SemaDeclCXX.cpp revision 245431
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/EvaluatedExprVisitor.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/RecordLayout.h"
29#include "clang/AST/RecursiveASTVisitor.h"
30#include "clang/AST/StmtVisitor.h"
31#include "clang/AST/TypeLoc.h"
32#include "clang/AST/TypeOrdering.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Lex/Preprocessor.h"
37#include "llvm/ADT/SmallString.h"
38#include "llvm/ADT/STLExtras.h"
39#include <map>
40#include <set>
41
42using namespace clang;
43
44//===----------------------------------------------------------------------===//
45// CheckDefaultArgumentVisitor
46//===----------------------------------------------------------------------===//
47
48namespace {
49  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
50  /// the default argument of a parameter to determine whether it
51  /// contains any ill-formed subexpressions. For example, this will
52  /// diagnose the use of local variables or parameters within the
53  /// default argument expression.
54  class CheckDefaultArgumentVisitor
55    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
56    Expr *DefaultArg;
57    Sema *S;
58
59  public:
60    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
61      : DefaultArg(defarg), S(s) {}
62
63    bool VisitExpr(Expr *Node);
64    bool VisitDeclRefExpr(DeclRefExpr *DRE);
65    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
66    bool VisitLambdaExpr(LambdaExpr *Lambda);
67  };
68
69  /// VisitExpr - Visit all of the children of this expression.
70  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
71    bool IsInvalid = false;
72    for (Stmt::child_range I = Node->children(); I; ++I)
73      IsInvalid |= Visit(*I);
74    return IsInvalid;
75  }
76
77  /// VisitDeclRefExpr - Visit a reference to a declaration, to
78  /// determine whether this declaration can be used in the default
79  /// argument expression.
80  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
81    NamedDecl *Decl = DRE->getDecl();
82    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
83      // C++ [dcl.fct.default]p9
84      //   Default arguments are evaluated each time the function is
85      //   called. The order of evaluation of function arguments is
86      //   unspecified. Consequently, parameters of a function shall not
87      //   be used in default argument expressions, even if they are not
88      //   evaluated. Parameters of a function declared before a default
89      //   argument expression are in scope and can hide namespace and
90      //   class member names.
91      return S->Diag(DRE->getLocStart(),
92                     diag::err_param_default_argument_references_param)
93         << Param->getDeclName() << DefaultArg->getSourceRange();
94    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
95      // C++ [dcl.fct.default]p7
96      //   Local variables shall not be used in default argument
97      //   expressions.
98      if (VDecl->isLocalVarDecl())
99        return S->Diag(DRE->getLocStart(),
100                       diag::err_param_default_argument_references_local)
101          << VDecl->getDeclName() << DefaultArg->getSourceRange();
102    }
103
104    return false;
105  }
106
107  /// VisitCXXThisExpr - Visit a C++ "this" expression.
108  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
109    // C++ [dcl.fct.default]p8:
110    //   The keyword this shall not be used in a default argument of a
111    //   member function.
112    return S->Diag(ThisE->getLocStart(),
113                   diag::err_param_default_argument_references_this)
114               << ThisE->getSourceRange();
115  }
116
117  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
118    // C++11 [expr.lambda.prim]p13:
119    //   A lambda-expression appearing in a default argument shall not
120    //   implicitly or explicitly capture any entity.
121    if (Lambda->capture_begin() == Lambda->capture_end())
122      return false;
123
124    return S->Diag(Lambda->getLocStart(),
125                   diag::err_lambda_capture_default_arg);
126  }
127}
128
129void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
130                                                      CXXMethodDecl *Method) {
131  // If we have an MSAny spec already, don't bother.
132  if (!Method || ComputedEST == EST_MSAny)
133    return;
134
135  const FunctionProtoType *Proto
136    = Method->getType()->getAs<FunctionProtoType>();
137  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
138  if (!Proto)
139    return;
140
141  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
142
143  // If this function can throw any exceptions, make a note of that.
144  if (EST == EST_MSAny || EST == EST_None) {
145    ClearExceptions();
146    ComputedEST = EST;
147    return;
148  }
149
150  // FIXME: If the call to this decl is using any of its default arguments, we
151  // need to search them for potentially-throwing calls.
152
153  // If this function has a basic noexcept, it doesn't affect the outcome.
154  if (EST == EST_BasicNoexcept)
155    return;
156
157  // If we have a throw-all spec at this point, ignore the function.
158  if (ComputedEST == EST_None)
159    return;
160
161  // If we're still at noexcept(true) and there's a nothrow() callee,
162  // change to that specification.
163  if (EST == EST_DynamicNone) {
164    if (ComputedEST == EST_BasicNoexcept)
165      ComputedEST = EST_DynamicNone;
166    return;
167  }
168
169  // Check out noexcept specs.
170  if (EST == EST_ComputedNoexcept) {
171    FunctionProtoType::NoexceptResult NR =
172        Proto->getNoexceptSpec(Self->Context);
173    assert(NR != FunctionProtoType::NR_NoNoexcept &&
174           "Must have noexcept result for EST_ComputedNoexcept.");
175    assert(NR != FunctionProtoType::NR_Dependent &&
176           "Should not generate implicit declarations for dependent cases, "
177           "and don't know how to handle them anyway.");
178
179    // noexcept(false) -> no spec on the new function
180    if (NR == FunctionProtoType::NR_Throw) {
181      ClearExceptions();
182      ComputedEST = EST_None;
183    }
184    // noexcept(true) won't change anything either.
185    return;
186  }
187
188  assert(EST == EST_Dynamic && "EST case not considered earlier.");
189  assert(ComputedEST != EST_None &&
190         "Shouldn't collect exceptions when throw-all is guaranteed.");
191  ComputedEST = EST_Dynamic;
192  // Record the exceptions in this function's exception specification.
193  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
194                                          EEnd = Proto->exception_end();
195       E != EEnd; ++E)
196    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
197      Exceptions.push_back(*E);
198}
199
200void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
201  if (!E || ComputedEST == EST_MSAny)
202    return;
203
204  // FIXME:
205  //
206  // C++0x [except.spec]p14:
207  //   [An] implicit exception-specification specifies the type-id T if and
208  // only if T is allowed by the exception-specification of a function directly
209  // invoked by f's implicit definition; f shall allow all exceptions if any
210  // function it directly invokes allows all exceptions, and f shall allow no
211  // exceptions if every function it directly invokes allows no exceptions.
212  //
213  // Note in particular that if an implicit exception-specification is generated
214  // for a function containing a throw-expression, that specification can still
215  // be noexcept(true).
216  //
217  // Note also that 'directly invoked' is not defined in the standard, and there
218  // is no indication that we should only consider potentially-evaluated calls.
219  //
220  // Ultimately we should implement the intent of the standard: the exception
221  // specification should be the set of exceptions which can be thrown by the
222  // implicit definition. For now, we assume that any non-nothrow expression can
223  // throw any exception.
224
225  if (Self->canThrow(E))
226    ComputedEST = EST_None;
227}
228
229bool
230Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
231                              SourceLocation EqualLoc) {
232  if (RequireCompleteType(Param->getLocation(), Param->getType(),
233                          diag::err_typecheck_decl_incomplete_type)) {
234    Param->setInvalidDecl();
235    return true;
236  }
237
238  // C++ [dcl.fct.default]p5
239  //   A default argument expression is implicitly converted (clause
240  //   4) to the parameter type. The default argument expression has
241  //   the same semantic constraints as the initializer expression in
242  //   a declaration of a variable of the parameter type, using the
243  //   copy-initialization semantics (8.5).
244  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
245                                                                    Param);
246  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
247                                                           EqualLoc);
248  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
249  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376/// MergeCXXFunctionDecl - Merge two declarations of the same C++
377/// function, once we already know that they have the same
378/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379/// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678/// \brief Get diagnostic %select index for tag kind for
679/// record diagnostic message.
680/// WARNING: Indexes apply to particular diagnostics only!
681///
682/// \returns diagnostic %select index.
683static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
684  switch (Tag) {
685  case TTK_Struct: return 0;
686  case TTK_Interface: return 1;
687  case TTK_Class:  return 2;
688  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
689  }
690}
691
692// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
693// the requirements of a constexpr function definition or a constexpr
694// constructor definition. If so, return true. If not, produce appropriate
695// diagnostics and return false.
696//
697// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
698bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
699  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
700  if (MD && MD->isInstance()) {
701    // C++11 [dcl.constexpr]p4:
702    //  The definition of a constexpr constructor shall satisfy the following
703    //  constraints:
704    //  - the class shall not have any virtual base classes;
705    const CXXRecordDecl *RD = MD->getParent();
706    if (RD->getNumVBases()) {
707      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
708        << isa<CXXConstructorDecl>(NewFD)
709        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
710      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
711             E = RD->vbases_end(); I != E; ++I)
712        Diag(I->getLocStart(),
713             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
714      return false;
715    }
716  }
717
718  if (!isa<CXXConstructorDecl>(NewFD)) {
719    // C++11 [dcl.constexpr]p3:
720    //  The definition of a constexpr function shall satisfy the following
721    //  constraints:
722    // - it shall not be virtual;
723    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
724    if (Method && Method->isVirtual()) {
725      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
726
727      // If it's not obvious why this function is virtual, find an overridden
728      // function which uses the 'virtual' keyword.
729      const CXXMethodDecl *WrittenVirtual = Method;
730      while (!WrittenVirtual->isVirtualAsWritten())
731        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
732      if (WrittenVirtual != Method)
733        Diag(WrittenVirtual->getLocation(),
734             diag::note_overridden_virtual_function);
735      return false;
736    }
737
738    // - its return type shall be a literal type;
739    QualType RT = NewFD->getResultType();
740    if (!RT->isDependentType() &&
741        RequireLiteralType(NewFD->getLocation(), RT,
742                           diag::err_constexpr_non_literal_return))
743      return false;
744  }
745
746  // - each of its parameter types shall be a literal type;
747  if (!CheckConstexprParameterTypes(*this, NewFD))
748    return false;
749
750  return true;
751}
752
753/// Check the given declaration statement is legal within a constexpr function
754/// body. C++0x [dcl.constexpr]p3,p4.
755///
756/// \return true if the body is OK, false if we have diagnosed a problem.
757static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
758                                   DeclStmt *DS) {
759  // C++0x [dcl.constexpr]p3 and p4:
760  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
761  //  contain only
762  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
763         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
764    switch ((*DclIt)->getKind()) {
765    case Decl::StaticAssert:
766    case Decl::Using:
767    case Decl::UsingShadow:
768    case Decl::UsingDirective:
769    case Decl::UnresolvedUsingTypename:
770      //   - static_assert-declarations
771      //   - using-declarations,
772      //   - using-directives,
773      continue;
774
775    case Decl::Typedef:
776    case Decl::TypeAlias: {
777      //   - typedef declarations and alias-declarations that do not define
778      //     classes or enumerations,
779      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
780      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
781        // Don't allow variably-modified types in constexpr functions.
782        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
783        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
784          << TL.getSourceRange() << TL.getType()
785          << isa<CXXConstructorDecl>(Dcl);
786        return false;
787      }
788      continue;
789    }
790
791    case Decl::Enum:
792    case Decl::CXXRecord:
793      // As an extension, we allow the declaration (but not the definition) of
794      // classes and enumerations in all declarations, not just in typedef and
795      // alias declarations.
796      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
797        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
798          << isa<CXXConstructorDecl>(Dcl);
799        return false;
800      }
801      continue;
802
803    case Decl::Var:
804      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
805        << isa<CXXConstructorDecl>(Dcl);
806      return false;
807
808    default:
809      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
810        << isa<CXXConstructorDecl>(Dcl);
811      return false;
812    }
813  }
814
815  return true;
816}
817
818/// Check that the given field is initialized within a constexpr constructor.
819///
820/// \param Dcl The constexpr constructor being checked.
821/// \param Field The field being checked. This may be a member of an anonymous
822///        struct or union nested within the class being checked.
823/// \param Inits All declarations, including anonymous struct/union members and
824///        indirect members, for which any initialization was provided.
825/// \param Diagnosed Set to true if an error is produced.
826static void CheckConstexprCtorInitializer(Sema &SemaRef,
827                                          const FunctionDecl *Dcl,
828                                          FieldDecl *Field,
829                                          llvm::SmallSet<Decl*, 16> &Inits,
830                                          bool &Diagnosed) {
831  if (Field->isUnnamedBitfield())
832    return;
833
834  if (Field->isAnonymousStructOrUnion() &&
835      Field->getType()->getAsCXXRecordDecl()->isEmpty())
836    return;
837
838  if (!Inits.count(Field)) {
839    if (!Diagnosed) {
840      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
841      Diagnosed = true;
842    }
843    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
844  } else if (Field->isAnonymousStructOrUnion()) {
845    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
846    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
847         I != E; ++I)
848      // If an anonymous union contains an anonymous struct of which any member
849      // is initialized, all members must be initialized.
850      if (!RD->isUnion() || Inits.count(*I))
851        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
852  }
853}
854
855/// Check the body for the given constexpr function declaration only contains
856/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
857///
858/// \return true if the body is OK, false if we have diagnosed a problem.
859bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
860  if (isa<CXXTryStmt>(Body)) {
861    // C++11 [dcl.constexpr]p3:
862    //  The definition of a constexpr function shall satisfy the following
863    //  constraints: [...]
864    // - its function-body shall be = delete, = default, or a
865    //   compound-statement
866    //
867    // C++11 [dcl.constexpr]p4:
868    //  In the definition of a constexpr constructor, [...]
869    // - its function-body shall not be a function-try-block;
870    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
871      << isa<CXXConstructorDecl>(Dcl);
872    return false;
873  }
874
875  // - its function-body shall be [...] a compound-statement that contains only
876  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
877
878  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
879  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
880         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
881    switch ((*BodyIt)->getStmtClass()) {
882    case Stmt::NullStmtClass:
883      //   - null statements,
884      continue;
885
886    case Stmt::DeclStmtClass:
887      //   - static_assert-declarations
888      //   - using-declarations,
889      //   - using-directives,
890      //   - typedef declarations and alias-declarations that do not define
891      //     classes or enumerations,
892      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
893        return false;
894      continue;
895
896    case Stmt::ReturnStmtClass:
897      //   - and exactly one return statement;
898      if (isa<CXXConstructorDecl>(Dcl))
899        break;
900
901      ReturnStmts.push_back((*BodyIt)->getLocStart());
902      continue;
903
904    default:
905      break;
906    }
907
908    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
909      << isa<CXXConstructorDecl>(Dcl);
910    return false;
911  }
912
913  if (const CXXConstructorDecl *Constructor
914        = dyn_cast<CXXConstructorDecl>(Dcl)) {
915    const CXXRecordDecl *RD = Constructor->getParent();
916    // DR1359:
917    // - every non-variant non-static data member and base class sub-object
918    //   shall be initialized;
919    // - if the class is a non-empty union, or for each non-empty anonymous
920    //   union member of a non-union class, exactly one non-static data member
921    //   shall be initialized;
922    if (RD->isUnion()) {
923      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
924        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
925        return false;
926      }
927    } else if (!Constructor->isDependentContext() &&
928               !Constructor->isDelegatingConstructor()) {
929      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
930
931      // Skip detailed checking if we have enough initializers, and we would
932      // allow at most one initializer per member.
933      bool AnyAnonStructUnionMembers = false;
934      unsigned Fields = 0;
935      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
936           E = RD->field_end(); I != E; ++I, ++Fields) {
937        if (I->isAnonymousStructOrUnion()) {
938          AnyAnonStructUnionMembers = true;
939          break;
940        }
941      }
942      if (AnyAnonStructUnionMembers ||
943          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
944        // Check initialization of non-static data members. Base classes are
945        // always initialized so do not need to be checked. Dependent bases
946        // might not have initializers in the member initializer list.
947        llvm::SmallSet<Decl*, 16> Inits;
948        for (CXXConstructorDecl::init_const_iterator
949               I = Constructor->init_begin(), E = Constructor->init_end();
950             I != E; ++I) {
951          if (FieldDecl *FD = (*I)->getMember())
952            Inits.insert(FD);
953          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
954            Inits.insert(ID->chain_begin(), ID->chain_end());
955        }
956
957        bool Diagnosed = false;
958        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
959             E = RD->field_end(); I != E; ++I)
960          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
961        if (Diagnosed)
962          return false;
963      }
964    }
965  } else {
966    if (ReturnStmts.empty()) {
967      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
968      return false;
969    }
970    if (ReturnStmts.size() > 1) {
971      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
972      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
973        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
974      return false;
975    }
976  }
977
978  // C++11 [dcl.constexpr]p5:
979  //   if no function argument values exist such that the function invocation
980  //   substitution would produce a constant expression, the program is
981  //   ill-formed; no diagnostic required.
982  // C++11 [dcl.constexpr]p3:
983  //   - every constructor call and implicit conversion used in initializing the
984  //     return value shall be one of those allowed in a constant expression.
985  // C++11 [dcl.constexpr]p4:
986  //   - every constructor involved in initializing non-static data members and
987  //     base class sub-objects shall be a constexpr constructor.
988  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
989  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
990    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
991      << isa<CXXConstructorDecl>(Dcl);
992    for (size_t I = 0, N = Diags.size(); I != N; ++I)
993      Diag(Diags[I].first, Diags[I].second);
994    return false;
995  }
996
997  return true;
998}
999
1000/// isCurrentClassName - Determine whether the identifier II is the
1001/// name of the class type currently being defined. In the case of
1002/// nested classes, this will only return true if II is the name of
1003/// the innermost class.
1004bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1005                              const CXXScopeSpec *SS) {
1006  assert(getLangOpts().CPlusPlus && "No class names in C!");
1007
1008  CXXRecordDecl *CurDecl;
1009  if (SS && SS->isSet() && !SS->isInvalid()) {
1010    DeclContext *DC = computeDeclContext(*SS, true);
1011    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1012  } else
1013    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1014
1015  if (CurDecl && CurDecl->getIdentifier())
1016    return &II == CurDecl->getIdentifier();
1017  else
1018    return false;
1019}
1020
1021/// \brief Determine whether the given class is a base class of the given
1022/// class, including looking at dependent bases.
1023static bool findCircularInheritance(const CXXRecordDecl *Class,
1024                                    const CXXRecordDecl *Current) {
1025  SmallVector<const CXXRecordDecl*, 8> Queue;
1026
1027  Class = Class->getCanonicalDecl();
1028  while (true) {
1029    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1030                                                  E = Current->bases_end();
1031         I != E; ++I) {
1032      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1033      if (!Base)
1034        continue;
1035
1036      Base = Base->getDefinition();
1037      if (!Base)
1038        continue;
1039
1040      if (Base->getCanonicalDecl() == Class)
1041        return true;
1042
1043      Queue.push_back(Base);
1044    }
1045
1046    if (Queue.empty())
1047      return false;
1048
1049    Current = Queue.back();
1050    Queue.pop_back();
1051  }
1052
1053  return false;
1054}
1055
1056/// \brief Check the validity of a C++ base class specifier.
1057///
1058/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1059/// and returns NULL otherwise.
1060CXXBaseSpecifier *
1061Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1062                         SourceRange SpecifierRange,
1063                         bool Virtual, AccessSpecifier Access,
1064                         TypeSourceInfo *TInfo,
1065                         SourceLocation EllipsisLoc) {
1066  QualType BaseType = TInfo->getType();
1067
1068  // C++ [class.union]p1:
1069  //   A union shall not have base classes.
1070  if (Class->isUnion()) {
1071    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1072      << SpecifierRange;
1073    return 0;
1074  }
1075
1076  if (EllipsisLoc.isValid() &&
1077      !TInfo->getType()->containsUnexpandedParameterPack()) {
1078    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1079      << TInfo->getTypeLoc().getSourceRange();
1080    EllipsisLoc = SourceLocation();
1081  }
1082
1083  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1084
1085  if (BaseType->isDependentType()) {
1086    // Make sure that we don't have circular inheritance among our dependent
1087    // bases. For non-dependent bases, the check for completeness below handles
1088    // this.
1089    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1090      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1091          ((BaseDecl = BaseDecl->getDefinition()) &&
1092           findCircularInheritance(Class, BaseDecl))) {
1093        Diag(BaseLoc, diag::err_circular_inheritance)
1094          << BaseType << Context.getTypeDeclType(Class);
1095
1096        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1097          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1098            << BaseType;
1099
1100        return 0;
1101      }
1102    }
1103
1104    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1105                                          Class->getTagKind() == TTK_Class,
1106                                          Access, TInfo, EllipsisLoc);
1107  }
1108
1109  // Base specifiers must be record types.
1110  if (!BaseType->isRecordType()) {
1111    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1112    return 0;
1113  }
1114
1115  // C++ [class.union]p1:
1116  //   A union shall not be used as a base class.
1117  if (BaseType->isUnionType()) {
1118    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1119    return 0;
1120  }
1121
1122  // C++ [class.derived]p2:
1123  //   The class-name in a base-specifier shall not be an incompletely
1124  //   defined class.
1125  if (RequireCompleteType(BaseLoc, BaseType,
1126                          diag::err_incomplete_base_class, SpecifierRange)) {
1127    Class->setInvalidDecl();
1128    return 0;
1129  }
1130
1131  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1132  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1133  assert(BaseDecl && "Record type has no declaration");
1134  BaseDecl = BaseDecl->getDefinition();
1135  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1136  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1137  assert(CXXBaseDecl && "Base type is not a C++ type");
1138
1139  // C++ [class]p3:
1140  //   If a class is marked final and it appears as a base-type-specifier in
1141  //   base-clause, the program is ill-formed.
1142  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1143    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1144      << CXXBaseDecl->getDeclName();
1145    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1146      << CXXBaseDecl->getDeclName();
1147    return 0;
1148  }
1149
1150  if (BaseDecl->isInvalidDecl())
1151    Class->setInvalidDecl();
1152
1153  // Create the base specifier.
1154  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1155                                        Class->getTagKind() == TTK_Class,
1156                                        Access, TInfo, EllipsisLoc);
1157}
1158
1159/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1160/// one entry in the base class list of a class specifier, for
1161/// example:
1162///    class foo : public bar, virtual private baz {
1163/// 'public bar' and 'virtual private baz' are each base-specifiers.
1164BaseResult
1165Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1166                         bool Virtual, AccessSpecifier Access,
1167                         ParsedType basetype, SourceLocation BaseLoc,
1168                         SourceLocation EllipsisLoc) {
1169  if (!classdecl)
1170    return true;
1171
1172  AdjustDeclIfTemplate(classdecl);
1173  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1174  if (!Class)
1175    return true;
1176
1177  TypeSourceInfo *TInfo = 0;
1178  GetTypeFromParser(basetype, &TInfo);
1179
1180  if (EllipsisLoc.isInvalid() &&
1181      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1182                                      UPPC_BaseType))
1183    return true;
1184
1185  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1186                                                      Virtual, Access, TInfo,
1187                                                      EllipsisLoc))
1188    return BaseSpec;
1189  else
1190    Class->setInvalidDecl();
1191
1192  return true;
1193}
1194
1195/// \brief Performs the actual work of attaching the given base class
1196/// specifiers to a C++ class.
1197bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1198                                unsigned NumBases) {
1199 if (NumBases == 0)
1200    return false;
1201
1202  // Used to keep track of which base types we have already seen, so
1203  // that we can properly diagnose redundant direct base types. Note
1204  // that the key is always the unqualified canonical type of the base
1205  // class.
1206  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1207
1208  // Copy non-redundant base specifiers into permanent storage.
1209  unsigned NumGoodBases = 0;
1210  bool Invalid = false;
1211  for (unsigned idx = 0; idx < NumBases; ++idx) {
1212    QualType NewBaseType
1213      = Context.getCanonicalType(Bases[idx]->getType());
1214    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1215
1216    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1217    if (KnownBase) {
1218      // C++ [class.mi]p3:
1219      //   A class shall not be specified as a direct base class of a
1220      //   derived class more than once.
1221      Diag(Bases[idx]->getLocStart(),
1222           diag::err_duplicate_base_class)
1223        << KnownBase->getType()
1224        << Bases[idx]->getSourceRange();
1225
1226      // Delete the duplicate base class specifier; we're going to
1227      // overwrite its pointer later.
1228      Context.Deallocate(Bases[idx]);
1229
1230      Invalid = true;
1231    } else {
1232      // Okay, add this new base class.
1233      KnownBase = Bases[idx];
1234      Bases[NumGoodBases++] = Bases[idx];
1235      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1236        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1237        if (Class->isInterface() &&
1238              (!RD->isInterface() ||
1239               KnownBase->getAccessSpecifier() != AS_public)) {
1240          // The Microsoft extension __interface does not permit bases that
1241          // are not themselves public interfaces.
1242          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1243            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1244            << RD->getSourceRange();
1245          Invalid = true;
1246        }
1247        if (RD->hasAttr<WeakAttr>())
1248          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1249      }
1250    }
1251  }
1252
1253  // Attach the remaining base class specifiers to the derived class.
1254  Class->setBases(Bases, NumGoodBases);
1255
1256  // Delete the remaining (good) base class specifiers, since their
1257  // data has been copied into the CXXRecordDecl.
1258  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1259    Context.Deallocate(Bases[idx]);
1260
1261  return Invalid;
1262}
1263
1264/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1265/// class, after checking whether there are any duplicate base
1266/// classes.
1267void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1268                               unsigned NumBases) {
1269  if (!ClassDecl || !Bases || !NumBases)
1270    return;
1271
1272  AdjustDeclIfTemplate(ClassDecl);
1273  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1274                       (CXXBaseSpecifier**)(Bases), NumBases);
1275}
1276
1277static CXXRecordDecl *GetClassForType(QualType T) {
1278  if (const RecordType *RT = T->getAs<RecordType>())
1279    return cast<CXXRecordDecl>(RT->getDecl());
1280  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1281    return ICT->getDecl();
1282  else
1283    return 0;
1284}
1285
1286/// \brief Determine whether the type \p Derived is a C++ class that is
1287/// derived from the type \p Base.
1288bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1289  if (!getLangOpts().CPlusPlus)
1290    return false;
1291
1292  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1293  if (!DerivedRD)
1294    return false;
1295
1296  CXXRecordDecl *BaseRD = GetClassForType(Base);
1297  if (!BaseRD)
1298    return false;
1299
1300  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1301  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1302}
1303
1304/// \brief Determine whether the type \p Derived is a C++ class that is
1305/// derived from the type \p Base.
1306bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1307  if (!getLangOpts().CPlusPlus)
1308    return false;
1309
1310  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1311  if (!DerivedRD)
1312    return false;
1313
1314  CXXRecordDecl *BaseRD = GetClassForType(Base);
1315  if (!BaseRD)
1316    return false;
1317
1318  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1319}
1320
1321void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1322                              CXXCastPath &BasePathArray) {
1323  assert(BasePathArray.empty() && "Base path array must be empty!");
1324  assert(Paths.isRecordingPaths() && "Must record paths!");
1325
1326  const CXXBasePath &Path = Paths.front();
1327
1328  // We first go backward and check if we have a virtual base.
1329  // FIXME: It would be better if CXXBasePath had the base specifier for
1330  // the nearest virtual base.
1331  unsigned Start = 0;
1332  for (unsigned I = Path.size(); I != 0; --I) {
1333    if (Path[I - 1].Base->isVirtual()) {
1334      Start = I - 1;
1335      break;
1336    }
1337  }
1338
1339  // Now add all bases.
1340  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1341    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1342}
1343
1344/// \brief Determine whether the given base path includes a virtual
1345/// base class.
1346bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1347  for (CXXCastPath::const_iterator B = BasePath.begin(),
1348                                BEnd = BasePath.end();
1349       B != BEnd; ++B)
1350    if ((*B)->isVirtual())
1351      return true;
1352
1353  return false;
1354}
1355
1356/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1357/// conversion (where Derived and Base are class types) is
1358/// well-formed, meaning that the conversion is unambiguous (and
1359/// that all of the base classes are accessible). Returns true
1360/// and emits a diagnostic if the code is ill-formed, returns false
1361/// otherwise. Loc is the location where this routine should point to
1362/// if there is an error, and Range is the source range to highlight
1363/// if there is an error.
1364bool
1365Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1366                                   unsigned InaccessibleBaseID,
1367                                   unsigned AmbigiousBaseConvID,
1368                                   SourceLocation Loc, SourceRange Range,
1369                                   DeclarationName Name,
1370                                   CXXCastPath *BasePath) {
1371  // First, determine whether the path from Derived to Base is
1372  // ambiguous. This is slightly more expensive than checking whether
1373  // the Derived to Base conversion exists, because here we need to
1374  // explore multiple paths to determine if there is an ambiguity.
1375  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1376                     /*DetectVirtual=*/false);
1377  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1378  assert(DerivationOkay &&
1379         "Can only be used with a derived-to-base conversion");
1380  (void)DerivationOkay;
1381
1382  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1383    if (InaccessibleBaseID) {
1384      // Check that the base class can be accessed.
1385      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1386                                   InaccessibleBaseID)) {
1387        case AR_inaccessible:
1388          return true;
1389        case AR_accessible:
1390        case AR_dependent:
1391        case AR_delayed:
1392          break;
1393      }
1394    }
1395
1396    // Build a base path if necessary.
1397    if (BasePath)
1398      BuildBasePathArray(Paths, *BasePath);
1399    return false;
1400  }
1401
1402  // We know that the derived-to-base conversion is ambiguous, and
1403  // we're going to produce a diagnostic. Perform the derived-to-base
1404  // search just one more time to compute all of the possible paths so
1405  // that we can print them out. This is more expensive than any of
1406  // the previous derived-to-base checks we've done, but at this point
1407  // performance isn't as much of an issue.
1408  Paths.clear();
1409  Paths.setRecordingPaths(true);
1410  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1411  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1412  (void)StillOkay;
1413
1414  // Build up a textual representation of the ambiguous paths, e.g.,
1415  // D -> B -> A, that will be used to illustrate the ambiguous
1416  // conversions in the diagnostic. We only print one of the paths
1417  // to each base class subobject.
1418  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1419
1420  Diag(Loc, AmbigiousBaseConvID)
1421  << Derived << Base << PathDisplayStr << Range << Name;
1422  return true;
1423}
1424
1425bool
1426Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1427                                   SourceLocation Loc, SourceRange Range,
1428                                   CXXCastPath *BasePath,
1429                                   bool IgnoreAccess) {
1430  return CheckDerivedToBaseConversion(Derived, Base,
1431                                      IgnoreAccess ? 0
1432                                       : diag::err_upcast_to_inaccessible_base,
1433                                      diag::err_ambiguous_derived_to_base_conv,
1434                                      Loc, Range, DeclarationName(),
1435                                      BasePath);
1436}
1437
1438
1439/// @brief Builds a string representing ambiguous paths from a
1440/// specific derived class to different subobjects of the same base
1441/// class.
1442///
1443/// This function builds a string that can be used in error messages
1444/// to show the different paths that one can take through the
1445/// inheritance hierarchy to go from the derived class to different
1446/// subobjects of a base class. The result looks something like this:
1447/// @code
1448/// struct D -> struct B -> struct A
1449/// struct D -> struct C -> struct A
1450/// @endcode
1451std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1452  std::string PathDisplayStr;
1453  std::set<unsigned> DisplayedPaths;
1454  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1455       Path != Paths.end(); ++Path) {
1456    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1457      // We haven't displayed a path to this particular base
1458      // class subobject yet.
1459      PathDisplayStr += "\n    ";
1460      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1461      for (CXXBasePath::const_iterator Element = Path->begin();
1462           Element != Path->end(); ++Element)
1463        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1464    }
1465  }
1466
1467  return PathDisplayStr;
1468}
1469
1470//===----------------------------------------------------------------------===//
1471// C++ class member Handling
1472//===----------------------------------------------------------------------===//
1473
1474/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1475bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1476                                SourceLocation ASLoc,
1477                                SourceLocation ColonLoc,
1478                                AttributeList *Attrs) {
1479  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1480  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1481                                                  ASLoc, ColonLoc);
1482  CurContext->addHiddenDecl(ASDecl);
1483  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1484}
1485
1486/// CheckOverrideControl - Check C++11 override control semantics.
1487void Sema::CheckOverrideControl(Decl *D) {
1488  if (D->isInvalidDecl())
1489    return;
1490
1491  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1492
1493  // Do we know which functions this declaration might be overriding?
1494  bool OverridesAreKnown = !MD ||
1495      (!MD->getParent()->hasAnyDependentBases() &&
1496       !MD->getType()->isDependentType());
1497
1498  if (!MD || !MD->isVirtual()) {
1499    if (OverridesAreKnown) {
1500      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1501        Diag(OA->getLocation(),
1502             diag::override_keyword_only_allowed_on_virtual_member_functions)
1503          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1504        D->dropAttr<OverrideAttr>();
1505      }
1506      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1507        Diag(FA->getLocation(),
1508             diag::override_keyword_only_allowed_on_virtual_member_functions)
1509          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1510        D->dropAttr<FinalAttr>();
1511      }
1512    }
1513    return;
1514  }
1515
1516  if (!OverridesAreKnown)
1517    return;
1518
1519  // C++11 [class.virtual]p5:
1520  //   If a virtual function is marked with the virt-specifier override and
1521  //   does not override a member function of a base class, the program is
1522  //   ill-formed.
1523  bool HasOverriddenMethods =
1524    MD->begin_overridden_methods() != MD->end_overridden_methods();
1525  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1526    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1527      << MD->getDeclName();
1528}
1529
1530/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1531/// function overrides a virtual member function marked 'final', according to
1532/// C++11 [class.virtual]p4.
1533bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1534                                                  const CXXMethodDecl *Old) {
1535  if (!Old->hasAttr<FinalAttr>())
1536    return false;
1537
1538  Diag(New->getLocation(), diag::err_final_function_overridden)
1539    << New->getDeclName();
1540  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1541  return true;
1542}
1543
1544static bool InitializationHasSideEffects(const FieldDecl &FD) {
1545  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1546  // FIXME: Destruction of ObjC lifetime types has side-effects.
1547  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1548    return !RD->isCompleteDefinition() ||
1549           !RD->hasTrivialDefaultConstructor() ||
1550           !RD->hasTrivialDestructor();
1551  return false;
1552}
1553
1554/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1555/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1556/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1557/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1558/// present (but parsing it has been deferred).
1559Decl *
1560Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1561                               MultiTemplateParamsArg TemplateParameterLists,
1562                               Expr *BW, const VirtSpecifiers &VS,
1563                               InClassInitStyle InitStyle) {
1564  const DeclSpec &DS = D.getDeclSpec();
1565  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1566  DeclarationName Name = NameInfo.getName();
1567  SourceLocation Loc = NameInfo.getLoc();
1568
1569  // For anonymous bitfields, the location should point to the type.
1570  if (Loc.isInvalid())
1571    Loc = D.getLocStart();
1572
1573  Expr *BitWidth = static_cast<Expr*>(BW);
1574
1575  assert(isa<CXXRecordDecl>(CurContext));
1576  assert(!DS.isFriendSpecified());
1577
1578  bool isFunc = D.isDeclarationOfFunction();
1579
1580  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1581    // The Microsoft extension __interface only permits public member functions
1582    // and prohibits constructors, destructors, operators, non-public member
1583    // functions, static methods and data members.
1584    unsigned InvalidDecl;
1585    bool ShowDeclName = true;
1586    if (!isFunc)
1587      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1588    else if (AS != AS_public)
1589      InvalidDecl = 2;
1590    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1591      InvalidDecl = 3;
1592    else switch (Name.getNameKind()) {
1593      case DeclarationName::CXXConstructorName:
1594        InvalidDecl = 4;
1595        ShowDeclName = false;
1596        break;
1597
1598      case DeclarationName::CXXDestructorName:
1599        InvalidDecl = 5;
1600        ShowDeclName = false;
1601        break;
1602
1603      case DeclarationName::CXXOperatorName:
1604      case DeclarationName::CXXConversionFunctionName:
1605        InvalidDecl = 6;
1606        break;
1607
1608      default:
1609        InvalidDecl = 0;
1610        break;
1611    }
1612
1613    if (InvalidDecl) {
1614      if (ShowDeclName)
1615        Diag(Loc, diag::err_invalid_member_in_interface)
1616          << (InvalidDecl-1) << Name;
1617      else
1618        Diag(Loc, diag::err_invalid_member_in_interface)
1619          << (InvalidDecl-1) << "";
1620      return 0;
1621    }
1622  }
1623
1624  // C++ 9.2p6: A member shall not be declared to have automatic storage
1625  // duration (auto, register) or with the extern storage-class-specifier.
1626  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1627  // data members and cannot be applied to names declared const or static,
1628  // and cannot be applied to reference members.
1629  switch (DS.getStorageClassSpec()) {
1630    case DeclSpec::SCS_unspecified:
1631    case DeclSpec::SCS_typedef:
1632    case DeclSpec::SCS_static:
1633      // FALL THROUGH.
1634      break;
1635    case DeclSpec::SCS_mutable:
1636      if (isFunc) {
1637        if (DS.getStorageClassSpecLoc().isValid())
1638          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1639        else
1640          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1641
1642        // FIXME: It would be nicer if the keyword was ignored only for this
1643        // declarator. Otherwise we could get follow-up errors.
1644        D.getMutableDeclSpec().ClearStorageClassSpecs();
1645      }
1646      break;
1647    default:
1648      if (DS.getStorageClassSpecLoc().isValid())
1649        Diag(DS.getStorageClassSpecLoc(),
1650             diag::err_storageclass_invalid_for_member);
1651      else
1652        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1653      D.getMutableDeclSpec().ClearStorageClassSpecs();
1654  }
1655
1656  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1657                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1658                      !isFunc);
1659
1660  Decl *Member;
1661  if (isInstField) {
1662    CXXScopeSpec &SS = D.getCXXScopeSpec();
1663
1664    // Data members must have identifiers for names.
1665    if (!Name.isIdentifier()) {
1666      Diag(Loc, diag::err_bad_variable_name)
1667        << Name;
1668      return 0;
1669    }
1670
1671    IdentifierInfo *II = Name.getAsIdentifierInfo();
1672
1673    // Member field could not be with "template" keyword.
1674    // So TemplateParameterLists should be empty in this case.
1675    if (TemplateParameterLists.size()) {
1676      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1677      if (TemplateParams->size()) {
1678        // There is no such thing as a member field template.
1679        Diag(D.getIdentifierLoc(), diag::err_template_member)
1680            << II
1681            << SourceRange(TemplateParams->getTemplateLoc(),
1682                TemplateParams->getRAngleLoc());
1683      } else {
1684        // There is an extraneous 'template<>' for this member.
1685        Diag(TemplateParams->getTemplateLoc(),
1686            diag::err_template_member_noparams)
1687            << II
1688            << SourceRange(TemplateParams->getTemplateLoc(),
1689                TemplateParams->getRAngleLoc());
1690      }
1691      return 0;
1692    }
1693
1694    if (SS.isSet() && !SS.isInvalid()) {
1695      // The user provided a superfluous scope specifier inside a class
1696      // definition:
1697      //
1698      // class X {
1699      //   int X::member;
1700      // };
1701      if (DeclContext *DC = computeDeclContext(SS, false))
1702        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1703      else
1704        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1705          << Name << SS.getRange();
1706
1707      SS.clear();
1708    }
1709
1710    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1711                         InitStyle, AS);
1712    assert(Member && "HandleField never returns null");
1713  } else {
1714    assert(InitStyle == ICIS_NoInit);
1715
1716    Member = HandleDeclarator(S, D, TemplateParameterLists);
1717    if (!Member) {
1718      return 0;
1719    }
1720
1721    // Non-instance-fields can't have a bitfield.
1722    if (BitWidth) {
1723      if (Member->isInvalidDecl()) {
1724        // don't emit another diagnostic.
1725      } else if (isa<VarDecl>(Member)) {
1726        // C++ 9.6p3: A bit-field shall not be a static member.
1727        // "static member 'A' cannot be a bit-field"
1728        Diag(Loc, diag::err_static_not_bitfield)
1729          << Name << BitWidth->getSourceRange();
1730      } else if (isa<TypedefDecl>(Member)) {
1731        // "typedef member 'x' cannot be a bit-field"
1732        Diag(Loc, diag::err_typedef_not_bitfield)
1733          << Name << BitWidth->getSourceRange();
1734      } else {
1735        // A function typedef ("typedef int f(); f a;").
1736        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1737        Diag(Loc, diag::err_not_integral_type_bitfield)
1738          << Name << cast<ValueDecl>(Member)->getType()
1739          << BitWidth->getSourceRange();
1740      }
1741
1742      BitWidth = 0;
1743      Member->setInvalidDecl();
1744    }
1745
1746    Member->setAccess(AS);
1747
1748    // If we have declared a member function template, set the access of the
1749    // templated declaration as well.
1750    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1751      FunTmpl->getTemplatedDecl()->setAccess(AS);
1752  }
1753
1754  if (VS.isOverrideSpecified())
1755    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1756  if (VS.isFinalSpecified())
1757    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1758
1759  if (VS.getLastLocation().isValid()) {
1760    // Update the end location of a method that has a virt-specifiers.
1761    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1762      MD->setRangeEnd(VS.getLastLocation());
1763  }
1764
1765  CheckOverrideControl(Member);
1766
1767  assert((Name || isInstField) && "No identifier for non-field ?");
1768
1769  if (isInstField) {
1770    FieldDecl *FD = cast<FieldDecl>(Member);
1771    FieldCollector->Add(FD);
1772
1773    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1774                                 FD->getLocation())
1775          != DiagnosticsEngine::Ignored) {
1776      // Remember all explicit private FieldDecls that have a name, no side
1777      // effects and are not part of a dependent type declaration.
1778      if (!FD->isImplicit() && FD->getDeclName() &&
1779          FD->getAccess() == AS_private &&
1780          !FD->hasAttr<UnusedAttr>() &&
1781          !FD->getParent()->isDependentContext() &&
1782          !InitializationHasSideEffects(*FD))
1783        UnusedPrivateFields.insert(FD);
1784    }
1785  }
1786
1787  return Member;
1788}
1789
1790namespace {
1791  class UninitializedFieldVisitor
1792      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
1793    Sema &S;
1794    ValueDecl *VD;
1795  public:
1796    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
1797    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
1798                                                        S(S), VD(VD) {
1799    }
1800
1801    void HandleExpr(Expr *E) {
1802      if (!E) return;
1803
1804      // Expressions like x(x) sometimes lack the surrounding expressions
1805      // but need to be checked anyways.
1806      HandleValue(E);
1807      Visit(E);
1808    }
1809
1810    void HandleValue(Expr *E) {
1811      E = E->IgnoreParens();
1812
1813      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1814        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
1815            return;
1816        Expr *Base = E;
1817        while (isa<MemberExpr>(Base)) {
1818          ME = dyn_cast<MemberExpr>(Base);
1819          if (VarDecl *VarD = dyn_cast<VarDecl>(ME->getMemberDecl()))
1820            if (VarD->hasGlobalStorage())
1821              return;
1822          Base = ME->getBase();
1823        }
1824
1825        if (VD == ME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
1826          unsigned diag = VD->getType()->isReferenceType()
1827              ? diag::warn_reference_field_is_uninit
1828              : diag::warn_field_is_uninit;
1829          S.Diag(ME->getExprLoc(), diag) << ME->getMemberNameInfo().getName();
1830          return;
1831        }
1832      }
1833
1834      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1835        HandleValue(CO->getTrueExpr());
1836        HandleValue(CO->getFalseExpr());
1837        return;
1838      }
1839
1840      if (BinaryConditionalOperator *BCO =
1841              dyn_cast<BinaryConditionalOperator>(E)) {
1842        HandleValue(BCO->getCommon());
1843        HandleValue(BCO->getFalseExpr());
1844        return;
1845      }
1846
1847      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
1848        switch (BO->getOpcode()) {
1849        default:
1850          return;
1851        case(BO_PtrMemD):
1852        case(BO_PtrMemI):
1853          HandleValue(BO->getLHS());
1854          return;
1855        case(BO_Comma):
1856          HandleValue(BO->getRHS());
1857          return;
1858        }
1859      }
1860    }
1861
1862    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
1863      if (E->getCastKind() == CK_LValueToRValue)
1864        HandleValue(E->getSubExpr());
1865
1866      Inherited::VisitImplicitCastExpr(E);
1867    }
1868
1869    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
1870      Expr *Callee = E->getCallee();
1871      if (isa<MemberExpr>(Callee))
1872        HandleValue(Callee);
1873
1874      Inherited::VisitCXXMemberCallExpr(E);
1875    }
1876  };
1877  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
1878                                                       ValueDecl *VD) {
1879    UninitializedFieldVisitor(S, VD).HandleExpr(E);
1880  }
1881} // namespace
1882
1883/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1884/// in-class initializer for a non-static C++ class member, and after
1885/// instantiating an in-class initializer in a class template. Such actions
1886/// are deferred until the class is complete.
1887void
1888Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
1889                                       Expr *InitExpr) {
1890  FieldDecl *FD = cast<FieldDecl>(D);
1891  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
1892         "must set init style when field is created");
1893
1894  if (!InitExpr) {
1895    FD->setInvalidDecl();
1896    FD->removeInClassInitializer();
1897    return;
1898  }
1899
1900  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1901    FD->setInvalidDecl();
1902    FD->removeInClassInitializer();
1903    return;
1904  }
1905
1906  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
1907      != DiagnosticsEngine::Ignored) {
1908    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
1909  }
1910
1911  ExprResult Init = InitExpr;
1912  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent() &&
1913      !FD->getDeclContext()->isDependentContext()) {
1914    // Note: We don't type-check when we're in a dependent context, because
1915    // the initialization-substitution code does not properly handle direct
1916    // list initialization. We have the same hackaround for ctor-initializers.
1917    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1918      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1919        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1920    }
1921    Expr **Inits = &InitExpr;
1922    unsigned NumInits = 1;
1923    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1924    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
1925        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1926        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
1927    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1928    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1929    if (Init.isInvalid()) {
1930      FD->setInvalidDecl();
1931      return;
1932    }
1933
1934    CheckImplicitConversions(Init.get(), InitLoc);
1935  }
1936
1937  // C++0x [class.base.init]p7:
1938  //   The initialization of each base and member constitutes a
1939  //   full-expression.
1940  Init = MaybeCreateExprWithCleanups(Init);
1941  if (Init.isInvalid()) {
1942    FD->setInvalidDecl();
1943    return;
1944  }
1945
1946  InitExpr = Init.release();
1947
1948  FD->setInClassInitializer(InitExpr);
1949}
1950
1951/// \brief Find the direct and/or virtual base specifiers that
1952/// correspond to the given base type, for use in base initialization
1953/// within a constructor.
1954static bool FindBaseInitializer(Sema &SemaRef,
1955                                CXXRecordDecl *ClassDecl,
1956                                QualType BaseType,
1957                                const CXXBaseSpecifier *&DirectBaseSpec,
1958                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1959  // First, check for a direct base class.
1960  DirectBaseSpec = 0;
1961  for (CXXRecordDecl::base_class_const_iterator Base
1962         = ClassDecl->bases_begin();
1963       Base != ClassDecl->bases_end(); ++Base) {
1964    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1965      // We found a direct base of this type. That's what we're
1966      // initializing.
1967      DirectBaseSpec = &*Base;
1968      break;
1969    }
1970  }
1971
1972  // Check for a virtual base class.
1973  // FIXME: We might be able to short-circuit this if we know in advance that
1974  // there are no virtual bases.
1975  VirtualBaseSpec = 0;
1976  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1977    // We haven't found a base yet; search the class hierarchy for a
1978    // virtual base class.
1979    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1980                       /*DetectVirtual=*/false);
1981    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1982                              BaseType, Paths)) {
1983      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1984           Path != Paths.end(); ++Path) {
1985        if (Path->back().Base->isVirtual()) {
1986          VirtualBaseSpec = Path->back().Base;
1987          break;
1988        }
1989      }
1990    }
1991  }
1992
1993  return DirectBaseSpec || VirtualBaseSpec;
1994}
1995
1996/// \brief Handle a C++ member initializer using braced-init-list syntax.
1997MemInitResult
1998Sema::ActOnMemInitializer(Decl *ConstructorD,
1999                          Scope *S,
2000                          CXXScopeSpec &SS,
2001                          IdentifierInfo *MemberOrBase,
2002                          ParsedType TemplateTypeTy,
2003                          const DeclSpec &DS,
2004                          SourceLocation IdLoc,
2005                          Expr *InitList,
2006                          SourceLocation EllipsisLoc) {
2007  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2008                             DS, IdLoc, InitList,
2009                             EllipsisLoc);
2010}
2011
2012/// \brief Handle a C++ member initializer using parentheses syntax.
2013MemInitResult
2014Sema::ActOnMemInitializer(Decl *ConstructorD,
2015                          Scope *S,
2016                          CXXScopeSpec &SS,
2017                          IdentifierInfo *MemberOrBase,
2018                          ParsedType TemplateTypeTy,
2019                          const DeclSpec &DS,
2020                          SourceLocation IdLoc,
2021                          SourceLocation LParenLoc,
2022                          Expr **Args, unsigned NumArgs,
2023                          SourceLocation RParenLoc,
2024                          SourceLocation EllipsisLoc) {
2025  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2026                                           llvm::makeArrayRef(Args, NumArgs),
2027                                           RParenLoc);
2028  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2029                             DS, IdLoc, List, EllipsisLoc);
2030}
2031
2032namespace {
2033
2034// Callback to only accept typo corrections that can be a valid C++ member
2035// intializer: either a non-static field member or a base class.
2036class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2037 public:
2038  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2039      : ClassDecl(ClassDecl) {}
2040
2041  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2042    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2043      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2044        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2045      else
2046        return isa<TypeDecl>(ND);
2047    }
2048    return false;
2049  }
2050
2051 private:
2052  CXXRecordDecl *ClassDecl;
2053};
2054
2055}
2056
2057/// \brief Handle a C++ member initializer.
2058MemInitResult
2059Sema::BuildMemInitializer(Decl *ConstructorD,
2060                          Scope *S,
2061                          CXXScopeSpec &SS,
2062                          IdentifierInfo *MemberOrBase,
2063                          ParsedType TemplateTypeTy,
2064                          const DeclSpec &DS,
2065                          SourceLocation IdLoc,
2066                          Expr *Init,
2067                          SourceLocation EllipsisLoc) {
2068  if (!ConstructorD)
2069    return true;
2070
2071  AdjustDeclIfTemplate(ConstructorD);
2072
2073  CXXConstructorDecl *Constructor
2074    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2075  if (!Constructor) {
2076    // The user wrote a constructor initializer on a function that is
2077    // not a C++ constructor. Ignore the error for now, because we may
2078    // have more member initializers coming; we'll diagnose it just
2079    // once in ActOnMemInitializers.
2080    return true;
2081  }
2082
2083  CXXRecordDecl *ClassDecl = Constructor->getParent();
2084
2085  // C++ [class.base.init]p2:
2086  //   Names in a mem-initializer-id are looked up in the scope of the
2087  //   constructor's class and, if not found in that scope, are looked
2088  //   up in the scope containing the constructor's definition.
2089  //   [Note: if the constructor's class contains a member with the
2090  //   same name as a direct or virtual base class of the class, a
2091  //   mem-initializer-id naming the member or base class and composed
2092  //   of a single identifier refers to the class member. A
2093  //   mem-initializer-id for the hidden base class may be specified
2094  //   using a qualified name. ]
2095  if (!SS.getScopeRep() && !TemplateTypeTy) {
2096    // Look for a member, first.
2097    DeclContext::lookup_result Result
2098      = ClassDecl->lookup(MemberOrBase);
2099    if (Result.first != Result.second) {
2100      ValueDecl *Member;
2101      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
2102          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
2103        if (EllipsisLoc.isValid())
2104          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2105            << MemberOrBase
2106            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2107
2108        return BuildMemberInitializer(Member, Init, IdLoc);
2109      }
2110    }
2111  }
2112  // It didn't name a member, so see if it names a class.
2113  QualType BaseType;
2114  TypeSourceInfo *TInfo = 0;
2115
2116  if (TemplateTypeTy) {
2117    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2118  } else if (DS.getTypeSpecType() == TST_decltype) {
2119    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2120  } else {
2121    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2122    LookupParsedName(R, S, &SS);
2123
2124    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2125    if (!TyD) {
2126      if (R.isAmbiguous()) return true;
2127
2128      // We don't want access-control diagnostics here.
2129      R.suppressDiagnostics();
2130
2131      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2132        bool NotUnknownSpecialization = false;
2133        DeclContext *DC = computeDeclContext(SS, false);
2134        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2135          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2136
2137        if (!NotUnknownSpecialization) {
2138          // When the scope specifier can refer to a member of an unknown
2139          // specialization, we take it as a type name.
2140          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2141                                       SS.getWithLocInContext(Context),
2142                                       *MemberOrBase, IdLoc);
2143          if (BaseType.isNull())
2144            return true;
2145
2146          R.clear();
2147          R.setLookupName(MemberOrBase);
2148        }
2149      }
2150
2151      // If no results were found, try to correct typos.
2152      TypoCorrection Corr;
2153      MemInitializerValidatorCCC Validator(ClassDecl);
2154      if (R.empty() && BaseType.isNull() &&
2155          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2156                              Validator, ClassDecl))) {
2157        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2158        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2159        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2160          // We have found a non-static data member with a similar
2161          // name to what was typed; complain and initialize that
2162          // member.
2163          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2164            << MemberOrBase << true << CorrectedQuotedStr
2165            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2166          Diag(Member->getLocation(), diag::note_previous_decl)
2167            << CorrectedQuotedStr;
2168
2169          return BuildMemberInitializer(Member, Init, IdLoc);
2170        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2171          const CXXBaseSpecifier *DirectBaseSpec;
2172          const CXXBaseSpecifier *VirtualBaseSpec;
2173          if (FindBaseInitializer(*this, ClassDecl,
2174                                  Context.getTypeDeclType(Type),
2175                                  DirectBaseSpec, VirtualBaseSpec)) {
2176            // We have found a direct or virtual base class with a
2177            // similar name to what was typed; complain and initialize
2178            // that base class.
2179            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2180              << MemberOrBase << false << CorrectedQuotedStr
2181              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2182
2183            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2184                                                             : VirtualBaseSpec;
2185            Diag(BaseSpec->getLocStart(),
2186                 diag::note_base_class_specified_here)
2187              << BaseSpec->getType()
2188              << BaseSpec->getSourceRange();
2189
2190            TyD = Type;
2191          }
2192        }
2193      }
2194
2195      if (!TyD && BaseType.isNull()) {
2196        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2197          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2198        return true;
2199      }
2200    }
2201
2202    if (BaseType.isNull()) {
2203      BaseType = Context.getTypeDeclType(TyD);
2204      if (SS.isSet()) {
2205        NestedNameSpecifier *Qualifier =
2206          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2207
2208        // FIXME: preserve source range information
2209        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2210      }
2211    }
2212  }
2213
2214  if (!TInfo)
2215    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2216
2217  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2218}
2219
2220/// Checks a member initializer expression for cases where reference (or
2221/// pointer) members are bound to by-value parameters (or their addresses).
2222static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2223                                               Expr *Init,
2224                                               SourceLocation IdLoc) {
2225  QualType MemberTy = Member->getType();
2226
2227  // We only handle pointers and references currently.
2228  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2229  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2230    return;
2231
2232  const bool IsPointer = MemberTy->isPointerType();
2233  if (IsPointer) {
2234    if (const UnaryOperator *Op
2235          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2236      // The only case we're worried about with pointers requires taking the
2237      // address.
2238      if (Op->getOpcode() != UO_AddrOf)
2239        return;
2240
2241      Init = Op->getSubExpr();
2242    } else {
2243      // We only handle address-of expression initializers for pointers.
2244      return;
2245    }
2246  }
2247
2248  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2249    // Taking the address of a temporary will be diagnosed as a hard error.
2250    if (IsPointer)
2251      return;
2252
2253    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2254      << Member << Init->getSourceRange();
2255  } else if (const DeclRefExpr *DRE
2256               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2257    // We only warn when referring to a non-reference parameter declaration.
2258    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2259    if (!Parameter || Parameter->getType()->isReferenceType())
2260      return;
2261
2262    S.Diag(Init->getExprLoc(),
2263           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2264                     : diag::warn_bind_ref_member_to_parameter)
2265      << Member << Parameter << Init->getSourceRange();
2266  } else {
2267    // Other initializers are fine.
2268    return;
2269  }
2270
2271  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2272    << (unsigned)IsPointer;
2273}
2274
2275MemInitResult
2276Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2277                             SourceLocation IdLoc) {
2278  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2279  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2280  assert((DirectMember || IndirectMember) &&
2281         "Member must be a FieldDecl or IndirectFieldDecl");
2282
2283  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2284    return true;
2285
2286  if (Member->isInvalidDecl())
2287    return true;
2288
2289  // Diagnose value-uses of fields to initialize themselves, e.g.
2290  //   foo(foo)
2291  // where foo is not also a parameter to the constructor.
2292  // TODO: implement -Wuninitialized and fold this into that framework.
2293  Expr **Args;
2294  unsigned NumArgs;
2295  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2296    Args = ParenList->getExprs();
2297    NumArgs = ParenList->getNumExprs();
2298  } else {
2299    InitListExpr *InitList = cast<InitListExpr>(Init);
2300    Args = InitList->getInits();
2301    NumArgs = InitList->getNumInits();
2302  }
2303
2304  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2305        != DiagnosticsEngine::Ignored)
2306    for (unsigned i = 0; i < NumArgs; ++i)
2307      // FIXME: Warn about the case when other fields are used before being
2308      // initialized. For example, let this field be the i'th field. When
2309      // initializing the i'th field, throw a warning if any of the >= i'th
2310      // fields are used, as they are not yet initialized.
2311      // Right now we are only handling the case where the i'th field uses
2312      // itself in its initializer.
2313      // Also need to take into account that some fields may be initialized by
2314      // in-class initializers, see C++11 [class.base.init]p9.
2315      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2316
2317  SourceRange InitRange = Init->getSourceRange();
2318
2319  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2320    // Can't check initialization for a member of dependent type or when
2321    // any of the arguments are type-dependent expressions.
2322    DiscardCleanupsInEvaluationContext();
2323  } else {
2324    bool InitList = false;
2325    if (isa<InitListExpr>(Init)) {
2326      InitList = true;
2327      Args = &Init;
2328      NumArgs = 1;
2329
2330      if (isStdInitializerList(Member->getType(), 0)) {
2331        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2332            << /*at end of ctor*/1 << InitRange;
2333      }
2334    }
2335
2336    // Initialize the member.
2337    InitializedEntity MemberEntity =
2338      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2339                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2340    InitializationKind Kind =
2341      InitList ? InitializationKind::CreateDirectList(IdLoc)
2342               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2343                                                  InitRange.getEnd());
2344
2345    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2346    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2347                                            MultiExprArg(Args, NumArgs),
2348                                            0);
2349    if (MemberInit.isInvalid())
2350      return true;
2351
2352    CheckImplicitConversions(MemberInit.get(),
2353                             InitRange.getBegin());
2354
2355    // C++0x [class.base.init]p7:
2356    //   The initialization of each base and member constitutes a
2357    //   full-expression.
2358    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2359    if (MemberInit.isInvalid())
2360      return true;
2361
2362    // If we are in a dependent context, template instantiation will
2363    // perform this type-checking again. Just save the arguments that we
2364    // received.
2365    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2366    // of the information that we have about the member
2367    // initializer. However, deconstructing the ASTs is a dicey process,
2368    // and this approach is far more likely to get the corner cases right.
2369    if (CurContext->isDependentContext()) {
2370      // The existing Init will do fine.
2371    } else {
2372      Init = MemberInit.get();
2373      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2374    }
2375  }
2376
2377  if (DirectMember) {
2378    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2379                                            InitRange.getBegin(), Init,
2380                                            InitRange.getEnd());
2381  } else {
2382    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2383                                            InitRange.getBegin(), Init,
2384                                            InitRange.getEnd());
2385  }
2386}
2387
2388MemInitResult
2389Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2390                                 CXXRecordDecl *ClassDecl) {
2391  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2392  if (!LangOpts.CPlusPlus0x)
2393    return Diag(NameLoc, diag::err_delegating_ctor)
2394      << TInfo->getTypeLoc().getLocalSourceRange();
2395  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2396
2397  bool InitList = true;
2398  Expr **Args = &Init;
2399  unsigned NumArgs = 1;
2400  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2401    InitList = false;
2402    Args = ParenList->getExprs();
2403    NumArgs = ParenList->getNumExprs();
2404  }
2405
2406  SourceRange InitRange = Init->getSourceRange();
2407  // Initialize the object.
2408  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2409                                     QualType(ClassDecl->getTypeForDecl(), 0));
2410  InitializationKind Kind =
2411    InitList ? InitializationKind::CreateDirectList(NameLoc)
2412             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2413                                                InitRange.getEnd());
2414  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2415  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2416                                              MultiExprArg(Args, NumArgs),
2417                                              0);
2418  if (DelegationInit.isInvalid())
2419    return true;
2420
2421  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2422         "Delegating constructor with no target?");
2423
2424  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2425
2426  // C++0x [class.base.init]p7:
2427  //   The initialization of each base and member constitutes a
2428  //   full-expression.
2429  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2430  if (DelegationInit.isInvalid())
2431    return true;
2432
2433  // If we are in a dependent context, template instantiation will
2434  // perform this type-checking again. Just save the arguments that we
2435  // received in a ParenListExpr.
2436  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2437  // of the information that we have about the base
2438  // initializer. However, deconstructing the ASTs is a dicey process,
2439  // and this approach is far more likely to get the corner cases right.
2440  if (CurContext->isDependentContext())
2441    DelegationInit = Owned(Init);
2442
2443  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2444                                          DelegationInit.takeAs<Expr>(),
2445                                          InitRange.getEnd());
2446}
2447
2448MemInitResult
2449Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2450                           Expr *Init, CXXRecordDecl *ClassDecl,
2451                           SourceLocation EllipsisLoc) {
2452  SourceLocation BaseLoc
2453    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2454
2455  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2456    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2457             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2458
2459  // C++ [class.base.init]p2:
2460  //   [...] Unless the mem-initializer-id names a nonstatic data
2461  //   member of the constructor's class or a direct or virtual base
2462  //   of that class, the mem-initializer is ill-formed. A
2463  //   mem-initializer-list can initialize a base class using any
2464  //   name that denotes that base class type.
2465  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2466
2467  SourceRange InitRange = Init->getSourceRange();
2468  if (EllipsisLoc.isValid()) {
2469    // This is a pack expansion.
2470    if (!BaseType->containsUnexpandedParameterPack())  {
2471      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2472        << SourceRange(BaseLoc, InitRange.getEnd());
2473
2474      EllipsisLoc = SourceLocation();
2475    }
2476  } else {
2477    // Check for any unexpanded parameter packs.
2478    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2479      return true;
2480
2481    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2482      return true;
2483  }
2484
2485  // Check for direct and virtual base classes.
2486  const CXXBaseSpecifier *DirectBaseSpec = 0;
2487  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2488  if (!Dependent) {
2489    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2490                                       BaseType))
2491      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2492
2493    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2494                        VirtualBaseSpec);
2495
2496    // C++ [base.class.init]p2:
2497    // Unless the mem-initializer-id names a nonstatic data member of the
2498    // constructor's class or a direct or virtual base of that class, the
2499    // mem-initializer is ill-formed.
2500    if (!DirectBaseSpec && !VirtualBaseSpec) {
2501      // If the class has any dependent bases, then it's possible that
2502      // one of those types will resolve to the same type as
2503      // BaseType. Therefore, just treat this as a dependent base
2504      // class initialization.  FIXME: Should we try to check the
2505      // initialization anyway? It seems odd.
2506      if (ClassDecl->hasAnyDependentBases())
2507        Dependent = true;
2508      else
2509        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2510          << BaseType << Context.getTypeDeclType(ClassDecl)
2511          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2512    }
2513  }
2514
2515  if (Dependent) {
2516    DiscardCleanupsInEvaluationContext();
2517
2518    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2519                                            /*IsVirtual=*/false,
2520                                            InitRange.getBegin(), Init,
2521                                            InitRange.getEnd(), EllipsisLoc);
2522  }
2523
2524  // C++ [base.class.init]p2:
2525  //   If a mem-initializer-id is ambiguous because it designates both
2526  //   a direct non-virtual base class and an inherited virtual base
2527  //   class, the mem-initializer is ill-formed.
2528  if (DirectBaseSpec && VirtualBaseSpec)
2529    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2530      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2531
2532  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2533  if (!BaseSpec)
2534    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2535
2536  // Initialize the base.
2537  bool InitList = true;
2538  Expr **Args = &Init;
2539  unsigned NumArgs = 1;
2540  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2541    InitList = false;
2542    Args = ParenList->getExprs();
2543    NumArgs = ParenList->getNumExprs();
2544  }
2545
2546  InitializedEntity BaseEntity =
2547    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2548  InitializationKind Kind =
2549    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2550             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2551                                                InitRange.getEnd());
2552  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2553  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2554                                        MultiExprArg(Args, NumArgs), 0);
2555  if (BaseInit.isInvalid())
2556    return true;
2557
2558  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2559
2560  // C++0x [class.base.init]p7:
2561  //   The initialization of each base and member constitutes a
2562  //   full-expression.
2563  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2564  if (BaseInit.isInvalid())
2565    return true;
2566
2567  // If we are in a dependent context, template instantiation will
2568  // perform this type-checking again. Just save the arguments that we
2569  // received in a ParenListExpr.
2570  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2571  // of the information that we have about the base
2572  // initializer. However, deconstructing the ASTs is a dicey process,
2573  // and this approach is far more likely to get the corner cases right.
2574  if (CurContext->isDependentContext())
2575    BaseInit = Owned(Init);
2576
2577  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2578                                          BaseSpec->isVirtual(),
2579                                          InitRange.getBegin(),
2580                                          BaseInit.takeAs<Expr>(),
2581                                          InitRange.getEnd(), EllipsisLoc);
2582}
2583
2584// Create a static_cast\<T&&>(expr).
2585static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2586  QualType ExprType = E->getType();
2587  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2588  SourceLocation ExprLoc = E->getLocStart();
2589  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2590      TargetType, ExprLoc);
2591
2592  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2593                                   SourceRange(ExprLoc, ExprLoc),
2594                                   E->getSourceRange()).take();
2595}
2596
2597/// ImplicitInitializerKind - How an implicit base or member initializer should
2598/// initialize its base or member.
2599enum ImplicitInitializerKind {
2600  IIK_Default,
2601  IIK_Copy,
2602  IIK_Move
2603};
2604
2605static bool
2606BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2607                             ImplicitInitializerKind ImplicitInitKind,
2608                             CXXBaseSpecifier *BaseSpec,
2609                             bool IsInheritedVirtualBase,
2610                             CXXCtorInitializer *&CXXBaseInit) {
2611  InitializedEntity InitEntity
2612    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2613                                        IsInheritedVirtualBase);
2614
2615  ExprResult BaseInit;
2616
2617  switch (ImplicitInitKind) {
2618  case IIK_Default: {
2619    InitializationKind InitKind
2620      = InitializationKind::CreateDefault(Constructor->getLocation());
2621    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2622    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2623    break;
2624  }
2625
2626  case IIK_Move:
2627  case IIK_Copy: {
2628    bool Moving = ImplicitInitKind == IIK_Move;
2629    ParmVarDecl *Param = Constructor->getParamDecl(0);
2630    QualType ParamType = Param->getType().getNonReferenceType();
2631
2632    Expr *CopyCtorArg =
2633      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2634                          SourceLocation(), Param, false,
2635                          Constructor->getLocation(), ParamType,
2636                          VK_LValue, 0);
2637
2638    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2639
2640    // Cast to the base class to avoid ambiguities.
2641    QualType ArgTy =
2642      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2643                                       ParamType.getQualifiers());
2644
2645    if (Moving) {
2646      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2647    }
2648
2649    CXXCastPath BasePath;
2650    BasePath.push_back(BaseSpec);
2651    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2652                                            CK_UncheckedDerivedToBase,
2653                                            Moving ? VK_XValue : VK_LValue,
2654                                            &BasePath).take();
2655
2656    InitializationKind InitKind
2657      = InitializationKind::CreateDirect(Constructor->getLocation(),
2658                                         SourceLocation(), SourceLocation());
2659    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2660                                   &CopyCtorArg, 1);
2661    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2662                               MultiExprArg(&CopyCtorArg, 1));
2663    break;
2664  }
2665  }
2666
2667  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2668  if (BaseInit.isInvalid())
2669    return true;
2670
2671  CXXBaseInit =
2672    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2673               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2674                                                        SourceLocation()),
2675                                             BaseSpec->isVirtual(),
2676                                             SourceLocation(),
2677                                             BaseInit.takeAs<Expr>(),
2678                                             SourceLocation(),
2679                                             SourceLocation());
2680
2681  return false;
2682}
2683
2684static bool RefersToRValueRef(Expr *MemRef) {
2685  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2686  return Referenced->getType()->isRValueReferenceType();
2687}
2688
2689static bool
2690BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2691                               ImplicitInitializerKind ImplicitInitKind,
2692                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2693                               CXXCtorInitializer *&CXXMemberInit) {
2694  if (Field->isInvalidDecl())
2695    return true;
2696
2697  SourceLocation Loc = Constructor->getLocation();
2698
2699  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2700    bool Moving = ImplicitInitKind == IIK_Move;
2701    ParmVarDecl *Param = Constructor->getParamDecl(0);
2702    QualType ParamType = Param->getType().getNonReferenceType();
2703
2704    // Suppress copying zero-width bitfields.
2705    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2706      return false;
2707
2708    Expr *MemberExprBase =
2709      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2710                          SourceLocation(), Param, false,
2711                          Loc, ParamType, VK_LValue, 0);
2712
2713    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2714
2715    if (Moving) {
2716      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2717    }
2718
2719    // Build a reference to this field within the parameter.
2720    CXXScopeSpec SS;
2721    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2722                              Sema::LookupMemberName);
2723    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2724                                  : cast<ValueDecl>(Field), AS_public);
2725    MemberLookup.resolveKind();
2726    ExprResult CtorArg
2727      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2728                                         ParamType, Loc,
2729                                         /*IsArrow=*/false,
2730                                         SS,
2731                                         /*TemplateKWLoc=*/SourceLocation(),
2732                                         /*FirstQualifierInScope=*/0,
2733                                         MemberLookup,
2734                                         /*TemplateArgs=*/0);
2735    if (CtorArg.isInvalid())
2736      return true;
2737
2738    // C++11 [class.copy]p15:
2739    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2740    //     with static_cast<T&&>(x.m);
2741    if (RefersToRValueRef(CtorArg.get())) {
2742      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2743    }
2744
2745    // When the field we are copying is an array, create index variables for
2746    // each dimension of the array. We use these index variables to subscript
2747    // the source array, and other clients (e.g., CodeGen) will perform the
2748    // necessary iteration with these index variables.
2749    SmallVector<VarDecl *, 4> IndexVariables;
2750    QualType BaseType = Field->getType();
2751    QualType SizeType = SemaRef.Context.getSizeType();
2752    bool InitializingArray = false;
2753    while (const ConstantArrayType *Array
2754                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2755      InitializingArray = true;
2756      // Create the iteration variable for this array index.
2757      IdentifierInfo *IterationVarName = 0;
2758      {
2759        SmallString<8> Str;
2760        llvm::raw_svector_ostream OS(Str);
2761        OS << "__i" << IndexVariables.size();
2762        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2763      }
2764      VarDecl *IterationVar
2765        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2766                          IterationVarName, SizeType,
2767                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2768                          SC_None, SC_None);
2769      IndexVariables.push_back(IterationVar);
2770
2771      // Create a reference to the iteration variable.
2772      ExprResult IterationVarRef
2773        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2774      assert(!IterationVarRef.isInvalid() &&
2775             "Reference to invented variable cannot fail!");
2776      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2777      assert(!IterationVarRef.isInvalid() &&
2778             "Conversion of invented variable cannot fail!");
2779
2780      // Subscript the array with this iteration variable.
2781      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2782                                                        IterationVarRef.take(),
2783                                                        Loc);
2784      if (CtorArg.isInvalid())
2785        return true;
2786
2787      BaseType = Array->getElementType();
2788    }
2789
2790    // The array subscript expression is an lvalue, which is wrong for moving.
2791    if (Moving && InitializingArray)
2792      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2793
2794    // Construct the entity that we will be initializing. For an array, this
2795    // will be first element in the array, which may require several levels
2796    // of array-subscript entities.
2797    SmallVector<InitializedEntity, 4> Entities;
2798    Entities.reserve(1 + IndexVariables.size());
2799    if (Indirect)
2800      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2801    else
2802      Entities.push_back(InitializedEntity::InitializeMember(Field));
2803    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2804      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2805                                                              0,
2806                                                              Entities.back()));
2807
2808    // Direct-initialize to use the copy constructor.
2809    InitializationKind InitKind =
2810      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2811
2812    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2813    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2814                                   &CtorArgE, 1);
2815
2816    ExprResult MemberInit
2817      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2818                        MultiExprArg(&CtorArgE, 1));
2819    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2820    if (MemberInit.isInvalid())
2821      return true;
2822
2823    if (Indirect) {
2824      assert(IndexVariables.size() == 0 &&
2825             "Indirect field improperly initialized");
2826      CXXMemberInit
2827        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2828                                                   Loc, Loc,
2829                                                   MemberInit.takeAs<Expr>(),
2830                                                   Loc);
2831    } else
2832      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2833                                                 Loc, MemberInit.takeAs<Expr>(),
2834                                                 Loc,
2835                                                 IndexVariables.data(),
2836                                                 IndexVariables.size());
2837    return false;
2838  }
2839
2840  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2841
2842  QualType FieldBaseElementType =
2843    SemaRef.Context.getBaseElementType(Field->getType());
2844
2845  if (FieldBaseElementType->isRecordType()) {
2846    InitializedEntity InitEntity
2847      = Indirect? InitializedEntity::InitializeMember(Indirect)
2848                : InitializedEntity::InitializeMember(Field);
2849    InitializationKind InitKind =
2850      InitializationKind::CreateDefault(Loc);
2851
2852    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2853    ExprResult MemberInit =
2854      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2855
2856    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2857    if (MemberInit.isInvalid())
2858      return true;
2859
2860    if (Indirect)
2861      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2862                                                               Indirect, Loc,
2863                                                               Loc,
2864                                                               MemberInit.get(),
2865                                                               Loc);
2866    else
2867      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2868                                                               Field, Loc, Loc,
2869                                                               MemberInit.get(),
2870                                                               Loc);
2871    return false;
2872  }
2873
2874  if (!Field->getParent()->isUnion()) {
2875    if (FieldBaseElementType->isReferenceType()) {
2876      SemaRef.Diag(Constructor->getLocation(),
2877                   diag::err_uninitialized_member_in_ctor)
2878      << (int)Constructor->isImplicit()
2879      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2880      << 0 << Field->getDeclName();
2881      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2882      return true;
2883    }
2884
2885    if (FieldBaseElementType.isConstQualified()) {
2886      SemaRef.Diag(Constructor->getLocation(),
2887                   diag::err_uninitialized_member_in_ctor)
2888      << (int)Constructor->isImplicit()
2889      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2890      << 1 << Field->getDeclName();
2891      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2892      return true;
2893    }
2894  }
2895
2896  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2897      FieldBaseElementType->isObjCRetainableType() &&
2898      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2899      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2900    // ARC:
2901    //   Default-initialize Objective-C pointers to NULL.
2902    CXXMemberInit
2903      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2904                                                 Loc, Loc,
2905                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2906                                                 Loc);
2907    return false;
2908  }
2909
2910  // Nothing to initialize.
2911  CXXMemberInit = 0;
2912  return false;
2913}
2914
2915namespace {
2916struct BaseAndFieldInfo {
2917  Sema &S;
2918  CXXConstructorDecl *Ctor;
2919  bool AnyErrorsInInits;
2920  ImplicitInitializerKind IIK;
2921  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2922  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2923
2924  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2925    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2926    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2927    if (Generated && Ctor->isCopyConstructor())
2928      IIK = IIK_Copy;
2929    else if (Generated && Ctor->isMoveConstructor())
2930      IIK = IIK_Move;
2931    else
2932      IIK = IIK_Default;
2933  }
2934
2935  bool isImplicitCopyOrMove() const {
2936    switch (IIK) {
2937    case IIK_Copy:
2938    case IIK_Move:
2939      return true;
2940
2941    case IIK_Default:
2942      return false;
2943    }
2944
2945    llvm_unreachable("Invalid ImplicitInitializerKind!");
2946  }
2947
2948  bool addFieldInitializer(CXXCtorInitializer *Init) {
2949    AllToInit.push_back(Init);
2950
2951    // Check whether this initializer makes the field "used".
2952    if (Init->getInit() && Init->getInit()->HasSideEffects(S.Context))
2953      S.UnusedPrivateFields.remove(Init->getAnyMember());
2954
2955    return false;
2956  }
2957};
2958}
2959
2960/// \brief Determine whether the given indirect field declaration is somewhere
2961/// within an anonymous union.
2962static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2963  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2964                                      CEnd = F->chain_end();
2965       C != CEnd; ++C)
2966    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2967      if (Record->isUnion())
2968        return true;
2969
2970  return false;
2971}
2972
2973/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2974/// array type.
2975static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2976  if (T->isIncompleteArrayType())
2977    return true;
2978
2979  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2980    if (!ArrayT->getSize())
2981      return true;
2982
2983    T = ArrayT->getElementType();
2984  }
2985
2986  return false;
2987}
2988
2989static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2990                                    FieldDecl *Field,
2991                                    IndirectFieldDecl *Indirect = 0) {
2992
2993  // Overwhelmingly common case: we have a direct initializer for this field.
2994  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
2995    return Info.addFieldInitializer(Init);
2996
2997  // C++11 [class.base.init]p8: if the entity is a non-static data member that
2998  // has a brace-or-equal-initializer, the entity is initialized as specified
2999  // in [dcl.init].
3000  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3001    CXXCtorInitializer *Init;
3002    if (Indirect)
3003      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3004                                                      SourceLocation(),
3005                                                      SourceLocation(), 0,
3006                                                      SourceLocation());
3007    else
3008      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3009                                                      SourceLocation(),
3010                                                      SourceLocation(), 0,
3011                                                      SourceLocation());
3012    return Info.addFieldInitializer(Init);
3013  }
3014
3015  // Don't build an implicit initializer for union members if none was
3016  // explicitly specified.
3017  if (Field->getParent()->isUnion() ||
3018      (Indirect && isWithinAnonymousUnion(Indirect)))
3019    return false;
3020
3021  // Don't initialize incomplete or zero-length arrays.
3022  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3023    return false;
3024
3025  // Don't try to build an implicit initializer if there were semantic
3026  // errors in any of the initializers (and therefore we might be
3027  // missing some that the user actually wrote).
3028  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3029    return false;
3030
3031  CXXCtorInitializer *Init = 0;
3032  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3033                                     Indirect, Init))
3034    return true;
3035
3036  if (!Init)
3037    return false;
3038
3039  return Info.addFieldInitializer(Init);
3040}
3041
3042bool
3043Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3044                               CXXCtorInitializer *Initializer) {
3045  assert(Initializer->isDelegatingInitializer());
3046  Constructor->setNumCtorInitializers(1);
3047  CXXCtorInitializer **initializer =
3048    new (Context) CXXCtorInitializer*[1];
3049  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3050  Constructor->setCtorInitializers(initializer);
3051
3052  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3053    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3054    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3055  }
3056
3057  DelegatingCtorDecls.push_back(Constructor);
3058
3059  return false;
3060}
3061
3062bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
3063                               CXXCtorInitializer **Initializers,
3064                               unsigned NumInitializers,
3065                               bool AnyErrors) {
3066  if (Constructor->isDependentContext()) {
3067    // Just store the initializers as written, they will be checked during
3068    // instantiation.
3069    if (NumInitializers > 0) {
3070      Constructor->setNumCtorInitializers(NumInitializers);
3071      CXXCtorInitializer **baseOrMemberInitializers =
3072        new (Context) CXXCtorInitializer*[NumInitializers];
3073      memcpy(baseOrMemberInitializers, Initializers,
3074             NumInitializers * sizeof(CXXCtorInitializer*));
3075      Constructor->setCtorInitializers(baseOrMemberInitializers);
3076    }
3077
3078    // Let template instantiation know whether we had errors.
3079    if (AnyErrors)
3080      Constructor->setInvalidDecl();
3081
3082    return false;
3083  }
3084
3085  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3086
3087  // We need to build the initializer AST according to order of construction
3088  // and not what user specified in the Initializers list.
3089  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3090  if (!ClassDecl)
3091    return true;
3092
3093  bool HadError = false;
3094
3095  for (unsigned i = 0; i < NumInitializers; i++) {
3096    CXXCtorInitializer *Member = Initializers[i];
3097
3098    if (Member->isBaseInitializer())
3099      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3100    else
3101      Info.AllBaseFields[Member->getAnyMember()] = Member;
3102  }
3103
3104  // Keep track of the direct virtual bases.
3105  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3106  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3107       E = ClassDecl->bases_end(); I != E; ++I) {
3108    if (I->isVirtual())
3109      DirectVBases.insert(I);
3110  }
3111
3112  // Push virtual bases before others.
3113  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3114       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3115
3116    if (CXXCtorInitializer *Value
3117        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3118      Info.AllToInit.push_back(Value);
3119    } else if (!AnyErrors) {
3120      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3121      CXXCtorInitializer *CXXBaseInit;
3122      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3123                                       VBase, IsInheritedVirtualBase,
3124                                       CXXBaseInit)) {
3125        HadError = true;
3126        continue;
3127      }
3128
3129      Info.AllToInit.push_back(CXXBaseInit);
3130    }
3131  }
3132
3133  // Non-virtual bases.
3134  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3135       E = ClassDecl->bases_end(); Base != E; ++Base) {
3136    // Virtuals are in the virtual base list and already constructed.
3137    if (Base->isVirtual())
3138      continue;
3139
3140    if (CXXCtorInitializer *Value
3141          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3142      Info.AllToInit.push_back(Value);
3143    } else if (!AnyErrors) {
3144      CXXCtorInitializer *CXXBaseInit;
3145      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3146                                       Base, /*IsInheritedVirtualBase=*/false,
3147                                       CXXBaseInit)) {
3148        HadError = true;
3149        continue;
3150      }
3151
3152      Info.AllToInit.push_back(CXXBaseInit);
3153    }
3154  }
3155
3156  // Fields.
3157  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3158                               MemEnd = ClassDecl->decls_end();
3159       Mem != MemEnd; ++Mem) {
3160    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3161      // C++ [class.bit]p2:
3162      //   A declaration for a bit-field that omits the identifier declares an
3163      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3164      //   initialized.
3165      if (F->isUnnamedBitfield())
3166        continue;
3167
3168      // If we're not generating the implicit copy/move constructor, then we'll
3169      // handle anonymous struct/union fields based on their individual
3170      // indirect fields.
3171      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3172        continue;
3173
3174      if (CollectFieldInitializer(*this, Info, F))
3175        HadError = true;
3176      continue;
3177    }
3178
3179    // Beyond this point, we only consider default initialization.
3180    if (Info.IIK != IIK_Default)
3181      continue;
3182
3183    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3184      if (F->getType()->isIncompleteArrayType()) {
3185        assert(ClassDecl->hasFlexibleArrayMember() &&
3186               "Incomplete array type is not valid");
3187        continue;
3188      }
3189
3190      // Initialize each field of an anonymous struct individually.
3191      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3192        HadError = true;
3193
3194      continue;
3195    }
3196  }
3197
3198  NumInitializers = Info.AllToInit.size();
3199  if (NumInitializers > 0) {
3200    Constructor->setNumCtorInitializers(NumInitializers);
3201    CXXCtorInitializer **baseOrMemberInitializers =
3202      new (Context) CXXCtorInitializer*[NumInitializers];
3203    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3204           NumInitializers * sizeof(CXXCtorInitializer*));
3205    Constructor->setCtorInitializers(baseOrMemberInitializers);
3206
3207    // Constructors implicitly reference the base and member
3208    // destructors.
3209    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3210                                           Constructor->getParent());
3211  }
3212
3213  return HadError;
3214}
3215
3216static void *GetKeyForTopLevelField(FieldDecl *Field) {
3217  // For anonymous unions, use the class declaration as the key.
3218  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3219    if (RT->getDecl()->isAnonymousStructOrUnion())
3220      return static_cast<void *>(RT->getDecl());
3221  }
3222  return static_cast<void *>(Field);
3223}
3224
3225static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3226  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3227}
3228
3229static void *GetKeyForMember(ASTContext &Context,
3230                             CXXCtorInitializer *Member) {
3231  if (!Member->isAnyMemberInitializer())
3232    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3233
3234  // For fields injected into the class via declaration of an anonymous union,
3235  // use its anonymous union class declaration as the unique key.
3236  FieldDecl *Field = Member->getAnyMember();
3237
3238  // If the field is a member of an anonymous struct or union, our key
3239  // is the anonymous record decl that's a direct child of the class.
3240  RecordDecl *RD = Field->getParent();
3241  if (RD->isAnonymousStructOrUnion()) {
3242    while (true) {
3243      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3244      if (Parent->isAnonymousStructOrUnion())
3245        RD = Parent;
3246      else
3247        break;
3248    }
3249
3250    return static_cast<void *>(RD);
3251  }
3252
3253  return static_cast<void *>(Field);
3254}
3255
3256static void
3257DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3258                                  const CXXConstructorDecl *Constructor,
3259                                  CXXCtorInitializer **Inits,
3260                                  unsigned NumInits) {
3261  if (Constructor->getDeclContext()->isDependentContext())
3262    return;
3263
3264  // Don't check initializers order unless the warning is enabled at the
3265  // location of at least one initializer.
3266  bool ShouldCheckOrder = false;
3267  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3268    CXXCtorInitializer *Init = Inits[InitIndex];
3269    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3270                                         Init->getSourceLocation())
3271          != DiagnosticsEngine::Ignored) {
3272      ShouldCheckOrder = true;
3273      break;
3274    }
3275  }
3276  if (!ShouldCheckOrder)
3277    return;
3278
3279  // Build the list of bases and members in the order that they'll
3280  // actually be initialized.  The explicit initializers should be in
3281  // this same order but may be missing things.
3282  SmallVector<const void*, 32> IdealInitKeys;
3283
3284  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3285
3286  // 1. Virtual bases.
3287  for (CXXRecordDecl::base_class_const_iterator VBase =
3288       ClassDecl->vbases_begin(),
3289       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3290    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3291
3292  // 2. Non-virtual bases.
3293  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3294       E = ClassDecl->bases_end(); Base != E; ++Base) {
3295    if (Base->isVirtual())
3296      continue;
3297    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3298  }
3299
3300  // 3. Direct fields.
3301  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3302       E = ClassDecl->field_end(); Field != E; ++Field) {
3303    if (Field->isUnnamedBitfield())
3304      continue;
3305
3306    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3307  }
3308
3309  unsigned NumIdealInits = IdealInitKeys.size();
3310  unsigned IdealIndex = 0;
3311
3312  CXXCtorInitializer *PrevInit = 0;
3313  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3314    CXXCtorInitializer *Init = Inits[InitIndex];
3315    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3316
3317    // Scan forward to try to find this initializer in the idealized
3318    // initializers list.
3319    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3320      if (InitKey == IdealInitKeys[IdealIndex])
3321        break;
3322
3323    // If we didn't find this initializer, it must be because we
3324    // scanned past it on a previous iteration.  That can only
3325    // happen if we're out of order;  emit a warning.
3326    if (IdealIndex == NumIdealInits && PrevInit) {
3327      Sema::SemaDiagnosticBuilder D =
3328        SemaRef.Diag(PrevInit->getSourceLocation(),
3329                     diag::warn_initializer_out_of_order);
3330
3331      if (PrevInit->isAnyMemberInitializer())
3332        D << 0 << PrevInit->getAnyMember()->getDeclName();
3333      else
3334        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3335
3336      if (Init->isAnyMemberInitializer())
3337        D << 0 << Init->getAnyMember()->getDeclName();
3338      else
3339        D << 1 << Init->getTypeSourceInfo()->getType();
3340
3341      // Move back to the initializer's location in the ideal list.
3342      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3343        if (InitKey == IdealInitKeys[IdealIndex])
3344          break;
3345
3346      assert(IdealIndex != NumIdealInits &&
3347             "initializer not found in initializer list");
3348    }
3349
3350    PrevInit = Init;
3351  }
3352}
3353
3354namespace {
3355bool CheckRedundantInit(Sema &S,
3356                        CXXCtorInitializer *Init,
3357                        CXXCtorInitializer *&PrevInit) {
3358  if (!PrevInit) {
3359    PrevInit = Init;
3360    return false;
3361  }
3362
3363  if (FieldDecl *Field = Init->getMember())
3364    S.Diag(Init->getSourceLocation(),
3365           diag::err_multiple_mem_initialization)
3366      << Field->getDeclName()
3367      << Init->getSourceRange();
3368  else {
3369    const Type *BaseClass = Init->getBaseClass();
3370    assert(BaseClass && "neither field nor base");
3371    S.Diag(Init->getSourceLocation(),
3372           diag::err_multiple_base_initialization)
3373      << QualType(BaseClass, 0)
3374      << Init->getSourceRange();
3375  }
3376  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3377    << 0 << PrevInit->getSourceRange();
3378
3379  return true;
3380}
3381
3382typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3383typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3384
3385bool CheckRedundantUnionInit(Sema &S,
3386                             CXXCtorInitializer *Init,
3387                             RedundantUnionMap &Unions) {
3388  FieldDecl *Field = Init->getAnyMember();
3389  RecordDecl *Parent = Field->getParent();
3390  NamedDecl *Child = Field;
3391
3392  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3393    if (Parent->isUnion()) {
3394      UnionEntry &En = Unions[Parent];
3395      if (En.first && En.first != Child) {
3396        S.Diag(Init->getSourceLocation(),
3397               diag::err_multiple_mem_union_initialization)
3398          << Field->getDeclName()
3399          << Init->getSourceRange();
3400        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3401          << 0 << En.second->getSourceRange();
3402        return true;
3403      }
3404      if (!En.first) {
3405        En.first = Child;
3406        En.second = Init;
3407      }
3408      if (!Parent->isAnonymousStructOrUnion())
3409        return false;
3410    }
3411
3412    Child = Parent;
3413    Parent = cast<RecordDecl>(Parent->getDeclContext());
3414  }
3415
3416  return false;
3417}
3418}
3419
3420/// ActOnMemInitializers - Handle the member initializers for a constructor.
3421void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3422                                SourceLocation ColonLoc,
3423                                CXXCtorInitializer **meminits,
3424                                unsigned NumMemInits,
3425                                bool AnyErrors) {
3426  if (!ConstructorDecl)
3427    return;
3428
3429  AdjustDeclIfTemplate(ConstructorDecl);
3430
3431  CXXConstructorDecl *Constructor
3432    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3433
3434  if (!Constructor) {
3435    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3436    return;
3437  }
3438
3439  CXXCtorInitializer **MemInits =
3440    reinterpret_cast<CXXCtorInitializer **>(meminits);
3441
3442  // Mapping for the duplicate initializers check.
3443  // For member initializers, this is keyed with a FieldDecl*.
3444  // For base initializers, this is keyed with a Type*.
3445  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3446
3447  // Mapping for the inconsistent anonymous-union initializers check.
3448  RedundantUnionMap MemberUnions;
3449
3450  bool HadError = false;
3451  for (unsigned i = 0; i < NumMemInits; i++) {
3452    CXXCtorInitializer *Init = MemInits[i];
3453
3454    // Set the source order index.
3455    Init->setSourceOrder(i);
3456
3457    if (Init->isAnyMemberInitializer()) {
3458      FieldDecl *Field = Init->getAnyMember();
3459      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3460          CheckRedundantUnionInit(*this, Init, MemberUnions))
3461        HadError = true;
3462    } else if (Init->isBaseInitializer()) {
3463      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3464      if (CheckRedundantInit(*this, Init, Members[Key]))
3465        HadError = true;
3466    } else {
3467      assert(Init->isDelegatingInitializer());
3468      // This must be the only initializer
3469      if (NumMemInits != 1) {
3470        Diag(Init->getSourceLocation(),
3471             diag::err_delegating_initializer_alone)
3472          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3473        // We will treat this as being the only initializer.
3474      }
3475      SetDelegatingInitializer(Constructor, MemInits[i]);
3476      // Return immediately as the initializer is set.
3477      return;
3478    }
3479  }
3480
3481  if (HadError)
3482    return;
3483
3484  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3485
3486  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3487}
3488
3489void
3490Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3491                                             CXXRecordDecl *ClassDecl) {
3492  // Ignore dependent contexts. Also ignore unions, since their members never
3493  // have destructors implicitly called.
3494  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3495    return;
3496
3497  // FIXME: all the access-control diagnostics are positioned on the
3498  // field/base declaration.  That's probably good; that said, the
3499  // user might reasonably want to know why the destructor is being
3500  // emitted, and we currently don't say.
3501
3502  // Non-static data members.
3503  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3504       E = ClassDecl->field_end(); I != E; ++I) {
3505    FieldDecl *Field = *I;
3506    if (Field->isInvalidDecl())
3507      continue;
3508
3509    // Don't destroy incomplete or zero-length arrays.
3510    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3511      continue;
3512
3513    QualType FieldType = Context.getBaseElementType(Field->getType());
3514
3515    const RecordType* RT = FieldType->getAs<RecordType>();
3516    if (!RT)
3517      continue;
3518
3519    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3520    if (FieldClassDecl->isInvalidDecl())
3521      continue;
3522    if (FieldClassDecl->hasIrrelevantDestructor())
3523      continue;
3524    // The destructor for an implicit anonymous union member is never invoked.
3525    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3526      continue;
3527
3528    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3529    assert(Dtor && "No dtor found for FieldClassDecl!");
3530    CheckDestructorAccess(Field->getLocation(), Dtor,
3531                          PDiag(diag::err_access_dtor_field)
3532                            << Field->getDeclName()
3533                            << FieldType);
3534
3535    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3536    DiagnoseUseOfDecl(Dtor, Location);
3537  }
3538
3539  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3540
3541  // Bases.
3542  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3543       E = ClassDecl->bases_end(); Base != E; ++Base) {
3544    // Bases are always records in a well-formed non-dependent class.
3545    const RecordType *RT = Base->getType()->getAs<RecordType>();
3546
3547    // Remember direct virtual bases.
3548    if (Base->isVirtual())
3549      DirectVirtualBases.insert(RT);
3550
3551    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3552    // If our base class is invalid, we probably can't get its dtor anyway.
3553    if (BaseClassDecl->isInvalidDecl())
3554      continue;
3555    if (BaseClassDecl->hasIrrelevantDestructor())
3556      continue;
3557
3558    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3559    assert(Dtor && "No dtor found for BaseClassDecl!");
3560
3561    // FIXME: caret should be on the start of the class name
3562    CheckDestructorAccess(Base->getLocStart(), Dtor,
3563                          PDiag(diag::err_access_dtor_base)
3564                            << Base->getType()
3565                            << Base->getSourceRange(),
3566                          Context.getTypeDeclType(ClassDecl));
3567
3568    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3569    DiagnoseUseOfDecl(Dtor, Location);
3570  }
3571
3572  // Virtual bases.
3573  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3574       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3575
3576    // Bases are always records in a well-formed non-dependent class.
3577    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3578
3579    // Ignore direct virtual bases.
3580    if (DirectVirtualBases.count(RT))
3581      continue;
3582
3583    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3584    // If our base class is invalid, we probably can't get its dtor anyway.
3585    if (BaseClassDecl->isInvalidDecl())
3586      continue;
3587    if (BaseClassDecl->hasIrrelevantDestructor())
3588      continue;
3589
3590    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3591    assert(Dtor && "No dtor found for BaseClassDecl!");
3592    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3593                          PDiag(diag::err_access_dtor_vbase)
3594                            << VBase->getType(),
3595                          Context.getTypeDeclType(ClassDecl));
3596
3597    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3598    DiagnoseUseOfDecl(Dtor, Location);
3599  }
3600}
3601
3602void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3603  if (!CDtorDecl)
3604    return;
3605
3606  if (CXXConstructorDecl *Constructor
3607      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3608    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3609}
3610
3611bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3612                                  unsigned DiagID, AbstractDiagSelID SelID) {
3613  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3614    unsigned DiagID;
3615    AbstractDiagSelID SelID;
3616
3617  public:
3618    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3619      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3620
3621    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3622      if (Suppressed) return;
3623      if (SelID == -1)
3624        S.Diag(Loc, DiagID) << T;
3625      else
3626        S.Diag(Loc, DiagID) << SelID << T;
3627    }
3628  } Diagnoser(DiagID, SelID);
3629
3630  return RequireNonAbstractType(Loc, T, Diagnoser);
3631}
3632
3633bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3634                                  TypeDiagnoser &Diagnoser) {
3635  if (!getLangOpts().CPlusPlus)
3636    return false;
3637
3638  if (const ArrayType *AT = Context.getAsArrayType(T))
3639    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3640
3641  if (const PointerType *PT = T->getAs<PointerType>()) {
3642    // Find the innermost pointer type.
3643    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3644      PT = T;
3645
3646    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3647      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3648  }
3649
3650  const RecordType *RT = T->getAs<RecordType>();
3651  if (!RT)
3652    return false;
3653
3654  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3655
3656  // We can't answer whether something is abstract until it has a
3657  // definition.  If it's currently being defined, we'll walk back
3658  // over all the declarations when we have a full definition.
3659  const CXXRecordDecl *Def = RD->getDefinition();
3660  if (!Def || Def->isBeingDefined())
3661    return false;
3662
3663  if (!RD->isAbstract())
3664    return false;
3665
3666  Diagnoser.diagnose(*this, Loc, T);
3667  DiagnoseAbstractType(RD);
3668
3669  return true;
3670}
3671
3672void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3673  // Check if we've already emitted the list of pure virtual functions
3674  // for this class.
3675  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3676    return;
3677
3678  CXXFinalOverriderMap FinalOverriders;
3679  RD->getFinalOverriders(FinalOverriders);
3680
3681  // Keep a set of seen pure methods so we won't diagnose the same method
3682  // more than once.
3683  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3684
3685  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3686                                   MEnd = FinalOverriders.end();
3687       M != MEnd;
3688       ++M) {
3689    for (OverridingMethods::iterator SO = M->second.begin(),
3690                                  SOEnd = M->second.end();
3691         SO != SOEnd; ++SO) {
3692      // C++ [class.abstract]p4:
3693      //   A class is abstract if it contains or inherits at least one
3694      //   pure virtual function for which the final overrider is pure
3695      //   virtual.
3696
3697      //
3698      if (SO->second.size() != 1)
3699        continue;
3700
3701      if (!SO->second.front().Method->isPure())
3702        continue;
3703
3704      if (!SeenPureMethods.insert(SO->second.front().Method))
3705        continue;
3706
3707      Diag(SO->second.front().Method->getLocation(),
3708           diag::note_pure_virtual_function)
3709        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3710    }
3711  }
3712
3713  if (!PureVirtualClassDiagSet)
3714    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3715  PureVirtualClassDiagSet->insert(RD);
3716}
3717
3718namespace {
3719struct AbstractUsageInfo {
3720  Sema &S;
3721  CXXRecordDecl *Record;
3722  CanQualType AbstractType;
3723  bool Invalid;
3724
3725  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3726    : S(S), Record(Record),
3727      AbstractType(S.Context.getCanonicalType(
3728                   S.Context.getTypeDeclType(Record))),
3729      Invalid(false) {}
3730
3731  void DiagnoseAbstractType() {
3732    if (Invalid) return;
3733    S.DiagnoseAbstractType(Record);
3734    Invalid = true;
3735  }
3736
3737  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3738};
3739
3740struct CheckAbstractUsage {
3741  AbstractUsageInfo &Info;
3742  const NamedDecl *Ctx;
3743
3744  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3745    : Info(Info), Ctx(Ctx) {}
3746
3747  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3748    switch (TL.getTypeLocClass()) {
3749#define ABSTRACT_TYPELOC(CLASS, PARENT)
3750#define TYPELOC(CLASS, PARENT) \
3751    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3752#include "clang/AST/TypeLocNodes.def"
3753    }
3754  }
3755
3756  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3757    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3758    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3759      if (!TL.getArg(I))
3760        continue;
3761
3762      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3763      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3764    }
3765  }
3766
3767  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3768    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3769  }
3770
3771  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3772    // Visit the type parameters from a permissive context.
3773    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3774      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3775      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3776        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3777          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3778      // TODO: other template argument types?
3779    }
3780  }
3781
3782  // Visit pointee types from a permissive context.
3783#define CheckPolymorphic(Type) \
3784  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3785    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3786  }
3787  CheckPolymorphic(PointerTypeLoc)
3788  CheckPolymorphic(ReferenceTypeLoc)
3789  CheckPolymorphic(MemberPointerTypeLoc)
3790  CheckPolymorphic(BlockPointerTypeLoc)
3791  CheckPolymorphic(AtomicTypeLoc)
3792
3793  /// Handle all the types we haven't given a more specific
3794  /// implementation for above.
3795  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3796    // Every other kind of type that we haven't called out already
3797    // that has an inner type is either (1) sugar or (2) contains that
3798    // inner type in some way as a subobject.
3799    if (TypeLoc Next = TL.getNextTypeLoc())
3800      return Visit(Next, Sel);
3801
3802    // If there's no inner type and we're in a permissive context,
3803    // don't diagnose.
3804    if (Sel == Sema::AbstractNone) return;
3805
3806    // Check whether the type matches the abstract type.
3807    QualType T = TL.getType();
3808    if (T->isArrayType()) {
3809      Sel = Sema::AbstractArrayType;
3810      T = Info.S.Context.getBaseElementType(T);
3811    }
3812    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3813    if (CT != Info.AbstractType) return;
3814
3815    // It matched; do some magic.
3816    if (Sel == Sema::AbstractArrayType) {
3817      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3818        << T << TL.getSourceRange();
3819    } else {
3820      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3821        << Sel << T << TL.getSourceRange();
3822    }
3823    Info.DiagnoseAbstractType();
3824  }
3825};
3826
3827void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3828                                  Sema::AbstractDiagSelID Sel) {
3829  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3830}
3831
3832}
3833
3834/// Check for invalid uses of an abstract type in a method declaration.
3835static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3836                                    CXXMethodDecl *MD) {
3837  // No need to do the check on definitions, which require that
3838  // the return/param types be complete.
3839  if (MD->doesThisDeclarationHaveABody())
3840    return;
3841
3842  // For safety's sake, just ignore it if we don't have type source
3843  // information.  This should never happen for non-implicit methods,
3844  // but...
3845  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3846    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3847}
3848
3849/// Check for invalid uses of an abstract type within a class definition.
3850static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3851                                    CXXRecordDecl *RD) {
3852  for (CXXRecordDecl::decl_iterator
3853         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3854    Decl *D = *I;
3855    if (D->isImplicit()) continue;
3856
3857    // Methods and method templates.
3858    if (isa<CXXMethodDecl>(D)) {
3859      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3860    } else if (isa<FunctionTemplateDecl>(D)) {
3861      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3862      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3863
3864    // Fields and static variables.
3865    } else if (isa<FieldDecl>(D)) {
3866      FieldDecl *FD = cast<FieldDecl>(D);
3867      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3868        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3869    } else if (isa<VarDecl>(D)) {
3870      VarDecl *VD = cast<VarDecl>(D);
3871      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3872        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3873
3874    // Nested classes and class templates.
3875    } else if (isa<CXXRecordDecl>(D)) {
3876      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3877    } else if (isa<ClassTemplateDecl>(D)) {
3878      CheckAbstractClassUsage(Info,
3879                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3880    }
3881  }
3882}
3883
3884/// \brief Perform semantic checks on a class definition that has been
3885/// completing, introducing implicitly-declared members, checking for
3886/// abstract types, etc.
3887void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3888  if (!Record)
3889    return;
3890
3891  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3892    AbstractUsageInfo Info(*this, Record);
3893    CheckAbstractClassUsage(Info, Record);
3894  }
3895
3896  // If this is not an aggregate type and has no user-declared constructor,
3897  // complain about any non-static data members of reference or const scalar
3898  // type, since they will never get initializers.
3899  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3900      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3901      !Record->isLambda()) {
3902    bool Complained = false;
3903    for (RecordDecl::field_iterator F = Record->field_begin(),
3904                                 FEnd = Record->field_end();
3905         F != FEnd; ++F) {
3906      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3907        continue;
3908
3909      if (F->getType()->isReferenceType() ||
3910          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3911        if (!Complained) {
3912          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3913            << Record->getTagKind() << Record;
3914          Complained = true;
3915        }
3916
3917        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3918          << F->getType()->isReferenceType()
3919          << F->getDeclName();
3920      }
3921    }
3922  }
3923
3924  if (Record->isDynamicClass() && !Record->isDependentType())
3925    DynamicClasses.push_back(Record);
3926
3927  if (Record->getIdentifier()) {
3928    // C++ [class.mem]p13:
3929    //   If T is the name of a class, then each of the following shall have a
3930    //   name different from T:
3931    //     - every member of every anonymous union that is a member of class T.
3932    //
3933    // C++ [class.mem]p14:
3934    //   In addition, if class T has a user-declared constructor (12.1), every
3935    //   non-static data member of class T shall have a name different from T.
3936    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3937         R.first != R.second; ++R.first) {
3938      NamedDecl *D = *R.first;
3939      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3940          isa<IndirectFieldDecl>(D)) {
3941        Diag(D->getLocation(), diag::err_member_name_of_class)
3942          << D->getDeclName();
3943        break;
3944      }
3945    }
3946  }
3947
3948  // Warn if the class has virtual methods but non-virtual public destructor.
3949  if (Record->isPolymorphic() && !Record->isDependentType()) {
3950    CXXDestructorDecl *dtor = Record->getDestructor();
3951    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3952      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3953           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3954  }
3955
3956  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
3957    Diag(Record->getLocation(), diag::warn_abstract_final_class);
3958    DiagnoseAbstractType(Record);
3959  }
3960
3961  // See if a method overloads virtual methods in a base
3962  /// class without overriding any.
3963  if (!Record->isDependentType()) {
3964    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3965                                     MEnd = Record->method_end();
3966         M != MEnd; ++M) {
3967      if (!M->isStatic())
3968        DiagnoseHiddenVirtualMethods(Record, *M);
3969    }
3970  }
3971
3972  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3973  // function that is not a constructor declares that member function to be
3974  // const. [...] The class of which that function is a member shall be
3975  // a literal type.
3976  //
3977  // If the class has virtual bases, any constexpr members will already have
3978  // been diagnosed by the checks performed on the member declaration, so
3979  // suppress this (less useful) diagnostic.
3980  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3981      !Record->isLiteral() && !Record->getNumVBases()) {
3982    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3983                                     MEnd = Record->method_end();
3984         M != MEnd; ++M) {
3985      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3986        switch (Record->getTemplateSpecializationKind()) {
3987        case TSK_ImplicitInstantiation:
3988        case TSK_ExplicitInstantiationDeclaration:
3989        case TSK_ExplicitInstantiationDefinition:
3990          // If a template instantiates to a non-literal type, but its members
3991          // instantiate to constexpr functions, the template is technically
3992          // ill-formed, but we allow it for sanity.
3993          continue;
3994
3995        case TSK_Undeclared:
3996        case TSK_ExplicitSpecialization:
3997          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3998                             diag::err_constexpr_method_non_literal);
3999          break;
4000        }
4001
4002        // Only produce one error per class.
4003        break;
4004      }
4005    }
4006  }
4007
4008  // Declare inherited constructors. We do this eagerly here because:
4009  // - The standard requires an eager diagnostic for conflicting inherited
4010  //   constructors from different classes.
4011  // - The lazy declaration of the other implicit constructors is so as to not
4012  //   waste space and performance on classes that are not meant to be
4013  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4014  //   have inherited constructors.
4015  DeclareInheritedConstructors(Record);
4016}
4017
4018void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
4019  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
4020                                      ME = Record->method_end();
4021       MI != ME; ++MI)
4022    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
4023      CheckExplicitlyDefaultedSpecialMember(*MI);
4024}
4025
4026/// Is the special member function which would be selected to perform the
4027/// specified operation on the specified class type a constexpr constructor?
4028static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4029                                     Sema::CXXSpecialMember CSM,
4030                                     bool ConstArg) {
4031  Sema::SpecialMemberOverloadResult *SMOR =
4032      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4033                            false, false, false, false);
4034  if (!SMOR || !SMOR->getMethod())
4035    // A constructor we wouldn't select can't be "involved in initializing"
4036    // anything.
4037    return true;
4038  return SMOR->getMethod()->isConstexpr();
4039}
4040
4041/// Determine whether the specified special member function would be constexpr
4042/// if it were implicitly defined.
4043static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4044                                              Sema::CXXSpecialMember CSM,
4045                                              bool ConstArg) {
4046  if (!S.getLangOpts().CPlusPlus0x)
4047    return false;
4048
4049  // C++11 [dcl.constexpr]p4:
4050  // In the definition of a constexpr constructor [...]
4051  switch (CSM) {
4052  case Sema::CXXDefaultConstructor:
4053    // Since default constructor lookup is essentially trivial (and cannot
4054    // involve, for instance, template instantiation), we compute whether a
4055    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4056    //
4057    // This is important for performance; we need to know whether the default
4058    // constructor is constexpr to determine whether the type is a literal type.
4059    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4060
4061  case Sema::CXXCopyConstructor:
4062  case Sema::CXXMoveConstructor:
4063    // For copy or move constructors, we need to perform overload resolution.
4064    break;
4065
4066  case Sema::CXXCopyAssignment:
4067  case Sema::CXXMoveAssignment:
4068  case Sema::CXXDestructor:
4069  case Sema::CXXInvalid:
4070    return false;
4071  }
4072
4073  //   -- if the class is a non-empty union, or for each non-empty anonymous
4074  //      union member of a non-union class, exactly one non-static data member
4075  //      shall be initialized; [DR1359]
4076  //
4077  // If we squint, this is guaranteed, since exactly one non-static data member
4078  // will be initialized (if the constructor isn't deleted), we just don't know
4079  // which one.
4080  if (ClassDecl->isUnion())
4081    return true;
4082
4083  //   -- the class shall not have any virtual base classes;
4084  if (ClassDecl->getNumVBases())
4085    return false;
4086
4087  //   -- every constructor involved in initializing [...] base class
4088  //      sub-objects shall be a constexpr constructor;
4089  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4090                                       BEnd = ClassDecl->bases_end();
4091       B != BEnd; ++B) {
4092    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4093    if (!BaseType) continue;
4094
4095    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4096    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4097      return false;
4098  }
4099
4100  //   -- every constructor involved in initializing non-static data members
4101  //      [...] shall be a constexpr constructor;
4102  //   -- every non-static data member and base class sub-object shall be
4103  //      initialized
4104  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4105                               FEnd = ClassDecl->field_end();
4106       F != FEnd; ++F) {
4107    if (F->isInvalidDecl())
4108      continue;
4109    if (const RecordType *RecordTy =
4110            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4111      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4112      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4113        return false;
4114    }
4115  }
4116
4117  // All OK, it's constexpr!
4118  return true;
4119}
4120
4121static Sema::ImplicitExceptionSpecification
4122computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4123  switch (S.getSpecialMember(MD)) {
4124  case Sema::CXXDefaultConstructor:
4125    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4126  case Sema::CXXCopyConstructor:
4127    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4128  case Sema::CXXCopyAssignment:
4129    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4130  case Sema::CXXMoveConstructor:
4131    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4132  case Sema::CXXMoveAssignment:
4133    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4134  case Sema::CXXDestructor:
4135    return S.ComputeDefaultedDtorExceptionSpec(MD);
4136  case Sema::CXXInvalid:
4137    break;
4138  }
4139  llvm_unreachable("only special members have implicit exception specs");
4140}
4141
4142static void
4143updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4144                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4145  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4146  ExceptSpec.getEPI(EPI);
4147  const FunctionProtoType *NewFPT = cast<FunctionProtoType>(
4148    S.Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
4149                              FPT->getNumArgs(), EPI));
4150  FD->setType(QualType(NewFPT, 0));
4151}
4152
4153void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4154  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4155  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4156    return;
4157
4158  // Evaluate the exception specification.
4159  ImplicitExceptionSpecification ExceptSpec =
4160      computeImplicitExceptionSpec(*this, Loc, MD);
4161
4162  // Update the type of the special member to use it.
4163  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4164
4165  // A user-provided destructor can be defined outside the class. When that
4166  // happens, be sure to update the exception specification on both
4167  // declarations.
4168  const FunctionProtoType *CanonicalFPT =
4169    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4170  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4171    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4172                        CanonicalFPT, ExceptSpec);
4173}
4174
4175static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4176static bool isImplicitCopyAssignmentArgConst(Sema &S, CXXRecordDecl *ClassDecl);
4177
4178void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4179  CXXRecordDecl *RD = MD->getParent();
4180  CXXSpecialMember CSM = getSpecialMember(MD);
4181
4182  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4183         "not an explicitly-defaulted special member");
4184
4185  // Whether this was the first-declared instance of the constructor.
4186  // This affects whether we implicitly add an exception spec and constexpr.
4187  bool First = MD == MD->getCanonicalDecl();
4188
4189  bool HadError = false;
4190
4191  // C++11 [dcl.fct.def.default]p1:
4192  //   A function that is explicitly defaulted shall
4193  //     -- be a special member function (checked elsewhere),
4194  //     -- have the same type (except for ref-qualifiers, and except that a
4195  //        copy operation can take a non-const reference) as an implicit
4196  //        declaration, and
4197  //     -- not have default arguments.
4198  unsigned ExpectedParams = 1;
4199  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4200    ExpectedParams = 0;
4201  if (MD->getNumParams() != ExpectedParams) {
4202    // This also checks for default arguments: a copy or move constructor with a
4203    // default argument is classified as a default constructor, and assignment
4204    // operations and destructors can't have default arguments.
4205    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4206      << CSM << MD->getSourceRange();
4207    HadError = true;
4208  }
4209
4210  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4211
4212  // Compute argument constness, constexpr, and triviality.
4213  bool CanHaveConstParam = false;
4214  bool Trivial = false;
4215  switch (CSM) {
4216  case CXXDefaultConstructor:
4217    Trivial = RD->hasTrivialDefaultConstructor();
4218    break;
4219  case CXXCopyConstructor:
4220    CanHaveConstParam = isImplicitCopyCtorArgConst(*this, RD);
4221    Trivial = RD->hasTrivialCopyConstructor();
4222    break;
4223  case CXXCopyAssignment:
4224    CanHaveConstParam = isImplicitCopyAssignmentArgConst(*this, RD);
4225    Trivial = RD->hasTrivialCopyAssignment();
4226    break;
4227  case CXXMoveConstructor:
4228    Trivial = RD->hasTrivialMoveConstructor();
4229    break;
4230  case CXXMoveAssignment:
4231    Trivial = RD->hasTrivialMoveAssignment();
4232    break;
4233  case CXXDestructor:
4234    Trivial = RD->hasTrivialDestructor();
4235    break;
4236  case CXXInvalid:
4237    llvm_unreachable("non-special member explicitly defaulted!");
4238  }
4239
4240  QualType ReturnType = Context.VoidTy;
4241  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4242    // Check for return type matching.
4243    ReturnType = Type->getResultType();
4244    QualType ExpectedReturnType =
4245        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4246    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4247      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4248        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4249      HadError = true;
4250    }
4251
4252    // A defaulted special member cannot have cv-qualifiers.
4253    if (Type->getTypeQuals()) {
4254      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4255        << (CSM == CXXMoveAssignment);
4256      HadError = true;
4257    }
4258  }
4259
4260  // Check for parameter type matching.
4261  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4262  bool HasConstParam = false;
4263  if (ExpectedParams && ArgType->isReferenceType()) {
4264    // Argument must be reference to possibly-const T.
4265    QualType ReferentType = ArgType->getPointeeType();
4266    HasConstParam = ReferentType.isConstQualified();
4267
4268    if (ReferentType.isVolatileQualified()) {
4269      Diag(MD->getLocation(),
4270           diag::err_defaulted_special_member_volatile_param) << CSM;
4271      HadError = true;
4272    }
4273
4274    if (HasConstParam && !CanHaveConstParam) {
4275      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4276        Diag(MD->getLocation(),
4277             diag::err_defaulted_special_member_copy_const_param)
4278          << (CSM == CXXCopyAssignment);
4279        // FIXME: Explain why this special member can't be const.
4280      } else {
4281        Diag(MD->getLocation(),
4282             diag::err_defaulted_special_member_move_const_param)
4283          << (CSM == CXXMoveAssignment);
4284      }
4285      HadError = true;
4286    }
4287
4288    // If a function is explicitly defaulted on its first declaration, it shall
4289    // have the same parameter type as if it had been implicitly declared.
4290    // (Presumably this is to prevent it from being trivial?)
4291    if (!HasConstParam && CanHaveConstParam && First)
4292      Diag(MD->getLocation(),
4293           diag::err_defaulted_special_member_copy_non_const_param)
4294        << (CSM == CXXCopyAssignment);
4295  } else if (ExpectedParams) {
4296    // A copy assignment operator can take its argument by value, but a
4297    // defaulted one cannot.
4298    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4299    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4300    HadError = true;
4301  }
4302
4303  // Rebuild the type with the implicit exception specification added, if we
4304  // are going to need it.
4305  const FunctionProtoType *ImplicitType = 0;
4306  if (First || Type->hasExceptionSpec()) {
4307    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4308    computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4309    ImplicitType = cast<FunctionProtoType>(
4310      Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4311  }
4312
4313  // C++11 [dcl.fct.def.default]p2:
4314  //   An explicitly-defaulted function may be declared constexpr only if it
4315  //   would have been implicitly declared as constexpr,
4316  // Do not apply this rule to members of class templates, since core issue 1358
4317  // makes such functions always instantiate to constexpr functions. For
4318  // non-constructors, this is checked elsewhere.
4319  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4320                                                     HasConstParam);
4321  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4322      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4323    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4324    // FIXME: Explain why the constructor can't be constexpr.
4325    HadError = true;
4326  }
4327  //   and may have an explicit exception-specification only if it is compatible
4328  //   with the exception-specification on the implicit declaration.
4329  if (Type->hasExceptionSpec() &&
4330      CheckEquivalentExceptionSpec(
4331        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4332        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4333    HadError = true;
4334
4335  //   If a function is explicitly defaulted on its first declaration,
4336  if (First) {
4337    //  -- it is implicitly considered to be constexpr if the implicit
4338    //     definition would be,
4339    MD->setConstexpr(Constexpr);
4340
4341    //  -- it is implicitly considered to have the same exception-specification
4342    //     as if it had been implicitly declared,
4343    MD->setType(QualType(ImplicitType, 0));
4344
4345    // Such a function is also trivial if the implicitly-declared function
4346    // would have been.
4347    MD->setTrivial(Trivial);
4348  }
4349
4350  if (ShouldDeleteSpecialMember(MD, CSM)) {
4351    if (First) {
4352      MD->setDeletedAsWritten();
4353    } else {
4354      // C++11 [dcl.fct.def.default]p4:
4355      //   [For a] user-provided explicitly-defaulted function [...] if such a
4356      //   function is implicitly defined as deleted, the program is ill-formed.
4357      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4358      HadError = true;
4359    }
4360  }
4361
4362  if (HadError)
4363    MD->setInvalidDecl();
4364}
4365
4366namespace {
4367struct SpecialMemberDeletionInfo {
4368  Sema &S;
4369  CXXMethodDecl *MD;
4370  Sema::CXXSpecialMember CSM;
4371  bool Diagnose;
4372
4373  // Properties of the special member, computed for convenience.
4374  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4375  SourceLocation Loc;
4376
4377  bool AllFieldsAreConst;
4378
4379  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4380                            Sema::CXXSpecialMember CSM, bool Diagnose)
4381    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4382      IsConstructor(false), IsAssignment(false), IsMove(false),
4383      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4384      AllFieldsAreConst(true) {
4385    switch (CSM) {
4386      case Sema::CXXDefaultConstructor:
4387      case Sema::CXXCopyConstructor:
4388        IsConstructor = true;
4389        break;
4390      case Sema::CXXMoveConstructor:
4391        IsConstructor = true;
4392        IsMove = true;
4393        break;
4394      case Sema::CXXCopyAssignment:
4395        IsAssignment = true;
4396        break;
4397      case Sema::CXXMoveAssignment:
4398        IsAssignment = true;
4399        IsMove = true;
4400        break;
4401      case Sema::CXXDestructor:
4402        break;
4403      case Sema::CXXInvalid:
4404        llvm_unreachable("invalid special member kind");
4405    }
4406
4407    if (MD->getNumParams()) {
4408      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4409      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4410    }
4411  }
4412
4413  bool inUnion() const { return MD->getParent()->isUnion(); }
4414
4415  /// Look up the corresponding special member in the given class.
4416  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4417                                              unsigned Quals) {
4418    unsigned TQ = MD->getTypeQualifiers();
4419    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4420    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4421      Quals = 0;
4422    return S.LookupSpecialMember(Class, CSM,
4423                                 ConstArg || (Quals & Qualifiers::Const),
4424                                 VolatileArg || (Quals & Qualifiers::Volatile),
4425                                 MD->getRefQualifier() == RQ_RValue,
4426                                 TQ & Qualifiers::Const,
4427                                 TQ & Qualifiers::Volatile);
4428  }
4429
4430  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4431
4432  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4433  bool shouldDeleteForField(FieldDecl *FD);
4434  bool shouldDeleteForAllConstMembers();
4435
4436  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4437                                     unsigned Quals);
4438  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4439                                    Sema::SpecialMemberOverloadResult *SMOR,
4440                                    bool IsDtorCallInCtor);
4441
4442  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4443};
4444}
4445
4446/// Is the given special member inaccessible when used on the given
4447/// sub-object.
4448bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4449                                             CXXMethodDecl *target) {
4450  /// If we're operating on a base class, the object type is the
4451  /// type of this special member.
4452  QualType objectTy;
4453  AccessSpecifier access = target->getAccess();
4454  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4455    objectTy = S.Context.getTypeDeclType(MD->getParent());
4456    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4457
4458  // If we're operating on a field, the object type is the type of the field.
4459  } else {
4460    objectTy = S.Context.getTypeDeclType(target->getParent());
4461  }
4462
4463  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4464}
4465
4466/// Check whether we should delete a special member due to the implicit
4467/// definition containing a call to a special member of a subobject.
4468bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4469    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4470    bool IsDtorCallInCtor) {
4471  CXXMethodDecl *Decl = SMOR->getMethod();
4472  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4473
4474  int DiagKind = -1;
4475
4476  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4477    DiagKind = !Decl ? 0 : 1;
4478  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4479    DiagKind = 2;
4480  else if (!isAccessible(Subobj, Decl))
4481    DiagKind = 3;
4482  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4483           !Decl->isTrivial()) {
4484    // A member of a union must have a trivial corresponding special member.
4485    // As a weird special case, a destructor call from a union's constructor
4486    // must be accessible and non-deleted, but need not be trivial. Such a
4487    // destructor is never actually called, but is semantically checked as
4488    // if it were.
4489    DiagKind = 4;
4490  }
4491
4492  if (DiagKind == -1)
4493    return false;
4494
4495  if (Diagnose) {
4496    if (Field) {
4497      S.Diag(Field->getLocation(),
4498             diag::note_deleted_special_member_class_subobject)
4499        << CSM << MD->getParent() << /*IsField*/true
4500        << Field << DiagKind << IsDtorCallInCtor;
4501    } else {
4502      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4503      S.Diag(Base->getLocStart(),
4504             diag::note_deleted_special_member_class_subobject)
4505        << CSM << MD->getParent() << /*IsField*/false
4506        << Base->getType() << DiagKind << IsDtorCallInCtor;
4507    }
4508
4509    if (DiagKind == 1)
4510      S.NoteDeletedFunction(Decl);
4511    // FIXME: Explain inaccessibility if DiagKind == 3.
4512  }
4513
4514  return true;
4515}
4516
4517/// Check whether we should delete a special member function due to having a
4518/// direct or virtual base class or non-static data member of class type M.
4519bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4520    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4521  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4522
4523  // C++11 [class.ctor]p5:
4524  // -- any direct or virtual base class, or non-static data member with no
4525  //    brace-or-equal-initializer, has class type M (or array thereof) and
4526  //    either M has no default constructor or overload resolution as applied
4527  //    to M's default constructor results in an ambiguity or in a function
4528  //    that is deleted or inaccessible
4529  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4530  // -- a direct or virtual base class B that cannot be copied/moved because
4531  //    overload resolution, as applied to B's corresponding special member,
4532  //    results in an ambiguity or a function that is deleted or inaccessible
4533  //    from the defaulted special member
4534  // C++11 [class.dtor]p5:
4535  // -- any direct or virtual base class [...] has a type with a destructor
4536  //    that is deleted or inaccessible
4537  if (!(CSM == Sema::CXXDefaultConstructor &&
4538        Field && Field->hasInClassInitializer()) &&
4539      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4540    return true;
4541
4542  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4543  // -- any direct or virtual base class or non-static data member has a
4544  //    type with a destructor that is deleted or inaccessible
4545  if (IsConstructor) {
4546    Sema::SpecialMemberOverloadResult *SMOR =
4547        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4548                              false, false, false, false, false);
4549    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4550      return true;
4551  }
4552
4553  return false;
4554}
4555
4556/// Check whether we should delete a special member function due to the class
4557/// having a particular direct or virtual base class.
4558bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4559  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4560  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4561}
4562
4563/// Check whether we should delete a special member function due to the class
4564/// having a particular non-static data member.
4565bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4566  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4567  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4568
4569  if (CSM == Sema::CXXDefaultConstructor) {
4570    // For a default constructor, all references must be initialized in-class
4571    // and, if a union, it must have a non-const member.
4572    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4573      if (Diagnose)
4574        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4575          << MD->getParent() << FD << FieldType << /*Reference*/0;
4576      return true;
4577    }
4578    // C++11 [class.ctor]p5: any non-variant non-static data member of
4579    // const-qualified type (or array thereof) with no
4580    // brace-or-equal-initializer does not have a user-provided default
4581    // constructor.
4582    if (!inUnion() && FieldType.isConstQualified() &&
4583        !FD->hasInClassInitializer() &&
4584        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4585      if (Diagnose)
4586        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4587          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4588      return true;
4589    }
4590
4591    if (inUnion() && !FieldType.isConstQualified())
4592      AllFieldsAreConst = false;
4593  } else if (CSM == Sema::CXXCopyConstructor) {
4594    // For a copy constructor, data members must not be of rvalue reference
4595    // type.
4596    if (FieldType->isRValueReferenceType()) {
4597      if (Diagnose)
4598        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4599          << MD->getParent() << FD << FieldType;
4600      return true;
4601    }
4602  } else if (IsAssignment) {
4603    // For an assignment operator, data members must not be of reference type.
4604    if (FieldType->isReferenceType()) {
4605      if (Diagnose)
4606        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4607          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4608      return true;
4609    }
4610    if (!FieldRecord && FieldType.isConstQualified()) {
4611      // C++11 [class.copy]p23:
4612      // -- a non-static data member of const non-class type (or array thereof)
4613      if (Diagnose)
4614        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4615          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4616      return true;
4617    }
4618  }
4619
4620  if (FieldRecord) {
4621    // Some additional restrictions exist on the variant members.
4622    if (!inUnion() && FieldRecord->isUnion() &&
4623        FieldRecord->isAnonymousStructOrUnion()) {
4624      bool AllVariantFieldsAreConst = true;
4625
4626      // FIXME: Handle anonymous unions declared within anonymous unions.
4627      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4628                                         UE = FieldRecord->field_end();
4629           UI != UE; ++UI) {
4630        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4631
4632        if (!UnionFieldType.isConstQualified())
4633          AllVariantFieldsAreConst = false;
4634
4635        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4636        if (UnionFieldRecord &&
4637            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4638                                          UnionFieldType.getCVRQualifiers()))
4639          return true;
4640      }
4641
4642      // At least one member in each anonymous union must be non-const
4643      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4644          FieldRecord->field_begin() != FieldRecord->field_end()) {
4645        if (Diagnose)
4646          S.Diag(FieldRecord->getLocation(),
4647                 diag::note_deleted_default_ctor_all_const)
4648            << MD->getParent() << /*anonymous union*/1;
4649        return true;
4650      }
4651
4652      // Don't check the implicit member of the anonymous union type.
4653      // This is technically non-conformant, but sanity demands it.
4654      return false;
4655    }
4656
4657    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4658                                      FieldType.getCVRQualifiers()))
4659      return true;
4660  }
4661
4662  return false;
4663}
4664
4665/// C++11 [class.ctor] p5:
4666///   A defaulted default constructor for a class X is defined as deleted if
4667/// X is a union and all of its variant members are of const-qualified type.
4668bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4669  // This is a silly definition, because it gives an empty union a deleted
4670  // default constructor. Don't do that.
4671  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4672      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4673    if (Diagnose)
4674      S.Diag(MD->getParent()->getLocation(),
4675             diag::note_deleted_default_ctor_all_const)
4676        << MD->getParent() << /*not anonymous union*/0;
4677    return true;
4678  }
4679  return false;
4680}
4681
4682/// Determine whether a defaulted special member function should be defined as
4683/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4684/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4685bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4686                                     bool Diagnose) {
4687  if (MD->isInvalidDecl())
4688    return false;
4689  CXXRecordDecl *RD = MD->getParent();
4690  assert(!RD->isDependentType() && "do deletion after instantiation");
4691  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4692    return false;
4693
4694  // C++11 [expr.lambda.prim]p19:
4695  //   The closure type associated with a lambda-expression has a
4696  //   deleted (8.4.3) default constructor and a deleted copy
4697  //   assignment operator.
4698  if (RD->isLambda() &&
4699      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4700    if (Diagnose)
4701      Diag(RD->getLocation(), diag::note_lambda_decl);
4702    return true;
4703  }
4704
4705  // For an anonymous struct or union, the copy and assignment special members
4706  // will never be used, so skip the check. For an anonymous union declared at
4707  // namespace scope, the constructor and destructor are used.
4708  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4709      RD->isAnonymousStructOrUnion())
4710    return false;
4711
4712  // C++11 [class.copy]p7, p18:
4713  //   If the class definition declares a move constructor or move assignment
4714  //   operator, an implicitly declared copy constructor or copy assignment
4715  //   operator is defined as deleted.
4716  if (MD->isImplicit() &&
4717      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4718    CXXMethodDecl *UserDeclaredMove = 0;
4719
4720    // In Microsoft mode, a user-declared move only causes the deletion of the
4721    // corresponding copy operation, not both copy operations.
4722    if (RD->hasUserDeclaredMoveConstructor() &&
4723        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4724      if (!Diagnose) return true;
4725      UserDeclaredMove = RD->getMoveConstructor();
4726      assert(UserDeclaredMove);
4727    } else if (RD->hasUserDeclaredMoveAssignment() &&
4728               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4729      if (!Diagnose) return true;
4730      UserDeclaredMove = RD->getMoveAssignmentOperator();
4731      assert(UserDeclaredMove);
4732    }
4733
4734    if (UserDeclaredMove) {
4735      Diag(UserDeclaredMove->getLocation(),
4736           diag::note_deleted_copy_user_declared_move)
4737        << (CSM == CXXCopyAssignment) << RD
4738        << UserDeclaredMove->isMoveAssignmentOperator();
4739      return true;
4740    }
4741  }
4742
4743  // Do access control from the special member function
4744  ContextRAII MethodContext(*this, MD);
4745
4746  // C++11 [class.dtor]p5:
4747  // -- for a virtual destructor, lookup of the non-array deallocation function
4748  //    results in an ambiguity or in a function that is deleted or inaccessible
4749  if (CSM == CXXDestructor && MD->isVirtual()) {
4750    FunctionDecl *OperatorDelete = 0;
4751    DeclarationName Name =
4752      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4753    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4754                                 OperatorDelete, false)) {
4755      if (Diagnose)
4756        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4757      return true;
4758    }
4759  }
4760
4761  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4762
4763  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4764                                          BE = RD->bases_end(); BI != BE; ++BI)
4765    if (!BI->isVirtual() &&
4766        SMI.shouldDeleteForBase(BI))
4767      return true;
4768
4769  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4770                                          BE = RD->vbases_end(); BI != BE; ++BI)
4771    if (SMI.shouldDeleteForBase(BI))
4772      return true;
4773
4774  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4775                                     FE = RD->field_end(); FI != FE; ++FI)
4776    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4777        SMI.shouldDeleteForField(*FI))
4778      return true;
4779
4780  if (SMI.shouldDeleteForAllConstMembers())
4781    return true;
4782
4783  return false;
4784}
4785
4786/// \brief Data used with FindHiddenVirtualMethod
4787namespace {
4788  struct FindHiddenVirtualMethodData {
4789    Sema *S;
4790    CXXMethodDecl *Method;
4791    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4792    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4793  };
4794}
4795
4796/// \brief Check whether any most overriden method from MD in Methods
4797static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
4798                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4799  if (MD->size_overridden_methods() == 0)
4800    return Methods.count(MD->getCanonicalDecl());
4801  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4802                                      E = MD->end_overridden_methods();
4803       I != E; ++I)
4804    if (CheckMostOverridenMethods(*I, Methods))
4805      return true;
4806  return false;
4807}
4808
4809/// \brief Member lookup function that determines whether a given C++
4810/// method overloads virtual methods in a base class without overriding any,
4811/// to be used with CXXRecordDecl::lookupInBases().
4812static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4813                                    CXXBasePath &Path,
4814                                    void *UserData) {
4815  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4816
4817  FindHiddenVirtualMethodData &Data
4818    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4819
4820  DeclarationName Name = Data.Method->getDeclName();
4821  assert(Name.getNameKind() == DeclarationName::Identifier);
4822
4823  bool foundSameNameMethod = false;
4824  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4825  for (Path.Decls = BaseRecord->lookup(Name);
4826       Path.Decls.first != Path.Decls.second;
4827       ++Path.Decls.first) {
4828    NamedDecl *D = *Path.Decls.first;
4829    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4830      MD = MD->getCanonicalDecl();
4831      foundSameNameMethod = true;
4832      // Interested only in hidden virtual methods.
4833      if (!MD->isVirtual())
4834        continue;
4835      // If the method we are checking overrides a method from its base
4836      // don't warn about the other overloaded methods.
4837      if (!Data.S->IsOverload(Data.Method, MD, false))
4838        return true;
4839      // Collect the overload only if its hidden.
4840      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
4841        overloadedMethods.push_back(MD);
4842    }
4843  }
4844
4845  if (foundSameNameMethod)
4846    Data.OverloadedMethods.append(overloadedMethods.begin(),
4847                                   overloadedMethods.end());
4848  return foundSameNameMethod;
4849}
4850
4851/// \brief Add the most overriden methods from MD to Methods
4852static void AddMostOverridenMethods(const CXXMethodDecl *MD,
4853                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
4854  if (MD->size_overridden_methods() == 0)
4855    Methods.insert(MD->getCanonicalDecl());
4856  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4857                                      E = MD->end_overridden_methods();
4858       I != E; ++I)
4859    AddMostOverridenMethods(*I, Methods);
4860}
4861
4862/// \brief See if a method overloads virtual methods in a base class without
4863/// overriding any.
4864void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4865  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4866                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4867    return;
4868  if (!MD->getDeclName().isIdentifier())
4869    return;
4870
4871  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4872                     /*bool RecordPaths=*/false,
4873                     /*bool DetectVirtual=*/false);
4874  FindHiddenVirtualMethodData Data;
4875  Data.Method = MD;
4876  Data.S = this;
4877
4878  // Keep the base methods that were overriden or introduced in the subclass
4879  // by 'using' in a set. A base method not in this set is hidden.
4880  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4881       res.first != res.second; ++res.first) {
4882    NamedDecl *ND = *res.first;
4883    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4884      ND = shad->getTargetDecl();
4885    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
4886      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
4887  }
4888
4889  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4890      !Data.OverloadedMethods.empty()) {
4891    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4892      << MD << (Data.OverloadedMethods.size() > 1);
4893
4894    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4895      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4896      Diag(overloadedMD->getLocation(),
4897           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4898    }
4899  }
4900}
4901
4902void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4903                                             Decl *TagDecl,
4904                                             SourceLocation LBrac,
4905                                             SourceLocation RBrac,
4906                                             AttributeList *AttrList) {
4907  if (!TagDecl)
4908    return;
4909
4910  AdjustDeclIfTemplate(TagDecl);
4911
4912  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
4913    if (l->getKind() != AttributeList::AT_Visibility)
4914      continue;
4915    l->setInvalid();
4916    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
4917      l->getName();
4918  }
4919
4920  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4921              // strict aliasing violation!
4922              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4923              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4924
4925  CheckCompletedCXXClass(
4926                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4927}
4928
4929/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4930/// special functions, such as the default constructor, copy
4931/// constructor, or destructor, to the given C++ class (C++
4932/// [special]p1).  This routine can only be executed just before the
4933/// definition of the class is complete.
4934void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4935  if (!ClassDecl->hasUserDeclaredConstructor())
4936    ++ASTContext::NumImplicitDefaultConstructors;
4937
4938  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4939    ++ASTContext::NumImplicitCopyConstructors;
4940
4941  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4942    ++ASTContext::NumImplicitMoveConstructors;
4943
4944  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4945    ++ASTContext::NumImplicitCopyAssignmentOperators;
4946
4947    // If we have a dynamic class, then the copy assignment operator may be
4948    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4949    // it shows up in the right place in the vtable and that we diagnose
4950    // problems with the implicit exception specification.
4951    if (ClassDecl->isDynamicClass())
4952      DeclareImplicitCopyAssignment(ClassDecl);
4953  }
4954
4955  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4956    ++ASTContext::NumImplicitMoveAssignmentOperators;
4957
4958    // Likewise for the move assignment operator.
4959    if (ClassDecl->isDynamicClass())
4960      DeclareImplicitMoveAssignment(ClassDecl);
4961  }
4962
4963  if (!ClassDecl->hasUserDeclaredDestructor()) {
4964    ++ASTContext::NumImplicitDestructors;
4965
4966    // If we have a dynamic class, then the destructor may be virtual, so we
4967    // have to declare the destructor immediately. This ensures that, e.g., it
4968    // shows up in the right place in the vtable and that we diagnose problems
4969    // with the implicit exception specification.
4970    if (ClassDecl->isDynamicClass())
4971      DeclareImplicitDestructor(ClassDecl);
4972  }
4973}
4974
4975void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4976  if (!D)
4977    return;
4978
4979  int NumParamList = D->getNumTemplateParameterLists();
4980  for (int i = 0; i < NumParamList; i++) {
4981    TemplateParameterList* Params = D->getTemplateParameterList(i);
4982    for (TemplateParameterList::iterator Param = Params->begin(),
4983                                      ParamEnd = Params->end();
4984          Param != ParamEnd; ++Param) {
4985      NamedDecl *Named = cast<NamedDecl>(*Param);
4986      if (Named->getDeclName()) {
4987        S->AddDecl(Named);
4988        IdResolver.AddDecl(Named);
4989      }
4990    }
4991  }
4992}
4993
4994void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4995  if (!D)
4996    return;
4997
4998  TemplateParameterList *Params = 0;
4999  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5000    Params = Template->getTemplateParameters();
5001  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5002           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5003    Params = PartialSpec->getTemplateParameters();
5004  else
5005    return;
5006
5007  for (TemplateParameterList::iterator Param = Params->begin(),
5008                                    ParamEnd = Params->end();
5009       Param != ParamEnd; ++Param) {
5010    NamedDecl *Named = cast<NamedDecl>(*Param);
5011    if (Named->getDeclName()) {
5012      S->AddDecl(Named);
5013      IdResolver.AddDecl(Named);
5014    }
5015  }
5016}
5017
5018void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5019  if (!RecordD) return;
5020  AdjustDeclIfTemplate(RecordD);
5021  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5022  PushDeclContext(S, Record);
5023}
5024
5025void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5026  if (!RecordD) return;
5027  PopDeclContext();
5028}
5029
5030/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5031/// parsing a top-level (non-nested) C++ class, and we are now
5032/// parsing those parts of the given Method declaration that could
5033/// not be parsed earlier (C++ [class.mem]p2), such as default
5034/// arguments. This action should enter the scope of the given
5035/// Method declaration as if we had just parsed the qualified method
5036/// name. However, it should not bring the parameters into scope;
5037/// that will be performed by ActOnDelayedCXXMethodParameter.
5038void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5039}
5040
5041/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5042/// C++ method declaration. We're (re-)introducing the given
5043/// function parameter into scope for use in parsing later parts of
5044/// the method declaration. For example, we could see an
5045/// ActOnParamDefaultArgument event for this parameter.
5046void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5047  if (!ParamD)
5048    return;
5049
5050  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5051
5052  // If this parameter has an unparsed default argument, clear it out
5053  // to make way for the parsed default argument.
5054  if (Param->hasUnparsedDefaultArg())
5055    Param->setDefaultArg(0);
5056
5057  S->AddDecl(Param);
5058  if (Param->getDeclName())
5059    IdResolver.AddDecl(Param);
5060}
5061
5062/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5063/// processing the delayed method declaration for Method. The method
5064/// declaration is now considered finished. There may be a separate
5065/// ActOnStartOfFunctionDef action later (not necessarily
5066/// immediately!) for this method, if it was also defined inside the
5067/// class body.
5068void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5069  if (!MethodD)
5070    return;
5071
5072  AdjustDeclIfTemplate(MethodD);
5073
5074  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5075
5076  // Now that we have our default arguments, check the constructor
5077  // again. It could produce additional diagnostics or affect whether
5078  // the class has implicitly-declared destructors, among other
5079  // things.
5080  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5081    CheckConstructor(Constructor);
5082
5083  // Check the default arguments, which we may have added.
5084  if (!Method->isInvalidDecl())
5085    CheckCXXDefaultArguments(Method);
5086}
5087
5088/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5089/// the well-formedness of the constructor declarator @p D with type @p
5090/// R. If there are any errors in the declarator, this routine will
5091/// emit diagnostics and set the invalid bit to true.  In any case, the type
5092/// will be updated to reflect a well-formed type for the constructor and
5093/// returned.
5094QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5095                                          StorageClass &SC) {
5096  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5097
5098  // C++ [class.ctor]p3:
5099  //   A constructor shall not be virtual (10.3) or static (9.4). A
5100  //   constructor can be invoked for a const, volatile or const
5101  //   volatile object. A constructor shall not be declared const,
5102  //   volatile, or const volatile (9.3.2).
5103  if (isVirtual) {
5104    if (!D.isInvalidType())
5105      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5106        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5107        << SourceRange(D.getIdentifierLoc());
5108    D.setInvalidType();
5109  }
5110  if (SC == SC_Static) {
5111    if (!D.isInvalidType())
5112      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5113        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5114        << SourceRange(D.getIdentifierLoc());
5115    D.setInvalidType();
5116    SC = SC_None;
5117  }
5118
5119  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5120  if (FTI.TypeQuals != 0) {
5121    if (FTI.TypeQuals & Qualifiers::Const)
5122      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5123        << "const" << SourceRange(D.getIdentifierLoc());
5124    if (FTI.TypeQuals & Qualifiers::Volatile)
5125      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5126        << "volatile" << SourceRange(D.getIdentifierLoc());
5127    if (FTI.TypeQuals & Qualifiers::Restrict)
5128      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5129        << "restrict" << SourceRange(D.getIdentifierLoc());
5130    D.setInvalidType();
5131  }
5132
5133  // C++0x [class.ctor]p4:
5134  //   A constructor shall not be declared with a ref-qualifier.
5135  if (FTI.hasRefQualifier()) {
5136    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5137      << FTI.RefQualifierIsLValueRef
5138      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5139    D.setInvalidType();
5140  }
5141
5142  // Rebuild the function type "R" without any type qualifiers (in
5143  // case any of the errors above fired) and with "void" as the
5144  // return type, since constructors don't have return types.
5145  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5146  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5147    return R;
5148
5149  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5150  EPI.TypeQuals = 0;
5151  EPI.RefQualifier = RQ_None;
5152
5153  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5154                                 Proto->getNumArgs(), EPI);
5155}
5156
5157/// CheckConstructor - Checks a fully-formed constructor for
5158/// well-formedness, issuing any diagnostics required. Returns true if
5159/// the constructor declarator is invalid.
5160void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5161  CXXRecordDecl *ClassDecl
5162    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5163  if (!ClassDecl)
5164    return Constructor->setInvalidDecl();
5165
5166  // C++ [class.copy]p3:
5167  //   A declaration of a constructor for a class X is ill-formed if
5168  //   its first parameter is of type (optionally cv-qualified) X and
5169  //   either there are no other parameters or else all other
5170  //   parameters have default arguments.
5171  if (!Constructor->isInvalidDecl() &&
5172      ((Constructor->getNumParams() == 1) ||
5173       (Constructor->getNumParams() > 1 &&
5174        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5175      Constructor->getTemplateSpecializationKind()
5176                                              != TSK_ImplicitInstantiation) {
5177    QualType ParamType = Constructor->getParamDecl(0)->getType();
5178    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5179    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5180      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5181      const char *ConstRef
5182        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5183                                                        : " const &";
5184      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5185        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5186
5187      // FIXME: Rather that making the constructor invalid, we should endeavor
5188      // to fix the type.
5189      Constructor->setInvalidDecl();
5190    }
5191  }
5192}
5193
5194/// CheckDestructor - Checks a fully-formed destructor definition for
5195/// well-formedness, issuing any diagnostics required.  Returns true
5196/// on error.
5197bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5198  CXXRecordDecl *RD = Destructor->getParent();
5199
5200  if (Destructor->isVirtual()) {
5201    SourceLocation Loc;
5202
5203    if (!Destructor->isImplicit())
5204      Loc = Destructor->getLocation();
5205    else
5206      Loc = RD->getLocation();
5207
5208    // If we have a virtual destructor, look up the deallocation function
5209    FunctionDecl *OperatorDelete = 0;
5210    DeclarationName Name =
5211    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5212    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5213      return true;
5214
5215    MarkFunctionReferenced(Loc, OperatorDelete);
5216
5217    Destructor->setOperatorDelete(OperatorDelete);
5218  }
5219
5220  return false;
5221}
5222
5223static inline bool
5224FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5225  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5226          FTI.ArgInfo[0].Param &&
5227          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5228}
5229
5230/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5231/// the well-formednes of the destructor declarator @p D with type @p
5232/// R. If there are any errors in the declarator, this routine will
5233/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5234/// will be updated to reflect a well-formed type for the destructor and
5235/// returned.
5236QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5237                                         StorageClass& SC) {
5238  // C++ [class.dtor]p1:
5239  //   [...] A typedef-name that names a class is a class-name
5240  //   (7.1.3); however, a typedef-name that names a class shall not
5241  //   be used as the identifier in the declarator for a destructor
5242  //   declaration.
5243  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5244  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5245    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5246      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5247  else if (const TemplateSpecializationType *TST =
5248             DeclaratorType->getAs<TemplateSpecializationType>())
5249    if (TST->isTypeAlias())
5250      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5251        << DeclaratorType << 1;
5252
5253  // C++ [class.dtor]p2:
5254  //   A destructor is used to destroy objects of its class type. A
5255  //   destructor takes no parameters, and no return type can be
5256  //   specified for it (not even void). The address of a destructor
5257  //   shall not be taken. A destructor shall not be static. A
5258  //   destructor can be invoked for a const, volatile or const
5259  //   volatile object. A destructor shall not be declared const,
5260  //   volatile or const volatile (9.3.2).
5261  if (SC == SC_Static) {
5262    if (!D.isInvalidType())
5263      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5264        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5265        << SourceRange(D.getIdentifierLoc())
5266        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5267
5268    SC = SC_None;
5269  }
5270  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5271    // Destructors don't have return types, but the parser will
5272    // happily parse something like:
5273    //
5274    //   class X {
5275    //     float ~X();
5276    //   };
5277    //
5278    // The return type will be eliminated later.
5279    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5280      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5281      << SourceRange(D.getIdentifierLoc());
5282  }
5283
5284  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5285  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5286    if (FTI.TypeQuals & Qualifiers::Const)
5287      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5288        << "const" << SourceRange(D.getIdentifierLoc());
5289    if (FTI.TypeQuals & Qualifiers::Volatile)
5290      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5291        << "volatile" << SourceRange(D.getIdentifierLoc());
5292    if (FTI.TypeQuals & Qualifiers::Restrict)
5293      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5294        << "restrict" << SourceRange(D.getIdentifierLoc());
5295    D.setInvalidType();
5296  }
5297
5298  // C++0x [class.dtor]p2:
5299  //   A destructor shall not be declared with a ref-qualifier.
5300  if (FTI.hasRefQualifier()) {
5301    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5302      << FTI.RefQualifierIsLValueRef
5303      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5304    D.setInvalidType();
5305  }
5306
5307  // Make sure we don't have any parameters.
5308  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5309    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5310
5311    // Delete the parameters.
5312    FTI.freeArgs();
5313    D.setInvalidType();
5314  }
5315
5316  // Make sure the destructor isn't variadic.
5317  if (FTI.isVariadic) {
5318    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5319    D.setInvalidType();
5320  }
5321
5322  // Rebuild the function type "R" without any type qualifiers or
5323  // parameters (in case any of the errors above fired) and with
5324  // "void" as the return type, since destructors don't have return
5325  // types.
5326  if (!D.isInvalidType())
5327    return R;
5328
5329  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5330  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5331  EPI.Variadic = false;
5332  EPI.TypeQuals = 0;
5333  EPI.RefQualifier = RQ_None;
5334  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5335}
5336
5337/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5338/// well-formednes of the conversion function declarator @p D with
5339/// type @p R. If there are any errors in the declarator, this routine
5340/// will emit diagnostics and return true. Otherwise, it will return
5341/// false. Either way, the type @p R will be updated to reflect a
5342/// well-formed type for the conversion operator.
5343void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5344                                     StorageClass& SC) {
5345  // C++ [class.conv.fct]p1:
5346  //   Neither parameter types nor return type can be specified. The
5347  //   type of a conversion function (8.3.5) is "function taking no
5348  //   parameter returning conversion-type-id."
5349  if (SC == SC_Static) {
5350    if (!D.isInvalidType())
5351      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5352        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5353        << SourceRange(D.getIdentifierLoc());
5354    D.setInvalidType();
5355    SC = SC_None;
5356  }
5357
5358  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5359
5360  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5361    // Conversion functions don't have return types, but the parser will
5362    // happily parse something like:
5363    //
5364    //   class X {
5365    //     float operator bool();
5366    //   };
5367    //
5368    // The return type will be changed later anyway.
5369    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5370      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5371      << SourceRange(D.getIdentifierLoc());
5372    D.setInvalidType();
5373  }
5374
5375  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5376
5377  // Make sure we don't have any parameters.
5378  if (Proto->getNumArgs() > 0) {
5379    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5380
5381    // Delete the parameters.
5382    D.getFunctionTypeInfo().freeArgs();
5383    D.setInvalidType();
5384  } else if (Proto->isVariadic()) {
5385    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5386    D.setInvalidType();
5387  }
5388
5389  // Diagnose "&operator bool()" and other such nonsense.  This
5390  // is actually a gcc extension which we don't support.
5391  if (Proto->getResultType() != ConvType) {
5392    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5393      << Proto->getResultType();
5394    D.setInvalidType();
5395    ConvType = Proto->getResultType();
5396  }
5397
5398  // C++ [class.conv.fct]p4:
5399  //   The conversion-type-id shall not represent a function type nor
5400  //   an array type.
5401  if (ConvType->isArrayType()) {
5402    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5403    ConvType = Context.getPointerType(ConvType);
5404    D.setInvalidType();
5405  } else if (ConvType->isFunctionType()) {
5406    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5407    ConvType = Context.getPointerType(ConvType);
5408    D.setInvalidType();
5409  }
5410
5411  // Rebuild the function type "R" without any parameters (in case any
5412  // of the errors above fired) and with the conversion type as the
5413  // return type.
5414  if (D.isInvalidType())
5415    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5416
5417  // C++0x explicit conversion operators.
5418  if (D.getDeclSpec().isExplicitSpecified())
5419    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5420         getLangOpts().CPlusPlus0x ?
5421           diag::warn_cxx98_compat_explicit_conversion_functions :
5422           diag::ext_explicit_conversion_functions)
5423      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5424}
5425
5426/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5427/// the declaration of the given C++ conversion function. This routine
5428/// is responsible for recording the conversion function in the C++
5429/// class, if possible.
5430Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5431  assert(Conversion && "Expected to receive a conversion function declaration");
5432
5433  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5434
5435  // Make sure we aren't redeclaring the conversion function.
5436  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5437
5438  // C++ [class.conv.fct]p1:
5439  //   [...] A conversion function is never used to convert a
5440  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5441  //   same object type (or a reference to it), to a (possibly
5442  //   cv-qualified) base class of that type (or a reference to it),
5443  //   or to (possibly cv-qualified) void.
5444  // FIXME: Suppress this warning if the conversion function ends up being a
5445  // virtual function that overrides a virtual function in a base class.
5446  QualType ClassType
5447    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5448  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5449    ConvType = ConvTypeRef->getPointeeType();
5450  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5451      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5452    /* Suppress diagnostics for instantiations. */;
5453  else if (ConvType->isRecordType()) {
5454    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5455    if (ConvType == ClassType)
5456      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5457        << ClassType;
5458    else if (IsDerivedFrom(ClassType, ConvType))
5459      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5460        <<  ClassType << ConvType;
5461  } else if (ConvType->isVoidType()) {
5462    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5463      << ClassType << ConvType;
5464  }
5465
5466  if (FunctionTemplateDecl *ConversionTemplate
5467                                = Conversion->getDescribedFunctionTemplate())
5468    return ConversionTemplate;
5469
5470  return Conversion;
5471}
5472
5473//===----------------------------------------------------------------------===//
5474// Namespace Handling
5475//===----------------------------------------------------------------------===//
5476
5477/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
5478/// reopened.
5479static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
5480                                            SourceLocation Loc,
5481                                            IdentifierInfo *II, bool *IsInline,
5482                                            NamespaceDecl *PrevNS) {
5483  assert(*IsInline != PrevNS->isInline());
5484
5485  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
5486  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
5487  // inline namespaces, with the intention of bringing names into namespace std.
5488  //
5489  // We support this just well enough to get that case working; this is not
5490  // sufficient to support reopening namespaces as inline in general.
5491  if (*IsInline && II && II->getName().startswith("__atomic") &&
5492      S.getSourceManager().isInSystemHeader(Loc)) {
5493    // Mark all prior declarations of the namespace as inline.
5494    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
5495         NS = NS->getPreviousDecl())
5496      NS->setInline(*IsInline);
5497    // Patch up the lookup table for the containing namespace. This isn't really
5498    // correct, but it's good enough for this particular case.
5499    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
5500                                    E = PrevNS->decls_end(); I != E; ++I)
5501      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
5502        PrevNS->getParent()->makeDeclVisibleInContext(ND);
5503    return;
5504  }
5505
5506  if (PrevNS->isInline())
5507    // The user probably just forgot the 'inline', so suggest that it
5508    // be added back.
5509    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5510      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
5511  else
5512    S.Diag(Loc, diag::err_inline_namespace_mismatch)
5513      << IsInline;
5514
5515  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
5516  *IsInline = PrevNS->isInline();
5517}
5518
5519/// ActOnStartNamespaceDef - This is called at the start of a namespace
5520/// definition.
5521Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5522                                   SourceLocation InlineLoc,
5523                                   SourceLocation NamespaceLoc,
5524                                   SourceLocation IdentLoc,
5525                                   IdentifierInfo *II,
5526                                   SourceLocation LBrace,
5527                                   AttributeList *AttrList) {
5528  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5529  // For anonymous namespace, take the location of the left brace.
5530  SourceLocation Loc = II ? IdentLoc : LBrace;
5531  bool IsInline = InlineLoc.isValid();
5532  bool IsInvalid = false;
5533  bool IsStd = false;
5534  bool AddToKnown = false;
5535  Scope *DeclRegionScope = NamespcScope->getParent();
5536
5537  NamespaceDecl *PrevNS = 0;
5538  if (II) {
5539    // C++ [namespace.def]p2:
5540    //   The identifier in an original-namespace-definition shall not
5541    //   have been previously defined in the declarative region in
5542    //   which the original-namespace-definition appears. The
5543    //   identifier in an original-namespace-definition is the name of
5544    //   the namespace. Subsequently in that declarative region, it is
5545    //   treated as an original-namespace-name.
5546    //
5547    // Since namespace names are unique in their scope, and we don't
5548    // look through using directives, just look for any ordinary names.
5549
5550    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5551    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5552    Decl::IDNS_Namespace;
5553    NamedDecl *PrevDecl = 0;
5554    for (DeclContext::lookup_result R
5555         = CurContext->getRedeclContext()->lookup(II);
5556         R.first != R.second; ++R.first) {
5557      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5558        PrevDecl = *R.first;
5559        break;
5560      }
5561    }
5562
5563    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5564
5565    if (PrevNS) {
5566      // This is an extended namespace definition.
5567      if (IsInline != PrevNS->isInline())
5568        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
5569                                        &IsInline, PrevNS);
5570    } else if (PrevDecl) {
5571      // This is an invalid name redefinition.
5572      Diag(Loc, diag::err_redefinition_different_kind)
5573        << II;
5574      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5575      IsInvalid = true;
5576      // Continue on to push Namespc as current DeclContext and return it.
5577    } else if (II->isStr("std") &&
5578               CurContext->getRedeclContext()->isTranslationUnit()) {
5579      // This is the first "real" definition of the namespace "std", so update
5580      // our cache of the "std" namespace to point at this definition.
5581      PrevNS = getStdNamespace();
5582      IsStd = true;
5583      AddToKnown = !IsInline;
5584    } else {
5585      // We've seen this namespace for the first time.
5586      AddToKnown = !IsInline;
5587    }
5588  } else {
5589    // Anonymous namespaces.
5590
5591    // Determine whether the parent already has an anonymous namespace.
5592    DeclContext *Parent = CurContext->getRedeclContext();
5593    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5594      PrevNS = TU->getAnonymousNamespace();
5595    } else {
5596      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5597      PrevNS = ND->getAnonymousNamespace();
5598    }
5599
5600    if (PrevNS && IsInline != PrevNS->isInline())
5601      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
5602                                      &IsInline, PrevNS);
5603  }
5604
5605  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5606                                                 StartLoc, Loc, II, PrevNS);
5607  if (IsInvalid)
5608    Namespc->setInvalidDecl();
5609
5610  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5611
5612  // FIXME: Should we be merging attributes?
5613  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5614    PushNamespaceVisibilityAttr(Attr, Loc);
5615
5616  if (IsStd)
5617    StdNamespace = Namespc;
5618  if (AddToKnown)
5619    KnownNamespaces[Namespc] = false;
5620
5621  if (II) {
5622    PushOnScopeChains(Namespc, DeclRegionScope);
5623  } else {
5624    // Link the anonymous namespace into its parent.
5625    DeclContext *Parent = CurContext->getRedeclContext();
5626    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5627      TU->setAnonymousNamespace(Namespc);
5628    } else {
5629      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5630    }
5631
5632    CurContext->addDecl(Namespc);
5633
5634    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5635    //   behaves as if it were replaced by
5636    //     namespace unique { /* empty body */ }
5637    //     using namespace unique;
5638    //     namespace unique { namespace-body }
5639    //   where all occurrences of 'unique' in a translation unit are
5640    //   replaced by the same identifier and this identifier differs
5641    //   from all other identifiers in the entire program.
5642
5643    // We just create the namespace with an empty name and then add an
5644    // implicit using declaration, just like the standard suggests.
5645    //
5646    // CodeGen enforces the "universally unique" aspect by giving all
5647    // declarations semantically contained within an anonymous
5648    // namespace internal linkage.
5649
5650    if (!PrevNS) {
5651      UsingDirectiveDecl* UD
5652        = UsingDirectiveDecl::Create(Context, Parent,
5653                                     /* 'using' */ LBrace,
5654                                     /* 'namespace' */ SourceLocation(),
5655                                     /* qualifier */ NestedNameSpecifierLoc(),
5656                                     /* identifier */ SourceLocation(),
5657                                     Namespc,
5658                                     /* Ancestor */ Parent);
5659      UD->setImplicit();
5660      Parent->addDecl(UD);
5661    }
5662  }
5663
5664  ActOnDocumentableDecl(Namespc);
5665
5666  // Although we could have an invalid decl (i.e. the namespace name is a
5667  // redefinition), push it as current DeclContext and try to continue parsing.
5668  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5669  // for the namespace has the declarations that showed up in that particular
5670  // namespace definition.
5671  PushDeclContext(NamespcScope, Namespc);
5672  return Namespc;
5673}
5674
5675/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5676/// is a namespace alias, returns the namespace it points to.
5677static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5678  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5679    return AD->getNamespace();
5680  return dyn_cast_or_null<NamespaceDecl>(D);
5681}
5682
5683/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5684/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5685void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5686  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5687  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5688  Namespc->setRBraceLoc(RBrace);
5689  PopDeclContext();
5690  if (Namespc->hasAttr<VisibilityAttr>())
5691    PopPragmaVisibility(true, RBrace);
5692}
5693
5694CXXRecordDecl *Sema::getStdBadAlloc() const {
5695  return cast_or_null<CXXRecordDecl>(
5696                                  StdBadAlloc.get(Context.getExternalSource()));
5697}
5698
5699NamespaceDecl *Sema::getStdNamespace() const {
5700  return cast_or_null<NamespaceDecl>(
5701                                 StdNamespace.get(Context.getExternalSource()));
5702}
5703
5704/// \brief Retrieve the special "std" namespace, which may require us to
5705/// implicitly define the namespace.
5706NamespaceDecl *Sema::getOrCreateStdNamespace() {
5707  if (!StdNamespace) {
5708    // The "std" namespace has not yet been defined, so build one implicitly.
5709    StdNamespace = NamespaceDecl::Create(Context,
5710                                         Context.getTranslationUnitDecl(),
5711                                         /*Inline=*/false,
5712                                         SourceLocation(), SourceLocation(),
5713                                         &PP.getIdentifierTable().get("std"),
5714                                         /*PrevDecl=*/0);
5715    getStdNamespace()->setImplicit(true);
5716  }
5717
5718  return getStdNamespace();
5719}
5720
5721bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5722  assert(getLangOpts().CPlusPlus &&
5723         "Looking for std::initializer_list outside of C++.");
5724
5725  // We're looking for implicit instantiations of
5726  // template <typename E> class std::initializer_list.
5727
5728  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5729    return false;
5730
5731  ClassTemplateDecl *Template = 0;
5732  const TemplateArgument *Arguments = 0;
5733
5734  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5735
5736    ClassTemplateSpecializationDecl *Specialization =
5737        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5738    if (!Specialization)
5739      return false;
5740
5741    Template = Specialization->getSpecializedTemplate();
5742    Arguments = Specialization->getTemplateArgs().data();
5743  } else if (const TemplateSpecializationType *TST =
5744                 Ty->getAs<TemplateSpecializationType>()) {
5745    Template = dyn_cast_or_null<ClassTemplateDecl>(
5746        TST->getTemplateName().getAsTemplateDecl());
5747    Arguments = TST->getArgs();
5748  }
5749  if (!Template)
5750    return false;
5751
5752  if (!StdInitializerList) {
5753    // Haven't recognized std::initializer_list yet, maybe this is it.
5754    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5755    if (TemplateClass->getIdentifier() !=
5756            &PP.getIdentifierTable().get("initializer_list") ||
5757        !getStdNamespace()->InEnclosingNamespaceSetOf(
5758            TemplateClass->getDeclContext()))
5759      return false;
5760    // This is a template called std::initializer_list, but is it the right
5761    // template?
5762    TemplateParameterList *Params = Template->getTemplateParameters();
5763    if (Params->getMinRequiredArguments() != 1)
5764      return false;
5765    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5766      return false;
5767
5768    // It's the right template.
5769    StdInitializerList = Template;
5770  }
5771
5772  if (Template != StdInitializerList)
5773    return false;
5774
5775  // This is an instance of std::initializer_list. Find the argument type.
5776  if (Element)
5777    *Element = Arguments[0].getAsType();
5778  return true;
5779}
5780
5781static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5782  NamespaceDecl *Std = S.getStdNamespace();
5783  if (!Std) {
5784    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5785    return 0;
5786  }
5787
5788  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5789                      Loc, Sema::LookupOrdinaryName);
5790  if (!S.LookupQualifiedName(Result, Std)) {
5791    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5792    return 0;
5793  }
5794  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5795  if (!Template) {
5796    Result.suppressDiagnostics();
5797    // We found something weird. Complain about the first thing we found.
5798    NamedDecl *Found = *Result.begin();
5799    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5800    return 0;
5801  }
5802
5803  // We found some template called std::initializer_list. Now verify that it's
5804  // correct.
5805  TemplateParameterList *Params = Template->getTemplateParameters();
5806  if (Params->getMinRequiredArguments() != 1 ||
5807      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5808    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5809    return 0;
5810  }
5811
5812  return Template;
5813}
5814
5815QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5816  if (!StdInitializerList) {
5817    StdInitializerList = LookupStdInitializerList(*this, Loc);
5818    if (!StdInitializerList)
5819      return QualType();
5820  }
5821
5822  TemplateArgumentListInfo Args(Loc, Loc);
5823  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5824                                       Context.getTrivialTypeSourceInfo(Element,
5825                                                                        Loc)));
5826  return Context.getCanonicalType(
5827      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5828}
5829
5830bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5831  // C++ [dcl.init.list]p2:
5832  //   A constructor is an initializer-list constructor if its first parameter
5833  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5834  //   std::initializer_list<E> for some type E, and either there are no other
5835  //   parameters or else all other parameters have default arguments.
5836  if (Ctor->getNumParams() < 1 ||
5837      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5838    return false;
5839
5840  QualType ArgType = Ctor->getParamDecl(0)->getType();
5841  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5842    ArgType = RT->getPointeeType().getUnqualifiedType();
5843
5844  return isStdInitializerList(ArgType, 0);
5845}
5846
5847/// \brief Determine whether a using statement is in a context where it will be
5848/// apply in all contexts.
5849static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5850  switch (CurContext->getDeclKind()) {
5851    case Decl::TranslationUnit:
5852      return true;
5853    case Decl::LinkageSpec:
5854      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5855    default:
5856      return false;
5857  }
5858}
5859
5860namespace {
5861
5862// Callback to only accept typo corrections that are namespaces.
5863class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5864 public:
5865  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5866    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5867      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5868    }
5869    return false;
5870  }
5871};
5872
5873}
5874
5875static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5876                                       CXXScopeSpec &SS,
5877                                       SourceLocation IdentLoc,
5878                                       IdentifierInfo *Ident) {
5879  NamespaceValidatorCCC Validator;
5880  R.clear();
5881  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5882                                               R.getLookupKind(), Sc, &SS,
5883                                               Validator)) {
5884    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5885    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5886    if (DeclContext *DC = S.computeDeclContext(SS, false))
5887      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5888        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5889        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
5890                                        CorrectedStr);
5891    else
5892      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5893        << Ident << CorrectedQuotedStr
5894        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5895
5896    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5897         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5898
5899    R.addDecl(Corrected.getCorrectionDecl());
5900    return true;
5901  }
5902  return false;
5903}
5904
5905Decl *Sema::ActOnUsingDirective(Scope *S,
5906                                          SourceLocation UsingLoc,
5907                                          SourceLocation NamespcLoc,
5908                                          CXXScopeSpec &SS,
5909                                          SourceLocation IdentLoc,
5910                                          IdentifierInfo *NamespcName,
5911                                          AttributeList *AttrList) {
5912  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5913  assert(NamespcName && "Invalid NamespcName.");
5914  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5915
5916  // This can only happen along a recovery path.
5917  while (S->getFlags() & Scope::TemplateParamScope)
5918    S = S->getParent();
5919  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5920
5921  UsingDirectiveDecl *UDir = 0;
5922  NestedNameSpecifier *Qualifier = 0;
5923  if (SS.isSet())
5924    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5925
5926  // Lookup namespace name.
5927  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5928  LookupParsedName(R, S, &SS);
5929  if (R.isAmbiguous())
5930    return 0;
5931
5932  if (R.empty()) {
5933    R.clear();
5934    // Allow "using namespace std;" or "using namespace ::std;" even if
5935    // "std" hasn't been defined yet, for GCC compatibility.
5936    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5937        NamespcName->isStr("std")) {
5938      Diag(IdentLoc, diag::ext_using_undefined_std);
5939      R.addDecl(getOrCreateStdNamespace());
5940      R.resolveKind();
5941    }
5942    // Otherwise, attempt typo correction.
5943    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5944  }
5945
5946  if (!R.empty()) {
5947    NamedDecl *Named = R.getFoundDecl();
5948    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5949        && "expected namespace decl");
5950    // C++ [namespace.udir]p1:
5951    //   A using-directive specifies that the names in the nominated
5952    //   namespace can be used in the scope in which the
5953    //   using-directive appears after the using-directive. During
5954    //   unqualified name lookup (3.4.1), the names appear as if they
5955    //   were declared in the nearest enclosing namespace which
5956    //   contains both the using-directive and the nominated
5957    //   namespace. [Note: in this context, "contains" means "contains
5958    //   directly or indirectly". ]
5959
5960    // Find enclosing context containing both using-directive and
5961    // nominated namespace.
5962    NamespaceDecl *NS = getNamespaceDecl(Named);
5963    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5964    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5965      CommonAncestor = CommonAncestor->getParent();
5966
5967    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5968                                      SS.getWithLocInContext(Context),
5969                                      IdentLoc, Named, CommonAncestor);
5970
5971    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5972        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5973      Diag(IdentLoc, diag::warn_using_directive_in_header);
5974    }
5975
5976    PushUsingDirective(S, UDir);
5977  } else {
5978    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5979  }
5980
5981  // FIXME: We ignore attributes for now.
5982  return UDir;
5983}
5984
5985void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5986  // If the scope has an associated entity and the using directive is at
5987  // namespace or translation unit scope, add the UsingDirectiveDecl into
5988  // its lookup structure so qualified name lookup can find it.
5989  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5990  if (Ctx && !Ctx->isFunctionOrMethod())
5991    Ctx->addDecl(UDir);
5992  else
5993    // Otherwise, it is at block sope. The using-directives will affect lookup
5994    // only to the end of the scope.
5995    S->PushUsingDirective(UDir);
5996}
5997
5998
5999Decl *Sema::ActOnUsingDeclaration(Scope *S,
6000                                  AccessSpecifier AS,
6001                                  bool HasUsingKeyword,
6002                                  SourceLocation UsingLoc,
6003                                  CXXScopeSpec &SS,
6004                                  UnqualifiedId &Name,
6005                                  AttributeList *AttrList,
6006                                  bool IsTypeName,
6007                                  SourceLocation TypenameLoc) {
6008  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6009
6010  switch (Name.getKind()) {
6011  case UnqualifiedId::IK_ImplicitSelfParam:
6012  case UnqualifiedId::IK_Identifier:
6013  case UnqualifiedId::IK_OperatorFunctionId:
6014  case UnqualifiedId::IK_LiteralOperatorId:
6015  case UnqualifiedId::IK_ConversionFunctionId:
6016    break;
6017
6018  case UnqualifiedId::IK_ConstructorName:
6019  case UnqualifiedId::IK_ConstructorTemplateId:
6020    // C++11 inheriting constructors.
6021    Diag(Name.getLocStart(),
6022         getLangOpts().CPlusPlus0x ?
6023           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
6024           //        instead once inheriting constructors work.
6025           diag::err_using_decl_constructor_unsupported :
6026           diag::err_using_decl_constructor)
6027      << SS.getRange();
6028
6029    if (getLangOpts().CPlusPlus0x) break;
6030
6031    return 0;
6032
6033  case UnqualifiedId::IK_DestructorName:
6034    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6035      << SS.getRange();
6036    return 0;
6037
6038  case UnqualifiedId::IK_TemplateId:
6039    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6040      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6041    return 0;
6042  }
6043
6044  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6045  DeclarationName TargetName = TargetNameInfo.getName();
6046  if (!TargetName)
6047    return 0;
6048
6049  // Warn about using declarations.
6050  // TODO: store that the declaration was written without 'using' and
6051  // talk about access decls instead of using decls in the
6052  // diagnostics.
6053  if (!HasUsingKeyword) {
6054    UsingLoc = Name.getLocStart();
6055
6056    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6057      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6058  }
6059
6060  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6061      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6062    return 0;
6063
6064  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6065                                        TargetNameInfo, AttrList,
6066                                        /* IsInstantiation */ false,
6067                                        IsTypeName, TypenameLoc);
6068  if (UD)
6069    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6070
6071  return UD;
6072}
6073
6074/// \brief Determine whether a using declaration considers the given
6075/// declarations as "equivalent", e.g., if they are redeclarations of
6076/// the same entity or are both typedefs of the same type.
6077static bool
6078IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6079                         bool &SuppressRedeclaration) {
6080  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6081    SuppressRedeclaration = false;
6082    return true;
6083  }
6084
6085  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6086    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6087      SuppressRedeclaration = true;
6088      return Context.hasSameType(TD1->getUnderlyingType(),
6089                                 TD2->getUnderlyingType());
6090    }
6091
6092  return false;
6093}
6094
6095
6096/// Determines whether to create a using shadow decl for a particular
6097/// decl, given the set of decls existing prior to this using lookup.
6098bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6099                                const LookupResult &Previous) {
6100  // Diagnose finding a decl which is not from a base class of the
6101  // current class.  We do this now because there are cases where this
6102  // function will silently decide not to build a shadow decl, which
6103  // will pre-empt further diagnostics.
6104  //
6105  // We don't need to do this in C++0x because we do the check once on
6106  // the qualifier.
6107  //
6108  // FIXME: diagnose the following if we care enough:
6109  //   struct A { int foo; };
6110  //   struct B : A { using A::foo; };
6111  //   template <class T> struct C : A {};
6112  //   template <class T> struct D : C<T> { using B::foo; } // <---
6113  // This is invalid (during instantiation) in C++03 because B::foo
6114  // resolves to the using decl in B, which is not a base class of D<T>.
6115  // We can't diagnose it immediately because C<T> is an unknown
6116  // specialization.  The UsingShadowDecl in D<T> then points directly
6117  // to A::foo, which will look well-formed when we instantiate.
6118  // The right solution is to not collapse the shadow-decl chain.
6119  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6120    DeclContext *OrigDC = Orig->getDeclContext();
6121
6122    // Handle enums and anonymous structs.
6123    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6124    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6125    while (OrigRec->isAnonymousStructOrUnion())
6126      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6127
6128    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6129      if (OrigDC == CurContext) {
6130        Diag(Using->getLocation(),
6131             diag::err_using_decl_nested_name_specifier_is_current_class)
6132          << Using->getQualifierLoc().getSourceRange();
6133        Diag(Orig->getLocation(), diag::note_using_decl_target);
6134        return true;
6135      }
6136
6137      Diag(Using->getQualifierLoc().getBeginLoc(),
6138           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6139        << Using->getQualifier()
6140        << cast<CXXRecordDecl>(CurContext)
6141        << Using->getQualifierLoc().getSourceRange();
6142      Diag(Orig->getLocation(), diag::note_using_decl_target);
6143      return true;
6144    }
6145  }
6146
6147  if (Previous.empty()) return false;
6148
6149  NamedDecl *Target = Orig;
6150  if (isa<UsingShadowDecl>(Target))
6151    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6152
6153  // If the target happens to be one of the previous declarations, we
6154  // don't have a conflict.
6155  //
6156  // FIXME: but we might be increasing its access, in which case we
6157  // should redeclare it.
6158  NamedDecl *NonTag = 0, *Tag = 0;
6159  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6160         I != E; ++I) {
6161    NamedDecl *D = (*I)->getUnderlyingDecl();
6162    bool Result;
6163    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6164      return Result;
6165
6166    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6167  }
6168
6169  if (Target->isFunctionOrFunctionTemplate()) {
6170    FunctionDecl *FD;
6171    if (isa<FunctionTemplateDecl>(Target))
6172      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6173    else
6174      FD = cast<FunctionDecl>(Target);
6175
6176    NamedDecl *OldDecl = 0;
6177    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6178    case Ovl_Overload:
6179      return false;
6180
6181    case Ovl_NonFunction:
6182      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6183      break;
6184
6185    // We found a decl with the exact signature.
6186    case Ovl_Match:
6187      // If we're in a record, we want to hide the target, so we
6188      // return true (without a diagnostic) to tell the caller not to
6189      // build a shadow decl.
6190      if (CurContext->isRecord())
6191        return true;
6192
6193      // If we're not in a record, this is an error.
6194      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6195      break;
6196    }
6197
6198    Diag(Target->getLocation(), diag::note_using_decl_target);
6199    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6200    return true;
6201  }
6202
6203  // Target is not a function.
6204
6205  if (isa<TagDecl>(Target)) {
6206    // No conflict between a tag and a non-tag.
6207    if (!Tag) return false;
6208
6209    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6210    Diag(Target->getLocation(), diag::note_using_decl_target);
6211    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6212    return true;
6213  }
6214
6215  // No conflict between a tag and a non-tag.
6216  if (!NonTag) return false;
6217
6218  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6219  Diag(Target->getLocation(), diag::note_using_decl_target);
6220  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6221  return true;
6222}
6223
6224/// Builds a shadow declaration corresponding to a 'using' declaration.
6225UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6226                                            UsingDecl *UD,
6227                                            NamedDecl *Orig) {
6228
6229  // If we resolved to another shadow declaration, just coalesce them.
6230  NamedDecl *Target = Orig;
6231  if (isa<UsingShadowDecl>(Target)) {
6232    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6233    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6234  }
6235
6236  UsingShadowDecl *Shadow
6237    = UsingShadowDecl::Create(Context, CurContext,
6238                              UD->getLocation(), UD, Target);
6239  UD->addShadowDecl(Shadow);
6240
6241  Shadow->setAccess(UD->getAccess());
6242  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6243    Shadow->setInvalidDecl();
6244
6245  if (S)
6246    PushOnScopeChains(Shadow, S);
6247  else
6248    CurContext->addDecl(Shadow);
6249
6250
6251  return Shadow;
6252}
6253
6254/// Hides a using shadow declaration.  This is required by the current
6255/// using-decl implementation when a resolvable using declaration in a
6256/// class is followed by a declaration which would hide or override
6257/// one or more of the using decl's targets; for example:
6258///
6259///   struct Base { void foo(int); };
6260///   struct Derived : Base {
6261///     using Base::foo;
6262///     void foo(int);
6263///   };
6264///
6265/// The governing language is C++03 [namespace.udecl]p12:
6266///
6267///   When a using-declaration brings names from a base class into a
6268///   derived class scope, member functions in the derived class
6269///   override and/or hide member functions with the same name and
6270///   parameter types in a base class (rather than conflicting).
6271///
6272/// There are two ways to implement this:
6273///   (1) optimistically create shadow decls when they're not hidden
6274///       by existing declarations, or
6275///   (2) don't create any shadow decls (or at least don't make them
6276///       visible) until we've fully parsed/instantiated the class.
6277/// The problem with (1) is that we might have to retroactively remove
6278/// a shadow decl, which requires several O(n) operations because the
6279/// decl structures are (very reasonably) not designed for removal.
6280/// (2) avoids this but is very fiddly and phase-dependent.
6281void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6282  if (Shadow->getDeclName().getNameKind() ==
6283        DeclarationName::CXXConversionFunctionName)
6284    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6285
6286  // Remove it from the DeclContext...
6287  Shadow->getDeclContext()->removeDecl(Shadow);
6288
6289  // ...and the scope, if applicable...
6290  if (S) {
6291    S->RemoveDecl(Shadow);
6292    IdResolver.RemoveDecl(Shadow);
6293  }
6294
6295  // ...and the using decl.
6296  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6297
6298  // TODO: complain somehow if Shadow was used.  It shouldn't
6299  // be possible for this to happen, because...?
6300}
6301
6302/// Builds a using declaration.
6303///
6304/// \param IsInstantiation - Whether this call arises from an
6305///   instantiation of an unresolved using declaration.  We treat
6306///   the lookup differently for these declarations.
6307NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6308                                       SourceLocation UsingLoc,
6309                                       CXXScopeSpec &SS,
6310                                       const DeclarationNameInfo &NameInfo,
6311                                       AttributeList *AttrList,
6312                                       bool IsInstantiation,
6313                                       bool IsTypeName,
6314                                       SourceLocation TypenameLoc) {
6315  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6316  SourceLocation IdentLoc = NameInfo.getLoc();
6317  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6318
6319  // FIXME: We ignore attributes for now.
6320
6321  if (SS.isEmpty()) {
6322    Diag(IdentLoc, diag::err_using_requires_qualname);
6323    return 0;
6324  }
6325
6326  // Do the redeclaration lookup in the current scope.
6327  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6328                        ForRedeclaration);
6329  Previous.setHideTags(false);
6330  if (S) {
6331    LookupName(Previous, S);
6332
6333    // It is really dumb that we have to do this.
6334    LookupResult::Filter F = Previous.makeFilter();
6335    while (F.hasNext()) {
6336      NamedDecl *D = F.next();
6337      if (!isDeclInScope(D, CurContext, S))
6338        F.erase();
6339    }
6340    F.done();
6341  } else {
6342    assert(IsInstantiation && "no scope in non-instantiation");
6343    assert(CurContext->isRecord() && "scope not record in instantiation");
6344    LookupQualifiedName(Previous, CurContext);
6345  }
6346
6347  // Check for invalid redeclarations.
6348  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6349    return 0;
6350
6351  // Check for bad qualifiers.
6352  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6353    return 0;
6354
6355  DeclContext *LookupContext = computeDeclContext(SS);
6356  NamedDecl *D;
6357  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6358  if (!LookupContext) {
6359    if (IsTypeName) {
6360      // FIXME: not all declaration name kinds are legal here
6361      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6362                                              UsingLoc, TypenameLoc,
6363                                              QualifierLoc,
6364                                              IdentLoc, NameInfo.getName());
6365    } else {
6366      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6367                                           QualifierLoc, NameInfo);
6368    }
6369  } else {
6370    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6371                          NameInfo, IsTypeName);
6372  }
6373  D->setAccess(AS);
6374  CurContext->addDecl(D);
6375
6376  if (!LookupContext) return D;
6377  UsingDecl *UD = cast<UsingDecl>(D);
6378
6379  if (RequireCompleteDeclContext(SS, LookupContext)) {
6380    UD->setInvalidDecl();
6381    return UD;
6382  }
6383
6384  // The normal rules do not apply to inheriting constructor declarations.
6385  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6386    if (CheckInheritingConstructorUsingDecl(UD))
6387      UD->setInvalidDecl();
6388    return UD;
6389  }
6390
6391  // Otherwise, look up the target name.
6392
6393  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6394
6395  // Unlike most lookups, we don't always want to hide tag
6396  // declarations: tag names are visible through the using declaration
6397  // even if hidden by ordinary names, *except* in a dependent context
6398  // where it's important for the sanity of two-phase lookup.
6399  if (!IsInstantiation)
6400    R.setHideTags(false);
6401
6402  // For the purposes of this lookup, we have a base object type
6403  // equal to that of the current context.
6404  if (CurContext->isRecord()) {
6405    R.setBaseObjectType(
6406                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6407  }
6408
6409  LookupQualifiedName(R, LookupContext);
6410
6411  if (R.empty()) {
6412    Diag(IdentLoc, diag::err_no_member)
6413      << NameInfo.getName() << LookupContext << SS.getRange();
6414    UD->setInvalidDecl();
6415    return UD;
6416  }
6417
6418  if (R.isAmbiguous()) {
6419    UD->setInvalidDecl();
6420    return UD;
6421  }
6422
6423  if (IsTypeName) {
6424    // If we asked for a typename and got a non-type decl, error out.
6425    if (!R.getAsSingle<TypeDecl>()) {
6426      Diag(IdentLoc, diag::err_using_typename_non_type);
6427      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6428        Diag((*I)->getUnderlyingDecl()->getLocation(),
6429             diag::note_using_decl_target);
6430      UD->setInvalidDecl();
6431      return UD;
6432    }
6433  } else {
6434    // If we asked for a non-typename and we got a type, error out,
6435    // but only if this is an instantiation of an unresolved using
6436    // decl.  Otherwise just silently find the type name.
6437    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6438      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6439      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6440      UD->setInvalidDecl();
6441      return UD;
6442    }
6443  }
6444
6445  // C++0x N2914 [namespace.udecl]p6:
6446  // A using-declaration shall not name a namespace.
6447  if (R.getAsSingle<NamespaceDecl>()) {
6448    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6449      << SS.getRange();
6450    UD->setInvalidDecl();
6451    return UD;
6452  }
6453
6454  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6455    if (!CheckUsingShadowDecl(UD, *I, Previous))
6456      BuildUsingShadowDecl(S, UD, *I);
6457  }
6458
6459  return UD;
6460}
6461
6462/// Additional checks for a using declaration referring to a constructor name.
6463bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6464  assert(!UD->isTypeName() && "expecting a constructor name");
6465
6466  const Type *SourceType = UD->getQualifier()->getAsType();
6467  assert(SourceType &&
6468         "Using decl naming constructor doesn't have type in scope spec.");
6469  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6470
6471  // Check whether the named type is a direct base class.
6472  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6473  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6474  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6475       BaseIt != BaseE; ++BaseIt) {
6476    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6477    if (CanonicalSourceType == BaseType)
6478      break;
6479    if (BaseIt->getType()->isDependentType())
6480      break;
6481  }
6482
6483  if (BaseIt == BaseE) {
6484    // Did not find SourceType in the bases.
6485    Diag(UD->getUsingLocation(),
6486         diag::err_using_decl_constructor_not_in_direct_base)
6487      << UD->getNameInfo().getSourceRange()
6488      << QualType(SourceType, 0) << TargetClass;
6489    return true;
6490  }
6491
6492  if (!CurContext->isDependentContext())
6493    BaseIt->setInheritConstructors();
6494
6495  return false;
6496}
6497
6498/// Checks that the given using declaration is not an invalid
6499/// redeclaration.  Note that this is checking only for the using decl
6500/// itself, not for any ill-formedness among the UsingShadowDecls.
6501bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6502                                       bool isTypeName,
6503                                       const CXXScopeSpec &SS,
6504                                       SourceLocation NameLoc,
6505                                       const LookupResult &Prev) {
6506  // C++03 [namespace.udecl]p8:
6507  // C++0x [namespace.udecl]p10:
6508  //   A using-declaration is a declaration and can therefore be used
6509  //   repeatedly where (and only where) multiple declarations are
6510  //   allowed.
6511  //
6512  // That's in non-member contexts.
6513  if (!CurContext->getRedeclContext()->isRecord())
6514    return false;
6515
6516  NestedNameSpecifier *Qual
6517    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6518
6519  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6520    NamedDecl *D = *I;
6521
6522    bool DTypename;
6523    NestedNameSpecifier *DQual;
6524    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6525      DTypename = UD->isTypeName();
6526      DQual = UD->getQualifier();
6527    } else if (UnresolvedUsingValueDecl *UD
6528                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6529      DTypename = false;
6530      DQual = UD->getQualifier();
6531    } else if (UnresolvedUsingTypenameDecl *UD
6532                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6533      DTypename = true;
6534      DQual = UD->getQualifier();
6535    } else continue;
6536
6537    // using decls differ if one says 'typename' and the other doesn't.
6538    // FIXME: non-dependent using decls?
6539    if (isTypeName != DTypename) continue;
6540
6541    // using decls differ if they name different scopes (but note that
6542    // template instantiation can cause this check to trigger when it
6543    // didn't before instantiation).
6544    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6545        Context.getCanonicalNestedNameSpecifier(DQual))
6546      continue;
6547
6548    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6549    Diag(D->getLocation(), diag::note_using_decl) << 1;
6550    return true;
6551  }
6552
6553  return false;
6554}
6555
6556
6557/// Checks that the given nested-name qualifier used in a using decl
6558/// in the current context is appropriately related to the current
6559/// scope.  If an error is found, diagnoses it and returns true.
6560bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6561                                   const CXXScopeSpec &SS,
6562                                   SourceLocation NameLoc) {
6563  DeclContext *NamedContext = computeDeclContext(SS);
6564
6565  if (!CurContext->isRecord()) {
6566    // C++03 [namespace.udecl]p3:
6567    // C++0x [namespace.udecl]p8:
6568    //   A using-declaration for a class member shall be a member-declaration.
6569
6570    // If we weren't able to compute a valid scope, it must be a
6571    // dependent class scope.
6572    if (!NamedContext || NamedContext->isRecord()) {
6573      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6574        << SS.getRange();
6575      return true;
6576    }
6577
6578    // Otherwise, everything is known to be fine.
6579    return false;
6580  }
6581
6582  // The current scope is a record.
6583
6584  // If the named context is dependent, we can't decide much.
6585  if (!NamedContext) {
6586    // FIXME: in C++0x, we can diagnose if we can prove that the
6587    // nested-name-specifier does not refer to a base class, which is
6588    // still possible in some cases.
6589
6590    // Otherwise we have to conservatively report that things might be
6591    // okay.
6592    return false;
6593  }
6594
6595  if (!NamedContext->isRecord()) {
6596    // Ideally this would point at the last name in the specifier,
6597    // but we don't have that level of source info.
6598    Diag(SS.getRange().getBegin(),
6599         diag::err_using_decl_nested_name_specifier_is_not_class)
6600      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6601    return true;
6602  }
6603
6604  if (!NamedContext->isDependentContext() &&
6605      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6606    return true;
6607
6608  if (getLangOpts().CPlusPlus0x) {
6609    // C++0x [namespace.udecl]p3:
6610    //   In a using-declaration used as a member-declaration, the
6611    //   nested-name-specifier shall name a base class of the class
6612    //   being defined.
6613
6614    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6615                                 cast<CXXRecordDecl>(NamedContext))) {
6616      if (CurContext == NamedContext) {
6617        Diag(NameLoc,
6618             diag::err_using_decl_nested_name_specifier_is_current_class)
6619          << SS.getRange();
6620        return true;
6621      }
6622
6623      Diag(SS.getRange().getBegin(),
6624           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6625        << (NestedNameSpecifier*) SS.getScopeRep()
6626        << cast<CXXRecordDecl>(CurContext)
6627        << SS.getRange();
6628      return true;
6629    }
6630
6631    return false;
6632  }
6633
6634  // C++03 [namespace.udecl]p4:
6635  //   A using-declaration used as a member-declaration shall refer
6636  //   to a member of a base class of the class being defined [etc.].
6637
6638  // Salient point: SS doesn't have to name a base class as long as
6639  // lookup only finds members from base classes.  Therefore we can
6640  // diagnose here only if we can prove that that can't happen,
6641  // i.e. if the class hierarchies provably don't intersect.
6642
6643  // TODO: it would be nice if "definitely valid" results were cached
6644  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6645  // need to be repeated.
6646
6647  struct UserData {
6648    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6649
6650    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6651      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6652      Data->Bases.insert(Base);
6653      return true;
6654    }
6655
6656    bool hasDependentBases(const CXXRecordDecl *Class) {
6657      return !Class->forallBases(collect, this);
6658    }
6659
6660    /// Returns true if the base is dependent or is one of the
6661    /// accumulated base classes.
6662    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6663      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6664      return !Data->Bases.count(Base);
6665    }
6666
6667    bool mightShareBases(const CXXRecordDecl *Class) {
6668      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6669    }
6670  };
6671
6672  UserData Data;
6673
6674  // Returns false if we find a dependent base.
6675  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6676    return false;
6677
6678  // Returns false if the class has a dependent base or if it or one
6679  // of its bases is present in the base set of the current context.
6680  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6681    return false;
6682
6683  Diag(SS.getRange().getBegin(),
6684       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6685    << (NestedNameSpecifier*) SS.getScopeRep()
6686    << cast<CXXRecordDecl>(CurContext)
6687    << SS.getRange();
6688
6689  return true;
6690}
6691
6692Decl *Sema::ActOnAliasDeclaration(Scope *S,
6693                                  AccessSpecifier AS,
6694                                  MultiTemplateParamsArg TemplateParamLists,
6695                                  SourceLocation UsingLoc,
6696                                  UnqualifiedId &Name,
6697                                  TypeResult Type) {
6698  // Skip up to the relevant declaration scope.
6699  while (S->getFlags() & Scope::TemplateParamScope)
6700    S = S->getParent();
6701  assert((S->getFlags() & Scope::DeclScope) &&
6702         "got alias-declaration outside of declaration scope");
6703
6704  if (Type.isInvalid())
6705    return 0;
6706
6707  bool Invalid = false;
6708  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6709  TypeSourceInfo *TInfo = 0;
6710  GetTypeFromParser(Type.get(), &TInfo);
6711
6712  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6713    return 0;
6714
6715  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6716                                      UPPC_DeclarationType)) {
6717    Invalid = true;
6718    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6719                                             TInfo->getTypeLoc().getBeginLoc());
6720  }
6721
6722  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6723  LookupName(Previous, S);
6724
6725  // Warn about shadowing the name of a template parameter.
6726  if (Previous.isSingleResult() &&
6727      Previous.getFoundDecl()->isTemplateParameter()) {
6728    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6729    Previous.clear();
6730  }
6731
6732  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6733         "name in alias declaration must be an identifier");
6734  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6735                                               Name.StartLocation,
6736                                               Name.Identifier, TInfo);
6737
6738  NewTD->setAccess(AS);
6739
6740  if (Invalid)
6741    NewTD->setInvalidDecl();
6742
6743  CheckTypedefForVariablyModifiedType(S, NewTD);
6744  Invalid |= NewTD->isInvalidDecl();
6745
6746  bool Redeclaration = false;
6747
6748  NamedDecl *NewND;
6749  if (TemplateParamLists.size()) {
6750    TypeAliasTemplateDecl *OldDecl = 0;
6751    TemplateParameterList *OldTemplateParams = 0;
6752
6753    if (TemplateParamLists.size() != 1) {
6754      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6755        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
6756         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
6757    }
6758    TemplateParameterList *TemplateParams = TemplateParamLists[0];
6759
6760    // Only consider previous declarations in the same scope.
6761    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6762                         /*ExplicitInstantiationOrSpecialization*/false);
6763    if (!Previous.empty()) {
6764      Redeclaration = true;
6765
6766      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6767      if (!OldDecl && !Invalid) {
6768        Diag(UsingLoc, diag::err_redefinition_different_kind)
6769          << Name.Identifier;
6770
6771        NamedDecl *OldD = Previous.getRepresentativeDecl();
6772        if (OldD->getLocation().isValid())
6773          Diag(OldD->getLocation(), diag::note_previous_definition);
6774
6775        Invalid = true;
6776      }
6777
6778      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6779        if (TemplateParameterListsAreEqual(TemplateParams,
6780                                           OldDecl->getTemplateParameters(),
6781                                           /*Complain=*/true,
6782                                           TPL_TemplateMatch))
6783          OldTemplateParams = OldDecl->getTemplateParameters();
6784        else
6785          Invalid = true;
6786
6787        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6788        if (!Invalid &&
6789            !Context.hasSameType(OldTD->getUnderlyingType(),
6790                                 NewTD->getUnderlyingType())) {
6791          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6792          // but we can't reasonably accept it.
6793          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6794            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6795          if (OldTD->getLocation().isValid())
6796            Diag(OldTD->getLocation(), diag::note_previous_definition);
6797          Invalid = true;
6798        }
6799      }
6800    }
6801
6802    // Merge any previous default template arguments into our parameters,
6803    // and check the parameter list.
6804    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6805                                   TPC_TypeAliasTemplate))
6806      return 0;
6807
6808    TypeAliasTemplateDecl *NewDecl =
6809      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6810                                    Name.Identifier, TemplateParams,
6811                                    NewTD);
6812
6813    NewDecl->setAccess(AS);
6814
6815    if (Invalid)
6816      NewDecl->setInvalidDecl();
6817    else if (OldDecl)
6818      NewDecl->setPreviousDeclaration(OldDecl);
6819
6820    NewND = NewDecl;
6821  } else {
6822    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6823    NewND = NewTD;
6824  }
6825
6826  if (!Redeclaration)
6827    PushOnScopeChains(NewND, S);
6828
6829  ActOnDocumentableDecl(NewND);
6830  return NewND;
6831}
6832
6833Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6834                                             SourceLocation NamespaceLoc,
6835                                             SourceLocation AliasLoc,
6836                                             IdentifierInfo *Alias,
6837                                             CXXScopeSpec &SS,
6838                                             SourceLocation IdentLoc,
6839                                             IdentifierInfo *Ident) {
6840
6841  // Lookup the namespace name.
6842  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6843  LookupParsedName(R, S, &SS);
6844
6845  // Check if we have a previous declaration with the same name.
6846  NamedDecl *PrevDecl
6847    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6848                       ForRedeclaration);
6849  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6850    PrevDecl = 0;
6851
6852  if (PrevDecl) {
6853    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6854      // We already have an alias with the same name that points to the same
6855      // namespace, so don't create a new one.
6856      // FIXME: At some point, we'll want to create the (redundant)
6857      // declaration to maintain better source information.
6858      if (!R.isAmbiguous() && !R.empty() &&
6859          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6860        return 0;
6861    }
6862
6863    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6864      diag::err_redefinition_different_kind;
6865    Diag(AliasLoc, DiagID) << Alias;
6866    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6867    return 0;
6868  }
6869
6870  if (R.isAmbiguous())
6871    return 0;
6872
6873  if (R.empty()) {
6874    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6875      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6876      return 0;
6877    }
6878  }
6879
6880  NamespaceAliasDecl *AliasDecl =
6881    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6882                               Alias, SS.getWithLocInContext(Context),
6883                               IdentLoc, R.getFoundDecl());
6884
6885  PushOnScopeChains(AliasDecl, S);
6886  return AliasDecl;
6887}
6888
6889Sema::ImplicitExceptionSpecification
6890Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
6891                                               CXXMethodDecl *MD) {
6892  CXXRecordDecl *ClassDecl = MD->getParent();
6893
6894  // C++ [except.spec]p14:
6895  //   An implicitly declared special member function (Clause 12) shall have an
6896  //   exception-specification. [...]
6897  ImplicitExceptionSpecification ExceptSpec(*this);
6898  if (ClassDecl->isInvalidDecl())
6899    return ExceptSpec;
6900
6901  // Direct base-class constructors.
6902  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6903                                       BEnd = ClassDecl->bases_end();
6904       B != BEnd; ++B) {
6905    if (B->isVirtual()) // Handled below.
6906      continue;
6907
6908    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6909      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6910      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6911      // If this is a deleted function, add it anyway. This might be conformant
6912      // with the standard. This might not. I'm not sure. It might not matter.
6913      if (Constructor)
6914        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6915    }
6916  }
6917
6918  // Virtual base-class constructors.
6919  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6920                                       BEnd = ClassDecl->vbases_end();
6921       B != BEnd; ++B) {
6922    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6923      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6924      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6925      // If this is a deleted function, add it anyway. This might be conformant
6926      // with the standard. This might not. I'm not sure. It might not matter.
6927      if (Constructor)
6928        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6929    }
6930  }
6931
6932  // Field constructors.
6933  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6934                               FEnd = ClassDecl->field_end();
6935       F != FEnd; ++F) {
6936    if (F->hasInClassInitializer()) {
6937      if (Expr *E = F->getInClassInitializer())
6938        ExceptSpec.CalledExpr(E);
6939      else if (!F->isInvalidDecl())
6940        // DR1351:
6941        //   If the brace-or-equal-initializer of a non-static data member
6942        //   invokes a defaulted default constructor of its class or of an
6943        //   enclosing class in a potentially evaluated subexpression, the
6944        //   program is ill-formed.
6945        //
6946        // This resolution is unworkable: the exception specification of the
6947        // default constructor can be needed in an unevaluated context, in
6948        // particular, in the operand of a noexcept-expression, and we can be
6949        // unable to compute an exception specification for an enclosed class.
6950        //
6951        // We do not allow an in-class initializer to require the evaluation
6952        // of the exception specification for any in-class initializer whose
6953        // definition is not lexically complete.
6954        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
6955    } else if (const RecordType *RecordTy
6956              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6957      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6958      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6959      // If this is a deleted function, add it anyway. This might be conformant
6960      // with the standard. This might not. I'm not sure. It might not matter.
6961      // In particular, the problem is that this function never gets called. It
6962      // might just be ill-formed because this function attempts to refer to
6963      // a deleted function here.
6964      if (Constructor)
6965        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6966    }
6967  }
6968
6969  return ExceptSpec;
6970}
6971
6972CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6973                                                     CXXRecordDecl *ClassDecl) {
6974  // C++ [class.ctor]p5:
6975  //   A default constructor for a class X is a constructor of class X
6976  //   that can be called without an argument. If there is no
6977  //   user-declared constructor for class X, a default constructor is
6978  //   implicitly declared. An implicitly-declared default constructor
6979  //   is an inline public member of its class.
6980  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6981         "Should not build implicit default constructor!");
6982
6983  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
6984                                                     CXXDefaultConstructor,
6985                                                     false);
6986
6987  // Create the actual constructor declaration.
6988  CanQualType ClassType
6989    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6990  SourceLocation ClassLoc = ClassDecl->getLocation();
6991  DeclarationName Name
6992    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6993  DeclarationNameInfo NameInfo(Name, ClassLoc);
6994  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6995      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
6996      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6997      Constexpr);
6998  DefaultCon->setAccess(AS_public);
6999  DefaultCon->setDefaulted();
7000  DefaultCon->setImplicit();
7001  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7002
7003  // Build an exception specification pointing back at this constructor.
7004  FunctionProtoType::ExtProtoInfo EPI;
7005  EPI.ExceptionSpecType = EST_Unevaluated;
7006  EPI.ExceptionSpecDecl = DefaultCon;
7007  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7008
7009  // Note that we have declared this constructor.
7010  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7011
7012  if (Scope *S = getScopeForContext(ClassDecl))
7013    PushOnScopeChains(DefaultCon, S, false);
7014  ClassDecl->addDecl(DefaultCon);
7015
7016  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7017    DefaultCon->setDeletedAsWritten();
7018
7019  return DefaultCon;
7020}
7021
7022void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7023                                            CXXConstructorDecl *Constructor) {
7024  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7025          !Constructor->doesThisDeclarationHaveABody() &&
7026          !Constructor->isDeleted()) &&
7027    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7028
7029  CXXRecordDecl *ClassDecl = Constructor->getParent();
7030  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7031
7032  SynthesizedFunctionScope Scope(*this, Constructor);
7033  DiagnosticErrorTrap Trap(Diags);
7034  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7035      Trap.hasErrorOccurred()) {
7036    Diag(CurrentLocation, diag::note_member_synthesized_at)
7037      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7038    Constructor->setInvalidDecl();
7039    return;
7040  }
7041
7042  SourceLocation Loc = Constructor->getLocation();
7043  Constructor->setBody(new (Context) CompoundStmt(Loc));
7044
7045  Constructor->setUsed();
7046  MarkVTableUsed(CurrentLocation, ClassDecl);
7047
7048  if (ASTMutationListener *L = getASTMutationListener()) {
7049    L->CompletedImplicitDefinition(Constructor);
7050  }
7051}
7052
7053void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7054  if (!D) return;
7055  AdjustDeclIfTemplate(D);
7056
7057  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7058
7059  if (!ClassDecl->isDependentType())
7060    CheckExplicitlyDefaultedMethods(ClassDecl);
7061}
7062
7063void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7064  // We start with an initial pass over the base classes to collect those that
7065  // inherit constructors from. If there are none, we can forgo all further
7066  // processing.
7067  typedef SmallVector<const RecordType *, 4> BasesVector;
7068  BasesVector BasesToInheritFrom;
7069  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7070                                          BaseE = ClassDecl->bases_end();
7071         BaseIt != BaseE; ++BaseIt) {
7072    if (BaseIt->getInheritConstructors()) {
7073      QualType Base = BaseIt->getType();
7074      if (Base->isDependentType()) {
7075        // If we inherit constructors from anything that is dependent, just
7076        // abort processing altogether. We'll get another chance for the
7077        // instantiations.
7078        return;
7079      }
7080      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7081    }
7082  }
7083  if (BasesToInheritFrom.empty())
7084    return;
7085
7086  // Now collect the constructors that we already have in the current class.
7087  // Those take precedence over inherited constructors.
7088  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7089  //   unless there is a user-declared constructor with the same signature in
7090  //   the class where the using-declaration appears.
7091  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7092  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7093                                    CtorE = ClassDecl->ctor_end();
7094       CtorIt != CtorE; ++CtorIt) {
7095    ExistingConstructors.insert(
7096        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7097  }
7098
7099  DeclarationName CreatedCtorName =
7100      Context.DeclarationNames.getCXXConstructorName(
7101          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7102
7103  // Now comes the true work.
7104  // First, we keep a map from constructor types to the base that introduced
7105  // them. Needed for finding conflicting constructors. We also keep the
7106  // actually inserted declarations in there, for pretty diagnostics.
7107  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7108  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7109  ConstructorToSourceMap InheritedConstructors;
7110  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7111                             BaseE = BasesToInheritFrom.end();
7112       BaseIt != BaseE; ++BaseIt) {
7113    const RecordType *Base = *BaseIt;
7114    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7115    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7116    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7117                                      CtorE = BaseDecl->ctor_end();
7118         CtorIt != CtorE; ++CtorIt) {
7119      // Find the using declaration for inheriting this base's constructors.
7120      // FIXME: Don't perform name lookup just to obtain a source location!
7121      DeclarationName Name =
7122          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7123      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7124      LookupQualifiedName(Result, CurContext);
7125      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7126      SourceLocation UsingLoc = UD ? UD->getLocation() :
7127                                     ClassDecl->getLocation();
7128
7129      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7130      //   from the class X named in the using-declaration consists of actual
7131      //   constructors and notional constructors that result from the
7132      //   transformation of defaulted parameters as follows:
7133      //   - all non-template default constructors of X, and
7134      //   - for each non-template constructor of X that has at least one
7135      //     parameter with a default argument, the set of constructors that
7136      //     results from omitting any ellipsis parameter specification and
7137      //     successively omitting parameters with a default argument from the
7138      //     end of the parameter-type-list.
7139      CXXConstructorDecl *BaseCtor = *CtorIt;
7140      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7141      const FunctionProtoType *BaseCtorType =
7142          BaseCtor->getType()->getAs<FunctionProtoType>();
7143
7144      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7145                    maxParams = BaseCtor->getNumParams();
7146           params <= maxParams; ++params) {
7147        // Skip default constructors. They're never inherited.
7148        if (params == 0)
7149          continue;
7150        // Skip copy and move constructors for the same reason.
7151        if (CanBeCopyOrMove && params == 1)
7152          continue;
7153
7154        // Build up a function type for this particular constructor.
7155        // FIXME: The working paper does not consider that the exception spec
7156        // for the inheriting constructor might be larger than that of the
7157        // source. This code doesn't yet, either. When it does, this code will
7158        // need to be delayed until after exception specifications and in-class
7159        // member initializers are attached.
7160        const Type *NewCtorType;
7161        if (params == maxParams)
7162          NewCtorType = BaseCtorType;
7163        else {
7164          SmallVector<QualType, 16> Args;
7165          for (unsigned i = 0; i < params; ++i) {
7166            Args.push_back(BaseCtorType->getArgType(i));
7167          }
7168          FunctionProtoType::ExtProtoInfo ExtInfo =
7169              BaseCtorType->getExtProtoInfo();
7170          ExtInfo.Variadic = false;
7171          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7172                                                Args.data(), params, ExtInfo)
7173                       .getTypePtr();
7174        }
7175        const Type *CanonicalNewCtorType =
7176            Context.getCanonicalType(NewCtorType);
7177
7178        // Now that we have the type, first check if the class already has a
7179        // constructor with this signature.
7180        if (ExistingConstructors.count(CanonicalNewCtorType))
7181          continue;
7182
7183        // Then we check if we have already declared an inherited constructor
7184        // with this signature.
7185        std::pair<ConstructorToSourceMap::iterator, bool> result =
7186            InheritedConstructors.insert(std::make_pair(
7187                CanonicalNewCtorType,
7188                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7189        if (!result.second) {
7190          // Already in the map. If it came from a different class, that's an
7191          // error. Not if it's from the same.
7192          CanQualType PreviousBase = result.first->second.first;
7193          if (CanonicalBase != PreviousBase) {
7194            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7195            const CXXConstructorDecl *PrevBaseCtor =
7196                PrevCtor->getInheritedConstructor();
7197            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7198
7199            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7200            Diag(BaseCtor->getLocation(),
7201                 diag::note_using_decl_constructor_conflict_current_ctor);
7202            Diag(PrevBaseCtor->getLocation(),
7203                 diag::note_using_decl_constructor_conflict_previous_ctor);
7204            Diag(PrevCtor->getLocation(),
7205                 diag::note_using_decl_constructor_conflict_previous_using);
7206          }
7207          continue;
7208        }
7209
7210        // OK, we're there, now add the constructor.
7211        // C++0x [class.inhctor]p8: [...] that would be performed by a
7212        //   user-written inline constructor [...]
7213        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7214        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7215            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7216            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7217            /*ImplicitlyDeclared=*/true,
7218            // FIXME: Due to a defect in the standard, we treat inherited
7219            // constructors as constexpr even if that makes them ill-formed.
7220            /*Constexpr=*/BaseCtor->isConstexpr());
7221        NewCtor->setAccess(BaseCtor->getAccess());
7222
7223        // Build up the parameter decls and add them.
7224        SmallVector<ParmVarDecl *, 16> ParamDecls;
7225        for (unsigned i = 0; i < params; ++i) {
7226          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7227                                                   UsingLoc, UsingLoc,
7228                                                   /*IdentifierInfo=*/0,
7229                                                   BaseCtorType->getArgType(i),
7230                                                   /*TInfo=*/0, SC_None,
7231                                                   SC_None, /*DefaultArg=*/0));
7232        }
7233        NewCtor->setParams(ParamDecls);
7234        NewCtor->setInheritedConstructor(BaseCtor);
7235
7236        ClassDecl->addDecl(NewCtor);
7237        result.first->second.second = NewCtor;
7238      }
7239    }
7240  }
7241}
7242
7243Sema::ImplicitExceptionSpecification
7244Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
7245  CXXRecordDecl *ClassDecl = MD->getParent();
7246
7247  // C++ [except.spec]p14:
7248  //   An implicitly declared special member function (Clause 12) shall have
7249  //   an exception-specification.
7250  ImplicitExceptionSpecification ExceptSpec(*this);
7251  if (ClassDecl->isInvalidDecl())
7252    return ExceptSpec;
7253
7254  // Direct base-class destructors.
7255  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7256                                       BEnd = ClassDecl->bases_end();
7257       B != BEnd; ++B) {
7258    if (B->isVirtual()) // Handled below.
7259      continue;
7260
7261    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7262      ExceptSpec.CalledDecl(B->getLocStart(),
7263                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7264  }
7265
7266  // Virtual base-class destructors.
7267  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7268                                       BEnd = ClassDecl->vbases_end();
7269       B != BEnd; ++B) {
7270    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7271      ExceptSpec.CalledDecl(B->getLocStart(),
7272                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7273  }
7274
7275  // Field destructors.
7276  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7277                               FEnd = ClassDecl->field_end();
7278       F != FEnd; ++F) {
7279    if (const RecordType *RecordTy
7280        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7281      ExceptSpec.CalledDecl(F->getLocation(),
7282                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7283  }
7284
7285  return ExceptSpec;
7286}
7287
7288CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7289  // C++ [class.dtor]p2:
7290  //   If a class has no user-declared destructor, a destructor is
7291  //   declared implicitly. An implicitly-declared destructor is an
7292  //   inline public member of its class.
7293
7294  // Create the actual destructor declaration.
7295  CanQualType ClassType
7296    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7297  SourceLocation ClassLoc = ClassDecl->getLocation();
7298  DeclarationName Name
7299    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7300  DeclarationNameInfo NameInfo(Name, ClassLoc);
7301  CXXDestructorDecl *Destructor
7302      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7303                                  QualType(), 0, /*isInline=*/true,
7304                                  /*isImplicitlyDeclared=*/true);
7305  Destructor->setAccess(AS_public);
7306  Destructor->setDefaulted();
7307  Destructor->setImplicit();
7308  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7309
7310  // Build an exception specification pointing back at this destructor.
7311  FunctionProtoType::ExtProtoInfo EPI;
7312  EPI.ExceptionSpecType = EST_Unevaluated;
7313  EPI.ExceptionSpecDecl = Destructor;
7314  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7315
7316  // Note that we have declared this destructor.
7317  ++ASTContext::NumImplicitDestructorsDeclared;
7318
7319  // Introduce this destructor into its scope.
7320  if (Scope *S = getScopeForContext(ClassDecl))
7321    PushOnScopeChains(Destructor, S, false);
7322  ClassDecl->addDecl(Destructor);
7323
7324  AddOverriddenMethods(ClassDecl, Destructor);
7325
7326  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7327    Destructor->setDeletedAsWritten();
7328
7329  return Destructor;
7330}
7331
7332void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7333                                    CXXDestructorDecl *Destructor) {
7334  assert((Destructor->isDefaulted() &&
7335          !Destructor->doesThisDeclarationHaveABody() &&
7336          !Destructor->isDeleted()) &&
7337         "DefineImplicitDestructor - call it for implicit default dtor");
7338  CXXRecordDecl *ClassDecl = Destructor->getParent();
7339  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7340
7341  if (Destructor->isInvalidDecl())
7342    return;
7343
7344  SynthesizedFunctionScope Scope(*this, Destructor);
7345
7346  DiagnosticErrorTrap Trap(Diags);
7347  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7348                                         Destructor->getParent());
7349
7350  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7351    Diag(CurrentLocation, diag::note_member_synthesized_at)
7352      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7353
7354    Destructor->setInvalidDecl();
7355    return;
7356  }
7357
7358  SourceLocation Loc = Destructor->getLocation();
7359  Destructor->setBody(new (Context) CompoundStmt(Loc));
7360  Destructor->setImplicitlyDefined(true);
7361  Destructor->setUsed();
7362  MarkVTableUsed(CurrentLocation, ClassDecl);
7363
7364  if (ASTMutationListener *L = getASTMutationListener()) {
7365    L->CompletedImplicitDefinition(Destructor);
7366  }
7367}
7368
7369/// \brief Perform any semantic analysis which needs to be delayed until all
7370/// pending class member declarations have been parsed.
7371void Sema::ActOnFinishCXXMemberDecls() {
7372  // Perform any deferred checking of exception specifications for virtual
7373  // destructors.
7374  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7375       i != e; ++i) {
7376    const CXXDestructorDecl *Dtor =
7377        DelayedDestructorExceptionSpecChecks[i].first;
7378    assert(!Dtor->getParent()->isDependentType() &&
7379           "Should not ever add destructors of templates into the list.");
7380    CheckOverridingFunctionExceptionSpec(Dtor,
7381        DelayedDestructorExceptionSpecChecks[i].second);
7382  }
7383  DelayedDestructorExceptionSpecChecks.clear();
7384}
7385
7386void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
7387                                         CXXDestructorDecl *Destructor) {
7388  assert(getLangOpts().CPlusPlus0x &&
7389         "adjusting dtor exception specs was introduced in c++11");
7390
7391  // C++11 [class.dtor]p3:
7392  //   A declaration of a destructor that does not have an exception-
7393  //   specification is implicitly considered to have the same exception-
7394  //   specification as an implicit declaration.
7395  const FunctionProtoType *DtorType = Destructor->getType()->
7396                                        getAs<FunctionProtoType>();
7397  if (DtorType->hasExceptionSpec())
7398    return;
7399
7400  // Replace the destructor's type, building off the existing one. Fortunately,
7401  // the only thing of interest in the destructor type is its extended info.
7402  // The return and arguments are fixed.
7403  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
7404  EPI.ExceptionSpecType = EST_Unevaluated;
7405  EPI.ExceptionSpecDecl = Destructor;
7406  Destructor->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7407
7408  // FIXME: If the destructor has a body that could throw, and the newly created
7409  // spec doesn't allow exceptions, we should emit a warning, because this
7410  // change in behavior can break conforming C++03 programs at runtime.
7411  // However, we don't have a body or an exception specification yet, so it
7412  // needs to be done somewhere else.
7413}
7414
7415/// \brief Builds a statement that copies/moves the given entity from \p From to
7416/// \c To.
7417///
7418/// This routine is used to copy/move the members of a class with an
7419/// implicitly-declared copy/move assignment operator. When the entities being
7420/// copied are arrays, this routine builds for loops to copy them.
7421///
7422/// \param S The Sema object used for type-checking.
7423///
7424/// \param Loc The location where the implicit copy/move is being generated.
7425///
7426/// \param T The type of the expressions being copied/moved. Both expressions
7427/// must have this type.
7428///
7429/// \param To The expression we are copying/moving to.
7430///
7431/// \param From The expression we are copying/moving from.
7432///
7433/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7434/// Otherwise, it's a non-static member subobject.
7435///
7436/// \param Copying Whether we're copying or moving.
7437///
7438/// \param Depth Internal parameter recording the depth of the recursion.
7439///
7440/// \returns A statement or a loop that copies the expressions.
7441static StmtResult
7442BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7443                      Expr *To, Expr *From,
7444                      bool CopyingBaseSubobject, bool Copying,
7445                      unsigned Depth = 0) {
7446  // C++0x [class.copy]p28:
7447  //   Each subobject is assigned in the manner appropriate to its type:
7448  //
7449  //     - if the subobject is of class type, as if by a call to operator= with
7450  //       the subobject as the object expression and the corresponding
7451  //       subobject of x as a single function argument (as if by explicit
7452  //       qualification; that is, ignoring any possible virtual overriding
7453  //       functions in more derived classes);
7454  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7455    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7456
7457    // Look for operator=.
7458    DeclarationName Name
7459      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7460    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7461    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7462
7463    // Filter out any result that isn't a copy/move-assignment operator.
7464    LookupResult::Filter F = OpLookup.makeFilter();
7465    while (F.hasNext()) {
7466      NamedDecl *D = F.next();
7467      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7468        if (Method->isCopyAssignmentOperator() ||
7469            (!Copying && Method->isMoveAssignmentOperator()))
7470          continue;
7471
7472      F.erase();
7473    }
7474    F.done();
7475
7476    // Suppress the protected check (C++ [class.protected]) for each of the
7477    // assignment operators we found. This strange dance is required when
7478    // we're assigning via a base classes's copy-assignment operator. To
7479    // ensure that we're getting the right base class subobject (without
7480    // ambiguities), we need to cast "this" to that subobject type; to
7481    // ensure that we don't go through the virtual call mechanism, we need
7482    // to qualify the operator= name with the base class (see below). However,
7483    // this means that if the base class has a protected copy assignment
7484    // operator, the protected member access check will fail. So, we
7485    // rewrite "protected" access to "public" access in this case, since we
7486    // know by construction that we're calling from a derived class.
7487    if (CopyingBaseSubobject) {
7488      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7489           L != LEnd; ++L) {
7490        if (L.getAccess() == AS_protected)
7491          L.setAccess(AS_public);
7492      }
7493    }
7494
7495    // Create the nested-name-specifier that will be used to qualify the
7496    // reference to operator=; this is required to suppress the virtual
7497    // call mechanism.
7498    CXXScopeSpec SS;
7499    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7500    SS.MakeTrivial(S.Context,
7501                   NestedNameSpecifier::Create(S.Context, 0, false,
7502                                               CanonicalT),
7503                   Loc);
7504
7505    // Create the reference to operator=.
7506    ExprResult OpEqualRef
7507      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7508                                   /*TemplateKWLoc=*/SourceLocation(),
7509                                   /*FirstQualifierInScope=*/0,
7510                                   OpLookup,
7511                                   /*TemplateArgs=*/0,
7512                                   /*SuppressQualifierCheck=*/true);
7513    if (OpEqualRef.isInvalid())
7514      return StmtError();
7515
7516    // Build the call to the assignment operator.
7517
7518    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7519                                                  OpEqualRef.takeAs<Expr>(),
7520                                                  Loc, &From, 1, Loc);
7521    if (Call.isInvalid())
7522      return StmtError();
7523
7524    return S.Owned(Call.takeAs<Stmt>());
7525  }
7526
7527  //     - if the subobject is of scalar type, the built-in assignment
7528  //       operator is used.
7529  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7530  if (!ArrayTy) {
7531    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7532    if (Assignment.isInvalid())
7533      return StmtError();
7534
7535    return S.Owned(Assignment.takeAs<Stmt>());
7536  }
7537
7538  //     - if the subobject is an array, each element is assigned, in the
7539  //       manner appropriate to the element type;
7540
7541  // Construct a loop over the array bounds, e.g.,
7542  //
7543  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7544  //
7545  // that will copy each of the array elements.
7546  QualType SizeType = S.Context.getSizeType();
7547
7548  // Create the iteration variable.
7549  IdentifierInfo *IterationVarName = 0;
7550  {
7551    SmallString<8> Str;
7552    llvm::raw_svector_ostream OS(Str);
7553    OS << "__i" << Depth;
7554    IterationVarName = &S.Context.Idents.get(OS.str());
7555  }
7556  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7557                                          IterationVarName, SizeType,
7558                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7559                                          SC_None, SC_None);
7560
7561  // Initialize the iteration variable to zero.
7562  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7563  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7564
7565  // Create a reference to the iteration variable; we'll use this several
7566  // times throughout.
7567  Expr *IterationVarRef
7568    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7569  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7570  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7571  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7572
7573  // Create the DeclStmt that holds the iteration variable.
7574  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7575
7576  // Create the comparison against the array bound.
7577  llvm::APInt Upper
7578    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7579  Expr *Comparison
7580    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7581                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7582                                     BO_NE, S.Context.BoolTy,
7583                                     VK_RValue, OK_Ordinary, Loc, false);
7584
7585  // Create the pre-increment of the iteration variable.
7586  Expr *Increment
7587    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7588                                    VK_LValue, OK_Ordinary, Loc);
7589
7590  // Subscript the "from" and "to" expressions with the iteration variable.
7591  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7592                                                         IterationVarRefRVal,
7593                                                         Loc));
7594  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7595                                                       IterationVarRefRVal,
7596                                                       Loc));
7597  if (!Copying) // Cast to rvalue
7598    From = CastForMoving(S, From);
7599
7600  // Build the copy/move for an individual element of the array.
7601  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7602                                          To, From, CopyingBaseSubobject,
7603                                          Copying, Depth + 1);
7604  if (Copy.isInvalid())
7605    return StmtError();
7606
7607  // Construct the loop that copies all elements of this array.
7608  return S.ActOnForStmt(Loc, Loc, InitStmt,
7609                        S.MakeFullExpr(Comparison),
7610                        0, S.MakeFullExpr(Increment),
7611                        Loc, Copy.take());
7612}
7613
7614/// Determine whether an implicit copy assignment operator for ClassDecl has a
7615/// const argument.
7616/// FIXME: It ought to be possible to store this on the record.
7617static bool isImplicitCopyAssignmentArgConst(Sema &S,
7618                                             CXXRecordDecl *ClassDecl) {
7619  if (ClassDecl->isInvalidDecl())
7620    return true;
7621
7622  // C++ [class.copy]p10:
7623  //   If the class definition does not explicitly declare a copy
7624  //   assignment operator, one is declared implicitly.
7625  //   The implicitly-defined copy assignment operator for a class X
7626  //   will have the form
7627  //
7628  //       X& X::operator=(const X&)
7629  //
7630  //   if
7631  //       -- each direct base class B of X has a copy assignment operator
7632  //          whose parameter is of type const B&, const volatile B& or B,
7633  //          and
7634  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7635                                       BaseEnd = ClassDecl->bases_end();
7636       Base != BaseEnd; ++Base) {
7637    // We'll handle this below
7638    if (S.getLangOpts().CPlusPlus0x && Base->isVirtual())
7639      continue;
7640
7641    assert(!Base->getType()->isDependentType() &&
7642           "Cannot generate implicit members for class with dependent bases.");
7643    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7644    if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0))
7645      return false;
7646  }
7647
7648  // In C++11, the above citation has "or virtual" added
7649  if (S.getLangOpts().CPlusPlus0x) {
7650    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7651                                         BaseEnd = ClassDecl->vbases_end();
7652         Base != BaseEnd; ++Base) {
7653      assert(!Base->getType()->isDependentType() &&
7654             "Cannot generate implicit members for class with dependent bases.");
7655      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7656      if (!S.LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7657                                     false, 0))
7658        return false;
7659    }
7660  }
7661
7662  //       -- for all the nonstatic data members of X that are of a class
7663  //          type M (or array thereof), each such class type has a copy
7664  //          assignment operator whose parameter is of type const M&,
7665  //          const volatile M& or M.
7666  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7667                                  FieldEnd = ClassDecl->field_end();
7668       Field != FieldEnd; ++Field) {
7669    QualType FieldType = S.Context.getBaseElementType(Field->getType());
7670    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl())
7671      if (!S.LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7672                                     false, 0))
7673        return false;
7674  }
7675
7676  //   Otherwise, the implicitly declared copy assignment operator will
7677  //   have the form
7678  //
7679  //       X& X::operator=(X&)
7680
7681  return true;
7682}
7683
7684Sema::ImplicitExceptionSpecification
7685Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
7686  CXXRecordDecl *ClassDecl = MD->getParent();
7687
7688  ImplicitExceptionSpecification ExceptSpec(*this);
7689  if (ClassDecl->isInvalidDecl())
7690    return ExceptSpec;
7691
7692  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
7693  assert(T->getNumArgs() == 1 && "not a copy assignment op");
7694  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
7695
7696  // C++ [except.spec]p14:
7697  //   An implicitly declared special member function (Clause 12) shall have an
7698  //   exception-specification. [...]
7699
7700  // It is unspecified whether or not an implicit copy assignment operator
7701  // attempts to deduplicate calls to assignment operators of virtual bases are
7702  // made. As such, this exception specification is effectively unspecified.
7703  // Based on a similar decision made for constness in C++0x, we're erring on
7704  // the side of assuming such calls to be made regardless of whether they
7705  // actually happen.
7706  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7707                                       BaseEnd = ClassDecl->bases_end();
7708       Base != BaseEnd; ++Base) {
7709    if (Base->isVirtual())
7710      continue;
7711
7712    CXXRecordDecl *BaseClassDecl
7713      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7714    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7715                                                            ArgQuals, false, 0))
7716      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7717  }
7718
7719  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7720                                       BaseEnd = ClassDecl->vbases_end();
7721       Base != BaseEnd; ++Base) {
7722    CXXRecordDecl *BaseClassDecl
7723      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7724    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7725                                                            ArgQuals, false, 0))
7726      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7727  }
7728
7729  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7730                                  FieldEnd = ClassDecl->field_end();
7731       Field != FieldEnd;
7732       ++Field) {
7733    QualType FieldType = Context.getBaseElementType(Field->getType());
7734    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7735      if (CXXMethodDecl *CopyAssign =
7736          LookupCopyingAssignment(FieldClassDecl,
7737                                  ArgQuals | FieldType.getCVRQualifiers(),
7738                                  false, 0))
7739        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7740    }
7741  }
7742
7743  return ExceptSpec;
7744}
7745
7746CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7747  // Note: The following rules are largely analoguous to the copy
7748  // constructor rules. Note that virtual bases are not taken into account
7749  // for determining the argument type of the operator. Note also that
7750  // operators taking an object instead of a reference are allowed.
7751
7752  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7753  QualType RetType = Context.getLValueReferenceType(ArgType);
7754  if (isImplicitCopyAssignmentArgConst(*this, ClassDecl))
7755    ArgType = ArgType.withConst();
7756  ArgType = Context.getLValueReferenceType(ArgType);
7757
7758  //   An implicitly-declared copy assignment operator is an inline public
7759  //   member of its class.
7760  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7761  SourceLocation ClassLoc = ClassDecl->getLocation();
7762  DeclarationNameInfo NameInfo(Name, ClassLoc);
7763  CXXMethodDecl *CopyAssignment
7764    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
7765                            /*TInfo=*/0, /*isStatic=*/false,
7766                            /*StorageClassAsWritten=*/SC_None,
7767                            /*isInline=*/true, /*isConstexpr=*/false,
7768                            SourceLocation());
7769  CopyAssignment->setAccess(AS_public);
7770  CopyAssignment->setDefaulted();
7771  CopyAssignment->setImplicit();
7772  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7773
7774  // Build an exception specification pointing back at this member.
7775  FunctionProtoType::ExtProtoInfo EPI;
7776  EPI.ExceptionSpecType = EST_Unevaluated;
7777  EPI.ExceptionSpecDecl = CopyAssignment;
7778  CopyAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
7779
7780  // Add the parameter to the operator.
7781  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7782                                               ClassLoc, ClassLoc, /*Id=*/0,
7783                                               ArgType, /*TInfo=*/0,
7784                                               SC_None,
7785                                               SC_None, 0);
7786  CopyAssignment->setParams(FromParam);
7787
7788  // Note that we have added this copy-assignment operator.
7789  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7790
7791  if (Scope *S = getScopeForContext(ClassDecl))
7792    PushOnScopeChains(CopyAssignment, S, false);
7793  ClassDecl->addDecl(CopyAssignment);
7794
7795  // C++0x [class.copy]p19:
7796  //   ....  If the class definition does not explicitly declare a copy
7797  //   assignment operator, there is no user-declared move constructor, and
7798  //   there is no user-declared move assignment operator, a copy assignment
7799  //   operator is implicitly declared as defaulted.
7800  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7801    CopyAssignment->setDeletedAsWritten();
7802
7803  AddOverriddenMethods(ClassDecl, CopyAssignment);
7804  return CopyAssignment;
7805}
7806
7807void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7808                                        CXXMethodDecl *CopyAssignOperator) {
7809  assert((CopyAssignOperator->isDefaulted() &&
7810          CopyAssignOperator->isOverloadedOperator() &&
7811          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7812          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7813          !CopyAssignOperator->isDeleted()) &&
7814         "DefineImplicitCopyAssignment called for wrong function");
7815
7816  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7817
7818  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7819    CopyAssignOperator->setInvalidDecl();
7820    return;
7821  }
7822
7823  CopyAssignOperator->setUsed();
7824
7825  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
7826  DiagnosticErrorTrap Trap(Diags);
7827
7828  // C++0x [class.copy]p30:
7829  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7830  //   for a non-union class X performs memberwise copy assignment of its
7831  //   subobjects. The direct base classes of X are assigned first, in the
7832  //   order of their declaration in the base-specifier-list, and then the
7833  //   immediate non-static data members of X are assigned, in the order in
7834  //   which they were declared in the class definition.
7835
7836  // The statements that form the synthesized function body.
7837  SmallVector<Stmt*, 8> Statements;
7838
7839  // The parameter for the "other" object, which we are copying from.
7840  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7841  Qualifiers OtherQuals = Other->getType().getQualifiers();
7842  QualType OtherRefType = Other->getType();
7843  if (const LValueReferenceType *OtherRef
7844                                = OtherRefType->getAs<LValueReferenceType>()) {
7845    OtherRefType = OtherRef->getPointeeType();
7846    OtherQuals = OtherRefType.getQualifiers();
7847  }
7848
7849  // Our location for everything implicitly-generated.
7850  SourceLocation Loc = CopyAssignOperator->getLocation();
7851
7852  // Construct a reference to the "other" object. We'll be using this
7853  // throughout the generated ASTs.
7854  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7855  assert(OtherRef && "Reference to parameter cannot fail!");
7856
7857  // Construct the "this" pointer. We'll be using this throughout the generated
7858  // ASTs.
7859  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7860  assert(This && "Reference to this cannot fail!");
7861
7862  // Assign base classes.
7863  bool Invalid = false;
7864  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7865       E = ClassDecl->bases_end(); Base != E; ++Base) {
7866    // Form the assignment:
7867    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7868    QualType BaseType = Base->getType().getUnqualifiedType();
7869    if (!BaseType->isRecordType()) {
7870      Invalid = true;
7871      continue;
7872    }
7873
7874    CXXCastPath BasePath;
7875    BasePath.push_back(Base);
7876
7877    // Construct the "from" expression, which is an implicit cast to the
7878    // appropriately-qualified base type.
7879    Expr *From = OtherRef;
7880    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7881                             CK_UncheckedDerivedToBase,
7882                             VK_LValue, &BasePath).take();
7883
7884    // Dereference "this".
7885    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7886
7887    // Implicitly cast "this" to the appropriately-qualified base type.
7888    To = ImpCastExprToType(To.take(),
7889                           Context.getCVRQualifiedType(BaseType,
7890                                     CopyAssignOperator->getTypeQualifiers()),
7891                           CK_UncheckedDerivedToBase,
7892                           VK_LValue, &BasePath);
7893
7894    // Build the copy.
7895    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7896                                            To.get(), From,
7897                                            /*CopyingBaseSubobject=*/true,
7898                                            /*Copying=*/true);
7899    if (Copy.isInvalid()) {
7900      Diag(CurrentLocation, diag::note_member_synthesized_at)
7901        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7902      CopyAssignOperator->setInvalidDecl();
7903      return;
7904    }
7905
7906    // Success! Record the copy.
7907    Statements.push_back(Copy.takeAs<Expr>());
7908  }
7909
7910  // \brief Reference to the __builtin_memcpy function.
7911  Expr *BuiltinMemCpyRef = 0;
7912  // \brief Reference to the __builtin_objc_memmove_collectable function.
7913  Expr *CollectableMemCpyRef = 0;
7914
7915  // Assign non-static members.
7916  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7917                                  FieldEnd = ClassDecl->field_end();
7918       Field != FieldEnd; ++Field) {
7919    if (Field->isUnnamedBitfield())
7920      continue;
7921
7922    // Check for members of reference type; we can't copy those.
7923    if (Field->getType()->isReferenceType()) {
7924      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7925        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7926      Diag(Field->getLocation(), diag::note_declared_at);
7927      Diag(CurrentLocation, diag::note_member_synthesized_at)
7928        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7929      Invalid = true;
7930      continue;
7931    }
7932
7933    // Check for members of const-qualified, non-class type.
7934    QualType BaseType = Context.getBaseElementType(Field->getType());
7935    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7936      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7937        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7938      Diag(Field->getLocation(), diag::note_declared_at);
7939      Diag(CurrentLocation, diag::note_member_synthesized_at)
7940        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7941      Invalid = true;
7942      continue;
7943    }
7944
7945    // Suppress assigning zero-width bitfields.
7946    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7947      continue;
7948
7949    QualType FieldType = Field->getType().getNonReferenceType();
7950    if (FieldType->isIncompleteArrayType()) {
7951      assert(ClassDecl->hasFlexibleArrayMember() &&
7952             "Incomplete array type is not valid");
7953      continue;
7954    }
7955
7956    // Build references to the field in the object we're copying from and to.
7957    CXXScopeSpec SS; // Intentionally empty
7958    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7959                              LookupMemberName);
7960    MemberLookup.addDecl(*Field);
7961    MemberLookup.resolveKind();
7962    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7963                                               Loc, /*IsArrow=*/false,
7964                                               SS, SourceLocation(), 0,
7965                                               MemberLookup, 0);
7966    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7967                                             Loc, /*IsArrow=*/true,
7968                                             SS, SourceLocation(), 0,
7969                                             MemberLookup, 0);
7970    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7971    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7972
7973    // If the field should be copied with __builtin_memcpy rather than via
7974    // explicit assignments, do so. This optimization only applies for arrays
7975    // of scalars and arrays of class type with trivial copy-assignment
7976    // operators.
7977    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7978        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7979      // Compute the size of the memory buffer to be copied.
7980      QualType SizeType = Context.getSizeType();
7981      llvm::APInt Size(Context.getTypeSize(SizeType),
7982                       Context.getTypeSizeInChars(BaseType).getQuantity());
7983      for (const ConstantArrayType *Array
7984              = Context.getAsConstantArrayType(FieldType);
7985           Array;
7986           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7987        llvm::APInt ArraySize
7988          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7989        Size *= ArraySize;
7990      }
7991
7992      // Take the address of the field references for "from" and "to".
7993      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7994      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7995
7996      bool NeedsCollectableMemCpy =
7997          (BaseType->isRecordType() &&
7998           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7999
8000      if (NeedsCollectableMemCpy) {
8001        if (!CollectableMemCpyRef) {
8002          // Create a reference to the __builtin_objc_memmove_collectable function.
8003          LookupResult R(*this,
8004                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8005                         Loc, LookupOrdinaryName);
8006          LookupName(R, TUScope, true);
8007
8008          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8009          if (!CollectableMemCpy) {
8010            // Something went horribly wrong earlier, and we will have
8011            // complained about it.
8012            Invalid = true;
8013            continue;
8014          }
8015
8016          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8017                                                  Context.BuiltinFnTy,
8018                                                  VK_RValue, Loc, 0).take();
8019          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8020        }
8021      }
8022      // Create a reference to the __builtin_memcpy builtin function.
8023      else if (!BuiltinMemCpyRef) {
8024        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8025                       LookupOrdinaryName);
8026        LookupName(R, TUScope, true);
8027
8028        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8029        if (!BuiltinMemCpy) {
8030          // Something went horribly wrong earlier, and we will have complained
8031          // about it.
8032          Invalid = true;
8033          continue;
8034        }
8035
8036        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8037                                            Context.BuiltinFnTy,
8038                                            VK_RValue, Loc, 0).take();
8039        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8040      }
8041
8042      SmallVector<Expr*, 8> CallArgs;
8043      CallArgs.push_back(To.takeAs<Expr>());
8044      CallArgs.push_back(From.takeAs<Expr>());
8045      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8046      ExprResult Call = ExprError();
8047      if (NeedsCollectableMemCpy)
8048        Call = ActOnCallExpr(/*Scope=*/0,
8049                             CollectableMemCpyRef,
8050                             Loc, CallArgs,
8051                             Loc);
8052      else
8053        Call = ActOnCallExpr(/*Scope=*/0,
8054                             BuiltinMemCpyRef,
8055                             Loc, CallArgs,
8056                             Loc);
8057
8058      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8059      Statements.push_back(Call.takeAs<Expr>());
8060      continue;
8061    }
8062
8063    // Build the copy of this field.
8064    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8065                                            To.get(), From.get(),
8066                                            /*CopyingBaseSubobject=*/false,
8067                                            /*Copying=*/true);
8068    if (Copy.isInvalid()) {
8069      Diag(CurrentLocation, diag::note_member_synthesized_at)
8070        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8071      CopyAssignOperator->setInvalidDecl();
8072      return;
8073    }
8074
8075    // Success! Record the copy.
8076    Statements.push_back(Copy.takeAs<Stmt>());
8077  }
8078
8079  if (!Invalid) {
8080    // Add a "return *this;"
8081    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8082
8083    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8084    if (Return.isInvalid())
8085      Invalid = true;
8086    else {
8087      Statements.push_back(Return.takeAs<Stmt>());
8088
8089      if (Trap.hasErrorOccurred()) {
8090        Diag(CurrentLocation, diag::note_member_synthesized_at)
8091          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8092        Invalid = true;
8093      }
8094    }
8095  }
8096
8097  if (Invalid) {
8098    CopyAssignOperator->setInvalidDecl();
8099    return;
8100  }
8101
8102  StmtResult Body;
8103  {
8104    CompoundScopeRAII CompoundScope(*this);
8105    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8106                             /*isStmtExpr=*/false);
8107    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8108  }
8109  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8110
8111  if (ASTMutationListener *L = getASTMutationListener()) {
8112    L->CompletedImplicitDefinition(CopyAssignOperator);
8113  }
8114}
8115
8116Sema::ImplicitExceptionSpecification
8117Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
8118  CXXRecordDecl *ClassDecl = MD->getParent();
8119
8120  ImplicitExceptionSpecification ExceptSpec(*this);
8121  if (ClassDecl->isInvalidDecl())
8122    return ExceptSpec;
8123
8124  // C++0x [except.spec]p14:
8125  //   An implicitly declared special member function (Clause 12) shall have an
8126  //   exception-specification. [...]
8127
8128  // It is unspecified whether or not an implicit move assignment operator
8129  // attempts to deduplicate calls to assignment operators of virtual bases are
8130  // made. As such, this exception specification is effectively unspecified.
8131  // Based on a similar decision made for constness in C++0x, we're erring on
8132  // the side of assuming such calls to be made regardless of whether they
8133  // actually happen.
8134  // Note that a move constructor is not implicitly declared when there are
8135  // virtual bases, but it can still be user-declared and explicitly defaulted.
8136  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8137                                       BaseEnd = ClassDecl->bases_end();
8138       Base != BaseEnd; ++Base) {
8139    if (Base->isVirtual())
8140      continue;
8141
8142    CXXRecordDecl *BaseClassDecl
8143      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8144    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8145                                                           0, false, 0))
8146      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8147  }
8148
8149  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8150                                       BaseEnd = ClassDecl->vbases_end();
8151       Base != BaseEnd; ++Base) {
8152    CXXRecordDecl *BaseClassDecl
8153      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8154    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8155                                                           0, false, 0))
8156      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8157  }
8158
8159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8160                                  FieldEnd = ClassDecl->field_end();
8161       Field != FieldEnd;
8162       ++Field) {
8163    QualType FieldType = Context.getBaseElementType(Field->getType());
8164    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8165      if (CXXMethodDecl *MoveAssign =
8166              LookupMovingAssignment(FieldClassDecl,
8167                                     FieldType.getCVRQualifiers(),
8168                                     false, 0))
8169        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8170    }
8171  }
8172
8173  return ExceptSpec;
8174}
8175
8176/// Determine whether the class type has any direct or indirect virtual base
8177/// classes which have a non-trivial move assignment operator.
8178static bool
8179hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8180  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8181                                          BaseEnd = ClassDecl->vbases_end();
8182       Base != BaseEnd; ++Base) {
8183    CXXRecordDecl *BaseClass =
8184        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8185
8186    // Try to declare the move assignment. If it would be deleted, then the
8187    // class does not have a non-trivial move assignment.
8188    if (BaseClass->needsImplicitMoveAssignment())
8189      S.DeclareImplicitMoveAssignment(BaseClass);
8190
8191    // If the class has both a trivial move assignment and a non-trivial move
8192    // assignment, hasTrivialMoveAssignment() is false.
8193    if (BaseClass->hasDeclaredMoveAssignment() &&
8194        !BaseClass->hasTrivialMoveAssignment())
8195      return true;
8196  }
8197
8198  return false;
8199}
8200
8201/// Determine whether the given type either has a move constructor or is
8202/// trivially copyable.
8203static bool
8204hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8205  Type = S.Context.getBaseElementType(Type);
8206
8207  // FIXME: Technically, non-trivially-copyable non-class types, such as
8208  // reference types, are supposed to return false here, but that appears
8209  // to be a standard defect.
8210  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8211  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
8212    return true;
8213
8214  if (Type.isTriviallyCopyableType(S.Context))
8215    return true;
8216
8217  if (IsConstructor) {
8218    if (ClassDecl->needsImplicitMoveConstructor())
8219      S.DeclareImplicitMoveConstructor(ClassDecl);
8220    return ClassDecl->hasDeclaredMoveConstructor();
8221  }
8222
8223  if (ClassDecl->needsImplicitMoveAssignment())
8224    S.DeclareImplicitMoveAssignment(ClassDecl);
8225  return ClassDecl->hasDeclaredMoveAssignment();
8226}
8227
8228/// Determine whether all non-static data members and direct or virtual bases
8229/// of class \p ClassDecl have either a move operation, or are trivially
8230/// copyable.
8231static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8232                                            bool IsConstructor) {
8233  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8234                                          BaseEnd = ClassDecl->bases_end();
8235       Base != BaseEnd; ++Base) {
8236    if (Base->isVirtual())
8237      continue;
8238
8239    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8240      return false;
8241  }
8242
8243  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8244                                          BaseEnd = ClassDecl->vbases_end();
8245       Base != BaseEnd; ++Base) {
8246    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8247      return false;
8248  }
8249
8250  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8251                                     FieldEnd = ClassDecl->field_end();
8252       Field != FieldEnd; ++Field) {
8253    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
8254      return false;
8255  }
8256
8257  return true;
8258}
8259
8260CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8261  // C++11 [class.copy]p20:
8262  //   If the definition of a class X does not explicitly declare a move
8263  //   assignment operator, one will be implicitly declared as defaulted
8264  //   if and only if:
8265  //
8266  //   - [first 4 bullets]
8267  assert(ClassDecl->needsImplicitMoveAssignment());
8268
8269  // [Checked after we build the declaration]
8270  //   - the move assignment operator would not be implicitly defined as
8271  //     deleted,
8272
8273  // [DR1402]:
8274  //   - X has no direct or indirect virtual base class with a non-trivial
8275  //     move assignment operator, and
8276  //   - each of X's non-static data members and direct or virtual base classes
8277  //     has a type that either has a move assignment operator or is trivially
8278  //     copyable.
8279  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8280      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8281    ClassDecl->setFailedImplicitMoveAssignment();
8282    return 0;
8283  }
8284
8285  // Note: The following rules are largely analoguous to the move
8286  // constructor rules.
8287
8288  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8289  QualType RetType = Context.getLValueReferenceType(ArgType);
8290  ArgType = Context.getRValueReferenceType(ArgType);
8291
8292  //   An implicitly-declared move assignment operator is an inline public
8293  //   member of its class.
8294  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8295  SourceLocation ClassLoc = ClassDecl->getLocation();
8296  DeclarationNameInfo NameInfo(Name, ClassLoc);
8297  CXXMethodDecl *MoveAssignment
8298    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8299                            /*TInfo=*/0, /*isStatic=*/false,
8300                            /*StorageClassAsWritten=*/SC_None,
8301                            /*isInline=*/true,
8302                            /*isConstexpr=*/false,
8303                            SourceLocation());
8304  MoveAssignment->setAccess(AS_public);
8305  MoveAssignment->setDefaulted();
8306  MoveAssignment->setImplicit();
8307  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8308
8309  // Build an exception specification pointing back at this member.
8310  FunctionProtoType::ExtProtoInfo EPI;
8311  EPI.ExceptionSpecType = EST_Unevaluated;
8312  EPI.ExceptionSpecDecl = MoveAssignment;
8313  MoveAssignment->setType(Context.getFunctionType(RetType, &ArgType, 1, EPI));
8314
8315  // Add the parameter to the operator.
8316  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8317                                               ClassLoc, ClassLoc, /*Id=*/0,
8318                                               ArgType, /*TInfo=*/0,
8319                                               SC_None,
8320                                               SC_None, 0);
8321  MoveAssignment->setParams(FromParam);
8322
8323  // Note that we have added this copy-assignment operator.
8324  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8325
8326  // C++0x [class.copy]p9:
8327  //   If the definition of a class X does not explicitly declare a move
8328  //   assignment operator, one will be implicitly declared as defaulted if and
8329  //   only if:
8330  //   [...]
8331  //   - the move assignment operator would not be implicitly defined as
8332  //     deleted.
8333  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8334    // Cache this result so that we don't try to generate this over and over
8335    // on every lookup, leaking memory and wasting time.
8336    ClassDecl->setFailedImplicitMoveAssignment();
8337    return 0;
8338  }
8339
8340  if (Scope *S = getScopeForContext(ClassDecl))
8341    PushOnScopeChains(MoveAssignment, S, false);
8342  ClassDecl->addDecl(MoveAssignment);
8343
8344  AddOverriddenMethods(ClassDecl, MoveAssignment);
8345  return MoveAssignment;
8346}
8347
8348void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8349                                        CXXMethodDecl *MoveAssignOperator) {
8350  assert((MoveAssignOperator->isDefaulted() &&
8351          MoveAssignOperator->isOverloadedOperator() &&
8352          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8353          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8354          !MoveAssignOperator->isDeleted()) &&
8355         "DefineImplicitMoveAssignment called for wrong function");
8356
8357  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8358
8359  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8360    MoveAssignOperator->setInvalidDecl();
8361    return;
8362  }
8363
8364  MoveAssignOperator->setUsed();
8365
8366  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
8367  DiagnosticErrorTrap Trap(Diags);
8368
8369  // C++0x [class.copy]p28:
8370  //   The implicitly-defined or move assignment operator for a non-union class
8371  //   X performs memberwise move assignment of its subobjects. The direct base
8372  //   classes of X are assigned first, in the order of their declaration in the
8373  //   base-specifier-list, and then the immediate non-static data members of X
8374  //   are assigned, in the order in which they were declared in the class
8375  //   definition.
8376
8377  // The statements that form the synthesized function body.
8378  SmallVector<Stmt*, 8> Statements;
8379
8380  // The parameter for the "other" object, which we are move from.
8381  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8382  QualType OtherRefType = Other->getType()->
8383      getAs<RValueReferenceType>()->getPointeeType();
8384  assert(OtherRefType.getQualifiers() == 0 &&
8385         "Bad argument type of defaulted move assignment");
8386
8387  // Our location for everything implicitly-generated.
8388  SourceLocation Loc = MoveAssignOperator->getLocation();
8389
8390  // Construct a reference to the "other" object. We'll be using this
8391  // throughout the generated ASTs.
8392  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8393  assert(OtherRef && "Reference to parameter cannot fail!");
8394  // Cast to rvalue.
8395  OtherRef = CastForMoving(*this, OtherRef);
8396
8397  // Construct the "this" pointer. We'll be using this throughout the generated
8398  // ASTs.
8399  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8400  assert(This && "Reference to this cannot fail!");
8401
8402  // Assign base classes.
8403  bool Invalid = false;
8404  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8405       E = ClassDecl->bases_end(); Base != E; ++Base) {
8406    // Form the assignment:
8407    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8408    QualType BaseType = Base->getType().getUnqualifiedType();
8409    if (!BaseType->isRecordType()) {
8410      Invalid = true;
8411      continue;
8412    }
8413
8414    CXXCastPath BasePath;
8415    BasePath.push_back(Base);
8416
8417    // Construct the "from" expression, which is an implicit cast to the
8418    // appropriately-qualified base type.
8419    Expr *From = OtherRef;
8420    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8421                             VK_XValue, &BasePath).take();
8422
8423    // Dereference "this".
8424    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8425
8426    // Implicitly cast "this" to the appropriately-qualified base type.
8427    To = ImpCastExprToType(To.take(),
8428                           Context.getCVRQualifiedType(BaseType,
8429                                     MoveAssignOperator->getTypeQualifiers()),
8430                           CK_UncheckedDerivedToBase,
8431                           VK_LValue, &BasePath);
8432
8433    // Build the move.
8434    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8435                                            To.get(), From,
8436                                            /*CopyingBaseSubobject=*/true,
8437                                            /*Copying=*/false);
8438    if (Move.isInvalid()) {
8439      Diag(CurrentLocation, diag::note_member_synthesized_at)
8440        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8441      MoveAssignOperator->setInvalidDecl();
8442      return;
8443    }
8444
8445    // Success! Record the move.
8446    Statements.push_back(Move.takeAs<Expr>());
8447  }
8448
8449  // \brief Reference to the __builtin_memcpy function.
8450  Expr *BuiltinMemCpyRef = 0;
8451  // \brief Reference to the __builtin_objc_memmove_collectable function.
8452  Expr *CollectableMemCpyRef = 0;
8453
8454  // Assign non-static members.
8455  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8456                                  FieldEnd = ClassDecl->field_end();
8457       Field != FieldEnd; ++Field) {
8458    if (Field->isUnnamedBitfield())
8459      continue;
8460
8461    // Check for members of reference type; we can't move those.
8462    if (Field->getType()->isReferenceType()) {
8463      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8464        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8465      Diag(Field->getLocation(), diag::note_declared_at);
8466      Diag(CurrentLocation, diag::note_member_synthesized_at)
8467        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8468      Invalid = true;
8469      continue;
8470    }
8471
8472    // Check for members of const-qualified, non-class type.
8473    QualType BaseType = Context.getBaseElementType(Field->getType());
8474    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8475      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8476        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8477      Diag(Field->getLocation(), diag::note_declared_at);
8478      Diag(CurrentLocation, diag::note_member_synthesized_at)
8479        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8480      Invalid = true;
8481      continue;
8482    }
8483
8484    // Suppress assigning zero-width bitfields.
8485    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8486      continue;
8487
8488    QualType FieldType = Field->getType().getNonReferenceType();
8489    if (FieldType->isIncompleteArrayType()) {
8490      assert(ClassDecl->hasFlexibleArrayMember() &&
8491             "Incomplete array type is not valid");
8492      continue;
8493    }
8494
8495    // Build references to the field in the object we're copying from and to.
8496    CXXScopeSpec SS; // Intentionally empty
8497    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8498                              LookupMemberName);
8499    MemberLookup.addDecl(*Field);
8500    MemberLookup.resolveKind();
8501    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8502                                               Loc, /*IsArrow=*/false,
8503                                               SS, SourceLocation(), 0,
8504                                               MemberLookup, 0);
8505    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8506                                             Loc, /*IsArrow=*/true,
8507                                             SS, SourceLocation(), 0,
8508                                             MemberLookup, 0);
8509    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8510    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8511
8512    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8513        "Member reference with rvalue base must be rvalue except for reference "
8514        "members, which aren't allowed for move assignment.");
8515
8516    // If the field should be copied with __builtin_memcpy rather than via
8517    // explicit assignments, do so. This optimization only applies for arrays
8518    // of scalars and arrays of class type with trivial move-assignment
8519    // operators.
8520    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8521        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8522      // Compute the size of the memory buffer to be copied.
8523      QualType SizeType = Context.getSizeType();
8524      llvm::APInt Size(Context.getTypeSize(SizeType),
8525                       Context.getTypeSizeInChars(BaseType).getQuantity());
8526      for (const ConstantArrayType *Array
8527              = Context.getAsConstantArrayType(FieldType);
8528           Array;
8529           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8530        llvm::APInt ArraySize
8531          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8532        Size *= ArraySize;
8533      }
8534
8535      // Take the address of the field references for "from" and "to". We
8536      // directly construct UnaryOperators here because semantic analysis
8537      // does not permit us to take the address of an xvalue.
8538      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8539                             Context.getPointerType(From.get()->getType()),
8540                             VK_RValue, OK_Ordinary, Loc);
8541      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8542                           Context.getPointerType(To.get()->getType()),
8543                           VK_RValue, OK_Ordinary, Loc);
8544
8545      bool NeedsCollectableMemCpy =
8546          (BaseType->isRecordType() &&
8547           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8548
8549      if (NeedsCollectableMemCpy) {
8550        if (!CollectableMemCpyRef) {
8551          // Create a reference to the __builtin_objc_memmove_collectable function.
8552          LookupResult R(*this,
8553                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8554                         Loc, LookupOrdinaryName);
8555          LookupName(R, TUScope, true);
8556
8557          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8558          if (!CollectableMemCpy) {
8559            // Something went horribly wrong earlier, and we will have
8560            // complained about it.
8561            Invalid = true;
8562            continue;
8563          }
8564
8565          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8566                                                  Context.BuiltinFnTy,
8567                                                  VK_RValue, Loc, 0).take();
8568          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8569        }
8570      }
8571      // Create a reference to the __builtin_memcpy builtin function.
8572      else if (!BuiltinMemCpyRef) {
8573        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8574                       LookupOrdinaryName);
8575        LookupName(R, TUScope, true);
8576
8577        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8578        if (!BuiltinMemCpy) {
8579          // Something went horribly wrong earlier, and we will have complained
8580          // about it.
8581          Invalid = true;
8582          continue;
8583        }
8584
8585        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8586                                            Context.BuiltinFnTy,
8587                                            VK_RValue, Loc, 0).take();
8588        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8589      }
8590
8591      SmallVector<Expr*, 8> CallArgs;
8592      CallArgs.push_back(To.takeAs<Expr>());
8593      CallArgs.push_back(From.takeAs<Expr>());
8594      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8595      ExprResult Call = ExprError();
8596      if (NeedsCollectableMemCpy)
8597        Call = ActOnCallExpr(/*Scope=*/0,
8598                             CollectableMemCpyRef,
8599                             Loc, CallArgs,
8600                             Loc);
8601      else
8602        Call = ActOnCallExpr(/*Scope=*/0,
8603                             BuiltinMemCpyRef,
8604                             Loc, CallArgs,
8605                             Loc);
8606
8607      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8608      Statements.push_back(Call.takeAs<Expr>());
8609      continue;
8610    }
8611
8612    // Build the move of this field.
8613    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8614                                            To.get(), From.get(),
8615                                            /*CopyingBaseSubobject=*/false,
8616                                            /*Copying=*/false);
8617    if (Move.isInvalid()) {
8618      Diag(CurrentLocation, diag::note_member_synthesized_at)
8619        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8620      MoveAssignOperator->setInvalidDecl();
8621      return;
8622    }
8623
8624    // Success! Record the copy.
8625    Statements.push_back(Move.takeAs<Stmt>());
8626  }
8627
8628  if (!Invalid) {
8629    // Add a "return *this;"
8630    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8631
8632    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8633    if (Return.isInvalid())
8634      Invalid = true;
8635    else {
8636      Statements.push_back(Return.takeAs<Stmt>());
8637
8638      if (Trap.hasErrorOccurred()) {
8639        Diag(CurrentLocation, diag::note_member_synthesized_at)
8640          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8641        Invalid = true;
8642      }
8643    }
8644  }
8645
8646  if (Invalid) {
8647    MoveAssignOperator->setInvalidDecl();
8648    return;
8649  }
8650
8651  StmtResult Body;
8652  {
8653    CompoundScopeRAII CompoundScope(*this);
8654    Body = ActOnCompoundStmt(Loc, Loc, Statements,
8655                             /*isStmtExpr=*/false);
8656    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8657  }
8658  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8659
8660  if (ASTMutationListener *L = getASTMutationListener()) {
8661    L->CompletedImplicitDefinition(MoveAssignOperator);
8662  }
8663}
8664
8665/// Determine whether an implicit copy constructor for ClassDecl has a const
8666/// argument.
8667/// FIXME: It ought to be possible to store this on the record.
8668static bool isImplicitCopyCtorArgConst(Sema &S, CXXRecordDecl *ClassDecl) {
8669  if (ClassDecl->isInvalidDecl())
8670    return true;
8671
8672  // C++ [class.copy]p5:
8673  //   The implicitly-declared copy constructor for a class X will
8674  //   have the form
8675  //
8676  //       X::X(const X&)
8677  //
8678  //   if
8679  //     -- each direct or virtual base class B of X has a copy
8680  //        constructor whose first parameter is of type const B& or
8681  //        const volatile B&, and
8682  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8683                                       BaseEnd = ClassDecl->bases_end();
8684       Base != BaseEnd; ++Base) {
8685    // Virtual bases are handled below.
8686    if (Base->isVirtual())
8687      continue;
8688
8689    CXXRecordDecl *BaseClassDecl
8690      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8691    // FIXME: This lookup is wrong. If the copy ctor for a member or base is
8692    // ambiguous, we should still produce a constructor with a const-qualified
8693    // parameter.
8694    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8695      return false;
8696  }
8697
8698  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8699                                       BaseEnd = ClassDecl->vbases_end();
8700       Base != BaseEnd; ++Base) {
8701    CXXRecordDecl *BaseClassDecl
8702      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8703    if (!S.LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const))
8704      return false;
8705  }
8706
8707  //     -- for all the nonstatic data members of X that are of a
8708  //        class type M (or array thereof), each such class type
8709  //        has a copy constructor whose first parameter is of type
8710  //        const M& or const volatile M&.
8711  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8712                                  FieldEnd = ClassDecl->field_end();
8713       Field != FieldEnd; ++Field) {
8714    QualType FieldType = S.Context.getBaseElementType(Field->getType());
8715    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8716      if (!S.LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const))
8717        return false;
8718    }
8719  }
8720
8721  //   Otherwise, the implicitly declared copy constructor will have
8722  //   the form
8723  //
8724  //       X::X(X&)
8725
8726  return true;
8727}
8728
8729Sema::ImplicitExceptionSpecification
8730Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
8731  CXXRecordDecl *ClassDecl = MD->getParent();
8732
8733  ImplicitExceptionSpecification ExceptSpec(*this);
8734  if (ClassDecl->isInvalidDecl())
8735    return ExceptSpec;
8736
8737  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8738  assert(T->getNumArgs() >= 1 && "not a copy ctor");
8739  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8740
8741  // C++ [except.spec]p14:
8742  //   An implicitly declared special member function (Clause 12) shall have an
8743  //   exception-specification. [...]
8744  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8745                                       BaseEnd = ClassDecl->bases_end();
8746       Base != BaseEnd;
8747       ++Base) {
8748    // Virtual bases are handled below.
8749    if (Base->isVirtual())
8750      continue;
8751
8752    CXXRecordDecl *BaseClassDecl
8753      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8754    if (CXXConstructorDecl *CopyConstructor =
8755          LookupCopyingConstructor(BaseClassDecl, Quals))
8756      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8757  }
8758  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8759                                       BaseEnd = ClassDecl->vbases_end();
8760       Base != BaseEnd;
8761       ++Base) {
8762    CXXRecordDecl *BaseClassDecl
8763      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8764    if (CXXConstructorDecl *CopyConstructor =
8765          LookupCopyingConstructor(BaseClassDecl, Quals))
8766      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8767  }
8768  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8769                                  FieldEnd = ClassDecl->field_end();
8770       Field != FieldEnd;
8771       ++Field) {
8772    QualType FieldType = Context.getBaseElementType(Field->getType());
8773    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8774      if (CXXConstructorDecl *CopyConstructor =
8775              LookupCopyingConstructor(FieldClassDecl,
8776                                       Quals | FieldType.getCVRQualifiers()))
8777      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8778    }
8779  }
8780
8781  return ExceptSpec;
8782}
8783
8784CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8785                                                    CXXRecordDecl *ClassDecl) {
8786  // C++ [class.copy]p4:
8787  //   If the class definition does not explicitly declare a copy
8788  //   constructor, one is declared implicitly.
8789
8790  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8791  QualType ArgType = ClassType;
8792  bool Const = isImplicitCopyCtorArgConst(*this, ClassDecl);
8793  if (Const)
8794    ArgType = ArgType.withConst();
8795  ArgType = Context.getLValueReferenceType(ArgType);
8796
8797  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8798                                                     CXXCopyConstructor,
8799                                                     Const);
8800
8801  DeclarationName Name
8802    = Context.DeclarationNames.getCXXConstructorName(
8803                                           Context.getCanonicalType(ClassType));
8804  SourceLocation ClassLoc = ClassDecl->getLocation();
8805  DeclarationNameInfo NameInfo(Name, ClassLoc);
8806
8807  //   An implicitly-declared copy constructor is an inline public
8808  //   member of its class.
8809  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8810      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8811      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8812      Constexpr);
8813  CopyConstructor->setAccess(AS_public);
8814  CopyConstructor->setDefaulted();
8815  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8816
8817  // Build an exception specification pointing back at this member.
8818  FunctionProtoType::ExtProtoInfo EPI;
8819  EPI.ExceptionSpecType = EST_Unevaluated;
8820  EPI.ExceptionSpecDecl = CopyConstructor;
8821  CopyConstructor->setType(
8822      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
8823
8824  // Note that we have declared this constructor.
8825  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8826
8827  // Add the parameter to the constructor.
8828  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8829                                               ClassLoc, ClassLoc,
8830                                               /*IdentifierInfo=*/0,
8831                                               ArgType, /*TInfo=*/0,
8832                                               SC_None,
8833                                               SC_None, 0);
8834  CopyConstructor->setParams(FromParam);
8835
8836  if (Scope *S = getScopeForContext(ClassDecl))
8837    PushOnScopeChains(CopyConstructor, S, false);
8838  ClassDecl->addDecl(CopyConstructor);
8839
8840  // C++11 [class.copy]p8:
8841  //   ... If the class definition does not explicitly declare a copy
8842  //   constructor, there is no user-declared move constructor, and there is no
8843  //   user-declared move assignment operator, a copy constructor is implicitly
8844  //   declared as defaulted.
8845  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8846    CopyConstructor->setDeletedAsWritten();
8847
8848  return CopyConstructor;
8849}
8850
8851void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8852                                   CXXConstructorDecl *CopyConstructor) {
8853  assert((CopyConstructor->isDefaulted() &&
8854          CopyConstructor->isCopyConstructor() &&
8855          !CopyConstructor->doesThisDeclarationHaveABody() &&
8856          !CopyConstructor->isDeleted()) &&
8857         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8858
8859  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8860  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8861
8862  SynthesizedFunctionScope Scope(*this, CopyConstructor);
8863  DiagnosticErrorTrap Trap(Diags);
8864
8865  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8866      Trap.hasErrorOccurred()) {
8867    Diag(CurrentLocation, diag::note_member_synthesized_at)
8868      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8869    CopyConstructor->setInvalidDecl();
8870  }  else {
8871    Sema::CompoundScopeRAII CompoundScope(*this);
8872    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8873                                               CopyConstructor->getLocation(),
8874                                               MultiStmtArg(),
8875                                               /*isStmtExpr=*/false)
8876                                                              .takeAs<Stmt>());
8877    CopyConstructor->setImplicitlyDefined(true);
8878  }
8879
8880  CopyConstructor->setUsed();
8881  if (ASTMutationListener *L = getASTMutationListener()) {
8882    L->CompletedImplicitDefinition(CopyConstructor);
8883  }
8884}
8885
8886Sema::ImplicitExceptionSpecification
8887Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
8888  CXXRecordDecl *ClassDecl = MD->getParent();
8889
8890  // C++ [except.spec]p14:
8891  //   An implicitly declared special member function (Clause 12) shall have an
8892  //   exception-specification. [...]
8893  ImplicitExceptionSpecification ExceptSpec(*this);
8894  if (ClassDecl->isInvalidDecl())
8895    return ExceptSpec;
8896
8897  // Direct base-class constructors.
8898  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8899                                       BEnd = ClassDecl->bases_end();
8900       B != BEnd; ++B) {
8901    if (B->isVirtual()) // Handled below.
8902      continue;
8903
8904    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8905      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8906      CXXConstructorDecl *Constructor =
8907          LookupMovingConstructor(BaseClassDecl, 0);
8908      // If this is a deleted function, add it anyway. This might be conformant
8909      // with the standard. This might not. I'm not sure. It might not matter.
8910      if (Constructor)
8911        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8912    }
8913  }
8914
8915  // Virtual base-class constructors.
8916  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8917                                       BEnd = ClassDecl->vbases_end();
8918       B != BEnd; ++B) {
8919    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8920      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8921      CXXConstructorDecl *Constructor =
8922          LookupMovingConstructor(BaseClassDecl, 0);
8923      // If this is a deleted function, add it anyway. This might be conformant
8924      // with the standard. This might not. I'm not sure. It might not matter.
8925      if (Constructor)
8926        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8927    }
8928  }
8929
8930  // Field constructors.
8931  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8932                               FEnd = ClassDecl->field_end();
8933       F != FEnd; ++F) {
8934    QualType FieldType = Context.getBaseElementType(F->getType());
8935    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
8936      CXXConstructorDecl *Constructor =
8937          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
8938      // If this is a deleted function, add it anyway. This might be conformant
8939      // with the standard. This might not. I'm not sure. It might not matter.
8940      // In particular, the problem is that this function never gets called. It
8941      // might just be ill-formed because this function attempts to refer to
8942      // a deleted function here.
8943      if (Constructor)
8944        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8945    }
8946  }
8947
8948  return ExceptSpec;
8949}
8950
8951CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8952                                                    CXXRecordDecl *ClassDecl) {
8953  // C++11 [class.copy]p9:
8954  //   If the definition of a class X does not explicitly declare a move
8955  //   constructor, one will be implicitly declared as defaulted if and only if:
8956  //
8957  //   - [first 4 bullets]
8958  assert(ClassDecl->needsImplicitMoveConstructor());
8959
8960  // [Checked after we build the declaration]
8961  //   - the move assignment operator would not be implicitly defined as
8962  //     deleted,
8963
8964  // [DR1402]:
8965  //   - each of X's non-static data members and direct or virtual base classes
8966  //     has a type that either has a move constructor or is trivially copyable.
8967  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8968    ClassDecl->setFailedImplicitMoveConstructor();
8969    return 0;
8970  }
8971
8972  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8973  QualType ArgType = Context.getRValueReferenceType(ClassType);
8974
8975  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8976                                                     CXXMoveConstructor,
8977                                                     false);
8978
8979  DeclarationName Name
8980    = Context.DeclarationNames.getCXXConstructorName(
8981                                           Context.getCanonicalType(ClassType));
8982  SourceLocation ClassLoc = ClassDecl->getLocation();
8983  DeclarationNameInfo NameInfo(Name, ClassLoc);
8984
8985  // C++0x [class.copy]p11:
8986  //   An implicitly-declared copy/move constructor is an inline public
8987  //   member of its class.
8988  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8989      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
8990      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8991      Constexpr);
8992  MoveConstructor->setAccess(AS_public);
8993  MoveConstructor->setDefaulted();
8994  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8995
8996  // Build an exception specification pointing back at this member.
8997  FunctionProtoType::ExtProtoInfo EPI;
8998  EPI.ExceptionSpecType = EST_Unevaluated;
8999  EPI.ExceptionSpecDecl = MoveConstructor;
9000  MoveConstructor->setType(
9001      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
9002
9003  // Add the parameter to the constructor.
9004  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9005                                               ClassLoc, ClassLoc,
9006                                               /*IdentifierInfo=*/0,
9007                                               ArgType, /*TInfo=*/0,
9008                                               SC_None,
9009                                               SC_None, 0);
9010  MoveConstructor->setParams(FromParam);
9011
9012  // C++0x [class.copy]p9:
9013  //   If the definition of a class X does not explicitly declare a move
9014  //   constructor, one will be implicitly declared as defaulted if and only if:
9015  //   [...]
9016  //   - the move constructor would not be implicitly defined as deleted.
9017  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9018    // Cache this result so that we don't try to generate this over and over
9019    // on every lookup, leaking memory and wasting time.
9020    ClassDecl->setFailedImplicitMoveConstructor();
9021    return 0;
9022  }
9023
9024  // Note that we have declared this constructor.
9025  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9026
9027  if (Scope *S = getScopeForContext(ClassDecl))
9028    PushOnScopeChains(MoveConstructor, S, false);
9029  ClassDecl->addDecl(MoveConstructor);
9030
9031  return MoveConstructor;
9032}
9033
9034void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9035                                   CXXConstructorDecl *MoveConstructor) {
9036  assert((MoveConstructor->isDefaulted() &&
9037          MoveConstructor->isMoveConstructor() &&
9038          !MoveConstructor->doesThisDeclarationHaveABody() &&
9039          !MoveConstructor->isDeleted()) &&
9040         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9041
9042  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9043  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9044
9045  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9046  DiagnosticErrorTrap Trap(Diags);
9047
9048  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
9049      Trap.hasErrorOccurred()) {
9050    Diag(CurrentLocation, diag::note_member_synthesized_at)
9051      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9052    MoveConstructor->setInvalidDecl();
9053  }  else {
9054    Sema::CompoundScopeRAII CompoundScope(*this);
9055    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9056                                               MoveConstructor->getLocation(),
9057                                               MultiStmtArg(),
9058                                               /*isStmtExpr=*/false)
9059                                                              .takeAs<Stmt>());
9060    MoveConstructor->setImplicitlyDefined(true);
9061  }
9062
9063  MoveConstructor->setUsed();
9064
9065  if (ASTMutationListener *L = getASTMutationListener()) {
9066    L->CompletedImplicitDefinition(MoveConstructor);
9067  }
9068}
9069
9070bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9071  return FD->isDeleted() &&
9072         (FD->isDefaulted() || FD->isImplicit()) &&
9073         isa<CXXMethodDecl>(FD);
9074}
9075
9076/// \brief Mark the call operator of the given lambda closure type as "used".
9077static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9078  CXXMethodDecl *CallOperator
9079    = cast<CXXMethodDecl>(
9080        *Lambda->lookup(
9081          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
9082  CallOperator->setReferenced();
9083  CallOperator->setUsed();
9084}
9085
9086void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9087       SourceLocation CurrentLocation,
9088       CXXConversionDecl *Conv)
9089{
9090  CXXRecordDecl *Lambda = Conv->getParent();
9091
9092  // Make sure that the lambda call operator is marked used.
9093  markLambdaCallOperatorUsed(*this, Lambda);
9094
9095  Conv->setUsed();
9096
9097  SynthesizedFunctionScope Scope(*this, Conv);
9098  DiagnosticErrorTrap Trap(Diags);
9099
9100  // Return the address of the __invoke function.
9101  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9102  CXXMethodDecl *Invoke
9103    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
9104  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9105                                       VK_LValue, Conv->getLocation()).take();
9106  assert(FunctionRef && "Can't refer to __invoke function?");
9107  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9108  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9109                                           Conv->getLocation(),
9110                                           Conv->getLocation()));
9111
9112  // Fill in the __invoke function with a dummy implementation. IR generation
9113  // will fill in the actual details.
9114  Invoke->setUsed();
9115  Invoke->setReferenced();
9116  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9117
9118  if (ASTMutationListener *L = getASTMutationListener()) {
9119    L->CompletedImplicitDefinition(Conv);
9120    L->CompletedImplicitDefinition(Invoke);
9121  }
9122}
9123
9124void Sema::DefineImplicitLambdaToBlockPointerConversion(
9125       SourceLocation CurrentLocation,
9126       CXXConversionDecl *Conv)
9127{
9128  Conv->setUsed();
9129
9130  SynthesizedFunctionScope Scope(*this, Conv);
9131  DiagnosticErrorTrap Trap(Diags);
9132
9133  // Copy-initialize the lambda object as needed to capture it.
9134  Expr *This = ActOnCXXThis(CurrentLocation).take();
9135  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9136
9137  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9138                                                        Conv->getLocation(),
9139                                                        Conv, DerefThis);
9140
9141  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9142  // behavior.  Note that only the general conversion function does this
9143  // (since it's unusable otherwise); in the case where we inline the
9144  // block literal, it has block literal lifetime semantics.
9145  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9146    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9147                                          CK_CopyAndAutoreleaseBlockObject,
9148                                          BuildBlock.get(), 0, VK_RValue);
9149
9150  if (BuildBlock.isInvalid()) {
9151    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9152    Conv->setInvalidDecl();
9153    return;
9154  }
9155
9156  // Create the return statement that returns the block from the conversion
9157  // function.
9158  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9159  if (Return.isInvalid()) {
9160    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9161    Conv->setInvalidDecl();
9162    return;
9163  }
9164
9165  // Set the body of the conversion function.
9166  Stmt *ReturnS = Return.take();
9167  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9168                                           Conv->getLocation(),
9169                                           Conv->getLocation()));
9170
9171  // We're done; notify the mutation listener, if any.
9172  if (ASTMutationListener *L = getASTMutationListener()) {
9173    L->CompletedImplicitDefinition(Conv);
9174  }
9175}
9176
9177/// \brief Determine whether the given list arguments contains exactly one
9178/// "real" (non-default) argument.
9179static bool hasOneRealArgument(MultiExprArg Args) {
9180  switch (Args.size()) {
9181  case 0:
9182    return false;
9183
9184  default:
9185    if (!Args[1]->isDefaultArgument())
9186      return false;
9187
9188    // fall through
9189  case 1:
9190    return !Args[0]->isDefaultArgument();
9191  }
9192
9193  return false;
9194}
9195
9196ExprResult
9197Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9198                            CXXConstructorDecl *Constructor,
9199                            MultiExprArg ExprArgs,
9200                            bool HadMultipleCandidates,
9201                            bool RequiresZeroInit,
9202                            unsigned ConstructKind,
9203                            SourceRange ParenRange) {
9204  bool Elidable = false;
9205
9206  // C++0x [class.copy]p34:
9207  //   When certain criteria are met, an implementation is allowed to
9208  //   omit the copy/move construction of a class object, even if the
9209  //   copy/move constructor and/or destructor for the object have
9210  //   side effects. [...]
9211  //     - when a temporary class object that has not been bound to a
9212  //       reference (12.2) would be copied/moved to a class object
9213  //       with the same cv-unqualified type, the copy/move operation
9214  //       can be omitted by constructing the temporary object
9215  //       directly into the target of the omitted copy/move
9216  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9217      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9218    Expr *SubExpr = ExprArgs[0];
9219    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9220  }
9221
9222  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9223                               Elidable, ExprArgs, HadMultipleCandidates,
9224                               RequiresZeroInit, ConstructKind, ParenRange);
9225}
9226
9227/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9228/// including handling of its default argument expressions.
9229ExprResult
9230Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9231                            CXXConstructorDecl *Constructor, bool Elidable,
9232                            MultiExprArg ExprArgs,
9233                            bool HadMultipleCandidates,
9234                            bool RequiresZeroInit,
9235                            unsigned ConstructKind,
9236                            SourceRange ParenRange) {
9237  MarkFunctionReferenced(ConstructLoc, Constructor);
9238  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9239                                        Constructor, Elidable, ExprArgs,
9240                                        HadMultipleCandidates, /*FIXME*/false,
9241                                        RequiresZeroInit,
9242              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9243                                        ParenRange));
9244}
9245
9246bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9247                                        CXXConstructorDecl *Constructor,
9248                                        MultiExprArg Exprs,
9249                                        bool HadMultipleCandidates) {
9250  // FIXME: Provide the correct paren SourceRange when available.
9251  ExprResult TempResult =
9252    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9253                          Exprs, HadMultipleCandidates, false,
9254                          CXXConstructExpr::CK_Complete, SourceRange());
9255  if (TempResult.isInvalid())
9256    return true;
9257
9258  Expr *Temp = TempResult.takeAs<Expr>();
9259  CheckImplicitConversions(Temp, VD->getLocation());
9260  MarkFunctionReferenced(VD->getLocation(), Constructor);
9261  Temp = MaybeCreateExprWithCleanups(Temp);
9262  VD->setInit(Temp);
9263
9264  return false;
9265}
9266
9267void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9268  if (VD->isInvalidDecl()) return;
9269
9270  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9271  if (ClassDecl->isInvalidDecl()) return;
9272  if (ClassDecl->hasIrrelevantDestructor()) return;
9273  if (ClassDecl->isDependentContext()) return;
9274
9275  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9276  MarkFunctionReferenced(VD->getLocation(), Destructor);
9277  CheckDestructorAccess(VD->getLocation(), Destructor,
9278                        PDiag(diag::err_access_dtor_var)
9279                        << VD->getDeclName()
9280                        << VD->getType());
9281  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9282
9283  if (!VD->hasGlobalStorage()) return;
9284
9285  // Emit warning for non-trivial dtor in global scope (a real global,
9286  // class-static, function-static).
9287  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9288
9289  // TODO: this should be re-enabled for static locals by !CXAAtExit
9290  if (!VD->isStaticLocal())
9291    Diag(VD->getLocation(), diag::warn_global_destructor);
9292}
9293
9294/// \brief Given a constructor and the set of arguments provided for the
9295/// constructor, convert the arguments and add any required default arguments
9296/// to form a proper call to this constructor.
9297///
9298/// \returns true if an error occurred, false otherwise.
9299bool
9300Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9301                              MultiExprArg ArgsPtr,
9302                              SourceLocation Loc,
9303                              SmallVectorImpl<Expr*> &ConvertedArgs,
9304                              bool AllowExplicit) {
9305  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9306  unsigned NumArgs = ArgsPtr.size();
9307  Expr **Args = ArgsPtr.data();
9308
9309  const FunctionProtoType *Proto
9310    = Constructor->getType()->getAs<FunctionProtoType>();
9311  assert(Proto && "Constructor without a prototype?");
9312  unsigned NumArgsInProto = Proto->getNumArgs();
9313
9314  // If too few arguments are available, we'll fill in the rest with defaults.
9315  if (NumArgs < NumArgsInProto)
9316    ConvertedArgs.reserve(NumArgsInProto);
9317  else
9318    ConvertedArgs.reserve(NumArgs);
9319
9320  VariadicCallType CallType =
9321    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9322  SmallVector<Expr *, 8> AllArgs;
9323  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9324                                        Proto, 0, Args, NumArgs, AllArgs,
9325                                        CallType, AllowExplicit);
9326  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9327
9328  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9329
9330  CheckConstructorCall(Constructor, AllArgs.data(), AllArgs.size(),
9331                       Proto, Loc);
9332
9333  return Invalid;
9334}
9335
9336static inline bool
9337CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9338                                       const FunctionDecl *FnDecl) {
9339  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9340  if (isa<NamespaceDecl>(DC)) {
9341    return SemaRef.Diag(FnDecl->getLocation(),
9342                        diag::err_operator_new_delete_declared_in_namespace)
9343      << FnDecl->getDeclName();
9344  }
9345
9346  if (isa<TranslationUnitDecl>(DC) &&
9347      FnDecl->getStorageClass() == SC_Static) {
9348    return SemaRef.Diag(FnDecl->getLocation(),
9349                        diag::err_operator_new_delete_declared_static)
9350      << FnDecl->getDeclName();
9351  }
9352
9353  return false;
9354}
9355
9356static inline bool
9357CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9358                            CanQualType ExpectedResultType,
9359                            CanQualType ExpectedFirstParamType,
9360                            unsigned DependentParamTypeDiag,
9361                            unsigned InvalidParamTypeDiag) {
9362  QualType ResultType =
9363    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9364
9365  // Check that the result type is not dependent.
9366  if (ResultType->isDependentType())
9367    return SemaRef.Diag(FnDecl->getLocation(),
9368                        diag::err_operator_new_delete_dependent_result_type)
9369    << FnDecl->getDeclName() << ExpectedResultType;
9370
9371  // Check that the result type is what we expect.
9372  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9373    return SemaRef.Diag(FnDecl->getLocation(),
9374                        diag::err_operator_new_delete_invalid_result_type)
9375    << FnDecl->getDeclName() << ExpectedResultType;
9376
9377  // A function template must have at least 2 parameters.
9378  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9379    return SemaRef.Diag(FnDecl->getLocation(),
9380                      diag::err_operator_new_delete_template_too_few_parameters)
9381        << FnDecl->getDeclName();
9382
9383  // The function decl must have at least 1 parameter.
9384  if (FnDecl->getNumParams() == 0)
9385    return SemaRef.Diag(FnDecl->getLocation(),
9386                        diag::err_operator_new_delete_too_few_parameters)
9387      << FnDecl->getDeclName();
9388
9389  // Check the first parameter type is not dependent.
9390  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9391  if (FirstParamType->isDependentType())
9392    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9393      << FnDecl->getDeclName() << ExpectedFirstParamType;
9394
9395  // Check that the first parameter type is what we expect.
9396  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9397      ExpectedFirstParamType)
9398    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9399    << FnDecl->getDeclName() << ExpectedFirstParamType;
9400
9401  return false;
9402}
9403
9404static bool
9405CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9406  // C++ [basic.stc.dynamic.allocation]p1:
9407  //   A program is ill-formed if an allocation function is declared in a
9408  //   namespace scope other than global scope or declared static in global
9409  //   scope.
9410  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9411    return true;
9412
9413  CanQualType SizeTy =
9414    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9415
9416  // C++ [basic.stc.dynamic.allocation]p1:
9417  //  The return type shall be void*. The first parameter shall have type
9418  //  std::size_t.
9419  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9420                                  SizeTy,
9421                                  diag::err_operator_new_dependent_param_type,
9422                                  diag::err_operator_new_param_type))
9423    return true;
9424
9425  // C++ [basic.stc.dynamic.allocation]p1:
9426  //  The first parameter shall not have an associated default argument.
9427  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9428    return SemaRef.Diag(FnDecl->getLocation(),
9429                        diag::err_operator_new_default_arg)
9430      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9431
9432  return false;
9433}
9434
9435static bool
9436CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
9437  // C++ [basic.stc.dynamic.deallocation]p1:
9438  //   A program is ill-formed if deallocation functions are declared in a
9439  //   namespace scope other than global scope or declared static in global
9440  //   scope.
9441  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9442    return true;
9443
9444  // C++ [basic.stc.dynamic.deallocation]p2:
9445  //   Each deallocation function shall return void and its first parameter
9446  //   shall be void*.
9447  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9448                                  SemaRef.Context.VoidPtrTy,
9449                                 diag::err_operator_delete_dependent_param_type,
9450                                 diag::err_operator_delete_param_type))
9451    return true;
9452
9453  return false;
9454}
9455
9456/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9457/// of this overloaded operator is well-formed. If so, returns false;
9458/// otherwise, emits appropriate diagnostics and returns true.
9459bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9460  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9461         "Expected an overloaded operator declaration");
9462
9463  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9464
9465  // C++ [over.oper]p5:
9466  //   The allocation and deallocation functions, operator new,
9467  //   operator new[], operator delete and operator delete[], are
9468  //   described completely in 3.7.3. The attributes and restrictions
9469  //   found in the rest of this subclause do not apply to them unless
9470  //   explicitly stated in 3.7.3.
9471  if (Op == OO_Delete || Op == OO_Array_Delete)
9472    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9473
9474  if (Op == OO_New || Op == OO_Array_New)
9475    return CheckOperatorNewDeclaration(*this, FnDecl);
9476
9477  // C++ [over.oper]p6:
9478  //   An operator function shall either be a non-static member
9479  //   function or be a non-member function and have at least one
9480  //   parameter whose type is a class, a reference to a class, an
9481  //   enumeration, or a reference to an enumeration.
9482  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9483    if (MethodDecl->isStatic())
9484      return Diag(FnDecl->getLocation(),
9485                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9486  } else {
9487    bool ClassOrEnumParam = false;
9488    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9489                                   ParamEnd = FnDecl->param_end();
9490         Param != ParamEnd; ++Param) {
9491      QualType ParamType = (*Param)->getType().getNonReferenceType();
9492      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9493          ParamType->isEnumeralType()) {
9494        ClassOrEnumParam = true;
9495        break;
9496      }
9497    }
9498
9499    if (!ClassOrEnumParam)
9500      return Diag(FnDecl->getLocation(),
9501                  diag::err_operator_overload_needs_class_or_enum)
9502        << FnDecl->getDeclName();
9503  }
9504
9505  // C++ [over.oper]p8:
9506  //   An operator function cannot have default arguments (8.3.6),
9507  //   except where explicitly stated below.
9508  //
9509  // Only the function-call operator allows default arguments
9510  // (C++ [over.call]p1).
9511  if (Op != OO_Call) {
9512    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9513         Param != FnDecl->param_end(); ++Param) {
9514      if ((*Param)->hasDefaultArg())
9515        return Diag((*Param)->getLocation(),
9516                    diag::err_operator_overload_default_arg)
9517          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9518    }
9519  }
9520
9521  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9522    { false, false, false }
9523#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9524    , { Unary, Binary, MemberOnly }
9525#include "clang/Basic/OperatorKinds.def"
9526  };
9527
9528  bool CanBeUnaryOperator = OperatorUses[Op][0];
9529  bool CanBeBinaryOperator = OperatorUses[Op][1];
9530  bool MustBeMemberOperator = OperatorUses[Op][2];
9531
9532  // C++ [over.oper]p8:
9533  //   [...] Operator functions cannot have more or fewer parameters
9534  //   than the number required for the corresponding operator, as
9535  //   described in the rest of this subclause.
9536  unsigned NumParams = FnDecl->getNumParams()
9537                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9538  if (Op != OO_Call &&
9539      ((NumParams == 1 && !CanBeUnaryOperator) ||
9540       (NumParams == 2 && !CanBeBinaryOperator) ||
9541       (NumParams < 1) || (NumParams > 2))) {
9542    // We have the wrong number of parameters.
9543    unsigned ErrorKind;
9544    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9545      ErrorKind = 2;  // 2 -> unary or binary.
9546    } else if (CanBeUnaryOperator) {
9547      ErrorKind = 0;  // 0 -> unary
9548    } else {
9549      assert(CanBeBinaryOperator &&
9550             "All non-call overloaded operators are unary or binary!");
9551      ErrorKind = 1;  // 1 -> binary
9552    }
9553
9554    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9555      << FnDecl->getDeclName() << NumParams << ErrorKind;
9556  }
9557
9558  // Overloaded operators other than operator() cannot be variadic.
9559  if (Op != OO_Call &&
9560      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9561    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9562      << FnDecl->getDeclName();
9563  }
9564
9565  // Some operators must be non-static member functions.
9566  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9567    return Diag(FnDecl->getLocation(),
9568                diag::err_operator_overload_must_be_member)
9569      << FnDecl->getDeclName();
9570  }
9571
9572  // C++ [over.inc]p1:
9573  //   The user-defined function called operator++ implements the
9574  //   prefix and postfix ++ operator. If this function is a member
9575  //   function with no parameters, or a non-member function with one
9576  //   parameter of class or enumeration type, it defines the prefix
9577  //   increment operator ++ for objects of that type. If the function
9578  //   is a member function with one parameter (which shall be of type
9579  //   int) or a non-member function with two parameters (the second
9580  //   of which shall be of type int), it defines the postfix
9581  //   increment operator ++ for objects of that type.
9582  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9583    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9584    bool ParamIsInt = false;
9585    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9586      ParamIsInt = BT->getKind() == BuiltinType::Int;
9587
9588    if (!ParamIsInt)
9589      return Diag(LastParam->getLocation(),
9590                  diag::err_operator_overload_post_incdec_must_be_int)
9591        << LastParam->getType() << (Op == OO_MinusMinus);
9592  }
9593
9594  return false;
9595}
9596
9597/// CheckLiteralOperatorDeclaration - Check whether the declaration
9598/// of this literal operator function is well-formed. If so, returns
9599/// false; otherwise, emits appropriate diagnostics and returns true.
9600bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9601  if (isa<CXXMethodDecl>(FnDecl)) {
9602    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9603      << FnDecl->getDeclName();
9604    return true;
9605  }
9606
9607  if (FnDecl->isExternC()) {
9608    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9609    return true;
9610  }
9611
9612  bool Valid = false;
9613
9614  // This might be the definition of a literal operator template.
9615  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9616  // This might be a specialization of a literal operator template.
9617  if (!TpDecl)
9618    TpDecl = FnDecl->getPrimaryTemplate();
9619
9620  // template <char...> type operator "" name() is the only valid template
9621  // signature, and the only valid signature with no parameters.
9622  if (TpDecl) {
9623    if (FnDecl->param_size() == 0) {
9624      // Must have only one template parameter
9625      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9626      if (Params->size() == 1) {
9627        NonTypeTemplateParmDecl *PmDecl =
9628          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9629
9630        // The template parameter must be a char parameter pack.
9631        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9632            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9633          Valid = true;
9634      }
9635    }
9636  } else if (FnDecl->param_size()) {
9637    // Check the first parameter
9638    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9639
9640    QualType T = (*Param)->getType().getUnqualifiedType();
9641
9642    // unsigned long long int, long double, and any character type are allowed
9643    // as the only parameters.
9644    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9645        Context.hasSameType(T, Context.LongDoubleTy) ||
9646        Context.hasSameType(T, Context.CharTy) ||
9647        Context.hasSameType(T, Context.WCharTy) ||
9648        Context.hasSameType(T, Context.Char16Ty) ||
9649        Context.hasSameType(T, Context.Char32Ty)) {
9650      if (++Param == FnDecl->param_end())
9651        Valid = true;
9652      goto FinishedParams;
9653    }
9654
9655    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9656    const PointerType *PT = T->getAs<PointerType>();
9657    if (!PT)
9658      goto FinishedParams;
9659    T = PT->getPointeeType();
9660    if (!T.isConstQualified() || T.isVolatileQualified())
9661      goto FinishedParams;
9662    T = T.getUnqualifiedType();
9663
9664    // Move on to the second parameter;
9665    ++Param;
9666
9667    // If there is no second parameter, the first must be a const char *
9668    if (Param == FnDecl->param_end()) {
9669      if (Context.hasSameType(T, Context.CharTy))
9670        Valid = true;
9671      goto FinishedParams;
9672    }
9673
9674    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9675    // are allowed as the first parameter to a two-parameter function
9676    if (!(Context.hasSameType(T, Context.CharTy) ||
9677          Context.hasSameType(T, Context.WCharTy) ||
9678          Context.hasSameType(T, Context.Char16Ty) ||
9679          Context.hasSameType(T, Context.Char32Ty)))
9680      goto FinishedParams;
9681
9682    // The second and final parameter must be an std::size_t
9683    T = (*Param)->getType().getUnqualifiedType();
9684    if (Context.hasSameType(T, Context.getSizeType()) &&
9685        ++Param == FnDecl->param_end())
9686      Valid = true;
9687  }
9688
9689  // FIXME: This diagnostic is absolutely terrible.
9690FinishedParams:
9691  if (!Valid) {
9692    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9693      << FnDecl->getDeclName();
9694    return true;
9695  }
9696
9697  // A parameter-declaration-clause containing a default argument is not
9698  // equivalent to any of the permitted forms.
9699  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9700                                    ParamEnd = FnDecl->param_end();
9701       Param != ParamEnd; ++Param) {
9702    if ((*Param)->hasDefaultArg()) {
9703      Diag((*Param)->getDefaultArgRange().getBegin(),
9704           diag::err_literal_operator_default_argument)
9705        << (*Param)->getDefaultArgRange();
9706      break;
9707    }
9708  }
9709
9710  StringRef LiteralName
9711    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9712  if (LiteralName[0] != '_') {
9713    // C++11 [usrlit.suffix]p1:
9714    //   Literal suffix identifiers that do not start with an underscore
9715    //   are reserved for future standardization.
9716    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9717  }
9718
9719  return false;
9720}
9721
9722/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9723/// linkage specification, including the language and (if present)
9724/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9725/// the location of the language string literal, which is provided
9726/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9727/// the '{' brace. Otherwise, this linkage specification does not
9728/// have any braces.
9729Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9730                                           SourceLocation LangLoc,
9731                                           StringRef Lang,
9732                                           SourceLocation LBraceLoc) {
9733  LinkageSpecDecl::LanguageIDs Language;
9734  if (Lang == "\"C\"")
9735    Language = LinkageSpecDecl::lang_c;
9736  else if (Lang == "\"C++\"")
9737    Language = LinkageSpecDecl::lang_cxx;
9738  else {
9739    Diag(LangLoc, diag::err_bad_language);
9740    return 0;
9741  }
9742
9743  // FIXME: Add all the various semantics of linkage specifications
9744
9745  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9746                                               ExternLoc, LangLoc, Language);
9747  CurContext->addDecl(D);
9748  PushDeclContext(S, D);
9749  return D;
9750}
9751
9752/// ActOnFinishLinkageSpecification - Complete the definition of
9753/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9754/// valid, it's the position of the closing '}' brace in a linkage
9755/// specification that uses braces.
9756Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9757                                            Decl *LinkageSpec,
9758                                            SourceLocation RBraceLoc) {
9759  if (LinkageSpec) {
9760    if (RBraceLoc.isValid()) {
9761      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9762      LSDecl->setRBraceLoc(RBraceLoc);
9763    }
9764    PopDeclContext();
9765  }
9766  return LinkageSpec;
9767}
9768
9769/// \brief Perform semantic analysis for the variable declaration that
9770/// occurs within a C++ catch clause, returning the newly-created
9771/// variable.
9772VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9773                                         TypeSourceInfo *TInfo,
9774                                         SourceLocation StartLoc,
9775                                         SourceLocation Loc,
9776                                         IdentifierInfo *Name) {
9777  bool Invalid = false;
9778  QualType ExDeclType = TInfo->getType();
9779
9780  // Arrays and functions decay.
9781  if (ExDeclType->isArrayType())
9782    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9783  else if (ExDeclType->isFunctionType())
9784    ExDeclType = Context.getPointerType(ExDeclType);
9785
9786  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9787  // The exception-declaration shall not denote a pointer or reference to an
9788  // incomplete type, other than [cv] void*.
9789  // N2844 forbids rvalue references.
9790  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9791    Diag(Loc, diag::err_catch_rvalue_ref);
9792    Invalid = true;
9793  }
9794
9795  QualType BaseType = ExDeclType;
9796  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9797  unsigned DK = diag::err_catch_incomplete;
9798  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9799    BaseType = Ptr->getPointeeType();
9800    Mode = 1;
9801    DK = diag::err_catch_incomplete_ptr;
9802  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9803    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9804    BaseType = Ref->getPointeeType();
9805    Mode = 2;
9806    DK = diag::err_catch_incomplete_ref;
9807  }
9808  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9809      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9810    Invalid = true;
9811
9812  if (!Invalid && !ExDeclType->isDependentType() &&
9813      RequireNonAbstractType(Loc, ExDeclType,
9814                             diag::err_abstract_type_in_decl,
9815                             AbstractVariableType))
9816    Invalid = true;
9817
9818  // Only the non-fragile NeXT runtime currently supports C++ catches
9819  // of ObjC types, and no runtime supports catching ObjC types by value.
9820  if (!Invalid && getLangOpts().ObjC1) {
9821    QualType T = ExDeclType;
9822    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9823      T = RT->getPointeeType();
9824
9825    if (T->isObjCObjectType()) {
9826      Diag(Loc, diag::err_objc_object_catch);
9827      Invalid = true;
9828    } else if (T->isObjCObjectPointerType()) {
9829      // FIXME: should this be a test for macosx-fragile specifically?
9830      if (getLangOpts().ObjCRuntime.isFragile())
9831        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9832    }
9833  }
9834
9835  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9836                                    ExDeclType, TInfo, SC_None, SC_None);
9837  ExDecl->setExceptionVariable(true);
9838
9839  // In ARC, infer 'retaining' for variables of retainable type.
9840  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9841    Invalid = true;
9842
9843  if (!Invalid && !ExDeclType->isDependentType()) {
9844    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9845      // C++ [except.handle]p16:
9846      //   The object declared in an exception-declaration or, if the
9847      //   exception-declaration does not specify a name, a temporary (12.2) is
9848      //   copy-initialized (8.5) from the exception object. [...]
9849      //   The object is destroyed when the handler exits, after the destruction
9850      //   of any automatic objects initialized within the handler.
9851      //
9852      // We just pretend to initialize the object with itself, then make sure
9853      // it can be destroyed later.
9854      QualType initType = ExDeclType;
9855
9856      InitializedEntity entity =
9857        InitializedEntity::InitializeVariable(ExDecl);
9858      InitializationKind initKind =
9859        InitializationKind::CreateCopy(Loc, SourceLocation());
9860
9861      Expr *opaqueValue =
9862        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9863      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9864      ExprResult result = sequence.Perform(*this, entity, initKind,
9865                                           MultiExprArg(&opaqueValue, 1));
9866      if (result.isInvalid())
9867        Invalid = true;
9868      else {
9869        // If the constructor used was non-trivial, set this as the
9870        // "initializer".
9871        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9872        if (!construct->getConstructor()->isTrivial()) {
9873          Expr *init = MaybeCreateExprWithCleanups(construct);
9874          ExDecl->setInit(init);
9875        }
9876
9877        // And make sure it's destructable.
9878        FinalizeVarWithDestructor(ExDecl, recordType);
9879      }
9880    }
9881  }
9882
9883  if (Invalid)
9884    ExDecl->setInvalidDecl();
9885
9886  return ExDecl;
9887}
9888
9889/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9890/// handler.
9891Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9892  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9893  bool Invalid = D.isInvalidType();
9894
9895  // Check for unexpanded parameter packs.
9896  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9897                                               UPPC_ExceptionType)) {
9898    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9899                                             D.getIdentifierLoc());
9900    Invalid = true;
9901  }
9902
9903  IdentifierInfo *II = D.getIdentifier();
9904  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9905                                             LookupOrdinaryName,
9906                                             ForRedeclaration)) {
9907    // The scope should be freshly made just for us. There is just no way
9908    // it contains any previous declaration.
9909    assert(!S->isDeclScope(PrevDecl));
9910    if (PrevDecl->isTemplateParameter()) {
9911      // Maybe we will complain about the shadowed template parameter.
9912      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9913      PrevDecl = 0;
9914    }
9915  }
9916
9917  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9918    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9919      << D.getCXXScopeSpec().getRange();
9920    Invalid = true;
9921  }
9922
9923  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9924                                              D.getLocStart(),
9925                                              D.getIdentifierLoc(),
9926                                              D.getIdentifier());
9927  if (Invalid)
9928    ExDecl->setInvalidDecl();
9929
9930  // Add the exception declaration into this scope.
9931  if (II)
9932    PushOnScopeChains(ExDecl, S);
9933  else
9934    CurContext->addDecl(ExDecl);
9935
9936  ProcessDeclAttributes(S, ExDecl, D);
9937  return ExDecl;
9938}
9939
9940Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9941                                         Expr *AssertExpr,
9942                                         Expr *AssertMessageExpr,
9943                                         SourceLocation RParenLoc) {
9944  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
9945
9946  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9947    return 0;
9948
9949  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
9950                                      AssertMessage, RParenLoc, false);
9951}
9952
9953Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9954                                         Expr *AssertExpr,
9955                                         StringLiteral *AssertMessage,
9956                                         SourceLocation RParenLoc,
9957                                         bool Failed) {
9958  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
9959      !Failed) {
9960    // In a static_assert-declaration, the constant-expression shall be a
9961    // constant expression that can be contextually converted to bool.
9962    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9963    if (Converted.isInvalid())
9964      Failed = true;
9965
9966    llvm::APSInt Cond;
9967    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
9968          diag::err_static_assert_expression_is_not_constant,
9969          /*AllowFold=*/false).isInvalid())
9970      Failed = true;
9971
9972    if (!Failed && !Cond) {
9973      llvm::SmallString<256> MsgBuffer;
9974      llvm::raw_svector_ostream Msg(MsgBuffer);
9975      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
9976      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9977        << Msg.str() << AssertExpr->getSourceRange();
9978      Failed = true;
9979    }
9980  }
9981
9982  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9983                                        AssertExpr, AssertMessage, RParenLoc,
9984                                        Failed);
9985
9986  CurContext->addDecl(Decl);
9987  return Decl;
9988}
9989
9990/// \brief Perform semantic analysis of the given friend type declaration.
9991///
9992/// \returns A friend declaration that.
9993FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
9994                                      SourceLocation FriendLoc,
9995                                      TypeSourceInfo *TSInfo) {
9996  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9997
9998  QualType T = TSInfo->getType();
9999  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10000
10001  // C++03 [class.friend]p2:
10002  //   An elaborated-type-specifier shall be used in a friend declaration
10003  //   for a class.*
10004  //
10005  //   * The class-key of the elaborated-type-specifier is required.
10006  if (!ActiveTemplateInstantiations.empty()) {
10007    // Do not complain about the form of friend template types during
10008    // template instantiation; we will already have complained when the
10009    // template was declared.
10010  } else if (!T->isElaboratedTypeSpecifier()) {
10011    // If we evaluated the type to a record type, suggest putting
10012    // a tag in front.
10013    if (const RecordType *RT = T->getAs<RecordType>()) {
10014      RecordDecl *RD = RT->getDecl();
10015
10016      std::string InsertionText = std::string(" ") + RD->getKindName();
10017
10018      Diag(TypeRange.getBegin(),
10019           getLangOpts().CPlusPlus0x ?
10020             diag::warn_cxx98_compat_unelaborated_friend_type :
10021             diag::ext_unelaborated_friend_type)
10022        << (unsigned) RD->getTagKind()
10023        << T
10024        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10025                                      InsertionText);
10026    } else {
10027      Diag(FriendLoc,
10028           getLangOpts().CPlusPlus0x ?
10029             diag::warn_cxx98_compat_nonclass_type_friend :
10030             diag::ext_nonclass_type_friend)
10031        << T
10032        << TypeRange;
10033    }
10034  } else if (T->getAs<EnumType>()) {
10035    Diag(FriendLoc,
10036         getLangOpts().CPlusPlus0x ?
10037           diag::warn_cxx98_compat_enum_friend :
10038           diag::ext_enum_friend)
10039      << T
10040      << TypeRange;
10041  }
10042
10043  // C++11 [class.friend]p3:
10044  //   A friend declaration that does not declare a function shall have one
10045  //   of the following forms:
10046  //     friend elaborated-type-specifier ;
10047  //     friend simple-type-specifier ;
10048  //     friend typename-specifier ;
10049  if (getLangOpts().CPlusPlus0x && LocStart != FriendLoc)
10050    Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10051
10052  //   If the type specifier in a friend declaration designates a (possibly
10053  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10054  //   the friend declaration is ignored.
10055  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10056}
10057
10058/// Handle a friend tag declaration where the scope specifier was
10059/// templated.
10060Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10061                                    unsigned TagSpec, SourceLocation TagLoc,
10062                                    CXXScopeSpec &SS,
10063                                    IdentifierInfo *Name, SourceLocation NameLoc,
10064                                    AttributeList *Attr,
10065                                    MultiTemplateParamsArg TempParamLists) {
10066  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10067
10068  bool isExplicitSpecialization = false;
10069  bool Invalid = false;
10070
10071  if (TemplateParameterList *TemplateParams
10072        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10073                                                  TempParamLists.data(),
10074                                                  TempParamLists.size(),
10075                                                  /*friend*/ true,
10076                                                  isExplicitSpecialization,
10077                                                  Invalid)) {
10078    if (TemplateParams->size() > 0) {
10079      // This is a declaration of a class template.
10080      if (Invalid)
10081        return 0;
10082
10083      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10084                                SS, Name, NameLoc, Attr,
10085                                TemplateParams, AS_public,
10086                                /*ModulePrivateLoc=*/SourceLocation(),
10087                                TempParamLists.size() - 1,
10088                                TempParamLists.data()).take();
10089    } else {
10090      // The "template<>" header is extraneous.
10091      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10092        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10093      isExplicitSpecialization = true;
10094    }
10095  }
10096
10097  if (Invalid) return 0;
10098
10099  bool isAllExplicitSpecializations = true;
10100  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10101    if (TempParamLists[I]->size()) {
10102      isAllExplicitSpecializations = false;
10103      break;
10104    }
10105  }
10106
10107  // FIXME: don't ignore attributes.
10108
10109  // If it's explicit specializations all the way down, just forget
10110  // about the template header and build an appropriate non-templated
10111  // friend.  TODO: for source fidelity, remember the headers.
10112  if (isAllExplicitSpecializations) {
10113    if (SS.isEmpty()) {
10114      bool Owned = false;
10115      bool IsDependent = false;
10116      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10117                      Attr, AS_public,
10118                      /*ModulePrivateLoc=*/SourceLocation(),
10119                      MultiTemplateParamsArg(), Owned, IsDependent,
10120                      /*ScopedEnumKWLoc=*/SourceLocation(),
10121                      /*ScopedEnumUsesClassTag=*/false,
10122                      /*UnderlyingType=*/TypeResult());
10123    }
10124
10125    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10126    ElaboratedTypeKeyword Keyword
10127      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10128    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10129                                   *Name, NameLoc);
10130    if (T.isNull())
10131      return 0;
10132
10133    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10134    if (isa<DependentNameType>(T)) {
10135      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10136      TL.setElaboratedKeywordLoc(TagLoc);
10137      TL.setQualifierLoc(QualifierLoc);
10138      TL.setNameLoc(NameLoc);
10139    } else {
10140      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10141      TL.setElaboratedKeywordLoc(TagLoc);
10142      TL.setQualifierLoc(QualifierLoc);
10143      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10144    }
10145
10146    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10147                                            TSI, FriendLoc);
10148    Friend->setAccess(AS_public);
10149    CurContext->addDecl(Friend);
10150    return Friend;
10151  }
10152
10153  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10154
10155
10156
10157  // Handle the case of a templated-scope friend class.  e.g.
10158  //   template <class T> class A<T>::B;
10159  // FIXME: we don't support these right now.
10160  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10161  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10162  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10163  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10164  TL.setElaboratedKeywordLoc(TagLoc);
10165  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10166  TL.setNameLoc(NameLoc);
10167
10168  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10169                                          TSI, FriendLoc);
10170  Friend->setAccess(AS_public);
10171  Friend->setUnsupportedFriend(true);
10172  CurContext->addDecl(Friend);
10173  return Friend;
10174}
10175
10176
10177/// Handle a friend type declaration.  This works in tandem with
10178/// ActOnTag.
10179///
10180/// Notes on friend class templates:
10181///
10182/// We generally treat friend class declarations as if they were
10183/// declaring a class.  So, for example, the elaborated type specifier
10184/// in a friend declaration is required to obey the restrictions of a
10185/// class-head (i.e. no typedefs in the scope chain), template
10186/// parameters are required to match up with simple template-ids, &c.
10187/// However, unlike when declaring a template specialization, it's
10188/// okay to refer to a template specialization without an empty
10189/// template parameter declaration, e.g.
10190///   friend class A<T>::B<unsigned>;
10191/// We permit this as a special case; if there are any template
10192/// parameters present at all, require proper matching, i.e.
10193///   template <> template \<class T> friend class A<int>::B;
10194Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10195                                MultiTemplateParamsArg TempParams) {
10196  SourceLocation Loc = DS.getLocStart();
10197
10198  assert(DS.isFriendSpecified());
10199  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10200
10201  // Try to convert the decl specifier to a type.  This works for
10202  // friend templates because ActOnTag never produces a ClassTemplateDecl
10203  // for a TUK_Friend.
10204  Declarator TheDeclarator(DS, Declarator::MemberContext);
10205  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10206  QualType T = TSI->getType();
10207  if (TheDeclarator.isInvalidType())
10208    return 0;
10209
10210  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10211    return 0;
10212
10213  // This is definitely an error in C++98.  It's probably meant to
10214  // be forbidden in C++0x, too, but the specification is just
10215  // poorly written.
10216  //
10217  // The problem is with declarations like the following:
10218  //   template <T> friend A<T>::foo;
10219  // where deciding whether a class C is a friend or not now hinges
10220  // on whether there exists an instantiation of A that causes
10221  // 'foo' to equal C.  There are restrictions on class-heads
10222  // (which we declare (by fiat) elaborated friend declarations to
10223  // be) that makes this tractable.
10224  //
10225  // FIXME: handle "template <> friend class A<T>;", which
10226  // is possibly well-formed?  Who even knows?
10227  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10228    Diag(Loc, diag::err_tagless_friend_type_template)
10229      << DS.getSourceRange();
10230    return 0;
10231  }
10232
10233  // C++98 [class.friend]p1: A friend of a class is a function
10234  //   or class that is not a member of the class . . .
10235  // This is fixed in DR77, which just barely didn't make the C++03
10236  // deadline.  It's also a very silly restriction that seriously
10237  // affects inner classes and which nobody else seems to implement;
10238  // thus we never diagnose it, not even in -pedantic.
10239  //
10240  // But note that we could warn about it: it's always useless to
10241  // friend one of your own members (it's not, however, worthless to
10242  // friend a member of an arbitrary specialization of your template).
10243
10244  Decl *D;
10245  if (unsigned NumTempParamLists = TempParams.size())
10246    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10247                                   NumTempParamLists,
10248                                   TempParams.data(),
10249                                   TSI,
10250                                   DS.getFriendSpecLoc());
10251  else
10252    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10253
10254  if (!D)
10255    return 0;
10256
10257  D->setAccess(AS_public);
10258  CurContext->addDecl(D);
10259
10260  return D;
10261}
10262
10263Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10264                                    MultiTemplateParamsArg TemplateParams) {
10265  const DeclSpec &DS = D.getDeclSpec();
10266
10267  assert(DS.isFriendSpecified());
10268  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10269
10270  SourceLocation Loc = D.getIdentifierLoc();
10271  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10272
10273  // C++ [class.friend]p1
10274  //   A friend of a class is a function or class....
10275  // Note that this sees through typedefs, which is intended.
10276  // It *doesn't* see through dependent types, which is correct
10277  // according to [temp.arg.type]p3:
10278  //   If a declaration acquires a function type through a
10279  //   type dependent on a template-parameter and this causes
10280  //   a declaration that does not use the syntactic form of a
10281  //   function declarator to have a function type, the program
10282  //   is ill-formed.
10283  if (!TInfo->getType()->isFunctionType()) {
10284    Diag(Loc, diag::err_unexpected_friend);
10285
10286    // It might be worthwhile to try to recover by creating an
10287    // appropriate declaration.
10288    return 0;
10289  }
10290
10291  // C++ [namespace.memdef]p3
10292  //  - If a friend declaration in a non-local class first declares a
10293  //    class or function, the friend class or function is a member
10294  //    of the innermost enclosing namespace.
10295  //  - The name of the friend is not found by simple name lookup
10296  //    until a matching declaration is provided in that namespace
10297  //    scope (either before or after the class declaration granting
10298  //    friendship).
10299  //  - If a friend function is called, its name may be found by the
10300  //    name lookup that considers functions from namespaces and
10301  //    classes associated with the types of the function arguments.
10302  //  - When looking for a prior declaration of a class or a function
10303  //    declared as a friend, scopes outside the innermost enclosing
10304  //    namespace scope are not considered.
10305
10306  CXXScopeSpec &SS = D.getCXXScopeSpec();
10307  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10308  DeclarationName Name = NameInfo.getName();
10309  assert(Name);
10310
10311  // Check for unexpanded parameter packs.
10312  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10313      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10314      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10315    return 0;
10316
10317  // The context we found the declaration in, or in which we should
10318  // create the declaration.
10319  DeclContext *DC;
10320  Scope *DCScope = S;
10321  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10322                        ForRedeclaration);
10323
10324  // FIXME: there are different rules in local classes
10325
10326  // There are four cases here.
10327  //   - There's no scope specifier, in which case we just go to the
10328  //     appropriate scope and look for a function or function template
10329  //     there as appropriate.
10330  // Recover from invalid scope qualifiers as if they just weren't there.
10331  if (SS.isInvalid() || !SS.isSet()) {
10332    // C++0x [namespace.memdef]p3:
10333    //   If the name in a friend declaration is neither qualified nor
10334    //   a template-id and the declaration is a function or an
10335    //   elaborated-type-specifier, the lookup to determine whether
10336    //   the entity has been previously declared shall not consider
10337    //   any scopes outside the innermost enclosing namespace.
10338    // C++0x [class.friend]p11:
10339    //   If a friend declaration appears in a local class and the name
10340    //   specified is an unqualified name, a prior declaration is
10341    //   looked up without considering scopes that are outside the
10342    //   innermost enclosing non-class scope. For a friend function
10343    //   declaration, if there is no prior declaration, the program is
10344    //   ill-formed.
10345    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10346    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10347
10348    // Find the appropriate context according to the above.
10349    DC = CurContext;
10350    while (true) {
10351      // Skip class contexts.  If someone can cite chapter and verse
10352      // for this behavior, that would be nice --- it's what GCC and
10353      // EDG do, and it seems like a reasonable intent, but the spec
10354      // really only says that checks for unqualified existing
10355      // declarations should stop at the nearest enclosing namespace,
10356      // not that they should only consider the nearest enclosing
10357      // namespace.
10358      while (DC->isRecord() || DC->isTransparentContext())
10359        DC = DC->getParent();
10360
10361      LookupQualifiedName(Previous, DC);
10362
10363      // TODO: decide what we think about using declarations.
10364      if (isLocal || !Previous.empty())
10365        break;
10366
10367      if (isTemplateId) {
10368        if (isa<TranslationUnitDecl>(DC)) break;
10369      } else {
10370        if (DC->isFileContext()) break;
10371      }
10372      DC = DC->getParent();
10373    }
10374
10375    // C++ [class.friend]p1: A friend of a class is a function or
10376    //   class that is not a member of the class . . .
10377    // C++11 changes this for both friend types and functions.
10378    // Most C++ 98 compilers do seem to give an error here, so
10379    // we do, too.
10380    if (!Previous.empty() && DC->Equals(CurContext))
10381      Diag(DS.getFriendSpecLoc(),
10382           getLangOpts().CPlusPlus0x ?
10383             diag::warn_cxx98_compat_friend_is_member :
10384             diag::err_friend_is_member);
10385
10386    DCScope = getScopeForDeclContext(S, DC);
10387
10388    // C++ [class.friend]p6:
10389    //   A function can be defined in a friend declaration of a class if and
10390    //   only if the class is a non-local class (9.8), the function name is
10391    //   unqualified, and the function has namespace scope.
10392    if (isLocal && D.isFunctionDefinition()) {
10393      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10394    }
10395
10396  //   - There's a non-dependent scope specifier, in which case we
10397  //     compute it and do a previous lookup there for a function
10398  //     or function template.
10399  } else if (!SS.getScopeRep()->isDependent()) {
10400    DC = computeDeclContext(SS);
10401    if (!DC) return 0;
10402
10403    if (RequireCompleteDeclContext(SS, DC)) return 0;
10404
10405    LookupQualifiedName(Previous, DC);
10406
10407    // Ignore things found implicitly in the wrong scope.
10408    // TODO: better diagnostics for this case.  Suggesting the right
10409    // qualified scope would be nice...
10410    LookupResult::Filter F = Previous.makeFilter();
10411    while (F.hasNext()) {
10412      NamedDecl *D = F.next();
10413      if (!DC->InEnclosingNamespaceSetOf(
10414              D->getDeclContext()->getRedeclContext()))
10415        F.erase();
10416    }
10417    F.done();
10418
10419    if (Previous.empty()) {
10420      D.setInvalidType();
10421      Diag(Loc, diag::err_qualified_friend_not_found)
10422          << Name << TInfo->getType();
10423      return 0;
10424    }
10425
10426    // C++ [class.friend]p1: A friend of a class is a function or
10427    //   class that is not a member of the class . . .
10428    if (DC->Equals(CurContext))
10429      Diag(DS.getFriendSpecLoc(),
10430           getLangOpts().CPlusPlus0x ?
10431             diag::warn_cxx98_compat_friend_is_member :
10432             diag::err_friend_is_member);
10433
10434    if (D.isFunctionDefinition()) {
10435      // C++ [class.friend]p6:
10436      //   A function can be defined in a friend declaration of a class if and
10437      //   only if the class is a non-local class (9.8), the function name is
10438      //   unqualified, and the function has namespace scope.
10439      SemaDiagnosticBuilder DB
10440        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10441
10442      DB << SS.getScopeRep();
10443      if (DC->isFileContext())
10444        DB << FixItHint::CreateRemoval(SS.getRange());
10445      SS.clear();
10446    }
10447
10448  //   - There's a scope specifier that does not match any template
10449  //     parameter lists, in which case we use some arbitrary context,
10450  //     create a method or method template, and wait for instantiation.
10451  //   - There's a scope specifier that does match some template
10452  //     parameter lists, which we don't handle right now.
10453  } else {
10454    if (D.isFunctionDefinition()) {
10455      // C++ [class.friend]p6:
10456      //   A function can be defined in a friend declaration of a class if and
10457      //   only if the class is a non-local class (9.8), the function name is
10458      //   unqualified, and the function has namespace scope.
10459      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10460        << SS.getScopeRep();
10461    }
10462
10463    DC = CurContext;
10464    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10465  }
10466
10467  if (!DC->isRecord()) {
10468    // This implies that it has to be an operator or function.
10469    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10470        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10471        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10472      Diag(Loc, diag::err_introducing_special_friend) <<
10473        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10474         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10475      return 0;
10476    }
10477  }
10478
10479  // FIXME: This is an egregious hack to cope with cases where the scope stack
10480  // does not contain the declaration context, i.e., in an out-of-line
10481  // definition of a class.
10482  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10483  if (!DCScope) {
10484    FakeDCScope.setEntity(DC);
10485    DCScope = &FakeDCScope;
10486  }
10487
10488  bool AddToScope = true;
10489  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10490                                          TemplateParams, AddToScope);
10491  if (!ND) return 0;
10492
10493  assert(ND->getDeclContext() == DC);
10494  assert(ND->getLexicalDeclContext() == CurContext);
10495
10496  // Add the function declaration to the appropriate lookup tables,
10497  // adjusting the redeclarations list as necessary.  We don't
10498  // want to do this yet if the friending class is dependent.
10499  //
10500  // Also update the scope-based lookup if the target context's
10501  // lookup context is in lexical scope.
10502  if (!CurContext->isDependentContext()) {
10503    DC = DC->getRedeclContext();
10504    DC->makeDeclVisibleInContext(ND);
10505    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10506      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10507  }
10508
10509  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10510                                       D.getIdentifierLoc(), ND,
10511                                       DS.getFriendSpecLoc());
10512  FrD->setAccess(AS_public);
10513  CurContext->addDecl(FrD);
10514
10515  if (ND->isInvalidDecl()) {
10516    FrD->setInvalidDecl();
10517  } else {
10518    if (DC->isRecord()) CheckFriendAccess(ND);
10519
10520    FunctionDecl *FD;
10521    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10522      FD = FTD->getTemplatedDecl();
10523    else
10524      FD = cast<FunctionDecl>(ND);
10525
10526    // Mark templated-scope function declarations as unsupported.
10527    if (FD->getNumTemplateParameterLists())
10528      FrD->setUnsupportedFriend(true);
10529  }
10530
10531  return ND;
10532}
10533
10534void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10535  AdjustDeclIfTemplate(Dcl);
10536
10537  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10538  if (!Fn) {
10539    Diag(DelLoc, diag::err_deleted_non_function);
10540    return;
10541  }
10542  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10543    // Don't consider the implicit declaration we generate for explicit
10544    // specializations. FIXME: Do not generate these implicit declarations.
10545    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
10546        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
10547      Diag(DelLoc, diag::err_deleted_decl_not_first);
10548      Diag(Prev->getLocation(), diag::note_previous_declaration);
10549    }
10550    // If the declaration wasn't the first, we delete the function anyway for
10551    // recovery.
10552  }
10553  Fn->setDeletedAsWritten();
10554
10555  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10556  if (!MD)
10557    return;
10558
10559  // A deleted special member function is trivial if the corresponding
10560  // implicitly-declared function would have been.
10561  switch (getSpecialMember(MD)) {
10562  case CXXInvalid:
10563    break;
10564  case CXXDefaultConstructor:
10565    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10566    break;
10567  case CXXCopyConstructor:
10568    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10569    break;
10570  case CXXMoveConstructor:
10571    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10572    break;
10573  case CXXCopyAssignment:
10574    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10575    break;
10576  case CXXMoveAssignment:
10577    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10578    break;
10579  case CXXDestructor:
10580    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10581    break;
10582  }
10583}
10584
10585void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10586  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10587
10588  if (MD) {
10589    if (MD->getParent()->isDependentType()) {
10590      MD->setDefaulted();
10591      MD->setExplicitlyDefaulted();
10592      return;
10593    }
10594
10595    CXXSpecialMember Member = getSpecialMember(MD);
10596    if (Member == CXXInvalid) {
10597      Diag(DefaultLoc, diag::err_default_special_members);
10598      return;
10599    }
10600
10601    MD->setDefaulted();
10602    MD->setExplicitlyDefaulted();
10603
10604    // If this definition appears within the record, do the checking when
10605    // the record is complete.
10606    const FunctionDecl *Primary = MD;
10607    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
10608      // Find the uninstantiated declaration that actually had the '= default'
10609      // on it.
10610      Pattern->isDefined(Primary);
10611
10612    if (Primary == Primary->getCanonicalDecl())
10613      return;
10614
10615    CheckExplicitlyDefaultedSpecialMember(MD);
10616
10617    switch (Member) {
10618    case CXXDefaultConstructor: {
10619      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10620      if (!CD->isInvalidDecl())
10621        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10622      break;
10623    }
10624
10625    case CXXCopyConstructor: {
10626      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10627      if (!CD->isInvalidDecl())
10628        DefineImplicitCopyConstructor(DefaultLoc, CD);
10629      break;
10630    }
10631
10632    case CXXCopyAssignment: {
10633      if (!MD->isInvalidDecl())
10634        DefineImplicitCopyAssignment(DefaultLoc, MD);
10635      break;
10636    }
10637
10638    case CXXDestructor: {
10639      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10640      if (!DD->isInvalidDecl())
10641        DefineImplicitDestructor(DefaultLoc, DD);
10642      break;
10643    }
10644
10645    case CXXMoveConstructor: {
10646      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10647      if (!CD->isInvalidDecl())
10648        DefineImplicitMoveConstructor(DefaultLoc, CD);
10649      break;
10650    }
10651
10652    case CXXMoveAssignment: {
10653      if (!MD->isInvalidDecl())
10654        DefineImplicitMoveAssignment(DefaultLoc, MD);
10655      break;
10656    }
10657
10658    case CXXInvalid:
10659      llvm_unreachable("Invalid special member.");
10660    }
10661  } else {
10662    Diag(DefaultLoc, diag::err_default_special_members);
10663  }
10664}
10665
10666static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10667  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10668    Stmt *SubStmt = *CI;
10669    if (!SubStmt)
10670      continue;
10671    if (isa<ReturnStmt>(SubStmt))
10672      Self.Diag(SubStmt->getLocStart(),
10673           diag::err_return_in_constructor_handler);
10674    if (!isa<Expr>(SubStmt))
10675      SearchForReturnInStmt(Self, SubStmt);
10676  }
10677}
10678
10679void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10680  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10681    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10682    SearchForReturnInStmt(*this, Handler);
10683  }
10684}
10685
10686bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10687                                             const CXXMethodDecl *Old) {
10688  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10689  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10690
10691  if (Context.hasSameType(NewTy, OldTy) ||
10692      NewTy->isDependentType() || OldTy->isDependentType())
10693    return false;
10694
10695  // Check if the return types are covariant
10696  QualType NewClassTy, OldClassTy;
10697
10698  /// Both types must be pointers or references to classes.
10699  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10700    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10701      NewClassTy = NewPT->getPointeeType();
10702      OldClassTy = OldPT->getPointeeType();
10703    }
10704  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10705    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10706      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10707        NewClassTy = NewRT->getPointeeType();
10708        OldClassTy = OldRT->getPointeeType();
10709      }
10710    }
10711  }
10712
10713  // The return types aren't either both pointers or references to a class type.
10714  if (NewClassTy.isNull()) {
10715    Diag(New->getLocation(),
10716         diag::err_different_return_type_for_overriding_virtual_function)
10717      << New->getDeclName() << NewTy << OldTy;
10718    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10719
10720    return true;
10721  }
10722
10723  // C++ [class.virtual]p6:
10724  //   If the return type of D::f differs from the return type of B::f, the
10725  //   class type in the return type of D::f shall be complete at the point of
10726  //   declaration of D::f or shall be the class type D.
10727  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10728    if (!RT->isBeingDefined() &&
10729        RequireCompleteType(New->getLocation(), NewClassTy,
10730                            diag::err_covariant_return_incomplete,
10731                            New->getDeclName()))
10732    return true;
10733  }
10734
10735  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10736    // Check if the new class derives from the old class.
10737    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10738      Diag(New->getLocation(),
10739           diag::err_covariant_return_not_derived)
10740      << New->getDeclName() << NewTy << OldTy;
10741      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10742      return true;
10743    }
10744
10745    // Check if we the conversion from derived to base is valid.
10746    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10747                    diag::err_covariant_return_inaccessible_base,
10748                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10749                    // FIXME: Should this point to the return type?
10750                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10751      // FIXME: this note won't trigger for delayed access control
10752      // diagnostics, and it's impossible to get an undelayed error
10753      // here from access control during the original parse because
10754      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10755      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10756      return true;
10757    }
10758  }
10759
10760  // The qualifiers of the return types must be the same.
10761  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10762    Diag(New->getLocation(),
10763         diag::err_covariant_return_type_different_qualifications)
10764    << New->getDeclName() << NewTy << OldTy;
10765    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10766    return true;
10767  };
10768
10769
10770  // The new class type must have the same or less qualifiers as the old type.
10771  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10772    Diag(New->getLocation(),
10773         diag::err_covariant_return_type_class_type_more_qualified)
10774    << New->getDeclName() << NewTy << OldTy;
10775    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10776    return true;
10777  };
10778
10779  return false;
10780}
10781
10782/// \brief Mark the given method pure.
10783///
10784/// \param Method the method to be marked pure.
10785///
10786/// \param InitRange the source range that covers the "0" initializer.
10787bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10788  SourceLocation EndLoc = InitRange.getEnd();
10789  if (EndLoc.isValid())
10790    Method->setRangeEnd(EndLoc);
10791
10792  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10793    Method->setPure();
10794    return false;
10795  }
10796
10797  if (!Method->isInvalidDecl())
10798    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10799      << Method->getDeclName() << InitRange;
10800  return true;
10801}
10802
10803/// \brief Determine whether the given declaration is a static data member.
10804static bool isStaticDataMember(Decl *D) {
10805  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10806  if (!Var)
10807    return false;
10808
10809  return Var->isStaticDataMember();
10810}
10811/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10812/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10813/// is a fresh scope pushed for just this purpose.
10814///
10815/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10816/// static data member of class X, names should be looked up in the scope of
10817/// class X.
10818void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10819  // If there is no declaration, there was an error parsing it.
10820  if (D == 0 || D->isInvalidDecl()) return;
10821
10822  // We should only get called for declarations with scope specifiers, like:
10823  //   int foo::bar;
10824  assert(D->isOutOfLine());
10825  EnterDeclaratorContext(S, D->getDeclContext());
10826
10827  // If we are parsing the initializer for a static data member, push a
10828  // new expression evaluation context that is associated with this static
10829  // data member.
10830  if (isStaticDataMember(D))
10831    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10832}
10833
10834/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10835/// initializer for the out-of-line declaration 'D'.
10836void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10837  // If there is no declaration, there was an error parsing it.
10838  if (D == 0 || D->isInvalidDecl()) return;
10839
10840  if (isStaticDataMember(D))
10841    PopExpressionEvaluationContext();
10842
10843  assert(D->isOutOfLine());
10844  ExitDeclaratorContext(S);
10845}
10846
10847/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10848/// C++ if/switch/while/for statement.
10849/// e.g: "if (int x = f()) {...}"
10850DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10851  // C++ 6.4p2:
10852  // The declarator shall not specify a function or an array.
10853  // The type-specifier-seq shall not contain typedef and shall not declare a
10854  // new class or enumeration.
10855  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10856         "Parser allowed 'typedef' as storage class of condition decl.");
10857
10858  Decl *Dcl = ActOnDeclarator(S, D);
10859  if (!Dcl)
10860    return true;
10861
10862  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10863    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10864      << D.getSourceRange();
10865    return true;
10866  }
10867
10868  return Dcl;
10869}
10870
10871void Sema::LoadExternalVTableUses() {
10872  if (!ExternalSource)
10873    return;
10874
10875  SmallVector<ExternalVTableUse, 4> VTables;
10876  ExternalSource->ReadUsedVTables(VTables);
10877  SmallVector<VTableUse, 4> NewUses;
10878  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10879    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10880      = VTablesUsed.find(VTables[I].Record);
10881    // Even if a definition wasn't required before, it may be required now.
10882    if (Pos != VTablesUsed.end()) {
10883      if (!Pos->second && VTables[I].DefinitionRequired)
10884        Pos->second = true;
10885      continue;
10886    }
10887
10888    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10889    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10890  }
10891
10892  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10893}
10894
10895void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10896                          bool DefinitionRequired) {
10897  // Ignore any vtable uses in unevaluated operands or for classes that do
10898  // not have a vtable.
10899  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10900      CurContext->isDependentContext() ||
10901      ExprEvalContexts.back().Context == Unevaluated)
10902    return;
10903
10904  // Try to insert this class into the map.
10905  LoadExternalVTableUses();
10906  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10907  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10908    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10909  if (!Pos.second) {
10910    // If we already had an entry, check to see if we are promoting this vtable
10911    // to required a definition. If so, we need to reappend to the VTableUses
10912    // list, since we may have already processed the first entry.
10913    if (DefinitionRequired && !Pos.first->second) {
10914      Pos.first->second = true;
10915    } else {
10916      // Otherwise, we can early exit.
10917      return;
10918    }
10919  }
10920
10921  // Local classes need to have their virtual members marked
10922  // immediately. For all other classes, we mark their virtual members
10923  // at the end of the translation unit.
10924  if (Class->isLocalClass())
10925    MarkVirtualMembersReferenced(Loc, Class);
10926  else
10927    VTableUses.push_back(std::make_pair(Class, Loc));
10928}
10929
10930bool Sema::DefineUsedVTables() {
10931  LoadExternalVTableUses();
10932  if (VTableUses.empty())
10933    return false;
10934
10935  // Note: The VTableUses vector could grow as a result of marking
10936  // the members of a class as "used", so we check the size each
10937  // time through the loop and prefer indices (which are stable) to
10938  // iterators (which are not).
10939  bool DefinedAnything = false;
10940  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10941    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10942    if (!Class)
10943      continue;
10944
10945    SourceLocation Loc = VTableUses[I].second;
10946
10947    bool DefineVTable = true;
10948
10949    // If this class has a key function, but that key function is
10950    // defined in another translation unit, we don't need to emit the
10951    // vtable even though we're using it.
10952    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10953    if (KeyFunction && !KeyFunction->hasBody()) {
10954      switch (KeyFunction->getTemplateSpecializationKind()) {
10955      case TSK_Undeclared:
10956      case TSK_ExplicitSpecialization:
10957      case TSK_ExplicitInstantiationDeclaration:
10958        // The key function is in another translation unit.
10959        DefineVTable = false;
10960        break;
10961
10962      case TSK_ExplicitInstantiationDefinition:
10963      case TSK_ImplicitInstantiation:
10964        // We will be instantiating the key function.
10965        break;
10966      }
10967    } else if (!KeyFunction) {
10968      // If we have a class with no key function that is the subject
10969      // of an explicit instantiation declaration, suppress the
10970      // vtable; it will live with the explicit instantiation
10971      // definition.
10972      bool IsExplicitInstantiationDeclaration
10973        = Class->getTemplateSpecializationKind()
10974                                      == TSK_ExplicitInstantiationDeclaration;
10975      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10976                                 REnd = Class->redecls_end();
10977           R != REnd; ++R) {
10978        TemplateSpecializationKind TSK
10979          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10980        if (TSK == TSK_ExplicitInstantiationDeclaration)
10981          IsExplicitInstantiationDeclaration = true;
10982        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10983          IsExplicitInstantiationDeclaration = false;
10984          break;
10985        }
10986      }
10987
10988      if (IsExplicitInstantiationDeclaration)
10989        DefineVTable = false;
10990    }
10991
10992    // The exception specifications for all virtual members may be needed even
10993    // if we are not providing an authoritative form of the vtable in this TU.
10994    // We may choose to emit it available_externally anyway.
10995    if (!DefineVTable) {
10996      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
10997      continue;
10998    }
10999
11000    // Mark all of the virtual members of this class as referenced, so
11001    // that we can build a vtable. Then, tell the AST consumer that a
11002    // vtable for this class is required.
11003    DefinedAnything = true;
11004    MarkVirtualMembersReferenced(Loc, Class);
11005    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11006    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11007
11008    // Optionally warn if we're emitting a weak vtable.
11009    if (Class->getLinkage() == ExternalLinkage &&
11010        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11011      const FunctionDecl *KeyFunctionDef = 0;
11012      if (!KeyFunction ||
11013          (KeyFunction->hasBody(KeyFunctionDef) &&
11014           KeyFunctionDef->isInlined()))
11015        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11016             TSK_ExplicitInstantiationDefinition
11017             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11018          << Class;
11019    }
11020  }
11021  VTableUses.clear();
11022
11023  return DefinedAnything;
11024}
11025
11026void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11027                                                 const CXXRecordDecl *RD) {
11028  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11029                                      E = RD->method_end(); I != E; ++I)
11030    if ((*I)->isVirtual() && !(*I)->isPure())
11031      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11032}
11033
11034void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11035                                        const CXXRecordDecl *RD) {
11036  // Mark all functions which will appear in RD's vtable as used.
11037  CXXFinalOverriderMap FinalOverriders;
11038  RD->getFinalOverriders(FinalOverriders);
11039  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11040                                            E = FinalOverriders.end();
11041       I != E; ++I) {
11042    for (OverridingMethods::const_iterator OI = I->second.begin(),
11043                                           OE = I->second.end();
11044         OI != OE; ++OI) {
11045      assert(OI->second.size() > 0 && "no final overrider");
11046      CXXMethodDecl *Overrider = OI->second.front().Method;
11047
11048      // C++ [basic.def.odr]p2:
11049      //   [...] A virtual member function is used if it is not pure. [...]
11050      if (!Overrider->isPure())
11051        MarkFunctionReferenced(Loc, Overrider);
11052    }
11053  }
11054
11055  // Only classes that have virtual bases need a VTT.
11056  if (RD->getNumVBases() == 0)
11057    return;
11058
11059  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11060           e = RD->bases_end(); i != e; ++i) {
11061    const CXXRecordDecl *Base =
11062        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11063    if (Base->getNumVBases() == 0)
11064      continue;
11065    MarkVirtualMembersReferenced(Loc, Base);
11066  }
11067}
11068
11069/// SetIvarInitializers - This routine builds initialization ASTs for the
11070/// Objective-C implementation whose ivars need be initialized.
11071void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11072  if (!getLangOpts().CPlusPlus)
11073    return;
11074  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11075    SmallVector<ObjCIvarDecl*, 8> ivars;
11076    CollectIvarsToConstructOrDestruct(OID, ivars);
11077    if (ivars.empty())
11078      return;
11079    SmallVector<CXXCtorInitializer*, 32> AllToInit;
11080    for (unsigned i = 0; i < ivars.size(); i++) {
11081      FieldDecl *Field = ivars[i];
11082      if (Field->isInvalidDecl())
11083        continue;
11084
11085      CXXCtorInitializer *Member;
11086      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
11087      InitializationKind InitKind =
11088        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
11089
11090      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
11091      ExprResult MemberInit =
11092        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
11093      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
11094      // Note, MemberInit could actually come back empty if no initialization
11095      // is required (e.g., because it would call a trivial default constructor)
11096      if (!MemberInit.get() || MemberInit.isInvalid())
11097        continue;
11098
11099      Member =
11100        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
11101                                         SourceLocation(),
11102                                         MemberInit.takeAs<Expr>(),
11103                                         SourceLocation());
11104      AllToInit.push_back(Member);
11105
11106      // Be sure that the destructor is accessible and is marked as referenced.
11107      if (const RecordType *RecordTy
11108                  = Context.getBaseElementType(Field->getType())
11109                                                        ->getAs<RecordType>()) {
11110                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11111        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11112          MarkFunctionReferenced(Field->getLocation(), Destructor);
11113          CheckDestructorAccess(Field->getLocation(), Destructor,
11114                            PDiag(diag::err_access_dtor_ivar)
11115                              << Context.getBaseElementType(Field->getType()));
11116        }
11117      }
11118    }
11119    ObjCImplementation->setIvarInitializers(Context,
11120                                            AllToInit.data(), AllToInit.size());
11121  }
11122}
11123
11124static
11125void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11126                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11127                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11128                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11129                           Sema &S) {
11130  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11131                                                   CE = Current.end();
11132  if (Ctor->isInvalidDecl())
11133    return;
11134
11135  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
11136
11137  // Target may not be determinable yet, for instance if this is a dependent
11138  // call in an uninstantiated template.
11139  if (Target) {
11140    const FunctionDecl *FNTarget = 0;
11141    (void)Target->hasBody(FNTarget);
11142    Target = const_cast<CXXConstructorDecl*>(
11143      cast_or_null<CXXConstructorDecl>(FNTarget));
11144  }
11145
11146  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11147                     // Avoid dereferencing a null pointer here.
11148                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11149
11150  if (!Current.insert(Canonical))
11151    return;
11152
11153  // We know that beyond here, we aren't chaining into a cycle.
11154  if (!Target || !Target->isDelegatingConstructor() ||
11155      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11156    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11157      Valid.insert(*CI);
11158    Current.clear();
11159  // We've hit a cycle.
11160  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11161             Current.count(TCanonical)) {
11162    // If we haven't diagnosed this cycle yet, do so now.
11163    if (!Invalid.count(TCanonical)) {
11164      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11165             diag::warn_delegating_ctor_cycle)
11166        << Ctor;
11167
11168      // Don't add a note for a function delegating directly to itself.
11169      if (TCanonical != Canonical)
11170        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11171
11172      CXXConstructorDecl *C = Target;
11173      while (C->getCanonicalDecl() != Canonical) {
11174        const FunctionDecl *FNTarget = 0;
11175        (void)C->getTargetConstructor()->hasBody(FNTarget);
11176        assert(FNTarget && "Ctor cycle through bodiless function");
11177
11178        C = const_cast<CXXConstructorDecl*>(
11179          cast<CXXConstructorDecl>(FNTarget));
11180        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11181      }
11182    }
11183
11184    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11185      Invalid.insert(*CI);
11186    Current.clear();
11187  } else {
11188    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11189  }
11190}
11191
11192
11193void Sema::CheckDelegatingCtorCycles() {
11194  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11195
11196  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11197                                                   CE = Current.end();
11198
11199  for (DelegatingCtorDeclsType::iterator
11200         I = DelegatingCtorDecls.begin(ExternalSource),
11201         E = DelegatingCtorDecls.end();
11202       I != E; ++I)
11203    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11204
11205  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11206    (*CI)->setInvalidDecl();
11207}
11208
11209namespace {
11210  /// \brief AST visitor that finds references to the 'this' expression.
11211  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11212    Sema &S;
11213
11214  public:
11215    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11216
11217    bool VisitCXXThisExpr(CXXThisExpr *E) {
11218      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11219        << E->isImplicit();
11220      return false;
11221    }
11222  };
11223}
11224
11225bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11226  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11227  if (!TSInfo)
11228    return false;
11229
11230  TypeLoc TL = TSInfo->getTypeLoc();
11231  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11232  if (!ProtoTL)
11233    return false;
11234
11235  // C++11 [expr.prim.general]p3:
11236  //   [The expression this] shall not appear before the optional
11237  //   cv-qualifier-seq and it shall not appear within the declaration of a
11238  //   static member function (although its type and value category are defined
11239  //   within a static member function as they are within a non-static member
11240  //   function). [ Note: this is because declaration matching does not occur
11241  //  until the complete declarator is known. - end note ]
11242  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11243  FindCXXThisExpr Finder(*this);
11244
11245  // If the return type came after the cv-qualifier-seq, check it now.
11246  if (Proto->hasTrailingReturn() &&
11247      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11248    return true;
11249
11250  // Check the exception specification.
11251  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11252    return true;
11253
11254  return checkThisInStaticMemberFunctionAttributes(Method);
11255}
11256
11257bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11258  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11259  if (!TSInfo)
11260    return false;
11261
11262  TypeLoc TL = TSInfo->getTypeLoc();
11263  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11264  if (!ProtoTL)
11265    return false;
11266
11267  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11268  FindCXXThisExpr Finder(*this);
11269
11270  switch (Proto->getExceptionSpecType()) {
11271  case EST_Uninstantiated:
11272  case EST_Unevaluated:
11273  case EST_BasicNoexcept:
11274  case EST_DynamicNone:
11275  case EST_MSAny:
11276  case EST_None:
11277    break;
11278
11279  case EST_ComputedNoexcept:
11280    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11281      return true;
11282
11283  case EST_Dynamic:
11284    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11285         EEnd = Proto->exception_end();
11286         E != EEnd; ++E) {
11287      if (!Finder.TraverseType(*E))
11288        return true;
11289    }
11290    break;
11291  }
11292
11293  return false;
11294}
11295
11296bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11297  FindCXXThisExpr Finder(*this);
11298
11299  // Check attributes.
11300  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11301       A != AEnd; ++A) {
11302    // FIXME: This should be emitted by tblgen.
11303    Expr *Arg = 0;
11304    ArrayRef<Expr *> Args;
11305    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11306      Arg = G->getArg();
11307    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11308      Arg = G->getArg();
11309    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11310      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11311    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11312      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11313    else if (ExclusiveLockFunctionAttr *ELF
11314               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11315      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11316    else if (SharedLockFunctionAttr *SLF
11317               = dyn_cast<SharedLockFunctionAttr>(*A))
11318      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11319    else if (ExclusiveTrylockFunctionAttr *ETLF
11320               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11321      Arg = ETLF->getSuccessValue();
11322      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11323    } else if (SharedTrylockFunctionAttr *STLF
11324                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11325      Arg = STLF->getSuccessValue();
11326      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11327    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11328      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11329    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11330      Arg = LR->getArg();
11331    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11332      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11333    else if (ExclusiveLocksRequiredAttr *ELR
11334               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11335      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11336    else if (SharedLocksRequiredAttr *SLR
11337               = dyn_cast<SharedLocksRequiredAttr>(*A))
11338      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11339
11340    if (Arg && !Finder.TraverseStmt(Arg))
11341      return true;
11342
11343    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11344      if (!Finder.TraverseStmt(Args[I]))
11345        return true;
11346    }
11347  }
11348
11349  return false;
11350}
11351
11352void
11353Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11354                                  ArrayRef<ParsedType> DynamicExceptions,
11355                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11356                                  Expr *NoexceptExpr,
11357                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11358                                  FunctionProtoType::ExtProtoInfo &EPI) {
11359  Exceptions.clear();
11360  EPI.ExceptionSpecType = EST;
11361  if (EST == EST_Dynamic) {
11362    Exceptions.reserve(DynamicExceptions.size());
11363    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11364      // FIXME: Preserve type source info.
11365      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11366
11367      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11368      collectUnexpandedParameterPacks(ET, Unexpanded);
11369      if (!Unexpanded.empty()) {
11370        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11371                                         UPPC_ExceptionType,
11372                                         Unexpanded);
11373        continue;
11374      }
11375
11376      // Check that the type is valid for an exception spec, and
11377      // drop it if not.
11378      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11379        Exceptions.push_back(ET);
11380    }
11381    EPI.NumExceptions = Exceptions.size();
11382    EPI.Exceptions = Exceptions.data();
11383    return;
11384  }
11385
11386  if (EST == EST_ComputedNoexcept) {
11387    // If an error occurred, there's no expression here.
11388    if (NoexceptExpr) {
11389      assert((NoexceptExpr->isTypeDependent() ||
11390              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11391              Context.BoolTy) &&
11392             "Parser should have made sure that the expression is boolean");
11393      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11394        EPI.ExceptionSpecType = EST_BasicNoexcept;
11395        return;
11396      }
11397
11398      if (!NoexceptExpr->isValueDependent())
11399        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11400                         diag::err_noexcept_needs_constant_expression,
11401                         /*AllowFold*/ false).take();
11402      EPI.NoexceptExpr = NoexceptExpr;
11403    }
11404    return;
11405  }
11406}
11407
11408/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11409Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11410  // Implicitly declared functions (e.g. copy constructors) are
11411  // __host__ __device__
11412  if (D->isImplicit())
11413    return CFT_HostDevice;
11414
11415  if (D->hasAttr<CUDAGlobalAttr>())
11416    return CFT_Global;
11417
11418  if (D->hasAttr<CUDADeviceAttr>()) {
11419    if (D->hasAttr<CUDAHostAttr>())
11420      return CFT_HostDevice;
11421    else
11422      return CFT_Device;
11423  }
11424
11425  return CFT_Host;
11426}
11427
11428bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11429                           CUDAFunctionTarget CalleeTarget) {
11430  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11431  // Callable from the device only."
11432  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11433    return true;
11434
11435  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11436  // Callable from the host only."
11437  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11438  // Callable from the host only."
11439  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11440      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11441    return true;
11442
11443  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11444    return true;
11445
11446  return false;
11447}
11448