SemaExprCXX.cpp revision 219077
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
142  for (unsigned Step = 0; Step != 2; ++Step) {
143    // Look for the name first in the computed lookup context (if we
144    // have one) and, if that fails to find a match, in the sope (if
145    // we're allowed to look there).
146    Found.clear();
147    if (Step == 0 && LookupCtx)
148      LookupQualifiedName(Found, LookupCtx);
149    else if (Step == 1 && LookInScope && S)
150      LookupName(Found, S);
151    else
152      continue;
153
154    // FIXME: Should we be suppressing ambiguities here?
155    if (Found.isAmbiguous())
156      return ParsedType();
157
158    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
159      QualType T = Context.getTypeDeclType(Type);
160
161      if (SearchType.isNull() || SearchType->isDependentType() ||
162          Context.hasSameUnqualifiedType(T, SearchType)) {
163        // We found our type!
164
165        return ParsedType::make(T);
166      }
167    }
168
169    // If the name that we found is a class template name, and it is
170    // the same name as the template name in the last part of the
171    // nested-name-specifier (if present) or the object type, then
172    // this is the destructor for that class.
173    // FIXME: This is a workaround until we get real drafting for core
174    // issue 399, for which there isn't even an obvious direction.
175    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
176      QualType MemberOfType;
177      if (SS.isSet()) {
178        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
179          // Figure out the type of the context, if it has one.
180          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
181            MemberOfType = Context.getTypeDeclType(Record);
182        }
183      }
184      if (MemberOfType.isNull())
185        MemberOfType = SearchType;
186
187      if (MemberOfType.isNull())
188        continue;
189
190      // We're referring into a class template specialization. If the
191      // class template we found is the same as the template being
192      // specialized, we found what we are looking for.
193      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
194        if (ClassTemplateSpecializationDecl *Spec
195              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
196          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
197                Template->getCanonicalDecl())
198            return ParsedType::make(MemberOfType);
199        }
200
201        continue;
202      }
203
204      // We're referring to an unresolved class template
205      // specialization. Determine whether we class template we found
206      // is the same as the template being specialized or, if we don't
207      // know which template is being specialized, that it at least
208      // has the same name.
209      if (const TemplateSpecializationType *SpecType
210            = MemberOfType->getAs<TemplateSpecializationType>()) {
211        TemplateName SpecName = SpecType->getTemplateName();
212
213        // The class template we found is the same template being
214        // specialized.
215        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
216          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
217            return ParsedType::make(MemberOfType);
218
219          continue;
220        }
221
222        // The class template we found has the same name as the
223        // (dependent) template name being specialized.
224        if (DependentTemplateName *DepTemplate
225                                    = SpecName.getAsDependentTemplateName()) {
226          if (DepTemplate->isIdentifier() &&
227              DepTemplate->getIdentifier() == Template->getIdentifier())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232      }
233    }
234  }
235
236  if (isDependent) {
237    // We didn't find our type, but that's okay: it's dependent
238    // anyway.
239    NestedNameSpecifier *NNS = 0;
240    SourceRange Range;
241    if (SS.isSet()) {
242      NNS = (NestedNameSpecifier *)SS.getScopeRep();
243      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
244    } else {
245      NNS = NestedNameSpecifier::Create(Context, &II);
246      Range = SourceRange(NameLoc);
247    }
248
249    QualType T = CheckTypenameType(ETK_None, NNS, II,
250                                   SourceLocation(),
251                                   Range, NameLoc);
252    return ParsedType::make(T);
253  }
254
255  if (ObjectTypePtr)
256    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
257      << &II;
258  else
259    Diag(NameLoc, diag::err_destructor_class_name);
260
261  return ParsedType();
262}
263
264/// \brief Build a C++ typeid expression with a type operand.
265ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
266                                SourceLocation TypeidLoc,
267                                TypeSourceInfo *Operand,
268                                SourceLocation RParenLoc) {
269  // C++ [expr.typeid]p4:
270  //   The top-level cv-qualifiers of the lvalue expression or the type-id
271  //   that is the operand of typeid are always ignored.
272  //   If the type of the type-id is a class type or a reference to a class
273  //   type, the class shall be completely-defined.
274  Qualifiers Quals;
275  QualType T
276    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
277                                      Quals);
278  if (T->getAs<RecordType>() &&
279      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
280    return ExprError();
281
282  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
283                                           Operand,
284                                           SourceRange(TypeidLoc, RParenLoc)));
285}
286
287/// \brief Build a C++ typeid expression with an expression operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                Expr *E,
291                                SourceLocation RParenLoc) {
292  bool isUnevaluatedOperand = true;
293  if (E && !E->isTypeDependent()) {
294    QualType T = E->getType();
295    if (const RecordType *RecordT = T->getAs<RecordType>()) {
296      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
297      // C++ [expr.typeid]p3:
298      //   [...] If the type of the expression is a class type, the class
299      //   shall be completely-defined.
300      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
301        return ExprError();
302
303      // C++ [expr.typeid]p3:
304      //   When typeid is applied to an expression other than an glvalue of a
305      //   polymorphic class type [...] [the] expression is an unevaluated
306      //   operand. [...]
307      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
308        isUnevaluatedOperand = false;
309
310        // We require a vtable to query the type at run time.
311        MarkVTableUsed(TypeidLoc, RecordD);
312      }
313    }
314
315    // C++ [expr.typeid]p4:
316    //   [...] If the type of the type-id is a reference to a possibly
317    //   cv-qualified type, the result of the typeid expression refers to a
318    //   std::type_info object representing the cv-unqualified referenced
319    //   type.
320    Qualifiers Quals;
321    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
322    if (!Context.hasSameType(T, UnqualT)) {
323      T = UnqualT;
324      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
325    }
326  }
327
328  // If this is an unevaluated operand, clear out the set of
329  // declaration references we have been computing and eliminate any
330  // temporaries introduced in its computation.
331  if (isUnevaluatedOperand)
332    ExprEvalContexts.back().Context = Unevaluated;
333
334  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
335                                           E,
336                                           SourceRange(TypeidLoc, RParenLoc)));
337}
338
339/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
340ExprResult
341Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
342                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
343  // Find the std::type_info type.
344  if (!StdNamespace)
345    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
346
347  if (!CXXTypeInfoDecl) {
348    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
349    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
350    LookupQualifiedName(R, getStdNamespace());
351    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
352    if (!CXXTypeInfoDecl)
353      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
354  }
355
356  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
357
358  if (isType) {
359    // The operand is a type; handle it as such.
360    TypeSourceInfo *TInfo = 0;
361    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
362                                   &TInfo);
363    if (T.isNull())
364      return ExprError();
365
366    if (!TInfo)
367      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
368
369    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
370  }
371
372  // The operand is an expression.
373  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
374}
375
376/// Retrieve the UuidAttr associated with QT.
377static UuidAttr *GetUuidAttrOfType(QualType QT) {
378  // Optionally remove one level of pointer, reference or array indirection.
379  const Type *Ty = QT.getTypePtr();;
380  if (QT->isPointerType() || QT->isReferenceType())
381    Ty = QT->getPointeeType().getTypePtr();
382  else if (QT->isArrayType())
383    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
384
385  // Loop all class definition and declaration looking for an uuid attribute.
386  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
387  while (RD) {
388    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
389      return Uuid;
390    RD = RD->getPreviousDeclaration();
391  }
392  return 0;
393}
394
395/// \brief Build a Microsoft __uuidof expression with a type operand.
396ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
397                                SourceLocation TypeidLoc,
398                                TypeSourceInfo *Operand,
399                                SourceLocation RParenLoc) {
400  if (!Operand->getType()->isDependentType()) {
401    if (!GetUuidAttrOfType(Operand->getType()))
402      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
403  }
404
405  // FIXME: add __uuidof semantic analysis for type operand.
406  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
407                                           Operand,
408                                           SourceRange(TypeidLoc, RParenLoc)));
409}
410
411/// \brief Build a Microsoft __uuidof expression with an expression operand.
412ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
413                                SourceLocation TypeidLoc,
414                                Expr *E,
415                                SourceLocation RParenLoc) {
416  if (!E->getType()->isDependentType()) {
417    if (!GetUuidAttrOfType(E->getType()) &&
418        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
419      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
420  }
421  // FIXME: add __uuidof semantic analysis for type operand.
422  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
423                                           E,
424                                           SourceRange(TypeidLoc, RParenLoc)));
425}
426
427/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
428ExprResult
429Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
430                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
431  // If MSVCGuidDecl has not been cached, do the lookup.
432  if (!MSVCGuidDecl) {
433    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
434    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
435    LookupQualifiedName(R, Context.getTranslationUnitDecl());
436    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
437    if (!MSVCGuidDecl)
438      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
439  }
440
441  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
442
443  if (isType) {
444    // The operand is a type; handle it as such.
445    TypeSourceInfo *TInfo = 0;
446    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
447                                   &TInfo);
448    if (T.isNull())
449      return ExprError();
450
451    if (!TInfo)
452      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
453
454    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
455  }
456
457  // The operand is an expression.
458  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
459}
460
461/// ActOnCXXBoolLiteral - Parse {true,false} literals.
462ExprResult
463Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
464  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
465         "Unknown C++ Boolean value!");
466  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
467                                                Context.BoolTy, OpLoc));
468}
469
470/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
471ExprResult
472Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
473  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
474}
475
476/// ActOnCXXThrow - Parse throw expressions.
477ExprResult
478Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
479  // Don't report an error if 'throw' is used in system headers.
480  if (!getLangOptions().Exceptions &&
481      !getSourceManager().isInSystemHeader(OpLoc))
482    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
483
484  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
485    return ExprError();
486  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
487}
488
489/// CheckCXXThrowOperand - Validate the operand of a throw.
490bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
491  // C++ [except.throw]p3:
492  //   A throw-expression initializes a temporary object, called the exception
493  //   object, the type of which is determined by removing any top-level
494  //   cv-qualifiers from the static type of the operand of throw and adjusting
495  //   the type from "array of T" or "function returning T" to "pointer to T"
496  //   or "pointer to function returning T", [...]
497  if (E->getType().hasQualifiers())
498    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
499                      CastCategory(E));
500
501  DefaultFunctionArrayConversion(E);
502
503  //   If the type of the exception would be an incomplete type or a pointer
504  //   to an incomplete type other than (cv) void the program is ill-formed.
505  QualType Ty = E->getType();
506  bool isPointer = false;
507  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
508    Ty = Ptr->getPointeeType();
509    isPointer = true;
510  }
511  if (!isPointer || !Ty->isVoidType()) {
512    if (RequireCompleteType(ThrowLoc, Ty,
513                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
514                                            : diag::err_throw_incomplete)
515                              << E->getSourceRange()))
516      return true;
517
518    if (RequireNonAbstractType(ThrowLoc, E->getType(),
519                               PDiag(diag::err_throw_abstract_type)
520                                 << E->getSourceRange()))
521      return true;
522  }
523
524  // Initialize the exception result.  This implicitly weeds out
525  // abstract types or types with inaccessible copy constructors.
526  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
527
528  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
529  InitializedEntity Entity =
530      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
531                                             /*NRVO=*/false);
532  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
533                                                   QualType(), E);
534  if (Res.isInvalid())
535    return true;
536  E = Res.takeAs<Expr>();
537
538  // If the exception has class type, we need additional handling.
539  const RecordType *RecordTy = Ty->getAs<RecordType>();
540  if (!RecordTy)
541    return false;
542  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
543
544  // If we are throwing a polymorphic class type or pointer thereof,
545  // exception handling will make use of the vtable.
546  MarkVTableUsed(ThrowLoc, RD);
547
548  // If a pointer is thrown, the referenced object will not be destroyed.
549  if (isPointer)
550    return false;
551
552  // If the class has a non-trivial destructor, we must be able to call it.
553  if (RD->hasTrivialDestructor())
554    return false;
555
556  CXXDestructorDecl *Destructor
557    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
558  if (!Destructor)
559    return false;
560
561  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
562  CheckDestructorAccess(E->getExprLoc(), Destructor,
563                        PDiag(diag::err_access_dtor_exception) << Ty);
564  return false;
565}
566
567CXXMethodDecl *Sema::tryCaptureCXXThis() {
568  // Ignore block scopes: we can capture through them.
569  // Ignore nested enum scopes: we'll diagnose non-constant expressions
570  // where they're invalid, and other uses are legitimate.
571  // Don't ignore nested class scopes: you can't use 'this' in a local class.
572  DeclContext *DC = CurContext;
573  while (true) {
574    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
575    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
576    else break;
577  }
578
579  // If we're not in an instance method, error out.
580  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
581  if (!method || !method->isInstance())
582    return 0;
583
584  // Mark that we're closing on 'this' in all the block scopes, if applicable.
585  for (unsigned idx = FunctionScopes.size() - 1;
586       isa<BlockScopeInfo>(FunctionScopes[idx]);
587       --idx)
588    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
589
590  return method;
591}
592
593ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
594  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
595  /// is a non-lvalue expression whose value is the address of the object for
596  /// which the function is called.
597
598  CXXMethodDecl *method = tryCaptureCXXThis();
599  if (!method) return Diag(loc, diag::err_invalid_this_use);
600
601  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
602                                         /*isImplicit=*/false));
603}
604
605ExprResult
606Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
607                                SourceLocation LParenLoc,
608                                MultiExprArg exprs,
609                                SourceLocation RParenLoc) {
610  if (!TypeRep)
611    return ExprError();
612
613  TypeSourceInfo *TInfo;
614  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
615  if (!TInfo)
616    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
617
618  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
619}
620
621/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
622/// Can be interpreted either as function-style casting ("int(x)")
623/// or class type construction ("ClassType(x,y,z)")
624/// or creation of a value-initialized type ("int()").
625ExprResult
626Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
627                                SourceLocation LParenLoc,
628                                MultiExprArg exprs,
629                                SourceLocation RParenLoc) {
630  QualType Ty = TInfo->getType();
631  unsigned NumExprs = exprs.size();
632  Expr **Exprs = (Expr**)exprs.get();
633  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
634  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
635
636  if (Ty->isDependentType() ||
637      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
638    exprs.release();
639
640    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
641                                                    LParenLoc,
642                                                    Exprs, NumExprs,
643                                                    RParenLoc));
644  }
645
646  if (Ty->isArrayType())
647    return ExprError(Diag(TyBeginLoc,
648                          diag::err_value_init_for_array_type) << FullRange);
649  if (!Ty->isVoidType() &&
650      RequireCompleteType(TyBeginLoc, Ty,
651                          PDiag(diag::err_invalid_incomplete_type_use)
652                            << FullRange))
653    return ExprError();
654
655  if (RequireNonAbstractType(TyBeginLoc, Ty,
656                             diag::err_allocation_of_abstract_type))
657    return ExprError();
658
659
660  // C++ [expr.type.conv]p1:
661  // If the expression list is a single expression, the type conversion
662  // expression is equivalent (in definedness, and if defined in meaning) to the
663  // corresponding cast expression.
664  //
665  if (NumExprs == 1) {
666    CastKind Kind = CK_Invalid;
667    ExprValueKind VK = VK_RValue;
668    CXXCastPath BasePath;
669    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
670                       Kind, VK, BasePath,
671                       /*FunctionalStyle=*/true))
672      return ExprError();
673
674    exprs.release();
675
676    return Owned(CXXFunctionalCastExpr::Create(Context,
677                                               Ty.getNonLValueExprType(Context),
678                                               VK, TInfo, TyBeginLoc, Kind,
679                                               Exprs[0], &BasePath,
680                                               RParenLoc));
681  }
682
683  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
684  InitializationKind Kind
685    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
686                                                  LParenLoc, RParenLoc)
687               : InitializationKind::CreateValue(TyBeginLoc,
688                                                 LParenLoc, RParenLoc);
689  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
690  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
691
692  // FIXME: Improve AST representation?
693  return move(Result);
694}
695
696/// doesUsualArrayDeleteWantSize - Answers whether the usual
697/// operator delete[] for the given type has a size_t parameter.
698static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
699                                         QualType allocType) {
700  const RecordType *record =
701    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
702  if (!record) return false;
703
704  // Try to find an operator delete[] in class scope.
705
706  DeclarationName deleteName =
707    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
708  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
709  S.LookupQualifiedName(ops, record->getDecl());
710
711  // We're just doing this for information.
712  ops.suppressDiagnostics();
713
714  // Very likely: there's no operator delete[].
715  if (ops.empty()) return false;
716
717  // If it's ambiguous, it should be illegal to call operator delete[]
718  // on this thing, so it doesn't matter if we allocate extra space or not.
719  if (ops.isAmbiguous()) return false;
720
721  LookupResult::Filter filter = ops.makeFilter();
722  while (filter.hasNext()) {
723    NamedDecl *del = filter.next()->getUnderlyingDecl();
724
725    // C++0x [basic.stc.dynamic.deallocation]p2:
726    //   A template instance is never a usual deallocation function,
727    //   regardless of its signature.
728    if (isa<FunctionTemplateDecl>(del)) {
729      filter.erase();
730      continue;
731    }
732
733    // C++0x [basic.stc.dynamic.deallocation]p2:
734    //   If class T does not declare [an operator delete[] with one
735    //   parameter] but does declare a member deallocation function
736    //   named operator delete[] with exactly two parameters, the
737    //   second of which has type std::size_t, then this function
738    //   is a usual deallocation function.
739    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
740      filter.erase();
741      continue;
742    }
743  }
744  filter.done();
745
746  if (!ops.isSingleResult()) return false;
747
748  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
749  return (del->getNumParams() == 2);
750}
751
752/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
753/// @code new (memory) int[size][4] @endcode
754/// or
755/// @code ::new Foo(23, "hello") @endcode
756/// For the interpretation of this heap of arguments, consult the base version.
757ExprResult
758Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
759                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
760                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
761                  Declarator &D, SourceLocation ConstructorLParen,
762                  MultiExprArg ConstructorArgs,
763                  SourceLocation ConstructorRParen) {
764  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
765
766  Expr *ArraySize = 0;
767  // If the specified type is an array, unwrap it and save the expression.
768  if (D.getNumTypeObjects() > 0 &&
769      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
770    DeclaratorChunk &Chunk = D.getTypeObject(0);
771    if (TypeContainsAuto)
772      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
773        << D.getSourceRange());
774    if (Chunk.Arr.hasStatic)
775      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
776        << D.getSourceRange());
777    if (!Chunk.Arr.NumElts)
778      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
779        << D.getSourceRange());
780
781    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
782    D.DropFirstTypeObject();
783  }
784
785  // Every dimension shall be of constant size.
786  if (ArraySize) {
787    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
788      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
789        break;
790
791      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
792      if (Expr *NumElts = (Expr *)Array.NumElts) {
793        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
794            !NumElts->isIntegerConstantExpr(Context)) {
795          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
796            << NumElts->getSourceRange();
797          return ExprError();
798        }
799      }
800    }
801  }
802
803  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
804                                               /*AllowAuto=*/true);
805  QualType AllocType = TInfo->getType();
806  if (D.isInvalidType())
807    return ExprError();
808
809  return BuildCXXNew(StartLoc, UseGlobal,
810                     PlacementLParen,
811                     move(PlacementArgs),
812                     PlacementRParen,
813                     TypeIdParens,
814                     AllocType,
815                     TInfo,
816                     ArraySize,
817                     ConstructorLParen,
818                     move(ConstructorArgs),
819                     ConstructorRParen,
820                     TypeContainsAuto);
821}
822
823ExprResult
824Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
825                  SourceLocation PlacementLParen,
826                  MultiExprArg PlacementArgs,
827                  SourceLocation PlacementRParen,
828                  SourceRange TypeIdParens,
829                  QualType AllocType,
830                  TypeSourceInfo *AllocTypeInfo,
831                  Expr *ArraySize,
832                  SourceLocation ConstructorLParen,
833                  MultiExprArg ConstructorArgs,
834                  SourceLocation ConstructorRParen,
835                  bool TypeMayContainAuto) {
836  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
837
838  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
839  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
840    if (ConstructorArgs.size() == 0)
841      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
842                       << AllocType << TypeRange);
843    if (ConstructorArgs.size() != 1) {
844      Expr *FirstBad = ConstructorArgs.get()[1];
845      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
846                            diag::err_auto_new_ctor_multiple_expressions)
847                       << AllocType << TypeRange);
848    }
849    QualType DeducedType;
850    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
851      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
852                       << AllocType
853                       << ConstructorArgs.get()[0]->getType()
854                       << TypeRange
855                       << ConstructorArgs.get()[0]->getSourceRange());
856
857    AllocType = DeducedType;
858    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
859  }
860
861  // Per C++0x [expr.new]p5, the type being constructed may be a
862  // typedef of an array type.
863  if (!ArraySize) {
864    if (const ConstantArrayType *Array
865                              = Context.getAsConstantArrayType(AllocType)) {
866      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
867                                         Context.getSizeType(),
868                                         TypeRange.getEnd());
869      AllocType = Array->getElementType();
870    }
871  }
872
873  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
874    return ExprError();
875
876  QualType ResultType = Context.getPointerType(AllocType);
877
878  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
879  //   or enumeration type with a non-negative value."
880  if (ArraySize && !ArraySize->isTypeDependent()) {
881
882    QualType SizeType = ArraySize->getType();
883
884    ExprResult ConvertedSize
885      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
886                                       PDiag(diag::err_array_size_not_integral),
887                                     PDiag(diag::err_array_size_incomplete_type)
888                                       << ArraySize->getSourceRange(),
889                               PDiag(diag::err_array_size_explicit_conversion),
890                                       PDiag(diag::note_array_size_conversion),
891                               PDiag(diag::err_array_size_ambiguous_conversion),
892                                       PDiag(diag::note_array_size_conversion),
893                          PDiag(getLangOptions().CPlusPlus0x? 0
894                                            : diag::ext_array_size_conversion));
895    if (ConvertedSize.isInvalid())
896      return ExprError();
897
898    ArraySize = ConvertedSize.take();
899    SizeType = ArraySize->getType();
900    if (!SizeType->isIntegralOrUnscopedEnumerationType())
901      return ExprError();
902
903    // Let's see if this is a constant < 0. If so, we reject it out of hand.
904    // We don't care about special rules, so we tell the machinery it's not
905    // evaluated - it gives us a result in more cases.
906    if (!ArraySize->isValueDependent()) {
907      llvm::APSInt Value;
908      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
909        if (Value < llvm::APSInt(
910                        llvm::APInt::getNullValue(Value.getBitWidth()),
911                                 Value.isUnsigned()))
912          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
913                                diag::err_typecheck_negative_array_size)
914            << ArraySize->getSourceRange());
915
916        if (!AllocType->isDependentType()) {
917          unsigned ActiveSizeBits
918            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
919          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
920            Diag(ArraySize->getSourceRange().getBegin(),
921                 diag::err_array_too_large)
922              << Value.toString(10)
923              << ArraySize->getSourceRange();
924            return ExprError();
925          }
926        }
927      } else if (TypeIdParens.isValid()) {
928        // Can't have dynamic array size when the type-id is in parentheses.
929        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
930          << ArraySize->getSourceRange()
931          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
932          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
933
934        TypeIdParens = SourceRange();
935      }
936    }
937
938    ImpCastExprToType(ArraySize, Context.getSizeType(),
939                      CK_IntegralCast);
940  }
941
942  FunctionDecl *OperatorNew = 0;
943  FunctionDecl *OperatorDelete = 0;
944  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
945  unsigned NumPlaceArgs = PlacementArgs.size();
946
947  if (!AllocType->isDependentType() &&
948      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
949      FindAllocationFunctions(StartLoc,
950                              SourceRange(PlacementLParen, PlacementRParen),
951                              UseGlobal, AllocType, ArraySize, PlaceArgs,
952                              NumPlaceArgs, OperatorNew, OperatorDelete))
953    return ExprError();
954
955  // If this is an array allocation, compute whether the usual array
956  // deallocation function for the type has a size_t parameter.
957  bool UsualArrayDeleteWantsSize = false;
958  if (ArraySize && !AllocType->isDependentType())
959    UsualArrayDeleteWantsSize
960      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
961
962  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
963  if (OperatorNew) {
964    // Add default arguments, if any.
965    const FunctionProtoType *Proto =
966      OperatorNew->getType()->getAs<FunctionProtoType>();
967    VariadicCallType CallType =
968      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
969
970    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
971                               Proto, 1, PlaceArgs, NumPlaceArgs,
972                               AllPlaceArgs, CallType))
973      return ExprError();
974
975    NumPlaceArgs = AllPlaceArgs.size();
976    if (NumPlaceArgs > 0)
977      PlaceArgs = &AllPlaceArgs[0];
978  }
979
980  bool Init = ConstructorLParen.isValid();
981  // --- Choosing a constructor ---
982  CXXConstructorDecl *Constructor = 0;
983  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
984  unsigned NumConsArgs = ConstructorArgs.size();
985  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
986
987  // Array 'new' can't have any initializers.
988  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
989    SourceRange InitRange(ConsArgs[0]->getLocStart(),
990                          ConsArgs[NumConsArgs - 1]->getLocEnd());
991
992    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
993    return ExprError();
994  }
995
996  if (!AllocType->isDependentType() &&
997      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
998    // C++0x [expr.new]p15:
999    //   A new-expression that creates an object of type T initializes that
1000    //   object as follows:
1001    InitializationKind Kind
1002    //     - If the new-initializer is omitted, the object is default-
1003    //       initialized (8.5); if no initialization is performed,
1004    //       the object has indeterminate value
1005      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1006    //     - Otherwise, the new-initializer is interpreted according to the
1007    //       initialization rules of 8.5 for direct-initialization.
1008             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1009                                                ConstructorLParen,
1010                                                ConstructorRParen);
1011
1012    InitializedEntity Entity
1013      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1014    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1015    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1016                                                move(ConstructorArgs));
1017    if (FullInit.isInvalid())
1018      return ExprError();
1019
1020    // FullInit is our initializer; walk through it to determine if it's a
1021    // constructor call, which CXXNewExpr handles directly.
1022    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1023      if (CXXBindTemporaryExpr *Binder
1024            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1025        FullInitExpr = Binder->getSubExpr();
1026      if (CXXConstructExpr *Construct
1027                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1028        Constructor = Construct->getConstructor();
1029        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1030                                         AEnd = Construct->arg_end();
1031             A != AEnd; ++A)
1032          ConvertedConstructorArgs.push_back(*A);
1033      } else {
1034        // Take the converted initializer.
1035        ConvertedConstructorArgs.push_back(FullInit.release());
1036      }
1037    } else {
1038      // No initialization required.
1039    }
1040
1041    // Take the converted arguments and use them for the new expression.
1042    NumConsArgs = ConvertedConstructorArgs.size();
1043    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1044  }
1045
1046  // Mark the new and delete operators as referenced.
1047  if (OperatorNew)
1048    MarkDeclarationReferenced(StartLoc, OperatorNew);
1049  if (OperatorDelete)
1050    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1051
1052  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1053
1054  PlacementArgs.release();
1055  ConstructorArgs.release();
1056
1057  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1058                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1059                                        ArraySize, Constructor, Init,
1060                                        ConsArgs, NumConsArgs, OperatorDelete,
1061                                        UsualArrayDeleteWantsSize,
1062                                        ResultType, AllocTypeInfo,
1063                                        StartLoc,
1064                                        Init ? ConstructorRParen :
1065                                               TypeRange.getEnd(),
1066                                        ConstructorLParen, ConstructorRParen));
1067}
1068
1069/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1070/// in a new-expression.
1071/// dimension off and stores the size expression in ArraySize.
1072bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1073                              SourceRange R) {
1074  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1075  //   abstract class type or array thereof.
1076  if (AllocType->isFunctionType())
1077    return Diag(Loc, diag::err_bad_new_type)
1078      << AllocType << 0 << R;
1079  else if (AllocType->isReferenceType())
1080    return Diag(Loc, diag::err_bad_new_type)
1081      << AllocType << 1 << R;
1082  else if (!AllocType->isDependentType() &&
1083           RequireCompleteType(Loc, AllocType,
1084                               PDiag(diag::err_new_incomplete_type)
1085                                 << R))
1086    return true;
1087  else if (RequireNonAbstractType(Loc, AllocType,
1088                                  diag::err_allocation_of_abstract_type))
1089    return true;
1090  else if (AllocType->isVariablyModifiedType())
1091    return Diag(Loc, diag::err_variably_modified_new_type)
1092             << AllocType;
1093
1094  return false;
1095}
1096
1097/// \brief Determine whether the given function is a non-placement
1098/// deallocation function.
1099static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1100  if (FD->isInvalidDecl())
1101    return false;
1102
1103  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1104    return Method->isUsualDeallocationFunction();
1105
1106  return ((FD->getOverloadedOperator() == OO_Delete ||
1107           FD->getOverloadedOperator() == OO_Array_Delete) &&
1108          FD->getNumParams() == 1);
1109}
1110
1111/// FindAllocationFunctions - Finds the overloads of operator new and delete
1112/// that are appropriate for the allocation.
1113bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1114                                   bool UseGlobal, QualType AllocType,
1115                                   bool IsArray, Expr **PlaceArgs,
1116                                   unsigned NumPlaceArgs,
1117                                   FunctionDecl *&OperatorNew,
1118                                   FunctionDecl *&OperatorDelete) {
1119  // --- Choosing an allocation function ---
1120  // C++ 5.3.4p8 - 14 & 18
1121  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1122  //   in the scope of the allocated class.
1123  // 2) If an array size is given, look for operator new[], else look for
1124  //   operator new.
1125  // 3) The first argument is always size_t. Append the arguments from the
1126  //   placement form.
1127
1128  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1129  // We don't care about the actual value of this argument.
1130  // FIXME: Should the Sema create the expression and embed it in the syntax
1131  // tree? Or should the consumer just recalculate the value?
1132  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1133                      Context.Target.getPointerWidth(0)),
1134                      Context.getSizeType(),
1135                      SourceLocation());
1136  AllocArgs[0] = &Size;
1137  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1138
1139  // C++ [expr.new]p8:
1140  //   If the allocated type is a non-array type, the allocation
1141  //   function's name is operator new and the deallocation function's
1142  //   name is operator delete. If the allocated type is an array
1143  //   type, the allocation function's name is operator new[] and the
1144  //   deallocation function's name is operator delete[].
1145  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1146                                        IsArray ? OO_Array_New : OO_New);
1147  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1148                                        IsArray ? OO_Array_Delete : OO_Delete);
1149
1150  QualType AllocElemType = Context.getBaseElementType(AllocType);
1151
1152  if (AllocElemType->isRecordType() && !UseGlobal) {
1153    CXXRecordDecl *Record
1154      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1155    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1156                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1157                          OperatorNew))
1158      return true;
1159  }
1160  if (!OperatorNew) {
1161    // Didn't find a member overload. Look for a global one.
1162    DeclareGlobalNewDelete();
1163    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1164    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1165                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1166                          OperatorNew))
1167      return true;
1168  }
1169
1170  // We don't need an operator delete if we're running under
1171  // -fno-exceptions.
1172  if (!getLangOptions().Exceptions) {
1173    OperatorDelete = 0;
1174    return false;
1175  }
1176
1177  // FindAllocationOverload can change the passed in arguments, so we need to
1178  // copy them back.
1179  if (NumPlaceArgs > 0)
1180    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1181
1182  // C++ [expr.new]p19:
1183  //
1184  //   If the new-expression begins with a unary :: operator, the
1185  //   deallocation function's name is looked up in the global
1186  //   scope. Otherwise, if the allocated type is a class type T or an
1187  //   array thereof, the deallocation function's name is looked up in
1188  //   the scope of T. If this lookup fails to find the name, or if
1189  //   the allocated type is not a class type or array thereof, the
1190  //   deallocation function's name is looked up in the global scope.
1191  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1192  if (AllocElemType->isRecordType() && !UseGlobal) {
1193    CXXRecordDecl *RD
1194      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1195    LookupQualifiedName(FoundDelete, RD);
1196  }
1197  if (FoundDelete.isAmbiguous())
1198    return true; // FIXME: clean up expressions?
1199
1200  if (FoundDelete.empty()) {
1201    DeclareGlobalNewDelete();
1202    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1203  }
1204
1205  FoundDelete.suppressDiagnostics();
1206
1207  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1208
1209  // Whether we're looking for a placement operator delete is dictated
1210  // by whether we selected a placement operator new, not by whether
1211  // we had explicit placement arguments.  This matters for things like
1212  //   struct A { void *operator new(size_t, int = 0); ... };
1213  //   A *a = new A()
1214  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1215
1216  if (isPlacementNew) {
1217    // C++ [expr.new]p20:
1218    //   A declaration of a placement deallocation function matches the
1219    //   declaration of a placement allocation function if it has the
1220    //   same number of parameters and, after parameter transformations
1221    //   (8.3.5), all parameter types except the first are
1222    //   identical. [...]
1223    //
1224    // To perform this comparison, we compute the function type that
1225    // the deallocation function should have, and use that type both
1226    // for template argument deduction and for comparison purposes.
1227    //
1228    // FIXME: this comparison should ignore CC and the like.
1229    QualType ExpectedFunctionType;
1230    {
1231      const FunctionProtoType *Proto
1232        = OperatorNew->getType()->getAs<FunctionProtoType>();
1233
1234      llvm::SmallVector<QualType, 4> ArgTypes;
1235      ArgTypes.push_back(Context.VoidPtrTy);
1236      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1237        ArgTypes.push_back(Proto->getArgType(I));
1238
1239      FunctionProtoType::ExtProtoInfo EPI;
1240      EPI.Variadic = Proto->isVariadic();
1241
1242      ExpectedFunctionType
1243        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1244                                  ArgTypes.size(), EPI);
1245    }
1246
1247    for (LookupResult::iterator D = FoundDelete.begin(),
1248                             DEnd = FoundDelete.end();
1249         D != DEnd; ++D) {
1250      FunctionDecl *Fn = 0;
1251      if (FunctionTemplateDecl *FnTmpl
1252            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1253        // Perform template argument deduction to try to match the
1254        // expected function type.
1255        TemplateDeductionInfo Info(Context, StartLoc);
1256        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1257          continue;
1258      } else
1259        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1260
1261      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1262        Matches.push_back(std::make_pair(D.getPair(), Fn));
1263    }
1264  } else {
1265    // C++ [expr.new]p20:
1266    //   [...] Any non-placement deallocation function matches a
1267    //   non-placement allocation function. [...]
1268    for (LookupResult::iterator D = FoundDelete.begin(),
1269                             DEnd = FoundDelete.end();
1270         D != DEnd; ++D) {
1271      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1272        if (isNonPlacementDeallocationFunction(Fn))
1273          Matches.push_back(std::make_pair(D.getPair(), Fn));
1274    }
1275  }
1276
1277  // C++ [expr.new]p20:
1278  //   [...] If the lookup finds a single matching deallocation
1279  //   function, that function will be called; otherwise, no
1280  //   deallocation function will be called.
1281  if (Matches.size() == 1) {
1282    OperatorDelete = Matches[0].second;
1283
1284    // C++0x [expr.new]p20:
1285    //   If the lookup finds the two-parameter form of a usual
1286    //   deallocation function (3.7.4.2) and that function, considered
1287    //   as a placement deallocation function, would have been
1288    //   selected as a match for the allocation function, the program
1289    //   is ill-formed.
1290    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1291        isNonPlacementDeallocationFunction(OperatorDelete)) {
1292      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1293        << SourceRange(PlaceArgs[0]->getLocStart(),
1294                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1295      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1296        << DeleteName;
1297    } else {
1298      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1299                            Matches[0].first);
1300    }
1301  }
1302
1303  return false;
1304}
1305
1306/// FindAllocationOverload - Find an fitting overload for the allocation
1307/// function in the specified scope.
1308bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1309                                  DeclarationName Name, Expr** Args,
1310                                  unsigned NumArgs, DeclContext *Ctx,
1311                                  bool AllowMissing, FunctionDecl *&Operator) {
1312  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1313  LookupQualifiedName(R, Ctx);
1314  if (R.empty()) {
1315    if (AllowMissing)
1316      return false;
1317    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1318      << Name << Range;
1319  }
1320
1321  if (R.isAmbiguous())
1322    return true;
1323
1324  R.suppressDiagnostics();
1325
1326  OverloadCandidateSet Candidates(StartLoc);
1327  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1328       Alloc != AllocEnd; ++Alloc) {
1329    // Even member operator new/delete are implicitly treated as
1330    // static, so don't use AddMemberCandidate.
1331    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1332
1333    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1334      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1335                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1336                                   Candidates,
1337                                   /*SuppressUserConversions=*/false);
1338      continue;
1339    }
1340
1341    FunctionDecl *Fn = cast<FunctionDecl>(D);
1342    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1343                         /*SuppressUserConversions=*/false);
1344  }
1345
1346  // Do the resolution.
1347  OverloadCandidateSet::iterator Best;
1348  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1349  case OR_Success: {
1350    // Got one!
1351    FunctionDecl *FnDecl = Best->Function;
1352    MarkDeclarationReferenced(StartLoc, FnDecl);
1353    // The first argument is size_t, and the first parameter must be size_t,
1354    // too. This is checked on declaration and can be assumed. (It can't be
1355    // asserted on, though, since invalid decls are left in there.)
1356    // Watch out for variadic allocator function.
1357    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1358    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1359      ExprResult Result
1360        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1361                                                       Context,
1362                                                       FnDecl->getParamDecl(i)),
1363                                    SourceLocation(),
1364                                    Owned(Args[i]));
1365      if (Result.isInvalid())
1366        return true;
1367
1368      Args[i] = Result.takeAs<Expr>();
1369    }
1370    Operator = FnDecl;
1371    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1372    return false;
1373  }
1374
1375  case OR_No_Viable_Function:
1376    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1377      << Name << Range;
1378    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1379    return true;
1380
1381  case OR_Ambiguous:
1382    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1383      << Name << Range;
1384    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1385    return true;
1386
1387  case OR_Deleted:
1388    Diag(StartLoc, diag::err_ovl_deleted_call)
1389      << Best->Function->isDeleted()
1390      << Name
1391      << Best->Function->getMessageUnavailableAttr(
1392             !Best->Function->isDeleted())
1393      << Range;
1394    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1395    return true;
1396  }
1397  assert(false && "Unreachable, bad result from BestViableFunction");
1398  return true;
1399}
1400
1401
1402/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1403/// delete. These are:
1404/// @code
1405///   void* operator new(std::size_t) throw(std::bad_alloc);
1406///   void* operator new[](std::size_t) throw(std::bad_alloc);
1407///   void operator delete(void *) throw();
1408///   void operator delete[](void *) throw();
1409/// @endcode
1410/// Note that the placement and nothrow forms of new are *not* implicitly
1411/// declared. Their use requires including \<new\>.
1412void Sema::DeclareGlobalNewDelete() {
1413  if (GlobalNewDeleteDeclared)
1414    return;
1415
1416  // C++ [basic.std.dynamic]p2:
1417  //   [...] The following allocation and deallocation functions (18.4) are
1418  //   implicitly declared in global scope in each translation unit of a
1419  //   program
1420  //
1421  //     void* operator new(std::size_t) throw(std::bad_alloc);
1422  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1423  //     void  operator delete(void*) throw();
1424  //     void  operator delete[](void*) throw();
1425  //
1426  //   These implicit declarations introduce only the function names operator
1427  //   new, operator new[], operator delete, operator delete[].
1428  //
1429  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1430  // "std" or "bad_alloc" as necessary to form the exception specification.
1431  // However, we do not make these implicit declarations visible to name
1432  // lookup.
1433  if (!StdBadAlloc) {
1434    // The "std::bad_alloc" class has not yet been declared, so build it
1435    // implicitly.
1436    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1437                                        getOrCreateStdNamespace(),
1438                                        SourceLocation(),
1439                                      &PP.getIdentifierTable().get("bad_alloc"),
1440                                        SourceLocation(), 0);
1441    getStdBadAlloc()->setImplicit(true);
1442  }
1443
1444  GlobalNewDeleteDeclared = true;
1445
1446  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1447  QualType SizeT = Context.getSizeType();
1448  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1449
1450  DeclareGlobalAllocationFunction(
1451      Context.DeclarationNames.getCXXOperatorName(OO_New),
1452      VoidPtr, SizeT, AssumeSaneOperatorNew);
1453  DeclareGlobalAllocationFunction(
1454      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1455      VoidPtr, SizeT, AssumeSaneOperatorNew);
1456  DeclareGlobalAllocationFunction(
1457      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1458      Context.VoidTy, VoidPtr);
1459  DeclareGlobalAllocationFunction(
1460      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1461      Context.VoidTy, VoidPtr);
1462}
1463
1464/// DeclareGlobalAllocationFunction - Declares a single implicit global
1465/// allocation function if it doesn't already exist.
1466void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1467                                           QualType Return, QualType Argument,
1468                                           bool AddMallocAttr) {
1469  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1470
1471  // Check if this function is already declared.
1472  {
1473    DeclContext::lookup_iterator Alloc, AllocEnd;
1474    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1475         Alloc != AllocEnd; ++Alloc) {
1476      // Only look at non-template functions, as it is the predefined,
1477      // non-templated allocation function we are trying to declare here.
1478      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1479        QualType InitialParamType =
1480          Context.getCanonicalType(
1481            Func->getParamDecl(0)->getType().getUnqualifiedType());
1482        // FIXME: Do we need to check for default arguments here?
1483        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1484          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1485            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1486          return;
1487        }
1488      }
1489    }
1490  }
1491
1492  QualType BadAllocType;
1493  bool HasBadAllocExceptionSpec
1494    = (Name.getCXXOverloadedOperator() == OO_New ||
1495       Name.getCXXOverloadedOperator() == OO_Array_New);
1496  if (HasBadAllocExceptionSpec) {
1497    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1498    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1499  }
1500
1501  FunctionProtoType::ExtProtoInfo EPI;
1502  EPI.HasExceptionSpec = true;
1503  if (HasBadAllocExceptionSpec) {
1504    EPI.NumExceptions = 1;
1505    EPI.Exceptions = &BadAllocType;
1506  }
1507
1508  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1509  FunctionDecl *Alloc =
1510    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1511                         FnType, /*TInfo=*/0, SC_None,
1512                         SC_None, false, true);
1513  Alloc->setImplicit();
1514
1515  if (AddMallocAttr)
1516    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1517
1518  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1519                                           0, Argument, /*TInfo=*/0,
1520                                           SC_None,
1521                                           SC_None, 0);
1522  Alloc->setParams(&Param, 1);
1523
1524  // FIXME: Also add this declaration to the IdentifierResolver, but
1525  // make sure it is at the end of the chain to coincide with the
1526  // global scope.
1527  Context.getTranslationUnitDecl()->addDecl(Alloc);
1528}
1529
1530bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1531                                    DeclarationName Name,
1532                                    FunctionDecl* &Operator) {
1533  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1534  // Try to find operator delete/operator delete[] in class scope.
1535  LookupQualifiedName(Found, RD);
1536
1537  if (Found.isAmbiguous())
1538    return true;
1539
1540  Found.suppressDiagnostics();
1541
1542  llvm::SmallVector<DeclAccessPair,4> Matches;
1543  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1544       F != FEnd; ++F) {
1545    NamedDecl *ND = (*F)->getUnderlyingDecl();
1546
1547    // Ignore template operator delete members from the check for a usual
1548    // deallocation function.
1549    if (isa<FunctionTemplateDecl>(ND))
1550      continue;
1551
1552    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1553      Matches.push_back(F.getPair());
1554  }
1555
1556  // There's exactly one suitable operator;  pick it.
1557  if (Matches.size() == 1) {
1558    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1559    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1560                          Matches[0]);
1561    return false;
1562
1563  // We found multiple suitable operators;  complain about the ambiguity.
1564  } else if (!Matches.empty()) {
1565    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1566      << Name << RD;
1567
1568    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1569           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1570      Diag((*F)->getUnderlyingDecl()->getLocation(),
1571           diag::note_member_declared_here) << Name;
1572    return true;
1573  }
1574
1575  // We did find operator delete/operator delete[] declarations, but
1576  // none of them were suitable.
1577  if (!Found.empty()) {
1578    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1579      << Name << RD;
1580
1581    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1582         F != FEnd; ++F)
1583      Diag((*F)->getUnderlyingDecl()->getLocation(),
1584           diag::note_member_declared_here) << Name;
1585
1586    return true;
1587  }
1588
1589  // Look for a global declaration.
1590  DeclareGlobalNewDelete();
1591  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1592
1593  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1594  Expr* DeallocArgs[1];
1595  DeallocArgs[0] = &Null;
1596  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1597                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1598                             Operator))
1599    return true;
1600
1601  assert(Operator && "Did not find a deallocation function!");
1602  return false;
1603}
1604
1605/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1606/// @code ::delete ptr; @endcode
1607/// or
1608/// @code delete [] ptr; @endcode
1609ExprResult
1610Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1611                     bool ArrayForm, Expr *Ex) {
1612  // C++ [expr.delete]p1:
1613  //   The operand shall have a pointer type, or a class type having a single
1614  //   conversion function to a pointer type. The result has type void.
1615  //
1616  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1617
1618  FunctionDecl *OperatorDelete = 0;
1619  bool ArrayFormAsWritten = ArrayForm;
1620  bool UsualArrayDeleteWantsSize = false;
1621
1622  if (!Ex->isTypeDependent()) {
1623    QualType Type = Ex->getType();
1624
1625    if (const RecordType *Record = Type->getAs<RecordType>()) {
1626      if (RequireCompleteType(StartLoc, Type,
1627                              PDiag(diag::err_delete_incomplete_class_type)))
1628        return ExprError();
1629
1630      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1631
1632      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1633      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1634      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1635             E = Conversions->end(); I != E; ++I) {
1636        NamedDecl *D = I.getDecl();
1637        if (isa<UsingShadowDecl>(D))
1638          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1639
1640        // Skip over templated conversion functions; they aren't considered.
1641        if (isa<FunctionTemplateDecl>(D))
1642          continue;
1643
1644        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1645
1646        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1647        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1648          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1649            ObjectPtrConversions.push_back(Conv);
1650      }
1651      if (ObjectPtrConversions.size() == 1) {
1652        // We have a single conversion to a pointer-to-object type. Perform
1653        // that conversion.
1654        // TODO: don't redo the conversion calculation.
1655        if (!PerformImplicitConversion(Ex,
1656                            ObjectPtrConversions.front()->getConversionType(),
1657                                      AA_Converting)) {
1658          Type = Ex->getType();
1659        }
1660      }
1661      else if (ObjectPtrConversions.size() > 1) {
1662        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1663              << Type << Ex->getSourceRange();
1664        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1665          NoteOverloadCandidate(ObjectPtrConversions[i]);
1666        return ExprError();
1667      }
1668    }
1669
1670    if (!Type->isPointerType())
1671      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1672        << Type << Ex->getSourceRange());
1673
1674    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1675    if (Pointee->isVoidType() && !isSFINAEContext()) {
1676      // The C++ standard bans deleting a pointer to a non-object type, which
1677      // effectively bans deletion of "void*". However, most compilers support
1678      // this, so we treat it as a warning unless we're in a SFINAE context.
1679      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1680        << Type << Ex->getSourceRange();
1681    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1682      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1683        << Type << Ex->getSourceRange());
1684    else if (!Pointee->isDependentType() &&
1685             RequireCompleteType(StartLoc, Pointee,
1686                                 PDiag(diag::warn_delete_incomplete)
1687                                   << Ex->getSourceRange()))
1688      return ExprError();
1689
1690    // C++ [expr.delete]p2:
1691    //   [Note: a pointer to a const type can be the operand of a
1692    //   delete-expression; it is not necessary to cast away the constness
1693    //   (5.2.11) of the pointer expression before it is used as the operand
1694    //   of the delete-expression. ]
1695    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1696                      CK_NoOp);
1697
1698    if (Pointee->isArrayType() && !ArrayForm) {
1699      Diag(StartLoc, diag::warn_delete_array_type)
1700          << Type << Ex->getSourceRange()
1701          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1702      ArrayForm = true;
1703    }
1704
1705    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1706                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1707
1708    QualType PointeeElem = Context.getBaseElementType(Pointee);
1709    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1710      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1711
1712      if (!UseGlobal &&
1713          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1714        return ExprError();
1715
1716      // If we're allocating an array of records, check whether the
1717      // usual operator delete[] has a size_t parameter.
1718      if (ArrayForm) {
1719        // If the user specifically asked to use the global allocator,
1720        // we'll need to do the lookup into the class.
1721        if (UseGlobal)
1722          UsualArrayDeleteWantsSize =
1723            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1724
1725        // Otherwise, the usual operator delete[] should be the
1726        // function we just found.
1727        else if (isa<CXXMethodDecl>(OperatorDelete))
1728          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1729      }
1730
1731      if (!RD->hasTrivialDestructor())
1732        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1733          MarkDeclarationReferenced(StartLoc,
1734                                    const_cast<CXXDestructorDecl*>(Dtor));
1735          DiagnoseUseOfDecl(Dtor, StartLoc);
1736        }
1737    }
1738
1739    if (!OperatorDelete) {
1740      // Look for a global declaration.
1741      DeclareGlobalNewDelete();
1742      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1743      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1744                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1745                                 OperatorDelete))
1746        return ExprError();
1747    }
1748
1749    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1750
1751    // Check access and ambiguity of operator delete and destructor.
1752    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1753      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1754      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1755          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1756                      PDiag(diag::err_access_dtor) << PointeeElem);
1757      }
1758    }
1759
1760  }
1761
1762  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1763                                           ArrayFormAsWritten,
1764                                           UsualArrayDeleteWantsSize,
1765                                           OperatorDelete, Ex, StartLoc));
1766}
1767
1768/// \brief Check the use of the given variable as a C++ condition in an if,
1769/// while, do-while, or switch statement.
1770ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1771                                        SourceLocation StmtLoc,
1772                                        bool ConvertToBoolean) {
1773  QualType T = ConditionVar->getType();
1774
1775  // C++ [stmt.select]p2:
1776  //   The declarator shall not specify a function or an array.
1777  if (T->isFunctionType())
1778    return ExprError(Diag(ConditionVar->getLocation(),
1779                          diag::err_invalid_use_of_function_type)
1780                       << ConditionVar->getSourceRange());
1781  else if (T->isArrayType())
1782    return ExprError(Diag(ConditionVar->getLocation(),
1783                          diag::err_invalid_use_of_array_type)
1784                     << ConditionVar->getSourceRange());
1785
1786  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1787                                        ConditionVar->getLocation(),
1788                            ConditionVar->getType().getNonReferenceType(),
1789                                        VK_LValue);
1790  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1791    return ExprError();
1792
1793  return Owned(Condition);
1794}
1795
1796/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1797bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1798  // C++ 6.4p4:
1799  // The value of a condition that is an initialized declaration in a statement
1800  // other than a switch statement is the value of the declared variable
1801  // implicitly converted to type bool. If that conversion is ill-formed, the
1802  // program is ill-formed.
1803  // The value of a condition that is an expression is the value of the
1804  // expression, implicitly converted to bool.
1805  //
1806  return PerformContextuallyConvertToBool(CondExpr);
1807}
1808
1809/// Helper function to determine whether this is the (deprecated) C++
1810/// conversion from a string literal to a pointer to non-const char or
1811/// non-const wchar_t (for narrow and wide string literals,
1812/// respectively).
1813bool
1814Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1815  // Look inside the implicit cast, if it exists.
1816  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1817    From = Cast->getSubExpr();
1818
1819  // A string literal (2.13.4) that is not a wide string literal can
1820  // be converted to an rvalue of type "pointer to char"; a wide
1821  // string literal can be converted to an rvalue of type "pointer
1822  // to wchar_t" (C++ 4.2p2).
1823  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1824    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1825      if (const BuiltinType *ToPointeeType
1826          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1827        // This conversion is considered only when there is an
1828        // explicit appropriate pointer target type (C++ 4.2p2).
1829        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1830            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1831             (!StrLit->isWide() &&
1832              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1833               ToPointeeType->getKind() == BuiltinType::Char_S))))
1834          return true;
1835      }
1836
1837  return false;
1838}
1839
1840static ExprResult BuildCXXCastArgument(Sema &S,
1841                                       SourceLocation CastLoc,
1842                                       QualType Ty,
1843                                       CastKind Kind,
1844                                       CXXMethodDecl *Method,
1845                                       NamedDecl *FoundDecl,
1846                                       Expr *From) {
1847  switch (Kind) {
1848  default: assert(0 && "Unhandled cast kind!");
1849  case CK_ConstructorConversion: {
1850    ASTOwningVector<Expr*> ConstructorArgs(S);
1851
1852    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1853                                  MultiExprArg(&From, 1),
1854                                  CastLoc, ConstructorArgs))
1855      return ExprError();
1856
1857    ExprResult Result =
1858    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1859                            move_arg(ConstructorArgs),
1860                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1861                            SourceRange());
1862    if (Result.isInvalid())
1863      return ExprError();
1864
1865    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1866  }
1867
1868  case CK_UserDefinedConversion: {
1869    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1870
1871    // Create an implicit call expr that calls it.
1872    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1873    if (Result.isInvalid())
1874      return ExprError();
1875
1876    return S.MaybeBindToTemporary(Result.get());
1877  }
1878  }
1879}
1880
1881/// PerformImplicitConversion - Perform an implicit conversion of the
1882/// expression From to the type ToType using the pre-computed implicit
1883/// conversion sequence ICS. Returns true if there was an error, false
1884/// otherwise. The expression From is replaced with the converted
1885/// expression. Action is the kind of conversion we're performing,
1886/// used in the error message.
1887bool
1888Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1889                                const ImplicitConversionSequence &ICS,
1890                                AssignmentAction Action, bool CStyle) {
1891  switch (ICS.getKind()) {
1892  case ImplicitConversionSequence::StandardConversion:
1893    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1894                                  CStyle))
1895      return true;
1896    break;
1897
1898  case ImplicitConversionSequence::UserDefinedConversion: {
1899
1900      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1901      CastKind CastKind;
1902      QualType BeforeToType;
1903      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1904        CastKind = CK_UserDefinedConversion;
1905
1906        // If the user-defined conversion is specified by a conversion function,
1907        // the initial standard conversion sequence converts the source type to
1908        // the implicit object parameter of the conversion function.
1909        BeforeToType = Context.getTagDeclType(Conv->getParent());
1910      } else {
1911        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1912        CastKind = CK_ConstructorConversion;
1913        // Do no conversion if dealing with ... for the first conversion.
1914        if (!ICS.UserDefined.EllipsisConversion) {
1915          // If the user-defined conversion is specified by a constructor, the
1916          // initial standard conversion sequence converts the source type to the
1917          // type required by the argument of the constructor
1918          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1919        }
1920      }
1921      // Watch out for elipsis conversion.
1922      if (!ICS.UserDefined.EllipsisConversion) {
1923        if (PerformImplicitConversion(From, BeforeToType,
1924                                      ICS.UserDefined.Before, AA_Converting,
1925                                      CStyle))
1926          return true;
1927      }
1928
1929      ExprResult CastArg
1930        = BuildCXXCastArgument(*this,
1931                               From->getLocStart(),
1932                               ToType.getNonReferenceType(),
1933                               CastKind, cast<CXXMethodDecl>(FD),
1934                               ICS.UserDefined.FoundConversionFunction,
1935                               From);
1936
1937      if (CastArg.isInvalid())
1938        return true;
1939
1940      From = CastArg.takeAs<Expr>();
1941
1942      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1943                                       AA_Converting, CStyle);
1944  }
1945
1946  case ImplicitConversionSequence::AmbiguousConversion:
1947    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1948                          PDiag(diag::err_typecheck_ambiguous_condition)
1949                            << From->getSourceRange());
1950     return true;
1951
1952  case ImplicitConversionSequence::EllipsisConversion:
1953    assert(false && "Cannot perform an ellipsis conversion");
1954    return false;
1955
1956  case ImplicitConversionSequence::BadConversion:
1957    return true;
1958  }
1959
1960  // Everything went well.
1961  return false;
1962}
1963
1964/// PerformImplicitConversion - Perform an implicit conversion of the
1965/// expression From to the type ToType by following the standard
1966/// conversion sequence SCS. Returns true if there was an error, false
1967/// otherwise. The expression From is replaced with the converted
1968/// expression. Flavor is the context in which we're performing this
1969/// conversion, for use in error messages.
1970bool
1971Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1972                                const StandardConversionSequence& SCS,
1973                                AssignmentAction Action, bool CStyle) {
1974  // Overall FIXME: we are recomputing too many types here and doing far too
1975  // much extra work. What this means is that we need to keep track of more
1976  // information that is computed when we try the implicit conversion initially,
1977  // so that we don't need to recompute anything here.
1978  QualType FromType = From->getType();
1979
1980  if (SCS.CopyConstructor) {
1981    // FIXME: When can ToType be a reference type?
1982    assert(!ToType->isReferenceType());
1983    if (SCS.Second == ICK_Derived_To_Base) {
1984      ASTOwningVector<Expr*> ConstructorArgs(*this);
1985      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1986                                  MultiExprArg(*this, &From, 1),
1987                                  /*FIXME:ConstructLoc*/SourceLocation(),
1988                                  ConstructorArgs))
1989        return true;
1990      ExprResult FromResult =
1991        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1992                              ToType, SCS.CopyConstructor,
1993                              move_arg(ConstructorArgs),
1994                              /*ZeroInit*/ false,
1995                              CXXConstructExpr::CK_Complete,
1996                              SourceRange());
1997      if (FromResult.isInvalid())
1998        return true;
1999      From = FromResult.takeAs<Expr>();
2000      return false;
2001    }
2002    ExprResult FromResult =
2003      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2004                            ToType, SCS.CopyConstructor,
2005                            MultiExprArg(*this, &From, 1),
2006                            /*ZeroInit*/ false,
2007                            CXXConstructExpr::CK_Complete,
2008                            SourceRange());
2009
2010    if (FromResult.isInvalid())
2011      return true;
2012
2013    From = FromResult.takeAs<Expr>();
2014    return false;
2015  }
2016
2017  // Resolve overloaded function references.
2018  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2019    DeclAccessPair Found;
2020    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2021                                                          true, Found);
2022    if (!Fn)
2023      return true;
2024
2025    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2026      return true;
2027
2028    From = FixOverloadedFunctionReference(From, Found, Fn);
2029    FromType = From->getType();
2030  }
2031
2032  // Perform the first implicit conversion.
2033  switch (SCS.First) {
2034  case ICK_Identity:
2035    // Nothing to do.
2036    break;
2037
2038  case ICK_Lvalue_To_Rvalue:
2039    // Should this get its own ICK?
2040    if (From->getObjectKind() == OK_ObjCProperty) {
2041      ConvertPropertyForRValue(From);
2042      if (!From->isGLValue()) break;
2043    }
2044
2045    // Check for trivial buffer overflows.
2046    if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(From))
2047      CheckArrayAccess(AE);
2048
2049    FromType = FromType.getUnqualifiedType();
2050    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2051                                    From, 0, VK_RValue);
2052    break;
2053
2054  case ICK_Array_To_Pointer:
2055    FromType = Context.getArrayDecayedType(FromType);
2056    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2057    break;
2058
2059  case ICK_Function_To_Pointer:
2060    FromType = Context.getPointerType(FromType);
2061    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2062    break;
2063
2064  default:
2065    assert(false && "Improper first standard conversion");
2066    break;
2067  }
2068
2069  // Perform the second implicit conversion
2070  switch (SCS.Second) {
2071  case ICK_Identity:
2072    // If both sides are functions (or pointers/references to them), there could
2073    // be incompatible exception declarations.
2074    if (CheckExceptionSpecCompatibility(From, ToType))
2075      return true;
2076    // Nothing else to do.
2077    break;
2078
2079  case ICK_NoReturn_Adjustment:
2080    // If both sides are functions (or pointers/references to them), there could
2081    // be incompatible exception declarations.
2082    if (CheckExceptionSpecCompatibility(From, ToType))
2083      return true;
2084
2085    ImpCastExprToType(From, ToType, CK_NoOp);
2086    break;
2087
2088  case ICK_Integral_Promotion:
2089  case ICK_Integral_Conversion:
2090    ImpCastExprToType(From, ToType, CK_IntegralCast);
2091    break;
2092
2093  case ICK_Floating_Promotion:
2094  case ICK_Floating_Conversion:
2095    ImpCastExprToType(From, ToType, CK_FloatingCast);
2096    break;
2097
2098  case ICK_Complex_Promotion:
2099  case ICK_Complex_Conversion: {
2100    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2101    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2102    CastKind CK;
2103    if (FromEl->isRealFloatingType()) {
2104      if (ToEl->isRealFloatingType())
2105        CK = CK_FloatingComplexCast;
2106      else
2107        CK = CK_FloatingComplexToIntegralComplex;
2108    } else if (ToEl->isRealFloatingType()) {
2109      CK = CK_IntegralComplexToFloatingComplex;
2110    } else {
2111      CK = CK_IntegralComplexCast;
2112    }
2113    ImpCastExprToType(From, ToType, CK);
2114    break;
2115  }
2116
2117  case ICK_Floating_Integral:
2118    if (ToType->isRealFloatingType())
2119      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2120    else
2121      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2122    break;
2123
2124  case ICK_Compatible_Conversion:
2125    ImpCastExprToType(From, ToType, CK_NoOp);
2126    break;
2127
2128  case ICK_Pointer_Conversion: {
2129    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2130      // Diagnose incompatible Objective-C conversions
2131      Diag(From->getSourceRange().getBegin(),
2132           diag::ext_typecheck_convert_incompatible_pointer)
2133        << From->getType() << ToType << Action
2134        << From->getSourceRange();
2135    }
2136
2137    CastKind Kind = CK_Invalid;
2138    CXXCastPath BasePath;
2139    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2140      return true;
2141    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2142    break;
2143  }
2144
2145  case ICK_Pointer_Member: {
2146    CastKind Kind = CK_Invalid;
2147    CXXCastPath BasePath;
2148    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2149      return true;
2150    if (CheckExceptionSpecCompatibility(From, ToType))
2151      return true;
2152    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2153    break;
2154  }
2155  case ICK_Boolean_Conversion: {
2156    CastKind Kind = CK_Invalid;
2157    switch (FromType->getScalarTypeKind()) {
2158    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2159    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2160    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2161    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2162    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2163    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2164    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2165    }
2166
2167    ImpCastExprToType(From, Context.BoolTy, Kind);
2168    break;
2169  }
2170
2171  case ICK_Derived_To_Base: {
2172    CXXCastPath BasePath;
2173    if (CheckDerivedToBaseConversion(From->getType(),
2174                                     ToType.getNonReferenceType(),
2175                                     From->getLocStart(),
2176                                     From->getSourceRange(),
2177                                     &BasePath,
2178                                     CStyle))
2179      return true;
2180
2181    ImpCastExprToType(From, ToType.getNonReferenceType(),
2182                      CK_DerivedToBase, CastCategory(From),
2183                      &BasePath);
2184    break;
2185  }
2186
2187  case ICK_Vector_Conversion:
2188    ImpCastExprToType(From, ToType, CK_BitCast);
2189    break;
2190
2191  case ICK_Vector_Splat:
2192    ImpCastExprToType(From, ToType, CK_VectorSplat);
2193    break;
2194
2195  case ICK_Complex_Real:
2196    // Case 1.  x -> _Complex y
2197    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2198      QualType ElType = ToComplex->getElementType();
2199      bool isFloatingComplex = ElType->isRealFloatingType();
2200
2201      // x -> y
2202      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2203        // do nothing
2204      } else if (From->getType()->isRealFloatingType()) {
2205        ImpCastExprToType(From, ElType,
2206                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2207      } else {
2208        assert(From->getType()->isIntegerType());
2209        ImpCastExprToType(From, ElType,
2210                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2211      }
2212      // y -> _Complex y
2213      ImpCastExprToType(From, ToType,
2214                   isFloatingComplex ? CK_FloatingRealToComplex
2215                                     : CK_IntegralRealToComplex);
2216
2217    // Case 2.  _Complex x -> y
2218    } else {
2219      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2220      assert(FromComplex);
2221
2222      QualType ElType = FromComplex->getElementType();
2223      bool isFloatingComplex = ElType->isRealFloatingType();
2224
2225      // _Complex x -> x
2226      ImpCastExprToType(From, ElType,
2227                   isFloatingComplex ? CK_FloatingComplexToReal
2228                                     : CK_IntegralComplexToReal);
2229
2230      // x -> y
2231      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2232        // do nothing
2233      } else if (ToType->isRealFloatingType()) {
2234        ImpCastExprToType(From, ToType,
2235                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2236      } else {
2237        assert(ToType->isIntegerType());
2238        ImpCastExprToType(From, ToType,
2239                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2240      }
2241    }
2242    break;
2243
2244  case ICK_Block_Pointer_Conversion: {
2245      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2246      break;
2247    }
2248
2249  case ICK_Lvalue_To_Rvalue:
2250  case ICK_Array_To_Pointer:
2251  case ICK_Function_To_Pointer:
2252  case ICK_Qualification:
2253  case ICK_Num_Conversion_Kinds:
2254    assert(false && "Improper second standard conversion");
2255    break;
2256  }
2257
2258  switch (SCS.Third) {
2259  case ICK_Identity:
2260    // Nothing to do.
2261    break;
2262
2263  case ICK_Qualification: {
2264    // The qualification keeps the category of the inner expression, unless the
2265    // target type isn't a reference.
2266    ExprValueKind VK = ToType->isReferenceType() ?
2267                                  CastCategory(From) : VK_RValue;
2268    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2269                      CK_NoOp, VK);
2270
2271    if (SCS.DeprecatedStringLiteralToCharPtr)
2272      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2273        << ToType.getNonReferenceType();
2274
2275    break;
2276    }
2277
2278  default:
2279    assert(false && "Improper third standard conversion");
2280    break;
2281  }
2282
2283  return false;
2284}
2285
2286ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2287                                     SourceLocation KWLoc,
2288                                     ParsedType Ty,
2289                                     SourceLocation RParen) {
2290  TypeSourceInfo *TSInfo;
2291  QualType T = GetTypeFromParser(Ty, &TSInfo);
2292
2293  if (!TSInfo)
2294    TSInfo = Context.getTrivialTypeSourceInfo(T);
2295  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2296}
2297
2298static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2299                                   SourceLocation KeyLoc) {
2300  // FIXME: For many of these traits, we need a complete type before we can
2301  // check these properties.
2302  assert(!T->isDependentType() &&
2303         "Cannot evaluate traits for dependent types.");
2304  ASTContext &C = Self.Context;
2305  switch(UTT) {
2306  default: assert(false && "Unknown type trait or not implemented");
2307  case UTT_IsPOD: return T->isPODType();
2308  case UTT_IsLiteral: return T->isLiteralType();
2309  case UTT_IsClass: // Fallthrough
2310  case UTT_IsUnion:
2311    if (const RecordType *Record = T->getAs<RecordType>()) {
2312      bool Union = Record->getDecl()->isUnion();
2313      return UTT == UTT_IsUnion ? Union : !Union;
2314    }
2315    return false;
2316  case UTT_IsEnum: return T->isEnumeralType();
2317  case UTT_IsPolymorphic:
2318    if (const RecordType *Record = T->getAs<RecordType>()) {
2319      // Type traits are only parsed in C++, so we've got CXXRecords.
2320      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2321    }
2322    return false;
2323  case UTT_IsAbstract:
2324    if (const RecordType *RT = T->getAs<RecordType>())
2325      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2326    return false;
2327  case UTT_IsEmpty:
2328    if (const RecordType *Record = T->getAs<RecordType>()) {
2329      return !Record->getDecl()->isUnion()
2330          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2331    }
2332    return false;
2333  case UTT_HasTrivialConstructor:
2334    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2335    //   If __is_pod (type) is true then the trait is true, else if type is
2336    //   a cv class or union type (or array thereof) with a trivial default
2337    //   constructor ([class.ctor]) then the trait is true, else it is false.
2338    if (T->isPODType())
2339      return true;
2340    if (const RecordType *RT =
2341          C.getBaseElementType(T)->getAs<RecordType>())
2342      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2343    return false;
2344  case UTT_HasTrivialCopy:
2345    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2346    //   If __is_pod (type) is true or type is a reference type then
2347    //   the trait is true, else if type is a cv class or union type
2348    //   with a trivial copy constructor ([class.copy]) then the trait
2349    //   is true, else it is false.
2350    if (T->isPODType() || T->isReferenceType())
2351      return true;
2352    if (const RecordType *RT = T->getAs<RecordType>())
2353      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2354    return false;
2355  case UTT_HasTrivialAssign:
2356    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2357    //   If type is const qualified or is a reference type then the
2358    //   trait is false. Otherwise if __is_pod (type) is true then the
2359    //   trait is true, else if type is a cv class or union type with
2360    //   a trivial copy assignment ([class.copy]) then the trait is
2361    //   true, else it is false.
2362    // Note: the const and reference restrictions are interesting,
2363    // given that const and reference members don't prevent a class
2364    // from having a trivial copy assignment operator (but do cause
2365    // errors if the copy assignment operator is actually used, q.v.
2366    // [class.copy]p12).
2367
2368    if (C.getBaseElementType(T).isConstQualified())
2369      return false;
2370    if (T->isPODType())
2371      return true;
2372    if (const RecordType *RT = T->getAs<RecordType>())
2373      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2374    return false;
2375  case UTT_HasTrivialDestructor:
2376    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2377    //   If __is_pod (type) is true or type is a reference type
2378    //   then the trait is true, else if type is a cv class or union
2379    //   type (or array thereof) with a trivial destructor
2380    //   ([class.dtor]) then the trait is true, else it is
2381    //   false.
2382    if (T->isPODType() || T->isReferenceType())
2383      return true;
2384    if (const RecordType *RT =
2385          C.getBaseElementType(T)->getAs<RecordType>())
2386      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2387    return false;
2388  // TODO: Propagate nothrowness for implicitly declared special members.
2389  case UTT_HasNothrowAssign:
2390    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2391    //   If type is const qualified or is a reference type then the
2392    //   trait is false. Otherwise if __has_trivial_assign (type)
2393    //   is true then the trait is true, else if type is a cv class
2394    //   or union type with copy assignment operators that are known
2395    //   not to throw an exception then the trait is true, else it is
2396    //   false.
2397    if (C.getBaseElementType(T).isConstQualified())
2398      return false;
2399    if (T->isReferenceType())
2400      return false;
2401    if (T->isPODType())
2402      return true;
2403    if (const RecordType *RT = T->getAs<RecordType>()) {
2404      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2405      if (RD->hasTrivialCopyAssignment())
2406        return true;
2407
2408      bool FoundAssign = false;
2409      bool AllNoThrow = true;
2410      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2411      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2412                       Sema::LookupOrdinaryName);
2413      if (Self.LookupQualifiedName(Res, RD)) {
2414        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2415             Op != OpEnd; ++Op) {
2416          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2417          if (Operator->isCopyAssignmentOperator()) {
2418            FoundAssign = true;
2419            const FunctionProtoType *CPT
2420                = Operator->getType()->getAs<FunctionProtoType>();
2421            if (!CPT->hasEmptyExceptionSpec()) {
2422              AllNoThrow = false;
2423              break;
2424            }
2425          }
2426        }
2427      }
2428
2429      return FoundAssign && AllNoThrow;
2430    }
2431    return false;
2432  case UTT_HasNothrowCopy:
2433    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2434    //   If __has_trivial_copy (type) is true then the trait is true, else
2435    //   if type is a cv class or union type with copy constructors that are
2436    //   known not to throw an exception then the trait is true, else it is
2437    //   false.
2438    if (T->isPODType() || T->isReferenceType())
2439      return true;
2440    if (const RecordType *RT = T->getAs<RecordType>()) {
2441      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2442      if (RD->hasTrivialCopyConstructor())
2443        return true;
2444
2445      bool FoundConstructor = false;
2446      bool AllNoThrow = true;
2447      unsigned FoundTQs;
2448      DeclContext::lookup_const_iterator Con, ConEnd;
2449      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2450           Con != ConEnd; ++Con) {
2451        // A template constructor is never a copy constructor.
2452        // FIXME: However, it may actually be selected at the actual overload
2453        // resolution point.
2454        if (isa<FunctionTemplateDecl>(*Con))
2455          continue;
2456        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2457        if (Constructor->isCopyConstructor(FoundTQs)) {
2458          FoundConstructor = true;
2459          const FunctionProtoType *CPT
2460              = Constructor->getType()->getAs<FunctionProtoType>();
2461          // TODO: check whether evaluating default arguments can throw.
2462          // For now, we'll be conservative and assume that they can throw.
2463          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2464            AllNoThrow = false;
2465            break;
2466          }
2467        }
2468      }
2469
2470      return FoundConstructor && AllNoThrow;
2471    }
2472    return false;
2473  case UTT_HasNothrowConstructor:
2474    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2475    //   If __has_trivial_constructor (type) is true then the trait is
2476    //   true, else if type is a cv class or union type (or array
2477    //   thereof) with a default constructor that is known not to
2478    //   throw an exception then the trait is true, else it is false.
2479    if (T->isPODType())
2480      return true;
2481    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2482      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2483      if (RD->hasTrivialConstructor())
2484        return true;
2485
2486      DeclContext::lookup_const_iterator Con, ConEnd;
2487      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2488           Con != ConEnd; ++Con) {
2489        // FIXME: In C++0x, a constructor template can be a default constructor.
2490        if (isa<FunctionTemplateDecl>(*Con))
2491          continue;
2492        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2493        if (Constructor->isDefaultConstructor()) {
2494          const FunctionProtoType *CPT
2495              = Constructor->getType()->getAs<FunctionProtoType>();
2496          // TODO: check whether evaluating default arguments can throw.
2497          // For now, we'll be conservative and assume that they can throw.
2498          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2499        }
2500      }
2501    }
2502    return false;
2503  case UTT_HasVirtualDestructor:
2504    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2505    //   If type is a class type with a virtual destructor ([class.dtor])
2506    //   then the trait is true, else it is false.
2507    if (const RecordType *Record = T->getAs<RecordType>()) {
2508      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2509      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2510        return Destructor->isVirtual();
2511    }
2512    return false;
2513  }
2514}
2515
2516ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2517                                     SourceLocation KWLoc,
2518                                     TypeSourceInfo *TSInfo,
2519                                     SourceLocation RParen) {
2520  QualType T = TSInfo->getType();
2521
2522  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2523  // all traits except __is_class, __is_enum and __is_union require a the type
2524  // to be complete, an array of unknown bound, or void.
2525  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2526    QualType E = T;
2527    if (T->isIncompleteArrayType())
2528      E = Context.getAsArrayType(T)->getElementType();
2529    if (!T->isVoidType() &&
2530        RequireCompleteType(KWLoc, E,
2531                            diag::err_incomplete_type_used_in_type_trait_expr))
2532      return ExprError();
2533  }
2534
2535  bool Value = false;
2536  if (!T->isDependentType())
2537    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2538
2539  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2540                                                RParen, Context.BoolTy));
2541}
2542
2543ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2544                                      SourceLocation KWLoc,
2545                                      ParsedType LhsTy,
2546                                      ParsedType RhsTy,
2547                                      SourceLocation RParen) {
2548  TypeSourceInfo *LhsTSInfo;
2549  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2550  if (!LhsTSInfo)
2551    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2552
2553  TypeSourceInfo *RhsTSInfo;
2554  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2555  if (!RhsTSInfo)
2556    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2557
2558  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2559}
2560
2561static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2562                                    QualType LhsT, QualType RhsT,
2563                                    SourceLocation KeyLoc) {
2564  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2565         "Cannot evaluate traits for dependent types.");
2566
2567  switch(BTT) {
2568  case BTT_IsBaseOf: {
2569    // C++0x [meta.rel]p2
2570    // Base is a base class of Derived without regard to cv-qualifiers or
2571    // Base and Derived are not unions and name the same class type without
2572    // regard to cv-qualifiers.
2573
2574    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2575    if (!lhsRecord) return false;
2576
2577    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2578    if (!rhsRecord) return false;
2579
2580    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2581             == (lhsRecord == rhsRecord));
2582
2583    if (lhsRecord == rhsRecord)
2584      return !lhsRecord->getDecl()->isUnion();
2585
2586    // C++0x [meta.rel]p2:
2587    //   If Base and Derived are class types and are different types
2588    //   (ignoring possible cv-qualifiers) then Derived shall be a
2589    //   complete type.
2590    if (Self.RequireCompleteType(KeyLoc, RhsT,
2591                          diag::err_incomplete_type_used_in_type_trait_expr))
2592      return false;
2593
2594    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2595      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2596  }
2597
2598  case BTT_TypeCompatible:
2599    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2600                                           RhsT.getUnqualifiedType());
2601
2602  case BTT_IsConvertibleTo: {
2603    // C++0x [meta.rel]p4:
2604    //   Given the following function prototype:
2605    //
2606    //     template <class T>
2607    //       typename add_rvalue_reference<T>::type create();
2608    //
2609    //   the predicate condition for a template specialization
2610    //   is_convertible<From, To> shall be satisfied if and only if
2611    //   the return expression in the following code would be
2612    //   well-formed, including any implicit conversions to the return
2613    //   type of the function:
2614    //
2615    //     To test() {
2616    //       return create<From>();
2617    //     }
2618    //
2619    //   Access checking is performed as if in a context unrelated to To and
2620    //   From. Only the validity of the immediate context of the expression
2621    //   of the return-statement (including conversions to the return type)
2622    //   is considered.
2623    //
2624    // We model the initialization as a copy-initialization of a temporary
2625    // of the appropriate type, which for this expression is identical to the
2626    // return statement (since NRVO doesn't apply).
2627    if (LhsT->isObjectType() || LhsT->isFunctionType())
2628      LhsT = Self.Context.getRValueReferenceType(LhsT);
2629
2630    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2631    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2632                         Expr::getValueKindForType(LhsT));
2633    Expr *FromPtr = &From;
2634    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2635                                                           SourceLocation()));
2636
2637    // Perform the initialization within a SFINAE trap at translation unit
2638    // scope.
2639    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2640    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2641    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2642    if (Init.getKind() == InitializationSequence::FailedSequence)
2643      return false;
2644
2645    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2646    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2647  }
2648  }
2649  llvm_unreachable("Unknown type trait or not implemented");
2650}
2651
2652ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2653                                      SourceLocation KWLoc,
2654                                      TypeSourceInfo *LhsTSInfo,
2655                                      TypeSourceInfo *RhsTSInfo,
2656                                      SourceLocation RParen) {
2657  QualType LhsT = LhsTSInfo->getType();
2658  QualType RhsT = RhsTSInfo->getType();
2659
2660  if (BTT == BTT_TypeCompatible) {
2661    if (getLangOptions().CPlusPlus) {
2662      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2663        << SourceRange(KWLoc, RParen);
2664      return ExprError();
2665    }
2666  }
2667
2668  bool Value = false;
2669  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2670    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2671
2672  // Select trait result type.
2673  QualType ResultType;
2674  switch (BTT) {
2675  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2676  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2677  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2678  }
2679
2680  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2681                                                 RhsTSInfo, Value, RParen,
2682                                                 ResultType));
2683}
2684
2685QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2686                                            ExprValueKind &VK,
2687                                            SourceLocation Loc,
2688                                            bool isIndirect) {
2689  const char *OpSpelling = isIndirect ? "->*" : ".*";
2690  // C++ 5.5p2
2691  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2692  //   be of type "pointer to member of T" (where T is a completely-defined
2693  //   class type) [...]
2694  QualType RType = rex->getType();
2695  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2696  if (!MemPtr) {
2697    Diag(Loc, diag::err_bad_memptr_rhs)
2698      << OpSpelling << RType << rex->getSourceRange();
2699    return QualType();
2700  }
2701
2702  QualType Class(MemPtr->getClass(), 0);
2703
2704  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2705  // member pointer points must be completely-defined. However, there is no
2706  // reason for this semantic distinction, and the rule is not enforced by
2707  // other compilers. Therefore, we do not check this property, as it is
2708  // likely to be considered a defect.
2709
2710  // C++ 5.5p2
2711  //   [...] to its first operand, which shall be of class T or of a class of
2712  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2713  //   such a class]
2714  QualType LType = lex->getType();
2715  if (isIndirect) {
2716    if (const PointerType *Ptr = LType->getAs<PointerType>())
2717      LType = Ptr->getPointeeType();
2718    else {
2719      Diag(Loc, diag::err_bad_memptr_lhs)
2720        << OpSpelling << 1 << LType
2721        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2722      return QualType();
2723    }
2724  }
2725
2726  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2727    // If we want to check the hierarchy, we need a complete type.
2728    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2729        << OpSpelling << (int)isIndirect)) {
2730      return QualType();
2731    }
2732    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2733                       /*DetectVirtual=*/false);
2734    // FIXME: Would it be useful to print full ambiguity paths, or is that
2735    // overkill?
2736    if (!IsDerivedFrom(LType, Class, Paths) ||
2737        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2738      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2739        << (int)isIndirect << lex->getType();
2740      return QualType();
2741    }
2742    // Cast LHS to type of use.
2743    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2744    ExprValueKind VK =
2745        isIndirect ? VK_RValue : CastCategory(lex);
2746
2747    CXXCastPath BasePath;
2748    BuildBasePathArray(Paths, BasePath);
2749    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2750  }
2751
2752  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2753    // Diagnose use of pointer-to-member type which when used as
2754    // the functional cast in a pointer-to-member expression.
2755    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2756     return QualType();
2757  }
2758
2759  // C++ 5.5p2
2760  //   The result is an object or a function of the type specified by the
2761  //   second operand.
2762  // The cv qualifiers are the union of those in the pointer and the left side,
2763  // in accordance with 5.5p5 and 5.2.5.
2764  // FIXME: This returns a dereferenced member function pointer as a normal
2765  // function type. However, the only operation valid on such functions is
2766  // calling them. There's also a GCC extension to get a function pointer to the
2767  // thing, which is another complication, because this type - unlike the type
2768  // that is the result of this expression - takes the class as the first
2769  // argument.
2770  // We probably need a "MemberFunctionClosureType" or something like that.
2771  QualType Result = MemPtr->getPointeeType();
2772  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2773
2774  // C++0x [expr.mptr.oper]p6:
2775  //   In a .* expression whose object expression is an rvalue, the program is
2776  //   ill-formed if the second operand is a pointer to member function with
2777  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2778  //   expression is an lvalue, the program is ill-formed if the second operand
2779  //   is a pointer to member function with ref-qualifier &&.
2780  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2781    switch (Proto->getRefQualifier()) {
2782    case RQ_None:
2783      // Do nothing
2784      break;
2785
2786    case RQ_LValue:
2787      if (!isIndirect && !lex->Classify(Context).isLValue())
2788        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2789          << RType << 1 << lex->getSourceRange();
2790      break;
2791
2792    case RQ_RValue:
2793      if (isIndirect || !lex->Classify(Context).isRValue())
2794        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2795          << RType << 0 << lex->getSourceRange();
2796      break;
2797    }
2798  }
2799
2800  // C++ [expr.mptr.oper]p6:
2801  //   The result of a .* expression whose second operand is a pointer
2802  //   to a data member is of the same value category as its
2803  //   first operand. The result of a .* expression whose second
2804  //   operand is a pointer to a member function is a prvalue. The
2805  //   result of an ->* expression is an lvalue if its second operand
2806  //   is a pointer to data member and a prvalue otherwise.
2807  if (Result->isFunctionType())
2808    VK = VK_RValue;
2809  else if (isIndirect)
2810    VK = VK_LValue;
2811  else
2812    VK = lex->getValueKind();
2813
2814  return Result;
2815}
2816
2817/// \brief Try to convert a type to another according to C++0x 5.16p3.
2818///
2819/// This is part of the parameter validation for the ? operator. If either
2820/// value operand is a class type, the two operands are attempted to be
2821/// converted to each other. This function does the conversion in one direction.
2822/// It returns true if the program is ill-formed and has already been diagnosed
2823/// as such.
2824static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2825                                SourceLocation QuestionLoc,
2826                                bool &HaveConversion,
2827                                QualType &ToType) {
2828  HaveConversion = false;
2829  ToType = To->getType();
2830
2831  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2832                                                           SourceLocation());
2833  // C++0x 5.16p3
2834  //   The process for determining whether an operand expression E1 of type T1
2835  //   can be converted to match an operand expression E2 of type T2 is defined
2836  //   as follows:
2837  //   -- If E2 is an lvalue:
2838  bool ToIsLvalue = To->isLValue();
2839  if (ToIsLvalue) {
2840    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2841    //   type "lvalue reference to T2", subject to the constraint that in the
2842    //   conversion the reference must bind directly to E1.
2843    QualType T = Self.Context.getLValueReferenceType(ToType);
2844    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2845
2846    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2847    if (InitSeq.isDirectReferenceBinding()) {
2848      ToType = T;
2849      HaveConversion = true;
2850      return false;
2851    }
2852
2853    if (InitSeq.isAmbiguous())
2854      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2855  }
2856
2857  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2858  //      -- if E1 and E2 have class type, and the underlying class types are
2859  //         the same or one is a base class of the other:
2860  QualType FTy = From->getType();
2861  QualType TTy = To->getType();
2862  const RecordType *FRec = FTy->getAs<RecordType>();
2863  const RecordType *TRec = TTy->getAs<RecordType>();
2864  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2865                       Self.IsDerivedFrom(FTy, TTy);
2866  if (FRec && TRec &&
2867      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2868    //         E1 can be converted to match E2 if the class of T2 is the
2869    //         same type as, or a base class of, the class of T1, and
2870    //         [cv2 > cv1].
2871    if (FRec == TRec || FDerivedFromT) {
2872      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2873        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2874        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2875        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2876          HaveConversion = true;
2877          return false;
2878        }
2879
2880        if (InitSeq.isAmbiguous())
2881          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2882      }
2883    }
2884
2885    return false;
2886  }
2887
2888  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2889  //        implicitly converted to the type that expression E2 would have
2890  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2891  //        an rvalue).
2892  //
2893  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2894  // to the array-to-pointer or function-to-pointer conversions.
2895  if (!TTy->getAs<TagType>())
2896    TTy = TTy.getUnqualifiedType();
2897
2898  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2899  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2900  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2901  ToType = TTy;
2902  if (InitSeq.isAmbiguous())
2903    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2904
2905  return false;
2906}
2907
2908/// \brief Try to find a common type for two according to C++0x 5.16p5.
2909///
2910/// This is part of the parameter validation for the ? operator. If either
2911/// value operand is a class type, overload resolution is used to find a
2912/// conversion to a common type.
2913static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2914                                    SourceLocation QuestionLoc) {
2915  Expr *Args[2] = { LHS, RHS };
2916  OverloadCandidateSet CandidateSet(QuestionLoc);
2917  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2918                                    CandidateSet);
2919
2920  OverloadCandidateSet::iterator Best;
2921  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2922    case OR_Success:
2923      // We found a match. Perform the conversions on the arguments and move on.
2924      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2925                                         Best->Conversions[0], Sema::AA_Converting) ||
2926          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2927                                         Best->Conversions[1], Sema::AA_Converting))
2928        break;
2929      if (Best->Function)
2930        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
2931      return false;
2932
2933    case OR_No_Viable_Function:
2934
2935      // Emit a better diagnostic if one of the expressions is a null pointer
2936      // constant and the other is a pointer type. In this case, the user most
2937      // likely forgot to take the address of the other expression.
2938      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2939        return true;
2940
2941      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2942        << LHS->getType() << RHS->getType()
2943        << LHS->getSourceRange() << RHS->getSourceRange();
2944      return true;
2945
2946    case OR_Ambiguous:
2947      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2948        << LHS->getType() << RHS->getType()
2949        << LHS->getSourceRange() << RHS->getSourceRange();
2950      // FIXME: Print the possible common types by printing the return types of
2951      // the viable candidates.
2952      break;
2953
2954    case OR_Deleted:
2955      assert(false && "Conditional operator has only built-in overloads");
2956      break;
2957  }
2958  return true;
2959}
2960
2961/// \brief Perform an "extended" implicit conversion as returned by
2962/// TryClassUnification.
2963static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2964  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2965  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2966                                                           SourceLocation());
2967  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2968  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2969  if (Result.isInvalid())
2970    return true;
2971
2972  E = Result.takeAs<Expr>();
2973  return false;
2974}
2975
2976/// \brief Check the operands of ?: under C++ semantics.
2977///
2978/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2979/// extension. In this case, LHS == Cond. (But they're not aliases.)
2980QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2981                                           ExprValueKind &VK, ExprObjectKind &OK,
2982                                           SourceLocation QuestionLoc) {
2983  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2984  // interface pointers.
2985
2986  // C++0x 5.16p1
2987  //   The first expression is contextually converted to bool.
2988  if (!Cond->isTypeDependent()) {
2989    if (CheckCXXBooleanCondition(Cond))
2990      return QualType();
2991  }
2992
2993  // Assume r-value.
2994  VK = VK_RValue;
2995  OK = OK_Ordinary;
2996
2997  // Either of the arguments dependent?
2998  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2999    return Context.DependentTy;
3000
3001  // C++0x 5.16p2
3002  //   If either the second or the third operand has type (cv) void, ...
3003  QualType LTy = LHS->getType();
3004  QualType RTy = RHS->getType();
3005  bool LVoid = LTy->isVoidType();
3006  bool RVoid = RTy->isVoidType();
3007  if (LVoid || RVoid) {
3008    //   ... then the [l2r] conversions are performed on the second and third
3009    //   operands ...
3010    DefaultFunctionArrayLvalueConversion(LHS);
3011    DefaultFunctionArrayLvalueConversion(RHS);
3012    LTy = LHS->getType();
3013    RTy = RHS->getType();
3014
3015    //   ... and one of the following shall hold:
3016    //   -- The second or the third operand (but not both) is a throw-
3017    //      expression; the result is of the type of the other and is an rvalue.
3018    bool LThrow = isa<CXXThrowExpr>(LHS);
3019    bool RThrow = isa<CXXThrowExpr>(RHS);
3020    if (LThrow && !RThrow)
3021      return RTy;
3022    if (RThrow && !LThrow)
3023      return LTy;
3024
3025    //   -- Both the second and third operands have type void; the result is of
3026    //      type void and is an rvalue.
3027    if (LVoid && RVoid)
3028      return Context.VoidTy;
3029
3030    // Neither holds, error.
3031    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3032      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3033      << LHS->getSourceRange() << RHS->getSourceRange();
3034    return QualType();
3035  }
3036
3037  // Neither is void.
3038
3039  // C++0x 5.16p3
3040  //   Otherwise, if the second and third operand have different types, and
3041  //   either has (cv) class type, and attempt is made to convert each of those
3042  //   operands to the other.
3043  if (!Context.hasSameType(LTy, RTy) &&
3044      (LTy->isRecordType() || RTy->isRecordType())) {
3045    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3046    // These return true if a single direction is already ambiguous.
3047    QualType L2RType, R2LType;
3048    bool HaveL2R, HaveR2L;
3049    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3050      return QualType();
3051    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3052      return QualType();
3053
3054    //   If both can be converted, [...] the program is ill-formed.
3055    if (HaveL2R && HaveR2L) {
3056      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3057        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3058      return QualType();
3059    }
3060
3061    //   If exactly one conversion is possible, that conversion is applied to
3062    //   the chosen operand and the converted operands are used in place of the
3063    //   original operands for the remainder of this section.
3064    if (HaveL2R) {
3065      if (ConvertForConditional(*this, LHS, L2RType))
3066        return QualType();
3067      LTy = LHS->getType();
3068    } else if (HaveR2L) {
3069      if (ConvertForConditional(*this, RHS, R2LType))
3070        return QualType();
3071      RTy = RHS->getType();
3072    }
3073  }
3074
3075  // C++0x 5.16p4
3076  //   If the second and third operands are glvalues of the same value
3077  //   category and have the same type, the result is of that type and
3078  //   value category and it is a bit-field if the second or the third
3079  //   operand is a bit-field, or if both are bit-fields.
3080  // We only extend this to bitfields, not to the crazy other kinds of
3081  // l-values.
3082  bool Same = Context.hasSameType(LTy, RTy);
3083  if (Same &&
3084      LHS->isGLValue() &&
3085      LHS->getValueKind() == RHS->getValueKind() &&
3086      LHS->isOrdinaryOrBitFieldObject() &&
3087      RHS->isOrdinaryOrBitFieldObject()) {
3088    VK = LHS->getValueKind();
3089    if (LHS->getObjectKind() == OK_BitField ||
3090        RHS->getObjectKind() == OK_BitField)
3091      OK = OK_BitField;
3092    return LTy;
3093  }
3094
3095  // C++0x 5.16p5
3096  //   Otherwise, the result is an rvalue. If the second and third operands
3097  //   do not have the same type, and either has (cv) class type, ...
3098  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3099    //   ... overload resolution is used to determine the conversions (if any)
3100    //   to be applied to the operands. If the overload resolution fails, the
3101    //   program is ill-formed.
3102    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3103      return QualType();
3104  }
3105
3106  // C++0x 5.16p6
3107  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3108  //   conversions are performed on the second and third operands.
3109  DefaultFunctionArrayLvalueConversion(LHS);
3110  DefaultFunctionArrayLvalueConversion(RHS);
3111  LTy = LHS->getType();
3112  RTy = RHS->getType();
3113
3114  //   After those conversions, one of the following shall hold:
3115  //   -- The second and third operands have the same type; the result
3116  //      is of that type. If the operands have class type, the result
3117  //      is a prvalue temporary of the result type, which is
3118  //      copy-initialized from either the second operand or the third
3119  //      operand depending on the value of the first operand.
3120  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3121    if (LTy->isRecordType()) {
3122      // The operands have class type. Make a temporary copy.
3123      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3124      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3125                                                     SourceLocation(),
3126                                                     Owned(LHS));
3127      if (LHSCopy.isInvalid())
3128        return QualType();
3129
3130      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3131                                                     SourceLocation(),
3132                                                     Owned(RHS));
3133      if (RHSCopy.isInvalid())
3134        return QualType();
3135
3136      LHS = LHSCopy.takeAs<Expr>();
3137      RHS = RHSCopy.takeAs<Expr>();
3138    }
3139
3140    return LTy;
3141  }
3142
3143  // Extension: conditional operator involving vector types.
3144  if (LTy->isVectorType() || RTy->isVectorType())
3145    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3146
3147  //   -- The second and third operands have arithmetic or enumeration type;
3148  //      the usual arithmetic conversions are performed to bring them to a
3149  //      common type, and the result is of that type.
3150  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3151    UsualArithmeticConversions(LHS, RHS);
3152    return LHS->getType();
3153  }
3154
3155  //   -- The second and third operands have pointer type, or one has pointer
3156  //      type and the other is a null pointer constant; pointer conversions
3157  //      and qualification conversions are performed to bring them to their
3158  //      composite pointer type. The result is of the composite pointer type.
3159  //   -- The second and third operands have pointer to member type, or one has
3160  //      pointer to member type and the other is a null pointer constant;
3161  //      pointer to member conversions and qualification conversions are
3162  //      performed to bring them to a common type, whose cv-qualification
3163  //      shall match the cv-qualification of either the second or the third
3164  //      operand. The result is of the common type.
3165  bool NonStandardCompositeType = false;
3166  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3167                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3168  if (!Composite.isNull()) {
3169    if (NonStandardCompositeType)
3170      Diag(QuestionLoc,
3171           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3172        << LTy << RTy << Composite
3173        << LHS->getSourceRange() << RHS->getSourceRange();
3174
3175    return Composite;
3176  }
3177
3178  // Similarly, attempt to find composite type of two objective-c pointers.
3179  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3180  if (!Composite.isNull())
3181    return Composite;
3182
3183  // Check if we are using a null with a non-pointer type.
3184  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3185    return QualType();
3186
3187  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3188    << LHS->getType() << RHS->getType()
3189    << LHS->getSourceRange() << RHS->getSourceRange();
3190  return QualType();
3191}
3192
3193/// \brief Find a merged pointer type and convert the two expressions to it.
3194///
3195/// This finds the composite pointer type (or member pointer type) for @p E1
3196/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3197/// type and returns it.
3198/// It does not emit diagnostics.
3199///
3200/// \param Loc The location of the operator requiring these two expressions to
3201/// be converted to the composite pointer type.
3202///
3203/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3204/// a non-standard (but still sane) composite type to which both expressions
3205/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3206/// will be set true.
3207QualType Sema::FindCompositePointerType(SourceLocation Loc,
3208                                        Expr *&E1, Expr *&E2,
3209                                        bool *NonStandardCompositeType) {
3210  if (NonStandardCompositeType)
3211    *NonStandardCompositeType = false;
3212
3213  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3214  QualType T1 = E1->getType(), T2 = E2->getType();
3215
3216  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3217      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3218   return QualType();
3219
3220  // C++0x 5.9p2
3221  //   Pointer conversions and qualification conversions are performed on
3222  //   pointer operands to bring them to their composite pointer type. If
3223  //   one operand is a null pointer constant, the composite pointer type is
3224  //   the type of the other operand.
3225  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3226    if (T2->isMemberPointerType())
3227      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3228    else
3229      ImpCastExprToType(E1, T2, CK_NullToPointer);
3230    return T2;
3231  }
3232  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3233    if (T1->isMemberPointerType())
3234      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3235    else
3236      ImpCastExprToType(E2, T1, CK_NullToPointer);
3237    return T1;
3238  }
3239
3240  // Now both have to be pointers or member pointers.
3241  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3242      (!T2->isPointerType() && !T2->isMemberPointerType()))
3243    return QualType();
3244
3245  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3246  //   the other has type "pointer to cv2 T" and the composite pointer type is
3247  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3248  //   Otherwise, the composite pointer type is a pointer type similar to the
3249  //   type of one of the operands, with a cv-qualification signature that is
3250  //   the union of the cv-qualification signatures of the operand types.
3251  // In practice, the first part here is redundant; it's subsumed by the second.
3252  // What we do here is, we build the two possible composite types, and try the
3253  // conversions in both directions. If only one works, or if the two composite
3254  // types are the same, we have succeeded.
3255  // FIXME: extended qualifiers?
3256  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3257  QualifierVector QualifierUnion;
3258  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3259      ContainingClassVector;
3260  ContainingClassVector MemberOfClass;
3261  QualType Composite1 = Context.getCanonicalType(T1),
3262           Composite2 = Context.getCanonicalType(T2);
3263  unsigned NeedConstBefore = 0;
3264  do {
3265    const PointerType *Ptr1, *Ptr2;
3266    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3267        (Ptr2 = Composite2->getAs<PointerType>())) {
3268      Composite1 = Ptr1->getPointeeType();
3269      Composite2 = Ptr2->getPointeeType();
3270
3271      // If we're allowed to create a non-standard composite type, keep track
3272      // of where we need to fill in additional 'const' qualifiers.
3273      if (NonStandardCompositeType &&
3274          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3275        NeedConstBefore = QualifierUnion.size();
3276
3277      QualifierUnion.push_back(
3278                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3279      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3280      continue;
3281    }
3282
3283    const MemberPointerType *MemPtr1, *MemPtr2;
3284    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3285        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3286      Composite1 = MemPtr1->getPointeeType();
3287      Composite2 = MemPtr2->getPointeeType();
3288
3289      // If we're allowed to create a non-standard composite type, keep track
3290      // of where we need to fill in additional 'const' qualifiers.
3291      if (NonStandardCompositeType &&
3292          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3293        NeedConstBefore = QualifierUnion.size();
3294
3295      QualifierUnion.push_back(
3296                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3297      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3298                                             MemPtr2->getClass()));
3299      continue;
3300    }
3301
3302    // FIXME: block pointer types?
3303
3304    // Cannot unwrap any more types.
3305    break;
3306  } while (true);
3307
3308  if (NeedConstBefore && NonStandardCompositeType) {
3309    // Extension: Add 'const' to qualifiers that come before the first qualifier
3310    // mismatch, so that our (non-standard!) composite type meets the
3311    // requirements of C++ [conv.qual]p4 bullet 3.
3312    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3313      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3314        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3315        *NonStandardCompositeType = true;
3316      }
3317    }
3318  }
3319
3320  // Rewrap the composites as pointers or member pointers with the union CVRs.
3321  ContainingClassVector::reverse_iterator MOC
3322    = MemberOfClass.rbegin();
3323  for (QualifierVector::reverse_iterator
3324         I = QualifierUnion.rbegin(),
3325         E = QualifierUnion.rend();
3326       I != E; (void)++I, ++MOC) {
3327    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3328    if (MOC->first && MOC->second) {
3329      // Rebuild member pointer type
3330      Composite1 = Context.getMemberPointerType(
3331                                    Context.getQualifiedType(Composite1, Quals),
3332                                    MOC->first);
3333      Composite2 = Context.getMemberPointerType(
3334                                    Context.getQualifiedType(Composite2, Quals),
3335                                    MOC->second);
3336    } else {
3337      // Rebuild pointer type
3338      Composite1
3339        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3340      Composite2
3341        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3342    }
3343  }
3344
3345  // Try to convert to the first composite pointer type.
3346  InitializedEntity Entity1
3347    = InitializedEntity::InitializeTemporary(Composite1);
3348  InitializationKind Kind
3349    = InitializationKind::CreateCopy(Loc, SourceLocation());
3350  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3351  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3352
3353  if (E1ToC1 && E2ToC1) {
3354    // Conversion to Composite1 is viable.
3355    if (!Context.hasSameType(Composite1, Composite2)) {
3356      // Composite2 is a different type from Composite1. Check whether
3357      // Composite2 is also viable.
3358      InitializedEntity Entity2
3359        = InitializedEntity::InitializeTemporary(Composite2);
3360      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3361      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3362      if (E1ToC2 && E2ToC2) {
3363        // Both Composite1 and Composite2 are viable and are different;
3364        // this is an ambiguity.
3365        return QualType();
3366      }
3367    }
3368
3369    // Convert E1 to Composite1
3370    ExprResult E1Result
3371      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3372    if (E1Result.isInvalid())
3373      return QualType();
3374    E1 = E1Result.takeAs<Expr>();
3375
3376    // Convert E2 to Composite1
3377    ExprResult E2Result
3378      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3379    if (E2Result.isInvalid())
3380      return QualType();
3381    E2 = E2Result.takeAs<Expr>();
3382
3383    return Composite1;
3384  }
3385
3386  // Check whether Composite2 is viable.
3387  InitializedEntity Entity2
3388    = InitializedEntity::InitializeTemporary(Composite2);
3389  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3390  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3391  if (!E1ToC2 || !E2ToC2)
3392    return QualType();
3393
3394  // Convert E1 to Composite2
3395  ExprResult E1Result
3396    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3397  if (E1Result.isInvalid())
3398    return QualType();
3399  E1 = E1Result.takeAs<Expr>();
3400
3401  // Convert E2 to Composite2
3402  ExprResult E2Result
3403    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3404  if (E2Result.isInvalid())
3405    return QualType();
3406  E2 = E2Result.takeAs<Expr>();
3407
3408  return Composite2;
3409}
3410
3411ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3412  if (!E)
3413    return ExprError();
3414
3415  if (!Context.getLangOptions().CPlusPlus)
3416    return Owned(E);
3417
3418  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3419
3420  const RecordType *RT = E->getType()->getAs<RecordType>();
3421  if (!RT)
3422    return Owned(E);
3423
3424  // If the result is a glvalue, we shouldn't bind it.
3425  if (E->Classify(Context).isGLValue())
3426    return Owned(E);
3427
3428  // That should be enough to guarantee that this type is complete.
3429  // If it has a trivial destructor, we can avoid the extra copy.
3430  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3431  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3432    return Owned(E);
3433
3434  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3435  ExprTemporaries.push_back(Temp);
3436  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3437    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3438    CheckDestructorAccess(E->getExprLoc(), Destructor,
3439                          PDiag(diag::err_access_dtor_temp)
3440                            << E->getType());
3441  }
3442  // FIXME: Add the temporary to the temporaries vector.
3443  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3444}
3445
3446Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3447  assert(SubExpr && "sub expression can't be null!");
3448
3449  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3450  assert(ExprTemporaries.size() >= FirstTemporary);
3451  if (ExprTemporaries.size() == FirstTemporary)
3452    return SubExpr;
3453
3454  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3455                                     &ExprTemporaries[FirstTemporary],
3456                                     ExprTemporaries.size() - FirstTemporary);
3457  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3458                        ExprTemporaries.end());
3459
3460  return E;
3461}
3462
3463ExprResult
3464Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3465  if (SubExpr.isInvalid())
3466    return ExprError();
3467
3468  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3469}
3470
3471Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3472  assert(SubStmt && "sub statement can't be null!");
3473
3474  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3475  assert(ExprTemporaries.size() >= FirstTemporary);
3476  if (ExprTemporaries.size() == FirstTemporary)
3477    return SubStmt;
3478
3479  // FIXME: In order to attach the temporaries, wrap the statement into
3480  // a StmtExpr; currently this is only used for asm statements.
3481  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3482  // a new AsmStmtWithTemporaries.
3483  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3484                                                      SourceLocation(),
3485                                                      SourceLocation());
3486  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3487                                   SourceLocation());
3488  return MaybeCreateExprWithCleanups(E);
3489}
3490
3491ExprResult
3492Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3493                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3494                                   bool &MayBePseudoDestructor) {
3495  // Since this might be a postfix expression, get rid of ParenListExprs.
3496  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3497  if (Result.isInvalid()) return ExprError();
3498  Base = Result.get();
3499
3500  QualType BaseType = Base->getType();
3501  MayBePseudoDestructor = false;
3502  if (BaseType->isDependentType()) {
3503    // If we have a pointer to a dependent type and are using the -> operator,
3504    // the object type is the type that the pointer points to. We might still
3505    // have enough information about that type to do something useful.
3506    if (OpKind == tok::arrow)
3507      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3508        BaseType = Ptr->getPointeeType();
3509
3510    ObjectType = ParsedType::make(BaseType);
3511    MayBePseudoDestructor = true;
3512    return Owned(Base);
3513  }
3514
3515  // C++ [over.match.oper]p8:
3516  //   [...] When operator->returns, the operator-> is applied  to the value
3517  //   returned, with the original second operand.
3518  if (OpKind == tok::arrow) {
3519    // The set of types we've considered so far.
3520    llvm::SmallPtrSet<CanQualType,8> CTypes;
3521    llvm::SmallVector<SourceLocation, 8> Locations;
3522    CTypes.insert(Context.getCanonicalType(BaseType));
3523
3524    while (BaseType->isRecordType()) {
3525      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3526      if (Result.isInvalid())
3527        return ExprError();
3528      Base = Result.get();
3529      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3530        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3531      BaseType = Base->getType();
3532      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3533      if (!CTypes.insert(CBaseType)) {
3534        Diag(OpLoc, diag::err_operator_arrow_circular);
3535        for (unsigned i = 0; i < Locations.size(); i++)
3536          Diag(Locations[i], diag::note_declared_at);
3537        return ExprError();
3538      }
3539    }
3540
3541    if (BaseType->isPointerType())
3542      BaseType = BaseType->getPointeeType();
3543  }
3544
3545  // We could end up with various non-record types here, such as extended
3546  // vector types or Objective-C interfaces. Just return early and let
3547  // ActOnMemberReferenceExpr do the work.
3548  if (!BaseType->isRecordType()) {
3549    // C++ [basic.lookup.classref]p2:
3550    //   [...] If the type of the object expression is of pointer to scalar
3551    //   type, the unqualified-id is looked up in the context of the complete
3552    //   postfix-expression.
3553    //
3554    // This also indicates that we should be parsing a
3555    // pseudo-destructor-name.
3556    ObjectType = ParsedType();
3557    MayBePseudoDestructor = true;
3558    return Owned(Base);
3559  }
3560
3561  // The object type must be complete (or dependent).
3562  if (!BaseType->isDependentType() &&
3563      RequireCompleteType(OpLoc, BaseType,
3564                          PDiag(diag::err_incomplete_member_access)))
3565    return ExprError();
3566
3567  // C++ [basic.lookup.classref]p2:
3568  //   If the id-expression in a class member access (5.2.5) is an
3569  //   unqualified-id, and the type of the object expression is of a class
3570  //   type C (or of pointer to a class type C), the unqualified-id is looked
3571  //   up in the scope of class C. [...]
3572  ObjectType = ParsedType::make(BaseType);
3573  return move(Base);
3574}
3575
3576ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3577                                                   Expr *MemExpr) {
3578  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3579  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3580    << isa<CXXPseudoDestructorExpr>(MemExpr)
3581    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3582
3583  return ActOnCallExpr(/*Scope*/ 0,
3584                       MemExpr,
3585                       /*LPLoc*/ ExpectedLParenLoc,
3586                       MultiExprArg(),
3587                       /*RPLoc*/ ExpectedLParenLoc);
3588}
3589
3590ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3591                                           SourceLocation OpLoc,
3592                                           tok::TokenKind OpKind,
3593                                           const CXXScopeSpec &SS,
3594                                           TypeSourceInfo *ScopeTypeInfo,
3595                                           SourceLocation CCLoc,
3596                                           SourceLocation TildeLoc,
3597                                         PseudoDestructorTypeStorage Destructed,
3598                                           bool HasTrailingLParen) {
3599  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3600
3601  // C++ [expr.pseudo]p2:
3602  //   The left-hand side of the dot operator shall be of scalar type. The
3603  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3604  //   This scalar type is the object type.
3605  QualType ObjectType = Base->getType();
3606  if (OpKind == tok::arrow) {
3607    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3608      ObjectType = Ptr->getPointeeType();
3609    } else if (!Base->isTypeDependent()) {
3610      // The user wrote "p->" when she probably meant "p."; fix it.
3611      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3612        << ObjectType << true
3613        << FixItHint::CreateReplacement(OpLoc, ".");
3614      if (isSFINAEContext())
3615        return ExprError();
3616
3617      OpKind = tok::period;
3618    }
3619  }
3620
3621  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3622    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3623      << ObjectType << Base->getSourceRange();
3624    return ExprError();
3625  }
3626
3627  // C++ [expr.pseudo]p2:
3628  //   [...] The cv-unqualified versions of the object type and of the type
3629  //   designated by the pseudo-destructor-name shall be the same type.
3630  if (DestructedTypeInfo) {
3631    QualType DestructedType = DestructedTypeInfo->getType();
3632    SourceLocation DestructedTypeStart
3633      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3634    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3635        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3636      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3637        << ObjectType << DestructedType << Base->getSourceRange()
3638        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3639
3640      // Recover by setting the destructed type to the object type.
3641      DestructedType = ObjectType;
3642      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3643                                                           DestructedTypeStart);
3644      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3645    }
3646  }
3647
3648  // C++ [expr.pseudo]p2:
3649  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3650  //   form
3651  //
3652  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3653  //
3654  //   shall designate the same scalar type.
3655  if (ScopeTypeInfo) {
3656    QualType ScopeType = ScopeTypeInfo->getType();
3657    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3658        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3659
3660      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3661           diag::err_pseudo_dtor_type_mismatch)
3662        << ObjectType << ScopeType << Base->getSourceRange()
3663        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3664
3665      ScopeType = QualType();
3666      ScopeTypeInfo = 0;
3667    }
3668  }
3669
3670  Expr *Result
3671    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3672                                            OpKind == tok::arrow, OpLoc,
3673                                            SS.getWithLocInContext(Context),
3674                                            ScopeTypeInfo,
3675                                            CCLoc,
3676                                            TildeLoc,
3677                                            Destructed);
3678
3679  if (HasTrailingLParen)
3680    return Owned(Result);
3681
3682  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3683}
3684
3685ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3686                                           SourceLocation OpLoc,
3687                                           tok::TokenKind OpKind,
3688                                           CXXScopeSpec &SS,
3689                                           UnqualifiedId &FirstTypeName,
3690                                           SourceLocation CCLoc,
3691                                           SourceLocation TildeLoc,
3692                                           UnqualifiedId &SecondTypeName,
3693                                           bool HasTrailingLParen) {
3694  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3695          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3696         "Invalid first type name in pseudo-destructor");
3697  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3698          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3699         "Invalid second type name in pseudo-destructor");
3700
3701  // C++ [expr.pseudo]p2:
3702  //   The left-hand side of the dot operator shall be of scalar type. The
3703  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3704  //   This scalar type is the object type.
3705  QualType ObjectType = Base->getType();
3706  if (OpKind == tok::arrow) {
3707    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3708      ObjectType = Ptr->getPointeeType();
3709    } else if (!ObjectType->isDependentType()) {
3710      // The user wrote "p->" when she probably meant "p."; fix it.
3711      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3712        << ObjectType << true
3713        << FixItHint::CreateReplacement(OpLoc, ".");
3714      if (isSFINAEContext())
3715        return ExprError();
3716
3717      OpKind = tok::period;
3718    }
3719  }
3720
3721  // Compute the object type that we should use for name lookup purposes. Only
3722  // record types and dependent types matter.
3723  ParsedType ObjectTypePtrForLookup;
3724  if (!SS.isSet()) {
3725    if (ObjectType->isRecordType())
3726      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
3727    else if (ObjectType->isDependentType())
3728      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3729  }
3730
3731  // Convert the name of the type being destructed (following the ~) into a
3732  // type (with source-location information).
3733  QualType DestructedType;
3734  TypeSourceInfo *DestructedTypeInfo = 0;
3735  PseudoDestructorTypeStorage Destructed;
3736  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3737    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3738                               SecondTypeName.StartLocation,
3739                               S, &SS, true, false, ObjectTypePtrForLookup);
3740    if (!T &&
3741        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3742         (!SS.isSet() && ObjectType->isDependentType()))) {
3743      // The name of the type being destroyed is a dependent name, and we
3744      // couldn't find anything useful in scope. Just store the identifier and
3745      // it's location, and we'll perform (qualified) name lookup again at
3746      // template instantiation time.
3747      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3748                                               SecondTypeName.StartLocation);
3749    } else if (!T) {
3750      Diag(SecondTypeName.StartLocation,
3751           diag::err_pseudo_dtor_destructor_non_type)
3752        << SecondTypeName.Identifier << ObjectType;
3753      if (isSFINAEContext())
3754        return ExprError();
3755
3756      // Recover by assuming we had the right type all along.
3757      DestructedType = ObjectType;
3758    } else
3759      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3760  } else {
3761    // Resolve the template-id to a type.
3762    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3763    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3764                                       TemplateId->getTemplateArgs(),
3765                                       TemplateId->NumArgs);
3766    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3767                                       TemplateId->TemplateNameLoc,
3768                                       TemplateId->LAngleLoc,
3769                                       TemplateArgsPtr,
3770                                       TemplateId->RAngleLoc);
3771    if (T.isInvalid() || !T.get()) {
3772      // Recover by assuming we had the right type all along.
3773      DestructedType = ObjectType;
3774    } else
3775      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3776  }
3777
3778  // If we've performed some kind of recovery, (re-)build the type source
3779  // information.
3780  if (!DestructedType.isNull()) {
3781    if (!DestructedTypeInfo)
3782      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3783                                                  SecondTypeName.StartLocation);
3784    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3785  }
3786
3787  // Convert the name of the scope type (the type prior to '::') into a type.
3788  TypeSourceInfo *ScopeTypeInfo = 0;
3789  QualType ScopeType;
3790  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3791      FirstTypeName.Identifier) {
3792    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3793      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3794                                 FirstTypeName.StartLocation,
3795                                 S, &SS, true, false, ObjectTypePtrForLookup);
3796      if (!T) {
3797        Diag(FirstTypeName.StartLocation,
3798             diag::err_pseudo_dtor_destructor_non_type)
3799          << FirstTypeName.Identifier << ObjectType;
3800
3801        if (isSFINAEContext())
3802          return ExprError();
3803
3804        // Just drop this type. It's unnecessary anyway.
3805        ScopeType = QualType();
3806      } else
3807        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3808    } else {
3809      // Resolve the template-id to a type.
3810      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3811      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3812                                         TemplateId->getTemplateArgs(),
3813                                         TemplateId->NumArgs);
3814      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3815                                         TemplateId->TemplateNameLoc,
3816                                         TemplateId->LAngleLoc,
3817                                         TemplateArgsPtr,
3818                                         TemplateId->RAngleLoc);
3819      if (T.isInvalid() || !T.get()) {
3820        // Recover by dropping this type.
3821        ScopeType = QualType();
3822      } else
3823        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3824    }
3825  }
3826
3827  if (!ScopeType.isNull() && !ScopeTypeInfo)
3828    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3829                                                  FirstTypeName.StartLocation);
3830
3831
3832  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3833                                   ScopeTypeInfo, CCLoc, TildeLoc,
3834                                   Destructed, HasTrailingLParen);
3835}
3836
3837ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3838                                        CXXMethodDecl *Method) {
3839  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3840                                          FoundDecl, Method))
3841    return true;
3842
3843  MemberExpr *ME =
3844      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3845                               SourceLocation(), Method->getType(),
3846                               VK_RValue, OK_Ordinary);
3847  QualType ResultType = Method->getResultType();
3848  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3849  ResultType = ResultType.getNonLValueExprType(Context);
3850
3851  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3852  CXXMemberCallExpr *CE =
3853    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3854                                    Exp->getLocEnd());
3855  return CE;
3856}
3857
3858ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3859                                      SourceLocation RParen) {
3860  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3861                                             Operand->CanThrow(Context),
3862                                             KeyLoc, RParen));
3863}
3864
3865ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3866                                   Expr *Operand, SourceLocation RParen) {
3867  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3868}
3869
3870/// Perform the conversions required for an expression used in a
3871/// context that ignores the result.
3872void Sema::IgnoredValueConversions(Expr *&E) {
3873  // C99 6.3.2.1:
3874  //   [Except in specific positions,] an lvalue that does not have
3875  //   array type is converted to the value stored in the
3876  //   designated object (and is no longer an lvalue).
3877  if (E->isRValue()) return;
3878
3879  // We always want to do this on ObjC property references.
3880  if (E->getObjectKind() == OK_ObjCProperty) {
3881    ConvertPropertyForRValue(E);
3882    if (E->isRValue()) return;
3883  }
3884
3885  // Otherwise, this rule does not apply in C++, at least not for the moment.
3886  if (getLangOptions().CPlusPlus) return;
3887
3888  // GCC seems to also exclude expressions of incomplete enum type.
3889  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3890    if (!T->getDecl()->isComplete()) {
3891      // FIXME: stupid workaround for a codegen bug!
3892      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3893      return;
3894    }
3895  }
3896
3897  DefaultFunctionArrayLvalueConversion(E);
3898  if (!E->getType()->isVoidType())
3899    RequireCompleteType(E->getExprLoc(), E->getType(),
3900                        diag::err_incomplete_type);
3901}
3902
3903ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3904  if (!FullExpr)
3905    return ExprError();
3906
3907  if (DiagnoseUnexpandedParameterPack(FullExpr))
3908    return ExprError();
3909
3910  IgnoredValueConversions(FullExpr);
3911  CheckImplicitConversions(FullExpr);
3912  return MaybeCreateExprWithCleanups(FullExpr);
3913}
3914
3915StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3916  if (!FullStmt) return StmtError();
3917
3918  return MaybeCreateStmtWithCleanups(FullStmt);
3919}
3920