }
2528
2529  bool Value = false;
2530  if (!T->isDependentType())
2531    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2532
2533  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2534                                                RParen, Context.BoolTy));
2535}
2536
2537ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2538                                      SourceLocation KWLoc,
2539                                      ParsedType LhsTy,
2540                                      ParsedType RhsTy,
2541                                      SourceLocation RParen) {
2542  TypeSourceInfo *LhsTSInfo;
2543  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2544  if (!LhsTSInfo)
2545    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2546
2547  TypeSourceInfo *RhsTSInfo;
2548  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2549  if (!RhsTSInfo)
2550    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2551
2552  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2553}
2554
2555static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2556                                    QualType LhsT, QualType RhsT,
2557                                    SourceLocation KeyLoc) {
2558  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2559         "Cannot evaluate traits for dependent types.");
2560
2561  switch(BTT) {
2562  case BTT_IsBaseOf: {
2563    // C++0x [meta.rel]p2
2564    // Base is a base class of Derived without regard to cv-qualifiers or
2565    // Base and Derived are not unions and name the same class type without
2566    // regard to cv-qualifiers.
2567
2568    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2569    if (!lhsRecord) return false;
2570
2571    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2572    if (!rhsRecord) return false;
2573
2574    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2575             == (lhsRecord == rhsRecord));
2576
2577    if (lhsRecord == rhsRecord)
2578      return !lhsRecord->getDecl()->isUnion();
2579
2580    // C++0x [meta.rel]p2:
2581    //   If Base and Derived are class types and are different types
2582    //   (ignoring possible cv-qualifiers) then Derived shall be a
2583    //   complete type.
2584    if (Self.RequireCompleteType(KeyLoc, RhsT,
2585                          diag::err_incomplete_type_used_in_type_trait_expr))
2586      return false;
2587
2588    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2589      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2590  }
2591
2592  case BTT_TypeCompatible:
2593    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2594                                           RhsT.getUnqualifiedType());
2595
2596  case BTT_IsConvertibleTo: {
2597    // C++0x [meta.rel]p4:
2598    //   Given the following function prototype:
2599    //
2600    //     template <class T>
2601    //       typename add_rvalue_reference<T>::type create();
2602    //
2603    //   the predicate condition for a template specialization
2604    //   is_convertible<From, To> shall be satisfied if and only if
2605    //   the return expression in the following code would be
2606    //   well-formed, including any implicit conversions to the return
2607    //   type of the function:
2608    //
2609    //     To test() {
2610    //       return create<From>();
2611    //     }
2612    //
2613    //   Access checking is performed as if in a context unrelated to To and
2614    //   From. Only the validity of the immediate context of the expression
2615    //   of the return-statement (including conversions to the return type)
2616    //   is considered.
2617    //
2618    // We model the initialization as a copy-initialization of a temporary
2619    // of the appropriate type, which for this expression is identical to the
2620    // return statement (since NRVO doesn't apply).
2621    if (LhsT->isObjectType() || LhsT->isFunctionType())
2622      LhsT = Self.Context.getRValueReferenceType(LhsT);
2623
2624    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2625    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2626                         Expr::getValueKindForType(LhsT));
2627    Expr *FromPtr = &From;
2628    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2629                                                           SourceLocation()));
2630
2631    // Perform the initialization within a SFINAE trap at translation unit
2632    // scope.
2633    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2634    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2635    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2636    if (Init.getKind() == InitializationSequence::FailedSequence)
2637      return false;
2638
2639    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2640    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2641  }
2642  }
2643  llvm_unreachable("Unknown type trait or not implemented");
2644}
2645
2646ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2647                                      SourceLocation KWLoc,
2648                                      TypeSourceInfo *LhsTSInfo,
2649                                      TypeSourceInfo *RhsTSInfo,
2650                                      SourceLocation RParen) {
2651  QualType LhsT = LhsTSInfo->getType();
2652  QualType RhsT = RhsTSInfo->getType();
2653
2654  if (BTT == BTT_TypeCompatible) {
2655    if (getLangOptions().CPlusPlus) {
2656      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2657        << SourceRange(KWLoc, RParen);
2658      return ExprError();
2659    }
2660  }
2661
2662  bool Value = false;
2663  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2664    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2665
2666  // Select trait result type.
2667  QualType ResultType;
2668  switch (BTT) {
2669  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2670  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2671  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2672  }
2673
2674  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2675                                                 RhsTSInfo, Value, RParen,
2676                                                 ResultType));
2677}
2678
2679QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2680                                            ExprValueKind &VK,
2681                                            SourceLocation Loc,
2682                                            bool isIndirect) {
2683  const char *OpSpelling = isIndirect ? "->*" : ".*";
2684  // C++ 5.5p2
2685  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2686  //   be of type "pointer to member of T" (where T is a completely-defined
2687  //   class type) [...]
2688  QualType RType = rex->getType();
2689  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2690  if (!MemPtr) {
2691    Diag(Loc, diag::err_bad_memptr_rhs)
2692      << OpSpelling << RType << rex->getSourceRange();
2693    return QualType();
2694  }
2695
2696  QualType Class(MemPtr->getClass(), 0);
2697
2698  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2699  // member pointer points must be completely-defined. However, there is no
2700  // reason for this semantic distinction, and the rule is not enforced by
2701  // other compilers. Therefore, we do not check this property, as it is
2702  // likely to be considered a defect.
2703
2704  // C++ 5.5p2
2705  //   [...] to its first operand, which shall be of class T or of a class of
2706  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2707  //   such a class]
2708  QualType LType = lex->getType();
2709  if (isIndirect) {
2710    if (const PointerType *Ptr = LType->getAs<PointerType>())
2711      LType = Ptr->getPointeeType();
2712    else {
2713      Diag(Loc, diag::err_bad_memptr_lhs)
2714        << OpSpelling << 1 << LType
2715        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2716      return QualType();
2717    }
2718  }
2719
2720  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2721    // If we want to check the hierarchy, we need a complete type.
2722    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2723        << OpSpelling << (int)isIndirect)) {
2724      return QualType();
2725    }
2726    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2727                       /*DetectVirtual=*/false);
2728    // FIXME: Would it be useful to print full ambiguity paths, or is that
2729    // overkill?
2730    if (!IsDerivedFrom(LType, Class, Paths) ||
2731        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2732      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2733        << (int)isIndirect << lex->getType();
2734      return QualType();
2735    }
2736    // Cast LHS to type of use.
2737    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2738    ExprValueKind VK =
2739        isIndirect ? VK_RValue : CastCategory(lex);
2740
2741    CXXCastPath BasePath;
2742    BuildBasePathArray(Paths, BasePath);
2743    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2744  }
2745
2746  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2747    // Diagnose use of pointer-to-member type which when used as
2748    // the functional cast in a pointer-to-member expression.
2749    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2750     return QualType();
2751  }
2752
2753  // C++ 5.5p2
2754  //   The result is an object or a function of the type specified by the
2755  //   second operand.
2756  // The cv qualifiers are the union of those in the pointer and the left side,
2757  // in accordance with 5.5p5 and 5.2.5.
2758  // FIXME: This returns a dereferenced member function pointer as a normal
2759  // function type. However, the only operation valid on such functions is
2760  // calling them. There's also a GCC extension to get a function pointer to the
2761  // thing, which is another complication, because this type - unlike the type
2762  // that is the result of this expression - takes the class as the first
2763  // argument.
2764  // We probably need a "MemberFunctionClosureType" or something like that.
2765  QualType Result = MemPtr->getPointeeType();
2766  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2767
2768  // C++0x [expr.mptr.oper]p6:
2769  //   In a .* expression whose object expression is an rvalue, the program is
2770  //   ill-formed if the second operand is a pointer to member function with
2771  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2772  //   expression is an lvalue, the program is ill-formed if the second operand
2773  //   is a pointer to member function with ref-qualifier &&.
2774  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2775    switch (Proto->getRefQualifier()) {
2776    case RQ_None:
2777      // Do nothing
2778      break;
2779
2780    case RQ_LValue:
2781      if (!isIndirect && !lex->Classify(Context).isLValue())
2782        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2783          << RType << 1 << lex->getSourceRange();
2784      break;
2785
2786    case RQ_RValue:
2787      if (isIndirect || !lex->Classify(Context).isRValue())
2788        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2789          << RType << 0 << lex->getSourceRange();
2790      break;
2791    }
2792  }
2793
2794  // C++ [expr.mptr.oper]p6:
2795  //   The result of a .* expression whose second operand is a pointer
2796  //   to a data member is of the same value category as its
2797  //   first operand. The result of a .* expression whose second
2798  //   operand is a pointer to a member function is a prvalue. The
2799  //   result of an ->* expression is an lvalue if its second operand
2800  //   is a pointer to data member and a prvalue otherwise.
2801  if (Result->isFunctionType())
2802    VK = VK_RValue;
2803  else if (isIndirect)
2804    VK = VK_LValue;
2805  else
2806    VK = lex->getValueKind();
2807
2808  return Result;
2809}
2810
2811/// \brief Try to convert a type to another according to C++0x 5.16p3.
2812///
2813/// This is part of the parameter validation for the ? operator. If either
2814/// value operand is a class type, the two operands are attempted to be
2815/// converted to each other. This function does the conversion in one direction.
2816/// It returns true if the program is ill-formed and has already been diagnosed
2817/// as such.
2818static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2819                                SourceLocation QuestionLoc,
2820                                bool &HaveConversion,
2821                                QualType &ToType) {
2822  HaveConversion = false;
2823  ToType = To->getType();
2824
2825  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2826                                                           SourceLocation());
2827  // C++0x 5.16p3
2828  //   The process for determining whether an operand expression E1 of type T1
2829  //   can be converted to match an operand expression E2 of type T2 is defined
2830  //   as follows:
2831  //   -- If E2 is an lvalue:
2832  bool ToIsLvalue = To->isLValue();
2833  if (ToIsLvalue) {
2834    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2835    //   type "lvalue reference to T2", subject to the constraint that in the
2836    //   conversion the reference must bind directly to E1.
2837    QualType T = Self.Context.getLValueReferenceType(ToType);
2838    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2839
2840    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2841    if (InitSeq.isDirectReferenceBinding()) {
2842      ToType = T;
2843      HaveConversion = true;
2844      return false;
2845    }
2846
2847    if (InitSeq.isAmbiguous())
2848      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2849  }
2850
2851  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2852  //      -- if E1 and E2 have class type, and the underlying class types are
2853  //         the same or one is a base class of the other:
2854  QualType FTy = From->getType();
2855  QualType TTy = To->getType();
2856  const RecordType *FRec = FTy->getAs<RecordType>();
2857  const RecordType *TRec = TTy->getAs<RecordType>();
2858  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2859                       Self.IsDerivedFrom(FTy, TTy);
2860  if (FRec && TRec &&
2861      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2862    //         E1 can be converted to match E2 if the class of T2 is the
2863    //         same type as, or a base class of, the class of T1, and
2864    //         [cv2 > cv1].
2865    if (FRec == TRec || FDerivedFromT) {
2866      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2867        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2868        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2869        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2870          HaveConversion = true;
2871          return false;
2872        }
2873
2874        if (InitSeq.isAmbiguous())
2875          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2876      }
2877    }
2878
2879    return false;
2880  }
2881
2882  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2883  //        implicitly converted to the type that expression E2 would have
2884  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2885  //        an rvalue).
2886  //
2887  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2888  // to the array-to-pointer or function-to-pointer conversions.
2889  if (!TTy->getAs<TagType>())
2890    TTy = TTy.getUnqualifiedType();
2891
2892  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2893  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2894  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2895  ToType = TTy;
2896  if (InitSeq.isAmbiguous())
2897    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2898
2899  return false;
2900}
2901
2902/// \brief Try to find a common type for two according to C++0x 5.16p5.
2903///
2904/// This is part of the parameter validation for the ? operator. If either
2905/// value operand is a class type, overload resolution is used to find a
2906/// conversion to a common type.
2907static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2908                                    SourceLocation QuestionLoc) {
2909  Expr *Args[2] = { LHS, RHS };
2910  OverloadCandidateSet CandidateSet(QuestionLoc);
2911  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2912                                    CandidateSet);
2913
2914  OverloadCandidateSet::iterator Best;
2915  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2916    case OR_Success:
2917      // We found a match. Perform the conversions on the arguments and move on.
2918      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2919                                         Best->Conversions[0], Sema::AA_Converting) ||
2920          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2921                                         Best->Conversions[1], Sema::AA_Converting))
2922        break;
2923      return false;
2924
2925    case OR_No_Viable_Function:
2926
2927      // Emit a better diagnostic if one of the expressions is a null pointer
2928      // constant and the other is a pointer type. In this case, the user most
2929      // likely forgot to take the address of the other expression.
2930      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2931        return true;
2932
2933      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2934        << LHS->getType() << RHS->getType()
2935        << LHS->getSourceRange() << RHS->getSourceRange();
2936      return true;
2937
2938    case OR_Ambiguous:
2939      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2940        << LHS->getType() << RHS->getType()
2941        << LHS->getSourceRange() << RHS->getSourceRange();
2942      // FIXME: Print the possible common types by printing the return types of
2943      // the viable candidates.
2944      break;
2945
2946    case OR_Deleted:
2947      assert(false && "Conditional operator has only built-in overloads");
2948      break;
2949  }
2950  return true;
2951}
2952
2953/// \brief Perform an "extended" implicit conversion as returned by
2954/// TryClassUnification.
2955static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2956  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2957  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2958                                                           SourceLocation());
2959  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2960  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2961  if (Result.isInvalid())
2962    return true;
2963
2964  E = Result.takeAs<Expr>();
2965  return false;
2966}
2967
2968/// \brief Check the operands of ?: under C++ semantics.
2969///
2970/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2971/// extension. In this case, LHS == Cond. (But they're not aliases.)
2972QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2973                                           ExprValueKind &VK, ExprObjectKind &OK,
2974                                           SourceLocation QuestionLoc) {
2975  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2976  // interface pointers.
2977
2978  // C++0x 5.16p1
2979  //   The first expression is contextually converted to bool.
2980  if (!Cond->isTypeDependent()) {
2981    if (CheckCXXBooleanCondition(Cond))
2982      return QualType();
2983  }
2984
2985  // Assume r-value.
2986  VK = VK_RValue;
2987  OK = OK_Ordinary;
2988
2989  // Either of the arguments dependent?
2990  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2991    return Context.DependentTy;
2992
2993  // C++0x 5.16p2
2994  //   If either the second or the third operand has type (cv) void, ...
2995  QualType LTy = LHS->getType();
2996  QualType RTy = RHS->getType();
2997  bool LVoid = LTy->isVoidType();
2998  bool RVoid = RTy->isVoidType();
2999  if (LVoid || RVoid) {
3000    //   ... then the [l2r] conversions are performed on the second and third
3001    //   operands ...
3002    DefaultFunctionArrayLvalueConversion(LHS);
3003    DefaultFunctionArrayLvalueConversion(RHS);
3004    LTy = LHS->getType();
3005    RTy = RHS->getType();
3006
3007    //   ... and one of the following shall hold:
3008    //   -- The second or the third operand (but not both) is a throw-
3009    //      expression; the result is of the type of the other and is an rvalue.
3010    bool LThrow = isa<CXXThrowExpr>(LHS);
3011    bool RThrow = isa<CXXThrowExpr>(RHS);
3012    if (LThrow && !RThrow)
3013      return RTy;
3014    if (RThrow && !LThrow)
3015      return LTy;
3016
3017    //   -- Both the second and third operands have type void; the result is of
3018    //      type void and is an rvalue.
3019    if (LVoid && RVoid)
3020      return Context.VoidTy;
3021
3022    // Neither holds, error.
3023    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3024      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3025      << LHS->getSourceRange() << RHS->getSourceRange();
3026    return QualType();
3027  }
3028
3029  // Neither is void.
3030
3031  // C++0x 5.16p3
3032  //   Otherwise, if the second and third operand have different types, and
3033  //   either has (cv) class type, and attempt is made to convert each of those
3034  //   operands to the other.
3035  if (!Context.hasSameType(LTy, RTy) &&
3036      (LTy->isRecordType() || RTy->isRecordType())) {
3037    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3038    // These return true if a single direction is already ambiguous.
3039    QualType L2RType, R2LType;
3040    bool HaveL2R, HaveR2L;
3041    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3042      return QualType();
3043    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3044      return QualType();
3045
3046    //   If both can be converted, [...] the program is ill-formed.
3047    if (HaveL2R && HaveR2L) {
3048      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3049        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3050      return QualType();
3051    }
3052
3053    //   If exactly one conversion is possible, that conversion is applied to
3054    //   the chosen operand and the converted operands are used in place of the
3055    //   original operands for the remainder of this section.
3056    if (HaveL2R) {
3057      if (ConvertForConditional(*this, LHS, L2RType))
3058        return QualType();
3059      LTy = LHS->getType();
3060    } else if (HaveR2L) {
3061      if (ConvertForConditional(*this, RHS, R2LType))
3062        return QualType();
3063      RTy = RHS->getType();
3064    }
3065  }
3066
3067  // C++0x 5.16p4
3068  //   If the second and third operands are glvalues of the same value
3069  //   category and have the same type, the result is of that type and
3070  //   value category and it is a bit-field if the second or the third
3071  //   operand is a bit-field, or if both are bit-fields.
3072  // We only extend this to bitfields, not to the crazy other kinds of
3073  // l-values.
3074  bool Same = Context.hasSameType(LTy, RTy);
3075  if (Same &&
3076      LHS->isGLValue() &&
3077      LHS->getValueKind() == RHS->getValueKind() &&
3078      LHS->isOrdinaryOrBitFieldObject() &&
3079      RHS->isOrdinaryOrBitFieldObject()) {
3080    VK = LHS->getValueKind();
3081    if (LHS->getObjectKind() == OK_BitField ||
3082        RHS->getObjectKind() == OK_BitField)
3083      OK = OK_BitField;
3084    return LTy;
3085  }
3086
3087  // C++0x 5.16p5
3088  //   Otherwise, the result is an rvalue. If the second and third operands
3089  //   do not have the same type, and either has (cv) class type, ...
3090  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3091    //   ... overload resolution is used to determine the conversions (if any)
3092    //   to be applied to the operands. If the overload resolution fails, the
3093    //   program is ill-formed.
3094    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3095      return QualType();
3096  }
3097
3098  // C++0x 5.16p6
3099  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3100  //   conversions are performed on the second and third operands.
3101  DefaultFunctionArrayLvalueConversion(LHS);
3102  DefaultFunctionArrayLvalueConversion(RHS);
3103  LTy = LHS->getType();
3104  RTy = RHS->getType();
3105
3106  //   After those conversions, one of the following shall hold:
3107  //   -- The second and third operands have the same type; the result
3108  //      is of that type. If the operands have class type, the result
3109  //      is a prvalue temporary of the result type, which is
3110  //      copy-initialized from either the second operand or the third
3111  //      operand depending on the value of the first operand.
3112  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3113    if (LTy->isRecordType()) {
3114      // The operands have class type. Make a temporary copy.
3115      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3116      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3117                                                     SourceLocation(),
3118                                                     Owned(LHS));
3119      if (LHSCopy.isInvalid())
3120        return QualType();
3121
3122      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3123                                                     SourceLocation(),
3124                                                     Owned(RHS));
3125      if (RHSCopy.isInvalid())
3126        return QualType();
3127
3128      LHS = LHSCopy.takeAs<Expr>();
3129      RHS = RHSCopy.takeAs<Expr>();
3130    }
3131
3132    return LTy;
3133  }
3134
3135  // Extension: conditional operator involving vector types.
3136  if (LTy->isVectorType() || RTy->isVectorType())
3137    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3138
3139  //   -- The second and third operands have arithmetic or enumeration type;
3140  //      the usual arithmetic conversions are performed to bring them to a
3141  //      common type, and the result is of that type.
3142  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3143    UsualArithmeticConversions(LHS, RHS);
3144    return LHS->getType();
3145  }
3146
3147  //   -- The second and third operands have pointer type, or one has pointer
3148  //      type and the other is a null pointer constant; pointer conversions
3149  //      and qualification conversions are performed to bring them to their
3150  //      composite pointer type. The result is of the composite pointer type.
3151  //   -- The second and third operands have pointer to member type, or one has
3152  //      pointer to member type and the other is a null pointer constant;
3153  //      pointer to member conversions and qualification conversions are
3154  //      performed to bring them to a common type, whose cv-qualification
3155  //      shall match the cv-qualification of either the second or the third
3156  //      operand. The result is of the common type.
3157  bool NonStandardCompositeType = false;
3158  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3159                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3160  if (!Composite.isNull()) {
3161    if (NonStandardCompositeType)
3162      Diag(QuestionLoc,
3163           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3164        << LTy << RTy << Composite
3165        << LHS->getSourceRange() << RHS->getSourceRange();
3166
3167    return Composite;
3168  }
3169
3170  // Similarly, attempt to find composite type of two objective-c pointers.
3171  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3172  if (!Composite.isNull())
3173    return Composite;
3174
3175  // Check if we are using a null with a non-pointer type.
3176  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3177    return QualType();
3178
3179  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3180    << LHS->getType() << RHS->getType()
3181    << LHS->getSourceRange() << RHS->getSourceRange();
3182  return QualType();
3183}
3184
3185/// \brief Find a merged pointer type and convert the two expressions to it.
3186///
3187/// This finds the composite pointer type (or member pointer type) for @p E1
3188/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3189/// type and returns it.
3190/// It does not emit diagnostics.
3191///
3192/// \param Loc The location of the operator requiring these two expressions to
3193/// be converted to the composite pointer type.
3194///
3195/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3196/// a non-standard (but still sane) composite type to which both expressions
3197/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3198/// will be set true.
3199QualType Sema::FindCompositePointerType(SourceLocation Loc,
3200                                        Expr *&E1, Expr *&E2,
3201                                        bool *NonStandardCompositeType) {
3202  if (NonStandardCompositeType)
3203    *NonStandardCompositeType = false;
3204
3205  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3206  QualType T1 = E1->getType(), T2 = E2->getType();
3207
3208  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3209      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3210   return QualType();
3211
3212  // C++0x 5.9p2
3213  //   Pointer conversions and qualification conversions are performed on
3214  //   pointer operands to bring them to their composite pointer type. If
3215  //   one operand is a null pointer constant, the composite pointer type is
3216  //   the type of the other operand.
3217  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3218    if (T2->isMemberPointerType())
3219      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3220    else
3221      ImpCastExprToType(E1, T2, CK_NullToPointer);
3222    return T2;
3223  }
3224  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3225    if (T1->isMemberPointerType())
3226      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3227    else
3228      ImpCastExprToType(E2, T1, CK_NullToPointer);
3229    return T1;
3230  }
3231
3232  // Now both have to be pointers or member pointers.
3233  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3234      (!T2->isPointerType() && !T2->isMemberPointerType()))
3235    return QualType();
3236
3237  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3238  //   the other has type "pointer to cv2 T" and the composite pointer type is
3239  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3240  //   Otherwise, the composite pointer type is a pointer type similar to the
3241  //   type of one of the operands, with a cv-qualification signature that is
3242  //   the union of the cv-qualification signatures of the operand types.
3243  // In practice, the first part here is redundant; it's subsumed by the second.
3244  // What we do here is, we build the two possible composite types, and try the
3245  // conversions in both directions. If only one works, or if the two composite
3246  // types are the same, we have succeeded.
3247  // FIXME: extended qualifiers?
3248  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3249  QualifierVector QualifierUnion;
3250  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3251      ContainingClassVector;
3252  ContainingClassVector MemberOfClass;
3253  QualType Composite1 = Context.getCanonicalType(T1),
3254           Composite2 = Context.getCanonicalType(T2);
3255  unsigned NeedConstBefore = 0;
3256  do {
3257    const PointerType *Ptr1, *Ptr2;
3258    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3259        (Ptr2 = Composite2->getAs<PointerType>())) {
3260      Composite1 = Ptr1->getPointeeType();
3261      Composite2 = Ptr2->getPointeeType();
3262
3263      // If we're allowed to create a non-standard composite type, keep track
3264      // of where we need to fill in additional 'const' qualifiers.
3265      if (NonStandardCompositeType &&
3266          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3267        NeedConstBefore = QualifierUnion.size();
3268
3269      QualifierUnion.push_back(
3270                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3271      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3272      continue;
3273    }
3274
3275    const MemberPointerType *MemPtr1, *MemPtr2;
3276    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3277        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3278      Composite1 = MemPtr1->getPointeeType();
3279      Composite2 = MemPtr2->getPointeeType();
3280
3281      // If we're allowed to create a non-standard composite type, keep track
3282      // of where we need to fill in additional 'const' qualifiers.
3283      if (NonStandardCompositeType &&
3284          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3285        NeedConstBefore = QualifierUnion.size();
3286
3287      QualifierUnion.push_back(
3288                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3289      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3290                                             MemPtr2->getClass()));
3291      continue;
3292    }
3293
3294    // FIXME: block pointer types?
3295
3296    // Cannot unwrap any more types.
3297    break;
3298  } while (true);
3299
3300  if (NeedConstBefore && NonStandardCompositeType) {
3301    // Extension: Add 'const' to qualifiers that come before the first qualifier
3302    // mismatch, so that our (non-standard!) composite type meets the
3303    // requirements of C++ [conv.qual]p4 bullet 3.
3304    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3305      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3306        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3307        *NonStandardCompositeType = true;
3308      }
3309    }
3310  }
3311
3312  // Rewrap the composites as pointers or member pointers with the union CVRs.
3313  ContainingClassVector::reverse_iterator MOC
3314    = MemberOfClass.rbegin();
3315  for (QualifierVector::reverse_iterator
3316         I = QualifierUnion.rbegin(),
3317         E = QualifierUnion.rend();
3318       I != E; (void)++I, ++MOC) {
3319    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3320    if (MOC->first && MOC->second) {
3321      // Rebuild member pointer type
3322      Composite1 = Context.getMemberPointerType(
3323                                    Context.getQualifiedType(Composite1, Quals),
3324                                    MOC->first);
3325      Composite2 = Context.getMemberPointerType(
3326                                    Context.getQualifiedType(Composite2, Quals),
3327                                    MOC->second);
3328    } else {
3329      // Rebuild pointer type
3330      Composite1
3331        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3332      Composite2
3333        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3334    }
3335  }
3336
3337  // Try to convert to the first composite pointer type.
3338  InitializedEntity Entity1
3339    = InitializedEntity::InitializeTemporary(Composite1);
3340  InitializationKind Kind
3341    = InitializationKind::CreateCopy(Loc, SourceLocation());
3342  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3343  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3344
3345  if (E1ToC1 && E2ToC1) {
3346    // Conversion to Composite1 is viable.
3347    if (!Context.hasSameType(Composite1, Composite2)) {
3348      // Composite2 is a different type from Composite1. Check whether
3349      // Composite2 is also viable.
3350      InitializedEntity Entity2
3351        = InitializedEntity::InitializeTemporary(Composite2);
3352      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3353      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3354      if (E1ToC2 && E2ToC2) {
3355        // Both Composite1 and Composite2 are viable and are different;
3356        // this is an ambiguity.
3357        return QualType();
3358      }
3359    }
3360
3361    // Convert E1 to Composite1
3362    ExprResult E1Result
3363      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3364    if (E1Result.isInvalid())
3365      return QualType();
3366    E1 = E1Result.takeAs<Expr>();
3367
3368    // Convert E2 to Composite1
3369    ExprResult E2Result
3370      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3371    if (E2Result.isInvalid())
3372      return QualType();
3373    E2 = E2Result.takeAs<Expr>();
3374
3375    return Composite1;
3376  }
3377
3378  // Check whether Composite2 is viable.
3379  InitializedEntity Entity2
3380    = InitializedEntity::InitializeTemporary(Composite2);
3381  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3382  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3383  if (!E1ToC2 || !E2ToC2)
3384    return QualType();
3385
3386  // Convert E1 to Composite2
3387  ExprResult E1Result
3388    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3389  if (E1Result.isInvalid())
3390    return QualType();
3391  E1 = E1Result.takeAs<Expr>();
3392
3393  // Convert E2 to Composite2
3394  ExprResult E2Result
3395    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3396  if (E2Result.isInvalid())
3397    return QualType();
3398  E2 = E2Result.takeAs<Expr>();
3399
3400  return Composite2;
3401}
3402
3403ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3404  if (!E)
3405    return ExprError();
3406
3407  if (!Context.getLangOptions().CPlusPlus)
3408    return Owned(E);
3409
3410  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3411
3412  const RecordType *RT = E->getType()->getAs<RecordType>();
3413  if (!RT)
3414    return Owned(E);
3415
3416  // If the result is a glvalue, we shouldn't bind it.
3417  if (E->Classify(Context).isGLValue())
3418    return Owned(E);
3419
3420  // That should be enough to guarantee that this type is complete.
3421  // If it has a trivial destructor, we can avoid the extra copy.
3422  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3423  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3424    return Owned(E);
3425
3426  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3427  ExprTemporaries.push_back(Temp);
3428  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3429    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3430    CheckDestructorAccess(E->getExprLoc(), Destructor,
3431                          PDiag(diag::err_access_dtor_temp)
3432                            << E->getType());
3433  }
3434  // FIXME: Add the temporary to the temporaries vector.
3435  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3436}
3437
3438Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3439  assert(SubExpr && "sub expression can't be null!");
3440
3441  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3442  assert(ExprTemporaries.size() >= FirstTemporary);
3443  if (ExprTemporaries.size() == FirstTemporary)
3444    return SubExpr;
3445
3446  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3447                                     &ExprTemporaries[FirstTemporary],
3448                                     ExprTemporaries.size() - FirstTemporary);
3449  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3450                        ExprTemporaries.end());
3451
3452  return E;
3453}
3454
3455ExprResult
3456Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3457  if (SubExpr.isInvalid())
3458    return ExprError();
3459
3460  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3461}
3462
3463Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3464  assert(SubStmt && "sub statement can't be null!");
3465
3466  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3467  assert(ExprTemporaries.size() >= FirstTemporary);
3468  if (ExprTemporaries.size() == FirstTemporary)
3469    return SubStmt;
3470
3471  // FIXME: In order to attach the temporaries, wrap the statement into
3472  // a StmtExpr; currently this is only used for asm statements.
3473  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3474  // a new AsmStmtWithTemporaries.
3475  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3476                                                      SourceLocation(),
3477                                                      SourceLocation());
3478  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3479                                   SourceLocation());
3480  return MaybeCreateExprWithCleanups(E);
3481}
3482
3483ExprResult
3484Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3485                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3486                                   bool &MayBePseudoDestructor) {
3487  // Since this might be a postfix expression, get rid of ParenListExprs.
3488  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3489  if (Result.isInvalid()) return ExprError();
3490  Base = Result.get();
3491
3492  QualType BaseType = Base->getType();
3493  MayBePseudoDestructor = false;
3494  if (BaseType->isDependentType()) {
3495    // If we have a pointer to a dependent type and are using the -> operator,
3496    // the object type is the type that the pointer points to. We might still
3497    // have enough information about that type to do something useful.
3498    if (OpKind == tok::arrow)
3499      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3500        BaseType = Ptr->getPointeeType();
3501
3502    ObjectType = ParsedType::make(BaseType);
3503    MayBePseudoDestructor = true;
3504    return Owned(Base);
3505  }
3506
3507  // C++ [over.match.oper]p8:
3508  //   [...] When operator->returns, the operator-> is applied  to the value
3509  //   returned, with the original second operand.
3510  if (OpKind == tok::arrow) {
3511    // The set of types we've considered so far.
3512    llvm::SmallPtrSet<CanQualType,8> CTypes;
3513    llvm::SmallVector<SourceLocation, 8> Locations;
3514    CTypes.insert(Context.getCanonicalType(BaseType));
3515
3516    while (BaseType->isRecordType()) {
3517      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3518      if (Result.isInvalid())
3519        return ExprError();
3520      Base = Result.get();
3521      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3522        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3523      BaseType = Base->getType();
3524      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3525      if (!CTypes.insert(CBaseType)) {
3526        Diag(OpLoc, diag::err_operator_arrow_circular);
3527        for (unsigned i = 0; i < Locations.size(); i++)
3528          Diag(Locations[i], diag::note_declared_at);
3529        return ExprError();
3530      }
3531    }
3532
3533    if (BaseType->isPointerType())
3534      BaseType = BaseType->getPointeeType();
3535  }
3536
3537  // We could end up with various non-record types here, such as extended
3538  // vector types or Objective-C interfaces. Just return early and let
3539  // ActOnMemberReferenceExpr do the work.
3540  if (!BaseType->isRecordType()) {
3541    // C++ [basic.lookup.classref]p2:
3542    //   [...] If the type of the object expression is of pointer to scalar
3543    //   type, the unqualified-id is looked up in the context of the complete
3544    //   postfix-expression.
3545    //
3546    // This also indicates that we should be parsing a
3547    // pseudo-destructor-name.
3548    ObjectType = ParsedType();
3549    MayBePseudoDestructor = true;
3550    return Owned(Base);
3551  }
3552
3553  // The object type must be complete (or dependent).
3554  if (!BaseType->isDependentType() &&
3555      RequireCompleteType(OpLoc, BaseType,
3556                          PDiag(diag::err_incomplete_member_access)))
3557    return ExprError();
3558
3559  // C++ [basic.lookup.classref]p2:
3560  //   If the id-expression in a class member access (5.2.5) is an
3561  //   unqualified-id, and the type of the object expression is of a class
3562  //   type C (or of pointer to a class type C), the unqualified-id is looked
3563  //   up in the scope of class C. [...]
3564  ObjectType = ParsedType::make(BaseType);
3565  return move(Base);
3566}
3567
3568ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3569                                                   Expr *MemExpr) {
3570  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3571  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3572    << isa<CXXPseudoDestructorExpr>(MemExpr)
3573    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3574
3575  return ActOnCallExpr(/*Scope*/ 0,
3576                       MemExpr,
3577                       /*LPLoc*/ ExpectedLParenLoc,
3578                       MultiExprArg(),
3579                       /*RPLoc*/ ExpectedLParenLoc);
3580}
3581
3582ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3583                                                       SourceLocation OpLoc,
3584                                                       tok::TokenKind OpKind,
3585                                                       const CXXScopeSpec &SS,
3586                                                 TypeSourceInfo *ScopeTypeInfo,
3587                                                       SourceLocation CCLoc,
3588                                                       SourceLocation TildeLoc,
3589                                         PseudoDestructorTypeStorage Destructed,
3590                                                       bool HasTrailingLParen) {
3591  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3592
3593  // C++ [expr.pseudo]p2:
3594  //   The left-hand side of the dot operator shall be of scalar type. The
3595  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3596  //   This scalar type is the object type.
3597  QualType ObjectType = Base->getType();
3598  if (OpKind == tok::arrow) {
3599    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3600      ObjectType = Ptr->getPointeeType();
3601    } else if (!Base->isTypeDependent()) {
3602      // The user wrote "p->" when she probably meant "p."; fix it.
3603      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3604        << ObjectType << true
3605        << FixItHint::CreateReplacement(OpLoc, ".");
3606      if (isSFINAEContext())
3607        return ExprError();
3608
3609      OpKind = tok::period;
3610    }
3611  }
3612
3613  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3614    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3615      << ObjectType << Base->getSourceRange();
3616    return ExprError();
3617  }
3618
3619  // C++ [expr.pseudo]p2:
3620  //   [...] The cv-unqualified versions of the object type and of the type
3621  //   designated by the pseudo-destructor-name shall be the same type.
3622  if (DestructedTypeInfo) {
3623    QualType DestructedType = DestructedTypeInfo->getType();
3624    SourceLocation DestructedTypeStart
3625      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3626    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3627        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3628      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3629        << ObjectType << DestructedType << Base->getSourceRange()
3630        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3631
3632      // Recover by setting the destructed type to the object type.
3633      DestructedType = ObjectType;
3634      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3635                                                           DestructedTypeStart);
3636      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3637    }
3638  }
3639
3640  // C++ [expr.pseudo]p2:
3641  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3642  //   form
3643  //
3644  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3645  //
3646  //   shall designate the same scalar type.
3647  if (ScopeTypeInfo) {
3648    QualType ScopeType = ScopeTypeInfo->getType();
3649    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3650        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3651
3652      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3653           diag::err_pseudo_dtor_type_mismatch)
3654        << ObjectType << ScopeType << Base->getSourceRange()
3655        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3656
3657      ScopeType = QualType();
3658      ScopeTypeInfo = 0;
3659    }
3660  }
3661
3662  Expr *Result
3663    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3664                                            OpKind == tok::arrow, OpLoc,
3665                                            SS.getScopeRep(), SS.getRange(),
3666                                            ScopeTypeInfo,
3667                                            CCLoc,
3668                                            TildeLoc,
3669                                            Destructed);
3670
3671  if (HasTrailingLParen)
3672    return Owned(Result);
3673
3674  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3675}
3676
3677ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3678                                                       SourceLocation OpLoc,
3679                                                       tok::TokenKind OpKind,
3680                                                       CXXScopeSpec &SS,
3681                                                  UnqualifiedId &FirstTypeName,
3682                                                       SourceLocation CCLoc,
3683                                                       SourceLocation TildeLoc,
3684                                                 UnqualifiedId &SecondTypeName,
3685                                                       bool HasTrailingLParen) {
3686  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3687          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3688         "Invalid first type name in pseudo-destructor");
3689  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3690          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3691         "Invalid second type name in pseudo-destructor");
3692
3693  // C++ [expr.pseudo]p2:
3694  //   The left-hand side of the dot operator shall be of scalar type. The
3695  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3696  //   This scalar type is the object type.
3697  QualType ObjectType = Base->getType();
3698  if (OpKind == tok::arrow) {
3699    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3700      ObjectType = Ptr->getPointeeType();
3701    } else if (!ObjectType->isDependentType()) {
3702      // The user wrote "p->" when she probably meant "p."; fix it.
3703      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3704        << ObjectType << true
3705        << FixItHint::CreateReplacement(OpLoc, ".");
3706      if (isSFINAEContext())
3707        return ExprError();
3708
3709      OpKind = tok::period;
3710    }
3711  }
3712
3713  // Compute the object type that we should use for name lookup purposes. Only
3714  // record types and dependent types matter.
3715  ParsedType ObjectTypePtrForLookup;
3716  if (!SS.isSet()) {
3717    if (const Type *T = ObjectType->getAs<RecordType>())
3718      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3719    else if (ObjectType->isDependentType())
3720      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3721  }
3722
3723  // Convert the name of the type being destructed (following the ~) into a
3724  // type (with source-location information).
3725  QualType DestructedType;
3726  TypeSourceInfo *DestructedTypeInfo = 0;
3727  PseudoDestructorTypeStorage Destructed;
3728  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3729    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3730                               SecondTypeName.StartLocation,
3731                               S, &SS, true, false, ObjectTypePtrForLookup);
3732    if (!T &&
3733        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3734         (!SS.isSet() && ObjectType->isDependentType()))) {
3735      // The name of the type being destroyed is a dependent name, and we
3736      // couldn't find anything useful in scope. Just store the identifier and
3737      // it's location, and we'll perform (qualified) name lookup again at
3738      // template instantiation time.
3739      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3740                                               SecondTypeName.StartLocation);
3741    } else if (!T) {
3742      Diag(SecondTypeName.StartLocation,
3743           diag::err_pseudo_dtor_destructor_non_type)
3744        << SecondTypeName.Identifier << ObjectType;
3745      if (isSFINAEContext())
3746        return ExprError();
3747
3748      // Recover by assuming we had the right type all along.
3749      DestructedType = ObjectType;
3750    } else
3751      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3752  } else {
3753    // Resolve the template-id to a type.
3754    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3755    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3756                                       TemplateId->getTemplateArgs(),
3757                                       TemplateId->NumArgs);
3758    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3759                                       TemplateId->TemplateNameLoc,
3760                                       TemplateId->LAngleLoc,
3761                                       TemplateArgsPtr,
3762                                       TemplateId->RAngleLoc);
3763    if (T.isInvalid() || !T.get()) {
3764      // Recover by assuming we had the right type all along.
3765      DestructedType = ObjectType;
3766    } else
3767      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3768  }
3769
3770  // If we've performed some kind of recovery, (re-)build the type source
3771  // information.
3772  if (!DestructedType.isNull()) {
3773    if (!DestructedTypeInfo)
3774      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3775                                                  SecondTypeName.StartLocation);
3776    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3777  }
3778
3779  // Convert the name of the scope type (the type prior to '::') into a type.
3780  TypeSourceInfo *ScopeTypeInfo = 0;
3781  QualType ScopeType;
3782  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3783      FirstTypeName.Identifier) {
3784    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3785      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3786                                 FirstTypeName.StartLocation,
3787                                 S, &SS, false, false, ObjectTypePtrForLookup);
3788      if (!T) {
3789        Diag(FirstTypeName.StartLocation,
3790             diag::err_pseudo_dtor_destructor_non_type)
3791          << FirstTypeName.Identifier << ObjectType;
3792
3793        if (isSFINAEContext())
3794          return ExprError();
3795
3796        // Just drop this type. It's unnecessary anyway.
3797        ScopeType = QualType();
3798      } else
3799        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3800    } else {
3801      // Resolve the template-id to a type.
3802      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3803      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3804                                         TemplateId->getTemplateArgs(),
3805                                         TemplateId->NumArgs);
3806      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3807                                         TemplateId->TemplateNameLoc,
3808                                         TemplateId->LAngleLoc,
3809                                         TemplateArgsPtr,
3810                                         TemplateId->RAngleLoc);
3811      if (T.isInvalid() || !T.get()) {
3812        // Recover by dropping this type.
3813        ScopeType = QualType();
3814      } else
3815        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3816    }
3817  }
3818
3819  if (!ScopeType.isNull() && !ScopeTypeInfo)
3820    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3821                                                  FirstTypeName.StartLocation);
3822
3823
3824  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3825                                   ScopeTypeInfo, CCLoc, TildeLoc,
3826                                   Destructed, HasTrailingLParen);
3827}
3828
3829ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3830                                        CXXMethodDecl *Method) {
3831  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3832                                          FoundDecl, Method))
3833    return true;
3834
3835  MemberExpr *ME =
3836      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3837                               SourceLocation(), Method->getType(),
3838                               VK_RValue, OK_Ordinary);
3839  QualType ResultType = Method->getResultType();
3840  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3841  ResultType = ResultType.getNonLValueExprType(Context);
3842
3843  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3844  CXXMemberCallExpr *CE =
3845    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3846                                    Exp->getLocEnd());
3847  return CE;
3848}
3849
3850ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3851                                      SourceLocation RParen) {
3852  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3853                                             Operand->CanThrow(Context),
3854                                             KeyLoc, RParen));
3855}
3856
3857ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3858                                   Expr *Operand, SourceLocation RParen) {
3859  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3860}
3861
3862/// Perform the conversions required for an expression used in a
3863/// context that ignores the result.
3864void Sema::IgnoredValueConversions(Expr *&E) {
3865  // C99 6.3.2.1:
3866  //   [Except in specific positions,] an lvalue that does not have
3867  //   array type is converted to the value stored in the
3868  //   designated object (and is no longer an lvalue).
3869  if (E->isRValue()) return;
3870
3871  // We always want to do this on ObjC property references.
3872  if (E->getObjectKind() == OK_ObjCProperty) {
3873    ConvertPropertyForRValue(E);
3874    if (E->isRValue()) return;
3875  }
3876
3877  // Otherwise, this rule does not apply in C++, at least not for the moment.
3878  if (getLangOptions().CPlusPlus) return;
3879
3880  // GCC seems to also exclude expressions of incomplete enum type.
3881  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3882    if (!T->getDecl()->isComplete()) {
3883      // FIXME: stupid workaround for a codegen bug!
3884      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3885      return;
3886    }
3887  }
3888
3889  DefaultFunctionArrayLvalueConversion(E);
3890  if (!E->getType()->isVoidType())
3891    RequireCompleteType(E->getExprLoc(), E->getType(),
3892                        diag::err_incomplete_type);
3893}
3894
3895ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3896  if (!FullExpr)
3897    return ExprError();
3898
3899  if (DiagnoseUnexpandedParameterPack(FullExpr))
3900    return ExprError();
3901
3902  IgnoredValueConversions(FullExpr);
3903  CheckImplicitConversions(FullExpr);
3904  return MaybeCreateExprWithCleanups(FullExpr);
3905}
3906
3907StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3908  if (!FullStmt) return StmtError();
3909
3910  return MaybeCreateStmtWithCleanups(FullStmt);
3911}
3912