1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include <map>
43#include <set>
44
45using namespace clang;
46
47//===----------------------------------------------------------------------===//
48// CheckDefaultArgumentVisitor
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53  /// the default argument of a parameter to determine whether it
54  /// contains any ill-formed subexpressions. For example, this will
55  /// diagnose the use of local variables or parameters within the
56  /// default argument expression.
57  class CheckDefaultArgumentVisitor
58    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59    Expr *DefaultArg;
60    Sema *S;
61
62  public:
63    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64      : DefaultArg(defarg), S(s) {}
65
66    bool VisitExpr(Expr *Node);
67    bool VisitDeclRefExpr(DeclRefExpr *DRE);
68    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69    bool VisitLambdaExpr(LambdaExpr *Lambda);
70    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71  };
72
73  /// VisitExpr - Visit all of the children of this expression.
74  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75    bool IsInvalid = false;
76    for (Stmt::child_range I = Node->children(); I; ++I)
77      IsInvalid |= Visit(*I);
78    return IsInvalid;
79  }
80
81  /// VisitDeclRefExpr - Visit a reference to a declaration, to
82  /// determine whether this declaration can be used in the default
83  /// argument expression.
84  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85    NamedDecl *Decl = DRE->getDecl();
86    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p9
88      //   Default arguments are evaluated each time the function is
89      //   called. The order of evaluation of function arguments is
90      //   unspecified. Consequently, parameters of a function shall not
91      //   be used in default argument expressions, even if they are not
92      //   evaluated. Parameters of a function declared before a default
93      //   argument expression are in scope and can hide namespace and
94      //   class member names.
95      return S->Diag(DRE->getLocStart(),
96                     diag::err_param_default_argument_references_param)
97         << Param->getDeclName() << DefaultArg->getSourceRange();
98    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99      // C++ [dcl.fct.default]p7
100      //   Local variables shall not be used in default argument
101      //   expressions.
102      if (VDecl->isLocalVarDecl())
103        return S->Diag(DRE->getLocStart(),
104                       diag::err_param_default_argument_references_local)
105          << VDecl->getDeclName() << DefaultArg->getSourceRange();
106    }
107
108    return false;
109  }
110
111  /// VisitCXXThisExpr - Visit a C++ "this" expression.
112  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113    // C++ [dcl.fct.default]p8:
114    //   The keyword this shall not be used in a default argument of a
115    //   member function.
116    return S->Diag(ThisE->getLocStart(),
117                   diag::err_param_default_argument_references_this)
118               << ThisE->getSourceRange();
119  }
120
121  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122    bool Invalid = false;
123    for (PseudoObjectExpr::semantics_iterator
124           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125      Expr *E = *i;
126
127      // Look through bindings.
128      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129        E = OVE->getSourceExpr();
130        assert(E && "pseudo-object binding without source expression?");
131      }
132
133      Invalid |= Visit(E);
134    }
135    return Invalid;
136  }
137
138  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139    // C++11 [expr.lambda.prim]p13:
140    //   A lambda-expression appearing in a default argument shall not
141    //   implicitly or explicitly capture any entity.
142    if (Lambda->capture_begin() == Lambda->capture_end())
143      return false;
144
145    return S->Diag(Lambda->getLocStart(),
146                   diag::err_lambda_capture_default_arg);
147  }
148}
149
150void
151Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                 const CXXMethodDecl *Method) {
153  // If we have an MSAny spec already, don't bother.
154  if (!Method || ComputedEST == EST_MSAny)
155    return;
156
157  const FunctionProtoType *Proto
158    = Method->getType()->getAs<FunctionProtoType>();
159  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160  if (!Proto)
161    return;
162
163  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165  // If this function can throw any exceptions, make a note of that.
166  if (EST == EST_MSAny || EST == EST_None) {
167    ClearExceptions();
168    ComputedEST = EST;
169    return;
170  }
171
172  // FIXME: If the call to this decl is using any of its default arguments, we
173  // need to search them for potentially-throwing calls.
174
175  // If this function has a basic noexcept, it doesn't affect the outcome.
176  if (EST == EST_BasicNoexcept)
177    return;
178
179  // If we have a throw-all spec at this point, ignore the function.
180  if (ComputedEST == EST_None)
181    return;
182
183  // If we're still at noexcept(true) and there's a nothrow() callee,
184  // change to that specification.
185  if (EST == EST_DynamicNone) {
186    if (ComputedEST == EST_BasicNoexcept)
187      ComputedEST = EST_DynamicNone;
188    return;
189  }
190
191  // Check out noexcept specs.
192  if (EST == EST_ComputedNoexcept) {
193    FunctionProtoType::NoexceptResult NR =
194        Proto->getNoexceptSpec(Self->Context);
195    assert(NR != FunctionProtoType::NR_NoNoexcept &&
196           "Must have noexcept result for EST_ComputedNoexcept.");
197    assert(NR != FunctionProtoType::NR_Dependent &&
198           "Should not generate implicit declarations for dependent cases, "
199           "and don't know how to handle them anyway.");
200
201    // noexcept(false) -> no spec on the new function
202    if (NR == FunctionProtoType::NR_Throw) {
203      ClearExceptions();
204      ComputedEST = EST_None;
205    }
206    // noexcept(true) won't change anything either.
207    return;
208  }
209
210  assert(EST == EST_Dynamic && "EST case not considered earlier.");
211  assert(ComputedEST != EST_None &&
212         "Shouldn't collect exceptions when throw-all is guaranteed.");
213  ComputedEST = EST_Dynamic;
214  // Record the exceptions in this function's exception specification.
215  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
216                                          EEnd = Proto->exception_end();
217       E != EEnd; ++E)
218    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
219      Exceptions.push_back(*E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223  if (!E || ComputedEST == EST_MSAny)
224    return;
225
226  // FIXME:
227  //
228  // C++0x [except.spec]p14:
229  //   [An] implicit exception-specification specifies the type-id T if and
230  // only if T is allowed by the exception-specification of a function directly
231  // invoked by f's implicit definition; f shall allow all exceptions if any
232  // function it directly invokes allows all exceptions, and f shall allow no
233  // exceptions if every function it directly invokes allows no exceptions.
234  //
235  // Note in particular that if an implicit exception-specification is generated
236  // for a function containing a throw-expression, that specification can still
237  // be noexcept(true).
238  //
239  // Note also that 'directly invoked' is not defined in the standard, and there
240  // is no indication that we should only consider potentially-evaluated calls.
241  //
242  // Ultimately we should implement the intent of the standard: the exception
243  // specification should be the set of exceptions which can be thrown by the
244  // implicit definition. For now, we assume that any non-nothrow expression can
245  // throw any exception.
246
247  if (Self->canThrow(E))
248    ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253                              SourceLocation EqualLoc) {
254  if (RequireCompleteType(Param->getLocation(), Param->getType(),
255                          diag::err_typecheck_decl_incomplete_type)) {
256    Param->setInvalidDecl();
257    return true;
258  }
259
260  // C++ [dcl.fct.default]p5
261  //   A default argument expression is implicitly converted (clause
262  //   4) to the parameter type. The default argument expression has
263  //   the same semantic constraints as the initializer expression in
264  //   a declaration of a variable of the parameter type, using the
265  //   copy-initialization semantics (8.5).
266  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267                                                                    Param);
268  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269                                                           EqualLoc);
270  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272  if (Result.isInvalid())
273    return true;
274  Arg = Result.takeAs<Expr>();
275
276  CheckCompletedExpr(Arg, EqualLoc);
277  Arg = MaybeCreateExprWithCleanups(Arg);
278
279  // Okay: add the default argument to the parameter
280  Param->setDefaultArg(Arg);
281
282  // We have already instantiated this parameter; provide each of the
283  // instantiations with the uninstantiated default argument.
284  UnparsedDefaultArgInstantiationsMap::iterator InstPos
285    = UnparsedDefaultArgInstantiations.find(Param);
286  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290    // We're done tracking this parameter's instantiations.
291    UnparsedDefaultArgInstantiations.erase(InstPos);
292  }
293
294  return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302                                Expr *DefaultArg) {
303  if (!param || !DefaultArg)
304    return;
305
306  ParmVarDecl *Param = cast<ParmVarDecl>(param);
307  UnparsedDefaultArgLocs.erase(Param);
308
309  // Default arguments are only permitted in C++
310  if (!getLangOpts().CPlusPlus) {
311    Diag(EqualLoc, diag::err_param_default_argument)
312      << DefaultArg->getSourceRange();
313    Param->setInvalidDecl();
314    return;
315  }
316
317  // Check for unexpanded parameter packs.
318  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319    Param->setInvalidDecl();
320    return;
321  }
322
323  // Check that the default argument is well-formed
324  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
325  if (DefaultArgChecker.Visit(DefaultArg)) {
326    Param->setInvalidDecl();
327    return;
328  }
329
330  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
331}
332
333/// ActOnParamUnparsedDefaultArgument - We've seen a default
334/// argument for a function parameter, but we can't parse it yet
335/// because we're inside a class definition. Note that this default
336/// argument will be parsed later.
337void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
338                                             SourceLocation EqualLoc,
339                                             SourceLocation ArgLoc) {
340  if (!param)
341    return;
342
343  ParmVarDecl *Param = cast<ParmVarDecl>(param);
344  Param->setUnparsedDefaultArg();
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355  Param->setInvalidDecl();
356  UnparsedDefaultArgLocs.erase(Param);
357}
358
359/// CheckExtraCXXDefaultArguments - Check for any extra default
360/// arguments in the declarator, which is not a function declaration
361/// or definition and therefore is not permitted to have default
362/// arguments. This routine should be invoked for every declarator
363/// that is not a function declaration or definition.
364void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
365  // C++ [dcl.fct.default]p3
366  //   A default argument expression shall be specified only in the
367  //   parameter-declaration-clause of a function declaration or in a
368  //   template-parameter (14.1). It shall not be specified for a
369  //   parameter pack. If it is specified in a
370  //   parameter-declaration-clause, it shall not occur within a
371  //   declarator or abstract-declarator of a parameter-declaration.
372  bool MightBeFunction = D.isFunctionDeclarationContext();
373  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
374    DeclaratorChunk &chunk = D.getTypeObject(i);
375    if (chunk.Kind == DeclaratorChunk::Function) {
376      if (MightBeFunction) {
377        // This is a function declaration. It can have default arguments, but
378        // keep looking in case its return type is a function type with default
379        // arguments.
380        MightBeFunction = false;
381        continue;
382      }
383      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
384        ParmVarDecl *Param =
385          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
386        if (Param->hasUnparsedDefaultArg()) {
387          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
388          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
389            << SourceRange((*Toks)[1].getLocation(),
390                           Toks->back().getLocation());
391          delete Toks;
392          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
393        } else if (Param->getDefaultArg()) {
394          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
395            << Param->getDefaultArg()->getSourceRange();
396          Param->setDefaultArg(0);
397        }
398      }
399    } else if (chunk.Kind != DeclaratorChunk::Paren) {
400      MightBeFunction = false;
401    }
402  }
403}
404
405static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
406  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
407    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
408    if (!PVD->hasDefaultArg())
409      return false;
410    if (!PVD->hasInheritedDefaultArg())
411      return true;
412  }
413  return false;
414}
415
416/// MergeCXXFunctionDecl - Merge two declarations of the same C++
417/// function, once we already know that they have the same
418/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
419/// error, false otherwise.
420bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
421                                Scope *S) {
422  bool Invalid = false;
423
424  // C++ [dcl.fct.default]p4:
425  //   For non-template functions, default arguments can be added in
426  //   later declarations of a function in the same
427  //   scope. Declarations in different scopes have completely
428  //   distinct sets of default arguments. That is, declarations in
429  //   inner scopes do not acquire default arguments from
430  //   declarations in outer scopes, and vice versa. In a given
431  //   function declaration, all parameters subsequent to a
432  //   parameter with a default argument shall have default
433  //   arguments supplied in this or previous declarations. A
434  //   default argument shall not be redefined by a later
435  //   declaration (not even to the same value).
436  //
437  // C++ [dcl.fct.default]p6:
438  //   Except for member functions of class templates, the default arguments
439  //   in a member function definition that appears outside of the class
440  //   definition are added to the set of default arguments provided by the
441  //   member function declaration in the class definition.
442  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
443    ParmVarDecl *OldParam = Old->getParamDecl(p);
444    ParmVarDecl *NewParam = New->getParamDecl(p);
445
446    bool OldParamHasDfl = OldParam->hasDefaultArg();
447    bool NewParamHasDfl = NewParam->hasDefaultArg();
448
449    NamedDecl *ND = Old;
450
451    // The declaration context corresponding to the scope is the semantic
452    // parent, unless this is a local function declaration, in which case
453    // it is that surrounding function.
454    DeclContext *ScopeDC = New->getLexicalDeclContext();
455    if (!ScopeDC->isFunctionOrMethod())
456      ScopeDC = New->getDeclContext();
457    if (S && !isDeclInScope(ND, ScopeDC, S) &&
458        !New->getDeclContext()->isRecord())
459      // Ignore default parameters of old decl if they are not in
460      // the same scope and this is not an out-of-line definition of
461      // a member function.
462      OldParamHasDfl = false;
463
464    if (OldParamHasDfl && NewParamHasDfl) {
465
466      unsigned DiagDefaultParamID =
467        diag::err_param_default_argument_redefinition;
468
469      // MSVC accepts that default parameters be redefined for member functions
470      // of template class. The new default parameter's value is ignored.
471      Invalid = true;
472      if (getLangOpts().MicrosoftExt) {
473        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
474        if (MD && MD->getParent()->getDescribedClassTemplate()) {
475          // Merge the old default argument into the new parameter.
476          NewParam->setHasInheritedDefaultArg();
477          if (OldParam->hasUninstantiatedDefaultArg())
478            NewParam->setUninstantiatedDefaultArg(
479                                      OldParam->getUninstantiatedDefaultArg());
480          else
481            NewParam->setDefaultArg(OldParam->getInit());
482          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
483          Invalid = false;
484        }
485      }
486
487      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
488      // hint here. Alternatively, we could walk the type-source information
489      // for NewParam to find the last source location in the type... but it
490      // isn't worth the effort right now. This is the kind of test case that
491      // is hard to get right:
492      //   int f(int);
493      //   void g(int (*fp)(int) = f);
494      //   void g(int (*fp)(int) = &f);
495      Diag(NewParam->getLocation(), DiagDefaultParamID)
496        << NewParam->getDefaultArgRange();
497
498      // Look for the function declaration where the default argument was
499      // actually written, which may be a declaration prior to Old.
500      for (FunctionDecl *Older = Old->getPreviousDecl();
501           Older; Older = Older->getPreviousDecl()) {
502        if (!Older->getParamDecl(p)->hasDefaultArg())
503          break;
504
505        OldParam = Older->getParamDecl(p);
506      }
507
508      Diag(OldParam->getLocation(), diag::note_previous_definition)
509        << OldParam->getDefaultArgRange();
510    } else if (OldParamHasDfl) {
511      // Merge the old default argument into the new parameter.
512      // It's important to use getInit() here;  getDefaultArg()
513      // strips off any top-level ExprWithCleanups.
514      NewParam->setHasInheritedDefaultArg();
515      if (OldParam->hasUninstantiatedDefaultArg())
516        NewParam->setUninstantiatedDefaultArg(
517                                      OldParam->getUninstantiatedDefaultArg());
518      else
519        NewParam->setDefaultArg(OldParam->getInit());
520    } else if (NewParamHasDfl) {
521      if (New->getDescribedFunctionTemplate()) {
522        // Paragraph 4, quoted above, only applies to non-template functions.
523        Diag(NewParam->getLocation(),
524             diag::err_param_default_argument_template_redecl)
525          << NewParam->getDefaultArgRange();
526        Diag(Old->getLocation(), diag::note_template_prev_declaration)
527          << false;
528      } else if (New->getTemplateSpecializationKind()
529                   != TSK_ImplicitInstantiation &&
530                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
531        // C++ [temp.expr.spec]p21:
532        //   Default function arguments shall not be specified in a declaration
533        //   or a definition for one of the following explicit specializations:
534        //     - the explicit specialization of a function template;
535        //     - the explicit specialization of a member function template;
536        //     - the explicit specialization of a member function of a class
537        //       template where the class template specialization to which the
538        //       member function specialization belongs is implicitly
539        //       instantiated.
540        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
541          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
542          << New->getDeclName()
543          << NewParam->getDefaultArgRange();
544      } else if (New->getDeclContext()->isDependentContext()) {
545        // C++ [dcl.fct.default]p6 (DR217):
546        //   Default arguments for a member function of a class template shall
547        //   be specified on the initial declaration of the member function
548        //   within the class template.
549        //
550        // Reading the tea leaves a bit in DR217 and its reference to DR205
551        // leads me to the conclusion that one cannot add default function
552        // arguments for an out-of-line definition of a member function of a
553        // dependent type.
554        int WhichKind = 2;
555        if (CXXRecordDecl *Record
556              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
557          if (Record->getDescribedClassTemplate())
558            WhichKind = 0;
559          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
560            WhichKind = 1;
561          else
562            WhichKind = 2;
563        }
564
565        Diag(NewParam->getLocation(),
566             diag::err_param_default_argument_member_template_redecl)
567          << WhichKind
568          << NewParam->getDefaultArgRange();
569      }
570    }
571  }
572
573  // DR1344: If a default argument is added outside a class definition and that
574  // default argument makes the function a special member function, the program
575  // is ill-formed. This can only happen for constructors.
576  if (isa<CXXConstructorDecl>(New) &&
577      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
578    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
579                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
580    if (NewSM != OldSM) {
581      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
582      assert(NewParam->hasDefaultArg());
583      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
584        << NewParam->getDefaultArgRange() << NewSM;
585      Diag(Old->getLocation(), diag::note_previous_declaration);
586    }
587  }
588
589  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
590  // template has a constexpr specifier then all its declarations shall
591  // contain the constexpr specifier.
592  if (New->isConstexpr() != Old->isConstexpr()) {
593    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
594      << New << New->isConstexpr();
595    Diag(Old->getLocation(), diag::note_previous_declaration);
596    Invalid = true;
597  }
598
599  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
600  // argument expression, that declaration shall be a definition and shall be
601  // the only declaration of the function or function template in the
602  // translation unit.
603  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
604      functionDeclHasDefaultArgument(Old)) {
605    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
606    Diag(Old->getLocation(), diag::note_previous_declaration);
607    Invalid = true;
608  }
609
610  if (CheckEquivalentExceptionSpec(Old, New))
611    Invalid = true;
612
613  return Invalid;
614}
615
616/// \brief Merge the exception specifications of two variable declarations.
617///
618/// This is called when there's a redeclaration of a VarDecl. The function
619/// checks if the redeclaration might have an exception specification and
620/// validates compatibility and merges the specs if necessary.
621void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
622  // Shortcut if exceptions are disabled.
623  if (!getLangOpts().CXXExceptions)
624    return;
625
626  assert(Context.hasSameType(New->getType(), Old->getType()) &&
627         "Should only be called if types are otherwise the same.");
628
629  QualType NewType = New->getType();
630  QualType OldType = Old->getType();
631
632  // We're only interested in pointers and references to functions, as well
633  // as pointers to member functions.
634  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
635    NewType = R->getPointeeType();
636    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
637  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
638    NewType = P->getPointeeType();
639    OldType = OldType->getAs<PointerType>()->getPointeeType();
640  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
641    NewType = M->getPointeeType();
642    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
643  }
644
645  if (!NewType->isFunctionProtoType())
646    return;
647
648  // There's lots of special cases for functions. For function pointers, system
649  // libraries are hopefully not as broken so that we don't need these
650  // workarounds.
651  if (CheckEquivalentExceptionSpec(
652        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
653        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
654    New->setInvalidDecl();
655  }
656}
657
658/// CheckCXXDefaultArguments - Verify that the default arguments for a
659/// function declaration are well-formed according to C++
660/// [dcl.fct.default].
661void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
662  unsigned NumParams = FD->getNumParams();
663  unsigned p;
664
665  // Find first parameter with a default argument
666  for (p = 0; p < NumParams; ++p) {
667    ParmVarDecl *Param = FD->getParamDecl(p);
668    if (Param->hasDefaultArg())
669      break;
670  }
671
672  // C++ [dcl.fct.default]p4:
673  //   In a given function declaration, all parameters
674  //   subsequent to a parameter with a default argument shall
675  //   have default arguments supplied in this or previous
676  //   declarations. A default argument shall not be redefined
677  //   by a later declaration (not even to the same value).
678  unsigned LastMissingDefaultArg = 0;
679  for (; p < NumParams; ++p) {
680    ParmVarDecl *Param = FD->getParamDecl(p);
681    if (!Param->hasDefaultArg()) {
682      if (Param->isInvalidDecl())
683        /* We already complained about this parameter. */;
684      else if (Param->getIdentifier())
685        Diag(Param->getLocation(),
686             diag::err_param_default_argument_missing_name)
687          << Param->getIdentifier();
688      else
689        Diag(Param->getLocation(),
690             diag::err_param_default_argument_missing);
691
692      LastMissingDefaultArg = p;
693    }
694  }
695
696  if (LastMissingDefaultArg > 0) {
697    // Some default arguments were missing. Clear out all of the
698    // default arguments up to (and including) the last missing
699    // default argument, so that we leave the function parameters
700    // in a semantically valid state.
701    for (p = 0; p <= LastMissingDefaultArg; ++p) {
702      ParmVarDecl *Param = FD->getParamDecl(p);
703      if (Param->hasDefaultArg()) {
704        Param->setDefaultArg(0);
705      }
706    }
707  }
708}
709
710// CheckConstexprParameterTypes - Check whether a function's parameter types
711// are all literal types. If so, return true. If not, produce a suitable
712// diagnostic and return false.
713static bool CheckConstexprParameterTypes(Sema &SemaRef,
714                                         const FunctionDecl *FD) {
715  unsigned ArgIndex = 0;
716  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
717  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
718       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
719    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
720    SourceLocation ParamLoc = PD->getLocation();
721    if (!(*i)->isDependentType() &&
722        SemaRef.RequireLiteralType(ParamLoc, *i,
723                                   diag::err_constexpr_non_literal_param,
724                                   ArgIndex+1, PD->getSourceRange(),
725                                   isa<CXXConstructorDecl>(FD)))
726      return false;
727  }
728  return true;
729}
730
731/// \brief Get diagnostic %select index for tag kind for
732/// record diagnostic message.
733/// WARNING: Indexes apply to particular diagnostics only!
734///
735/// \returns diagnostic %select index.
736static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
737  switch (Tag) {
738  case TTK_Struct: return 0;
739  case TTK_Interface: return 1;
740  case TTK_Class:  return 2;
741  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
742  }
743}
744
745// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
746// the requirements of a constexpr function definition or a constexpr
747// constructor definition. If so, return true. If not, produce appropriate
748// diagnostics and return false.
749//
750// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
751bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
752  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
753  if (MD && MD->isInstance()) {
754    // C++11 [dcl.constexpr]p4:
755    //  The definition of a constexpr constructor shall satisfy the following
756    //  constraints:
757    //  - the class shall not have any virtual base classes;
758    const CXXRecordDecl *RD = MD->getParent();
759    if (RD->getNumVBases()) {
760      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
761        << isa<CXXConstructorDecl>(NewFD)
762        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
763      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
764             E = RD->vbases_end(); I != E; ++I)
765        Diag(I->getLocStart(),
766             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
767      return false;
768    }
769  }
770
771  if (!isa<CXXConstructorDecl>(NewFD)) {
772    // C++11 [dcl.constexpr]p3:
773    //  The definition of a constexpr function shall satisfy the following
774    //  constraints:
775    // - it shall not be virtual;
776    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
777    if (Method && Method->isVirtual()) {
778      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
779
780      // If it's not obvious why this function is virtual, find an overridden
781      // function which uses the 'virtual' keyword.
782      const CXXMethodDecl *WrittenVirtual = Method;
783      while (!WrittenVirtual->isVirtualAsWritten())
784        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
785      if (WrittenVirtual != Method)
786        Diag(WrittenVirtual->getLocation(),
787             diag::note_overridden_virtual_function);
788      return false;
789    }
790
791    // - its return type shall be a literal type;
792    QualType RT = NewFD->getResultType();
793    if (!RT->isDependentType() &&
794        RequireLiteralType(NewFD->getLocation(), RT,
795                           diag::err_constexpr_non_literal_return))
796      return false;
797  }
798
799  // - each of its parameter types shall be a literal type;
800  if (!CheckConstexprParameterTypes(*this, NewFD))
801    return false;
802
803  return true;
804}
805
806/// Check the given declaration statement is legal within a constexpr function
807/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
808///
809/// \return true if the body is OK (maybe only as an extension), false if we
810///         have diagnosed a problem.
811static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
812                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
813  // C++11 [dcl.constexpr]p3 and p4:
814  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
815  //  contain only
816  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
817         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
818    switch ((*DclIt)->getKind()) {
819    case Decl::StaticAssert:
820    case Decl::Using:
821    case Decl::UsingShadow:
822    case Decl::UsingDirective:
823    case Decl::UnresolvedUsingTypename:
824    case Decl::UnresolvedUsingValue:
825      //   - static_assert-declarations
826      //   - using-declarations,
827      //   - using-directives,
828      continue;
829
830    case Decl::Typedef:
831    case Decl::TypeAlias: {
832      //   - typedef declarations and alias-declarations that do not define
833      //     classes or enumerations,
834      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
835      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
836        // Don't allow variably-modified types in constexpr functions.
837        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
838        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
839          << TL.getSourceRange() << TL.getType()
840          << isa<CXXConstructorDecl>(Dcl);
841        return false;
842      }
843      continue;
844    }
845
846    case Decl::Enum:
847    case Decl::CXXRecord:
848      // C++1y allows types to be defined, not just declared.
849      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
850        SemaRef.Diag(DS->getLocStart(),
851                     SemaRef.getLangOpts().CPlusPlus1y
852                       ? diag::warn_cxx11_compat_constexpr_type_definition
853                       : diag::ext_constexpr_type_definition)
854          << isa<CXXConstructorDecl>(Dcl);
855      continue;
856
857    case Decl::EnumConstant:
858    case Decl::IndirectField:
859    case Decl::ParmVar:
860      // These can only appear with other declarations which are banned in
861      // C++11 and permitted in C++1y, so ignore them.
862      continue;
863
864    case Decl::Var: {
865      // C++1y [dcl.constexpr]p3 allows anything except:
866      //   a definition of a variable of non-literal type or of static or
867      //   thread storage duration or for which no initialization is performed.
868      VarDecl *VD = cast<VarDecl>(*DclIt);
869      if (VD->isThisDeclarationADefinition()) {
870        if (VD->isStaticLocal()) {
871          SemaRef.Diag(VD->getLocation(),
872                       diag::err_constexpr_local_var_static)
873            << isa<CXXConstructorDecl>(Dcl)
874            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
875          return false;
876        }
877        if (!VD->getType()->isDependentType() &&
878            SemaRef.RequireLiteralType(
879              VD->getLocation(), VD->getType(),
880              diag::err_constexpr_local_var_non_literal_type,
881              isa<CXXConstructorDecl>(Dcl)))
882          return false;
883        if (!VD->hasInit() && !VD->isCXXForRangeDecl()) {
884          SemaRef.Diag(VD->getLocation(),
885                       diag::err_constexpr_local_var_no_init)
886            << isa<CXXConstructorDecl>(Dcl);
887          return false;
888        }
889      }
890      SemaRef.Diag(VD->getLocation(),
891                   SemaRef.getLangOpts().CPlusPlus1y
892                    ? diag::warn_cxx11_compat_constexpr_local_var
893                    : diag::ext_constexpr_local_var)
894        << isa<CXXConstructorDecl>(Dcl);
895      continue;
896    }
897
898    case Decl::NamespaceAlias:
899    case Decl::Function:
900      // These are disallowed in C++11 and permitted in C++1y. Allow them
901      // everywhere as an extension.
902      if (!Cxx1yLoc.isValid())
903        Cxx1yLoc = DS->getLocStart();
904      continue;
905
906    default:
907      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
908        << isa<CXXConstructorDecl>(Dcl);
909      return false;
910    }
911  }
912
913  return true;
914}
915
916/// Check that the given field is initialized within a constexpr constructor.
917///
918/// \param Dcl The constexpr constructor being checked.
919/// \param Field The field being checked. This may be a member of an anonymous
920///        struct or union nested within the class being checked.
921/// \param Inits All declarations, including anonymous struct/union members and
922///        indirect members, for which any initialization was provided.
923/// \param Diagnosed Set to true if an error is produced.
924static void CheckConstexprCtorInitializer(Sema &SemaRef,
925                                          const FunctionDecl *Dcl,
926                                          FieldDecl *Field,
927                                          llvm::SmallSet<Decl*, 16> &Inits,
928                                          bool &Diagnosed) {
929  if (Field->isInvalidDecl())
930    return;
931
932  if (Field->isUnnamedBitfield())
933    return;
934
935  if (Field->isAnonymousStructOrUnion() &&
936      Field->getType()->getAsCXXRecordDecl()->isEmpty())
937    return;
938
939  if (!Inits.count(Field)) {
940    if (!Diagnosed) {
941      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
942      Diagnosed = true;
943    }
944    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
945  } else if (Field->isAnonymousStructOrUnion()) {
946    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
947    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
948         I != E; ++I)
949      // If an anonymous union contains an anonymous struct of which any member
950      // is initialized, all members must be initialized.
951      if (!RD->isUnion() || Inits.count(*I))
952        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
953  }
954}
955
956/// Check the provided statement is allowed in a constexpr function
957/// definition.
958static bool
959CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
960                           SmallVectorImpl<SourceLocation> &ReturnStmts,
961                           SourceLocation &Cxx1yLoc) {
962  // - its function-body shall be [...] a compound-statement that contains only
963  switch (S->getStmtClass()) {
964  case Stmt::NullStmtClass:
965    //   - null statements,
966    return true;
967
968  case Stmt::DeclStmtClass:
969    //   - static_assert-declarations
970    //   - using-declarations,
971    //   - using-directives,
972    //   - typedef declarations and alias-declarations that do not define
973    //     classes or enumerations,
974    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
975      return false;
976    return true;
977
978  case Stmt::ReturnStmtClass:
979    //   - and exactly one return statement;
980    if (isa<CXXConstructorDecl>(Dcl)) {
981      // C++1y allows return statements in constexpr constructors.
982      if (!Cxx1yLoc.isValid())
983        Cxx1yLoc = S->getLocStart();
984      return true;
985    }
986
987    ReturnStmts.push_back(S->getLocStart());
988    return true;
989
990  case Stmt::CompoundStmtClass: {
991    // C++1y allows compound-statements.
992    if (!Cxx1yLoc.isValid())
993      Cxx1yLoc = S->getLocStart();
994
995    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
996    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
997           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
998      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
999                                      Cxx1yLoc))
1000        return false;
1001    }
1002    return true;
1003  }
1004
1005  case Stmt::AttributedStmtClass:
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008    return true;
1009
1010  case Stmt::IfStmtClass: {
1011    // C++1y allows if-statements.
1012    if (!Cxx1yLoc.isValid())
1013      Cxx1yLoc = S->getLocStart();
1014
1015    IfStmt *If = cast<IfStmt>(S);
1016    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1017                                    Cxx1yLoc))
1018      return false;
1019    if (If->getElse() &&
1020        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1021                                    Cxx1yLoc))
1022      return false;
1023    return true;
1024  }
1025
1026  case Stmt::WhileStmtClass:
1027  case Stmt::DoStmtClass:
1028  case Stmt::ForStmtClass:
1029  case Stmt::CXXForRangeStmtClass:
1030  case Stmt::ContinueStmtClass:
1031    // C++1y allows all of these. We don't allow them as extensions in C++11,
1032    // because they don't make sense without variable mutation.
1033    if (!SemaRef.getLangOpts().CPlusPlus1y)
1034      break;
1035    if (!Cxx1yLoc.isValid())
1036      Cxx1yLoc = S->getLocStart();
1037    for (Stmt::child_range Children = S->children(); Children; ++Children)
1038      if (*Children &&
1039          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1040                                      Cxx1yLoc))
1041        return false;
1042    return true;
1043
1044  case Stmt::SwitchStmtClass:
1045  case Stmt::CaseStmtClass:
1046  case Stmt::DefaultStmtClass:
1047  case Stmt::BreakStmtClass:
1048    // C++1y allows switch-statements, and since they don't need variable
1049    // mutation, we can reasonably allow them in C++11 as an extension.
1050    if (!Cxx1yLoc.isValid())
1051      Cxx1yLoc = S->getLocStart();
1052    for (Stmt::child_range Children = S->children(); Children; ++Children)
1053      if (*Children &&
1054          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1055                                      Cxx1yLoc))
1056        return false;
1057    return true;
1058
1059  default:
1060    if (!isa<Expr>(S))
1061      break;
1062
1063    // C++1y allows expression-statements.
1064    if (!Cxx1yLoc.isValid())
1065      Cxx1yLoc = S->getLocStart();
1066    return true;
1067  }
1068
1069  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1070    << isa<CXXConstructorDecl>(Dcl);
1071  return false;
1072}
1073
1074/// Check the body for the given constexpr function declaration only contains
1075/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1076///
1077/// \return true if the body is OK, false if we have diagnosed a problem.
1078bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1079  if (isa<CXXTryStmt>(Body)) {
1080    // C++11 [dcl.constexpr]p3:
1081    //  The definition of a constexpr function shall satisfy the following
1082    //  constraints: [...]
1083    // - its function-body shall be = delete, = default, or a
1084    //   compound-statement
1085    //
1086    // C++11 [dcl.constexpr]p4:
1087    //  In the definition of a constexpr constructor, [...]
1088    // - its function-body shall not be a function-try-block;
1089    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1090      << isa<CXXConstructorDecl>(Dcl);
1091    return false;
1092  }
1093
1094  SmallVector<SourceLocation, 4> ReturnStmts;
1095
1096  // - its function-body shall be [...] a compound-statement that contains only
1097  //   [... list of cases ...]
1098  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1099  SourceLocation Cxx1yLoc;
1100  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1101         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1102    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1103      return false;
1104  }
1105
1106  if (Cxx1yLoc.isValid())
1107    Diag(Cxx1yLoc,
1108         getLangOpts().CPlusPlus1y
1109           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1110           : diag::ext_constexpr_body_invalid_stmt)
1111      << isa<CXXConstructorDecl>(Dcl);
1112
1113  if (const CXXConstructorDecl *Constructor
1114        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1115    const CXXRecordDecl *RD = Constructor->getParent();
1116    // DR1359:
1117    // - every non-variant non-static data member and base class sub-object
1118    //   shall be initialized;
1119    // - if the class is a non-empty union, or for each non-empty anonymous
1120    //   union member of a non-union class, exactly one non-static data member
1121    //   shall be initialized;
1122    if (RD->isUnion()) {
1123      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1124        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1125        return false;
1126      }
1127    } else if (!Constructor->isDependentContext() &&
1128               !Constructor->isDelegatingConstructor()) {
1129      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1130
1131      // Skip detailed checking if we have enough initializers, and we would
1132      // allow at most one initializer per member.
1133      bool AnyAnonStructUnionMembers = false;
1134      unsigned Fields = 0;
1135      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1136           E = RD->field_end(); I != E; ++I, ++Fields) {
1137        if (I->isAnonymousStructOrUnion()) {
1138          AnyAnonStructUnionMembers = true;
1139          break;
1140        }
1141      }
1142      if (AnyAnonStructUnionMembers ||
1143          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1144        // Check initialization of non-static data members. Base classes are
1145        // always initialized so do not need to be checked. Dependent bases
1146        // might not have initializers in the member initializer list.
1147        llvm::SmallSet<Decl*, 16> Inits;
1148        for (CXXConstructorDecl::init_const_iterator
1149               I = Constructor->init_begin(), E = Constructor->init_end();
1150             I != E; ++I) {
1151          if (FieldDecl *FD = (*I)->getMember())
1152            Inits.insert(FD);
1153          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1154            Inits.insert(ID->chain_begin(), ID->chain_end());
1155        }
1156
1157        bool Diagnosed = false;
1158        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1159             E = RD->field_end(); I != E; ++I)
1160          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1161        if (Diagnosed)
1162          return false;
1163      }
1164    }
1165  } else {
1166    if (ReturnStmts.empty()) {
1167      // C++1y doesn't require constexpr functions to contain a 'return'
1168      // statement. We still do, unless the return type is void, because
1169      // otherwise if there's no return statement, the function cannot
1170      // be used in a core constant expression.
1171      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1172      Diag(Dcl->getLocation(),
1173           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1174              : diag::err_constexpr_body_no_return);
1175      return OK;
1176    }
1177    if (ReturnStmts.size() > 1) {
1178      Diag(ReturnStmts.back(),
1179           getLangOpts().CPlusPlus1y
1180             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1181             : diag::ext_constexpr_body_multiple_return);
1182      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1183        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1184    }
1185  }
1186
1187  // C++11 [dcl.constexpr]p5:
1188  //   if no function argument values exist such that the function invocation
1189  //   substitution would produce a constant expression, the program is
1190  //   ill-formed; no diagnostic required.
1191  // C++11 [dcl.constexpr]p3:
1192  //   - every constructor call and implicit conversion used in initializing the
1193  //     return value shall be one of those allowed in a constant expression.
1194  // C++11 [dcl.constexpr]p4:
1195  //   - every constructor involved in initializing non-static data members and
1196  //     base class sub-objects shall be a constexpr constructor.
1197  SmallVector<PartialDiagnosticAt, 8> Diags;
1198  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1199    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1200      << isa<CXXConstructorDecl>(Dcl);
1201    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1202      Diag(Diags[I].first, Diags[I].second);
1203    // Don't return false here: we allow this for compatibility in
1204    // system headers.
1205  }
1206
1207  return true;
1208}
1209
1210/// isCurrentClassName - Determine whether the identifier II is the
1211/// name of the class type currently being defined. In the case of
1212/// nested classes, this will only return true if II is the name of
1213/// the innermost class.
1214bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1215                              const CXXScopeSpec *SS) {
1216  assert(getLangOpts().CPlusPlus && "No class names in C!");
1217
1218  CXXRecordDecl *CurDecl;
1219  if (SS && SS->isSet() && !SS->isInvalid()) {
1220    DeclContext *DC = computeDeclContext(*SS, true);
1221    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1222  } else
1223    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1224
1225  if (CurDecl && CurDecl->getIdentifier())
1226    return &II == CurDecl->getIdentifier();
1227  return false;
1228}
1229
1230/// \brief Determine whether the identifier II is a typo for the name of
1231/// the class type currently being defined. If so, update it to the identifier
1232/// that should have been used.
1233bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1234  assert(getLangOpts().CPlusPlus && "No class names in C!");
1235
1236  if (!getLangOpts().SpellChecking)
1237    return false;
1238
1239  CXXRecordDecl *CurDecl;
1240  if (SS && SS->isSet() && !SS->isInvalid()) {
1241    DeclContext *DC = computeDeclContext(*SS, true);
1242    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1243  } else
1244    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1245
1246  if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1247      3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1248          < II->getLength()) {
1249    II = CurDecl->getIdentifier();
1250    return true;
1251  }
1252
1253  return false;
1254}
1255
1256/// \brief Determine whether the given class is a base class of the given
1257/// class, including looking at dependent bases.
1258static bool findCircularInheritance(const CXXRecordDecl *Class,
1259                                    const CXXRecordDecl *Current) {
1260  SmallVector<const CXXRecordDecl*, 8> Queue;
1261
1262  Class = Class->getCanonicalDecl();
1263  while (true) {
1264    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1265                                                  E = Current->bases_end();
1266         I != E; ++I) {
1267      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1268      if (!Base)
1269        continue;
1270
1271      Base = Base->getDefinition();
1272      if (!Base)
1273        continue;
1274
1275      if (Base->getCanonicalDecl() == Class)
1276        return true;
1277
1278      Queue.push_back(Base);
1279    }
1280
1281    if (Queue.empty())
1282      return false;
1283
1284    Current = Queue.pop_back_val();
1285  }
1286
1287  return false;
1288}
1289
1290/// \brief Check the validity of a C++ base class specifier.
1291///
1292/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1293/// and returns NULL otherwise.
1294CXXBaseSpecifier *
1295Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1296                         SourceRange SpecifierRange,
1297                         bool Virtual, AccessSpecifier Access,
1298                         TypeSourceInfo *TInfo,
1299                         SourceLocation EllipsisLoc) {
1300  QualType BaseType = TInfo->getType();
1301
1302  // C++ [class.union]p1:
1303  //   A union shall not have base classes.
1304  if (Class->isUnion()) {
1305    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1306      << SpecifierRange;
1307    return 0;
1308  }
1309
1310  if (EllipsisLoc.isValid() &&
1311      !TInfo->getType()->containsUnexpandedParameterPack()) {
1312    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1313      << TInfo->getTypeLoc().getSourceRange();
1314    EllipsisLoc = SourceLocation();
1315  }
1316
1317  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1318
1319  if (BaseType->isDependentType()) {
1320    // Make sure that we don't have circular inheritance among our dependent
1321    // bases. For non-dependent bases, the check for completeness below handles
1322    // this.
1323    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1324      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1325          ((BaseDecl = BaseDecl->getDefinition()) &&
1326           findCircularInheritance(Class, BaseDecl))) {
1327        Diag(BaseLoc, diag::err_circular_inheritance)
1328          << BaseType << Context.getTypeDeclType(Class);
1329
1330        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1331          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1332            << BaseType;
1333
1334        return 0;
1335      }
1336    }
1337
1338    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1339                                          Class->getTagKind() == TTK_Class,
1340                                          Access, TInfo, EllipsisLoc);
1341  }
1342
1343  // Base specifiers must be record types.
1344  if (!BaseType->isRecordType()) {
1345    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1346    return 0;
1347  }
1348
1349  // C++ [class.union]p1:
1350  //   A union shall not be used as a base class.
1351  if (BaseType->isUnionType()) {
1352    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1353    return 0;
1354  }
1355
1356  // C++ [class.derived]p2:
1357  //   The class-name in a base-specifier shall not be an incompletely
1358  //   defined class.
1359  if (RequireCompleteType(BaseLoc, BaseType,
1360                          diag::err_incomplete_base_class, SpecifierRange)) {
1361    Class->setInvalidDecl();
1362    return 0;
1363  }
1364
1365  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1366  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1367  assert(BaseDecl && "Record type has no declaration");
1368  BaseDecl = BaseDecl->getDefinition();
1369  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1370  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1371  assert(CXXBaseDecl && "Base type is not a C++ type");
1372
1373  // A class which contains a flexible array member is not suitable for use as a
1374  // base class:
1375  //   - If the layout determines that a base comes before another base,
1376  //     the flexible array member would index into the subsequent base.
1377  //   - If the layout determines that base comes before the derived class,
1378  //     the flexible array member would index into the derived class.
1379  if (CXXBaseDecl->hasFlexibleArrayMember()) {
1380    Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1381      << CXXBaseDecl->getDeclName();
1382    return 0;
1383  }
1384
1385  // C++ [class]p3:
1386  //   If a class is marked final and it appears as a base-type-specifier in
1387  //   base-clause, the program is ill-formed.
1388  if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1389    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1390      << CXXBaseDecl->getDeclName()
1391      << FA->isSpelledAsSealed();
1392    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1393      << CXXBaseDecl->getDeclName();
1394    return 0;
1395  }
1396
1397  if (BaseDecl->isInvalidDecl())
1398    Class->setInvalidDecl();
1399
1400  // Create the base specifier.
1401  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1402                                        Class->getTagKind() == TTK_Class,
1403                                        Access, TInfo, EllipsisLoc);
1404}
1405
1406/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1407/// one entry in the base class list of a class specifier, for
1408/// example:
1409///    class foo : public bar, virtual private baz {
1410/// 'public bar' and 'virtual private baz' are each base-specifiers.
1411BaseResult
1412Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1413                         ParsedAttributes &Attributes,
1414                         bool Virtual, AccessSpecifier Access,
1415                         ParsedType basetype, SourceLocation BaseLoc,
1416                         SourceLocation EllipsisLoc) {
1417  if (!classdecl)
1418    return true;
1419
1420  AdjustDeclIfTemplate(classdecl);
1421  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1422  if (!Class)
1423    return true;
1424
1425  // We do not support any C++11 attributes on base-specifiers yet.
1426  // Diagnose any attributes we see.
1427  if (!Attributes.empty()) {
1428    for (AttributeList *Attr = Attributes.getList(); Attr;
1429         Attr = Attr->getNext()) {
1430      if (Attr->isInvalid() ||
1431          Attr->getKind() == AttributeList::IgnoredAttribute)
1432        continue;
1433      Diag(Attr->getLoc(),
1434           Attr->getKind() == AttributeList::UnknownAttribute
1435             ? diag::warn_unknown_attribute_ignored
1436             : diag::err_base_specifier_attribute)
1437        << Attr->getName();
1438    }
1439  }
1440
1441  TypeSourceInfo *TInfo = 0;
1442  GetTypeFromParser(basetype, &TInfo);
1443
1444  if (EllipsisLoc.isInvalid() &&
1445      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1446                                      UPPC_BaseType))
1447    return true;
1448
1449  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1450                                                      Virtual, Access, TInfo,
1451                                                      EllipsisLoc))
1452    return BaseSpec;
1453  else
1454    Class->setInvalidDecl();
1455
1456  return true;
1457}
1458
1459/// \brief Performs the actual work of attaching the given base class
1460/// specifiers to a C++ class.
1461bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1462                                unsigned NumBases) {
1463 if (NumBases == 0)
1464    return false;
1465
1466  // Used to keep track of which base types we have already seen, so
1467  // that we can properly diagnose redundant direct base types. Note
1468  // that the key is always the unqualified canonical type of the base
1469  // class.
1470  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1471
1472  // Copy non-redundant base specifiers into permanent storage.
1473  unsigned NumGoodBases = 0;
1474  bool Invalid = false;
1475  for (unsigned idx = 0; idx < NumBases; ++idx) {
1476    QualType NewBaseType
1477      = Context.getCanonicalType(Bases[idx]->getType());
1478    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1479
1480    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1481    if (KnownBase) {
1482      // C++ [class.mi]p3:
1483      //   A class shall not be specified as a direct base class of a
1484      //   derived class more than once.
1485      Diag(Bases[idx]->getLocStart(),
1486           diag::err_duplicate_base_class)
1487        << KnownBase->getType()
1488        << Bases[idx]->getSourceRange();
1489
1490      // Delete the duplicate base class specifier; we're going to
1491      // overwrite its pointer later.
1492      Context.Deallocate(Bases[idx]);
1493
1494      Invalid = true;
1495    } else {
1496      // Okay, add this new base class.
1497      KnownBase = Bases[idx];
1498      Bases[NumGoodBases++] = Bases[idx];
1499      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1500        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1501        if (Class->isInterface() &&
1502              (!RD->isInterface() ||
1503               KnownBase->getAccessSpecifier() != AS_public)) {
1504          // The Microsoft extension __interface does not permit bases that
1505          // are not themselves public interfaces.
1506          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1507            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1508            << RD->getSourceRange();
1509          Invalid = true;
1510        }
1511        if (RD->hasAttr<WeakAttr>())
1512          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1513      }
1514    }
1515  }
1516
1517  // Attach the remaining base class specifiers to the derived class.
1518  Class->setBases(Bases, NumGoodBases);
1519
1520  // Delete the remaining (good) base class specifiers, since their
1521  // data has been copied into the CXXRecordDecl.
1522  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1523    Context.Deallocate(Bases[idx]);
1524
1525  return Invalid;
1526}
1527
1528/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1529/// class, after checking whether there are any duplicate base
1530/// classes.
1531void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1532                               unsigned NumBases) {
1533  if (!ClassDecl || !Bases || !NumBases)
1534    return;
1535
1536  AdjustDeclIfTemplate(ClassDecl);
1537  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1538}
1539
1540/// \brief Determine whether the type \p Derived is a C++ class that is
1541/// derived from the type \p Base.
1542bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1543  if (!getLangOpts().CPlusPlus)
1544    return false;
1545
1546  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1547  if (!DerivedRD)
1548    return false;
1549
1550  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1551  if (!BaseRD)
1552    return false;
1553
1554  // If either the base or the derived type is invalid, don't try to
1555  // check whether one is derived from the other.
1556  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1557    return false;
1558
1559  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1560  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1561}
1562
1563/// \brief Determine whether the type \p Derived is a C++ class that is
1564/// derived from the type \p Base.
1565bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1566  if (!getLangOpts().CPlusPlus)
1567    return false;
1568
1569  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1570  if (!DerivedRD)
1571    return false;
1572
1573  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1574  if (!BaseRD)
1575    return false;
1576
1577  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1578}
1579
1580void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1581                              CXXCastPath &BasePathArray) {
1582  assert(BasePathArray.empty() && "Base path array must be empty!");
1583  assert(Paths.isRecordingPaths() && "Must record paths!");
1584
1585  const CXXBasePath &Path = Paths.front();
1586
1587  // We first go backward and check if we have a virtual base.
1588  // FIXME: It would be better if CXXBasePath had the base specifier for
1589  // the nearest virtual base.
1590  unsigned Start = 0;
1591  for (unsigned I = Path.size(); I != 0; --I) {
1592    if (Path[I - 1].Base->isVirtual()) {
1593      Start = I - 1;
1594      break;
1595    }
1596  }
1597
1598  // Now add all bases.
1599  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1600    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1601}
1602
1603/// \brief Determine whether the given base path includes a virtual
1604/// base class.
1605bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1606  for (CXXCastPath::const_iterator B = BasePath.begin(),
1607                                BEnd = BasePath.end();
1608       B != BEnd; ++B)
1609    if ((*B)->isVirtual())
1610      return true;
1611
1612  return false;
1613}
1614
1615/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1616/// conversion (where Derived and Base are class types) is
1617/// well-formed, meaning that the conversion is unambiguous (and
1618/// that all of the base classes are accessible). Returns true
1619/// and emits a diagnostic if the code is ill-formed, returns false
1620/// otherwise. Loc is the location where this routine should point to
1621/// if there is an error, and Range is the source range to highlight
1622/// if there is an error.
1623bool
1624Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1625                                   unsigned InaccessibleBaseID,
1626                                   unsigned AmbigiousBaseConvID,
1627                                   SourceLocation Loc, SourceRange Range,
1628                                   DeclarationName Name,
1629                                   CXXCastPath *BasePath) {
1630  // First, determine whether the path from Derived to Base is
1631  // ambiguous. This is slightly more expensive than checking whether
1632  // the Derived to Base conversion exists, because here we need to
1633  // explore multiple paths to determine if there is an ambiguity.
1634  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1635                     /*DetectVirtual=*/false);
1636  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1637  assert(DerivationOkay &&
1638         "Can only be used with a derived-to-base conversion");
1639  (void)DerivationOkay;
1640
1641  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1642    if (InaccessibleBaseID) {
1643      // Check that the base class can be accessed.
1644      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1645                                   InaccessibleBaseID)) {
1646        case AR_inaccessible:
1647          return true;
1648        case AR_accessible:
1649        case AR_dependent:
1650        case AR_delayed:
1651          break;
1652      }
1653    }
1654
1655    // Build a base path if necessary.
1656    if (BasePath)
1657      BuildBasePathArray(Paths, *BasePath);
1658    return false;
1659  }
1660
1661  if (AmbigiousBaseConvID) {
1662    // We know that the derived-to-base conversion is ambiguous, and
1663    // we're going to produce a diagnostic. Perform the derived-to-base
1664    // search just one more time to compute all of the possible paths so
1665    // that we can print them out. This is more expensive than any of
1666    // the previous derived-to-base checks we've done, but at this point
1667    // performance isn't as much of an issue.
1668    Paths.clear();
1669    Paths.setRecordingPaths(true);
1670    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1671    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1672    (void)StillOkay;
1673
1674    // Build up a textual representation of the ambiguous paths, e.g.,
1675    // D -> B -> A, that will be used to illustrate the ambiguous
1676    // conversions in the diagnostic. We only print one of the paths
1677    // to each base class subobject.
1678    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1679
1680    Diag(Loc, AmbigiousBaseConvID)
1681    << Derived << Base << PathDisplayStr << Range << Name;
1682  }
1683  return true;
1684}
1685
1686bool
1687Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1688                                   SourceLocation Loc, SourceRange Range,
1689                                   CXXCastPath *BasePath,
1690                                   bool IgnoreAccess) {
1691  return CheckDerivedToBaseConversion(Derived, Base,
1692                                      IgnoreAccess ? 0
1693                                       : diag::err_upcast_to_inaccessible_base,
1694                                      diag::err_ambiguous_derived_to_base_conv,
1695                                      Loc, Range, DeclarationName(),
1696                                      BasePath);
1697}
1698
1699
1700/// @brief Builds a string representing ambiguous paths from a
1701/// specific derived class to different subobjects of the same base
1702/// class.
1703///
1704/// This function builds a string that can be used in error messages
1705/// to show the different paths that one can take through the
1706/// inheritance hierarchy to go from the derived class to different
1707/// subobjects of a base class. The result looks something like this:
1708/// @code
1709/// struct D -> struct B -> struct A
1710/// struct D -> struct C -> struct A
1711/// @endcode
1712std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1713  std::string PathDisplayStr;
1714  std::set<unsigned> DisplayedPaths;
1715  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1716       Path != Paths.end(); ++Path) {
1717    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1718      // We haven't displayed a path to this particular base
1719      // class subobject yet.
1720      PathDisplayStr += "\n    ";
1721      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1722      for (CXXBasePath::const_iterator Element = Path->begin();
1723           Element != Path->end(); ++Element)
1724        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1725    }
1726  }
1727
1728  return PathDisplayStr;
1729}
1730
1731//===----------------------------------------------------------------------===//
1732// C++ class member Handling
1733//===----------------------------------------------------------------------===//
1734
1735/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1736bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1737                                SourceLocation ASLoc,
1738                                SourceLocation ColonLoc,
1739                                AttributeList *Attrs) {
1740  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1741  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1742                                                  ASLoc, ColonLoc);
1743  CurContext->addHiddenDecl(ASDecl);
1744  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1745}
1746
1747/// CheckOverrideControl - Check C++11 override control semantics.
1748void Sema::CheckOverrideControl(NamedDecl *D) {
1749  if (D->isInvalidDecl())
1750    return;
1751
1752  // We only care about "override" and "final" declarations.
1753  if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1754    return;
1755
1756  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1757
1758  // We can't check dependent instance methods.
1759  if (MD && MD->isInstance() &&
1760      (MD->getParent()->hasAnyDependentBases() ||
1761       MD->getType()->isDependentType()))
1762    return;
1763
1764  if (MD && !MD->isVirtual()) {
1765    // If we have a non-virtual method, check if if hides a virtual method.
1766    // (In that case, it's most likely the method has the wrong type.)
1767    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1768    FindHiddenVirtualMethods(MD, OverloadedMethods);
1769
1770    if (!OverloadedMethods.empty()) {
1771      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1772        Diag(OA->getLocation(),
1773             diag::override_keyword_hides_virtual_member_function)
1774          << "override" << (OverloadedMethods.size() > 1);
1775      } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1776        Diag(FA->getLocation(),
1777             diag::override_keyword_hides_virtual_member_function)
1778          << (FA->isSpelledAsSealed() ? "sealed" : "final")
1779          << (OverloadedMethods.size() > 1);
1780      }
1781      NoteHiddenVirtualMethods(MD, OverloadedMethods);
1782      MD->setInvalidDecl();
1783      return;
1784    }
1785    // Fall through into the general case diagnostic.
1786    // FIXME: We might want to attempt typo correction here.
1787  }
1788
1789  if (!MD || !MD->isVirtual()) {
1790    if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1791      Diag(OA->getLocation(),
1792           diag::override_keyword_only_allowed_on_virtual_member_functions)
1793        << "override" << FixItHint::CreateRemoval(OA->getLocation());
1794      D->dropAttr<OverrideAttr>();
1795    }
1796    if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1797      Diag(FA->getLocation(),
1798           diag::override_keyword_only_allowed_on_virtual_member_functions)
1799        << (FA->isSpelledAsSealed() ? "sealed" : "final")
1800        << FixItHint::CreateRemoval(FA->getLocation());
1801      D->dropAttr<FinalAttr>();
1802    }
1803    return;
1804  }
1805
1806  // C++11 [class.virtual]p5:
1807  //   If a virtual function is marked with the virt-specifier override and
1808  //   does not override a member function of a base class, the program is
1809  //   ill-formed.
1810  bool HasOverriddenMethods =
1811    MD->begin_overridden_methods() != MD->end_overridden_methods();
1812  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1813    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1814      << MD->getDeclName();
1815}
1816
1817/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1818/// function overrides a virtual member function marked 'final', according to
1819/// C++11 [class.virtual]p4.
1820bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1821                                                  const CXXMethodDecl *Old) {
1822  FinalAttr *FA = Old->getAttr<FinalAttr>();
1823  if (!FA)
1824    return false;
1825
1826  Diag(New->getLocation(), diag::err_final_function_overridden)
1827    << New->getDeclName()
1828    << FA->isSpelledAsSealed();
1829  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1830  return true;
1831}
1832
1833static bool InitializationHasSideEffects(const FieldDecl &FD) {
1834  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1835  // FIXME: Destruction of ObjC lifetime types has side-effects.
1836  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1837    return !RD->isCompleteDefinition() ||
1838           !RD->hasTrivialDefaultConstructor() ||
1839           !RD->hasTrivialDestructor();
1840  return false;
1841}
1842
1843static AttributeList *getMSPropertyAttr(AttributeList *list) {
1844  for (AttributeList* it = list; it != 0; it = it->getNext())
1845    if (it->isDeclspecPropertyAttribute())
1846      return it;
1847  return 0;
1848}
1849
1850/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1851/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1852/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1853/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1854/// present (but parsing it has been deferred).
1855NamedDecl *
1856Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1857                               MultiTemplateParamsArg TemplateParameterLists,
1858                               Expr *BW, const VirtSpecifiers &VS,
1859                               InClassInitStyle InitStyle) {
1860  const DeclSpec &DS = D.getDeclSpec();
1861  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1862  DeclarationName Name = NameInfo.getName();
1863  SourceLocation Loc = NameInfo.getLoc();
1864
1865  // For anonymous bitfields, the location should point to the type.
1866  if (Loc.isInvalid())
1867    Loc = D.getLocStart();
1868
1869  Expr *BitWidth = static_cast<Expr*>(BW);
1870
1871  assert(isa<CXXRecordDecl>(CurContext));
1872  assert(!DS.isFriendSpecified());
1873
1874  bool isFunc = D.isDeclarationOfFunction();
1875
1876  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1877    // The Microsoft extension __interface only permits public member functions
1878    // and prohibits constructors, destructors, operators, non-public member
1879    // functions, static methods and data members.
1880    unsigned InvalidDecl;
1881    bool ShowDeclName = true;
1882    if (!isFunc)
1883      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1884    else if (AS != AS_public)
1885      InvalidDecl = 2;
1886    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1887      InvalidDecl = 3;
1888    else switch (Name.getNameKind()) {
1889      case DeclarationName::CXXConstructorName:
1890        InvalidDecl = 4;
1891        ShowDeclName = false;
1892        break;
1893
1894      case DeclarationName::CXXDestructorName:
1895        InvalidDecl = 5;
1896        ShowDeclName = false;
1897        break;
1898
1899      case DeclarationName::CXXOperatorName:
1900      case DeclarationName::CXXConversionFunctionName:
1901        InvalidDecl = 6;
1902        break;
1903
1904      default:
1905        InvalidDecl = 0;
1906        break;
1907    }
1908
1909    if (InvalidDecl) {
1910      if (ShowDeclName)
1911        Diag(Loc, diag::err_invalid_member_in_interface)
1912          << (InvalidDecl-1) << Name;
1913      else
1914        Diag(Loc, diag::err_invalid_member_in_interface)
1915          << (InvalidDecl-1) << "";
1916      return 0;
1917    }
1918  }
1919
1920  // C++ 9.2p6: A member shall not be declared to have automatic storage
1921  // duration (auto, register) or with the extern storage-class-specifier.
1922  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1923  // data members and cannot be applied to names declared const or static,
1924  // and cannot be applied to reference members.
1925  switch (DS.getStorageClassSpec()) {
1926  case DeclSpec::SCS_unspecified:
1927  case DeclSpec::SCS_typedef:
1928  case DeclSpec::SCS_static:
1929    break;
1930  case DeclSpec::SCS_mutable:
1931    if (isFunc) {
1932      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1933
1934      // FIXME: It would be nicer if the keyword was ignored only for this
1935      // declarator. Otherwise we could get follow-up errors.
1936      D.getMutableDeclSpec().ClearStorageClassSpecs();
1937    }
1938    break;
1939  default:
1940    Diag(DS.getStorageClassSpecLoc(),
1941         diag::err_storageclass_invalid_for_member);
1942    D.getMutableDeclSpec().ClearStorageClassSpecs();
1943    break;
1944  }
1945
1946  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1947                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1948                      !isFunc);
1949
1950  if (DS.isConstexprSpecified() && isInstField) {
1951    SemaDiagnosticBuilder B =
1952        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1953    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1954    if (InitStyle == ICIS_NoInit) {
1955      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1956      D.getMutableDeclSpec().ClearConstexprSpec();
1957      const char *PrevSpec;
1958      unsigned DiagID;
1959      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1960                                         PrevSpec, DiagID, getLangOpts());
1961      (void)Failed;
1962      assert(!Failed && "Making a constexpr member const shouldn't fail");
1963    } else {
1964      B << 1;
1965      const char *PrevSpec;
1966      unsigned DiagID;
1967      if (D.getMutableDeclSpec().SetStorageClassSpec(
1968          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1969        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1970               "This is the only DeclSpec that should fail to be applied");
1971        B << 1;
1972      } else {
1973        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1974        isInstField = false;
1975      }
1976    }
1977  }
1978
1979  NamedDecl *Member;
1980  if (isInstField) {
1981    CXXScopeSpec &SS = D.getCXXScopeSpec();
1982
1983    // Data members must have identifiers for names.
1984    if (!Name.isIdentifier()) {
1985      Diag(Loc, diag::err_bad_variable_name)
1986        << Name;
1987      return 0;
1988    }
1989
1990    IdentifierInfo *II = Name.getAsIdentifierInfo();
1991
1992    // Member field could not be with "template" keyword.
1993    // So TemplateParameterLists should be empty in this case.
1994    if (TemplateParameterLists.size()) {
1995      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1996      if (TemplateParams->size()) {
1997        // There is no such thing as a member field template.
1998        Diag(D.getIdentifierLoc(), diag::err_template_member)
1999            << II
2000            << SourceRange(TemplateParams->getTemplateLoc(),
2001                TemplateParams->getRAngleLoc());
2002      } else {
2003        // There is an extraneous 'template<>' for this member.
2004        Diag(TemplateParams->getTemplateLoc(),
2005            diag::err_template_member_noparams)
2006            << II
2007            << SourceRange(TemplateParams->getTemplateLoc(),
2008                TemplateParams->getRAngleLoc());
2009      }
2010      return 0;
2011    }
2012
2013    if (SS.isSet() && !SS.isInvalid()) {
2014      // The user provided a superfluous scope specifier inside a class
2015      // definition:
2016      //
2017      // class X {
2018      //   int X::member;
2019      // };
2020      if (DeclContext *DC = computeDeclContext(SS, false))
2021        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2022      else
2023        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2024          << Name << SS.getRange();
2025
2026      SS.clear();
2027    }
2028
2029    AttributeList *MSPropertyAttr =
2030      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2031    if (MSPropertyAttr) {
2032      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2033                                BitWidth, InitStyle, AS, MSPropertyAttr);
2034      if (!Member)
2035        return 0;
2036      isInstField = false;
2037    } else {
2038      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2039                                BitWidth, InitStyle, AS);
2040      assert(Member && "HandleField never returns null");
2041    }
2042  } else {
2043    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2044
2045    Member = HandleDeclarator(S, D, TemplateParameterLists);
2046    if (!Member)
2047      return 0;
2048
2049    // Non-instance-fields can't have a bitfield.
2050    if (BitWidth) {
2051      if (Member->isInvalidDecl()) {
2052        // don't emit another diagnostic.
2053      } else if (isa<VarDecl>(Member)) {
2054        // C++ 9.6p3: A bit-field shall not be a static member.
2055        // "static member 'A' cannot be a bit-field"
2056        Diag(Loc, diag::err_static_not_bitfield)
2057          << Name << BitWidth->getSourceRange();
2058      } else if (isa<TypedefDecl>(Member)) {
2059        // "typedef member 'x' cannot be a bit-field"
2060        Diag(Loc, diag::err_typedef_not_bitfield)
2061          << Name << BitWidth->getSourceRange();
2062      } else {
2063        // A function typedef ("typedef int f(); f a;").
2064        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2065        Diag(Loc, diag::err_not_integral_type_bitfield)
2066          << Name << cast<ValueDecl>(Member)->getType()
2067          << BitWidth->getSourceRange();
2068      }
2069
2070      BitWidth = 0;
2071      Member->setInvalidDecl();
2072    }
2073
2074    Member->setAccess(AS);
2075
2076    // If we have declared a member function template or static data member
2077    // template, set the access of the templated declaration as well.
2078    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2079      FunTmpl->getTemplatedDecl()->setAccess(AS);
2080    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2081      VarTmpl->getTemplatedDecl()->setAccess(AS);
2082  }
2083
2084  if (VS.isOverrideSpecified())
2085    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2086  if (VS.isFinalSpecified())
2087    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2088                                            VS.isFinalSpelledSealed()));
2089
2090  if (VS.getLastLocation().isValid()) {
2091    // Update the end location of a method that has a virt-specifiers.
2092    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2093      MD->setRangeEnd(VS.getLastLocation());
2094  }
2095
2096  CheckOverrideControl(Member);
2097
2098  assert((Name || isInstField) && "No identifier for non-field ?");
2099
2100  if (isInstField) {
2101    FieldDecl *FD = cast<FieldDecl>(Member);
2102    FieldCollector->Add(FD);
2103
2104    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2105                                 FD->getLocation())
2106          != DiagnosticsEngine::Ignored) {
2107      // Remember all explicit private FieldDecls that have a name, no side
2108      // effects and are not part of a dependent type declaration.
2109      if (!FD->isImplicit() && FD->getDeclName() &&
2110          FD->getAccess() == AS_private &&
2111          !FD->hasAttr<UnusedAttr>() &&
2112          !FD->getParent()->isDependentContext() &&
2113          !InitializationHasSideEffects(*FD))
2114        UnusedPrivateFields.insert(FD);
2115    }
2116  }
2117
2118  return Member;
2119}
2120
2121namespace {
2122  class UninitializedFieldVisitor
2123      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2124    Sema &S;
2125    // List of Decls to generate a warning on.  Also remove Decls that become
2126    // initialized.
2127    llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2128    // If non-null, add a note to the warning pointing back to the constructor.
2129    const CXXConstructorDecl *Constructor;
2130  public:
2131    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2132    UninitializedFieldVisitor(Sema &S,
2133                              llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2134                              const CXXConstructorDecl *Constructor)
2135      : Inherited(S.Context), S(S), Decls(Decls),
2136        Constructor(Constructor) { }
2137
2138    void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2139      if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2140        return;
2141
2142      // FieldME is the inner-most MemberExpr that is not an anonymous struct
2143      // or union.
2144      MemberExpr *FieldME = ME;
2145
2146      Expr *Base = ME;
2147      while (isa<MemberExpr>(Base)) {
2148        ME = cast<MemberExpr>(Base);
2149
2150        if (isa<VarDecl>(ME->getMemberDecl()))
2151          return;
2152
2153        if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2154          if (!FD->isAnonymousStructOrUnion())
2155            FieldME = ME;
2156
2157        Base = ME->getBase();
2158      }
2159
2160      if (!isa<CXXThisExpr>(Base))
2161        return;
2162
2163      ValueDecl* FoundVD = FieldME->getMemberDecl();
2164
2165      if (!Decls.count(FoundVD))
2166        return;
2167
2168      const bool IsReference = FoundVD->getType()->isReferenceType();
2169
2170      // Prevent double warnings on use of unbounded references.
2171      if (IsReference != CheckReferenceOnly)
2172        return;
2173
2174      unsigned diag = IsReference
2175          ? diag::warn_reference_field_is_uninit
2176          : diag::warn_field_is_uninit;
2177      S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2178      if (Constructor)
2179        S.Diag(Constructor->getLocation(),
2180               diag::note_uninit_in_this_constructor)
2181          << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2182
2183    }
2184
2185    void HandleValue(Expr *E) {
2186      E = E->IgnoreParens();
2187
2188      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2189        HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2190        return;
2191      }
2192
2193      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2194        HandleValue(CO->getTrueExpr());
2195        HandleValue(CO->getFalseExpr());
2196        return;
2197      }
2198
2199      if (BinaryConditionalOperator *BCO =
2200              dyn_cast<BinaryConditionalOperator>(E)) {
2201        HandleValue(BCO->getCommon());
2202        HandleValue(BCO->getFalseExpr());
2203        return;
2204      }
2205
2206      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2207        switch (BO->getOpcode()) {
2208        default:
2209          return;
2210        case(BO_PtrMemD):
2211        case(BO_PtrMemI):
2212          HandleValue(BO->getLHS());
2213          return;
2214        case(BO_Comma):
2215          HandleValue(BO->getRHS());
2216          return;
2217        }
2218      }
2219    }
2220
2221    void VisitMemberExpr(MemberExpr *ME) {
2222      // All uses of unbounded reference fields will warn.
2223      HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2224
2225      Inherited::VisitMemberExpr(ME);
2226    }
2227
2228    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2229      if (E->getCastKind() == CK_LValueToRValue)
2230        HandleValue(E->getSubExpr());
2231
2232      Inherited::VisitImplicitCastExpr(E);
2233    }
2234
2235    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2236      if (E->getConstructor()->isCopyConstructor())
2237        if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2238          if (ICE->getCastKind() == CK_NoOp)
2239            if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2240              HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2241
2242      Inherited::VisitCXXConstructExpr(E);
2243    }
2244
2245    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2246      Expr *Callee = E->getCallee();
2247      if (isa<MemberExpr>(Callee))
2248        HandleValue(Callee);
2249
2250      Inherited::VisitCXXMemberCallExpr(E);
2251    }
2252
2253    void VisitBinaryOperator(BinaryOperator *E) {
2254      // If a field assignment is detected, remove the field from the
2255      // uninitiailized field set.
2256      if (E->getOpcode() == BO_Assign)
2257        if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2258          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2259            if (!FD->getType()->isReferenceType())
2260              Decls.erase(FD);
2261
2262      Inherited::VisitBinaryOperator(E);
2263    }
2264  };
2265  static void CheckInitExprContainsUninitializedFields(
2266      Sema &S, Expr *E, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2267      const CXXConstructorDecl *Constructor) {
2268    if (Decls.size() == 0)
2269      return;
2270
2271    if (!E)
2272      return;
2273
2274    if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(E)) {
2275      E = Default->getExpr();
2276      if (!E)
2277        return;
2278      // In class initializers will point to the constructor.
2279      UninitializedFieldVisitor(S, Decls, Constructor).Visit(E);
2280    } else {
2281      UninitializedFieldVisitor(S, Decls, 0).Visit(E);
2282    }
2283  }
2284
2285  // Diagnose value-uses of fields to initialize themselves, e.g.
2286  //   foo(foo)
2287  // where foo is not also a parameter to the constructor.
2288  // Also diagnose across field uninitialized use such as
2289  //   x(y), y(x)
2290  // TODO: implement -Wuninitialized and fold this into that framework.
2291  static void DiagnoseUninitializedFields(
2292      Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2293
2294    if (SemaRef.getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
2295                                                    Constructor->getLocation())
2296        == DiagnosticsEngine::Ignored) {
2297      return;
2298    }
2299
2300    if (Constructor->isInvalidDecl())
2301      return;
2302
2303    const CXXRecordDecl *RD = Constructor->getParent();
2304
2305    // Holds fields that are uninitialized.
2306    llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2307
2308    // At the beginning, all fields are uninitialized.
2309    for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
2310         I != E; ++I) {
2311      if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
2312        UninitializedFields.insert(FD);
2313      } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
2314        UninitializedFields.insert(IFD->getAnonField());
2315      }
2316    }
2317
2318    for (CXXConstructorDecl::init_const_iterator FieldInit =
2319             Constructor->init_begin(),
2320             FieldInitEnd = Constructor->init_end();
2321         FieldInit != FieldInitEnd; ++FieldInit) {
2322
2323      Expr *InitExpr = (*FieldInit)->getInit();
2324
2325      CheckInitExprContainsUninitializedFields(
2326          SemaRef, InitExpr, UninitializedFields, Constructor);
2327
2328      if (FieldDecl *Field = (*FieldInit)->getAnyMember())
2329        UninitializedFields.erase(Field);
2330    }
2331  }
2332} // namespace
2333
2334/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2335/// in-class initializer for a non-static C++ class member, and after
2336/// instantiating an in-class initializer in a class template. Such actions
2337/// are deferred until the class is complete.
2338void
2339Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2340                                       Expr *InitExpr) {
2341  FieldDecl *FD = cast<FieldDecl>(D);
2342  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2343         "must set init style when field is created");
2344
2345  if (!InitExpr) {
2346    FD->setInvalidDecl();
2347    FD->removeInClassInitializer();
2348    return;
2349  }
2350
2351  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2352    FD->setInvalidDecl();
2353    FD->removeInClassInitializer();
2354    return;
2355  }
2356
2357  ExprResult Init = InitExpr;
2358  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2359    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2360    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2361        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2362        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2363    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2364    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2365    if (Init.isInvalid()) {
2366      FD->setInvalidDecl();
2367      return;
2368    }
2369  }
2370
2371  // C++11 [class.base.init]p7:
2372  //   The initialization of each base and member constitutes a
2373  //   full-expression.
2374  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2375  if (Init.isInvalid()) {
2376    FD->setInvalidDecl();
2377    return;
2378  }
2379
2380  InitExpr = Init.release();
2381
2382  FD->setInClassInitializer(InitExpr);
2383}
2384
2385/// \brief Find the direct and/or virtual base specifiers that
2386/// correspond to the given base type, for use in base initialization
2387/// within a constructor.
2388static bool FindBaseInitializer(Sema &SemaRef,
2389                                CXXRecordDecl *ClassDecl,
2390                                QualType BaseType,
2391                                const CXXBaseSpecifier *&DirectBaseSpec,
2392                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2393  // First, check for a direct base class.
2394  DirectBaseSpec = 0;
2395  for (CXXRecordDecl::base_class_const_iterator Base
2396         = ClassDecl->bases_begin();
2397       Base != ClassDecl->bases_end(); ++Base) {
2398    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2399      // We found a direct base of this type. That's what we're
2400      // initializing.
2401      DirectBaseSpec = &*Base;
2402      break;
2403    }
2404  }
2405
2406  // Check for a virtual base class.
2407  // FIXME: We might be able to short-circuit this if we know in advance that
2408  // there are no virtual bases.
2409  VirtualBaseSpec = 0;
2410  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2411    // We haven't found a base yet; search the class hierarchy for a
2412    // virtual base class.
2413    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2414                       /*DetectVirtual=*/false);
2415    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2416                              BaseType, Paths)) {
2417      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2418           Path != Paths.end(); ++Path) {
2419        if (Path->back().Base->isVirtual()) {
2420          VirtualBaseSpec = Path->back().Base;
2421          break;
2422        }
2423      }
2424    }
2425  }
2426
2427  return DirectBaseSpec || VirtualBaseSpec;
2428}
2429
2430/// \brief Handle a C++ member initializer using braced-init-list syntax.
2431MemInitResult
2432Sema::ActOnMemInitializer(Decl *ConstructorD,
2433                          Scope *S,
2434                          CXXScopeSpec &SS,
2435                          IdentifierInfo *MemberOrBase,
2436                          ParsedType TemplateTypeTy,
2437                          const DeclSpec &DS,
2438                          SourceLocation IdLoc,
2439                          Expr *InitList,
2440                          SourceLocation EllipsisLoc) {
2441  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2442                             DS, IdLoc, InitList,
2443                             EllipsisLoc);
2444}
2445
2446/// \brief Handle a C++ member initializer using parentheses syntax.
2447MemInitResult
2448Sema::ActOnMemInitializer(Decl *ConstructorD,
2449                          Scope *S,
2450                          CXXScopeSpec &SS,
2451                          IdentifierInfo *MemberOrBase,
2452                          ParsedType TemplateTypeTy,
2453                          const DeclSpec &DS,
2454                          SourceLocation IdLoc,
2455                          SourceLocation LParenLoc,
2456                          ArrayRef<Expr *> Args,
2457                          SourceLocation RParenLoc,
2458                          SourceLocation EllipsisLoc) {
2459  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2460                                           Args, RParenLoc);
2461  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2462                             DS, IdLoc, List, EllipsisLoc);
2463}
2464
2465namespace {
2466
2467// Callback to only accept typo corrections that can be a valid C++ member
2468// intializer: either a non-static field member or a base class.
2469class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2470public:
2471  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2472      : ClassDecl(ClassDecl) {}
2473
2474  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2475    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2476      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2477        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2478      return isa<TypeDecl>(ND);
2479    }
2480    return false;
2481  }
2482
2483private:
2484  CXXRecordDecl *ClassDecl;
2485};
2486
2487}
2488
2489/// \brief Handle a C++ member initializer.
2490MemInitResult
2491Sema::BuildMemInitializer(Decl *ConstructorD,
2492                          Scope *S,
2493                          CXXScopeSpec &SS,
2494                          IdentifierInfo *MemberOrBase,
2495                          ParsedType TemplateTypeTy,
2496                          const DeclSpec &DS,
2497                          SourceLocation IdLoc,
2498                          Expr *Init,
2499                          SourceLocation EllipsisLoc) {
2500  if (!ConstructorD)
2501    return true;
2502
2503  AdjustDeclIfTemplate(ConstructorD);
2504
2505  CXXConstructorDecl *Constructor
2506    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2507  if (!Constructor) {
2508    // The user wrote a constructor initializer on a function that is
2509    // not a C++ constructor. Ignore the error for now, because we may
2510    // have more member initializers coming; we'll diagnose it just
2511    // once in ActOnMemInitializers.
2512    return true;
2513  }
2514
2515  CXXRecordDecl *ClassDecl = Constructor->getParent();
2516
2517  // C++ [class.base.init]p2:
2518  //   Names in a mem-initializer-id are looked up in the scope of the
2519  //   constructor's class and, if not found in that scope, are looked
2520  //   up in the scope containing the constructor's definition.
2521  //   [Note: if the constructor's class contains a member with the
2522  //   same name as a direct or virtual base class of the class, a
2523  //   mem-initializer-id naming the member or base class and composed
2524  //   of a single identifier refers to the class member. A
2525  //   mem-initializer-id for the hidden base class may be specified
2526  //   using a qualified name. ]
2527  if (!SS.getScopeRep() && !TemplateTypeTy) {
2528    // Look for a member, first.
2529    DeclContext::lookup_result Result
2530      = ClassDecl->lookup(MemberOrBase);
2531    if (!Result.empty()) {
2532      ValueDecl *Member;
2533      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2534          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2535        if (EllipsisLoc.isValid())
2536          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2537            << MemberOrBase
2538            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2539
2540        return BuildMemberInitializer(Member, Init, IdLoc);
2541      }
2542    }
2543  }
2544  // It didn't name a member, so see if it names a class.
2545  QualType BaseType;
2546  TypeSourceInfo *TInfo = 0;
2547
2548  if (TemplateTypeTy) {
2549    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2550  } else if (DS.getTypeSpecType() == TST_decltype) {
2551    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2552  } else {
2553    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2554    LookupParsedName(R, S, &SS);
2555
2556    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2557    if (!TyD) {
2558      if (R.isAmbiguous()) return true;
2559
2560      // We don't want access-control diagnostics here.
2561      R.suppressDiagnostics();
2562
2563      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2564        bool NotUnknownSpecialization = false;
2565        DeclContext *DC = computeDeclContext(SS, false);
2566        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2567          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2568
2569        if (!NotUnknownSpecialization) {
2570          // When the scope specifier can refer to a member of an unknown
2571          // specialization, we take it as a type name.
2572          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2573                                       SS.getWithLocInContext(Context),
2574                                       *MemberOrBase, IdLoc);
2575          if (BaseType.isNull())
2576            return true;
2577
2578          R.clear();
2579          R.setLookupName(MemberOrBase);
2580        }
2581      }
2582
2583      // If no results were found, try to correct typos.
2584      TypoCorrection Corr;
2585      MemInitializerValidatorCCC Validator(ClassDecl);
2586      if (R.empty() && BaseType.isNull() &&
2587          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2588                              Validator, ClassDecl))) {
2589        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2590          // We have found a non-static data member with a similar
2591          // name to what was typed; complain and initialize that
2592          // member.
2593          diagnoseTypo(Corr,
2594                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2595                         << MemberOrBase << true);
2596          return BuildMemberInitializer(Member, Init, IdLoc);
2597        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2598          const CXXBaseSpecifier *DirectBaseSpec;
2599          const CXXBaseSpecifier *VirtualBaseSpec;
2600          if (FindBaseInitializer(*this, ClassDecl,
2601                                  Context.getTypeDeclType(Type),
2602                                  DirectBaseSpec, VirtualBaseSpec)) {
2603            // We have found a direct or virtual base class with a
2604            // similar name to what was typed; complain and initialize
2605            // that base class.
2606            diagnoseTypo(Corr,
2607                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2608                           << MemberOrBase << false,
2609                         PDiag() /*Suppress note, we provide our own.*/);
2610
2611            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2612                                                              : VirtualBaseSpec;
2613            Diag(BaseSpec->getLocStart(),
2614                 diag::note_base_class_specified_here)
2615              << BaseSpec->getType()
2616              << BaseSpec->getSourceRange();
2617
2618            TyD = Type;
2619          }
2620        }
2621      }
2622
2623      if (!TyD && BaseType.isNull()) {
2624        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2625          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2626        return true;
2627      }
2628    }
2629
2630    if (BaseType.isNull()) {
2631      BaseType = Context.getTypeDeclType(TyD);
2632      if (SS.isSet()) {
2633        NestedNameSpecifier *Qualifier =
2634          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2635
2636        // FIXME: preserve source range information
2637        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2638      }
2639    }
2640  }
2641
2642  if (!TInfo)
2643    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2644
2645  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2646}
2647
2648/// Checks a member initializer expression for cases where reference (or
2649/// pointer) members are bound to by-value parameters (or their addresses).
2650static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2651                                               Expr *Init,
2652                                               SourceLocation IdLoc) {
2653  QualType MemberTy = Member->getType();
2654
2655  // We only handle pointers and references currently.
2656  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2657  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2658    return;
2659
2660  const bool IsPointer = MemberTy->isPointerType();
2661  if (IsPointer) {
2662    if (const UnaryOperator *Op
2663          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2664      // The only case we're worried about with pointers requires taking the
2665      // address.
2666      if (Op->getOpcode() != UO_AddrOf)
2667        return;
2668
2669      Init = Op->getSubExpr();
2670    } else {
2671      // We only handle address-of expression initializers for pointers.
2672      return;
2673    }
2674  }
2675
2676  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2677    // We only warn when referring to a non-reference parameter declaration.
2678    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2679    if (!Parameter || Parameter->getType()->isReferenceType())
2680      return;
2681
2682    S.Diag(Init->getExprLoc(),
2683           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2684                     : diag::warn_bind_ref_member_to_parameter)
2685      << Member << Parameter << Init->getSourceRange();
2686  } else {
2687    // Other initializers are fine.
2688    return;
2689  }
2690
2691  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2692    << (unsigned)IsPointer;
2693}
2694
2695MemInitResult
2696Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2697                             SourceLocation IdLoc) {
2698  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2699  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2700  assert((DirectMember || IndirectMember) &&
2701         "Member must be a FieldDecl or IndirectFieldDecl");
2702
2703  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2704    return true;
2705
2706  if (Member->isInvalidDecl())
2707    return true;
2708
2709  MultiExprArg Args;
2710  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2711    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2712  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2713    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2714  } else {
2715    // Template instantiation doesn't reconstruct ParenListExprs for us.
2716    Args = Init;
2717  }
2718
2719  SourceRange InitRange = Init->getSourceRange();
2720
2721  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2722    // Can't check initialization for a member of dependent type or when
2723    // any of the arguments are type-dependent expressions.
2724    DiscardCleanupsInEvaluationContext();
2725  } else {
2726    bool InitList = false;
2727    if (isa<InitListExpr>(Init)) {
2728      InitList = true;
2729      Args = Init;
2730    }
2731
2732    // Initialize the member.
2733    InitializedEntity MemberEntity =
2734      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2735                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2736    InitializationKind Kind =
2737      InitList ? InitializationKind::CreateDirectList(IdLoc)
2738               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2739                                                  InitRange.getEnd());
2740
2741    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2742    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2743    if (MemberInit.isInvalid())
2744      return true;
2745
2746    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2747
2748    // C++11 [class.base.init]p7:
2749    //   The initialization of each base and member constitutes a
2750    //   full-expression.
2751    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2752    if (MemberInit.isInvalid())
2753      return true;
2754
2755    Init = MemberInit.get();
2756  }
2757
2758  if (DirectMember) {
2759    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2760                                            InitRange.getBegin(), Init,
2761                                            InitRange.getEnd());
2762  } else {
2763    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2764                                            InitRange.getBegin(), Init,
2765                                            InitRange.getEnd());
2766  }
2767}
2768
2769MemInitResult
2770Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2771                                 CXXRecordDecl *ClassDecl) {
2772  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2773  if (!LangOpts.CPlusPlus11)
2774    return Diag(NameLoc, diag::err_delegating_ctor)
2775      << TInfo->getTypeLoc().getLocalSourceRange();
2776  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2777
2778  bool InitList = true;
2779  MultiExprArg Args = Init;
2780  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2781    InitList = false;
2782    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2783  }
2784
2785  SourceRange InitRange = Init->getSourceRange();
2786  // Initialize the object.
2787  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2788                                     QualType(ClassDecl->getTypeForDecl(), 0));
2789  InitializationKind Kind =
2790    InitList ? InitializationKind::CreateDirectList(NameLoc)
2791             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2792                                                InitRange.getEnd());
2793  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2794  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2795                                              Args, 0);
2796  if (DelegationInit.isInvalid())
2797    return true;
2798
2799  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2800         "Delegating constructor with no target?");
2801
2802  // C++11 [class.base.init]p7:
2803  //   The initialization of each base and member constitutes a
2804  //   full-expression.
2805  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2806                                       InitRange.getBegin());
2807  if (DelegationInit.isInvalid())
2808    return true;
2809
2810  // If we are in a dependent context, template instantiation will
2811  // perform this type-checking again. Just save the arguments that we
2812  // received in a ParenListExpr.
2813  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2814  // of the information that we have about the base
2815  // initializer. However, deconstructing the ASTs is a dicey process,
2816  // and this approach is far more likely to get the corner cases right.
2817  if (CurContext->isDependentContext())
2818    DelegationInit = Owned(Init);
2819
2820  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2821                                          DelegationInit.takeAs<Expr>(),
2822                                          InitRange.getEnd());
2823}
2824
2825MemInitResult
2826Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2827                           Expr *Init, CXXRecordDecl *ClassDecl,
2828                           SourceLocation EllipsisLoc) {
2829  SourceLocation BaseLoc
2830    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2831
2832  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2833    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2834             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2835
2836  // C++ [class.base.init]p2:
2837  //   [...] Unless the mem-initializer-id names a nonstatic data
2838  //   member of the constructor's class or a direct or virtual base
2839  //   of that class, the mem-initializer is ill-formed. A
2840  //   mem-initializer-list can initialize a base class using any
2841  //   name that denotes that base class type.
2842  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2843
2844  SourceRange InitRange = Init->getSourceRange();
2845  if (EllipsisLoc.isValid()) {
2846    // This is a pack expansion.
2847    if (!BaseType->containsUnexpandedParameterPack())  {
2848      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2849        << SourceRange(BaseLoc, InitRange.getEnd());
2850
2851      EllipsisLoc = SourceLocation();
2852    }
2853  } else {
2854    // Check for any unexpanded parameter packs.
2855    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2856      return true;
2857
2858    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2859      return true;
2860  }
2861
2862  // Check for direct and virtual base classes.
2863  const CXXBaseSpecifier *DirectBaseSpec = 0;
2864  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2865  if (!Dependent) {
2866    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2867                                       BaseType))
2868      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2869
2870    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2871                        VirtualBaseSpec);
2872
2873    // C++ [base.class.init]p2:
2874    // Unless the mem-initializer-id names a nonstatic data member of the
2875    // constructor's class or a direct or virtual base of that class, the
2876    // mem-initializer is ill-formed.
2877    if (!DirectBaseSpec && !VirtualBaseSpec) {
2878      // If the class has any dependent bases, then it's possible that
2879      // one of those types will resolve to the same type as
2880      // BaseType. Therefore, just treat this as a dependent base
2881      // class initialization.  FIXME: Should we try to check the
2882      // initialization anyway? It seems odd.
2883      if (ClassDecl->hasAnyDependentBases())
2884        Dependent = true;
2885      else
2886        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2887          << BaseType << Context.getTypeDeclType(ClassDecl)
2888          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2889    }
2890  }
2891
2892  if (Dependent) {
2893    DiscardCleanupsInEvaluationContext();
2894
2895    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2896                                            /*IsVirtual=*/false,
2897                                            InitRange.getBegin(), Init,
2898                                            InitRange.getEnd(), EllipsisLoc);
2899  }
2900
2901  // C++ [base.class.init]p2:
2902  //   If a mem-initializer-id is ambiguous because it designates both
2903  //   a direct non-virtual base class and an inherited virtual base
2904  //   class, the mem-initializer is ill-formed.
2905  if (DirectBaseSpec && VirtualBaseSpec)
2906    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2907      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2908
2909  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2910  if (!BaseSpec)
2911    BaseSpec = VirtualBaseSpec;
2912
2913  // Initialize the base.
2914  bool InitList = true;
2915  MultiExprArg Args = Init;
2916  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2917    InitList = false;
2918    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2919  }
2920
2921  InitializedEntity BaseEntity =
2922    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2923  InitializationKind Kind =
2924    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2925             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2926                                                InitRange.getEnd());
2927  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2928  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2929  if (BaseInit.isInvalid())
2930    return true;
2931
2932  // C++11 [class.base.init]p7:
2933  //   The initialization of each base and member constitutes a
2934  //   full-expression.
2935  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2936  if (BaseInit.isInvalid())
2937    return true;
2938
2939  // If we are in a dependent context, template instantiation will
2940  // perform this type-checking again. Just save the arguments that we
2941  // received in a ParenListExpr.
2942  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2943  // of the information that we have about the base
2944  // initializer. However, deconstructing the ASTs is a dicey process,
2945  // and this approach is far more likely to get the corner cases right.
2946  if (CurContext->isDependentContext())
2947    BaseInit = Owned(Init);
2948
2949  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2950                                          BaseSpec->isVirtual(),
2951                                          InitRange.getBegin(),
2952                                          BaseInit.takeAs<Expr>(),
2953                                          InitRange.getEnd(), EllipsisLoc);
2954}
2955
2956// Create a static_cast\<T&&>(expr).
2957static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2958  if (T.isNull()) T = E->getType();
2959  QualType TargetType = SemaRef.BuildReferenceType(
2960      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2961  SourceLocation ExprLoc = E->getLocStart();
2962  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2963      TargetType, ExprLoc);
2964
2965  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2966                                   SourceRange(ExprLoc, ExprLoc),
2967                                   E->getSourceRange()).take();
2968}
2969
2970/// ImplicitInitializerKind - How an implicit base or member initializer should
2971/// initialize its base or member.
2972enum ImplicitInitializerKind {
2973  IIK_Default,
2974  IIK_Copy,
2975  IIK_Move,
2976  IIK_Inherit
2977};
2978
2979static bool
2980BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2981                             ImplicitInitializerKind ImplicitInitKind,
2982                             CXXBaseSpecifier *BaseSpec,
2983                             bool IsInheritedVirtualBase,
2984                             CXXCtorInitializer *&CXXBaseInit) {
2985  InitializedEntity InitEntity
2986    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2987                                        IsInheritedVirtualBase);
2988
2989  ExprResult BaseInit;
2990
2991  switch (ImplicitInitKind) {
2992  case IIK_Inherit: {
2993    const CXXRecordDecl *Inherited =
2994        Constructor->getInheritedConstructor()->getParent();
2995    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2996    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2997      // C++11 [class.inhctor]p8:
2998      //   Each expression in the expression-list is of the form
2999      //   static_cast<T&&>(p), where p is the name of the corresponding
3000      //   constructor parameter and T is the declared type of p.
3001      SmallVector<Expr*, 16> Args;
3002      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3003        ParmVarDecl *PD = Constructor->getParamDecl(I);
3004        ExprResult ArgExpr =
3005            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3006                                     VK_LValue, SourceLocation());
3007        if (ArgExpr.isInvalid())
3008          return true;
3009        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
3010      }
3011
3012      InitializationKind InitKind = InitializationKind::CreateDirect(
3013          Constructor->getLocation(), SourceLocation(), SourceLocation());
3014      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3015      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3016      break;
3017    }
3018  }
3019  // Fall through.
3020  case IIK_Default: {
3021    InitializationKind InitKind
3022      = InitializationKind::CreateDefault(Constructor->getLocation());
3023    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3024    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3025    break;
3026  }
3027
3028  case IIK_Move:
3029  case IIK_Copy: {
3030    bool Moving = ImplicitInitKind == IIK_Move;
3031    ParmVarDecl *Param = Constructor->getParamDecl(0);
3032    QualType ParamType = Param->getType().getNonReferenceType();
3033
3034    Expr *CopyCtorArg =
3035      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3036                          SourceLocation(), Param, false,
3037                          Constructor->getLocation(), ParamType,
3038                          VK_LValue, 0);
3039
3040    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3041
3042    // Cast to the base class to avoid ambiguities.
3043    QualType ArgTy =
3044      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3045                                       ParamType.getQualifiers());
3046
3047    if (Moving) {
3048      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3049    }
3050
3051    CXXCastPath BasePath;
3052    BasePath.push_back(BaseSpec);
3053    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3054                                            CK_UncheckedDerivedToBase,
3055                                            Moving ? VK_XValue : VK_LValue,
3056                                            &BasePath).take();
3057
3058    InitializationKind InitKind
3059      = InitializationKind::CreateDirect(Constructor->getLocation(),
3060                                         SourceLocation(), SourceLocation());
3061    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3062    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3063    break;
3064  }
3065  }
3066
3067  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3068  if (BaseInit.isInvalid())
3069    return true;
3070
3071  CXXBaseInit =
3072    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3073               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3074                                                        SourceLocation()),
3075                                             BaseSpec->isVirtual(),
3076                                             SourceLocation(),
3077                                             BaseInit.takeAs<Expr>(),
3078                                             SourceLocation(),
3079                                             SourceLocation());
3080
3081  return false;
3082}
3083
3084static bool RefersToRValueRef(Expr *MemRef) {
3085  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3086  return Referenced->getType()->isRValueReferenceType();
3087}
3088
3089static bool
3090BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3091                               ImplicitInitializerKind ImplicitInitKind,
3092                               FieldDecl *Field, IndirectFieldDecl *Indirect,
3093                               CXXCtorInitializer *&CXXMemberInit) {
3094  if (Field->isInvalidDecl())
3095    return true;
3096
3097  SourceLocation Loc = Constructor->getLocation();
3098
3099  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3100    bool Moving = ImplicitInitKind == IIK_Move;
3101    ParmVarDecl *Param = Constructor->getParamDecl(0);
3102    QualType ParamType = Param->getType().getNonReferenceType();
3103
3104    // Suppress copying zero-width bitfields.
3105    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3106      return false;
3107
3108    Expr *MemberExprBase =
3109      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3110                          SourceLocation(), Param, false,
3111                          Loc, ParamType, VK_LValue, 0);
3112
3113    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3114
3115    if (Moving) {
3116      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3117    }
3118
3119    // Build a reference to this field within the parameter.
3120    CXXScopeSpec SS;
3121    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3122                              Sema::LookupMemberName);
3123    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3124                                  : cast<ValueDecl>(Field), AS_public);
3125    MemberLookup.resolveKind();
3126    ExprResult CtorArg
3127      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3128                                         ParamType, Loc,
3129                                         /*IsArrow=*/false,
3130                                         SS,
3131                                         /*TemplateKWLoc=*/SourceLocation(),
3132                                         /*FirstQualifierInScope=*/0,
3133                                         MemberLookup,
3134                                         /*TemplateArgs=*/0);
3135    if (CtorArg.isInvalid())
3136      return true;
3137
3138    // C++11 [class.copy]p15:
3139    //   - if a member m has rvalue reference type T&&, it is direct-initialized
3140    //     with static_cast<T&&>(x.m);
3141    if (RefersToRValueRef(CtorArg.get())) {
3142      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3143    }
3144
3145    // When the field we are copying is an array, create index variables for
3146    // each dimension of the array. We use these index variables to subscript
3147    // the source array, and other clients (e.g., CodeGen) will perform the
3148    // necessary iteration with these index variables.
3149    SmallVector<VarDecl *, 4> IndexVariables;
3150    QualType BaseType = Field->getType();
3151    QualType SizeType = SemaRef.Context.getSizeType();
3152    bool InitializingArray = false;
3153    while (const ConstantArrayType *Array
3154                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3155      InitializingArray = true;
3156      // Create the iteration variable for this array index.
3157      IdentifierInfo *IterationVarName = 0;
3158      {
3159        SmallString<8> Str;
3160        llvm::raw_svector_ostream OS(Str);
3161        OS << "__i" << IndexVariables.size();
3162        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3163      }
3164      VarDecl *IterationVar
3165        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3166                          IterationVarName, SizeType,
3167                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3168                          SC_None);
3169      IndexVariables.push_back(IterationVar);
3170
3171      // Create a reference to the iteration variable.
3172      ExprResult IterationVarRef
3173        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3174      assert(!IterationVarRef.isInvalid() &&
3175             "Reference to invented variable cannot fail!");
3176      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3177      assert(!IterationVarRef.isInvalid() &&
3178             "Conversion of invented variable cannot fail!");
3179
3180      // Subscript the array with this iteration variable.
3181      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3182                                                        IterationVarRef.take(),
3183                                                        Loc);
3184      if (CtorArg.isInvalid())
3185        return true;
3186
3187      BaseType = Array->getElementType();
3188    }
3189
3190    // The array subscript expression is an lvalue, which is wrong for moving.
3191    if (Moving && InitializingArray)
3192      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3193
3194    // Construct the entity that we will be initializing. For an array, this
3195    // will be first element in the array, which may require several levels
3196    // of array-subscript entities.
3197    SmallVector<InitializedEntity, 4> Entities;
3198    Entities.reserve(1 + IndexVariables.size());
3199    if (Indirect)
3200      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3201    else
3202      Entities.push_back(InitializedEntity::InitializeMember(Field));
3203    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3204      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3205                                                              0,
3206                                                              Entities.back()));
3207
3208    // Direct-initialize to use the copy constructor.
3209    InitializationKind InitKind =
3210      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3211
3212    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3213    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3214
3215    ExprResult MemberInit
3216      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3217                        MultiExprArg(&CtorArgE, 1));
3218    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3219    if (MemberInit.isInvalid())
3220      return true;
3221
3222    if (Indirect) {
3223      assert(IndexVariables.size() == 0 &&
3224             "Indirect field improperly initialized");
3225      CXXMemberInit
3226        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3227                                                   Loc, Loc,
3228                                                   MemberInit.takeAs<Expr>(),
3229                                                   Loc);
3230    } else
3231      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3232                                                 Loc, MemberInit.takeAs<Expr>(),
3233                                                 Loc,
3234                                                 IndexVariables.data(),
3235                                                 IndexVariables.size());
3236    return false;
3237  }
3238
3239  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3240         "Unhandled implicit init kind!");
3241
3242  QualType FieldBaseElementType =
3243    SemaRef.Context.getBaseElementType(Field->getType());
3244
3245  if (FieldBaseElementType->isRecordType()) {
3246    InitializedEntity InitEntity
3247      = Indirect? InitializedEntity::InitializeMember(Indirect)
3248                : InitializedEntity::InitializeMember(Field);
3249    InitializationKind InitKind =
3250      InitializationKind::CreateDefault(Loc);
3251
3252    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3253    ExprResult MemberInit =
3254      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3255
3256    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3257    if (MemberInit.isInvalid())
3258      return true;
3259
3260    if (Indirect)
3261      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3262                                                               Indirect, Loc,
3263                                                               Loc,
3264                                                               MemberInit.get(),
3265                                                               Loc);
3266    else
3267      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3268                                                               Field, Loc, Loc,
3269                                                               MemberInit.get(),
3270                                                               Loc);
3271    return false;
3272  }
3273
3274  if (!Field->getParent()->isUnion()) {
3275    if (FieldBaseElementType->isReferenceType()) {
3276      SemaRef.Diag(Constructor->getLocation(),
3277                   diag::err_uninitialized_member_in_ctor)
3278      << (int)Constructor->isImplicit()
3279      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3280      << 0 << Field->getDeclName();
3281      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3282      return true;
3283    }
3284
3285    if (FieldBaseElementType.isConstQualified()) {
3286      SemaRef.Diag(Constructor->getLocation(),
3287                   diag::err_uninitialized_member_in_ctor)
3288      << (int)Constructor->isImplicit()
3289      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3290      << 1 << Field->getDeclName();
3291      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3292      return true;
3293    }
3294  }
3295
3296  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3297      FieldBaseElementType->isObjCRetainableType() &&
3298      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3299      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3300    // ARC:
3301    //   Default-initialize Objective-C pointers to NULL.
3302    CXXMemberInit
3303      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3304                                                 Loc, Loc,
3305                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3306                                                 Loc);
3307    return false;
3308  }
3309
3310  // Nothing to initialize.
3311  CXXMemberInit = 0;
3312  return false;
3313}
3314
3315namespace {
3316struct BaseAndFieldInfo {
3317  Sema &S;
3318  CXXConstructorDecl *Ctor;
3319  bool AnyErrorsInInits;
3320  ImplicitInitializerKind IIK;
3321  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3322  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3323
3324  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3325    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3326    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3327    if (Generated && Ctor->isCopyConstructor())
3328      IIK = IIK_Copy;
3329    else if (Generated && Ctor->isMoveConstructor())
3330      IIK = IIK_Move;
3331    else if (Ctor->getInheritedConstructor())
3332      IIK = IIK_Inherit;
3333    else
3334      IIK = IIK_Default;
3335  }
3336
3337  bool isImplicitCopyOrMove() const {
3338    switch (IIK) {
3339    case IIK_Copy:
3340    case IIK_Move:
3341      return true;
3342
3343    case IIK_Default:
3344    case IIK_Inherit:
3345      return false;
3346    }
3347
3348    llvm_unreachable("Invalid ImplicitInitializerKind!");
3349  }
3350
3351  bool addFieldInitializer(CXXCtorInitializer *Init) {
3352    AllToInit.push_back(Init);
3353
3354    // Check whether this initializer makes the field "used".
3355    if (Init->getInit()->HasSideEffects(S.Context))
3356      S.UnusedPrivateFields.remove(Init->getAnyMember());
3357
3358    return false;
3359  }
3360};
3361}
3362
3363/// \brief Determine whether the given indirect field declaration is somewhere
3364/// within an anonymous union.
3365static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3366  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3367                                      CEnd = F->chain_end();
3368       C != CEnd; ++C)
3369    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3370      if (Record->isUnion())
3371        return true;
3372
3373  return false;
3374}
3375
3376/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3377/// array type.
3378static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3379  if (T->isIncompleteArrayType())
3380    return true;
3381
3382  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3383    if (!ArrayT->getSize())
3384      return true;
3385
3386    T = ArrayT->getElementType();
3387  }
3388
3389  return false;
3390}
3391
3392static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3393                                    FieldDecl *Field,
3394                                    IndirectFieldDecl *Indirect = 0) {
3395  if (Field->isInvalidDecl())
3396    return false;
3397
3398  // Overwhelmingly common case: we have a direct initializer for this field.
3399  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3400    return Info.addFieldInitializer(Init);
3401
3402  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3403  // has a brace-or-equal-initializer, the entity is initialized as specified
3404  // in [dcl.init].
3405  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3406    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3407                                           Info.Ctor->getLocation(), Field);
3408    CXXCtorInitializer *Init;
3409    if (Indirect)
3410      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3411                                                      SourceLocation(),
3412                                                      SourceLocation(), DIE,
3413                                                      SourceLocation());
3414    else
3415      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3416                                                      SourceLocation(),
3417                                                      SourceLocation(), DIE,
3418                                                      SourceLocation());
3419    return Info.addFieldInitializer(Init);
3420  }
3421
3422  // Don't build an implicit initializer for union members if none was
3423  // explicitly specified.
3424  if (Field->getParent()->isUnion() ||
3425      (Indirect && isWithinAnonymousUnion(Indirect)))
3426    return false;
3427
3428  // Don't initialize incomplete or zero-length arrays.
3429  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3430    return false;
3431
3432  // Don't try to build an implicit initializer if there were semantic
3433  // errors in any of the initializers (and therefore we might be
3434  // missing some that the user actually wrote).
3435  if (Info.AnyErrorsInInits)
3436    return false;
3437
3438  CXXCtorInitializer *Init = 0;
3439  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3440                                     Indirect, Init))
3441    return true;
3442
3443  if (!Init)
3444    return false;
3445
3446  return Info.addFieldInitializer(Init);
3447}
3448
3449bool
3450Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3451                               CXXCtorInitializer *Initializer) {
3452  assert(Initializer->isDelegatingInitializer());
3453  Constructor->setNumCtorInitializers(1);
3454  CXXCtorInitializer **initializer =
3455    new (Context) CXXCtorInitializer*[1];
3456  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3457  Constructor->setCtorInitializers(initializer);
3458
3459  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3460    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3461    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3462  }
3463
3464  DelegatingCtorDecls.push_back(Constructor);
3465
3466  return false;
3467}
3468
3469bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3470                               ArrayRef<CXXCtorInitializer *> Initializers) {
3471  if (Constructor->isDependentContext()) {
3472    // Just store the initializers as written, they will be checked during
3473    // instantiation.
3474    if (!Initializers.empty()) {
3475      Constructor->setNumCtorInitializers(Initializers.size());
3476      CXXCtorInitializer **baseOrMemberInitializers =
3477        new (Context) CXXCtorInitializer*[Initializers.size()];
3478      memcpy(baseOrMemberInitializers, Initializers.data(),
3479             Initializers.size() * sizeof(CXXCtorInitializer*));
3480      Constructor->setCtorInitializers(baseOrMemberInitializers);
3481    }
3482
3483    // Let template instantiation know whether we had errors.
3484    if (AnyErrors)
3485      Constructor->setInvalidDecl();
3486
3487    return false;
3488  }
3489
3490  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3491
3492  // We need to build the initializer AST according to order of construction
3493  // and not what user specified in the Initializers list.
3494  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3495  if (!ClassDecl)
3496    return true;
3497
3498  bool HadError = false;
3499
3500  for (unsigned i = 0; i < Initializers.size(); i++) {
3501    CXXCtorInitializer *Member = Initializers[i];
3502
3503    if (Member->isBaseInitializer())
3504      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3505    else
3506      Info.AllBaseFields[Member->getAnyMember()] = Member;
3507  }
3508
3509  // Keep track of the direct virtual bases.
3510  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3511  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3512       E = ClassDecl->bases_end(); I != E; ++I) {
3513    if (I->isVirtual())
3514      DirectVBases.insert(I);
3515  }
3516
3517  // Push virtual bases before others.
3518  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3519       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3520
3521    if (CXXCtorInitializer *Value
3522        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3523      // [class.base.init]p7, per DR257:
3524      //   A mem-initializer where the mem-initializer-id names a virtual base
3525      //   class is ignored during execution of a constructor of any class that
3526      //   is not the most derived class.
3527      if (ClassDecl->isAbstract()) {
3528        // FIXME: Provide a fixit to remove the base specifier. This requires
3529        // tracking the location of the associated comma for a base specifier.
3530        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3531          << VBase->getType() << ClassDecl;
3532        DiagnoseAbstractType(ClassDecl);
3533      }
3534
3535      Info.AllToInit.push_back(Value);
3536    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3537      // [class.base.init]p8, per DR257:
3538      //   If a given [...] base class is not named by a mem-initializer-id
3539      //   [...] and the entity is not a virtual base class of an abstract
3540      //   class, then [...] the entity is default-initialized.
3541      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3542      CXXCtorInitializer *CXXBaseInit;
3543      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3544                                       VBase, IsInheritedVirtualBase,
3545                                       CXXBaseInit)) {
3546        HadError = true;
3547        continue;
3548      }
3549
3550      Info.AllToInit.push_back(CXXBaseInit);
3551    }
3552  }
3553
3554  // Non-virtual bases.
3555  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3556       E = ClassDecl->bases_end(); Base != E; ++Base) {
3557    // Virtuals are in the virtual base list and already constructed.
3558    if (Base->isVirtual())
3559      continue;
3560
3561    if (CXXCtorInitializer *Value
3562          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3563      Info.AllToInit.push_back(Value);
3564    } else if (!AnyErrors) {
3565      CXXCtorInitializer *CXXBaseInit;
3566      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3567                                       Base, /*IsInheritedVirtualBase=*/false,
3568                                       CXXBaseInit)) {
3569        HadError = true;
3570        continue;
3571      }
3572
3573      Info.AllToInit.push_back(CXXBaseInit);
3574    }
3575  }
3576
3577  // Fields.
3578  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3579                               MemEnd = ClassDecl->decls_end();
3580       Mem != MemEnd; ++Mem) {
3581    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3582      // C++ [class.bit]p2:
3583      //   A declaration for a bit-field that omits the identifier declares an
3584      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3585      //   initialized.
3586      if (F->isUnnamedBitfield())
3587        continue;
3588
3589      // If we're not generating the implicit copy/move constructor, then we'll
3590      // handle anonymous struct/union fields based on their individual
3591      // indirect fields.
3592      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3593        continue;
3594
3595      if (CollectFieldInitializer(*this, Info, F))
3596        HadError = true;
3597      continue;
3598    }
3599
3600    // Beyond this point, we only consider default initialization.
3601    if (Info.isImplicitCopyOrMove())
3602      continue;
3603
3604    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3605      if (F->getType()->isIncompleteArrayType()) {
3606        assert(ClassDecl->hasFlexibleArrayMember() &&
3607               "Incomplete array type is not valid");
3608        continue;
3609      }
3610
3611      // Initialize each field of an anonymous struct individually.
3612      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3613        HadError = true;
3614
3615      continue;
3616    }
3617  }
3618
3619  unsigned NumInitializers = Info.AllToInit.size();
3620  if (NumInitializers > 0) {
3621    Constructor->setNumCtorInitializers(NumInitializers);
3622    CXXCtorInitializer **baseOrMemberInitializers =
3623      new (Context) CXXCtorInitializer*[NumInitializers];
3624    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3625           NumInitializers * sizeof(CXXCtorInitializer*));
3626    Constructor->setCtorInitializers(baseOrMemberInitializers);
3627
3628    // Constructors implicitly reference the base and member
3629    // destructors.
3630    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3631                                           Constructor->getParent());
3632  }
3633
3634  return HadError;
3635}
3636
3637static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3638  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3639    const RecordDecl *RD = RT->getDecl();
3640    if (RD->isAnonymousStructOrUnion()) {
3641      for (RecordDecl::field_iterator Field = RD->field_begin(),
3642          E = RD->field_end(); Field != E; ++Field)
3643        PopulateKeysForFields(*Field, IdealInits);
3644      return;
3645    }
3646  }
3647  IdealInits.push_back(Field);
3648}
3649
3650static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3651  return Context.getCanonicalType(BaseType).getTypePtr();
3652}
3653
3654static const void *GetKeyForMember(ASTContext &Context,
3655                                   CXXCtorInitializer *Member) {
3656  if (!Member->isAnyMemberInitializer())
3657    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3658
3659  return Member->getAnyMember();
3660}
3661
3662static void DiagnoseBaseOrMemInitializerOrder(
3663    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3664    ArrayRef<CXXCtorInitializer *> Inits) {
3665  if (Constructor->getDeclContext()->isDependentContext())
3666    return;
3667
3668  // Don't check initializers order unless the warning is enabled at the
3669  // location of at least one initializer.
3670  bool ShouldCheckOrder = false;
3671  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3672    CXXCtorInitializer *Init = Inits[InitIndex];
3673    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3674                                         Init->getSourceLocation())
3675          != DiagnosticsEngine::Ignored) {
3676      ShouldCheckOrder = true;
3677      break;
3678    }
3679  }
3680  if (!ShouldCheckOrder)
3681    return;
3682
3683  // Build the list of bases and members in the order that they'll
3684  // actually be initialized.  The explicit initializers should be in
3685  // this same order but may be missing things.
3686  SmallVector<const void*, 32> IdealInitKeys;
3687
3688  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3689
3690  // 1. Virtual bases.
3691  for (CXXRecordDecl::base_class_const_iterator VBase =
3692       ClassDecl->vbases_begin(),
3693       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3694    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3695
3696  // 2. Non-virtual bases.
3697  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3698       E = ClassDecl->bases_end(); Base != E; ++Base) {
3699    if (Base->isVirtual())
3700      continue;
3701    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3702  }
3703
3704  // 3. Direct fields.
3705  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3706       E = ClassDecl->field_end(); Field != E; ++Field) {
3707    if (Field->isUnnamedBitfield())
3708      continue;
3709
3710    PopulateKeysForFields(*Field, IdealInitKeys);
3711  }
3712
3713  unsigned NumIdealInits = IdealInitKeys.size();
3714  unsigned IdealIndex = 0;
3715
3716  CXXCtorInitializer *PrevInit = 0;
3717  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3718    CXXCtorInitializer *Init = Inits[InitIndex];
3719    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3720
3721    // Scan forward to try to find this initializer in the idealized
3722    // initializers list.
3723    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3724      if (InitKey == IdealInitKeys[IdealIndex])
3725        break;
3726
3727    // If we didn't find this initializer, it must be because we
3728    // scanned past it on a previous iteration.  That can only
3729    // happen if we're out of order;  emit a warning.
3730    if (IdealIndex == NumIdealInits && PrevInit) {
3731      Sema::SemaDiagnosticBuilder D =
3732        SemaRef.Diag(PrevInit->getSourceLocation(),
3733                     diag::warn_initializer_out_of_order);
3734
3735      if (PrevInit->isAnyMemberInitializer())
3736        D << 0 << PrevInit->getAnyMember()->getDeclName();
3737      else
3738        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3739
3740      if (Init->isAnyMemberInitializer())
3741        D << 0 << Init->getAnyMember()->getDeclName();
3742      else
3743        D << 1 << Init->getTypeSourceInfo()->getType();
3744
3745      // Move back to the initializer's location in the ideal list.
3746      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3747        if (InitKey == IdealInitKeys[IdealIndex])
3748          break;
3749
3750      assert(IdealIndex != NumIdealInits &&
3751             "initializer not found in initializer list");
3752    }
3753
3754    PrevInit = Init;
3755  }
3756}
3757
3758namespace {
3759bool CheckRedundantInit(Sema &S,
3760                        CXXCtorInitializer *Init,
3761                        CXXCtorInitializer *&PrevInit) {
3762  if (!PrevInit) {
3763    PrevInit = Init;
3764    return false;
3765  }
3766
3767  if (FieldDecl *Field = Init->getAnyMember())
3768    S.Diag(Init->getSourceLocation(),
3769           diag::err_multiple_mem_initialization)
3770      << Field->getDeclName()
3771      << Init->getSourceRange();
3772  else {
3773    const Type *BaseClass = Init->getBaseClass();
3774    assert(BaseClass && "neither field nor base");
3775    S.Diag(Init->getSourceLocation(),
3776           diag::err_multiple_base_initialization)
3777      << QualType(BaseClass, 0)
3778      << Init->getSourceRange();
3779  }
3780  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3781    << 0 << PrevInit->getSourceRange();
3782
3783  return true;
3784}
3785
3786typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3787typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3788
3789bool CheckRedundantUnionInit(Sema &S,
3790                             CXXCtorInitializer *Init,
3791                             RedundantUnionMap &Unions) {
3792  FieldDecl *Field = Init->getAnyMember();
3793  RecordDecl *Parent = Field->getParent();
3794  NamedDecl *Child = Field;
3795
3796  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3797    if (Parent->isUnion()) {
3798      UnionEntry &En = Unions[Parent];
3799      if (En.first && En.first != Child) {
3800        S.Diag(Init->getSourceLocation(),
3801               diag::err_multiple_mem_union_initialization)
3802          << Field->getDeclName()
3803          << Init->getSourceRange();
3804        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3805          << 0 << En.second->getSourceRange();
3806        return true;
3807      }
3808      if (!En.first) {
3809        En.first = Child;
3810        En.second = Init;
3811      }
3812      if (!Parent->isAnonymousStructOrUnion())
3813        return false;
3814    }
3815
3816    Child = Parent;
3817    Parent = cast<RecordDecl>(Parent->getDeclContext());
3818  }
3819
3820  return false;
3821}
3822}
3823
3824/// ActOnMemInitializers - Handle the member initializers for a constructor.
3825void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3826                                SourceLocation ColonLoc,
3827                                ArrayRef<CXXCtorInitializer*> MemInits,
3828                                bool AnyErrors) {
3829  if (!ConstructorDecl)
3830    return;
3831
3832  AdjustDeclIfTemplate(ConstructorDecl);
3833
3834  CXXConstructorDecl *Constructor
3835    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3836
3837  if (!Constructor) {
3838    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3839    return;
3840  }
3841
3842  // Mapping for the duplicate initializers check.
3843  // For member initializers, this is keyed with a FieldDecl*.
3844  // For base initializers, this is keyed with a Type*.
3845  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3846
3847  // Mapping for the inconsistent anonymous-union initializers check.
3848  RedundantUnionMap MemberUnions;
3849
3850  bool HadError = false;
3851  for (unsigned i = 0; i < MemInits.size(); i++) {
3852    CXXCtorInitializer *Init = MemInits[i];
3853
3854    // Set the source order index.
3855    Init->setSourceOrder(i);
3856
3857    if (Init->isAnyMemberInitializer()) {
3858      FieldDecl *Field = Init->getAnyMember();
3859      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3860          CheckRedundantUnionInit(*this, Init, MemberUnions))
3861        HadError = true;
3862    } else if (Init->isBaseInitializer()) {
3863      const void *Key =
3864          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3865      if (CheckRedundantInit(*this, Init, Members[Key]))
3866        HadError = true;
3867    } else {
3868      assert(Init->isDelegatingInitializer());
3869      // This must be the only initializer
3870      if (MemInits.size() != 1) {
3871        Diag(Init->getSourceLocation(),
3872             diag::err_delegating_initializer_alone)
3873          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3874        // We will treat this as being the only initializer.
3875      }
3876      SetDelegatingInitializer(Constructor, MemInits[i]);
3877      // Return immediately as the initializer is set.
3878      return;
3879    }
3880  }
3881
3882  if (HadError)
3883    return;
3884
3885  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3886
3887  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3888
3889  DiagnoseUninitializedFields(*this, Constructor);
3890}
3891
3892void
3893Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3894                                             CXXRecordDecl *ClassDecl) {
3895  // Ignore dependent contexts. Also ignore unions, since their members never
3896  // have destructors implicitly called.
3897  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3898    return;
3899
3900  // FIXME: all the access-control diagnostics are positioned on the
3901  // field/base declaration.  That's probably good; that said, the
3902  // user might reasonably want to know why the destructor is being
3903  // emitted, and we currently don't say.
3904
3905  // Non-static data members.
3906  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3907       E = ClassDecl->field_end(); I != E; ++I) {
3908    FieldDecl *Field = *I;
3909    if (Field->isInvalidDecl())
3910      continue;
3911
3912    // Don't destroy incomplete or zero-length arrays.
3913    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3914      continue;
3915
3916    QualType FieldType = Context.getBaseElementType(Field->getType());
3917
3918    const RecordType* RT = FieldType->getAs<RecordType>();
3919    if (!RT)
3920      continue;
3921
3922    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3923    if (FieldClassDecl->isInvalidDecl())
3924      continue;
3925    if (FieldClassDecl->hasIrrelevantDestructor())
3926      continue;
3927    // The destructor for an implicit anonymous union member is never invoked.
3928    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3929      continue;
3930
3931    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3932    assert(Dtor && "No dtor found for FieldClassDecl!");
3933    CheckDestructorAccess(Field->getLocation(), Dtor,
3934                          PDiag(diag::err_access_dtor_field)
3935                            << Field->getDeclName()
3936                            << FieldType);
3937
3938    MarkFunctionReferenced(Location, Dtor);
3939    DiagnoseUseOfDecl(Dtor, Location);
3940  }
3941
3942  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3943
3944  // Bases.
3945  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3946       E = ClassDecl->bases_end(); Base != E; ++Base) {
3947    // Bases are always records in a well-formed non-dependent class.
3948    const RecordType *RT = Base->getType()->getAs<RecordType>();
3949
3950    // Remember direct virtual bases.
3951    if (Base->isVirtual())
3952      DirectVirtualBases.insert(RT);
3953
3954    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3955    // If our base class is invalid, we probably can't get its dtor anyway.
3956    if (BaseClassDecl->isInvalidDecl())
3957      continue;
3958    if (BaseClassDecl->hasIrrelevantDestructor())
3959      continue;
3960
3961    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3962    assert(Dtor && "No dtor found for BaseClassDecl!");
3963
3964    // FIXME: caret should be on the start of the class name
3965    CheckDestructorAccess(Base->getLocStart(), Dtor,
3966                          PDiag(diag::err_access_dtor_base)
3967                            << Base->getType()
3968                            << Base->getSourceRange(),
3969                          Context.getTypeDeclType(ClassDecl));
3970
3971    MarkFunctionReferenced(Location, Dtor);
3972    DiagnoseUseOfDecl(Dtor, Location);
3973  }
3974
3975  // Virtual bases.
3976  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3977       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3978
3979    // Bases are always records in a well-formed non-dependent class.
3980    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3981
3982    // Ignore direct virtual bases.
3983    if (DirectVirtualBases.count(RT))
3984      continue;
3985
3986    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3987    // If our base class is invalid, we probably can't get its dtor anyway.
3988    if (BaseClassDecl->isInvalidDecl())
3989      continue;
3990    if (BaseClassDecl->hasIrrelevantDestructor())
3991      continue;
3992
3993    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3994    assert(Dtor && "No dtor found for BaseClassDecl!");
3995    if (CheckDestructorAccess(
3996            ClassDecl->getLocation(), Dtor,
3997            PDiag(diag::err_access_dtor_vbase)
3998                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3999            Context.getTypeDeclType(ClassDecl)) ==
4000        AR_accessible) {
4001      CheckDerivedToBaseConversion(
4002          Context.getTypeDeclType(ClassDecl), VBase->getType(),
4003          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4004          SourceRange(), DeclarationName(), 0);
4005    }
4006
4007    MarkFunctionReferenced(Location, Dtor);
4008    DiagnoseUseOfDecl(Dtor, Location);
4009  }
4010}
4011
4012void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4013  if (!CDtorDecl)
4014    return;
4015
4016  if (CXXConstructorDecl *Constructor
4017      = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4018    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4019    DiagnoseUninitializedFields(*this, Constructor);
4020  }
4021}
4022
4023bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4024                                  unsigned DiagID, AbstractDiagSelID SelID) {
4025  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4026    unsigned DiagID;
4027    AbstractDiagSelID SelID;
4028
4029  public:
4030    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4031      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4032
4033    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
4034      if (Suppressed) return;
4035      if (SelID == -1)
4036        S.Diag(Loc, DiagID) << T;
4037      else
4038        S.Diag(Loc, DiagID) << SelID << T;
4039    }
4040  } Diagnoser(DiagID, SelID);
4041
4042  return RequireNonAbstractType(Loc, T, Diagnoser);
4043}
4044
4045bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4046                                  TypeDiagnoser &Diagnoser) {
4047  if (!getLangOpts().CPlusPlus)
4048    return false;
4049
4050  if (const ArrayType *AT = Context.getAsArrayType(T))
4051    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4052
4053  if (const PointerType *PT = T->getAs<PointerType>()) {
4054    // Find the innermost pointer type.
4055    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4056      PT = T;
4057
4058    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4059      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4060  }
4061
4062  const RecordType *RT = T->getAs<RecordType>();
4063  if (!RT)
4064    return false;
4065
4066  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4067
4068  // We can't answer whether something is abstract until it has a
4069  // definition.  If it's currently being defined, we'll walk back
4070  // over all the declarations when we have a full definition.
4071  const CXXRecordDecl *Def = RD->getDefinition();
4072  if (!Def || Def->isBeingDefined())
4073    return false;
4074
4075  if (!RD->isAbstract())
4076    return false;
4077
4078  Diagnoser.diagnose(*this, Loc, T);
4079  DiagnoseAbstractType(RD);
4080
4081  return true;
4082}
4083
4084void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4085  // Check if we've already emitted the list of pure virtual functions
4086  // for this class.
4087  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4088    return;
4089
4090  // If the diagnostic is suppressed, don't emit the notes. We're only
4091  // going to emit them once, so try to attach them to a diagnostic we're
4092  // actually going to show.
4093  if (Diags.isLastDiagnosticIgnored())
4094    return;
4095
4096  CXXFinalOverriderMap FinalOverriders;
4097  RD->getFinalOverriders(FinalOverriders);
4098
4099  // Keep a set of seen pure methods so we won't diagnose the same method
4100  // more than once.
4101  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4102
4103  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4104                                   MEnd = FinalOverriders.end();
4105       M != MEnd;
4106       ++M) {
4107    for (OverridingMethods::iterator SO = M->second.begin(),
4108                                  SOEnd = M->second.end();
4109         SO != SOEnd; ++SO) {
4110      // C++ [class.abstract]p4:
4111      //   A class is abstract if it contains or inherits at least one
4112      //   pure virtual function for which the final overrider is pure
4113      //   virtual.
4114
4115      //
4116      if (SO->second.size() != 1)
4117        continue;
4118
4119      if (!SO->second.front().Method->isPure())
4120        continue;
4121
4122      if (!SeenPureMethods.insert(SO->second.front().Method))
4123        continue;
4124
4125      Diag(SO->second.front().Method->getLocation(),
4126           diag::note_pure_virtual_function)
4127        << SO->second.front().Method->getDeclName() << RD->getDeclName();
4128    }
4129  }
4130
4131  if (!PureVirtualClassDiagSet)
4132    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4133  PureVirtualClassDiagSet->insert(RD);
4134}
4135
4136namespace {
4137struct AbstractUsageInfo {
4138  Sema &S;
4139  CXXRecordDecl *Record;
4140  CanQualType AbstractType;
4141  bool Invalid;
4142
4143  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4144    : S(S), Record(Record),
4145      AbstractType(S.Context.getCanonicalType(
4146                   S.Context.getTypeDeclType(Record))),
4147      Invalid(false) {}
4148
4149  void DiagnoseAbstractType() {
4150    if (Invalid) return;
4151    S.DiagnoseAbstractType(Record);
4152    Invalid = true;
4153  }
4154
4155  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4156};
4157
4158struct CheckAbstractUsage {
4159  AbstractUsageInfo &Info;
4160  const NamedDecl *Ctx;
4161
4162  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4163    : Info(Info), Ctx(Ctx) {}
4164
4165  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4166    switch (TL.getTypeLocClass()) {
4167#define ABSTRACT_TYPELOC(CLASS, PARENT)
4168#define TYPELOC(CLASS, PARENT) \
4169    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4170#include "clang/AST/TypeLocNodes.def"
4171    }
4172  }
4173
4174  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4175    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4176    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4177      if (!TL.getArg(I))
4178        continue;
4179
4180      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4181      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4182    }
4183  }
4184
4185  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4186    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4187  }
4188
4189  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4190    // Visit the type parameters from a permissive context.
4191    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4192      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4193      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4194        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4195          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4196      // TODO: other template argument types?
4197    }
4198  }
4199
4200  // Visit pointee types from a permissive context.
4201#define CheckPolymorphic(Type) \
4202  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4203    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4204  }
4205  CheckPolymorphic(PointerTypeLoc)
4206  CheckPolymorphic(ReferenceTypeLoc)
4207  CheckPolymorphic(MemberPointerTypeLoc)
4208  CheckPolymorphic(BlockPointerTypeLoc)
4209  CheckPolymorphic(AtomicTypeLoc)
4210
4211  /// Handle all the types we haven't given a more specific
4212  /// implementation for above.
4213  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4214    // Every other kind of type that we haven't called out already
4215    // that has an inner type is either (1) sugar or (2) contains that
4216    // inner type in some way as a subobject.
4217    if (TypeLoc Next = TL.getNextTypeLoc())
4218      return Visit(Next, Sel);
4219
4220    // If there's no inner type and we're in a permissive context,
4221    // don't diagnose.
4222    if (Sel == Sema::AbstractNone) return;
4223
4224    // Check whether the type matches the abstract type.
4225    QualType T = TL.getType();
4226    if (T->isArrayType()) {
4227      Sel = Sema::AbstractArrayType;
4228      T = Info.S.Context.getBaseElementType(T);
4229    }
4230    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4231    if (CT != Info.AbstractType) return;
4232
4233    // It matched; do some magic.
4234    if (Sel == Sema::AbstractArrayType) {
4235      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4236        << T << TL.getSourceRange();
4237    } else {
4238      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4239        << Sel << T << TL.getSourceRange();
4240    }
4241    Info.DiagnoseAbstractType();
4242  }
4243};
4244
4245void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4246                                  Sema::AbstractDiagSelID Sel) {
4247  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4248}
4249
4250}
4251
4252/// Check for invalid uses of an abstract type in a method declaration.
4253static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4254                                    CXXMethodDecl *MD) {
4255  // No need to do the check on definitions, which require that
4256  // the return/param types be complete.
4257  if (MD->doesThisDeclarationHaveABody())
4258    return;
4259
4260  // For safety's sake, just ignore it if we don't have type source
4261  // information.  This should never happen for non-implicit methods,
4262  // but...
4263  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4264    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4265}
4266
4267/// Check for invalid uses of an abstract type within a class definition.
4268static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4269                                    CXXRecordDecl *RD) {
4270  for (CXXRecordDecl::decl_iterator
4271         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4272    Decl *D = *I;
4273    if (D->isImplicit()) continue;
4274
4275    // Methods and method templates.
4276    if (isa<CXXMethodDecl>(D)) {
4277      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4278    } else if (isa<FunctionTemplateDecl>(D)) {
4279      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4280      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4281
4282    // Fields and static variables.
4283    } else if (isa<FieldDecl>(D)) {
4284      FieldDecl *FD = cast<FieldDecl>(D);
4285      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4286        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4287    } else if (isa<VarDecl>(D)) {
4288      VarDecl *VD = cast<VarDecl>(D);
4289      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4290        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4291
4292    // Nested classes and class templates.
4293    } else if (isa<CXXRecordDecl>(D)) {
4294      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4295    } else if (isa<ClassTemplateDecl>(D)) {
4296      CheckAbstractClassUsage(Info,
4297                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4298    }
4299  }
4300}
4301
4302/// \brief Perform semantic checks on a class definition that has been
4303/// completing, introducing implicitly-declared members, checking for
4304/// abstract types, etc.
4305void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4306  if (!Record)
4307    return;
4308
4309  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4310    AbstractUsageInfo Info(*this, Record);
4311    CheckAbstractClassUsage(Info, Record);
4312  }
4313
4314  // If this is not an aggregate type and has no user-declared constructor,
4315  // complain about any non-static data members of reference or const scalar
4316  // type, since they will never get initializers.
4317  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4318      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4319      !Record->isLambda()) {
4320    bool Complained = false;
4321    for (RecordDecl::field_iterator F = Record->field_begin(),
4322                                 FEnd = Record->field_end();
4323         F != FEnd; ++F) {
4324      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4325        continue;
4326
4327      if (F->getType()->isReferenceType() ||
4328          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4329        if (!Complained) {
4330          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4331            << Record->getTagKind() << Record;
4332          Complained = true;
4333        }
4334
4335        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4336          << F->getType()->isReferenceType()
4337          << F->getDeclName();
4338      }
4339    }
4340  }
4341
4342  if (Record->isDynamicClass() && !Record->isDependentType())
4343    DynamicClasses.push_back(Record);
4344
4345  if (Record->getIdentifier()) {
4346    // C++ [class.mem]p13:
4347    //   If T is the name of a class, then each of the following shall have a
4348    //   name different from T:
4349    //     - every member of every anonymous union that is a member of class T.
4350    //
4351    // C++ [class.mem]p14:
4352    //   In addition, if class T has a user-declared constructor (12.1), every
4353    //   non-static data member of class T shall have a name different from T.
4354    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4355    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4356         ++I) {
4357      NamedDecl *D = *I;
4358      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4359          isa<IndirectFieldDecl>(D)) {
4360        Diag(D->getLocation(), diag::err_member_name_of_class)
4361          << D->getDeclName();
4362        break;
4363      }
4364    }
4365  }
4366
4367  // Warn if the class has virtual methods but non-virtual public destructor.
4368  if (Record->isPolymorphic() && !Record->isDependentType()) {
4369    CXXDestructorDecl *dtor = Record->getDestructor();
4370    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4371      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4372           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4373  }
4374
4375  if (Record->isAbstract()) {
4376    if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4377      Diag(Record->getLocation(), diag::warn_abstract_final_class)
4378        << FA->isSpelledAsSealed();
4379      DiagnoseAbstractType(Record);
4380    }
4381  }
4382
4383  if (!Record->isDependentType()) {
4384    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4385                                     MEnd = Record->method_end();
4386         M != MEnd; ++M) {
4387      // See if a method overloads virtual methods in a base
4388      // class without overriding any.
4389      if (!M->isStatic())
4390        DiagnoseHiddenVirtualMethods(*M);
4391
4392      // Check whether the explicitly-defaulted special members are valid.
4393      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4394        CheckExplicitlyDefaultedSpecialMember(*M);
4395
4396      // For an explicitly defaulted or deleted special member, we defer
4397      // determining triviality until the class is complete. That time is now!
4398      if (!M->isImplicit() && !M->isUserProvided()) {
4399        CXXSpecialMember CSM = getSpecialMember(*M);
4400        if (CSM != CXXInvalid) {
4401          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4402
4403          // Inform the class that we've finished declaring this member.
4404          Record->finishedDefaultedOrDeletedMember(*M);
4405        }
4406      }
4407    }
4408  }
4409
4410  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4411  // function that is not a constructor declares that member function to be
4412  // const. [...] The class of which that function is a member shall be
4413  // a literal type.
4414  //
4415  // If the class has virtual bases, any constexpr members will already have
4416  // been diagnosed by the checks performed on the member declaration, so
4417  // suppress this (less useful) diagnostic.
4418  //
4419  // We delay this until we know whether an explicitly-defaulted (or deleted)
4420  // destructor for the class is trivial.
4421  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4422      !Record->isLiteral() && !Record->getNumVBases()) {
4423    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4424                                     MEnd = Record->method_end();
4425         M != MEnd; ++M) {
4426      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4427        switch (Record->getTemplateSpecializationKind()) {
4428        case TSK_ImplicitInstantiation:
4429        case TSK_ExplicitInstantiationDeclaration:
4430        case TSK_ExplicitInstantiationDefinition:
4431          // If a template instantiates to a non-literal type, but its members
4432          // instantiate to constexpr functions, the template is technically
4433          // ill-formed, but we allow it for sanity.
4434          continue;
4435
4436        case TSK_Undeclared:
4437        case TSK_ExplicitSpecialization:
4438          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4439                             diag::err_constexpr_method_non_literal);
4440          break;
4441        }
4442
4443        // Only produce one error per class.
4444        break;
4445      }
4446    }
4447  }
4448
4449  // Check to see if we're trying to lay out a struct using the ms_struct
4450  // attribute that is dynamic.
4451  if (Record->isMsStruct(Context) && Record->isDynamicClass()) {
4452    Diag(Record->getLocation(), diag::warn_pragma_ms_struct_failed);
4453    Record->dropAttr<MsStructAttr>();
4454  }
4455
4456  // Declare inheriting constructors. We do this eagerly here because:
4457  // - The standard requires an eager diagnostic for conflicting inheriting
4458  //   constructors from different classes.
4459  // - The lazy declaration of the other implicit constructors is so as to not
4460  //   waste space and performance on classes that are not meant to be
4461  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4462  //   have inheriting constructors.
4463  DeclareInheritingConstructors(Record);
4464}
4465
4466/// Is the special member function which would be selected to perform the
4467/// specified operation on the specified class type a constexpr constructor?
4468static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4469                                     Sema::CXXSpecialMember CSM,
4470                                     bool ConstArg) {
4471  Sema::SpecialMemberOverloadResult *SMOR =
4472      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4473                            false, false, false, false);
4474  if (!SMOR || !SMOR->getMethod())
4475    // A constructor we wouldn't select can't be "involved in initializing"
4476    // anything.
4477    return true;
4478  return SMOR->getMethod()->isConstexpr();
4479}
4480
4481/// Determine whether the specified special member function would be constexpr
4482/// if it were implicitly defined.
4483static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4484                                              Sema::CXXSpecialMember CSM,
4485                                              bool ConstArg) {
4486  if (!S.getLangOpts().CPlusPlus11)
4487    return false;
4488
4489  // C++11 [dcl.constexpr]p4:
4490  // In the definition of a constexpr constructor [...]
4491  bool Ctor = true;
4492  switch (CSM) {
4493  case Sema::CXXDefaultConstructor:
4494    // Since default constructor lookup is essentially trivial (and cannot
4495    // involve, for instance, template instantiation), we compute whether a
4496    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4497    //
4498    // This is important for performance; we need to know whether the default
4499    // constructor is constexpr to determine whether the type is a literal type.
4500    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4501
4502  case Sema::CXXCopyConstructor:
4503  case Sema::CXXMoveConstructor:
4504    // For copy or move constructors, we need to perform overload resolution.
4505    break;
4506
4507  case Sema::CXXCopyAssignment:
4508  case Sema::CXXMoveAssignment:
4509    if (!S.getLangOpts().CPlusPlus1y)
4510      return false;
4511    // In C++1y, we need to perform overload resolution.
4512    Ctor = false;
4513    break;
4514
4515  case Sema::CXXDestructor:
4516  case Sema::CXXInvalid:
4517    return false;
4518  }
4519
4520  //   -- if the class is a non-empty union, or for each non-empty anonymous
4521  //      union member of a non-union class, exactly one non-static data member
4522  //      shall be initialized; [DR1359]
4523  //
4524  // If we squint, this is guaranteed, since exactly one non-static data member
4525  // will be initialized (if the constructor isn't deleted), we just don't know
4526  // which one.
4527  if (Ctor && ClassDecl->isUnion())
4528    return true;
4529
4530  //   -- the class shall not have any virtual base classes;
4531  if (Ctor && ClassDecl->getNumVBases())
4532    return false;
4533
4534  // C++1y [class.copy]p26:
4535  //   -- [the class] is a literal type, and
4536  if (!Ctor && !ClassDecl->isLiteral())
4537    return false;
4538
4539  //   -- every constructor involved in initializing [...] base class
4540  //      sub-objects shall be a constexpr constructor;
4541  //   -- the assignment operator selected to copy/move each direct base
4542  //      class is a constexpr function, and
4543  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4544                                       BEnd = ClassDecl->bases_end();
4545       B != BEnd; ++B) {
4546    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4547    if (!BaseType) continue;
4548
4549    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4550    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4551      return false;
4552  }
4553
4554  //   -- every constructor involved in initializing non-static data members
4555  //      [...] shall be a constexpr constructor;
4556  //   -- every non-static data member and base class sub-object shall be
4557  //      initialized
4558  //   -- for each non-stastic data member of X that is of class type (or array
4559  //      thereof), the assignment operator selected to copy/move that member is
4560  //      a constexpr function
4561  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4562                               FEnd = ClassDecl->field_end();
4563       F != FEnd; ++F) {
4564    if (F->isInvalidDecl())
4565      continue;
4566    if (const RecordType *RecordTy =
4567            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4568      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4569      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4570        return false;
4571    }
4572  }
4573
4574  // All OK, it's constexpr!
4575  return true;
4576}
4577
4578static Sema::ImplicitExceptionSpecification
4579computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4580  switch (S.getSpecialMember(MD)) {
4581  case Sema::CXXDefaultConstructor:
4582    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4583  case Sema::CXXCopyConstructor:
4584    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4585  case Sema::CXXCopyAssignment:
4586    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4587  case Sema::CXXMoveConstructor:
4588    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4589  case Sema::CXXMoveAssignment:
4590    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4591  case Sema::CXXDestructor:
4592    return S.ComputeDefaultedDtorExceptionSpec(MD);
4593  case Sema::CXXInvalid:
4594    break;
4595  }
4596  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4597         "only special members have implicit exception specs");
4598  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4599}
4600
4601static void
4602updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4603                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4604  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4605  ExceptSpec.getEPI(EPI);
4606  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4607                                        FPT->getArgTypes(), EPI));
4608}
4609
4610static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4611                                                            CXXMethodDecl *MD) {
4612  FunctionProtoType::ExtProtoInfo EPI;
4613
4614  // Build an exception specification pointing back at this member.
4615  EPI.ExceptionSpecType = EST_Unevaluated;
4616  EPI.ExceptionSpecDecl = MD;
4617
4618  // Set the calling convention to the default for C++ instance methods.
4619  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4620      S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4621                                            /*IsCXXMethod=*/true));
4622  return EPI;
4623}
4624
4625void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4626  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4627  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4628    return;
4629
4630  // Evaluate the exception specification.
4631  ImplicitExceptionSpecification ExceptSpec =
4632      computeImplicitExceptionSpec(*this, Loc, MD);
4633
4634  // Update the type of the special member to use it.
4635  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4636
4637  // A user-provided destructor can be defined outside the class. When that
4638  // happens, be sure to update the exception specification on both
4639  // declarations.
4640  const FunctionProtoType *CanonicalFPT =
4641    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4642  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4643    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4644                        CanonicalFPT, ExceptSpec);
4645}
4646
4647void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4648  CXXRecordDecl *RD = MD->getParent();
4649  CXXSpecialMember CSM = getSpecialMember(MD);
4650
4651  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4652         "not an explicitly-defaulted special member");
4653
4654  // Whether this was the first-declared instance of the constructor.
4655  // This affects whether we implicitly add an exception spec and constexpr.
4656  bool First = MD == MD->getCanonicalDecl();
4657
4658  bool HadError = false;
4659
4660  // C++11 [dcl.fct.def.default]p1:
4661  //   A function that is explicitly defaulted shall
4662  //     -- be a special member function (checked elsewhere),
4663  //     -- have the same type (except for ref-qualifiers, and except that a
4664  //        copy operation can take a non-const reference) as an implicit
4665  //        declaration, and
4666  //     -- not have default arguments.
4667  unsigned ExpectedParams = 1;
4668  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4669    ExpectedParams = 0;
4670  if (MD->getNumParams() != ExpectedParams) {
4671    // This also checks for default arguments: a copy or move constructor with a
4672    // default argument is classified as a default constructor, and assignment
4673    // operations and destructors can't have default arguments.
4674    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4675      << CSM << MD->getSourceRange();
4676    HadError = true;
4677  } else if (MD->isVariadic()) {
4678    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4679      << CSM << MD->getSourceRange();
4680    HadError = true;
4681  }
4682
4683  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4684
4685  bool CanHaveConstParam = false;
4686  if (CSM == CXXCopyConstructor)
4687    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4688  else if (CSM == CXXCopyAssignment)
4689    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4690
4691  QualType ReturnType = Context.VoidTy;
4692  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4693    // Check for return type matching.
4694    ReturnType = Type->getResultType();
4695    QualType ExpectedReturnType =
4696        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4697    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4698      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4699        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4700      HadError = true;
4701    }
4702
4703    // A defaulted special member cannot have cv-qualifiers.
4704    if (Type->getTypeQuals()) {
4705      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4706        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4707      HadError = true;
4708    }
4709  }
4710
4711  // Check for parameter type matching.
4712  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4713  bool HasConstParam = false;
4714  if (ExpectedParams && ArgType->isReferenceType()) {
4715    // Argument must be reference to possibly-const T.
4716    QualType ReferentType = ArgType->getPointeeType();
4717    HasConstParam = ReferentType.isConstQualified();
4718
4719    if (ReferentType.isVolatileQualified()) {
4720      Diag(MD->getLocation(),
4721           diag::err_defaulted_special_member_volatile_param) << CSM;
4722      HadError = true;
4723    }
4724
4725    if (HasConstParam && !CanHaveConstParam) {
4726      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4727        Diag(MD->getLocation(),
4728             diag::err_defaulted_special_member_copy_const_param)
4729          << (CSM == CXXCopyAssignment);
4730        // FIXME: Explain why this special member can't be const.
4731      } else {
4732        Diag(MD->getLocation(),
4733             diag::err_defaulted_special_member_move_const_param)
4734          << (CSM == CXXMoveAssignment);
4735      }
4736      HadError = true;
4737    }
4738  } else if (ExpectedParams) {
4739    // A copy assignment operator can take its argument by value, but a
4740    // defaulted one cannot.
4741    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4742    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4743    HadError = true;
4744  }
4745
4746  // C++11 [dcl.fct.def.default]p2:
4747  //   An explicitly-defaulted function may be declared constexpr only if it
4748  //   would have been implicitly declared as constexpr,
4749  // Do not apply this rule to members of class templates, since core issue 1358
4750  // makes such functions always instantiate to constexpr functions. For
4751  // functions which cannot be constexpr (for non-constructors in C++11 and for
4752  // destructors in C++1y), this is checked elsewhere.
4753  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4754                                                     HasConstParam);
4755  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4756                                 : isa<CXXConstructorDecl>(MD)) &&
4757      MD->isConstexpr() && !Constexpr &&
4758      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4759    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4760    // FIXME: Explain why the special member can't be constexpr.
4761    HadError = true;
4762  }
4763
4764  //   and may have an explicit exception-specification only if it is compatible
4765  //   with the exception-specification on the implicit declaration.
4766  if (Type->hasExceptionSpec()) {
4767    // Delay the check if this is the first declaration of the special member,
4768    // since we may not have parsed some necessary in-class initializers yet.
4769    if (First) {
4770      // If the exception specification needs to be instantiated, do so now,
4771      // before we clobber it with an EST_Unevaluated specification below.
4772      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4773        InstantiateExceptionSpec(MD->getLocStart(), MD);
4774        Type = MD->getType()->getAs<FunctionProtoType>();
4775      }
4776      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4777    } else
4778      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4779  }
4780
4781  //   If a function is explicitly defaulted on its first declaration,
4782  if (First) {
4783    //  -- it is implicitly considered to be constexpr if the implicit
4784    //     definition would be,
4785    MD->setConstexpr(Constexpr);
4786
4787    //  -- it is implicitly considered to have the same exception-specification
4788    //     as if it had been implicitly declared,
4789    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4790    EPI.ExceptionSpecType = EST_Unevaluated;
4791    EPI.ExceptionSpecDecl = MD;
4792    MD->setType(Context.getFunctionType(ReturnType,
4793                                        ArrayRef<QualType>(&ArgType,
4794                                                           ExpectedParams),
4795                                        EPI));
4796  }
4797
4798  if (ShouldDeleteSpecialMember(MD, CSM)) {
4799    if (First) {
4800      SetDeclDeleted(MD, MD->getLocation());
4801    } else {
4802      // C++11 [dcl.fct.def.default]p4:
4803      //   [For a] user-provided explicitly-defaulted function [...] if such a
4804      //   function is implicitly defined as deleted, the program is ill-formed.
4805      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4806      HadError = true;
4807    }
4808  }
4809
4810  if (HadError)
4811    MD->setInvalidDecl();
4812}
4813
4814/// Check whether the exception specification provided for an
4815/// explicitly-defaulted special member matches the exception specification
4816/// that would have been generated for an implicit special member, per
4817/// C++11 [dcl.fct.def.default]p2.
4818void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4819    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4820  // Compute the implicit exception specification.
4821  CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4822                                                       /*IsCXXMethod=*/true);
4823  FunctionProtoType::ExtProtoInfo EPI(CC);
4824  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4825  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4826    Context.getFunctionType(Context.VoidTy, None, EPI));
4827
4828  // Ensure that it matches.
4829  CheckEquivalentExceptionSpec(
4830    PDiag(diag::err_incorrect_defaulted_exception_spec)
4831      << getSpecialMember(MD), PDiag(),
4832    ImplicitType, SourceLocation(),
4833    SpecifiedType, MD->getLocation());
4834}
4835
4836void Sema::CheckDelayedMemberExceptionSpecs() {
4837  SmallVector<std::pair<const CXXDestructorDecl *, const CXXDestructorDecl *>,
4838              2> Checks;
4839  SmallVector<std::pair<CXXMethodDecl *, const FunctionProtoType *>, 2> Specs;
4840
4841  std::swap(Checks, DelayedDestructorExceptionSpecChecks);
4842  std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
4843
4844  // Perform any deferred checking of exception specifications for virtual
4845  // destructors.
4846  for (unsigned i = 0, e = Checks.size(); i != e; ++i) {
4847    const CXXDestructorDecl *Dtor = Checks[i].first;
4848    assert(!Dtor->getParent()->isDependentType() &&
4849           "Should not ever add destructors of templates into the list.");
4850    CheckOverridingFunctionExceptionSpec(Dtor, Checks[i].second);
4851  }
4852
4853  // Check that any explicitly-defaulted methods have exception specifications
4854  // compatible with their implicit exception specifications.
4855  for (unsigned I = 0, N = Specs.size(); I != N; ++I)
4856    CheckExplicitlyDefaultedMemberExceptionSpec(Specs[I].first,
4857                                                Specs[I].second);
4858}
4859
4860namespace {
4861struct SpecialMemberDeletionInfo {
4862  Sema &S;
4863  CXXMethodDecl *MD;
4864  Sema::CXXSpecialMember CSM;
4865  bool Diagnose;
4866
4867  // Properties of the special member, computed for convenience.
4868  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4869  SourceLocation Loc;
4870
4871  bool AllFieldsAreConst;
4872
4873  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4874                            Sema::CXXSpecialMember CSM, bool Diagnose)
4875    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4876      IsConstructor(false), IsAssignment(false), IsMove(false),
4877      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4878      AllFieldsAreConst(true) {
4879    switch (CSM) {
4880      case Sema::CXXDefaultConstructor:
4881      case Sema::CXXCopyConstructor:
4882        IsConstructor = true;
4883        break;
4884      case Sema::CXXMoveConstructor:
4885        IsConstructor = true;
4886        IsMove = true;
4887        break;
4888      case Sema::CXXCopyAssignment:
4889        IsAssignment = true;
4890        break;
4891      case Sema::CXXMoveAssignment:
4892        IsAssignment = true;
4893        IsMove = true;
4894        break;
4895      case Sema::CXXDestructor:
4896        break;
4897      case Sema::CXXInvalid:
4898        llvm_unreachable("invalid special member kind");
4899    }
4900
4901    if (MD->getNumParams()) {
4902      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4903      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4904    }
4905  }
4906
4907  bool inUnion() const { return MD->getParent()->isUnion(); }
4908
4909  /// Look up the corresponding special member in the given class.
4910  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4911                                              unsigned Quals) {
4912    unsigned TQ = MD->getTypeQualifiers();
4913    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4914    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4915      Quals = 0;
4916    // cv-qualifiers on class members affect the type of both '*this' and the
4917    // argument for an assignment.
4918    if (IsAssignment)
4919      TQ |= Quals;
4920    return S.LookupSpecialMember(Class, CSM,
4921                                 ConstArg || (Quals & Qualifiers::Const),
4922                                 VolatileArg || (Quals & Qualifiers::Volatile),
4923                                 MD->getRefQualifier() == RQ_RValue,
4924                                 TQ & Qualifiers::Const,
4925                                 TQ & Qualifiers::Volatile);
4926  }
4927
4928  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4929
4930  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4931  bool shouldDeleteForField(FieldDecl *FD);
4932  bool shouldDeleteForAllConstMembers();
4933
4934  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4935                                     unsigned Quals);
4936  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4937                                    Sema::SpecialMemberOverloadResult *SMOR,
4938                                    bool IsDtorCallInCtor);
4939
4940  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4941};
4942}
4943
4944/// Is the given special member inaccessible when used on the given
4945/// sub-object.
4946bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4947                                             CXXMethodDecl *target) {
4948  /// If we're operating on a base class, the object type is the
4949  /// type of this special member.
4950  QualType objectTy;
4951  AccessSpecifier access = target->getAccess();
4952  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4953    objectTy = S.Context.getTypeDeclType(MD->getParent());
4954    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4955
4956  // If we're operating on a field, the object type is the type of the field.
4957  } else {
4958    objectTy = S.Context.getTypeDeclType(target->getParent());
4959  }
4960
4961  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4962}
4963
4964/// Check whether we should delete a special member due to the implicit
4965/// definition containing a call to a special member of a subobject.
4966bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4967    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4968    bool IsDtorCallInCtor) {
4969  CXXMethodDecl *Decl = SMOR->getMethod();
4970  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4971
4972  int DiagKind = -1;
4973
4974  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4975    DiagKind = !Decl ? 0 : 1;
4976  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4977    DiagKind = 2;
4978  else if (!isAccessible(Subobj, Decl))
4979    DiagKind = 3;
4980  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4981           !Decl->isTrivial()) {
4982    // A member of a union must have a trivial corresponding special member.
4983    // As a weird special case, a destructor call from a union's constructor
4984    // must be accessible and non-deleted, but need not be trivial. Such a
4985    // destructor is never actually called, but is semantically checked as
4986    // if it were.
4987    DiagKind = 4;
4988  }
4989
4990  if (DiagKind == -1)
4991    return false;
4992
4993  if (Diagnose) {
4994    if (Field) {
4995      S.Diag(Field->getLocation(),
4996             diag::note_deleted_special_member_class_subobject)
4997        << CSM << MD->getParent() << /*IsField*/true
4998        << Field << DiagKind << IsDtorCallInCtor;
4999    } else {
5000      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5001      S.Diag(Base->getLocStart(),
5002             diag::note_deleted_special_member_class_subobject)
5003        << CSM << MD->getParent() << /*IsField*/false
5004        << Base->getType() << DiagKind << IsDtorCallInCtor;
5005    }
5006
5007    if (DiagKind == 1)
5008      S.NoteDeletedFunction(Decl);
5009    // FIXME: Explain inaccessibility if DiagKind == 3.
5010  }
5011
5012  return true;
5013}
5014
5015/// Check whether we should delete a special member function due to having a
5016/// direct or virtual base class or non-static data member of class type M.
5017bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5018    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5019  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5020
5021  // C++11 [class.ctor]p5:
5022  // -- any direct or virtual base class, or non-static data member with no
5023  //    brace-or-equal-initializer, has class type M (or array thereof) and
5024  //    either M has no default constructor or overload resolution as applied
5025  //    to M's default constructor results in an ambiguity or in a function
5026  //    that is deleted or inaccessible
5027  // C++11 [class.copy]p11, C++11 [class.copy]p23:
5028  // -- a direct or virtual base class B that cannot be copied/moved because
5029  //    overload resolution, as applied to B's corresponding special member,
5030  //    results in an ambiguity or a function that is deleted or inaccessible
5031  //    from the defaulted special member
5032  // C++11 [class.dtor]p5:
5033  // -- any direct or virtual base class [...] has a type with a destructor
5034  //    that is deleted or inaccessible
5035  if (!(CSM == Sema::CXXDefaultConstructor &&
5036        Field && Field->hasInClassInitializer()) &&
5037      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
5038    return true;
5039
5040  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5041  // -- any direct or virtual base class or non-static data member has a
5042  //    type with a destructor that is deleted or inaccessible
5043  if (IsConstructor) {
5044    Sema::SpecialMemberOverloadResult *SMOR =
5045        S.LookupSpecialMember(Class, Sema::CXXDestructor,
5046                              false, false, false, false, false);
5047    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5048      return true;
5049  }
5050
5051  return false;
5052}
5053
5054/// Check whether we should delete a special member function due to the class
5055/// having a particular direct or virtual base class.
5056bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5057  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5058  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5059}
5060
5061/// Check whether we should delete a special member function due to the class
5062/// having a particular non-static data member.
5063bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5064  QualType FieldType = S.Context.getBaseElementType(FD->getType());
5065  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5066
5067  if (CSM == Sema::CXXDefaultConstructor) {
5068    // For a default constructor, all references must be initialized in-class
5069    // and, if a union, it must have a non-const member.
5070    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5071      if (Diagnose)
5072        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5073          << MD->getParent() << FD << FieldType << /*Reference*/0;
5074      return true;
5075    }
5076    // C++11 [class.ctor]p5: any non-variant non-static data member of
5077    // const-qualified type (or array thereof) with no
5078    // brace-or-equal-initializer does not have a user-provided default
5079    // constructor.
5080    if (!inUnion() && FieldType.isConstQualified() &&
5081        !FD->hasInClassInitializer() &&
5082        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5083      if (Diagnose)
5084        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5085          << MD->getParent() << FD << FD->getType() << /*Const*/1;
5086      return true;
5087    }
5088
5089    if (inUnion() && !FieldType.isConstQualified())
5090      AllFieldsAreConst = false;
5091  } else if (CSM == Sema::CXXCopyConstructor) {
5092    // For a copy constructor, data members must not be of rvalue reference
5093    // type.
5094    if (FieldType->isRValueReferenceType()) {
5095      if (Diagnose)
5096        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5097          << MD->getParent() << FD << FieldType;
5098      return true;
5099    }
5100  } else if (IsAssignment) {
5101    // For an assignment operator, data members must not be of reference type.
5102    if (FieldType->isReferenceType()) {
5103      if (Diagnose)
5104        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5105          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5106      return true;
5107    }
5108    if (!FieldRecord && FieldType.isConstQualified()) {
5109      // C++11 [class.copy]p23:
5110      // -- a non-static data member of const non-class type (or array thereof)
5111      if (Diagnose)
5112        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5113          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5114      return true;
5115    }
5116  }
5117
5118  if (FieldRecord) {
5119    // Some additional restrictions exist on the variant members.
5120    if (!inUnion() && FieldRecord->isUnion() &&
5121        FieldRecord->isAnonymousStructOrUnion()) {
5122      bool AllVariantFieldsAreConst = true;
5123
5124      // FIXME: Handle anonymous unions declared within anonymous unions.
5125      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
5126                                         UE = FieldRecord->field_end();
5127           UI != UE; ++UI) {
5128        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5129
5130        if (!UnionFieldType.isConstQualified())
5131          AllVariantFieldsAreConst = false;
5132
5133        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5134        if (UnionFieldRecord &&
5135            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
5136                                          UnionFieldType.getCVRQualifiers()))
5137          return true;
5138      }
5139
5140      // At least one member in each anonymous union must be non-const
5141      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5142          FieldRecord->field_begin() != FieldRecord->field_end()) {
5143        if (Diagnose)
5144          S.Diag(FieldRecord->getLocation(),
5145                 diag::note_deleted_default_ctor_all_const)
5146            << MD->getParent() << /*anonymous union*/1;
5147        return true;
5148      }
5149
5150      // Don't check the implicit member of the anonymous union type.
5151      // This is technically non-conformant, but sanity demands it.
5152      return false;
5153    }
5154
5155    if (shouldDeleteForClassSubobject(FieldRecord, FD,
5156                                      FieldType.getCVRQualifiers()))
5157      return true;
5158  }
5159
5160  return false;
5161}
5162
5163/// C++11 [class.ctor] p5:
5164///   A defaulted default constructor for a class X is defined as deleted if
5165/// X is a union and all of its variant members are of const-qualified type.
5166bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5167  // This is a silly definition, because it gives an empty union a deleted
5168  // default constructor. Don't do that.
5169  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5170      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
5171    if (Diagnose)
5172      S.Diag(MD->getParent()->getLocation(),
5173             diag::note_deleted_default_ctor_all_const)
5174        << MD->getParent() << /*not anonymous union*/0;
5175    return true;
5176  }
5177  return false;
5178}
5179
5180/// Determine whether a defaulted special member function should be defined as
5181/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5182/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
5183bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5184                                     bool Diagnose) {
5185  if (MD->isInvalidDecl())
5186    return false;
5187  CXXRecordDecl *RD = MD->getParent();
5188  assert(!RD->isDependentType() && "do deletion after instantiation");
5189  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5190    return false;
5191
5192  // C++11 [expr.lambda.prim]p19:
5193  //   The closure type associated with a lambda-expression has a
5194  //   deleted (8.4.3) default constructor and a deleted copy
5195  //   assignment operator.
5196  if (RD->isLambda() &&
5197      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5198    if (Diagnose)
5199      Diag(RD->getLocation(), diag::note_lambda_decl);
5200    return true;
5201  }
5202
5203  // For an anonymous struct or union, the copy and assignment special members
5204  // will never be used, so skip the check. For an anonymous union declared at
5205  // namespace scope, the constructor and destructor are used.
5206  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5207      RD->isAnonymousStructOrUnion())
5208    return false;
5209
5210  // C++11 [class.copy]p7, p18:
5211  //   If the class definition declares a move constructor or move assignment
5212  //   operator, an implicitly declared copy constructor or copy assignment
5213  //   operator is defined as deleted.
5214  if (MD->isImplicit() &&
5215      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5216    CXXMethodDecl *UserDeclaredMove = 0;
5217
5218    // In Microsoft mode, a user-declared move only causes the deletion of the
5219    // corresponding copy operation, not both copy operations.
5220    if (RD->hasUserDeclaredMoveConstructor() &&
5221        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5222      if (!Diagnose) return true;
5223
5224      // Find any user-declared move constructor.
5225      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5226                                        E = RD->ctor_end(); I != E; ++I) {
5227        if (I->isMoveConstructor()) {
5228          UserDeclaredMove = *I;
5229          break;
5230        }
5231      }
5232      assert(UserDeclaredMove);
5233    } else if (RD->hasUserDeclaredMoveAssignment() &&
5234               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5235      if (!Diagnose) return true;
5236
5237      // Find any user-declared move assignment operator.
5238      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5239                                          E = RD->method_end(); I != E; ++I) {
5240        if (I->isMoveAssignmentOperator()) {
5241          UserDeclaredMove = *I;
5242          break;
5243        }
5244      }
5245      assert(UserDeclaredMove);
5246    }
5247
5248    if (UserDeclaredMove) {
5249      Diag(UserDeclaredMove->getLocation(),
5250           diag::note_deleted_copy_user_declared_move)
5251        << (CSM == CXXCopyAssignment) << RD
5252        << UserDeclaredMove->isMoveAssignmentOperator();
5253      return true;
5254    }
5255  }
5256
5257  // Do access control from the special member function
5258  ContextRAII MethodContext(*this, MD);
5259
5260  // C++11 [class.dtor]p5:
5261  // -- for a virtual destructor, lookup of the non-array deallocation function
5262  //    results in an ambiguity or in a function that is deleted or inaccessible
5263  if (CSM == CXXDestructor && MD->isVirtual()) {
5264    FunctionDecl *OperatorDelete = 0;
5265    DeclarationName Name =
5266      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5267    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5268                                 OperatorDelete, false)) {
5269      if (Diagnose)
5270        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5271      return true;
5272    }
5273  }
5274
5275  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5276
5277  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5278                                          BE = RD->bases_end(); BI != BE; ++BI)
5279    if (!BI->isVirtual() &&
5280        SMI.shouldDeleteForBase(BI))
5281      return true;
5282
5283  // Per DR1611, do not consider virtual bases of constructors of abstract
5284  // classes, since we are not going to construct them.
5285  if (!RD->isAbstract() || !SMI.IsConstructor) {
5286    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5287                                            BE = RD->vbases_end();
5288         BI != BE; ++BI)
5289      if (SMI.shouldDeleteForBase(BI))
5290        return true;
5291  }
5292
5293  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5294                                     FE = RD->field_end(); FI != FE; ++FI)
5295    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5296        SMI.shouldDeleteForField(*FI))
5297      return true;
5298
5299  if (SMI.shouldDeleteForAllConstMembers())
5300    return true;
5301
5302  return false;
5303}
5304
5305/// Perform lookup for a special member of the specified kind, and determine
5306/// whether it is trivial. If the triviality can be determined without the
5307/// lookup, skip it. This is intended for use when determining whether a
5308/// special member of a containing object is trivial, and thus does not ever
5309/// perform overload resolution for default constructors.
5310///
5311/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5312/// member that was most likely to be intended to be trivial, if any.
5313static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5314                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5315                                     CXXMethodDecl **Selected) {
5316  if (Selected)
5317    *Selected = 0;
5318
5319  switch (CSM) {
5320  case Sema::CXXInvalid:
5321    llvm_unreachable("not a special member");
5322
5323  case Sema::CXXDefaultConstructor:
5324    // C++11 [class.ctor]p5:
5325    //   A default constructor is trivial if:
5326    //    - all the [direct subobjects] have trivial default constructors
5327    //
5328    // Note, no overload resolution is performed in this case.
5329    if (RD->hasTrivialDefaultConstructor())
5330      return true;
5331
5332    if (Selected) {
5333      // If there's a default constructor which could have been trivial, dig it
5334      // out. Otherwise, if there's any user-provided default constructor, point
5335      // to that as an example of why there's not a trivial one.
5336      CXXConstructorDecl *DefCtor = 0;
5337      if (RD->needsImplicitDefaultConstructor())
5338        S.DeclareImplicitDefaultConstructor(RD);
5339      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5340                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5341        if (!CI->isDefaultConstructor())
5342          continue;
5343        DefCtor = *CI;
5344        if (!DefCtor->isUserProvided())
5345          break;
5346      }
5347
5348      *Selected = DefCtor;
5349    }
5350
5351    return false;
5352
5353  case Sema::CXXDestructor:
5354    // C++11 [class.dtor]p5:
5355    //   A destructor is trivial if:
5356    //    - all the direct [subobjects] have trivial destructors
5357    if (RD->hasTrivialDestructor())
5358      return true;
5359
5360    if (Selected) {
5361      if (RD->needsImplicitDestructor())
5362        S.DeclareImplicitDestructor(RD);
5363      *Selected = RD->getDestructor();
5364    }
5365
5366    return false;
5367
5368  case Sema::CXXCopyConstructor:
5369    // C++11 [class.copy]p12:
5370    //   A copy constructor is trivial if:
5371    //    - the constructor selected to copy each direct [subobject] is trivial
5372    if (RD->hasTrivialCopyConstructor()) {
5373      if (Quals == Qualifiers::Const)
5374        // We must either select the trivial copy constructor or reach an
5375        // ambiguity; no need to actually perform overload resolution.
5376        return true;
5377    } else if (!Selected) {
5378      return false;
5379    }
5380    // In C++98, we are not supposed to perform overload resolution here, but we
5381    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5382    // cases like B as having a non-trivial copy constructor:
5383    //   struct A { template<typename T> A(T&); };
5384    //   struct B { mutable A a; };
5385    goto NeedOverloadResolution;
5386
5387  case Sema::CXXCopyAssignment:
5388    // C++11 [class.copy]p25:
5389    //   A copy assignment operator is trivial if:
5390    //    - the assignment operator selected to copy each direct [subobject] is
5391    //      trivial
5392    if (RD->hasTrivialCopyAssignment()) {
5393      if (Quals == Qualifiers::Const)
5394        return true;
5395    } else if (!Selected) {
5396      return false;
5397    }
5398    // In C++98, we are not supposed to perform overload resolution here, but we
5399    // treat that as a language defect.
5400    goto NeedOverloadResolution;
5401
5402  case Sema::CXXMoveConstructor:
5403  case Sema::CXXMoveAssignment:
5404  NeedOverloadResolution:
5405    Sema::SpecialMemberOverloadResult *SMOR =
5406      S.LookupSpecialMember(RD, CSM,
5407                            Quals & Qualifiers::Const,
5408                            Quals & Qualifiers::Volatile,
5409                            /*RValueThis*/false, /*ConstThis*/false,
5410                            /*VolatileThis*/false);
5411
5412    // The standard doesn't describe how to behave if the lookup is ambiguous.
5413    // We treat it as not making the member non-trivial, just like the standard
5414    // mandates for the default constructor. This should rarely matter, because
5415    // the member will also be deleted.
5416    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5417      return true;
5418
5419    if (!SMOR->getMethod()) {
5420      assert(SMOR->getKind() ==
5421             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5422      return false;
5423    }
5424
5425    // We deliberately don't check if we found a deleted special member. We're
5426    // not supposed to!
5427    if (Selected)
5428      *Selected = SMOR->getMethod();
5429    return SMOR->getMethod()->isTrivial();
5430  }
5431
5432  llvm_unreachable("unknown special method kind");
5433}
5434
5435static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5436  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5437       CI != CE; ++CI)
5438    if (!CI->isImplicit())
5439      return *CI;
5440
5441  // Look for constructor templates.
5442  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5443  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5444    if (CXXConstructorDecl *CD =
5445          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5446      return CD;
5447  }
5448
5449  return 0;
5450}
5451
5452/// The kind of subobject we are checking for triviality. The values of this
5453/// enumeration are used in diagnostics.
5454enum TrivialSubobjectKind {
5455  /// The subobject is a base class.
5456  TSK_BaseClass,
5457  /// The subobject is a non-static data member.
5458  TSK_Field,
5459  /// The object is actually the complete object.
5460  TSK_CompleteObject
5461};
5462
5463/// Check whether the special member selected for a given type would be trivial.
5464static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5465                                      QualType SubType,
5466                                      Sema::CXXSpecialMember CSM,
5467                                      TrivialSubobjectKind Kind,
5468                                      bool Diagnose) {
5469  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5470  if (!SubRD)
5471    return true;
5472
5473  CXXMethodDecl *Selected;
5474  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5475                               Diagnose ? &Selected : 0))
5476    return true;
5477
5478  if (Diagnose) {
5479    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5480      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5481        << Kind << SubType.getUnqualifiedType();
5482      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5483        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5484    } else if (!Selected)
5485      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5486        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5487    else if (Selected->isUserProvided()) {
5488      if (Kind == TSK_CompleteObject)
5489        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5490          << Kind << SubType.getUnqualifiedType() << CSM;
5491      else {
5492        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5493          << Kind << SubType.getUnqualifiedType() << CSM;
5494        S.Diag(Selected->getLocation(), diag::note_declared_at);
5495      }
5496    } else {
5497      if (Kind != TSK_CompleteObject)
5498        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5499          << Kind << SubType.getUnqualifiedType() << CSM;
5500
5501      // Explain why the defaulted or deleted special member isn't trivial.
5502      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5503    }
5504  }
5505
5506  return false;
5507}
5508
5509/// Check whether the members of a class type allow a special member to be
5510/// trivial.
5511static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5512                                     Sema::CXXSpecialMember CSM,
5513                                     bool ConstArg, bool Diagnose) {
5514  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5515                                     FE = RD->field_end(); FI != FE; ++FI) {
5516    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5517      continue;
5518
5519    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5520
5521    // Pretend anonymous struct or union members are members of this class.
5522    if (FI->isAnonymousStructOrUnion()) {
5523      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5524                                    CSM, ConstArg, Diagnose))
5525        return false;
5526      continue;
5527    }
5528
5529    // C++11 [class.ctor]p5:
5530    //   A default constructor is trivial if [...]
5531    //    -- no non-static data member of its class has a
5532    //       brace-or-equal-initializer
5533    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5534      if (Diagnose)
5535        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5536      return false;
5537    }
5538
5539    // Objective C ARC 4.3.5:
5540    //   [...] nontrivally ownership-qualified types are [...] not trivially
5541    //   default constructible, copy constructible, move constructible, copy
5542    //   assignable, move assignable, or destructible [...]
5543    if (S.getLangOpts().ObjCAutoRefCount &&
5544        FieldType.hasNonTrivialObjCLifetime()) {
5545      if (Diagnose)
5546        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5547          << RD << FieldType.getObjCLifetime();
5548      return false;
5549    }
5550
5551    if (ConstArg && !FI->isMutable())
5552      FieldType.addConst();
5553    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5554                                   TSK_Field, Diagnose))
5555      return false;
5556  }
5557
5558  return true;
5559}
5560
5561/// Diagnose why the specified class does not have a trivial special member of
5562/// the given kind.
5563void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5564  QualType Ty = Context.getRecordType(RD);
5565  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5566    Ty.addConst();
5567
5568  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5569                            TSK_CompleteObject, /*Diagnose*/true);
5570}
5571
5572/// Determine whether a defaulted or deleted special member function is trivial,
5573/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5574/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5575bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5576                                  bool Diagnose) {
5577  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5578
5579  CXXRecordDecl *RD = MD->getParent();
5580
5581  bool ConstArg = false;
5582
5583  // C++11 [class.copy]p12, p25: [DR1593]
5584  //   A [special member] is trivial if [...] its parameter-type-list is
5585  //   equivalent to the parameter-type-list of an implicit declaration [...]
5586  switch (CSM) {
5587  case CXXDefaultConstructor:
5588  case CXXDestructor:
5589    // Trivial default constructors and destructors cannot have parameters.
5590    break;
5591
5592  case CXXCopyConstructor:
5593  case CXXCopyAssignment: {
5594    // Trivial copy operations always have const, non-volatile parameter types.
5595    ConstArg = true;
5596    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5597    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5598    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5599      if (Diagnose)
5600        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5601          << Param0->getSourceRange() << Param0->getType()
5602          << Context.getLValueReferenceType(
5603               Context.getRecordType(RD).withConst());
5604      return false;
5605    }
5606    break;
5607  }
5608
5609  case CXXMoveConstructor:
5610  case CXXMoveAssignment: {
5611    // Trivial move operations always have non-cv-qualified parameters.
5612    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5613    const RValueReferenceType *RT =
5614      Param0->getType()->getAs<RValueReferenceType>();
5615    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5616      if (Diagnose)
5617        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5618          << Param0->getSourceRange() << Param0->getType()
5619          << Context.getRValueReferenceType(Context.getRecordType(RD));
5620      return false;
5621    }
5622    break;
5623  }
5624
5625  case CXXInvalid:
5626    llvm_unreachable("not a special member");
5627  }
5628
5629  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5630    if (Diagnose)
5631      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5632           diag::note_nontrivial_default_arg)
5633        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5634    return false;
5635  }
5636  if (MD->isVariadic()) {
5637    if (Diagnose)
5638      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5639    return false;
5640  }
5641
5642  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5643  //   A copy/move [constructor or assignment operator] is trivial if
5644  //    -- the [member] selected to copy/move each direct base class subobject
5645  //       is trivial
5646  //
5647  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5648  //   A [default constructor or destructor] is trivial if
5649  //    -- all the direct base classes have trivial [default constructors or
5650  //       destructors]
5651  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5652                                          BE = RD->bases_end(); BI != BE; ++BI)
5653    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5654                                   ConstArg ? BI->getType().withConst()
5655                                            : BI->getType(),
5656                                   CSM, TSK_BaseClass, Diagnose))
5657      return false;
5658
5659  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5660  //   A copy/move [constructor or assignment operator] for a class X is
5661  //   trivial if
5662  //    -- for each non-static data member of X that is of class type (or array
5663  //       thereof), the constructor selected to copy/move that member is
5664  //       trivial
5665  //
5666  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5667  //   A [default constructor or destructor] is trivial if
5668  //    -- for all of the non-static data members of its class that are of class
5669  //       type (or array thereof), each such class has a trivial [default
5670  //       constructor or destructor]
5671  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5672    return false;
5673
5674  // C++11 [class.dtor]p5:
5675  //   A destructor is trivial if [...]
5676  //    -- the destructor is not virtual
5677  if (CSM == CXXDestructor && MD->isVirtual()) {
5678    if (Diagnose)
5679      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5680    return false;
5681  }
5682
5683  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5684  //   A [special member] for class X is trivial if [...]
5685  //    -- class X has no virtual functions and no virtual base classes
5686  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5687    if (!Diagnose)
5688      return false;
5689
5690    if (RD->getNumVBases()) {
5691      // Check for virtual bases. We already know that the corresponding
5692      // member in all bases is trivial, so vbases must all be direct.
5693      CXXBaseSpecifier &BS = *RD->vbases_begin();
5694      assert(BS.isVirtual());
5695      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5696      return false;
5697    }
5698
5699    // Must have a virtual method.
5700    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5701                                        ME = RD->method_end(); MI != ME; ++MI) {
5702      if (MI->isVirtual()) {
5703        SourceLocation MLoc = MI->getLocStart();
5704        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5705        return false;
5706      }
5707    }
5708
5709    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5710  }
5711
5712  // Looks like it's trivial!
5713  return true;
5714}
5715
5716/// \brief Data used with FindHiddenVirtualMethod
5717namespace {
5718  struct FindHiddenVirtualMethodData {
5719    Sema *S;
5720    CXXMethodDecl *Method;
5721    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5722    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5723  };
5724}
5725
5726/// \brief Check whether any most overriden method from MD in Methods
5727static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5728                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5729  if (MD->size_overridden_methods() == 0)
5730    return Methods.count(MD->getCanonicalDecl());
5731  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5732                                      E = MD->end_overridden_methods();
5733       I != E; ++I)
5734    if (CheckMostOverridenMethods(*I, Methods))
5735      return true;
5736  return false;
5737}
5738
5739/// \brief Member lookup function that determines whether a given C++
5740/// method overloads virtual methods in a base class without overriding any,
5741/// to be used with CXXRecordDecl::lookupInBases().
5742static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5743                                    CXXBasePath &Path,
5744                                    void *UserData) {
5745  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5746
5747  FindHiddenVirtualMethodData &Data
5748    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5749
5750  DeclarationName Name = Data.Method->getDeclName();
5751  assert(Name.getNameKind() == DeclarationName::Identifier);
5752
5753  bool foundSameNameMethod = false;
5754  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5755  for (Path.Decls = BaseRecord->lookup(Name);
5756       !Path.Decls.empty();
5757       Path.Decls = Path.Decls.slice(1)) {
5758    NamedDecl *D = Path.Decls.front();
5759    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5760      MD = MD->getCanonicalDecl();
5761      foundSameNameMethod = true;
5762      // Interested only in hidden virtual methods.
5763      if (!MD->isVirtual())
5764        continue;
5765      // If the method we are checking overrides a method from its base
5766      // don't warn about the other overloaded methods.
5767      if (!Data.S->IsOverload(Data.Method, MD, false))
5768        return true;
5769      // Collect the overload only if its hidden.
5770      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5771        overloadedMethods.push_back(MD);
5772    }
5773  }
5774
5775  if (foundSameNameMethod)
5776    Data.OverloadedMethods.append(overloadedMethods.begin(),
5777                                   overloadedMethods.end());
5778  return foundSameNameMethod;
5779}
5780
5781/// \brief Add the most overriden methods from MD to Methods
5782static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5783                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5784  if (MD->size_overridden_methods() == 0)
5785    Methods.insert(MD->getCanonicalDecl());
5786  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5787                                      E = MD->end_overridden_methods();
5788       I != E; ++I)
5789    AddMostOverridenMethods(*I, Methods);
5790}
5791
5792/// \brief Check if a method overloads virtual methods in a base class without
5793/// overriding any.
5794void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5795                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5796  if (!MD->getDeclName().isIdentifier())
5797    return;
5798
5799  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5800                     /*bool RecordPaths=*/false,
5801                     /*bool DetectVirtual=*/false);
5802  FindHiddenVirtualMethodData Data;
5803  Data.Method = MD;
5804  Data.S = this;
5805
5806  // Keep the base methods that were overriden or introduced in the subclass
5807  // by 'using' in a set. A base method not in this set is hidden.
5808  CXXRecordDecl *DC = MD->getParent();
5809  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5810  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5811    NamedDecl *ND = *I;
5812    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5813      ND = shad->getTargetDecl();
5814    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5815      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5816  }
5817
5818  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5819    OverloadedMethods = Data.OverloadedMethods;
5820}
5821
5822void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
5823                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5824  for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
5825    CXXMethodDecl *overloadedMD = OverloadedMethods[i];
5826    PartialDiagnostic PD = PDiag(
5827         diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5828    HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5829    Diag(overloadedMD->getLocation(), PD);
5830  }
5831}
5832
5833/// \brief Diagnose methods which overload virtual methods in a base class
5834/// without overriding any.
5835void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
5836  if (MD->isInvalidDecl())
5837    return;
5838
5839  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5840                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5841    return;
5842
5843  SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5844  FindHiddenVirtualMethods(MD, OverloadedMethods);
5845  if (!OverloadedMethods.empty()) {
5846    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5847      << MD << (OverloadedMethods.size() > 1);
5848
5849    NoteHiddenVirtualMethods(MD, OverloadedMethods);
5850  }
5851}
5852
5853void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5854                                             Decl *TagDecl,
5855                                             SourceLocation LBrac,
5856                                             SourceLocation RBrac,
5857                                             AttributeList *AttrList) {
5858  if (!TagDecl)
5859    return;
5860
5861  AdjustDeclIfTemplate(TagDecl);
5862
5863  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5864    if (l->getKind() != AttributeList::AT_Visibility)
5865      continue;
5866    l->setInvalid();
5867    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5868      l->getName();
5869  }
5870
5871  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5872              // strict aliasing violation!
5873              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5874              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5875
5876  CheckCompletedCXXClass(
5877                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5878}
5879
5880/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5881/// special functions, such as the default constructor, copy
5882/// constructor, or destructor, to the given C++ class (C++
5883/// [special]p1).  This routine can only be executed just before the
5884/// definition of the class is complete.
5885void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5886  if (!ClassDecl->hasUserDeclaredConstructor())
5887    ++ASTContext::NumImplicitDefaultConstructors;
5888
5889  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5890    ++ASTContext::NumImplicitCopyConstructors;
5891
5892    // If the properties or semantics of the copy constructor couldn't be
5893    // determined while the class was being declared, force a declaration
5894    // of it now.
5895    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5896      DeclareImplicitCopyConstructor(ClassDecl);
5897  }
5898
5899  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5900    ++ASTContext::NumImplicitMoveConstructors;
5901
5902    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5903      DeclareImplicitMoveConstructor(ClassDecl);
5904  }
5905
5906  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5907    ++ASTContext::NumImplicitCopyAssignmentOperators;
5908
5909    // If we have a dynamic class, then the copy assignment operator may be
5910    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5911    // it shows up in the right place in the vtable and that we diagnose
5912    // problems with the implicit exception specification.
5913    if (ClassDecl->isDynamicClass() ||
5914        ClassDecl->needsOverloadResolutionForCopyAssignment())
5915      DeclareImplicitCopyAssignment(ClassDecl);
5916  }
5917
5918  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5919    ++ASTContext::NumImplicitMoveAssignmentOperators;
5920
5921    // Likewise for the move assignment operator.
5922    if (ClassDecl->isDynamicClass() ||
5923        ClassDecl->needsOverloadResolutionForMoveAssignment())
5924      DeclareImplicitMoveAssignment(ClassDecl);
5925  }
5926
5927  if (!ClassDecl->hasUserDeclaredDestructor()) {
5928    ++ASTContext::NumImplicitDestructors;
5929
5930    // If we have a dynamic class, then the destructor may be virtual, so we
5931    // have to declare the destructor immediately. This ensures that, e.g., it
5932    // shows up in the right place in the vtable and that we diagnose problems
5933    // with the implicit exception specification.
5934    if (ClassDecl->isDynamicClass() ||
5935        ClassDecl->needsOverloadResolutionForDestructor())
5936      DeclareImplicitDestructor(ClassDecl);
5937  }
5938}
5939
5940void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5941  if (!D)
5942    return;
5943
5944  int NumParamList = D->getNumTemplateParameterLists();
5945  for (int i = 0; i < NumParamList; i++) {
5946    TemplateParameterList* Params = D->getTemplateParameterList(i);
5947    for (TemplateParameterList::iterator Param = Params->begin(),
5948                                      ParamEnd = Params->end();
5949          Param != ParamEnd; ++Param) {
5950      NamedDecl *Named = cast<NamedDecl>(*Param);
5951      if (Named->getDeclName()) {
5952        S->AddDecl(Named);
5953        IdResolver.AddDecl(Named);
5954      }
5955    }
5956  }
5957}
5958
5959void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5960  if (!D)
5961    return;
5962
5963  TemplateParameterList *Params = 0;
5964  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5965    Params = Template->getTemplateParameters();
5966  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5967           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5968    Params = PartialSpec->getTemplateParameters();
5969  else
5970    return;
5971
5972  for (TemplateParameterList::iterator Param = Params->begin(),
5973                                    ParamEnd = Params->end();
5974       Param != ParamEnd; ++Param) {
5975    NamedDecl *Named = cast<NamedDecl>(*Param);
5976    if (Named->getDeclName()) {
5977      S->AddDecl(Named);
5978      IdResolver.AddDecl(Named);
5979    }
5980  }
5981}
5982
5983void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5984  if (!RecordD) return;
5985  AdjustDeclIfTemplate(RecordD);
5986  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5987  PushDeclContext(S, Record);
5988}
5989
5990void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5991  if (!RecordD) return;
5992  PopDeclContext();
5993}
5994
5995/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5996/// parsing a top-level (non-nested) C++ class, and we are now
5997/// parsing those parts of the given Method declaration that could
5998/// not be parsed earlier (C++ [class.mem]p2), such as default
5999/// arguments. This action should enter the scope of the given
6000/// Method declaration as if we had just parsed the qualified method
6001/// name. However, it should not bring the parameters into scope;
6002/// that will be performed by ActOnDelayedCXXMethodParameter.
6003void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6004}
6005
6006/// ActOnDelayedCXXMethodParameter - We've already started a delayed
6007/// C++ method declaration. We're (re-)introducing the given
6008/// function parameter into scope for use in parsing later parts of
6009/// the method declaration. For example, we could see an
6010/// ActOnParamDefaultArgument event for this parameter.
6011void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6012  if (!ParamD)
6013    return;
6014
6015  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6016
6017  // If this parameter has an unparsed default argument, clear it out
6018  // to make way for the parsed default argument.
6019  if (Param->hasUnparsedDefaultArg())
6020    Param->setDefaultArg(0);
6021
6022  S->AddDecl(Param);
6023  if (Param->getDeclName())
6024    IdResolver.AddDecl(Param);
6025}
6026
6027/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6028/// processing the delayed method declaration for Method. The method
6029/// declaration is now considered finished. There may be a separate
6030/// ActOnStartOfFunctionDef action later (not necessarily
6031/// immediately!) for this method, if it was also defined inside the
6032/// class body.
6033void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6034  if (!MethodD)
6035    return;
6036
6037  AdjustDeclIfTemplate(MethodD);
6038
6039  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6040
6041  // Now that we have our default arguments, check the constructor
6042  // again. It could produce additional diagnostics or affect whether
6043  // the class has implicitly-declared destructors, among other
6044  // things.
6045  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6046    CheckConstructor(Constructor);
6047
6048  // Check the default arguments, which we may have added.
6049  if (!Method->isInvalidDecl())
6050    CheckCXXDefaultArguments(Method);
6051}
6052
6053/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6054/// the well-formedness of the constructor declarator @p D with type @p
6055/// R. If there are any errors in the declarator, this routine will
6056/// emit diagnostics and set the invalid bit to true.  In any case, the type
6057/// will be updated to reflect a well-formed type for the constructor and
6058/// returned.
6059QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6060                                          StorageClass &SC) {
6061  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6062
6063  // C++ [class.ctor]p3:
6064  //   A constructor shall not be virtual (10.3) or static (9.4). A
6065  //   constructor can be invoked for a const, volatile or const
6066  //   volatile object. A constructor shall not be declared const,
6067  //   volatile, or const volatile (9.3.2).
6068  if (isVirtual) {
6069    if (!D.isInvalidType())
6070      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6071        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6072        << SourceRange(D.getIdentifierLoc());
6073    D.setInvalidType();
6074  }
6075  if (SC == SC_Static) {
6076    if (!D.isInvalidType())
6077      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6078        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6079        << SourceRange(D.getIdentifierLoc());
6080    D.setInvalidType();
6081    SC = SC_None;
6082  }
6083
6084  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6085  if (FTI.TypeQuals != 0) {
6086    if (FTI.TypeQuals & Qualifiers::Const)
6087      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6088        << "const" << SourceRange(D.getIdentifierLoc());
6089    if (FTI.TypeQuals & Qualifiers::Volatile)
6090      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6091        << "volatile" << SourceRange(D.getIdentifierLoc());
6092    if (FTI.TypeQuals & Qualifiers::Restrict)
6093      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6094        << "restrict" << SourceRange(D.getIdentifierLoc());
6095    D.setInvalidType();
6096  }
6097
6098  // C++0x [class.ctor]p4:
6099  //   A constructor shall not be declared with a ref-qualifier.
6100  if (FTI.hasRefQualifier()) {
6101    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6102      << FTI.RefQualifierIsLValueRef
6103      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6104    D.setInvalidType();
6105  }
6106
6107  // Rebuild the function type "R" without any type qualifiers (in
6108  // case any of the errors above fired) and with "void" as the
6109  // return type, since constructors don't have return types.
6110  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6111  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
6112    return R;
6113
6114  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6115  EPI.TypeQuals = 0;
6116  EPI.RefQualifier = RQ_None;
6117
6118  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
6119}
6120
6121/// CheckConstructor - Checks a fully-formed constructor for
6122/// well-formedness, issuing any diagnostics required. Returns true if
6123/// the constructor declarator is invalid.
6124void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6125  CXXRecordDecl *ClassDecl
6126    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6127  if (!ClassDecl)
6128    return Constructor->setInvalidDecl();
6129
6130  // C++ [class.copy]p3:
6131  //   A declaration of a constructor for a class X is ill-formed if
6132  //   its first parameter is of type (optionally cv-qualified) X and
6133  //   either there are no other parameters or else all other
6134  //   parameters have default arguments.
6135  if (!Constructor->isInvalidDecl() &&
6136      ((Constructor->getNumParams() == 1) ||
6137       (Constructor->getNumParams() > 1 &&
6138        Constructor->getParamDecl(1)->hasDefaultArg())) &&
6139      Constructor->getTemplateSpecializationKind()
6140                                              != TSK_ImplicitInstantiation) {
6141    QualType ParamType = Constructor->getParamDecl(0)->getType();
6142    QualType ClassTy = Context.getTagDeclType(ClassDecl);
6143    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6144      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6145      const char *ConstRef
6146        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6147                                                        : " const &";
6148      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6149        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6150
6151      // FIXME: Rather that making the constructor invalid, we should endeavor
6152      // to fix the type.
6153      Constructor->setInvalidDecl();
6154    }
6155  }
6156}
6157
6158/// CheckDestructor - Checks a fully-formed destructor definition for
6159/// well-formedness, issuing any diagnostics required.  Returns true
6160/// on error.
6161bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6162  CXXRecordDecl *RD = Destructor->getParent();
6163
6164  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6165    SourceLocation Loc;
6166
6167    if (!Destructor->isImplicit())
6168      Loc = Destructor->getLocation();
6169    else
6170      Loc = RD->getLocation();
6171
6172    // If we have a virtual destructor, look up the deallocation function
6173    FunctionDecl *OperatorDelete = 0;
6174    DeclarationName Name =
6175    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6176    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6177      return true;
6178    // If there's no class-specific operator delete, look up the global
6179    // non-array delete.
6180    if (!OperatorDelete)
6181      OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6182
6183    MarkFunctionReferenced(Loc, OperatorDelete);
6184
6185    Destructor->setOperatorDelete(OperatorDelete);
6186  }
6187
6188  return false;
6189}
6190
6191static inline bool
6192FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
6193  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6194          FTI.ArgInfo[0].Param &&
6195          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
6196}
6197
6198/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6199/// the well-formednes of the destructor declarator @p D with type @p
6200/// R. If there are any errors in the declarator, this routine will
6201/// emit diagnostics and set the declarator to invalid.  Even if this happens,
6202/// will be updated to reflect a well-formed type for the destructor and
6203/// returned.
6204QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6205                                         StorageClass& SC) {
6206  // C++ [class.dtor]p1:
6207  //   [...] A typedef-name that names a class is a class-name
6208  //   (7.1.3); however, a typedef-name that names a class shall not
6209  //   be used as the identifier in the declarator for a destructor
6210  //   declaration.
6211  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6212  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6213    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6214      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6215  else if (const TemplateSpecializationType *TST =
6216             DeclaratorType->getAs<TemplateSpecializationType>())
6217    if (TST->isTypeAlias())
6218      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6219        << DeclaratorType << 1;
6220
6221  // C++ [class.dtor]p2:
6222  //   A destructor is used to destroy objects of its class type. A
6223  //   destructor takes no parameters, and no return type can be
6224  //   specified for it (not even void). The address of a destructor
6225  //   shall not be taken. A destructor shall not be static. A
6226  //   destructor can be invoked for a const, volatile or const
6227  //   volatile object. A destructor shall not be declared const,
6228  //   volatile or const volatile (9.3.2).
6229  if (SC == SC_Static) {
6230    if (!D.isInvalidType())
6231      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6232        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6233        << SourceRange(D.getIdentifierLoc())
6234        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6235
6236    SC = SC_None;
6237  }
6238  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6239    // Destructors don't have return types, but the parser will
6240    // happily parse something like:
6241    //
6242    //   class X {
6243    //     float ~X();
6244    //   };
6245    //
6246    // The return type will be eliminated later.
6247    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6248      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6249      << SourceRange(D.getIdentifierLoc());
6250  }
6251
6252  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6253  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6254    if (FTI.TypeQuals & Qualifiers::Const)
6255      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6256        << "const" << SourceRange(D.getIdentifierLoc());
6257    if (FTI.TypeQuals & Qualifiers::Volatile)
6258      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6259        << "volatile" << SourceRange(D.getIdentifierLoc());
6260    if (FTI.TypeQuals & Qualifiers::Restrict)
6261      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6262        << "restrict" << SourceRange(D.getIdentifierLoc());
6263    D.setInvalidType();
6264  }
6265
6266  // C++0x [class.dtor]p2:
6267  //   A destructor shall not be declared with a ref-qualifier.
6268  if (FTI.hasRefQualifier()) {
6269    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6270      << FTI.RefQualifierIsLValueRef
6271      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6272    D.setInvalidType();
6273  }
6274
6275  // Make sure we don't have any parameters.
6276  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6277    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6278
6279    // Delete the parameters.
6280    FTI.freeArgs();
6281    D.setInvalidType();
6282  }
6283
6284  // Make sure the destructor isn't variadic.
6285  if (FTI.isVariadic) {
6286    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6287    D.setInvalidType();
6288  }
6289
6290  // Rebuild the function type "R" without any type qualifiers or
6291  // parameters (in case any of the errors above fired) and with
6292  // "void" as the return type, since destructors don't have return
6293  // types.
6294  if (!D.isInvalidType())
6295    return R;
6296
6297  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6298  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6299  EPI.Variadic = false;
6300  EPI.TypeQuals = 0;
6301  EPI.RefQualifier = RQ_None;
6302  return Context.getFunctionType(Context.VoidTy, None, EPI);
6303}
6304
6305/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6306/// well-formednes of the conversion function declarator @p D with
6307/// type @p R. If there are any errors in the declarator, this routine
6308/// will emit diagnostics and return true. Otherwise, it will return
6309/// false. Either way, the type @p R will be updated to reflect a
6310/// well-formed type for the conversion operator.
6311void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6312                                     StorageClass& SC) {
6313  // C++ [class.conv.fct]p1:
6314  //   Neither parameter types nor return type can be specified. The
6315  //   type of a conversion function (8.3.5) is "function taking no
6316  //   parameter returning conversion-type-id."
6317  if (SC == SC_Static) {
6318    if (!D.isInvalidType())
6319      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6320        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6321        << D.getName().getSourceRange();
6322    D.setInvalidType();
6323    SC = SC_None;
6324  }
6325
6326  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6327
6328  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6329    // Conversion functions don't have return types, but the parser will
6330    // happily parse something like:
6331    //
6332    //   class X {
6333    //     float operator bool();
6334    //   };
6335    //
6336    // The return type will be changed later anyway.
6337    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6338      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6339      << SourceRange(D.getIdentifierLoc());
6340    D.setInvalidType();
6341  }
6342
6343  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6344
6345  // Make sure we don't have any parameters.
6346  if (Proto->getNumArgs() > 0) {
6347    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6348
6349    // Delete the parameters.
6350    D.getFunctionTypeInfo().freeArgs();
6351    D.setInvalidType();
6352  } else if (Proto->isVariadic()) {
6353    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6354    D.setInvalidType();
6355  }
6356
6357  // Diagnose "&operator bool()" and other such nonsense.  This
6358  // is actually a gcc extension which we don't support.
6359  if (Proto->getResultType() != ConvType) {
6360    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6361      << Proto->getResultType();
6362    D.setInvalidType();
6363    ConvType = Proto->getResultType();
6364  }
6365
6366  // C++ [class.conv.fct]p4:
6367  //   The conversion-type-id shall not represent a function type nor
6368  //   an array type.
6369  if (ConvType->isArrayType()) {
6370    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6371    ConvType = Context.getPointerType(ConvType);
6372    D.setInvalidType();
6373  } else if (ConvType->isFunctionType()) {
6374    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6375    ConvType = Context.getPointerType(ConvType);
6376    D.setInvalidType();
6377  }
6378
6379  // Rebuild the function type "R" without any parameters (in case any
6380  // of the errors above fired) and with the conversion type as the
6381  // return type.
6382  if (D.isInvalidType())
6383    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6384
6385  // C++0x explicit conversion operators.
6386  if (D.getDeclSpec().isExplicitSpecified())
6387    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6388         getLangOpts().CPlusPlus11 ?
6389           diag::warn_cxx98_compat_explicit_conversion_functions :
6390           diag::ext_explicit_conversion_functions)
6391      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6392}
6393
6394/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6395/// the declaration of the given C++ conversion function. This routine
6396/// is responsible for recording the conversion function in the C++
6397/// class, if possible.
6398Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6399  assert(Conversion && "Expected to receive a conversion function declaration");
6400
6401  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6402
6403  // Make sure we aren't redeclaring the conversion function.
6404  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6405
6406  // C++ [class.conv.fct]p1:
6407  //   [...] A conversion function is never used to convert a
6408  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6409  //   same object type (or a reference to it), to a (possibly
6410  //   cv-qualified) base class of that type (or a reference to it),
6411  //   or to (possibly cv-qualified) void.
6412  // FIXME: Suppress this warning if the conversion function ends up being a
6413  // virtual function that overrides a virtual function in a base class.
6414  QualType ClassType
6415    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6416  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6417    ConvType = ConvTypeRef->getPointeeType();
6418  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6419      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6420    /* Suppress diagnostics for instantiations. */;
6421  else if (ConvType->isRecordType()) {
6422    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6423    if (ConvType == ClassType)
6424      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6425        << ClassType;
6426    else if (IsDerivedFrom(ClassType, ConvType))
6427      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6428        <<  ClassType << ConvType;
6429  } else if (ConvType->isVoidType()) {
6430    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6431      << ClassType << ConvType;
6432  }
6433
6434  if (FunctionTemplateDecl *ConversionTemplate
6435                                = Conversion->getDescribedFunctionTemplate())
6436    return ConversionTemplate;
6437
6438  return Conversion;
6439}
6440
6441//===----------------------------------------------------------------------===//
6442// Namespace Handling
6443//===----------------------------------------------------------------------===//
6444
6445/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6446/// reopened.
6447static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6448                                            SourceLocation Loc,
6449                                            IdentifierInfo *II, bool *IsInline,
6450                                            NamespaceDecl *PrevNS) {
6451  assert(*IsInline != PrevNS->isInline());
6452
6453  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6454  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6455  // inline namespaces, with the intention of bringing names into namespace std.
6456  //
6457  // We support this just well enough to get that case working; this is not
6458  // sufficient to support reopening namespaces as inline in general.
6459  if (*IsInline && II && II->getName().startswith("__atomic") &&
6460      S.getSourceManager().isInSystemHeader(Loc)) {
6461    // Mark all prior declarations of the namespace as inline.
6462    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6463         NS = NS->getPreviousDecl())
6464      NS->setInline(*IsInline);
6465    // Patch up the lookup table for the containing namespace. This isn't really
6466    // correct, but it's good enough for this particular case.
6467    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6468                                    E = PrevNS->decls_end(); I != E; ++I)
6469      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6470        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6471    return;
6472  }
6473
6474  if (PrevNS->isInline())
6475    // The user probably just forgot the 'inline', so suggest that it
6476    // be added back.
6477    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6478      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6479  else
6480    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6481      << IsInline;
6482
6483  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6484  *IsInline = PrevNS->isInline();
6485}
6486
6487/// ActOnStartNamespaceDef - This is called at the start of a namespace
6488/// definition.
6489Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6490                                   SourceLocation InlineLoc,
6491                                   SourceLocation NamespaceLoc,
6492                                   SourceLocation IdentLoc,
6493                                   IdentifierInfo *II,
6494                                   SourceLocation LBrace,
6495                                   AttributeList *AttrList) {
6496  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6497  // For anonymous namespace, take the location of the left brace.
6498  SourceLocation Loc = II ? IdentLoc : LBrace;
6499  bool IsInline = InlineLoc.isValid();
6500  bool IsInvalid = false;
6501  bool IsStd = false;
6502  bool AddToKnown = false;
6503  Scope *DeclRegionScope = NamespcScope->getParent();
6504
6505  NamespaceDecl *PrevNS = 0;
6506  if (II) {
6507    // C++ [namespace.def]p2:
6508    //   The identifier in an original-namespace-definition shall not
6509    //   have been previously defined in the declarative region in
6510    //   which the original-namespace-definition appears. The
6511    //   identifier in an original-namespace-definition is the name of
6512    //   the namespace. Subsequently in that declarative region, it is
6513    //   treated as an original-namespace-name.
6514    //
6515    // Since namespace names are unique in their scope, and we don't
6516    // look through using directives, just look for any ordinary names.
6517
6518    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6519    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6520    Decl::IDNS_Namespace;
6521    NamedDecl *PrevDecl = 0;
6522    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6523    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6524         ++I) {
6525      if ((*I)->getIdentifierNamespace() & IDNS) {
6526        PrevDecl = *I;
6527        break;
6528      }
6529    }
6530
6531    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6532
6533    if (PrevNS) {
6534      // This is an extended namespace definition.
6535      if (IsInline != PrevNS->isInline())
6536        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6537                                        &IsInline, PrevNS);
6538    } else if (PrevDecl) {
6539      // This is an invalid name redefinition.
6540      Diag(Loc, diag::err_redefinition_different_kind)
6541        << II;
6542      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6543      IsInvalid = true;
6544      // Continue on to push Namespc as current DeclContext and return it.
6545    } else if (II->isStr("std") &&
6546               CurContext->getRedeclContext()->isTranslationUnit()) {
6547      // This is the first "real" definition of the namespace "std", so update
6548      // our cache of the "std" namespace to point at this definition.
6549      PrevNS = getStdNamespace();
6550      IsStd = true;
6551      AddToKnown = !IsInline;
6552    } else {
6553      // We've seen this namespace for the first time.
6554      AddToKnown = !IsInline;
6555    }
6556  } else {
6557    // Anonymous namespaces.
6558
6559    // Determine whether the parent already has an anonymous namespace.
6560    DeclContext *Parent = CurContext->getRedeclContext();
6561    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6562      PrevNS = TU->getAnonymousNamespace();
6563    } else {
6564      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6565      PrevNS = ND->getAnonymousNamespace();
6566    }
6567
6568    if (PrevNS && IsInline != PrevNS->isInline())
6569      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6570                                      &IsInline, PrevNS);
6571  }
6572
6573  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6574                                                 StartLoc, Loc, II, PrevNS);
6575  if (IsInvalid)
6576    Namespc->setInvalidDecl();
6577
6578  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6579
6580  // FIXME: Should we be merging attributes?
6581  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6582    PushNamespaceVisibilityAttr(Attr, Loc);
6583
6584  if (IsStd)
6585    StdNamespace = Namespc;
6586  if (AddToKnown)
6587    KnownNamespaces[Namespc] = false;
6588
6589  if (II) {
6590    PushOnScopeChains(Namespc, DeclRegionScope);
6591  } else {
6592    // Link the anonymous namespace into its parent.
6593    DeclContext *Parent = CurContext->getRedeclContext();
6594    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6595      TU->setAnonymousNamespace(Namespc);
6596    } else {
6597      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6598    }
6599
6600    CurContext->addDecl(Namespc);
6601
6602    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6603    //   behaves as if it were replaced by
6604    //     namespace unique { /* empty body */ }
6605    //     using namespace unique;
6606    //     namespace unique { namespace-body }
6607    //   where all occurrences of 'unique' in a translation unit are
6608    //   replaced by the same identifier and this identifier differs
6609    //   from all other identifiers in the entire program.
6610
6611    // We just create the namespace with an empty name and then add an
6612    // implicit using declaration, just like the standard suggests.
6613    //
6614    // CodeGen enforces the "universally unique" aspect by giving all
6615    // declarations semantically contained within an anonymous
6616    // namespace internal linkage.
6617
6618    if (!PrevNS) {
6619      UsingDirectiveDecl* UD
6620        = UsingDirectiveDecl::Create(Context, Parent,
6621                                     /* 'using' */ LBrace,
6622                                     /* 'namespace' */ SourceLocation(),
6623                                     /* qualifier */ NestedNameSpecifierLoc(),
6624                                     /* identifier */ SourceLocation(),
6625                                     Namespc,
6626                                     /* Ancestor */ Parent);
6627      UD->setImplicit();
6628      Parent->addDecl(UD);
6629    }
6630  }
6631
6632  ActOnDocumentableDecl(Namespc);
6633
6634  // Although we could have an invalid decl (i.e. the namespace name is a
6635  // redefinition), push it as current DeclContext and try to continue parsing.
6636  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6637  // for the namespace has the declarations that showed up in that particular
6638  // namespace definition.
6639  PushDeclContext(NamespcScope, Namespc);
6640  return Namespc;
6641}
6642
6643/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6644/// is a namespace alias, returns the namespace it points to.
6645static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6646  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6647    return AD->getNamespace();
6648  return dyn_cast_or_null<NamespaceDecl>(D);
6649}
6650
6651/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6652/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6653void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6654  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6655  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6656  Namespc->setRBraceLoc(RBrace);
6657  PopDeclContext();
6658  if (Namespc->hasAttr<VisibilityAttr>())
6659    PopPragmaVisibility(true, RBrace);
6660}
6661
6662CXXRecordDecl *Sema::getStdBadAlloc() const {
6663  return cast_or_null<CXXRecordDecl>(
6664                                  StdBadAlloc.get(Context.getExternalSource()));
6665}
6666
6667NamespaceDecl *Sema::getStdNamespace() const {
6668  return cast_or_null<NamespaceDecl>(
6669                                 StdNamespace.get(Context.getExternalSource()));
6670}
6671
6672/// \brief Retrieve the special "std" namespace, which may require us to
6673/// implicitly define the namespace.
6674NamespaceDecl *Sema::getOrCreateStdNamespace() {
6675  if (!StdNamespace) {
6676    // The "std" namespace has not yet been defined, so build one implicitly.
6677    StdNamespace = NamespaceDecl::Create(Context,
6678                                         Context.getTranslationUnitDecl(),
6679                                         /*Inline=*/false,
6680                                         SourceLocation(), SourceLocation(),
6681                                         &PP.getIdentifierTable().get("std"),
6682                                         /*PrevDecl=*/0);
6683    getStdNamespace()->setImplicit(true);
6684  }
6685
6686  return getStdNamespace();
6687}
6688
6689bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6690  assert(getLangOpts().CPlusPlus &&
6691         "Looking for std::initializer_list outside of C++.");
6692
6693  // We're looking for implicit instantiations of
6694  // template <typename E> class std::initializer_list.
6695
6696  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6697    return false;
6698
6699  ClassTemplateDecl *Template = 0;
6700  const TemplateArgument *Arguments = 0;
6701
6702  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6703
6704    ClassTemplateSpecializationDecl *Specialization =
6705        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6706    if (!Specialization)
6707      return false;
6708
6709    Template = Specialization->getSpecializedTemplate();
6710    Arguments = Specialization->getTemplateArgs().data();
6711  } else if (const TemplateSpecializationType *TST =
6712                 Ty->getAs<TemplateSpecializationType>()) {
6713    Template = dyn_cast_or_null<ClassTemplateDecl>(
6714        TST->getTemplateName().getAsTemplateDecl());
6715    Arguments = TST->getArgs();
6716  }
6717  if (!Template)
6718    return false;
6719
6720  if (!StdInitializerList) {
6721    // Haven't recognized std::initializer_list yet, maybe this is it.
6722    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6723    if (TemplateClass->getIdentifier() !=
6724            &PP.getIdentifierTable().get("initializer_list") ||
6725        !getStdNamespace()->InEnclosingNamespaceSetOf(
6726            TemplateClass->getDeclContext()))
6727      return false;
6728    // This is a template called std::initializer_list, but is it the right
6729    // template?
6730    TemplateParameterList *Params = Template->getTemplateParameters();
6731    if (Params->getMinRequiredArguments() != 1)
6732      return false;
6733    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6734      return false;
6735
6736    // It's the right template.
6737    StdInitializerList = Template;
6738  }
6739
6740  if (Template != StdInitializerList)
6741    return false;
6742
6743  // This is an instance of std::initializer_list. Find the argument type.
6744  if (Element)
6745    *Element = Arguments[0].getAsType();
6746  return true;
6747}
6748
6749static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6750  NamespaceDecl *Std = S.getStdNamespace();
6751  if (!Std) {
6752    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6753    return 0;
6754  }
6755
6756  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6757                      Loc, Sema::LookupOrdinaryName);
6758  if (!S.LookupQualifiedName(Result, Std)) {
6759    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6760    return 0;
6761  }
6762  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6763  if (!Template) {
6764    Result.suppressDiagnostics();
6765    // We found something weird. Complain about the first thing we found.
6766    NamedDecl *Found = *Result.begin();
6767    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6768    return 0;
6769  }
6770
6771  // We found some template called std::initializer_list. Now verify that it's
6772  // correct.
6773  TemplateParameterList *Params = Template->getTemplateParameters();
6774  if (Params->getMinRequiredArguments() != 1 ||
6775      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6776    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6777    return 0;
6778  }
6779
6780  return Template;
6781}
6782
6783QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6784  if (!StdInitializerList) {
6785    StdInitializerList = LookupStdInitializerList(*this, Loc);
6786    if (!StdInitializerList)
6787      return QualType();
6788  }
6789
6790  TemplateArgumentListInfo Args(Loc, Loc);
6791  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6792                                       Context.getTrivialTypeSourceInfo(Element,
6793                                                                        Loc)));
6794  return Context.getCanonicalType(
6795      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6796}
6797
6798bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6799  // C++ [dcl.init.list]p2:
6800  //   A constructor is an initializer-list constructor if its first parameter
6801  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6802  //   std::initializer_list<E> for some type E, and either there are no other
6803  //   parameters or else all other parameters have default arguments.
6804  if (Ctor->getNumParams() < 1 ||
6805      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6806    return false;
6807
6808  QualType ArgType = Ctor->getParamDecl(0)->getType();
6809  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6810    ArgType = RT->getPointeeType().getUnqualifiedType();
6811
6812  return isStdInitializerList(ArgType, 0);
6813}
6814
6815/// \brief Determine whether a using statement is in a context where it will be
6816/// apply in all contexts.
6817static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6818  switch (CurContext->getDeclKind()) {
6819    case Decl::TranslationUnit:
6820      return true;
6821    case Decl::LinkageSpec:
6822      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6823    default:
6824      return false;
6825  }
6826}
6827
6828namespace {
6829
6830// Callback to only accept typo corrections that are namespaces.
6831class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6832public:
6833  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6834    if (NamedDecl *ND = candidate.getCorrectionDecl())
6835      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6836    return false;
6837  }
6838};
6839
6840}
6841
6842static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6843                                       CXXScopeSpec &SS,
6844                                       SourceLocation IdentLoc,
6845                                       IdentifierInfo *Ident) {
6846  NamespaceValidatorCCC Validator;
6847  R.clear();
6848  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6849                                               R.getLookupKind(), Sc, &SS,
6850                                               Validator)) {
6851    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6852      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6853      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
6854                              Ident->getName().equals(CorrectedStr);
6855      S.diagnoseTypo(Corrected,
6856                     S.PDiag(diag::err_using_directive_member_suggest)
6857                       << Ident << DC << DroppedSpecifier << SS.getRange(),
6858                     S.PDiag(diag::note_namespace_defined_here));
6859    } else {
6860      S.diagnoseTypo(Corrected,
6861                     S.PDiag(diag::err_using_directive_suggest) << Ident,
6862                     S.PDiag(diag::note_namespace_defined_here));
6863    }
6864    R.addDecl(Corrected.getCorrectionDecl());
6865    return true;
6866  }
6867  return false;
6868}
6869
6870Decl *Sema::ActOnUsingDirective(Scope *S,
6871                                          SourceLocation UsingLoc,
6872                                          SourceLocation NamespcLoc,
6873                                          CXXScopeSpec &SS,
6874                                          SourceLocation IdentLoc,
6875                                          IdentifierInfo *NamespcName,
6876                                          AttributeList *AttrList) {
6877  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6878  assert(NamespcName && "Invalid NamespcName.");
6879  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6880
6881  // This can only happen along a recovery path.
6882  while (S->getFlags() & Scope::TemplateParamScope)
6883    S = S->getParent();
6884  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6885
6886  UsingDirectiveDecl *UDir = 0;
6887  NestedNameSpecifier *Qualifier = 0;
6888  if (SS.isSet())
6889    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6890
6891  // Lookup namespace name.
6892  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6893  LookupParsedName(R, S, &SS);
6894  if (R.isAmbiguous())
6895    return 0;
6896
6897  if (R.empty()) {
6898    R.clear();
6899    // Allow "using namespace std;" or "using namespace ::std;" even if
6900    // "std" hasn't been defined yet, for GCC compatibility.
6901    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6902        NamespcName->isStr("std")) {
6903      Diag(IdentLoc, diag::ext_using_undefined_std);
6904      R.addDecl(getOrCreateStdNamespace());
6905      R.resolveKind();
6906    }
6907    // Otherwise, attempt typo correction.
6908    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6909  }
6910
6911  if (!R.empty()) {
6912    NamedDecl *Named = R.getFoundDecl();
6913    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6914        && "expected namespace decl");
6915    // C++ [namespace.udir]p1:
6916    //   A using-directive specifies that the names in the nominated
6917    //   namespace can be used in the scope in which the
6918    //   using-directive appears after the using-directive. During
6919    //   unqualified name lookup (3.4.1), the names appear as if they
6920    //   were declared in the nearest enclosing namespace which
6921    //   contains both the using-directive and the nominated
6922    //   namespace. [Note: in this context, "contains" means "contains
6923    //   directly or indirectly". ]
6924
6925    // Find enclosing context containing both using-directive and
6926    // nominated namespace.
6927    NamespaceDecl *NS = getNamespaceDecl(Named);
6928    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6929    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6930      CommonAncestor = CommonAncestor->getParent();
6931
6932    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6933                                      SS.getWithLocInContext(Context),
6934                                      IdentLoc, Named, CommonAncestor);
6935
6936    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6937        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6938      Diag(IdentLoc, diag::warn_using_directive_in_header);
6939    }
6940
6941    PushUsingDirective(S, UDir);
6942  } else {
6943    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6944  }
6945
6946  if (UDir)
6947    ProcessDeclAttributeList(S, UDir, AttrList);
6948
6949  return UDir;
6950}
6951
6952void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6953  // If the scope has an associated entity and the using directive is at
6954  // namespace or translation unit scope, add the UsingDirectiveDecl into
6955  // its lookup structure so qualified name lookup can find it.
6956  DeclContext *Ctx = S->getEntity();
6957  if (Ctx && !Ctx->isFunctionOrMethod())
6958    Ctx->addDecl(UDir);
6959  else
6960    // Otherwise, it is at block sope. The using-directives will affect lookup
6961    // only to the end of the scope.
6962    S->PushUsingDirective(UDir);
6963}
6964
6965
6966Decl *Sema::ActOnUsingDeclaration(Scope *S,
6967                                  AccessSpecifier AS,
6968                                  bool HasUsingKeyword,
6969                                  SourceLocation UsingLoc,
6970                                  CXXScopeSpec &SS,
6971                                  UnqualifiedId &Name,
6972                                  AttributeList *AttrList,
6973                                  bool HasTypenameKeyword,
6974                                  SourceLocation TypenameLoc) {
6975  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6976
6977  switch (Name.getKind()) {
6978  case UnqualifiedId::IK_ImplicitSelfParam:
6979  case UnqualifiedId::IK_Identifier:
6980  case UnqualifiedId::IK_OperatorFunctionId:
6981  case UnqualifiedId::IK_LiteralOperatorId:
6982  case UnqualifiedId::IK_ConversionFunctionId:
6983    break;
6984
6985  case UnqualifiedId::IK_ConstructorName:
6986  case UnqualifiedId::IK_ConstructorTemplateId:
6987    // C++11 inheriting constructors.
6988    Diag(Name.getLocStart(),
6989         getLangOpts().CPlusPlus11 ?
6990           diag::warn_cxx98_compat_using_decl_constructor :
6991           diag::err_using_decl_constructor)
6992      << SS.getRange();
6993
6994    if (getLangOpts().CPlusPlus11) break;
6995
6996    return 0;
6997
6998  case UnqualifiedId::IK_DestructorName:
6999    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7000      << SS.getRange();
7001    return 0;
7002
7003  case UnqualifiedId::IK_TemplateId:
7004    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7005      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7006    return 0;
7007  }
7008
7009  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7010  DeclarationName TargetName = TargetNameInfo.getName();
7011  if (!TargetName)
7012    return 0;
7013
7014  // Warn about access declarations.
7015  if (!HasUsingKeyword) {
7016    Diag(Name.getLocStart(),
7017         getLangOpts().CPlusPlus11 ? diag::err_access_decl
7018                                   : diag::warn_access_decl_deprecated)
7019      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7020  }
7021
7022  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7023      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7024    return 0;
7025
7026  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7027                                        TargetNameInfo, AttrList,
7028                                        /* IsInstantiation */ false,
7029                                        HasTypenameKeyword, TypenameLoc);
7030  if (UD)
7031    PushOnScopeChains(UD, S, /*AddToContext*/ false);
7032
7033  return UD;
7034}
7035
7036/// \brief Determine whether a using declaration considers the given
7037/// declarations as "equivalent", e.g., if they are redeclarations of
7038/// the same entity or are both typedefs of the same type.
7039static bool
7040IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7041  if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7042    return true;
7043
7044  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7045    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7046      return Context.hasSameType(TD1->getUnderlyingType(),
7047                                 TD2->getUnderlyingType());
7048
7049  return false;
7050}
7051
7052
7053/// Determines whether to create a using shadow decl for a particular
7054/// decl, given the set of decls existing prior to this using lookup.
7055bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7056                                const LookupResult &Previous,
7057                                UsingShadowDecl *&PrevShadow) {
7058  // Diagnose finding a decl which is not from a base class of the
7059  // current class.  We do this now because there are cases where this
7060  // function will silently decide not to build a shadow decl, which
7061  // will pre-empt further diagnostics.
7062  //
7063  // We don't need to do this in C++0x because we do the check once on
7064  // the qualifier.
7065  //
7066  // FIXME: diagnose the following if we care enough:
7067  //   struct A { int foo; };
7068  //   struct B : A { using A::foo; };
7069  //   template <class T> struct C : A {};
7070  //   template <class T> struct D : C<T> { using B::foo; } // <---
7071  // This is invalid (during instantiation) in C++03 because B::foo
7072  // resolves to the using decl in B, which is not a base class of D<T>.
7073  // We can't diagnose it immediately because C<T> is an unknown
7074  // specialization.  The UsingShadowDecl in D<T> then points directly
7075  // to A::foo, which will look well-formed when we instantiate.
7076  // The right solution is to not collapse the shadow-decl chain.
7077  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7078    DeclContext *OrigDC = Orig->getDeclContext();
7079
7080    // Handle enums and anonymous structs.
7081    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7082    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7083    while (OrigRec->isAnonymousStructOrUnion())
7084      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7085
7086    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7087      if (OrigDC == CurContext) {
7088        Diag(Using->getLocation(),
7089             diag::err_using_decl_nested_name_specifier_is_current_class)
7090          << Using->getQualifierLoc().getSourceRange();
7091        Diag(Orig->getLocation(), diag::note_using_decl_target);
7092        return true;
7093      }
7094
7095      Diag(Using->getQualifierLoc().getBeginLoc(),
7096           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7097        << Using->getQualifier()
7098        << cast<CXXRecordDecl>(CurContext)
7099        << Using->getQualifierLoc().getSourceRange();
7100      Diag(Orig->getLocation(), diag::note_using_decl_target);
7101      return true;
7102    }
7103  }
7104
7105  if (Previous.empty()) return false;
7106
7107  NamedDecl *Target = Orig;
7108  if (isa<UsingShadowDecl>(Target))
7109    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7110
7111  // If the target happens to be one of the previous declarations, we
7112  // don't have a conflict.
7113  //
7114  // FIXME: but we might be increasing its access, in which case we
7115  // should redeclare it.
7116  NamedDecl *NonTag = 0, *Tag = 0;
7117  bool FoundEquivalentDecl = false;
7118  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7119         I != E; ++I) {
7120    NamedDecl *D = (*I)->getUnderlyingDecl();
7121    if (IsEquivalentForUsingDecl(Context, D, Target)) {
7122      if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7123        PrevShadow = Shadow;
7124      FoundEquivalentDecl = true;
7125    }
7126
7127    (isa<TagDecl>(D) ? Tag : NonTag) = D;
7128  }
7129
7130  if (FoundEquivalentDecl)
7131    return false;
7132
7133  if (Target->isFunctionOrFunctionTemplate()) {
7134    FunctionDecl *FD;
7135    if (isa<FunctionTemplateDecl>(Target))
7136      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
7137    else
7138      FD = cast<FunctionDecl>(Target);
7139
7140    NamedDecl *OldDecl = 0;
7141    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
7142    case Ovl_Overload:
7143      return false;
7144
7145    case Ovl_NonFunction:
7146      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7147      break;
7148
7149    // We found a decl with the exact signature.
7150    case Ovl_Match:
7151      // If we're in a record, we want to hide the target, so we
7152      // return true (without a diagnostic) to tell the caller not to
7153      // build a shadow decl.
7154      if (CurContext->isRecord())
7155        return true;
7156
7157      // If we're not in a record, this is an error.
7158      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7159      break;
7160    }
7161
7162    Diag(Target->getLocation(), diag::note_using_decl_target);
7163    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7164    return true;
7165  }
7166
7167  // Target is not a function.
7168
7169  if (isa<TagDecl>(Target)) {
7170    // No conflict between a tag and a non-tag.
7171    if (!Tag) return false;
7172
7173    Diag(Using->getLocation(), diag::err_using_decl_conflict);
7174    Diag(Target->getLocation(), diag::note_using_decl_target);
7175    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7176    return true;
7177  }
7178
7179  // No conflict between a tag and a non-tag.
7180  if (!NonTag) return false;
7181
7182  Diag(Using->getLocation(), diag::err_using_decl_conflict);
7183  Diag(Target->getLocation(), diag::note_using_decl_target);
7184  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7185  return true;
7186}
7187
7188/// Builds a shadow declaration corresponding to a 'using' declaration.
7189UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7190                                            UsingDecl *UD,
7191                                            NamedDecl *Orig,
7192                                            UsingShadowDecl *PrevDecl) {
7193
7194  // If we resolved to another shadow declaration, just coalesce them.
7195  NamedDecl *Target = Orig;
7196  if (isa<UsingShadowDecl>(Target)) {
7197    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7198    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7199  }
7200
7201  UsingShadowDecl *Shadow
7202    = UsingShadowDecl::Create(Context, CurContext,
7203                              UD->getLocation(), UD, Target);
7204  UD->addShadowDecl(Shadow);
7205
7206  Shadow->setAccess(UD->getAccess());
7207  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7208    Shadow->setInvalidDecl();
7209
7210  Shadow->setPreviousDecl(PrevDecl);
7211
7212  if (S)
7213    PushOnScopeChains(Shadow, S);
7214  else
7215    CurContext->addDecl(Shadow);
7216
7217
7218  return Shadow;
7219}
7220
7221/// Hides a using shadow declaration.  This is required by the current
7222/// using-decl implementation when a resolvable using declaration in a
7223/// class is followed by a declaration which would hide or override
7224/// one or more of the using decl's targets; for example:
7225///
7226///   struct Base { void foo(int); };
7227///   struct Derived : Base {
7228///     using Base::foo;
7229///     void foo(int);
7230///   };
7231///
7232/// The governing language is C++03 [namespace.udecl]p12:
7233///
7234///   When a using-declaration brings names from a base class into a
7235///   derived class scope, member functions in the derived class
7236///   override and/or hide member functions with the same name and
7237///   parameter types in a base class (rather than conflicting).
7238///
7239/// There are two ways to implement this:
7240///   (1) optimistically create shadow decls when they're not hidden
7241///       by existing declarations, or
7242///   (2) don't create any shadow decls (or at least don't make them
7243///       visible) until we've fully parsed/instantiated the class.
7244/// The problem with (1) is that we might have to retroactively remove
7245/// a shadow decl, which requires several O(n) operations because the
7246/// decl structures are (very reasonably) not designed for removal.
7247/// (2) avoids this but is very fiddly and phase-dependent.
7248void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7249  if (Shadow->getDeclName().getNameKind() ==
7250        DeclarationName::CXXConversionFunctionName)
7251    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7252
7253  // Remove it from the DeclContext...
7254  Shadow->getDeclContext()->removeDecl(Shadow);
7255
7256  // ...and the scope, if applicable...
7257  if (S) {
7258    S->RemoveDecl(Shadow);
7259    IdResolver.RemoveDecl(Shadow);
7260  }
7261
7262  // ...and the using decl.
7263  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7264
7265  // TODO: complain somehow if Shadow was used.  It shouldn't
7266  // be possible for this to happen, because...?
7267}
7268
7269namespace {
7270class UsingValidatorCCC : public CorrectionCandidateCallback {
7271public:
7272  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7273                    bool RequireMember)
7274      : HasTypenameKeyword(HasTypenameKeyword),
7275        IsInstantiation(IsInstantiation), RequireMember(RequireMember) {}
7276
7277  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7278    NamedDecl *ND = Candidate.getCorrectionDecl();
7279
7280    // Keywords are not valid here.
7281    if (!ND || isa<NamespaceDecl>(ND))
7282      return false;
7283
7284    if (RequireMember && !isa<FieldDecl>(ND) && !isa<CXXMethodDecl>(ND) &&
7285        !isa<TypeDecl>(ND))
7286      return false;
7287
7288    // Completely unqualified names are invalid for a 'using' declaration.
7289    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7290      return false;
7291
7292    if (isa<TypeDecl>(ND))
7293      return HasTypenameKeyword || !IsInstantiation;
7294
7295    return !HasTypenameKeyword;
7296  }
7297
7298private:
7299  bool HasTypenameKeyword;
7300  bool IsInstantiation;
7301  bool RequireMember;
7302};
7303} // end anonymous namespace
7304
7305/// Builds a using declaration.
7306///
7307/// \param IsInstantiation - Whether this call arises from an
7308///   instantiation of an unresolved using declaration.  We treat
7309///   the lookup differently for these declarations.
7310NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7311                                       SourceLocation UsingLoc,
7312                                       CXXScopeSpec &SS,
7313                                       const DeclarationNameInfo &NameInfo,
7314                                       AttributeList *AttrList,
7315                                       bool IsInstantiation,
7316                                       bool HasTypenameKeyword,
7317                                       SourceLocation TypenameLoc) {
7318  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7319  SourceLocation IdentLoc = NameInfo.getLoc();
7320  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7321
7322  // FIXME: We ignore attributes for now.
7323
7324  if (SS.isEmpty()) {
7325    Diag(IdentLoc, diag::err_using_requires_qualname);
7326    return 0;
7327  }
7328
7329  // Do the redeclaration lookup in the current scope.
7330  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7331                        ForRedeclaration);
7332  Previous.setHideTags(false);
7333  if (S) {
7334    LookupName(Previous, S);
7335
7336    // It is really dumb that we have to do this.
7337    LookupResult::Filter F = Previous.makeFilter();
7338    while (F.hasNext()) {
7339      NamedDecl *D = F.next();
7340      if (!isDeclInScope(D, CurContext, S))
7341        F.erase();
7342    }
7343    F.done();
7344  } else {
7345    assert(IsInstantiation && "no scope in non-instantiation");
7346    assert(CurContext->isRecord() && "scope not record in instantiation");
7347    LookupQualifiedName(Previous, CurContext);
7348  }
7349
7350  // Check for invalid redeclarations.
7351  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7352                                  SS, IdentLoc, Previous))
7353    return 0;
7354
7355  // Check for bad qualifiers.
7356  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7357    return 0;
7358
7359  DeclContext *LookupContext = computeDeclContext(SS);
7360  NamedDecl *D;
7361  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7362  if (!LookupContext) {
7363    if (HasTypenameKeyword) {
7364      // FIXME: not all declaration name kinds are legal here
7365      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7366                                              UsingLoc, TypenameLoc,
7367                                              QualifierLoc,
7368                                              IdentLoc, NameInfo.getName());
7369    } else {
7370      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7371                                           QualifierLoc, NameInfo);
7372    }
7373  } else {
7374    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7375                          NameInfo, HasTypenameKeyword);
7376  }
7377  D->setAccess(AS);
7378  CurContext->addDecl(D);
7379
7380  if (!LookupContext) return D;
7381  UsingDecl *UD = cast<UsingDecl>(D);
7382
7383  if (RequireCompleteDeclContext(SS, LookupContext)) {
7384    UD->setInvalidDecl();
7385    return UD;
7386  }
7387
7388  // The normal rules do not apply to inheriting constructor declarations.
7389  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7390    if (CheckInheritingConstructorUsingDecl(UD))
7391      UD->setInvalidDecl();
7392    return UD;
7393  }
7394
7395  // Otherwise, look up the target name.
7396
7397  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7398
7399  // Unlike most lookups, we don't always want to hide tag
7400  // declarations: tag names are visible through the using declaration
7401  // even if hidden by ordinary names, *except* in a dependent context
7402  // where it's important for the sanity of two-phase lookup.
7403  if (!IsInstantiation)
7404    R.setHideTags(false);
7405
7406  // For the purposes of this lookup, we have a base object type
7407  // equal to that of the current context.
7408  if (CurContext->isRecord()) {
7409    R.setBaseObjectType(
7410                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7411  }
7412
7413  LookupQualifiedName(R, LookupContext);
7414
7415  // Try to correct typos if possible.
7416  if (R.empty()) {
7417    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation,
7418                          CurContext->isRecord());
7419    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7420                                               R.getLookupKind(), S, &SS, CCC)){
7421      // We reject any correction for which ND would be NULL.
7422      NamedDecl *ND = Corrected.getCorrectionDecl();
7423      R.setLookupName(Corrected.getCorrection());
7424      R.addDecl(ND);
7425      // We reject candidates where DroppedSpecifier == true, hence the
7426      // literal '0' below.
7427      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7428                                << NameInfo.getName() << LookupContext << 0
7429                                << SS.getRange());
7430    } else {
7431      Diag(IdentLoc, diag::err_no_member)
7432        << NameInfo.getName() << LookupContext << SS.getRange();
7433      UD->setInvalidDecl();
7434      return UD;
7435    }
7436  }
7437
7438  if (R.isAmbiguous()) {
7439    UD->setInvalidDecl();
7440    return UD;
7441  }
7442
7443  if (HasTypenameKeyword) {
7444    // If we asked for a typename and got a non-type decl, error out.
7445    if (!R.getAsSingle<TypeDecl>()) {
7446      Diag(IdentLoc, diag::err_using_typename_non_type);
7447      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7448        Diag((*I)->getUnderlyingDecl()->getLocation(),
7449             diag::note_using_decl_target);
7450      UD->setInvalidDecl();
7451      return UD;
7452    }
7453  } else {
7454    // If we asked for a non-typename and we got a type, error out,
7455    // but only if this is an instantiation of an unresolved using
7456    // decl.  Otherwise just silently find the type name.
7457    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7458      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7459      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7460      UD->setInvalidDecl();
7461      return UD;
7462    }
7463  }
7464
7465  // C++0x N2914 [namespace.udecl]p6:
7466  // A using-declaration shall not name a namespace.
7467  if (R.getAsSingle<NamespaceDecl>()) {
7468    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7469      << SS.getRange();
7470    UD->setInvalidDecl();
7471    return UD;
7472  }
7473
7474  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7475    UsingShadowDecl *PrevDecl = 0;
7476    if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
7477      BuildUsingShadowDecl(S, UD, *I, PrevDecl);
7478  }
7479
7480  return UD;
7481}
7482
7483/// Additional checks for a using declaration referring to a constructor name.
7484bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7485  assert(!UD->hasTypename() && "expecting a constructor name");
7486
7487  const Type *SourceType = UD->getQualifier()->getAsType();
7488  assert(SourceType &&
7489         "Using decl naming constructor doesn't have type in scope spec.");
7490  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7491
7492  // Check whether the named type is a direct base class.
7493  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7494  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7495  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7496       BaseIt != BaseE; ++BaseIt) {
7497    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7498    if (CanonicalSourceType == BaseType)
7499      break;
7500    if (BaseIt->getType()->isDependentType())
7501      break;
7502  }
7503
7504  if (BaseIt == BaseE) {
7505    // Did not find SourceType in the bases.
7506    Diag(UD->getUsingLoc(),
7507         diag::err_using_decl_constructor_not_in_direct_base)
7508      << UD->getNameInfo().getSourceRange()
7509      << QualType(SourceType, 0) << TargetClass;
7510    return true;
7511  }
7512
7513  if (!CurContext->isDependentContext())
7514    BaseIt->setInheritConstructors();
7515
7516  return false;
7517}
7518
7519/// Checks that the given using declaration is not an invalid
7520/// redeclaration.  Note that this is checking only for the using decl
7521/// itself, not for any ill-formedness among the UsingShadowDecls.
7522bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7523                                       bool HasTypenameKeyword,
7524                                       const CXXScopeSpec &SS,
7525                                       SourceLocation NameLoc,
7526                                       const LookupResult &Prev) {
7527  // C++03 [namespace.udecl]p8:
7528  // C++0x [namespace.udecl]p10:
7529  //   A using-declaration is a declaration and can therefore be used
7530  //   repeatedly where (and only where) multiple declarations are
7531  //   allowed.
7532  //
7533  // That's in non-member contexts.
7534  if (!CurContext->getRedeclContext()->isRecord())
7535    return false;
7536
7537  NestedNameSpecifier *Qual
7538    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7539
7540  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7541    NamedDecl *D = *I;
7542
7543    bool DTypename;
7544    NestedNameSpecifier *DQual;
7545    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7546      DTypename = UD->hasTypename();
7547      DQual = UD->getQualifier();
7548    } else if (UnresolvedUsingValueDecl *UD
7549                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7550      DTypename = false;
7551      DQual = UD->getQualifier();
7552    } else if (UnresolvedUsingTypenameDecl *UD
7553                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7554      DTypename = true;
7555      DQual = UD->getQualifier();
7556    } else continue;
7557
7558    // using decls differ if one says 'typename' and the other doesn't.
7559    // FIXME: non-dependent using decls?
7560    if (HasTypenameKeyword != DTypename) continue;
7561
7562    // using decls differ if they name different scopes (but note that
7563    // template instantiation can cause this check to trigger when it
7564    // didn't before instantiation).
7565    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7566        Context.getCanonicalNestedNameSpecifier(DQual))
7567      continue;
7568
7569    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7570    Diag(D->getLocation(), diag::note_using_decl) << 1;
7571    return true;
7572  }
7573
7574  return false;
7575}
7576
7577
7578/// Checks that the given nested-name qualifier used in a using decl
7579/// in the current context is appropriately related to the current
7580/// scope.  If an error is found, diagnoses it and returns true.
7581bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7582                                   const CXXScopeSpec &SS,
7583                                   SourceLocation NameLoc) {
7584  DeclContext *NamedContext = computeDeclContext(SS);
7585
7586  if (!CurContext->isRecord()) {
7587    // C++03 [namespace.udecl]p3:
7588    // C++0x [namespace.udecl]p8:
7589    //   A using-declaration for a class member shall be a member-declaration.
7590
7591    // If we weren't able to compute a valid scope, it must be a
7592    // dependent class scope.
7593    if (!NamedContext || NamedContext->isRecord()) {
7594      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7595        << SS.getRange();
7596      return true;
7597    }
7598
7599    // Otherwise, everything is known to be fine.
7600    return false;
7601  }
7602
7603  // The current scope is a record.
7604
7605  // If the named context is dependent, we can't decide much.
7606  if (!NamedContext) {
7607    // FIXME: in C++0x, we can diagnose if we can prove that the
7608    // nested-name-specifier does not refer to a base class, which is
7609    // still possible in some cases.
7610
7611    // Otherwise we have to conservatively report that things might be
7612    // okay.
7613    return false;
7614  }
7615
7616  if (!NamedContext->isRecord()) {
7617    // Ideally this would point at the last name in the specifier,
7618    // but we don't have that level of source info.
7619    Diag(SS.getRange().getBegin(),
7620         diag::err_using_decl_nested_name_specifier_is_not_class)
7621      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7622    return true;
7623  }
7624
7625  if (!NamedContext->isDependentContext() &&
7626      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7627    return true;
7628
7629  if (getLangOpts().CPlusPlus11) {
7630    // C++0x [namespace.udecl]p3:
7631    //   In a using-declaration used as a member-declaration, the
7632    //   nested-name-specifier shall name a base class of the class
7633    //   being defined.
7634
7635    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7636                                 cast<CXXRecordDecl>(NamedContext))) {
7637      if (CurContext == NamedContext) {
7638        Diag(NameLoc,
7639             diag::err_using_decl_nested_name_specifier_is_current_class)
7640          << SS.getRange();
7641        return true;
7642      }
7643
7644      Diag(SS.getRange().getBegin(),
7645           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7646        << (NestedNameSpecifier*) SS.getScopeRep()
7647        << cast<CXXRecordDecl>(CurContext)
7648        << SS.getRange();
7649      return true;
7650    }
7651
7652    return false;
7653  }
7654
7655  // C++03 [namespace.udecl]p4:
7656  //   A using-declaration used as a member-declaration shall refer
7657  //   to a member of a base class of the class being defined [etc.].
7658
7659  // Salient point: SS doesn't have to name a base class as long as
7660  // lookup only finds members from base classes.  Therefore we can
7661  // diagnose here only if we can prove that that can't happen,
7662  // i.e. if the class hierarchies provably don't intersect.
7663
7664  // TODO: it would be nice if "definitely valid" results were cached
7665  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7666  // need to be repeated.
7667
7668  struct UserData {
7669    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7670
7671    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7672      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7673      Data->Bases.insert(Base);
7674      return true;
7675    }
7676
7677    bool hasDependentBases(const CXXRecordDecl *Class) {
7678      return !Class->forallBases(collect, this);
7679    }
7680
7681    /// Returns true if the base is dependent or is one of the
7682    /// accumulated base classes.
7683    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7684      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7685      return !Data->Bases.count(Base);
7686    }
7687
7688    bool mightShareBases(const CXXRecordDecl *Class) {
7689      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7690    }
7691  };
7692
7693  UserData Data;
7694
7695  // Returns false if we find a dependent base.
7696  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7697    return false;
7698
7699  // Returns false if the class has a dependent base or if it or one
7700  // of its bases is present in the base set of the current context.
7701  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7702    return false;
7703
7704  Diag(SS.getRange().getBegin(),
7705       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7706    << (NestedNameSpecifier*) SS.getScopeRep()
7707    << cast<CXXRecordDecl>(CurContext)
7708    << SS.getRange();
7709
7710  return true;
7711}
7712
7713Decl *Sema::ActOnAliasDeclaration(Scope *S,
7714                                  AccessSpecifier AS,
7715                                  MultiTemplateParamsArg TemplateParamLists,
7716                                  SourceLocation UsingLoc,
7717                                  UnqualifiedId &Name,
7718                                  AttributeList *AttrList,
7719                                  TypeResult Type) {
7720  // Skip up to the relevant declaration scope.
7721  while (S->getFlags() & Scope::TemplateParamScope)
7722    S = S->getParent();
7723  assert((S->getFlags() & Scope::DeclScope) &&
7724         "got alias-declaration outside of declaration scope");
7725
7726  if (Type.isInvalid())
7727    return 0;
7728
7729  bool Invalid = false;
7730  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7731  TypeSourceInfo *TInfo = 0;
7732  GetTypeFromParser(Type.get(), &TInfo);
7733
7734  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7735    return 0;
7736
7737  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7738                                      UPPC_DeclarationType)) {
7739    Invalid = true;
7740    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7741                                             TInfo->getTypeLoc().getBeginLoc());
7742  }
7743
7744  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7745  LookupName(Previous, S);
7746
7747  // Warn about shadowing the name of a template parameter.
7748  if (Previous.isSingleResult() &&
7749      Previous.getFoundDecl()->isTemplateParameter()) {
7750    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7751    Previous.clear();
7752  }
7753
7754  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7755         "name in alias declaration must be an identifier");
7756  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7757                                               Name.StartLocation,
7758                                               Name.Identifier, TInfo);
7759
7760  NewTD->setAccess(AS);
7761
7762  if (Invalid)
7763    NewTD->setInvalidDecl();
7764
7765  ProcessDeclAttributeList(S, NewTD, AttrList);
7766
7767  CheckTypedefForVariablyModifiedType(S, NewTD);
7768  Invalid |= NewTD->isInvalidDecl();
7769
7770  bool Redeclaration = false;
7771
7772  NamedDecl *NewND;
7773  if (TemplateParamLists.size()) {
7774    TypeAliasTemplateDecl *OldDecl = 0;
7775    TemplateParameterList *OldTemplateParams = 0;
7776
7777    if (TemplateParamLists.size() != 1) {
7778      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7779        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7780         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7781    }
7782    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7783
7784    // Only consider previous declarations in the same scope.
7785    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7786                         /*ExplicitInstantiationOrSpecialization*/false);
7787    if (!Previous.empty()) {
7788      Redeclaration = true;
7789
7790      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7791      if (!OldDecl && !Invalid) {
7792        Diag(UsingLoc, diag::err_redefinition_different_kind)
7793          << Name.Identifier;
7794
7795        NamedDecl *OldD = Previous.getRepresentativeDecl();
7796        if (OldD->getLocation().isValid())
7797          Diag(OldD->getLocation(), diag::note_previous_definition);
7798
7799        Invalid = true;
7800      }
7801
7802      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7803        if (TemplateParameterListsAreEqual(TemplateParams,
7804                                           OldDecl->getTemplateParameters(),
7805                                           /*Complain=*/true,
7806                                           TPL_TemplateMatch))
7807          OldTemplateParams = OldDecl->getTemplateParameters();
7808        else
7809          Invalid = true;
7810
7811        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7812        if (!Invalid &&
7813            !Context.hasSameType(OldTD->getUnderlyingType(),
7814                                 NewTD->getUnderlyingType())) {
7815          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7816          // but we can't reasonably accept it.
7817          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7818            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7819          if (OldTD->getLocation().isValid())
7820            Diag(OldTD->getLocation(), diag::note_previous_definition);
7821          Invalid = true;
7822        }
7823      }
7824    }
7825
7826    // Merge any previous default template arguments into our parameters,
7827    // and check the parameter list.
7828    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7829                                   TPC_TypeAliasTemplate))
7830      return 0;
7831
7832    TypeAliasTemplateDecl *NewDecl =
7833      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7834                                    Name.Identifier, TemplateParams,
7835                                    NewTD);
7836
7837    NewDecl->setAccess(AS);
7838
7839    if (Invalid)
7840      NewDecl->setInvalidDecl();
7841    else if (OldDecl)
7842      NewDecl->setPreviousDecl(OldDecl);
7843
7844    NewND = NewDecl;
7845  } else {
7846    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7847    NewND = NewTD;
7848  }
7849
7850  if (!Redeclaration)
7851    PushOnScopeChains(NewND, S);
7852
7853  ActOnDocumentableDecl(NewND);
7854  return NewND;
7855}
7856
7857Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7858                                             SourceLocation NamespaceLoc,
7859                                             SourceLocation AliasLoc,
7860                                             IdentifierInfo *Alias,
7861                                             CXXScopeSpec &SS,
7862                                             SourceLocation IdentLoc,
7863                                             IdentifierInfo *Ident) {
7864
7865  // Lookup the namespace name.
7866  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7867  LookupParsedName(R, S, &SS);
7868
7869  // Check if we have a previous declaration with the same name.
7870  NamedDecl *PrevDecl
7871    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7872                       ForRedeclaration);
7873  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7874    PrevDecl = 0;
7875
7876  if (PrevDecl) {
7877    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7878      // We already have an alias with the same name that points to the same
7879      // namespace, so don't create a new one.
7880      // FIXME: At some point, we'll want to create the (redundant)
7881      // declaration to maintain better source information.
7882      if (!R.isAmbiguous() && !R.empty() &&
7883          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7884        return 0;
7885    }
7886
7887    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7888      diag::err_redefinition_different_kind;
7889    Diag(AliasLoc, DiagID) << Alias;
7890    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7891    return 0;
7892  }
7893
7894  if (R.isAmbiguous())
7895    return 0;
7896
7897  if (R.empty()) {
7898    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7899      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7900      return 0;
7901    }
7902  }
7903
7904  NamespaceAliasDecl *AliasDecl =
7905    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7906                               Alias, SS.getWithLocInContext(Context),
7907                               IdentLoc, R.getFoundDecl());
7908
7909  PushOnScopeChains(AliasDecl, S);
7910  return AliasDecl;
7911}
7912
7913Sema::ImplicitExceptionSpecification
7914Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7915                                               CXXMethodDecl *MD) {
7916  CXXRecordDecl *ClassDecl = MD->getParent();
7917
7918  // C++ [except.spec]p14:
7919  //   An implicitly declared special member function (Clause 12) shall have an
7920  //   exception-specification. [...]
7921  ImplicitExceptionSpecification ExceptSpec(*this);
7922  if (ClassDecl->isInvalidDecl())
7923    return ExceptSpec;
7924
7925  // Direct base-class constructors.
7926  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7927                                       BEnd = ClassDecl->bases_end();
7928       B != BEnd; ++B) {
7929    if (B->isVirtual()) // Handled below.
7930      continue;
7931
7932    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7933      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7934      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7935      // If this is a deleted function, add it anyway. This might be conformant
7936      // with the standard. This might not. I'm not sure. It might not matter.
7937      if (Constructor)
7938        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7939    }
7940  }
7941
7942  // Virtual base-class constructors.
7943  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7944                                       BEnd = ClassDecl->vbases_end();
7945       B != BEnd; ++B) {
7946    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7947      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7948      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7949      // If this is a deleted function, add it anyway. This might be conformant
7950      // with the standard. This might not. I'm not sure. It might not matter.
7951      if (Constructor)
7952        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7953    }
7954  }
7955
7956  // Field constructors.
7957  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7958                               FEnd = ClassDecl->field_end();
7959       F != FEnd; ++F) {
7960    if (F->hasInClassInitializer()) {
7961      if (Expr *E = F->getInClassInitializer())
7962        ExceptSpec.CalledExpr(E);
7963      else if (!F->isInvalidDecl())
7964        // DR1351:
7965        //   If the brace-or-equal-initializer of a non-static data member
7966        //   invokes a defaulted default constructor of its class or of an
7967        //   enclosing class in a potentially evaluated subexpression, the
7968        //   program is ill-formed.
7969        //
7970        // This resolution is unworkable: the exception specification of the
7971        // default constructor can be needed in an unevaluated context, in
7972        // particular, in the operand of a noexcept-expression, and we can be
7973        // unable to compute an exception specification for an enclosed class.
7974        //
7975        // We do not allow an in-class initializer to require the evaluation
7976        // of the exception specification for any in-class initializer whose
7977        // definition is not lexically complete.
7978        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7979    } else if (const RecordType *RecordTy
7980              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7981      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7982      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7983      // If this is a deleted function, add it anyway. This might be conformant
7984      // with the standard. This might not. I'm not sure. It might not matter.
7985      // In particular, the problem is that this function never gets called. It
7986      // might just be ill-formed because this function attempts to refer to
7987      // a deleted function here.
7988      if (Constructor)
7989        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7990    }
7991  }
7992
7993  return ExceptSpec;
7994}
7995
7996Sema::ImplicitExceptionSpecification
7997Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7998  CXXRecordDecl *ClassDecl = CD->getParent();
7999
8000  // C++ [except.spec]p14:
8001  //   An inheriting constructor [...] shall have an exception-specification. [...]
8002  ImplicitExceptionSpecification ExceptSpec(*this);
8003  if (ClassDecl->isInvalidDecl())
8004    return ExceptSpec;
8005
8006  // Inherited constructor.
8007  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8008  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8009  // FIXME: Copying or moving the parameters could add extra exceptions to the
8010  // set, as could the default arguments for the inherited constructor. This
8011  // will be addressed when we implement the resolution of core issue 1351.
8012  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8013
8014  // Direct base-class constructors.
8015  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8016                                       BEnd = ClassDecl->bases_end();
8017       B != BEnd; ++B) {
8018    if (B->isVirtual()) // Handled below.
8019      continue;
8020
8021    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8022      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8023      if (BaseClassDecl == InheritedDecl)
8024        continue;
8025      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8026      if (Constructor)
8027        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8028    }
8029  }
8030
8031  // Virtual base-class constructors.
8032  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8033                                       BEnd = ClassDecl->vbases_end();
8034       B != BEnd; ++B) {
8035    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8036      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8037      if (BaseClassDecl == InheritedDecl)
8038        continue;
8039      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8040      if (Constructor)
8041        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8042    }
8043  }
8044
8045  // Field constructors.
8046  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8047                               FEnd = ClassDecl->field_end();
8048       F != FEnd; ++F) {
8049    if (F->hasInClassInitializer()) {
8050      if (Expr *E = F->getInClassInitializer())
8051        ExceptSpec.CalledExpr(E);
8052      else if (!F->isInvalidDecl())
8053        Diag(CD->getLocation(),
8054             diag::err_in_class_initializer_references_def_ctor) << CD;
8055    } else if (const RecordType *RecordTy
8056              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8057      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8058      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8059      if (Constructor)
8060        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8061    }
8062  }
8063
8064  return ExceptSpec;
8065}
8066
8067namespace {
8068/// RAII object to register a special member as being currently declared.
8069struct DeclaringSpecialMember {
8070  Sema &S;
8071  Sema::SpecialMemberDecl D;
8072  bool WasAlreadyBeingDeclared;
8073
8074  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8075    : S(S), D(RD, CSM) {
8076    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8077    if (WasAlreadyBeingDeclared)
8078      // This almost never happens, but if it does, ensure that our cache
8079      // doesn't contain a stale result.
8080      S.SpecialMemberCache.clear();
8081
8082    // FIXME: Register a note to be produced if we encounter an error while
8083    // declaring the special member.
8084  }
8085  ~DeclaringSpecialMember() {
8086    if (!WasAlreadyBeingDeclared)
8087      S.SpecialMembersBeingDeclared.erase(D);
8088  }
8089
8090  /// \brief Are we already trying to declare this special member?
8091  bool isAlreadyBeingDeclared() const {
8092    return WasAlreadyBeingDeclared;
8093  }
8094};
8095}
8096
8097CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8098                                                     CXXRecordDecl *ClassDecl) {
8099  // C++ [class.ctor]p5:
8100  //   A default constructor for a class X is a constructor of class X
8101  //   that can be called without an argument. If there is no
8102  //   user-declared constructor for class X, a default constructor is
8103  //   implicitly declared. An implicitly-declared default constructor
8104  //   is an inline public member of its class.
8105  assert(ClassDecl->needsImplicitDefaultConstructor() &&
8106         "Should not build implicit default constructor!");
8107
8108  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8109  if (DSM.isAlreadyBeingDeclared())
8110    return 0;
8111
8112  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8113                                                     CXXDefaultConstructor,
8114                                                     false);
8115
8116  // Create the actual constructor declaration.
8117  CanQualType ClassType
8118    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8119  SourceLocation ClassLoc = ClassDecl->getLocation();
8120  DeclarationName Name
8121    = Context.DeclarationNames.getCXXConstructorName(ClassType);
8122  DeclarationNameInfo NameInfo(Name, ClassLoc);
8123  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8124      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
8125      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8126      Constexpr);
8127  DefaultCon->setAccess(AS_public);
8128  DefaultCon->setDefaulted();
8129  DefaultCon->setImplicit();
8130
8131  // Build an exception specification pointing back at this constructor.
8132  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8133  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8134
8135  // We don't need to use SpecialMemberIsTrivial here; triviality for default
8136  // constructors is easy to compute.
8137  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8138
8139  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8140    SetDeclDeleted(DefaultCon, ClassLoc);
8141
8142  // Note that we have declared this constructor.
8143  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8144
8145  if (Scope *S = getScopeForContext(ClassDecl))
8146    PushOnScopeChains(DefaultCon, S, false);
8147  ClassDecl->addDecl(DefaultCon);
8148
8149  return DefaultCon;
8150}
8151
8152void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8153                                            CXXConstructorDecl *Constructor) {
8154  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8155          !Constructor->doesThisDeclarationHaveABody() &&
8156          !Constructor->isDeleted()) &&
8157    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8158
8159  CXXRecordDecl *ClassDecl = Constructor->getParent();
8160  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8161
8162  SynthesizedFunctionScope Scope(*this, Constructor);
8163  DiagnosticErrorTrap Trap(Diags);
8164  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8165      Trap.hasErrorOccurred()) {
8166    Diag(CurrentLocation, diag::note_member_synthesized_at)
8167      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8168    Constructor->setInvalidDecl();
8169    return;
8170  }
8171
8172  SourceLocation Loc = Constructor->getLocation();
8173  Constructor->setBody(new (Context) CompoundStmt(Loc));
8174
8175  Constructor->markUsed(Context);
8176  MarkVTableUsed(CurrentLocation, ClassDecl);
8177
8178  if (ASTMutationListener *L = getASTMutationListener()) {
8179    L->CompletedImplicitDefinition(Constructor);
8180  }
8181
8182  DiagnoseUninitializedFields(*this, Constructor);
8183}
8184
8185void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8186  // Perform any delayed checks on exception specifications.
8187  CheckDelayedMemberExceptionSpecs();
8188}
8189
8190namespace {
8191/// Information on inheriting constructors to declare.
8192class InheritingConstructorInfo {
8193public:
8194  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8195      : SemaRef(SemaRef), Derived(Derived) {
8196    // Mark the constructors that we already have in the derived class.
8197    //
8198    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8199    //   unless there is a user-declared constructor with the same signature in
8200    //   the class where the using-declaration appears.
8201    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8202  }
8203
8204  void inheritAll(CXXRecordDecl *RD) {
8205    visitAll(RD, &InheritingConstructorInfo::inherit);
8206  }
8207
8208private:
8209  /// Information about an inheriting constructor.
8210  struct InheritingConstructor {
8211    InheritingConstructor()
8212      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
8213
8214    /// If \c true, a constructor with this signature is already declared
8215    /// in the derived class.
8216    bool DeclaredInDerived;
8217
8218    /// The constructor which is inherited.
8219    const CXXConstructorDecl *BaseCtor;
8220
8221    /// The derived constructor we declared.
8222    CXXConstructorDecl *DerivedCtor;
8223  };
8224
8225  /// Inheriting constructors with a given canonical type. There can be at
8226  /// most one such non-template constructor, and any number of templated
8227  /// constructors.
8228  struct InheritingConstructorsForType {
8229    InheritingConstructor NonTemplate;
8230    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8231        Templates;
8232
8233    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8234      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8235        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8236        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8237          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8238                                               false, S.TPL_TemplateMatch))
8239            return Templates[I].second;
8240        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8241        return Templates.back().second;
8242      }
8243
8244      return NonTemplate;
8245    }
8246  };
8247
8248  /// Get or create the inheriting constructor record for a constructor.
8249  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8250                                  QualType CtorType) {
8251    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8252        .getEntry(SemaRef, Ctor);
8253  }
8254
8255  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8256
8257  /// Process all constructors for a class.
8258  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8259    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8260                                      CtorE = RD->ctor_end();
8261         CtorIt != CtorE; ++CtorIt)
8262      (this->*Callback)(*CtorIt);
8263    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8264             I(RD->decls_begin()), E(RD->decls_end());
8265         I != E; ++I) {
8266      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8267      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8268        (this->*Callback)(CD);
8269    }
8270  }
8271
8272  /// Note that a constructor (or constructor template) was declared in Derived.
8273  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8274    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8275  }
8276
8277  /// Inherit a single constructor.
8278  void inherit(const CXXConstructorDecl *Ctor) {
8279    const FunctionProtoType *CtorType =
8280        Ctor->getType()->castAs<FunctionProtoType>();
8281    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8282    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8283
8284    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8285
8286    // Core issue (no number yet): the ellipsis is always discarded.
8287    if (EPI.Variadic) {
8288      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8289      SemaRef.Diag(Ctor->getLocation(),
8290                   diag::note_using_decl_constructor_ellipsis);
8291      EPI.Variadic = false;
8292    }
8293
8294    // Declare a constructor for each number of parameters.
8295    //
8296    // C++11 [class.inhctor]p1:
8297    //   The candidate set of inherited constructors from the class X named in
8298    //   the using-declaration consists of [... modulo defects ...] for each
8299    //   constructor or constructor template of X, the set of constructors or
8300    //   constructor templates that results from omitting any ellipsis parameter
8301    //   specification and successively omitting parameters with a default
8302    //   argument from the end of the parameter-type-list
8303    unsigned MinParams = minParamsToInherit(Ctor);
8304    unsigned Params = Ctor->getNumParams();
8305    if (Params >= MinParams) {
8306      do
8307        declareCtor(UsingLoc, Ctor,
8308                    SemaRef.Context.getFunctionType(
8309                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8310      while (Params > MinParams &&
8311             Ctor->getParamDecl(--Params)->hasDefaultArg());
8312    }
8313  }
8314
8315  /// Find the using-declaration which specified that we should inherit the
8316  /// constructors of \p Base.
8317  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8318    // No fancy lookup required; just look for the base constructor name
8319    // directly within the derived class.
8320    ASTContext &Context = SemaRef.Context;
8321    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8322        Context.getCanonicalType(Context.getRecordType(Base)));
8323    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8324    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8325  }
8326
8327  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8328    // C++11 [class.inhctor]p3:
8329    //   [F]or each constructor template in the candidate set of inherited
8330    //   constructors, a constructor template is implicitly declared
8331    if (Ctor->getDescribedFunctionTemplate())
8332      return 0;
8333
8334    //   For each non-template constructor in the candidate set of inherited
8335    //   constructors other than a constructor having no parameters or a
8336    //   copy/move constructor having a single parameter, a constructor is
8337    //   implicitly declared [...]
8338    if (Ctor->getNumParams() == 0)
8339      return 1;
8340    if (Ctor->isCopyOrMoveConstructor())
8341      return 2;
8342
8343    // Per discussion on core reflector, never inherit a constructor which
8344    // would become a default, copy, or move constructor of Derived either.
8345    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8346    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8347    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8348  }
8349
8350  /// Declare a single inheriting constructor, inheriting the specified
8351  /// constructor, with the given type.
8352  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8353                   QualType DerivedType) {
8354    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8355
8356    // C++11 [class.inhctor]p3:
8357    //   ... a constructor is implicitly declared with the same constructor
8358    //   characteristics unless there is a user-declared constructor with
8359    //   the same signature in the class where the using-declaration appears
8360    if (Entry.DeclaredInDerived)
8361      return;
8362
8363    // C++11 [class.inhctor]p7:
8364    //   If two using-declarations declare inheriting constructors with the
8365    //   same signature, the program is ill-formed
8366    if (Entry.DerivedCtor) {
8367      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8368        // Only diagnose this once per constructor.
8369        if (Entry.DerivedCtor->isInvalidDecl())
8370          return;
8371        Entry.DerivedCtor->setInvalidDecl();
8372
8373        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8374        SemaRef.Diag(BaseCtor->getLocation(),
8375                     diag::note_using_decl_constructor_conflict_current_ctor);
8376        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8377                     diag::note_using_decl_constructor_conflict_previous_ctor);
8378        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8379                     diag::note_using_decl_constructor_conflict_previous_using);
8380      } else {
8381        // Core issue (no number): if the same inheriting constructor is
8382        // produced by multiple base class constructors from the same base
8383        // class, the inheriting constructor is defined as deleted.
8384        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8385      }
8386
8387      return;
8388    }
8389
8390    ASTContext &Context = SemaRef.Context;
8391    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8392        Context.getCanonicalType(Context.getRecordType(Derived)));
8393    DeclarationNameInfo NameInfo(Name, UsingLoc);
8394
8395    TemplateParameterList *TemplateParams = 0;
8396    if (const FunctionTemplateDecl *FTD =
8397            BaseCtor->getDescribedFunctionTemplate()) {
8398      TemplateParams = FTD->getTemplateParameters();
8399      // We're reusing template parameters from a different DeclContext. This
8400      // is questionable at best, but works out because the template depth in
8401      // both places is guaranteed to be 0.
8402      // FIXME: Rebuild the template parameters in the new context, and
8403      // transform the function type to refer to them.
8404    }
8405
8406    // Build type source info pointing at the using-declaration. This is
8407    // required by template instantiation.
8408    TypeSourceInfo *TInfo =
8409        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8410    FunctionProtoTypeLoc ProtoLoc =
8411        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8412
8413    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8414        Context, Derived, UsingLoc, NameInfo, DerivedType,
8415        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8416        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8417
8418    // Build an unevaluated exception specification for this constructor.
8419    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8420    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8421    EPI.ExceptionSpecType = EST_Unevaluated;
8422    EPI.ExceptionSpecDecl = DerivedCtor;
8423    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8424                                                 FPT->getArgTypes(), EPI));
8425
8426    // Build the parameter declarations.
8427    SmallVector<ParmVarDecl *, 16> ParamDecls;
8428    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8429      TypeSourceInfo *TInfo =
8430          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8431      ParmVarDecl *PD = ParmVarDecl::Create(
8432          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8433          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8434      PD->setScopeInfo(0, I);
8435      PD->setImplicit();
8436      ParamDecls.push_back(PD);
8437      ProtoLoc.setArg(I, PD);
8438    }
8439
8440    // Set up the new constructor.
8441    DerivedCtor->setAccess(BaseCtor->getAccess());
8442    DerivedCtor->setParams(ParamDecls);
8443    DerivedCtor->setInheritedConstructor(BaseCtor);
8444    if (BaseCtor->isDeleted())
8445      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8446
8447    // If this is a constructor template, build the template declaration.
8448    if (TemplateParams) {
8449      FunctionTemplateDecl *DerivedTemplate =
8450          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8451                                       TemplateParams, DerivedCtor);
8452      DerivedTemplate->setAccess(BaseCtor->getAccess());
8453      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8454      Derived->addDecl(DerivedTemplate);
8455    } else {
8456      Derived->addDecl(DerivedCtor);
8457    }
8458
8459    Entry.BaseCtor = BaseCtor;
8460    Entry.DerivedCtor = DerivedCtor;
8461  }
8462
8463  Sema &SemaRef;
8464  CXXRecordDecl *Derived;
8465  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8466  MapType Map;
8467};
8468}
8469
8470void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8471  // Defer declaring the inheriting constructors until the class is
8472  // instantiated.
8473  if (ClassDecl->isDependentContext())
8474    return;
8475
8476  // Find base classes from which we might inherit constructors.
8477  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8478  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8479                                          BaseE = ClassDecl->bases_end();
8480       BaseIt != BaseE; ++BaseIt)
8481    if (BaseIt->getInheritConstructors())
8482      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8483
8484  // Go no further if we're not inheriting any constructors.
8485  if (InheritedBases.empty())
8486    return;
8487
8488  // Declare the inherited constructors.
8489  InheritingConstructorInfo ICI(*this, ClassDecl);
8490  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8491    ICI.inheritAll(InheritedBases[I]);
8492}
8493
8494void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8495                                       CXXConstructorDecl *Constructor) {
8496  CXXRecordDecl *ClassDecl = Constructor->getParent();
8497  assert(Constructor->getInheritedConstructor() &&
8498         !Constructor->doesThisDeclarationHaveABody() &&
8499         !Constructor->isDeleted());
8500
8501  SynthesizedFunctionScope Scope(*this, Constructor);
8502  DiagnosticErrorTrap Trap(Diags);
8503  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8504      Trap.hasErrorOccurred()) {
8505    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8506      << Context.getTagDeclType(ClassDecl);
8507    Constructor->setInvalidDecl();
8508    return;
8509  }
8510
8511  SourceLocation Loc = Constructor->getLocation();
8512  Constructor->setBody(new (Context) CompoundStmt(Loc));
8513
8514  Constructor->markUsed(Context);
8515  MarkVTableUsed(CurrentLocation, ClassDecl);
8516
8517  if (ASTMutationListener *L = getASTMutationListener()) {
8518    L->CompletedImplicitDefinition(Constructor);
8519  }
8520}
8521
8522
8523Sema::ImplicitExceptionSpecification
8524Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8525  CXXRecordDecl *ClassDecl = MD->getParent();
8526
8527  // C++ [except.spec]p14:
8528  //   An implicitly declared special member function (Clause 12) shall have
8529  //   an exception-specification.
8530  ImplicitExceptionSpecification ExceptSpec(*this);
8531  if (ClassDecl->isInvalidDecl())
8532    return ExceptSpec;
8533
8534  // Direct base-class destructors.
8535  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8536                                       BEnd = ClassDecl->bases_end();
8537       B != BEnd; ++B) {
8538    if (B->isVirtual()) // Handled below.
8539      continue;
8540
8541    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8542      ExceptSpec.CalledDecl(B->getLocStart(),
8543                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8544  }
8545
8546  // Virtual base-class destructors.
8547  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8548                                       BEnd = ClassDecl->vbases_end();
8549       B != BEnd; ++B) {
8550    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8551      ExceptSpec.CalledDecl(B->getLocStart(),
8552                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8553  }
8554
8555  // Field destructors.
8556  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8557                               FEnd = ClassDecl->field_end();
8558       F != FEnd; ++F) {
8559    if (const RecordType *RecordTy
8560        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8561      ExceptSpec.CalledDecl(F->getLocation(),
8562                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8563  }
8564
8565  return ExceptSpec;
8566}
8567
8568CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8569  // C++ [class.dtor]p2:
8570  //   If a class has no user-declared destructor, a destructor is
8571  //   declared implicitly. An implicitly-declared destructor is an
8572  //   inline public member of its class.
8573  assert(ClassDecl->needsImplicitDestructor());
8574
8575  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8576  if (DSM.isAlreadyBeingDeclared())
8577    return 0;
8578
8579  // Create the actual destructor declaration.
8580  CanQualType ClassType
8581    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8582  SourceLocation ClassLoc = ClassDecl->getLocation();
8583  DeclarationName Name
8584    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8585  DeclarationNameInfo NameInfo(Name, ClassLoc);
8586  CXXDestructorDecl *Destructor
8587      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8588                                  QualType(), 0, /*isInline=*/true,
8589                                  /*isImplicitlyDeclared=*/true);
8590  Destructor->setAccess(AS_public);
8591  Destructor->setDefaulted();
8592  Destructor->setImplicit();
8593
8594  // Build an exception specification pointing back at this destructor.
8595  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8596  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8597
8598  AddOverriddenMethods(ClassDecl, Destructor);
8599
8600  // We don't need to use SpecialMemberIsTrivial here; triviality for
8601  // destructors is easy to compute.
8602  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8603
8604  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8605    SetDeclDeleted(Destructor, ClassLoc);
8606
8607  // Note that we have declared this destructor.
8608  ++ASTContext::NumImplicitDestructorsDeclared;
8609
8610  // Introduce this destructor into its scope.
8611  if (Scope *S = getScopeForContext(ClassDecl))
8612    PushOnScopeChains(Destructor, S, false);
8613  ClassDecl->addDecl(Destructor);
8614
8615  return Destructor;
8616}
8617
8618void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8619                                    CXXDestructorDecl *Destructor) {
8620  assert((Destructor->isDefaulted() &&
8621          !Destructor->doesThisDeclarationHaveABody() &&
8622          !Destructor->isDeleted()) &&
8623         "DefineImplicitDestructor - call it for implicit default dtor");
8624  CXXRecordDecl *ClassDecl = Destructor->getParent();
8625  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8626
8627  if (Destructor->isInvalidDecl())
8628    return;
8629
8630  SynthesizedFunctionScope Scope(*this, Destructor);
8631
8632  DiagnosticErrorTrap Trap(Diags);
8633  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8634                                         Destructor->getParent());
8635
8636  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8637    Diag(CurrentLocation, diag::note_member_synthesized_at)
8638      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8639
8640    Destructor->setInvalidDecl();
8641    return;
8642  }
8643
8644  SourceLocation Loc = Destructor->getLocation();
8645  Destructor->setBody(new (Context) CompoundStmt(Loc));
8646  Destructor->markUsed(Context);
8647  MarkVTableUsed(CurrentLocation, ClassDecl);
8648
8649  if (ASTMutationListener *L = getASTMutationListener()) {
8650    L->CompletedImplicitDefinition(Destructor);
8651  }
8652}
8653
8654/// \brief Perform any semantic analysis which needs to be delayed until all
8655/// pending class member declarations have been parsed.
8656void Sema::ActOnFinishCXXMemberDecls() {
8657  // If the context is an invalid C++ class, just suppress these checks.
8658  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8659    if (Record->isInvalidDecl()) {
8660      DelayedDefaultedMemberExceptionSpecs.clear();
8661      DelayedDestructorExceptionSpecChecks.clear();
8662      return;
8663    }
8664  }
8665}
8666
8667void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8668                                         CXXDestructorDecl *Destructor) {
8669  assert(getLangOpts().CPlusPlus11 &&
8670         "adjusting dtor exception specs was introduced in c++11");
8671
8672  // C++11 [class.dtor]p3:
8673  //   A declaration of a destructor that does not have an exception-
8674  //   specification is implicitly considered to have the same exception-
8675  //   specification as an implicit declaration.
8676  const FunctionProtoType *DtorType = Destructor->getType()->
8677                                        getAs<FunctionProtoType>();
8678  if (DtorType->hasExceptionSpec())
8679    return;
8680
8681  // Replace the destructor's type, building off the existing one. Fortunately,
8682  // the only thing of interest in the destructor type is its extended info.
8683  // The return and arguments are fixed.
8684  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8685  EPI.ExceptionSpecType = EST_Unevaluated;
8686  EPI.ExceptionSpecDecl = Destructor;
8687  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8688
8689  // FIXME: If the destructor has a body that could throw, and the newly created
8690  // spec doesn't allow exceptions, we should emit a warning, because this
8691  // change in behavior can break conforming C++03 programs at runtime.
8692  // However, we don't have a body or an exception specification yet, so it
8693  // needs to be done somewhere else.
8694}
8695
8696namespace {
8697/// \brief An abstract base class for all helper classes used in building the
8698//  copy/move operators. These classes serve as factory functions and help us
8699//  avoid using the same Expr* in the AST twice.
8700class ExprBuilder {
8701  ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8702  ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8703
8704protected:
8705  static Expr *assertNotNull(Expr *E) {
8706    assert(E && "Expression construction must not fail.");
8707    return E;
8708  }
8709
8710public:
8711  ExprBuilder() {}
8712  virtual ~ExprBuilder() {}
8713
8714  virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
8715};
8716
8717class RefBuilder: public ExprBuilder {
8718  VarDecl *Var;
8719  QualType VarType;
8720
8721public:
8722  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8723    return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).take());
8724  }
8725
8726  RefBuilder(VarDecl *Var, QualType VarType)
8727      : Var(Var), VarType(VarType) {}
8728};
8729
8730class ThisBuilder: public ExprBuilder {
8731public:
8732  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8733    return assertNotNull(S.ActOnCXXThis(Loc).takeAs<Expr>());
8734  }
8735};
8736
8737class CastBuilder: public ExprBuilder {
8738  const ExprBuilder &Builder;
8739  QualType Type;
8740  ExprValueKind Kind;
8741  const CXXCastPath &Path;
8742
8743public:
8744  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8745    return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
8746                                             CK_UncheckedDerivedToBase, Kind,
8747                                             &Path).take());
8748  }
8749
8750  CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
8751              const CXXCastPath &Path)
8752      : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
8753};
8754
8755class DerefBuilder: public ExprBuilder {
8756  const ExprBuilder &Builder;
8757
8758public:
8759  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8760    return assertNotNull(
8761        S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).take());
8762  }
8763
8764  DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8765};
8766
8767class MemberBuilder: public ExprBuilder {
8768  const ExprBuilder &Builder;
8769  QualType Type;
8770  CXXScopeSpec SS;
8771  bool IsArrow;
8772  LookupResult &MemberLookup;
8773
8774public:
8775  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8776    return assertNotNull(S.BuildMemberReferenceExpr(
8777        Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 0,
8778        MemberLookup, 0).take());
8779  }
8780
8781  MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
8782                LookupResult &MemberLookup)
8783      : Builder(Builder), Type(Type), IsArrow(IsArrow),
8784        MemberLookup(MemberLookup) {}
8785};
8786
8787class MoveCastBuilder: public ExprBuilder {
8788  const ExprBuilder &Builder;
8789
8790public:
8791  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8792    return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
8793  }
8794
8795  MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8796};
8797
8798class LvalueConvBuilder: public ExprBuilder {
8799  const ExprBuilder &Builder;
8800
8801public:
8802  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8803    return assertNotNull(
8804        S.DefaultLvalueConversion(Builder.build(S, Loc)).take());
8805  }
8806
8807  LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8808};
8809
8810class SubscriptBuilder: public ExprBuilder {
8811  const ExprBuilder &Base;
8812  const ExprBuilder &Index;
8813
8814public:
8815  virtual Expr *build(Sema &S, SourceLocation Loc) const
8816      LLVM_OVERRIDE {
8817    return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
8818        Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).take());
8819  }
8820
8821  SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
8822      : Base(Base), Index(Index) {}
8823};
8824
8825} // end anonymous namespace
8826
8827/// When generating a defaulted copy or move assignment operator, if a field
8828/// should be copied with __builtin_memcpy rather than via explicit assignments,
8829/// do so. This optimization only applies for arrays of scalars, and for arrays
8830/// of class type where the selected copy/move-assignment operator is trivial.
8831static StmtResult
8832buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8833                           const ExprBuilder &ToB, const ExprBuilder &FromB) {
8834  // Compute the size of the memory buffer to be copied.
8835  QualType SizeType = S.Context.getSizeType();
8836  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8837                   S.Context.getTypeSizeInChars(T).getQuantity());
8838
8839  // Take the address of the field references for "from" and "to". We
8840  // directly construct UnaryOperators here because semantic analysis
8841  // does not permit us to take the address of an xvalue.
8842  Expr *From = FromB.build(S, Loc);
8843  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8844                         S.Context.getPointerType(From->getType()),
8845                         VK_RValue, OK_Ordinary, Loc);
8846  Expr *To = ToB.build(S, Loc);
8847  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8848                       S.Context.getPointerType(To->getType()),
8849                       VK_RValue, OK_Ordinary, Loc);
8850
8851  const Type *E = T->getBaseElementTypeUnsafe();
8852  bool NeedsCollectableMemCpy =
8853    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8854
8855  // Create a reference to the __builtin_objc_memmove_collectable function
8856  StringRef MemCpyName = NeedsCollectableMemCpy ?
8857    "__builtin_objc_memmove_collectable" :
8858    "__builtin_memcpy";
8859  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8860                 Sema::LookupOrdinaryName);
8861  S.LookupName(R, S.TUScope, true);
8862
8863  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8864  if (!MemCpy)
8865    // Something went horribly wrong earlier, and we will have complained
8866    // about it.
8867    return StmtError();
8868
8869  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8870                                            VK_RValue, Loc, 0);
8871  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8872
8873  Expr *CallArgs[] = {
8874    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8875  };
8876  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8877                                    Loc, CallArgs, Loc);
8878
8879  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8880  return S.Owned(Call.takeAs<Stmt>());
8881}
8882
8883/// \brief Builds a statement that copies/moves the given entity from \p From to
8884/// \c To.
8885///
8886/// This routine is used to copy/move the members of a class with an
8887/// implicitly-declared copy/move assignment operator. When the entities being
8888/// copied are arrays, this routine builds for loops to copy them.
8889///
8890/// \param S The Sema object used for type-checking.
8891///
8892/// \param Loc The location where the implicit copy/move is being generated.
8893///
8894/// \param T The type of the expressions being copied/moved. Both expressions
8895/// must have this type.
8896///
8897/// \param To The expression we are copying/moving to.
8898///
8899/// \param From The expression we are copying/moving from.
8900///
8901/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8902/// Otherwise, it's a non-static member subobject.
8903///
8904/// \param Copying Whether we're copying or moving.
8905///
8906/// \param Depth Internal parameter recording the depth of the recursion.
8907///
8908/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8909/// if a memcpy should be used instead.
8910static StmtResult
8911buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8912                                 const ExprBuilder &To, const ExprBuilder &From,
8913                                 bool CopyingBaseSubobject, bool Copying,
8914                                 unsigned Depth = 0) {
8915  // C++11 [class.copy]p28:
8916  //   Each subobject is assigned in the manner appropriate to its type:
8917  //
8918  //     - if the subobject is of class type, as if by a call to operator= with
8919  //       the subobject as the object expression and the corresponding
8920  //       subobject of x as a single function argument (as if by explicit
8921  //       qualification; that is, ignoring any possible virtual overriding
8922  //       functions in more derived classes);
8923  //
8924  // C++03 [class.copy]p13:
8925  //     - if the subobject is of class type, the copy assignment operator for
8926  //       the class is used (as if by explicit qualification; that is,
8927  //       ignoring any possible virtual overriding functions in more derived
8928  //       classes);
8929  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8930    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8931
8932    // Look for operator=.
8933    DeclarationName Name
8934      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8935    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8936    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8937
8938    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8939    // operator.
8940    if (!S.getLangOpts().CPlusPlus11) {
8941      LookupResult::Filter F = OpLookup.makeFilter();
8942      while (F.hasNext()) {
8943        NamedDecl *D = F.next();
8944        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8945          if (Method->isCopyAssignmentOperator() ||
8946              (!Copying && Method->isMoveAssignmentOperator()))
8947            continue;
8948
8949        F.erase();
8950      }
8951      F.done();
8952    }
8953
8954    // Suppress the protected check (C++ [class.protected]) for each of the
8955    // assignment operators we found. This strange dance is required when
8956    // we're assigning via a base classes's copy-assignment operator. To
8957    // ensure that we're getting the right base class subobject (without
8958    // ambiguities), we need to cast "this" to that subobject type; to
8959    // ensure that we don't go through the virtual call mechanism, we need
8960    // to qualify the operator= name with the base class (see below). However,
8961    // this means that if the base class has a protected copy assignment
8962    // operator, the protected member access check will fail. So, we
8963    // rewrite "protected" access to "public" access in this case, since we
8964    // know by construction that we're calling from a derived class.
8965    if (CopyingBaseSubobject) {
8966      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8967           L != LEnd; ++L) {
8968        if (L.getAccess() == AS_protected)
8969          L.setAccess(AS_public);
8970      }
8971    }
8972
8973    // Create the nested-name-specifier that will be used to qualify the
8974    // reference to operator=; this is required to suppress the virtual
8975    // call mechanism.
8976    CXXScopeSpec SS;
8977    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8978    SS.MakeTrivial(S.Context,
8979                   NestedNameSpecifier::Create(S.Context, 0, false,
8980                                               CanonicalT),
8981                   Loc);
8982
8983    // Create the reference to operator=.
8984    ExprResult OpEqualRef
8985      = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
8986                                   SS, /*TemplateKWLoc=*/SourceLocation(),
8987                                   /*FirstQualifierInScope=*/0,
8988                                   OpLookup,
8989                                   /*TemplateArgs=*/0,
8990                                   /*SuppressQualifierCheck=*/true);
8991    if (OpEqualRef.isInvalid())
8992      return StmtError();
8993
8994    // Build the call to the assignment operator.
8995
8996    Expr *FromInst = From.build(S, Loc);
8997    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8998                                                  OpEqualRef.takeAs<Expr>(),
8999                                                  Loc, FromInst, Loc);
9000    if (Call.isInvalid())
9001      return StmtError();
9002
9003    // If we built a call to a trivial 'operator=' while copying an array,
9004    // bail out. We'll replace the whole shebang with a memcpy.
9005    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9006    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9007      return StmtResult((Stmt*)0);
9008
9009    // Convert to an expression-statement, and clean up any produced
9010    // temporaries.
9011    return S.ActOnExprStmt(Call);
9012  }
9013
9014  //     - if the subobject is of scalar type, the built-in assignment
9015  //       operator is used.
9016  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9017  if (!ArrayTy) {
9018    ExprResult Assignment = S.CreateBuiltinBinOp(
9019        Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9020    if (Assignment.isInvalid())
9021      return StmtError();
9022    return S.ActOnExprStmt(Assignment);
9023  }
9024
9025  //     - if the subobject is an array, each element is assigned, in the
9026  //       manner appropriate to the element type;
9027
9028  // Construct a loop over the array bounds, e.g.,
9029  //
9030  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9031  //
9032  // that will copy each of the array elements.
9033  QualType SizeType = S.Context.getSizeType();
9034
9035  // Create the iteration variable.
9036  IdentifierInfo *IterationVarName = 0;
9037  {
9038    SmallString<8> Str;
9039    llvm::raw_svector_ostream OS(Str);
9040    OS << "__i" << Depth;
9041    IterationVarName = &S.Context.Idents.get(OS.str());
9042  }
9043  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9044                                          IterationVarName, SizeType,
9045                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9046                                          SC_None);
9047
9048  // Initialize the iteration variable to zero.
9049  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9050  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9051
9052  // Creates a reference to the iteration variable.
9053  RefBuilder IterationVarRef(IterationVar, SizeType);
9054  LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9055
9056  // Create the DeclStmt that holds the iteration variable.
9057  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9058
9059  // Subscript the "from" and "to" expressions with the iteration variable.
9060  SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9061  MoveCastBuilder FromIndexMove(FromIndexCopy);
9062  const ExprBuilder *FromIndex;
9063  if (Copying)
9064    FromIndex = &FromIndexCopy;
9065  else
9066    FromIndex = &FromIndexMove;
9067
9068  SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9069
9070  // Build the copy/move for an individual element of the array.
9071  StmtResult Copy =
9072    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9073                                     ToIndex, *FromIndex, CopyingBaseSubobject,
9074                                     Copying, Depth + 1);
9075  // Bail out if copying fails or if we determined that we should use memcpy.
9076  if (Copy.isInvalid() || !Copy.get())
9077    return Copy;
9078
9079  // Create the comparison against the array bound.
9080  llvm::APInt Upper
9081    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9082  Expr *Comparison
9083    = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9084                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9085                                     BO_NE, S.Context.BoolTy,
9086                                     VK_RValue, OK_Ordinary, Loc, false);
9087
9088  // Create the pre-increment of the iteration variable.
9089  Expr *Increment
9090    = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9091                                    SizeType, VK_LValue, OK_Ordinary, Loc);
9092
9093  // Construct the loop that copies all elements of this array.
9094  return S.ActOnForStmt(Loc, Loc, InitStmt,
9095                        S.MakeFullExpr(Comparison),
9096                        0, S.MakeFullDiscardedValueExpr(Increment),
9097                        Loc, Copy.take());
9098}
9099
9100static StmtResult
9101buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9102                      const ExprBuilder &To, const ExprBuilder &From,
9103                      bool CopyingBaseSubobject, bool Copying) {
9104  // Maybe we should use a memcpy?
9105  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9106      T.isTriviallyCopyableType(S.Context))
9107    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9108
9109  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9110                                                     CopyingBaseSubobject,
9111                                                     Copying, 0));
9112
9113  // If we ended up picking a trivial assignment operator for an array of a
9114  // non-trivially-copyable class type, just emit a memcpy.
9115  if (!Result.isInvalid() && !Result.get())
9116    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9117
9118  return Result;
9119}
9120
9121Sema::ImplicitExceptionSpecification
9122Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9123  CXXRecordDecl *ClassDecl = MD->getParent();
9124
9125  ImplicitExceptionSpecification ExceptSpec(*this);
9126  if (ClassDecl->isInvalidDecl())
9127    return ExceptSpec;
9128
9129  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9130  assert(T->getNumArgs() == 1 && "not a copy assignment op");
9131  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9132
9133  // C++ [except.spec]p14:
9134  //   An implicitly declared special member function (Clause 12) shall have an
9135  //   exception-specification. [...]
9136
9137  // It is unspecified whether or not an implicit copy assignment operator
9138  // attempts to deduplicate calls to assignment operators of virtual bases are
9139  // made. As such, this exception specification is effectively unspecified.
9140  // Based on a similar decision made for constness in C++0x, we're erring on
9141  // the side of assuming such calls to be made regardless of whether they
9142  // actually happen.
9143  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9144                                       BaseEnd = ClassDecl->bases_end();
9145       Base != BaseEnd; ++Base) {
9146    if (Base->isVirtual())
9147      continue;
9148
9149    CXXRecordDecl *BaseClassDecl
9150      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9151    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9152                                                            ArgQuals, false, 0))
9153      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9154  }
9155
9156  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9157                                       BaseEnd = ClassDecl->vbases_end();
9158       Base != BaseEnd; ++Base) {
9159    CXXRecordDecl *BaseClassDecl
9160      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9161    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9162                                                            ArgQuals, false, 0))
9163      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9164  }
9165
9166  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9167                                  FieldEnd = ClassDecl->field_end();
9168       Field != FieldEnd;
9169       ++Field) {
9170    QualType FieldType = Context.getBaseElementType(Field->getType());
9171    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9172      if (CXXMethodDecl *CopyAssign =
9173          LookupCopyingAssignment(FieldClassDecl,
9174                                  ArgQuals | FieldType.getCVRQualifiers(),
9175                                  false, 0))
9176        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9177    }
9178  }
9179
9180  return ExceptSpec;
9181}
9182
9183CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9184  // Note: The following rules are largely analoguous to the copy
9185  // constructor rules. Note that virtual bases are not taken into account
9186  // for determining the argument type of the operator. Note also that
9187  // operators taking an object instead of a reference are allowed.
9188  assert(ClassDecl->needsImplicitCopyAssignment());
9189
9190  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9191  if (DSM.isAlreadyBeingDeclared())
9192    return 0;
9193
9194  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9195  QualType RetType = Context.getLValueReferenceType(ArgType);
9196  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9197  if (Const)
9198    ArgType = ArgType.withConst();
9199  ArgType = Context.getLValueReferenceType(ArgType);
9200
9201  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9202                                                     CXXCopyAssignment,
9203                                                     Const);
9204
9205  //   An implicitly-declared copy assignment operator is an inline public
9206  //   member of its class.
9207  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9208  SourceLocation ClassLoc = ClassDecl->getLocation();
9209  DeclarationNameInfo NameInfo(Name, ClassLoc);
9210  CXXMethodDecl *CopyAssignment =
9211      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9212                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
9213                            /*isInline=*/ true, Constexpr, SourceLocation());
9214  CopyAssignment->setAccess(AS_public);
9215  CopyAssignment->setDefaulted();
9216  CopyAssignment->setImplicit();
9217
9218  // Build an exception specification pointing back at this member.
9219  FunctionProtoType::ExtProtoInfo EPI =
9220      getImplicitMethodEPI(*this, CopyAssignment);
9221  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9222
9223  // Add the parameter to the operator.
9224  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9225                                               ClassLoc, ClassLoc, /*Id=*/0,
9226                                               ArgType, /*TInfo=*/0,
9227                                               SC_None, 0);
9228  CopyAssignment->setParams(FromParam);
9229
9230  AddOverriddenMethods(ClassDecl, CopyAssignment);
9231
9232  CopyAssignment->setTrivial(
9233    ClassDecl->needsOverloadResolutionForCopyAssignment()
9234      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9235      : ClassDecl->hasTrivialCopyAssignment());
9236
9237  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9238    SetDeclDeleted(CopyAssignment, ClassLoc);
9239
9240  // Note that we have added this copy-assignment operator.
9241  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9242
9243  if (Scope *S = getScopeForContext(ClassDecl))
9244    PushOnScopeChains(CopyAssignment, S, false);
9245  ClassDecl->addDecl(CopyAssignment);
9246
9247  return CopyAssignment;
9248}
9249
9250/// Diagnose an implicit copy operation for a class which is odr-used, but
9251/// which is deprecated because the class has a user-declared copy constructor,
9252/// copy assignment operator, or destructor.
9253static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9254                                            SourceLocation UseLoc) {
9255  assert(CopyOp->isImplicit());
9256
9257  CXXRecordDecl *RD = CopyOp->getParent();
9258  CXXMethodDecl *UserDeclaredOperation = 0;
9259
9260  // In Microsoft mode, assignment operations don't affect constructors and
9261  // vice versa.
9262  if (RD->hasUserDeclaredDestructor()) {
9263    UserDeclaredOperation = RD->getDestructor();
9264  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9265             RD->hasUserDeclaredCopyConstructor() &&
9266             !S.getLangOpts().MicrosoftMode) {
9267    // Find any user-declared copy constructor.
9268    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
9269                                      E = RD->ctor_end(); I != E; ++I) {
9270      if (I->isCopyConstructor()) {
9271        UserDeclaredOperation = *I;
9272        break;
9273      }
9274    }
9275    assert(UserDeclaredOperation);
9276  } else if (isa<CXXConstructorDecl>(CopyOp) &&
9277             RD->hasUserDeclaredCopyAssignment() &&
9278             !S.getLangOpts().MicrosoftMode) {
9279    // Find any user-declared move assignment operator.
9280    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
9281                                        E = RD->method_end(); I != E; ++I) {
9282      if (I->isCopyAssignmentOperator()) {
9283        UserDeclaredOperation = *I;
9284        break;
9285      }
9286    }
9287    assert(UserDeclaredOperation);
9288  }
9289
9290  if (UserDeclaredOperation) {
9291    S.Diag(UserDeclaredOperation->getLocation(),
9292         diag::warn_deprecated_copy_operation)
9293      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9294      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9295    S.Diag(UseLoc, diag::note_member_synthesized_at)
9296      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9297                                          : Sema::CXXCopyAssignment)
9298      << RD;
9299  }
9300}
9301
9302void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9303                                        CXXMethodDecl *CopyAssignOperator) {
9304  assert((CopyAssignOperator->isDefaulted() &&
9305          CopyAssignOperator->isOverloadedOperator() &&
9306          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9307          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9308          !CopyAssignOperator->isDeleted()) &&
9309         "DefineImplicitCopyAssignment called for wrong function");
9310
9311  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9312
9313  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9314    CopyAssignOperator->setInvalidDecl();
9315    return;
9316  }
9317
9318  // C++11 [class.copy]p18:
9319  //   The [definition of an implicitly declared copy assignment operator] is
9320  //   deprecated if the class has a user-declared copy constructor or a
9321  //   user-declared destructor.
9322  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9323    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9324
9325  CopyAssignOperator->markUsed(Context);
9326
9327  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9328  DiagnosticErrorTrap Trap(Diags);
9329
9330  // C++0x [class.copy]p30:
9331  //   The implicitly-defined or explicitly-defaulted copy assignment operator
9332  //   for a non-union class X performs memberwise copy assignment of its
9333  //   subobjects. The direct base classes of X are assigned first, in the
9334  //   order of their declaration in the base-specifier-list, and then the
9335  //   immediate non-static data members of X are assigned, in the order in
9336  //   which they were declared in the class definition.
9337
9338  // The statements that form the synthesized function body.
9339  SmallVector<Stmt*, 8> Statements;
9340
9341  // The parameter for the "other" object, which we are copying from.
9342  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9343  Qualifiers OtherQuals = Other->getType().getQualifiers();
9344  QualType OtherRefType = Other->getType();
9345  if (const LValueReferenceType *OtherRef
9346                                = OtherRefType->getAs<LValueReferenceType>()) {
9347    OtherRefType = OtherRef->getPointeeType();
9348    OtherQuals = OtherRefType.getQualifiers();
9349  }
9350
9351  // Our location for everything implicitly-generated.
9352  SourceLocation Loc = CopyAssignOperator->getLocation();
9353
9354  // Builds a DeclRefExpr for the "other" object.
9355  RefBuilder OtherRef(Other, OtherRefType);
9356
9357  // Builds the "this" pointer.
9358  ThisBuilder This;
9359
9360  // Assign base classes.
9361  bool Invalid = false;
9362  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9363       E = ClassDecl->bases_end(); Base != E; ++Base) {
9364    // Form the assignment:
9365    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9366    QualType BaseType = Base->getType().getUnqualifiedType();
9367    if (!BaseType->isRecordType()) {
9368      Invalid = true;
9369      continue;
9370    }
9371
9372    CXXCastPath BasePath;
9373    BasePath.push_back(Base);
9374
9375    // Construct the "from" expression, which is an implicit cast to the
9376    // appropriately-qualified base type.
9377    CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9378                     VK_LValue, BasePath);
9379
9380    // Dereference "this".
9381    DerefBuilder DerefThis(This);
9382    CastBuilder To(DerefThis,
9383                   Context.getCVRQualifiedType(
9384                       BaseType, CopyAssignOperator->getTypeQualifiers()),
9385                   VK_LValue, BasePath);
9386
9387    // Build the copy.
9388    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9389                                            To, From,
9390                                            /*CopyingBaseSubobject=*/true,
9391                                            /*Copying=*/true);
9392    if (Copy.isInvalid()) {
9393      Diag(CurrentLocation, diag::note_member_synthesized_at)
9394        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9395      CopyAssignOperator->setInvalidDecl();
9396      return;
9397    }
9398
9399    // Success! Record the copy.
9400    Statements.push_back(Copy.takeAs<Expr>());
9401  }
9402
9403  // Assign non-static members.
9404  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9405                                  FieldEnd = ClassDecl->field_end();
9406       Field != FieldEnd; ++Field) {
9407    if (Field->isUnnamedBitfield())
9408      continue;
9409
9410    if (Field->isInvalidDecl()) {
9411      Invalid = true;
9412      continue;
9413    }
9414
9415    // Check for members of reference type; we can't copy those.
9416    if (Field->getType()->isReferenceType()) {
9417      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9418        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9419      Diag(Field->getLocation(), diag::note_declared_at);
9420      Diag(CurrentLocation, diag::note_member_synthesized_at)
9421        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9422      Invalid = true;
9423      continue;
9424    }
9425
9426    // Check for members of const-qualified, non-class type.
9427    QualType BaseType = Context.getBaseElementType(Field->getType());
9428    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9429      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9430        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9431      Diag(Field->getLocation(), diag::note_declared_at);
9432      Diag(CurrentLocation, diag::note_member_synthesized_at)
9433        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9434      Invalid = true;
9435      continue;
9436    }
9437
9438    // Suppress assigning zero-width bitfields.
9439    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9440      continue;
9441
9442    QualType FieldType = Field->getType().getNonReferenceType();
9443    if (FieldType->isIncompleteArrayType()) {
9444      assert(ClassDecl->hasFlexibleArrayMember() &&
9445             "Incomplete array type is not valid");
9446      continue;
9447    }
9448
9449    // Build references to the field in the object we're copying from and to.
9450    CXXScopeSpec SS; // Intentionally empty
9451    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9452                              LookupMemberName);
9453    MemberLookup.addDecl(*Field);
9454    MemberLookup.resolveKind();
9455
9456    MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9457
9458    MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9459
9460    // Build the copy of this field.
9461    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9462                                            To, From,
9463                                            /*CopyingBaseSubobject=*/false,
9464                                            /*Copying=*/true);
9465    if (Copy.isInvalid()) {
9466      Diag(CurrentLocation, diag::note_member_synthesized_at)
9467        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9468      CopyAssignOperator->setInvalidDecl();
9469      return;
9470    }
9471
9472    // Success! Record the copy.
9473    Statements.push_back(Copy.takeAs<Stmt>());
9474  }
9475
9476  if (!Invalid) {
9477    // Add a "return *this;"
9478    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9479
9480    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9481    if (Return.isInvalid())
9482      Invalid = true;
9483    else {
9484      Statements.push_back(Return.takeAs<Stmt>());
9485
9486      if (Trap.hasErrorOccurred()) {
9487        Diag(CurrentLocation, diag::note_member_synthesized_at)
9488          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9489        Invalid = true;
9490      }
9491    }
9492  }
9493
9494  if (Invalid) {
9495    CopyAssignOperator->setInvalidDecl();
9496    return;
9497  }
9498
9499  StmtResult Body;
9500  {
9501    CompoundScopeRAII CompoundScope(*this);
9502    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9503                             /*isStmtExpr=*/false);
9504    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9505  }
9506  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9507
9508  if (ASTMutationListener *L = getASTMutationListener()) {
9509    L->CompletedImplicitDefinition(CopyAssignOperator);
9510  }
9511}
9512
9513Sema::ImplicitExceptionSpecification
9514Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9515  CXXRecordDecl *ClassDecl = MD->getParent();
9516
9517  ImplicitExceptionSpecification ExceptSpec(*this);
9518  if (ClassDecl->isInvalidDecl())
9519    return ExceptSpec;
9520
9521  // C++0x [except.spec]p14:
9522  //   An implicitly declared special member function (Clause 12) shall have an
9523  //   exception-specification. [...]
9524
9525  // It is unspecified whether or not an implicit move assignment operator
9526  // attempts to deduplicate calls to assignment operators of virtual bases are
9527  // made. As such, this exception specification is effectively unspecified.
9528  // Based on a similar decision made for constness in C++0x, we're erring on
9529  // the side of assuming such calls to be made regardless of whether they
9530  // actually happen.
9531  // Note that a move constructor is not implicitly declared when there are
9532  // virtual bases, but it can still be user-declared and explicitly defaulted.
9533  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9534                                       BaseEnd = ClassDecl->bases_end();
9535       Base != BaseEnd; ++Base) {
9536    if (Base->isVirtual())
9537      continue;
9538
9539    CXXRecordDecl *BaseClassDecl
9540      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9541    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9542                                                           0, false, 0))
9543      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9544  }
9545
9546  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9547                                       BaseEnd = ClassDecl->vbases_end();
9548       Base != BaseEnd; ++Base) {
9549    CXXRecordDecl *BaseClassDecl
9550      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9551    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9552                                                           0, false, 0))
9553      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9554  }
9555
9556  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9557                                  FieldEnd = ClassDecl->field_end();
9558       Field != FieldEnd;
9559       ++Field) {
9560    QualType FieldType = Context.getBaseElementType(Field->getType());
9561    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9562      if (CXXMethodDecl *MoveAssign =
9563              LookupMovingAssignment(FieldClassDecl,
9564                                     FieldType.getCVRQualifiers(),
9565                                     false, 0))
9566        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9567    }
9568  }
9569
9570  return ExceptSpec;
9571}
9572
9573CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9574  assert(ClassDecl->needsImplicitMoveAssignment());
9575
9576  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9577  if (DSM.isAlreadyBeingDeclared())
9578    return 0;
9579
9580  // Note: The following rules are largely analoguous to the move
9581  // constructor rules.
9582
9583  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9584  QualType RetType = Context.getLValueReferenceType(ArgType);
9585  ArgType = Context.getRValueReferenceType(ArgType);
9586
9587  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9588                                                     CXXMoveAssignment,
9589                                                     false);
9590
9591  //   An implicitly-declared move assignment operator is an inline public
9592  //   member of its class.
9593  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9594  SourceLocation ClassLoc = ClassDecl->getLocation();
9595  DeclarationNameInfo NameInfo(Name, ClassLoc);
9596  CXXMethodDecl *MoveAssignment =
9597      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9598                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9599                            /*isInline=*/true, Constexpr, SourceLocation());
9600  MoveAssignment->setAccess(AS_public);
9601  MoveAssignment->setDefaulted();
9602  MoveAssignment->setImplicit();
9603
9604  // Build an exception specification pointing back at this member.
9605  FunctionProtoType::ExtProtoInfo EPI =
9606      getImplicitMethodEPI(*this, MoveAssignment);
9607  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9608
9609  // Add the parameter to the operator.
9610  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9611                                               ClassLoc, ClassLoc, /*Id=*/0,
9612                                               ArgType, /*TInfo=*/0,
9613                                               SC_None, 0);
9614  MoveAssignment->setParams(FromParam);
9615
9616  AddOverriddenMethods(ClassDecl, MoveAssignment);
9617
9618  MoveAssignment->setTrivial(
9619    ClassDecl->needsOverloadResolutionForMoveAssignment()
9620      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9621      : ClassDecl->hasTrivialMoveAssignment());
9622
9623  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9624    ClassDecl->setImplicitMoveAssignmentIsDeleted();
9625    SetDeclDeleted(MoveAssignment, ClassLoc);
9626  }
9627
9628  // Note that we have added this copy-assignment operator.
9629  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9630
9631  if (Scope *S = getScopeForContext(ClassDecl))
9632    PushOnScopeChains(MoveAssignment, S, false);
9633  ClassDecl->addDecl(MoveAssignment);
9634
9635  return MoveAssignment;
9636}
9637
9638/// Check if we're implicitly defining a move assignment operator for a class
9639/// with virtual bases. Such a move assignment might move-assign the virtual
9640/// base multiple times.
9641static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
9642                                               SourceLocation CurrentLocation) {
9643  assert(!Class->isDependentContext() && "should not define dependent move");
9644
9645  // Only a virtual base could get implicitly move-assigned multiple times.
9646  // Only a non-trivial move assignment can observe this. We only want to
9647  // diagnose if we implicitly define an assignment operator that assigns
9648  // two base classes, both of which move-assign the same virtual base.
9649  if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
9650      Class->getNumBases() < 2)
9651    return;
9652
9653  llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
9654  typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
9655  VBaseMap VBases;
9656
9657  for (CXXRecordDecl::base_class_iterator BI = Class->bases_begin(),
9658                                          BE = Class->bases_end();
9659       BI != BE; ++BI) {
9660    Worklist.push_back(&*BI);
9661    while (!Worklist.empty()) {
9662      CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
9663      CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
9664
9665      // If the base has no non-trivial move assignment operators,
9666      // we don't care about moves from it.
9667      if (!Base->hasNonTrivialMoveAssignment())
9668        continue;
9669
9670      // If there's nothing virtual here, skip it.
9671      if (!BaseSpec->isVirtual() && !Base->getNumVBases())
9672        continue;
9673
9674      // If we're not actually going to call a move assignment for this base,
9675      // or the selected move assignment is trivial, skip it.
9676      Sema::SpecialMemberOverloadResult *SMOR =
9677        S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
9678                              /*ConstArg*/false, /*VolatileArg*/false,
9679                              /*RValueThis*/true, /*ConstThis*/false,
9680                              /*VolatileThis*/false);
9681      if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
9682          !SMOR->getMethod()->isMoveAssignmentOperator())
9683        continue;
9684
9685      if (BaseSpec->isVirtual()) {
9686        // We're going to move-assign this virtual base, and its move
9687        // assignment operator is not trivial. If this can happen for
9688        // multiple distinct direct bases of Class, diagnose it. (If it
9689        // only happens in one base, we'll diagnose it when synthesizing
9690        // that base class's move assignment operator.)
9691        CXXBaseSpecifier *&Existing =
9692            VBases.insert(std::make_pair(Base->getCanonicalDecl(), BI))
9693                .first->second;
9694        if (Existing && Existing != BI) {
9695          S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
9696            << Class << Base;
9697          S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
9698            << (Base->getCanonicalDecl() ==
9699                Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9700            << Base << Existing->getType() << Existing->getSourceRange();
9701          S.Diag(BI->getLocStart(), diag::note_vbase_moved_here)
9702            << (Base->getCanonicalDecl() ==
9703                BI->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9704            << Base << BI->getType() << BaseSpec->getSourceRange();
9705
9706          // Only diagnose each vbase once.
9707          Existing = 0;
9708        }
9709      } else {
9710        // Only walk over bases that have defaulted move assignment operators.
9711        // We assume that any user-provided move assignment operator handles
9712        // the multiple-moves-of-vbase case itself somehow.
9713        if (!SMOR->getMethod()->isDefaulted())
9714          continue;
9715
9716        // We're going to move the base classes of Base. Add them to the list.
9717        for (CXXRecordDecl::base_class_iterator BI = Base->bases_begin(),
9718                                                BE = Base->bases_end();
9719             BI != BE; ++BI)
9720          Worklist.push_back(&*BI);
9721      }
9722    }
9723  }
9724}
9725
9726void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9727                                        CXXMethodDecl *MoveAssignOperator) {
9728  assert((MoveAssignOperator->isDefaulted() &&
9729          MoveAssignOperator->isOverloadedOperator() &&
9730          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9731          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9732          !MoveAssignOperator->isDeleted()) &&
9733         "DefineImplicitMoveAssignment called for wrong function");
9734
9735  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9736
9737  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9738    MoveAssignOperator->setInvalidDecl();
9739    return;
9740  }
9741
9742  MoveAssignOperator->markUsed(Context);
9743
9744  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9745  DiagnosticErrorTrap Trap(Diags);
9746
9747  // C++0x [class.copy]p28:
9748  //   The implicitly-defined or move assignment operator for a non-union class
9749  //   X performs memberwise move assignment of its subobjects. The direct base
9750  //   classes of X are assigned first, in the order of their declaration in the
9751  //   base-specifier-list, and then the immediate non-static data members of X
9752  //   are assigned, in the order in which they were declared in the class
9753  //   definition.
9754
9755  // Issue a warning if our implicit move assignment operator will move
9756  // from a virtual base more than once.
9757  checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
9758
9759  // The statements that form the synthesized function body.
9760  SmallVector<Stmt*, 8> Statements;
9761
9762  // The parameter for the "other" object, which we are move from.
9763  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9764  QualType OtherRefType = Other->getType()->
9765      getAs<RValueReferenceType>()->getPointeeType();
9766  assert(!OtherRefType.getQualifiers() &&
9767         "Bad argument type of defaulted move assignment");
9768
9769  // Our location for everything implicitly-generated.
9770  SourceLocation Loc = MoveAssignOperator->getLocation();
9771
9772  // Builds a reference to the "other" object.
9773  RefBuilder OtherRef(Other, OtherRefType);
9774  // Cast to rvalue.
9775  MoveCastBuilder MoveOther(OtherRef);
9776
9777  // Builds the "this" pointer.
9778  ThisBuilder This;
9779
9780  // Assign base classes.
9781  bool Invalid = false;
9782  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9783       E = ClassDecl->bases_end(); Base != E; ++Base) {
9784    // C++11 [class.copy]p28:
9785    //   It is unspecified whether subobjects representing virtual base classes
9786    //   are assigned more than once by the implicitly-defined copy assignment
9787    //   operator.
9788    // FIXME: Do not assign to a vbase that will be assigned by some other base
9789    // class. For a move-assignment, this can result in the vbase being moved
9790    // multiple times.
9791
9792    // Form the assignment:
9793    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9794    QualType BaseType = Base->getType().getUnqualifiedType();
9795    if (!BaseType->isRecordType()) {
9796      Invalid = true;
9797      continue;
9798    }
9799
9800    CXXCastPath BasePath;
9801    BasePath.push_back(Base);
9802
9803    // Construct the "from" expression, which is an implicit cast to the
9804    // appropriately-qualified base type.
9805    CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
9806
9807    // Dereference "this".
9808    DerefBuilder DerefThis(This);
9809
9810    // Implicitly cast "this" to the appropriately-qualified base type.
9811    CastBuilder To(DerefThis,
9812                   Context.getCVRQualifiedType(
9813                       BaseType, MoveAssignOperator->getTypeQualifiers()),
9814                   VK_LValue, BasePath);
9815
9816    // Build the move.
9817    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9818                                            To, From,
9819                                            /*CopyingBaseSubobject=*/true,
9820                                            /*Copying=*/false);
9821    if (Move.isInvalid()) {
9822      Diag(CurrentLocation, diag::note_member_synthesized_at)
9823        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9824      MoveAssignOperator->setInvalidDecl();
9825      return;
9826    }
9827
9828    // Success! Record the move.
9829    Statements.push_back(Move.takeAs<Expr>());
9830  }
9831
9832  // Assign non-static members.
9833  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9834                                  FieldEnd = ClassDecl->field_end();
9835       Field != FieldEnd; ++Field) {
9836    if (Field->isUnnamedBitfield())
9837      continue;
9838
9839    if (Field->isInvalidDecl()) {
9840      Invalid = true;
9841      continue;
9842    }
9843
9844    // Check for members of reference type; we can't move those.
9845    if (Field->getType()->isReferenceType()) {
9846      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9847        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9848      Diag(Field->getLocation(), diag::note_declared_at);
9849      Diag(CurrentLocation, diag::note_member_synthesized_at)
9850        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9851      Invalid = true;
9852      continue;
9853    }
9854
9855    // Check for members of const-qualified, non-class type.
9856    QualType BaseType = Context.getBaseElementType(Field->getType());
9857    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9858      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9859        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9860      Diag(Field->getLocation(), diag::note_declared_at);
9861      Diag(CurrentLocation, diag::note_member_synthesized_at)
9862        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9863      Invalid = true;
9864      continue;
9865    }
9866
9867    // Suppress assigning zero-width bitfields.
9868    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9869      continue;
9870
9871    QualType FieldType = Field->getType().getNonReferenceType();
9872    if (FieldType->isIncompleteArrayType()) {
9873      assert(ClassDecl->hasFlexibleArrayMember() &&
9874             "Incomplete array type is not valid");
9875      continue;
9876    }
9877
9878    // Build references to the field in the object we're copying from and to.
9879    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9880                              LookupMemberName);
9881    MemberLookup.addDecl(*Field);
9882    MemberLookup.resolveKind();
9883    MemberBuilder From(MoveOther, OtherRefType,
9884                       /*IsArrow=*/false, MemberLookup);
9885    MemberBuilder To(This, getCurrentThisType(),
9886                     /*IsArrow=*/true, MemberLookup);
9887
9888    assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
9889        "Member reference with rvalue base must be rvalue except for reference "
9890        "members, which aren't allowed for move assignment.");
9891
9892    // Build the move of this field.
9893    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9894                                            To, From,
9895                                            /*CopyingBaseSubobject=*/false,
9896                                            /*Copying=*/false);
9897    if (Move.isInvalid()) {
9898      Diag(CurrentLocation, diag::note_member_synthesized_at)
9899        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9900      MoveAssignOperator->setInvalidDecl();
9901      return;
9902    }
9903
9904    // Success! Record the copy.
9905    Statements.push_back(Move.takeAs<Stmt>());
9906  }
9907
9908  if (!Invalid) {
9909    // Add a "return *this;"
9910    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9911
9912    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9913    if (Return.isInvalid())
9914      Invalid = true;
9915    else {
9916      Statements.push_back(Return.takeAs<Stmt>());
9917
9918      if (Trap.hasErrorOccurred()) {
9919        Diag(CurrentLocation, diag::note_member_synthesized_at)
9920          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9921        Invalid = true;
9922      }
9923    }
9924  }
9925
9926  if (Invalid) {
9927    MoveAssignOperator->setInvalidDecl();
9928    return;
9929  }
9930
9931  StmtResult Body;
9932  {
9933    CompoundScopeRAII CompoundScope(*this);
9934    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9935                             /*isStmtExpr=*/false);
9936    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9937  }
9938  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9939
9940  if (ASTMutationListener *L = getASTMutationListener()) {
9941    L->CompletedImplicitDefinition(MoveAssignOperator);
9942  }
9943}
9944
9945Sema::ImplicitExceptionSpecification
9946Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9947  CXXRecordDecl *ClassDecl = MD->getParent();
9948
9949  ImplicitExceptionSpecification ExceptSpec(*this);
9950  if (ClassDecl->isInvalidDecl())
9951    return ExceptSpec;
9952
9953  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9954  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9955  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9956
9957  // C++ [except.spec]p14:
9958  //   An implicitly declared special member function (Clause 12) shall have an
9959  //   exception-specification. [...]
9960  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9961                                       BaseEnd = ClassDecl->bases_end();
9962       Base != BaseEnd;
9963       ++Base) {
9964    // Virtual bases are handled below.
9965    if (Base->isVirtual())
9966      continue;
9967
9968    CXXRecordDecl *BaseClassDecl
9969      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9970    if (CXXConstructorDecl *CopyConstructor =
9971          LookupCopyingConstructor(BaseClassDecl, Quals))
9972      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9973  }
9974  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9975                                       BaseEnd = ClassDecl->vbases_end();
9976       Base != BaseEnd;
9977       ++Base) {
9978    CXXRecordDecl *BaseClassDecl
9979      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9980    if (CXXConstructorDecl *CopyConstructor =
9981          LookupCopyingConstructor(BaseClassDecl, Quals))
9982      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9983  }
9984  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9985                                  FieldEnd = ClassDecl->field_end();
9986       Field != FieldEnd;
9987       ++Field) {
9988    QualType FieldType = Context.getBaseElementType(Field->getType());
9989    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9990      if (CXXConstructorDecl *CopyConstructor =
9991              LookupCopyingConstructor(FieldClassDecl,
9992                                       Quals | FieldType.getCVRQualifiers()))
9993      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9994    }
9995  }
9996
9997  return ExceptSpec;
9998}
9999
10000CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10001                                                    CXXRecordDecl *ClassDecl) {
10002  // C++ [class.copy]p4:
10003  //   If the class definition does not explicitly declare a copy
10004  //   constructor, one is declared implicitly.
10005  assert(ClassDecl->needsImplicitCopyConstructor());
10006
10007  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10008  if (DSM.isAlreadyBeingDeclared())
10009    return 0;
10010
10011  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10012  QualType ArgType = ClassType;
10013  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10014  if (Const)
10015    ArgType = ArgType.withConst();
10016  ArgType = Context.getLValueReferenceType(ArgType);
10017
10018  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10019                                                     CXXCopyConstructor,
10020                                                     Const);
10021
10022  DeclarationName Name
10023    = Context.DeclarationNames.getCXXConstructorName(
10024                                           Context.getCanonicalType(ClassType));
10025  SourceLocation ClassLoc = ClassDecl->getLocation();
10026  DeclarationNameInfo NameInfo(Name, ClassLoc);
10027
10028  //   An implicitly-declared copy constructor is an inline public
10029  //   member of its class.
10030  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10031      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10032      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10033      Constexpr);
10034  CopyConstructor->setAccess(AS_public);
10035  CopyConstructor->setDefaulted();
10036
10037  // Build an exception specification pointing back at this member.
10038  FunctionProtoType::ExtProtoInfo EPI =
10039      getImplicitMethodEPI(*this, CopyConstructor);
10040  CopyConstructor->setType(
10041      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10042
10043  // Add the parameter to the constructor.
10044  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10045                                               ClassLoc, ClassLoc,
10046                                               /*IdentifierInfo=*/0,
10047                                               ArgType, /*TInfo=*/0,
10048                                               SC_None, 0);
10049  CopyConstructor->setParams(FromParam);
10050
10051  CopyConstructor->setTrivial(
10052    ClassDecl->needsOverloadResolutionForCopyConstructor()
10053      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10054      : ClassDecl->hasTrivialCopyConstructor());
10055
10056  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10057    SetDeclDeleted(CopyConstructor, ClassLoc);
10058
10059  // Note that we have declared this constructor.
10060  ++ASTContext::NumImplicitCopyConstructorsDeclared;
10061
10062  if (Scope *S = getScopeForContext(ClassDecl))
10063    PushOnScopeChains(CopyConstructor, S, false);
10064  ClassDecl->addDecl(CopyConstructor);
10065
10066  return CopyConstructor;
10067}
10068
10069void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10070                                   CXXConstructorDecl *CopyConstructor) {
10071  assert((CopyConstructor->isDefaulted() &&
10072          CopyConstructor->isCopyConstructor() &&
10073          !CopyConstructor->doesThisDeclarationHaveABody() &&
10074          !CopyConstructor->isDeleted()) &&
10075         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10076
10077  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10078  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10079
10080  // C++11 [class.copy]p7:
10081  //   The [definition of an implicitly declared copy constructor] is
10082  //   deprecated if the class has a user-declared copy assignment operator
10083  //   or a user-declared destructor.
10084  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10085    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10086
10087  SynthesizedFunctionScope Scope(*this, CopyConstructor);
10088  DiagnosticErrorTrap Trap(Diags);
10089
10090  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10091      Trap.hasErrorOccurred()) {
10092    Diag(CurrentLocation, diag::note_member_synthesized_at)
10093      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10094    CopyConstructor->setInvalidDecl();
10095  }  else {
10096    Sema::CompoundScopeRAII CompoundScope(*this);
10097    CopyConstructor->setBody(ActOnCompoundStmt(
10098        CopyConstructor->getLocation(), CopyConstructor->getLocation(), None,
10099        /*isStmtExpr=*/ false).takeAs<Stmt>());
10100  }
10101
10102  CopyConstructor->markUsed(Context);
10103  if (ASTMutationListener *L = getASTMutationListener()) {
10104    L->CompletedImplicitDefinition(CopyConstructor);
10105  }
10106}
10107
10108Sema::ImplicitExceptionSpecification
10109Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10110  CXXRecordDecl *ClassDecl = MD->getParent();
10111
10112  // C++ [except.spec]p14:
10113  //   An implicitly declared special member function (Clause 12) shall have an
10114  //   exception-specification. [...]
10115  ImplicitExceptionSpecification ExceptSpec(*this);
10116  if (ClassDecl->isInvalidDecl())
10117    return ExceptSpec;
10118
10119  // Direct base-class constructors.
10120  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
10121                                       BEnd = ClassDecl->bases_end();
10122       B != BEnd; ++B) {
10123    if (B->isVirtual()) // Handled below.
10124      continue;
10125
10126    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10127      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10128      CXXConstructorDecl *Constructor =
10129          LookupMovingConstructor(BaseClassDecl, 0);
10130      // If this is a deleted function, add it anyway. This might be conformant
10131      // with the standard. This might not. I'm not sure. It might not matter.
10132      if (Constructor)
10133        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10134    }
10135  }
10136
10137  // Virtual base-class constructors.
10138  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
10139                                       BEnd = ClassDecl->vbases_end();
10140       B != BEnd; ++B) {
10141    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10142      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10143      CXXConstructorDecl *Constructor =
10144          LookupMovingConstructor(BaseClassDecl, 0);
10145      // If this is a deleted function, add it anyway. This might be conformant
10146      // with the standard. This might not. I'm not sure. It might not matter.
10147      if (Constructor)
10148        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10149    }
10150  }
10151
10152  // Field constructors.
10153  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
10154                               FEnd = ClassDecl->field_end();
10155       F != FEnd; ++F) {
10156    QualType FieldType = Context.getBaseElementType(F->getType());
10157    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10158      CXXConstructorDecl *Constructor =
10159          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10160      // If this is a deleted function, add it anyway. This might be conformant
10161      // with the standard. This might not. I'm not sure. It might not matter.
10162      // In particular, the problem is that this function never gets called. It
10163      // might just be ill-formed because this function attempts to refer to
10164      // a deleted function here.
10165      if (Constructor)
10166        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10167    }
10168  }
10169
10170  return ExceptSpec;
10171}
10172
10173CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10174                                                    CXXRecordDecl *ClassDecl) {
10175  assert(ClassDecl->needsImplicitMoveConstructor());
10176
10177  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10178  if (DSM.isAlreadyBeingDeclared())
10179    return 0;
10180
10181  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10182  QualType ArgType = Context.getRValueReferenceType(ClassType);
10183
10184  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10185                                                     CXXMoveConstructor,
10186                                                     false);
10187
10188  DeclarationName Name
10189    = Context.DeclarationNames.getCXXConstructorName(
10190                                           Context.getCanonicalType(ClassType));
10191  SourceLocation ClassLoc = ClassDecl->getLocation();
10192  DeclarationNameInfo NameInfo(Name, ClassLoc);
10193
10194  // C++11 [class.copy]p11:
10195  //   An implicitly-declared copy/move constructor is an inline public
10196  //   member of its class.
10197  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10198      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10199      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10200      Constexpr);
10201  MoveConstructor->setAccess(AS_public);
10202  MoveConstructor->setDefaulted();
10203
10204  // Build an exception specification pointing back at this member.
10205  FunctionProtoType::ExtProtoInfo EPI =
10206      getImplicitMethodEPI(*this, MoveConstructor);
10207  MoveConstructor->setType(
10208      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10209
10210  // Add the parameter to the constructor.
10211  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10212                                               ClassLoc, ClassLoc,
10213                                               /*IdentifierInfo=*/0,
10214                                               ArgType, /*TInfo=*/0,
10215                                               SC_None, 0);
10216  MoveConstructor->setParams(FromParam);
10217
10218  MoveConstructor->setTrivial(
10219    ClassDecl->needsOverloadResolutionForMoveConstructor()
10220      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10221      : ClassDecl->hasTrivialMoveConstructor());
10222
10223  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10224    ClassDecl->setImplicitMoveConstructorIsDeleted();
10225    SetDeclDeleted(MoveConstructor, ClassLoc);
10226  }
10227
10228  // Note that we have declared this constructor.
10229  ++ASTContext::NumImplicitMoveConstructorsDeclared;
10230
10231  if (Scope *S = getScopeForContext(ClassDecl))
10232    PushOnScopeChains(MoveConstructor, S, false);
10233  ClassDecl->addDecl(MoveConstructor);
10234
10235  return MoveConstructor;
10236}
10237
10238void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10239                                   CXXConstructorDecl *MoveConstructor) {
10240  assert((MoveConstructor->isDefaulted() &&
10241          MoveConstructor->isMoveConstructor() &&
10242          !MoveConstructor->doesThisDeclarationHaveABody() &&
10243          !MoveConstructor->isDeleted()) &&
10244         "DefineImplicitMoveConstructor - call it for implicit move ctor");
10245
10246  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10247  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10248
10249  SynthesizedFunctionScope Scope(*this, MoveConstructor);
10250  DiagnosticErrorTrap Trap(Diags);
10251
10252  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10253      Trap.hasErrorOccurred()) {
10254    Diag(CurrentLocation, diag::note_member_synthesized_at)
10255      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10256    MoveConstructor->setInvalidDecl();
10257  }  else {
10258    Sema::CompoundScopeRAII CompoundScope(*this);
10259    MoveConstructor->setBody(ActOnCompoundStmt(
10260        MoveConstructor->getLocation(), MoveConstructor->getLocation(), None,
10261        /*isStmtExpr=*/ false).takeAs<Stmt>());
10262  }
10263
10264  MoveConstructor->markUsed(Context);
10265
10266  if (ASTMutationListener *L = getASTMutationListener()) {
10267    L->CompletedImplicitDefinition(MoveConstructor);
10268  }
10269}
10270
10271bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10272  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10273}
10274
10275void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10276                            SourceLocation CurrentLocation,
10277                            CXXConversionDecl *Conv) {
10278  CXXRecordDecl *Lambda = Conv->getParent();
10279  CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
10280  // If we are defining a specialization of a conversion to function-ptr
10281  // cache the deduced template arguments for this specialization
10282  // so that we can use them to retrieve the corresponding call-operator
10283  // and static-invoker.
10284  const TemplateArgumentList *DeducedTemplateArgs = 0;
10285
10286
10287  // Retrieve the corresponding call-operator specialization.
10288  if (Lambda->isGenericLambda()) {
10289    assert(Conv->isFunctionTemplateSpecialization());
10290    FunctionTemplateDecl *CallOpTemplate =
10291        CallOp->getDescribedFunctionTemplate();
10292    DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
10293    void *InsertPos = 0;
10294    FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
10295                                                DeducedTemplateArgs->data(),
10296                                                DeducedTemplateArgs->size(),
10297                                                InsertPos);
10298    assert(CallOpSpec &&
10299          "Conversion operator must have a corresponding call operator");
10300    CallOp = cast<CXXMethodDecl>(CallOpSpec);
10301  }
10302  // Mark the call operator referenced (and add to pending instantiations
10303  // if necessary).
10304  // For both the conversion and static-invoker template specializations
10305  // we construct their body's in this function, so no need to add them
10306  // to the PendingInstantiations.
10307  MarkFunctionReferenced(CurrentLocation, CallOp);
10308
10309  SynthesizedFunctionScope Scope(*this, Conv);
10310  DiagnosticErrorTrap Trap(Diags);
10311
10312  // Retreive the static invoker...
10313  CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
10314  // ... and get the corresponding specialization for a generic lambda.
10315  if (Lambda->isGenericLambda()) {
10316    assert(DeducedTemplateArgs &&
10317      "Must have deduced template arguments from Conversion Operator");
10318    FunctionTemplateDecl *InvokeTemplate =
10319                          Invoker->getDescribedFunctionTemplate();
10320    void *InsertPos = 0;
10321    FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
10322                                                DeducedTemplateArgs->data(),
10323                                                DeducedTemplateArgs->size(),
10324                                                InsertPos);
10325    assert(InvokeSpec &&
10326      "Must have a corresponding static invoker specialization");
10327    Invoker = cast<CXXMethodDecl>(InvokeSpec);
10328  }
10329  // Construct the body of the conversion function { return __invoke; }.
10330  Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
10331                                        VK_LValue, Conv->getLocation()).take();
10332   assert(FunctionRef && "Can't refer to __invoke function?");
10333   Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10334   Conv->setBody(new (Context) CompoundStmt(Context, Return,
10335                                            Conv->getLocation(),
10336                                            Conv->getLocation()));
10337
10338  Conv->markUsed(Context);
10339  Conv->setReferenced();
10340
10341  // Fill in the __invoke function with a dummy implementation. IR generation
10342  // will fill in the actual details.
10343  Invoker->markUsed(Context);
10344  Invoker->setReferenced();
10345  Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10346
10347  if (ASTMutationListener *L = getASTMutationListener()) {
10348    L->CompletedImplicitDefinition(Conv);
10349    L->CompletedImplicitDefinition(Invoker);
10350   }
10351}
10352
10353
10354
10355void Sema::DefineImplicitLambdaToBlockPointerConversion(
10356       SourceLocation CurrentLocation,
10357       CXXConversionDecl *Conv)
10358{
10359  assert(!Conv->getParent()->isGenericLambda());
10360
10361  Conv->markUsed(Context);
10362
10363  SynthesizedFunctionScope Scope(*this, Conv);
10364  DiagnosticErrorTrap Trap(Diags);
10365
10366  // Copy-initialize the lambda object as needed to capture it.
10367  Expr *This = ActOnCXXThis(CurrentLocation).take();
10368  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10369
10370  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10371                                                        Conv->getLocation(),
10372                                                        Conv, DerefThis);
10373
10374  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10375  // behavior.  Note that only the general conversion function does this
10376  // (since it's unusable otherwise); in the case where we inline the
10377  // block literal, it has block literal lifetime semantics.
10378  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10379    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10380                                          CK_CopyAndAutoreleaseBlockObject,
10381                                          BuildBlock.get(), 0, VK_RValue);
10382
10383  if (BuildBlock.isInvalid()) {
10384    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10385    Conv->setInvalidDecl();
10386    return;
10387  }
10388
10389  // Create the return statement that returns the block from the conversion
10390  // function.
10391  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10392  if (Return.isInvalid()) {
10393    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10394    Conv->setInvalidDecl();
10395    return;
10396  }
10397
10398  // Set the body of the conversion function.
10399  Stmt *ReturnS = Return.take();
10400  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10401                                           Conv->getLocation(),
10402                                           Conv->getLocation()));
10403
10404  // We're done; notify the mutation listener, if any.
10405  if (ASTMutationListener *L = getASTMutationListener()) {
10406    L->CompletedImplicitDefinition(Conv);
10407  }
10408}
10409
10410/// \brief Determine whether the given list arguments contains exactly one
10411/// "real" (non-default) argument.
10412static bool hasOneRealArgument(MultiExprArg Args) {
10413  switch (Args.size()) {
10414  case 0:
10415    return false;
10416
10417  default:
10418    if (!Args[1]->isDefaultArgument())
10419      return false;
10420
10421    // fall through
10422  case 1:
10423    return !Args[0]->isDefaultArgument();
10424  }
10425
10426  return false;
10427}
10428
10429ExprResult
10430Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10431                            CXXConstructorDecl *Constructor,
10432                            MultiExprArg ExprArgs,
10433                            bool HadMultipleCandidates,
10434                            bool IsListInitialization,
10435                            bool RequiresZeroInit,
10436                            unsigned ConstructKind,
10437                            SourceRange ParenRange) {
10438  bool Elidable = false;
10439
10440  // C++0x [class.copy]p34:
10441  //   When certain criteria are met, an implementation is allowed to
10442  //   omit the copy/move construction of a class object, even if the
10443  //   copy/move constructor and/or destructor for the object have
10444  //   side effects. [...]
10445  //     - when a temporary class object that has not been bound to a
10446  //       reference (12.2) would be copied/moved to a class object
10447  //       with the same cv-unqualified type, the copy/move operation
10448  //       can be omitted by constructing the temporary object
10449  //       directly into the target of the omitted copy/move
10450  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10451      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10452    Expr *SubExpr = ExprArgs[0];
10453    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10454  }
10455
10456  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10457                               Elidable, ExprArgs, HadMultipleCandidates,
10458                               IsListInitialization, RequiresZeroInit,
10459                               ConstructKind, ParenRange);
10460}
10461
10462/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10463/// including handling of its default argument expressions.
10464ExprResult
10465Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10466                            CXXConstructorDecl *Constructor, bool Elidable,
10467                            MultiExprArg ExprArgs,
10468                            bool HadMultipleCandidates,
10469                            bool IsListInitialization,
10470                            bool RequiresZeroInit,
10471                            unsigned ConstructKind,
10472                            SourceRange ParenRange) {
10473  MarkFunctionReferenced(ConstructLoc, Constructor);
10474  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10475                                        Constructor, Elidable, ExprArgs,
10476                                        HadMultipleCandidates,
10477                                        IsListInitialization, RequiresZeroInit,
10478              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10479                                        ParenRange));
10480}
10481
10482void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10483  if (VD->isInvalidDecl()) return;
10484
10485  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10486  if (ClassDecl->isInvalidDecl()) return;
10487  if (ClassDecl->hasIrrelevantDestructor()) return;
10488  if (ClassDecl->isDependentContext()) return;
10489
10490  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10491  MarkFunctionReferenced(VD->getLocation(), Destructor);
10492  CheckDestructorAccess(VD->getLocation(), Destructor,
10493                        PDiag(diag::err_access_dtor_var)
10494                        << VD->getDeclName()
10495                        << VD->getType());
10496  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10497
10498  if (!VD->hasGlobalStorage()) return;
10499
10500  // Emit warning for non-trivial dtor in global scope (a real global,
10501  // class-static, function-static).
10502  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10503
10504  // TODO: this should be re-enabled for static locals by !CXAAtExit
10505  if (!VD->isStaticLocal())
10506    Diag(VD->getLocation(), diag::warn_global_destructor);
10507}
10508
10509/// \brief Given a constructor and the set of arguments provided for the
10510/// constructor, convert the arguments and add any required default arguments
10511/// to form a proper call to this constructor.
10512///
10513/// \returns true if an error occurred, false otherwise.
10514bool
10515Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10516                              MultiExprArg ArgsPtr,
10517                              SourceLocation Loc,
10518                              SmallVectorImpl<Expr*> &ConvertedArgs,
10519                              bool AllowExplicit,
10520                              bool IsListInitialization) {
10521  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10522  unsigned NumArgs = ArgsPtr.size();
10523  Expr **Args = ArgsPtr.data();
10524
10525  const FunctionProtoType *Proto
10526    = Constructor->getType()->getAs<FunctionProtoType>();
10527  assert(Proto && "Constructor without a prototype?");
10528  unsigned NumArgsInProto = Proto->getNumArgs();
10529
10530  // If too few arguments are available, we'll fill in the rest with defaults.
10531  if (NumArgs < NumArgsInProto)
10532    ConvertedArgs.reserve(NumArgsInProto);
10533  else
10534    ConvertedArgs.reserve(NumArgs);
10535
10536  VariadicCallType CallType =
10537    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10538  SmallVector<Expr *, 8> AllArgs;
10539  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10540                                        Proto, 0,
10541                                        llvm::makeArrayRef(Args, NumArgs),
10542                                        AllArgs,
10543                                        CallType, AllowExplicit,
10544                                        IsListInitialization);
10545  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10546
10547  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10548
10549  CheckConstructorCall(Constructor,
10550                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10551                                                        AllArgs.size()),
10552                       Proto, Loc);
10553
10554  return Invalid;
10555}
10556
10557static inline bool
10558CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10559                                       const FunctionDecl *FnDecl) {
10560  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10561  if (isa<NamespaceDecl>(DC)) {
10562    return SemaRef.Diag(FnDecl->getLocation(),
10563                        diag::err_operator_new_delete_declared_in_namespace)
10564      << FnDecl->getDeclName();
10565  }
10566
10567  if (isa<TranslationUnitDecl>(DC) &&
10568      FnDecl->getStorageClass() == SC_Static) {
10569    return SemaRef.Diag(FnDecl->getLocation(),
10570                        diag::err_operator_new_delete_declared_static)
10571      << FnDecl->getDeclName();
10572  }
10573
10574  return false;
10575}
10576
10577static inline bool
10578CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10579                            CanQualType ExpectedResultType,
10580                            CanQualType ExpectedFirstParamType,
10581                            unsigned DependentParamTypeDiag,
10582                            unsigned InvalidParamTypeDiag) {
10583  QualType ResultType =
10584    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10585
10586  // Check that the result type is not dependent.
10587  if (ResultType->isDependentType())
10588    return SemaRef.Diag(FnDecl->getLocation(),
10589                        diag::err_operator_new_delete_dependent_result_type)
10590    << FnDecl->getDeclName() << ExpectedResultType;
10591
10592  // Check that the result type is what we expect.
10593  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10594    return SemaRef.Diag(FnDecl->getLocation(),
10595                        diag::err_operator_new_delete_invalid_result_type)
10596    << FnDecl->getDeclName() << ExpectedResultType;
10597
10598  // A function template must have at least 2 parameters.
10599  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10600    return SemaRef.Diag(FnDecl->getLocation(),
10601                      diag::err_operator_new_delete_template_too_few_parameters)
10602        << FnDecl->getDeclName();
10603
10604  // The function decl must have at least 1 parameter.
10605  if (FnDecl->getNumParams() == 0)
10606    return SemaRef.Diag(FnDecl->getLocation(),
10607                        diag::err_operator_new_delete_too_few_parameters)
10608      << FnDecl->getDeclName();
10609
10610  // Check the first parameter type is not dependent.
10611  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10612  if (FirstParamType->isDependentType())
10613    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10614      << FnDecl->getDeclName() << ExpectedFirstParamType;
10615
10616  // Check that the first parameter type is what we expect.
10617  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10618      ExpectedFirstParamType)
10619    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10620    << FnDecl->getDeclName() << ExpectedFirstParamType;
10621
10622  return false;
10623}
10624
10625static bool
10626CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10627  // C++ [basic.stc.dynamic.allocation]p1:
10628  //   A program is ill-formed if an allocation function is declared in a
10629  //   namespace scope other than global scope or declared static in global
10630  //   scope.
10631  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10632    return true;
10633
10634  CanQualType SizeTy =
10635    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10636
10637  // C++ [basic.stc.dynamic.allocation]p1:
10638  //  The return type shall be void*. The first parameter shall have type
10639  //  std::size_t.
10640  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10641                                  SizeTy,
10642                                  diag::err_operator_new_dependent_param_type,
10643                                  diag::err_operator_new_param_type))
10644    return true;
10645
10646  // C++ [basic.stc.dynamic.allocation]p1:
10647  //  The first parameter shall not have an associated default argument.
10648  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10649    return SemaRef.Diag(FnDecl->getLocation(),
10650                        diag::err_operator_new_default_arg)
10651      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10652
10653  return false;
10654}
10655
10656static bool
10657CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10658  // C++ [basic.stc.dynamic.deallocation]p1:
10659  //   A program is ill-formed if deallocation functions are declared in a
10660  //   namespace scope other than global scope or declared static in global
10661  //   scope.
10662  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10663    return true;
10664
10665  // C++ [basic.stc.dynamic.deallocation]p2:
10666  //   Each deallocation function shall return void and its first parameter
10667  //   shall be void*.
10668  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10669                                  SemaRef.Context.VoidPtrTy,
10670                                 diag::err_operator_delete_dependent_param_type,
10671                                 diag::err_operator_delete_param_type))
10672    return true;
10673
10674  return false;
10675}
10676
10677/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10678/// of this overloaded operator is well-formed. If so, returns false;
10679/// otherwise, emits appropriate diagnostics and returns true.
10680bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10681  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10682         "Expected an overloaded operator declaration");
10683
10684  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10685
10686  // C++ [over.oper]p5:
10687  //   The allocation and deallocation functions, operator new,
10688  //   operator new[], operator delete and operator delete[], are
10689  //   described completely in 3.7.3. The attributes and restrictions
10690  //   found in the rest of this subclause do not apply to them unless
10691  //   explicitly stated in 3.7.3.
10692  if (Op == OO_Delete || Op == OO_Array_Delete)
10693    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10694
10695  if (Op == OO_New || Op == OO_Array_New)
10696    return CheckOperatorNewDeclaration(*this, FnDecl);
10697
10698  // C++ [over.oper]p6:
10699  //   An operator function shall either be a non-static member
10700  //   function or be a non-member function and have at least one
10701  //   parameter whose type is a class, a reference to a class, an
10702  //   enumeration, or a reference to an enumeration.
10703  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10704    if (MethodDecl->isStatic())
10705      return Diag(FnDecl->getLocation(),
10706                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10707  } else {
10708    bool ClassOrEnumParam = false;
10709    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10710                                   ParamEnd = FnDecl->param_end();
10711         Param != ParamEnd; ++Param) {
10712      QualType ParamType = (*Param)->getType().getNonReferenceType();
10713      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10714          ParamType->isEnumeralType()) {
10715        ClassOrEnumParam = true;
10716        break;
10717      }
10718    }
10719
10720    if (!ClassOrEnumParam)
10721      return Diag(FnDecl->getLocation(),
10722                  diag::err_operator_overload_needs_class_or_enum)
10723        << FnDecl->getDeclName();
10724  }
10725
10726  // C++ [over.oper]p8:
10727  //   An operator function cannot have default arguments (8.3.6),
10728  //   except where explicitly stated below.
10729  //
10730  // Only the function-call operator allows default arguments
10731  // (C++ [over.call]p1).
10732  if (Op != OO_Call) {
10733    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10734         Param != FnDecl->param_end(); ++Param) {
10735      if ((*Param)->hasDefaultArg())
10736        return Diag((*Param)->getLocation(),
10737                    diag::err_operator_overload_default_arg)
10738          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10739    }
10740  }
10741
10742  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10743    { false, false, false }
10744#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10745    , { Unary, Binary, MemberOnly }
10746#include "clang/Basic/OperatorKinds.def"
10747  };
10748
10749  bool CanBeUnaryOperator = OperatorUses[Op][0];
10750  bool CanBeBinaryOperator = OperatorUses[Op][1];
10751  bool MustBeMemberOperator = OperatorUses[Op][2];
10752
10753  // C++ [over.oper]p8:
10754  //   [...] Operator functions cannot have more or fewer parameters
10755  //   than the number required for the corresponding operator, as
10756  //   described in the rest of this subclause.
10757  unsigned NumParams = FnDecl->getNumParams()
10758                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10759  if (Op != OO_Call &&
10760      ((NumParams == 1 && !CanBeUnaryOperator) ||
10761       (NumParams == 2 && !CanBeBinaryOperator) ||
10762       (NumParams < 1) || (NumParams > 2))) {
10763    // We have the wrong number of parameters.
10764    unsigned ErrorKind;
10765    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10766      ErrorKind = 2;  // 2 -> unary or binary.
10767    } else if (CanBeUnaryOperator) {
10768      ErrorKind = 0;  // 0 -> unary
10769    } else {
10770      assert(CanBeBinaryOperator &&
10771             "All non-call overloaded operators are unary or binary!");
10772      ErrorKind = 1;  // 1 -> binary
10773    }
10774
10775    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10776      << FnDecl->getDeclName() << NumParams << ErrorKind;
10777  }
10778
10779  // Overloaded operators other than operator() cannot be variadic.
10780  if (Op != OO_Call &&
10781      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10782    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10783      << FnDecl->getDeclName();
10784  }
10785
10786  // Some operators must be non-static member functions.
10787  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10788    return Diag(FnDecl->getLocation(),
10789                diag::err_operator_overload_must_be_member)
10790      << FnDecl->getDeclName();
10791  }
10792
10793  // C++ [over.inc]p1:
10794  //   The user-defined function called operator++ implements the
10795  //   prefix and postfix ++ operator. If this function is a member
10796  //   function with no parameters, or a non-member function with one
10797  //   parameter of class or enumeration type, it defines the prefix
10798  //   increment operator ++ for objects of that type. If the function
10799  //   is a member function with one parameter (which shall be of type
10800  //   int) or a non-member function with two parameters (the second
10801  //   of which shall be of type int), it defines the postfix
10802  //   increment operator ++ for objects of that type.
10803  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10804    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10805    bool ParamIsInt = false;
10806    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10807      ParamIsInt = BT->getKind() == BuiltinType::Int;
10808
10809    if (!ParamIsInt)
10810      return Diag(LastParam->getLocation(),
10811                  diag::err_operator_overload_post_incdec_must_be_int)
10812        << LastParam->getType() << (Op == OO_MinusMinus);
10813  }
10814
10815  return false;
10816}
10817
10818/// CheckLiteralOperatorDeclaration - Check whether the declaration
10819/// of this literal operator function is well-formed. If so, returns
10820/// false; otherwise, emits appropriate diagnostics and returns true.
10821bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10822  if (isa<CXXMethodDecl>(FnDecl)) {
10823    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10824      << FnDecl->getDeclName();
10825    return true;
10826  }
10827
10828  if (FnDecl->isExternC()) {
10829    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10830    return true;
10831  }
10832
10833  bool Valid = false;
10834
10835  // This might be the definition of a literal operator template.
10836  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10837  // This might be a specialization of a literal operator template.
10838  if (!TpDecl)
10839    TpDecl = FnDecl->getPrimaryTemplate();
10840
10841  // template <char...> type operator "" name() and
10842  // template <class T, T...> type operator "" name() are the only valid
10843  // template signatures, and the only valid signatures with no parameters.
10844  if (TpDecl) {
10845    if (FnDecl->param_size() == 0) {
10846      // Must have one or two template parameters
10847      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10848      if (Params->size() == 1) {
10849        NonTypeTemplateParmDecl *PmDecl =
10850          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10851
10852        // The template parameter must be a char parameter pack.
10853        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10854            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10855          Valid = true;
10856      } else if (Params->size() == 2) {
10857        TemplateTypeParmDecl *PmType =
10858          dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
10859        NonTypeTemplateParmDecl *PmArgs =
10860          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
10861
10862        // The second template parameter must be a parameter pack with the
10863        // first template parameter as its type.
10864        if (PmType && PmArgs &&
10865            !PmType->isTemplateParameterPack() &&
10866            PmArgs->isTemplateParameterPack()) {
10867          const TemplateTypeParmType *TArgs =
10868            PmArgs->getType()->getAs<TemplateTypeParmType>();
10869          if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
10870              TArgs->getIndex() == PmType->getIndex()) {
10871            Valid = true;
10872            if (ActiveTemplateInstantiations.empty())
10873              Diag(FnDecl->getLocation(),
10874                   diag::ext_string_literal_operator_template);
10875          }
10876        }
10877      }
10878    }
10879  } else if (FnDecl->param_size()) {
10880    // Check the first parameter
10881    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10882
10883    QualType T = (*Param)->getType().getUnqualifiedType();
10884
10885    // unsigned long long int, long double, and any character type are allowed
10886    // as the only parameters.
10887    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10888        Context.hasSameType(T, Context.LongDoubleTy) ||
10889        Context.hasSameType(T, Context.CharTy) ||
10890        Context.hasSameType(T, Context.WideCharTy) ||
10891        Context.hasSameType(T, Context.Char16Ty) ||
10892        Context.hasSameType(T, Context.Char32Ty)) {
10893      if (++Param == FnDecl->param_end())
10894        Valid = true;
10895      goto FinishedParams;
10896    }
10897
10898    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10899    const PointerType *PT = T->getAs<PointerType>();
10900    if (!PT)
10901      goto FinishedParams;
10902    T = PT->getPointeeType();
10903    if (!T.isConstQualified() || T.isVolatileQualified())
10904      goto FinishedParams;
10905    T = T.getUnqualifiedType();
10906
10907    // Move on to the second parameter;
10908    ++Param;
10909
10910    // If there is no second parameter, the first must be a const char *
10911    if (Param == FnDecl->param_end()) {
10912      if (Context.hasSameType(T, Context.CharTy))
10913        Valid = true;
10914      goto FinishedParams;
10915    }
10916
10917    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10918    // are allowed as the first parameter to a two-parameter function
10919    if (!(Context.hasSameType(T, Context.CharTy) ||
10920          Context.hasSameType(T, Context.WideCharTy) ||
10921          Context.hasSameType(T, Context.Char16Ty) ||
10922          Context.hasSameType(T, Context.Char32Ty)))
10923      goto FinishedParams;
10924
10925    // The second and final parameter must be an std::size_t
10926    T = (*Param)->getType().getUnqualifiedType();
10927    if (Context.hasSameType(T, Context.getSizeType()) &&
10928        ++Param == FnDecl->param_end())
10929      Valid = true;
10930  }
10931
10932  // FIXME: This diagnostic is absolutely terrible.
10933FinishedParams:
10934  if (!Valid) {
10935    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10936      << FnDecl->getDeclName();
10937    return true;
10938  }
10939
10940  // A parameter-declaration-clause containing a default argument is not
10941  // equivalent to any of the permitted forms.
10942  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10943                                    ParamEnd = FnDecl->param_end();
10944       Param != ParamEnd; ++Param) {
10945    if ((*Param)->hasDefaultArg()) {
10946      Diag((*Param)->getDefaultArgRange().getBegin(),
10947           diag::err_literal_operator_default_argument)
10948        << (*Param)->getDefaultArgRange();
10949      break;
10950    }
10951  }
10952
10953  StringRef LiteralName
10954    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10955  if (LiteralName[0] != '_') {
10956    // C++11 [usrlit.suffix]p1:
10957    //   Literal suffix identifiers that do not start with an underscore
10958    //   are reserved for future standardization.
10959    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
10960      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
10961  }
10962
10963  return false;
10964}
10965
10966/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10967/// linkage specification, including the language and (if present)
10968/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10969/// the location of the language string literal, which is provided
10970/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10971/// the '{' brace. Otherwise, this linkage specification does not
10972/// have any braces.
10973Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10974                                           SourceLocation LangLoc,
10975                                           StringRef Lang,
10976                                           SourceLocation LBraceLoc) {
10977  LinkageSpecDecl::LanguageIDs Language;
10978  if (Lang == "\"C\"")
10979    Language = LinkageSpecDecl::lang_c;
10980  else if (Lang == "\"C++\"")
10981    Language = LinkageSpecDecl::lang_cxx;
10982  else {
10983    Diag(LangLoc, diag::err_bad_language);
10984    return 0;
10985  }
10986
10987  // FIXME: Add all the various semantics of linkage specifications
10988
10989  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10990                                               ExternLoc, LangLoc, Language,
10991                                               LBraceLoc.isValid());
10992  CurContext->addDecl(D);
10993  PushDeclContext(S, D);
10994  return D;
10995}
10996
10997/// ActOnFinishLinkageSpecification - Complete the definition of
10998/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10999/// valid, it's the position of the closing '}' brace in a linkage
11000/// specification that uses braces.
11001Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11002                                            Decl *LinkageSpec,
11003                                            SourceLocation RBraceLoc) {
11004  if (LinkageSpec) {
11005    if (RBraceLoc.isValid()) {
11006      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11007      LSDecl->setRBraceLoc(RBraceLoc);
11008    }
11009    PopDeclContext();
11010  }
11011  return LinkageSpec;
11012}
11013
11014Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11015                                  AttributeList *AttrList,
11016                                  SourceLocation SemiLoc) {
11017  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11018  // Attribute declarations appertain to empty declaration so we handle
11019  // them here.
11020  if (AttrList)
11021    ProcessDeclAttributeList(S, ED, AttrList);
11022
11023  CurContext->addDecl(ED);
11024  return ED;
11025}
11026
11027/// \brief Perform semantic analysis for the variable declaration that
11028/// occurs within a C++ catch clause, returning the newly-created
11029/// variable.
11030VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11031                                         TypeSourceInfo *TInfo,
11032                                         SourceLocation StartLoc,
11033                                         SourceLocation Loc,
11034                                         IdentifierInfo *Name) {
11035  bool Invalid = false;
11036  QualType ExDeclType = TInfo->getType();
11037
11038  // Arrays and functions decay.
11039  if (ExDeclType->isArrayType())
11040    ExDeclType = Context.getArrayDecayedType(ExDeclType);
11041  else if (ExDeclType->isFunctionType())
11042    ExDeclType = Context.getPointerType(ExDeclType);
11043
11044  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11045  // The exception-declaration shall not denote a pointer or reference to an
11046  // incomplete type, other than [cv] void*.
11047  // N2844 forbids rvalue references.
11048  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11049    Diag(Loc, diag::err_catch_rvalue_ref);
11050    Invalid = true;
11051  }
11052
11053  QualType BaseType = ExDeclType;
11054  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11055  unsigned DK = diag::err_catch_incomplete;
11056  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11057    BaseType = Ptr->getPointeeType();
11058    Mode = 1;
11059    DK = diag::err_catch_incomplete_ptr;
11060  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11061    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11062    BaseType = Ref->getPointeeType();
11063    Mode = 2;
11064    DK = diag::err_catch_incomplete_ref;
11065  }
11066  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11067      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11068    Invalid = true;
11069
11070  if (!Invalid && !ExDeclType->isDependentType() &&
11071      RequireNonAbstractType(Loc, ExDeclType,
11072                             diag::err_abstract_type_in_decl,
11073                             AbstractVariableType))
11074    Invalid = true;
11075
11076  // Only the non-fragile NeXT runtime currently supports C++ catches
11077  // of ObjC types, and no runtime supports catching ObjC types by value.
11078  if (!Invalid && getLangOpts().ObjC1) {
11079    QualType T = ExDeclType;
11080    if (const ReferenceType *RT = T->getAs<ReferenceType>())
11081      T = RT->getPointeeType();
11082
11083    if (T->isObjCObjectType()) {
11084      Diag(Loc, diag::err_objc_object_catch);
11085      Invalid = true;
11086    } else if (T->isObjCObjectPointerType()) {
11087      // FIXME: should this be a test for macosx-fragile specifically?
11088      if (getLangOpts().ObjCRuntime.isFragile())
11089        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11090    }
11091  }
11092
11093  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11094                                    ExDeclType, TInfo, SC_None);
11095  ExDecl->setExceptionVariable(true);
11096
11097  // In ARC, infer 'retaining' for variables of retainable type.
11098  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11099    Invalid = true;
11100
11101  if (!Invalid && !ExDeclType->isDependentType()) {
11102    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11103      // Insulate this from anything else we might currently be parsing.
11104      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11105
11106      // C++ [except.handle]p16:
11107      //   The object declared in an exception-declaration or, if the
11108      //   exception-declaration does not specify a name, a temporary (12.2) is
11109      //   copy-initialized (8.5) from the exception object. [...]
11110      //   The object is destroyed when the handler exits, after the destruction
11111      //   of any automatic objects initialized within the handler.
11112      //
11113      // We just pretend to initialize the object with itself, then make sure
11114      // it can be destroyed later.
11115      QualType initType = ExDeclType;
11116
11117      InitializedEntity entity =
11118        InitializedEntity::InitializeVariable(ExDecl);
11119      InitializationKind initKind =
11120        InitializationKind::CreateCopy(Loc, SourceLocation());
11121
11122      Expr *opaqueValue =
11123        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11124      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11125      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11126      if (result.isInvalid())
11127        Invalid = true;
11128      else {
11129        // If the constructor used was non-trivial, set this as the
11130        // "initializer".
11131        CXXConstructExpr *construct = result.takeAs<CXXConstructExpr>();
11132        if (!construct->getConstructor()->isTrivial()) {
11133          Expr *init = MaybeCreateExprWithCleanups(construct);
11134          ExDecl->setInit(init);
11135        }
11136
11137        // And make sure it's destructable.
11138        FinalizeVarWithDestructor(ExDecl, recordType);
11139      }
11140    }
11141  }
11142
11143  if (Invalid)
11144    ExDecl->setInvalidDecl();
11145
11146  return ExDecl;
11147}
11148
11149/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11150/// handler.
11151Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11152  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11153  bool Invalid = D.isInvalidType();
11154
11155  // Check for unexpanded parameter packs.
11156  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11157                                      UPPC_ExceptionType)) {
11158    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11159                                             D.getIdentifierLoc());
11160    Invalid = true;
11161  }
11162
11163  IdentifierInfo *II = D.getIdentifier();
11164  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11165                                             LookupOrdinaryName,
11166                                             ForRedeclaration)) {
11167    // The scope should be freshly made just for us. There is just no way
11168    // it contains any previous declaration.
11169    assert(!S->isDeclScope(PrevDecl));
11170    if (PrevDecl->isTemplateParameter()) {
11171      // Maybe we will complain about the shadowed template parameter.
11172      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11173      PrevDecl = 0;
11174    }
11175  }
11176
11177  if (D.getCXXScopeSpec().isSet() && !Invalid) {
11178    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11179      << D.getCXXScopeSpec().getRange();
11180    Invalid = true;
11181  }
11182
11183  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11184                                              D.getLocStart(),
11185                                              D.getIdentifierLoc(),
11186                                              D.getIdentifier());
11187  if (Invalid)
11188    ExDecl->setInvalidDecl();
11189
11190  // Add the exception declaration into this scope.
11191  if (II)
11192    PushOnScopeChains(ExDecl, S);
11193  else
11194    CurContext->addDecl(ExDecl);
11195
11196  ProcessDeclAttributes(S, ExDecl, D);
11197  return ExDecl;
11198}
11199
11200Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11201                                         Expr *AssertExpr,
11202                                         Expr *AssertMessageExpr,
11203                                         SourceLocation RParenLoc) {
11204  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
11205
11206  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11207    return 0;
11208
11209  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11210                                      AssertMessage, RParenLoc, false);
11211}
11212
11213Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11214                                         Expr *AssertExpr,
11215                                         StringLiteral *AssertMessage,
11216                                         SourceLocation RParenLoc,
11217                                         bool Failed) {
11218  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11219      !Failed) {
11220    // In a static_assert-declaration, the constant-expression shall be a
11221    // constant expression that can be contextually converted to bool.
11222    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11223    if (Converted.isInvalid())
11224      Failed = true;
11225
11226    llvm::APSInt Cond;
11227    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11228          diag::err_static_assert_expression_is_not_constant,
11229          /*AllowFold=*/false).isInvalid())
11230      Failed = true;
11231
11232    if (!Failed && !Cond) {
11233      SmallString<256> MsgBuffer;
11234      llvm::raw_svector_ostream Msg(MsgBuffer);
11235      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
11236      Diag(StaticAssertLoc, diag::err_static_assert_failed)
11237        << Msg.str() << AssertExpr->getSourceRange();
11238      Failed = true;
11239    }
11240  }
11241
11242  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11243                                        AssertExpr, AssertMessage, RParenLoc,
11244                                        Failed);
11245
11246  CurContext->addDecl(Decl);
11247  return Decl;
11248}
11249
11250/// \brief Perform semantic analysis of the given friend type declaration.
11251///
11252/// \returns A friend declaration that.
11253FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11254                                      SourceLocation FriendLoc,
11255                                      TypeSourceInfo *TSInfo) {
11256  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11257
11258  QualType T = TSInfo->getType();
11259  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11260
11261  // C++03 [class.friend]p2:
11262  //   An elaborated-type-specifier shall be used in a friend declaration
11263  //   for a class.*
11264  //
11265  //   * The class-key of the elaborated-type-specifier is required.
11266  if (!ActiveTemplateInstantiations.empty()) {
11267    // Do not complain about the form of friend template types during
11268    // template instantiation; we will already have complained when the
11269    // template was declared.
11270  } else {
11271    if (!T->isElaboratedTypeSpecifier()) {
11272      // If we evaluated the type to a record type, suggest putting
11273      // a tag in front.
11274      if (const RecordType *RT = T->getAs<RecordType>()) {
11275        RecordDecl *RD = RT->getDecl();
11276
11277        std::string InsertionText = std::string(" ") + RD->getKindName();
11278
11279        Diag(TypeRange.getBegin(),
11280             getLangOpts().CPlusPlus11 ?
11281               diag::warn_cxx98_compat_unelaborated_friend_type :
11282               diag::ext_unelaborated_friend_type)
11283          << (unsigned) RD->getTagKind()
11284          << T
11285          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11286                                        InsertionText);
11287      } else {
11288        Diag(FriendLoc,
11289             getLangOpts().CPlusPlus11 ?
11290               diag::warn_cxx98_compat_nonclass_type_friend :
11291               diag::ext_nonclass_type_friend)
11292          << T
11293          << TypeRange;
11294      }
11295    } else if (T->getAs<EnumType>()) {
11296      Diag(FriendLoc,
11297           getLangOpts().CPlusPlus11 ?
11298             diag::warn_cxx98_compat_enum_friend :
11299             diag::ext_enum_friend)
11300        << T
11301        << TypeRange;
11302    }
11303
11304    // C++11 [class.friend]p3:
11305    //   A friend declaration that does not declare a function shall have one
11306    //   of the following forms:
11307    //     friend elaborated-type-specifier ;
11308    //     friend simple-type-specifier ;
11309    //     friend typename-specifier ;
11310    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11311      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11312  }
11313
11314  //   If the type specifier in a friend declaration designates a (possibly
11315  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11316  //   the friend declaration is ignored.
11317  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11318}
11319
11320/// Handle a friend tag declaration where the scope specifier was
11321/// templated.
11322Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11323                                    unsigned TagSpec, SourceLocation TagLoc,
11324                                    CXXScopeSpec &SS,
11325                                    IdentifierInfo *Name,
11326                                    SourceLocation NameLoc,
11327                                    AttributeList *Attr,
11328                                    MultiTemplateParamsArg TempParamLists) {
11329  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11330
11331  bool isExplicitSpecialization = false;
11332  bool Invalid = false;
11333
11334  if (TemplateParameterList *TemplateParams =
11335          MatchTemplateParametersToScopeSpecifier(
11336              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11337              isExplicitSpecialization, Invalid)) {
11338    if (TemplateParams->size() > 0) {
11339      // This is a declaration of a class template.
11340      if (Invalid)
11341        return 0;
11342
11343      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11344                                SS, Name, NameLoc, Attr,
11345                                TemplateParams, AS_public,
11346                                /*ModulePrivateLoc=*/SourceLocation(),
11347                                TempParamLists.size() - 1,
11348                                TempParamLists.data()).take();
11349    } else {
11350      // The "template<>" header is extraneous.
11351      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11352        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11353      isExplicitSpecialization = true;
11354    }
11355  }
11356
11357  if (Invalid) return 0;
11358
11359  bool isAllExplicitSpecializations = true;
11360  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11361    if (TempParamLists[I]->size()) {
11362      isAllExplicitSpecializations = false;
11363      break;
11364    }
11365  }
11366
11367  // FIXME: don't ignore attributes.
11368
11369  // If it's explicit specializations all the way down, just forget
11370  // about the template header and build an appropriate non-templated
11371  // friend.  TODO: for source fidelity, remember the headers.
11372  if (isAllExplicitSpecializations) {
11373    if (SS.isEmpty()) {
11374      bool Owned = false;
11375      bool IsDependent = false;
11376      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11377                      Attr, AS_public,
11378                      /*ModulePrivateLoc=*/SourceLocation(),
11379                      MultiTemplateParamsArg(), Owned, IsDependent,
11380                      /*ScopedEnumKWLoc=*/SourceLocation(),
11381                      /*ScopedEnumUsesClassTag=*/false,
11382                      /*UnderlyingType=*/TypeResult());
11383    }
11384
11385    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11386    ElaboratedTypeKeyword Keyword
11387      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11388    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11389                                   *Name, NameLoc);
11390    if (T.isNull())
11391      return 0;
11392
11393    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11394    if (isa<DependentNameType>(T)) {
11395      DependentNameTypeLoc TL =
11396          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11397      TL.setElaboratedKeywordLoc(TagLoc);
11398      TL.setQualifierLoc(QualifierLoc);
11399      TL.setNameLoc(NameLoc);
11400    } else {
11401      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11402      TL.setElaboratedKeywordLoc(TagLoc);
11403      TL.setQualifierLoc(QualifierLoc);
11404      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11405    }
11406
11407    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11408                                            TSI, FriendLoc, TempParamLists);
11409    Friend->setAccess(AS_public);
11410    CurContext->addDecl(Friend);
11411    return Friend;
11412  }
11413
11414  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11415
11416
11417
11418  // Handle the case of a templated-scope friend class.  e.g.
11419  //   template <class T> class A<T>::B;
11420  // FIXME: we don't support these right now.
11421  Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
11422    << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
11423  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11424  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11425  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11426  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11427  TL.setElaboratedKeywordLoc(TagLoc);
11428  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11429  TL.setNameLoc(NameLoc);
11430
11431  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11432                                          TSI, FriendLoc, TempParamLists);
11433  Friend->setAccess(AS_public);
11434  Friend->setUnsupportedFriend(true);
11435  CurContext->addDecl(Friend);
11436  return Friend;
11437}
11438
11439
11440/// Handle a friend type declaration.  This works in tandem with
11441/// ActOnTag.
11442///
11443/// Notes on friend class templates:
11444///
11445/// We generally treat friend class declarations as if they were
11446/// declaring a class.  So, for example, the elaborated type specifier
11447/// in a friend declaration is required to obey the restrictions of a
11448/// class-head (i.e. no typedefs in the scope chain), template
11449/// parameters are required to match up with simple template-ids, &c.
11450/// However, unlike when declaring a template specialization, it's
11451/// okay to refer to a template specialization without an empty
11452/// template parameter declaration, e.g.
11453///   friend class A<T>::B<unsigned>;
11454/// We permit this as a special case; if there are any template
11455/// parameters present at all, require proper matching, i.e.
11456///   template <> template \<class T> friend class A<int>::B;
11457Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11458                                MultiTemplateParamsArg TempParams) {
11459  SourceLocation Loc = DS.getLocStart();
11460
11461  assert(DS.isFriendSpecified());
11462  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11463
11464  // Try to convert the decl specifier to a type.  This works for
11465  // friend templates because ActOnTag never produces a ClassTemplateDecl
11466  // for a TUK_Friend.
11467  Declarator TheDeclarator(DS, Declarator::MemberContext);
11468  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11469  QualType T = TSI->getType();
11470  if (TheDeclarator.isInvalidType())
11471    return 0;
11472
11473  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11474    return 0;
11475
11476  // This is definitely an error in C++98.  It's probably meant to
11477  // be forbidden in C++0x, too, but the specification is just
11478  // poorly written.
11479  //
11480  // The problem is with declarations like the following:
11481  //   template <T> friend A<T>::foo;
11482  // where deciding whether a class C is a friend or not now hinges
11483  // on whether there exists an instantiation of A that causes
11484  // 'foo' to equal C.  There are restrictions on class-heads
11485  // (which we declare (by fiat) elaborated friend declarations to
11486  // be) that makes this tractable.
11487  //
11488  // FIXME: handle "template <> friend class A<T>;", which
11489  // is possibly well-formed?  Who even knows?
11490  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11491    Diag(Loc, diag::err_tagless_friend_type_template)
11492      << DS.getSourceRange();
11493    return 0;
11494  }
11495
11496  // C++98 [class.friend]p1: A friend of a class is a function
11497  //   or class that is not a member of the class . . .
11498  // This is fixed in DR77, which just barely didn't make the C++03
11499  // deadline.  It's also a very silly restriction that seriously
11500  // affects inner classes and which nobody else seems to implement;
11501  // thus we never diagnose it, not even in -pedantic.
11502  //
11503  // But note that we could warn about it: it's always useless to
11504  // friend one of your own members (it's not, however, worthless to
11505  // friend a member of an arbitrary specialization of your template).
11506
11507  Decl *D;
11508  if (unsigned NumTempParamLists = TempParams.size())
11509    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11510                                   NumTempParamLists,
11511                                   TempParams.data(),
11512                                   TSI,
11513                                   DS.getFriendSpecLoc());
11514  else
11515    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11516
11517  if (!D)
11518    return 0;
11519
11520  D->setAccess(AS_public);
11521  CurContext->addDecl(D);
11522
11523  return D;
11524}
11525
11526NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11527                                        MultiTemplateParamsArg TemplateParams) {
11528  const DeclSpec &DS = D.getDeclSpec();
11529
11530  assert(DS.isFriendSpecified());
11531  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11532
11533  SourceLocation Loc = D.getIdentifierLoc();
11534  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11535
11536  // C++ [class.friend]p1
11537  //   A friend of a class is a function or class....
11538  // Note that this sees through typedefs, which is intended.
11539  // It *doesn't* see through dependent types, which is correct
11540  // according to [temp.arg.type]p3:
11541  //   If a declaration acquires a function type through a
11542  //   type dependent on a template-parameter and this causes
11543  //   a declaration that does not use the syntactic form of a
11544  //   function declarator to have a function type, the program
11545  //   is ill-formed.
11546  if (!TInfo->getType()->isFunctionType()) {
11547    Diag(Loc, diag::err_unexpected_friend);
11548
11549    // It might be worthwhile to try to recover by creating an
11550    // appropriate declaration.
11551    return 0;
11552  }
11553
11554  // C++ [namespace.memdef]p3
11555  //  - If a friend declaration in a non-local class first declares a
11556  //    class or function, the friend class or function is a member
11557  //    of the innermost enclosing namespace.
11558  //  - The name of the friend is not found by simple name lookup
11559  //    until a matching declaration is provided in that namespace
11560  //    scope (either before or after the class declaration granting
11561  //    friendship).
11562  //  - If a friend function is called, its name may be found by the
11563  //    name lookup that considers functions from namespaces and
11564  //    classes associated with the types of the function arguments.
11565  //  - When looking for a prior declaration of a class or a function
11566  //    declared as a friend, scopes outside the innermost enclosing
11567  //    namespace scope are not considered.
11568
11569  CXXScopeSpec &SS = D.getCXXScopeSpec();
11570  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11571  DeclarationName Name = NameInfo.getName();
11572  assert(Name);
11573
11574  // Check for unexpanded parameter packs.
11575  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11576      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11577      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11578    return 0;
11579
11580  // The context we found the declaration in, or in which we should
11581  // create the declaration.
11582  DeclContext *DC;
11583  Scope *DCScope = S;
11584  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11585                        ForRedeclaration);
11586
11587  // There are five cases here.
11588  //   - There's no scope specifier and we're in a local class. Only look
11589  //     for functions declared in the immediately-enclosing block scope.
11590  // We recover from invalid scope qualifiers as if they just weren't there.
11591  FunctionDecl *FunctionContainingLocalClass = 0;
11592  if ((SS.isInvalid() || !SS.isSet()) &&
11593      (FunctionContainingLocalClass =
11594           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11595    // C++11 [class.friend]p11:
11596    //   If a friend declaration appears in a local class and the name
11597    //   specified is an unqualified name, a prior declaration is
11598    //   looked up without considering scopes that are outside the
11599    //   innermost enclosing non-class scope. For a friend function
11600    //   declaration, if there is no prior declaration, the program is
11601    //   ill-formed.
11602
11603    // Find the innermost enclosing non-class scope. This is the block
11604    // scope containing the local class definition (or for a nested class,
11605    // the outer local class).
11606    DCScope = S->getFnParent();
11607
11608    // Look up the function name in the scope.
11609    Previous.clear(LookupLocalFriendName);
11610    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11611
11612    if (!Previous.empty()) {
11613      // All possible previous declarations must have the same context:
11614      // either they were declared at block scope or they are members of
11615      // one of the enclosing local classes.
11616      DC = Previous.getRepresentativeDecl()->getDeclContext();
11617    } else {
11618      // This is ill-formed, but provide the context that we would have
11619      // declared the function in, if we were permitted to, for error recovery.
11620      DC = FunctionContainingLocalClass;
11621    }
11622    adjustContextForLocalExternDecl(DC);
11623
11624    // C++ [class.friend]p6:
11625    //   A function can be defined in a friend declaration of a class if and
11626    //   only if the class is a non-local class (9.8), the function name is
11627    //   unqualified, and the function has namespace scope.
11628    if (D.isFunctionDefinition()) {
11629      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11630    }
11631
11632  //   - There's no scope specifier, in which case we just go to the
11633  //     appropriate scope and look for a function or function template
11634  //     there as appropriate.
11635  } else if (SS.isInvalid() || !SS.isSet()) {
11636    // C++11 [namespace.memdef]p3:
11637    //   If the name in a friend declaration is neither qualified nor
11638    //   a template-id and the declaration is a function or an
11639    //   elaborated-type-specifier, the lookup to determine whether
11640    //   the entity has been previously declared shall not consider
11641    //   any scopes outside the innermost enclosing namespace.
11642    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11643
11644    // Find the appropriate context according to the above.
11645    DC = CurContext;
11646
11647    // Skip class contexts.  If someone can cite chapter and verse
11648    // for this behavior, that would be nice --- it's what GCC and
11649    // EDG do, and it seems like a reasonable intent, but the spec
11650    // really only says that checks for unqualified existing
11651    // declarations should stop at the nearest enclosing namespace,
11652    // not that they should only consider the nearest enclosing
11653    // namespace.
11654    while (DC->isRecord())
11655      DC = DC->getParent();
11656
11657    DeclContext *LookupDC = DC;
11658    while (LookupDC->isTransparentContext())
11659      LookupDC = LookupDC->getParent();
11660
11661    while (true) {
11662      LookupQualifiedName(Previous, LookupDC);
11663
11664      if (!Previous.empty()) {
11665        DC = LookupDC;
11666        break;
11667      }
11668
11669      if (isTemplateId) {
11670        if (isa<TranslationUnitDecl>(LookupDC)) break;
11671      } else {
11672        if (LookupDC->isFileContext()) break;
11673      }
11674      LookupDC = LookupDC->getParent();
11675    }
11676
11677    DCScope = getScopeForDeclContext(S, DC);
11678
11679  //   - There's a non-dependent scope specifier, in which case we
11680  //     compute it and do a previous lookup there for a function
11681  //     or function template.
11682  } else if (!SS.getScopeRep()->isDependent()) {
11683    DC = computeDeclContext(SS);
11684    if (!DC) return 0;
11685
11686    if (RequireCompleteDeclContext(SS, DC)) return 0;
11687
11688    LookupQualifiedName(Previous, DC);
11689
11690    // Ignore things found implicitly in the wrong scope.
11691    // TODO: better diagnostics for this case.  Suggesting the right
11692    // qualified scope would be nice...
11693    LookupResult::Filter F = Previous.makeFilter();
11694    while (F.hasNext()) {
11695      NamedDecl *D = F.next();
11696      if (!DC->InEnclosingNamespaceSetOf(
11697              D->getDeclContext()->getRedeclContext()))
11698        F.erase();
11699    }
11700    F.done();
11701
11702    if (Previous.empty()) {
11703      D.setInvalidType();
11704      Diag(Loc, diag::err_qualified_friend_not_found)
11705          << Name << TInfo->getType();
11706      return 0;
11707    }
11708
11709    // C++ [class.friend]p1: A friend of a class is a function or
11710    //   class that is not a member of the class . . .
11711    if (DC->Equals(CurContext))
11712      Diag(DS.getFriendSpecLoc(),
11713           getLangOpts().CPlusPlus11 ?
11714             diag::warn_cxx98_compat_friend_is_member :
11715             diag::err_friend_is_member);
11716
11717    if (D.isFunctionDefinition()) {
11718      // C++ [class.friend]p6:
11719      //   A function can be defined in a friend declaration of a class if and
11720      //   only if the class is a non-local class (9.8), the function name is
11721      //   unqualified, and the function has namespace scope.
11722      SemaDiagnosticBuilder DB
11723        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11724
11725      DB << SS.getScopeRep();
11726      if (DC->isFileContext())
11727        DB << FixItHint::CreateRemoval(SS.getRange());
11728      SS.clear();
11729    }
11730
11731  //   - There's a scope specifier that does not match any template
11732  //     parameter lists, in which case we use some arbitrary context,
11733  //     create a method or method template, and wait for instantiation.
11734  //   - There's a scope specifier that does match some template
11735  //     parameter lists, which we don't handle right now.
11736  } else {
11737    if (D.isFunctionDefinition()) {
11738      // C++ [class.friend]p6:
11739      //   A function can be defined in a friend declaration of a class if and
11740      //   only if the class is a non-local class (9.8), the function name is
11741      //   unqualified, and the function has namespace scope.
11742      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11743        << SS.getScopeRep();
11744    }
11745
11746    DC = CurContext;
11747    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11748  }
11749
11750  if (!DC->isRecord()) {
11751    // This implies that it has to be an operator or function.
11752    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11753        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11754        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11755      Diag(Loc, diag::err_introducing_special_friend) <<
11756        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11757         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11758      return 0;
11759    }
11760  }
11761
11762  // FIXME: This is an egregious hack to cope with cases where the scope stack
11763  // does not contain the declaration context, i.e., in an out-of-line
11764  // definition of a class.
11765  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11766  if (!DCScope) {
11767    FakeDCScope.setEntity(DC);
11768    DCScope = &FakeDCScope;
11769  }
11770
11771  bool AddToScope = true;
11772  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11773                                          TemplateParams, AddToScope);
11774  if (!ND) return 0;
11775
11776  assert(ND->getLexicalDeclContext() == CurContext);
11777
11778  // If we performed typo correction, we might have added a scope specifier
11779  // and changed the decl context.
11780  DC = ND->getDeclContext();
11781
11782  // Add the function declaration to the appropriate lookup tables,
11783  // adjusting the redeclarations list as necessary.  We don't
11784  // want to do this yet if the friending class is dependent.
11785  //
11786  // Also update the scope-based lookup if the target context's
11787  // lookup context is in lexical scope.
11788  if (!CurContext->isDependentContext()) {
11789    DC = DC->getRedeclContext();
11790    DC->makeDeclVisibleInContext(ND);
11791    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11792      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11793  }
11794
11795  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11796                                       D.getIdentifierLoc(), ND,
11797                                       DS.getFriendSpecLoc());
11798  FrD->setAccess(AS_public);
11799  CurContext->addDecl(FrD);
11800
11801  if (ND->isInvalidDecl()) {
11802    FrD->setInvalidDecl();
11803  } else {
11804    if (DC->isRecord()) CheckFriendAccess(ND);
11805
11806    FunctionDecl *FD;
11807    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11808      FD = FTD->getTemplatedDecl();
11809    else
11810      FD = cast<FunctionDecl>(ND);
11811
11812    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11813    // default argument expression, that declaration shall be a definition
11814    // and shall be the only declaration of the function or function
11815    // template in the translation unit.
11816    if (functionDeclHasDefaultArgument(FD)) {
11817      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11818        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11819        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11820      } else if (!D.isFunctionDefinition())
11821        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11822    }
11823
11824    // Mark templated-scope function declarations as unsupported.
11825    if (FD->getNumTemplateParameterLists())
11826      FrD->setUnsupportedFriend(true);
11827  }
11828
11829  return ND;
11830}
11831
11832void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11833  AdjustDeclIfTemplate(Dcl);
11834
11835  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11836  if (!Fn) {
11837    Diag(DelLoc, diag::err_deleted_non_function);
11838    return;
11839  }
11840
11841  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11842    // Don't consider the implicit declaration we generate for explicit
11843    // specializations. FIXME: Do not generate these implicit declarations.
11844    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11845        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11846      Diag(DelLoc, diag::err_deleted_decl_not_first);
11847      Diag(Prev->getLocation(), diag::note_previous_declaration);
11848    }
11849    // If the declaration wasn't the first, we delete the function anyway for
11850    // recovery.
11851    Fn = Fn->getCanonicalDecl();
11852  }
11853
11854  if (Fn->isDeleted())
11855    return;
11856
11857  // See if we're deleting a function which is already known to override a
11858  // non-deleted virtual function.
11859  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11860    bool IssuedDiagnostic = false;
11861    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11862                                        E = MD->end_overridden_methods();
11863         I != E; ++I) {
11864      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11865        if (!IssuedDiagnostic) {
11866          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11867          IssuedDiagnostic = true;
11868        }
11869        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11870      }
11871    }
11872  }
11873
11874  Fn->setDeletedAsWritten();
11875}
11876
11877void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11878  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11879
11880  if (MD) {
11881    if (MD->getParent()->isDependentType()) {
11882      MD->setDefaulted();
11883      MD->setExplicitlyDefaulted();
11884      return;
11885    }
11886
11887    CXXSpecialMember Member = getSpecialMember(MD);
11888    if (Member == CXXInvalid) {
11889      if (!MD->isInvalidDecl())
11890        Diag(DefaultLoc, diag::err_default_special_members);
11891      return;
11892    }
11893
11894    MD->setDefaulted();
11895    MD->setExplicitlyDefaulted();
11896
11897    // If this definition appears within the record, do the checking when
11898    // the record is complete.
11899    const FunctionDecl *Primary = MD;
11900    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11901      // Find the uninstantiated declaration that actually had the '= default'
11902      // on it.
11903      Pattern->isDefined(Primary);
11904
11905    // If the method was defaulted on its first declaration, we will have
11906    // already performed the checking in CheckCompletedCXXClass. Such a
11907    // declaration doesn't trigger an implicit definition.
11908    if (Primary == Primary->getCanonicalDecl())
11909      return;
11910
11911    CheckExplicitlyDefaultedSpecialMember(MD);
11912
11913    // The exception specification is needed because we are defining the
11914    // function.
11915    ResolveExceptionSpec(DefaultLoc,
11916                         MD->getType()->castAs<FunctionProtoType>());
11917
11918    if (MD->isInvalidDecl())
11919      return;
11920
11921    switch (Member) {
11922    case CXXDefaultConstructor:
11923      DefineImplicitDefaultConstructor(DefaultLoc,
11924                                       cast<CXXConstructorDecl>(MD));
11925      break;
11926    case CXXCopyConstructor:
11927      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11928      break;
11929    case CXXCopyAssignment:
11930      DefineImplicitCopyAssignment(DefaultLoc, MD);
11931      break;
11932    case CXXDestructor:
11933      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
11934      break;
11935    case CXXMoveConstructor:
11936      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11937      break;
11938    case CXXMoveAssignment:
11939      DefineImplicitMoveAssignment(DefaultLoc, MD);
11940      break;
11941    case CXXInvalid:
11942      llvm_unreachable("Invalid special member.");
11943    }
11944  } else {
11945    Diag(DefaultLoc, diag::err_default_special_members);
11946  }
11947}
11948
11949static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11950  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11951    Stmt *SubStmt = *CI;
11952    if (!SubStmt)
11953      continue;
11954    if (isa<ReturnStmt>(SubStmt))
11955      Self.Diag(SubStmt->getLocStart(),
11956           diag::err_return_in_constructor_handler);
11957    if (!isa<Expr>(SubStmt))
11958      SearchForReturnInStmt(Self, SubStmt);
11959  }
11960}
11961
11962void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11963  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11964    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11965    SearchForReturnInStmt(*this, Handler);
11966  }
11967}
11968
11969bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11970                                             const CXXMethodDecl *Old) {
11971  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11972  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11973
11974  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11975
11976  // If the calling conventions match, everything is fine
11977  if (NewCC == OldCC)
11978    return false;
11979
11980  Diag(New->getLocation(),
11981       diag::err_conflicting_overriding_cc_attributes)
11982    << New->getDeclName() << New->getType() << Old->getType();
11983  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11984  return true;
11985}
11986
11987bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11988                                             const CXXMethodDecl *Old) {
11989  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11990  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11991
11992  if (Context.hasSameType(NewTy, OldTy) ||
11993      NewTy->isDependentType() || OldTy->isDependentType())
11994    return false;
11995
11996  // Check if the return types are covariant
11997  QualType NewClassTy, OldClassTy;
11998
11999  /// Both types must be pointers or references to classes.
12000  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12001    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12002      NewClassTy = NewPT->getPointeeType();
12003      OldClassTy = OldPT->getPointeeType();
12004    }
12005  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12006    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12007      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12008        NewClassTy = NewRT->getPointeeType();
12009        OldClassTy = OldRT->getPointeeType();
12010      }
12011    }
12012  }
12013
12014  // The return types aren't either both pointers or references to a class type.
12015  if (NewClassTy.isNull()) {
12016    Diag(New->getLocation(),
12017         diag::err_different_return_type_for_overriding_virtual_function)
12018      << New->getDeclName() << NewTy << OldTy;
12019    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12020
12021    return true;
12022  }
12023
12024  // C++ [class.virtual]p6:
12025  //   If the return type of D::f differs from the return type of B::f, the
12026  //   class type in the return type of D::f shall be complete at the point of
12027  //   declaration of D::f or shall be the class type D.
12028  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12029    if (!RT->isBeingDefined() &&
12030        RequireCompleteType(New->getLocation(), NewClassTy,
12031                            diag::err_covariant_return_incomplete,
12032                            New->getDeclName()))
12033    return true;
12034  }
12035
12036  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12037    // Check if the new class derives from the old class.
12038    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12039      Diag(New->getLocation(),
12040           diag::err_covariant_return_not_derived)
12041      << New->getDeclName() << NewTy << OldTy;
12042      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12043      return true;
12044    }
12045
12046    // Check if we the conversion from derived to base is valid.
12047    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
12048                    diag::err_covariant_return_inaccessible_base,
12049                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
12050                    // FIXME: Should this point to the return type?
12051                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
12052      // FIXME: this note won't trigger for delayed access control
12053      // diagnostics, and it's impossible to get an undelayed error
12054      // here from access control during the original parse because
12055      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12056      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12057      return true;
12058    }
12059  }
12060
12061  // The qualifiers of the return types must be the same.
12062  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12063    Diag(New->getLocation(),
12064         diag::err_covariant_return_type_different_qualifications)
12065    << New->getDeclName() << NewTy << OldTy;
12066    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12067    return true;
12068  };
12069
12070
12071  // The new class type must have the same or less qualifiers as the old type.
12072  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12073    Diag(New->getLocation(),
12074         diag::err_covariant_return_type_class_type_more_qualified)
12075    << New->getDeclName() << NewTy << OldTy;
12076    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12077    return true;
12078  };
12079
12080  return false;
12081}
12082
12083/// \brief Mark the given method pure.
12084///
12085/// \param Method the method to be marked pure.
12086///
12087/// \param InitRange the source range that covers the "0" initializer.
12088bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12089  SourceLocation EndLoc = InitRange.getEnd();
12090  if (EndLoc.isValid())
12091    Method->setRangeEnd(EndLoc);
12092
12093  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12094    Method->setPure();
12095    return false;
12096  }
12097
12098  if (!Method->isInvalidDecl())
12099    Diag(Method->getLocation(), diag::err_non_virtual_pure)
12100      << Method->getDeclName() << InitRange;
12101  return true;
12102}
12103
12104/// \brief Determine whether the given declaration is a static data member.
12105static bool isStaticDataMember(const Decl *D) {
12106  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12107    return Var->isStaticDataMember();
12108
12109  return false;
12110}
12111
12112/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12113/// an initializer for the out-of-line declaration 'Dcl'.  The scope
12114/// is a fresh scope pushed for just this purpose.
12115///
12116/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12117/// static data member of class X, names should be looked up in the scope of
12118/// class X.
12119void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12120  // If there is no declaration, there was an error parsing it.
12121  if (D == 0 || D->isInvalidDecl()) return;
12122
12123  // We should only get called for declarations with scope specifiers, like:
12124  //   int foo::bar;
12125  assert(D->isOutOfLine());
12126  EnterDeclaratorContext(S, D->getDeclContext());
12127
12128  // If we are parsing the initializer for a static data member, push a
12129  // new expression evaluation context that is associated with this static
12130  // data member.
12131  if (isStaticDataMember(D))
12132    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12133}
12134
12135/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12136/// initializer for the out-of-line declaration 'D'.
12137void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12138  // If there is no declaration, there was an error parsing it.
12139  if (D == 0 || D->isInvalidDecl()) return;
12140
12141  if (isStaticDataMember(D))
12142    PopExpressionEvaluationContext();
12143
12144  assert(D->isOutOfLine());
12145  ExitDeclaratorContext(S);
12146}
12147
12148/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12149/// C++ if/switch/while/for statement.
12150/// e.g: "if (int x = f()) {...}"
12151DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12152  // C++ 6.4p2:
12153  // The declarator shall not specify a function or an array.
12154  // The type-specifier-seq shall not contain typedef and shall not declare a
12155  // new class or enumeration.
12156  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12157         "Parser allowed 'typedef' as storage class of condition decl.");
12158
12159  Decl *Dcl = ActOnDeclarator(S, D);
12160  if (!Dcl)
12161    return true;
12162
12163  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12164    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12165      << D.getSourceRange();
12166    return true;
12167  }
12168
12169  return Dcl;
12170}
12171
12172void Sema::LoadExternalVTableUses() {
12173  if (!ExternalSource)
12174    return;
12175
12176  SmallVector<ExternalVTableUse, 4> VTables;
12177  ExternalSource->ReadUsedVTables(VTables);
12178  SmallVector<VTableUse, 4> NewUses;
12179  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12180    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12181      = VTablesUsed.find(VTables[I].Record);
12182    // Even if a definition wasn't required before, it may be required now.
12183    if (Pos != VTablesUsed.end()) {
12184      if (!Pos->second && VTables[I].DefinitionRequired)
12185        Pos->second = true;
12186      continue;
12187    }
12188
12189    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12190    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12191  }
12192
12193  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12194}
12195
12196void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12197                          bool DefinitionRequired) {
12198  // Ignore any vtable uses in unevaluated operands or for classes that do
12199  // not have a vtable.
12200  if (!Class->isDynamicClass() || Class->isDependentContext() ||
12201      CurContext->isDependentContext() || isUnevaluatedContext())
12202    return;
12203
12204  // Try to insert this class into the map.
12205  LoadExternalVTableUses();
12206  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12207  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12208    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12209  if (!Pos.second) {
12210    // If we already had an entry, check to see if we are promoting this vtable
12211    // to required a definition. If so, we need to reappend to the VTableUses
12212    // list, since we may have already processed the first entry.
12213    if (DefinitionRequired && !Pos.first->second) {
12214      Pos.first->second = true;
12215    } else {
12216      // Otherwise, we can early exit.
12217      return;
12218    }
12219  }
12220
12221  // Local classes need to have their virtual members marked
12222  // immediately. For all other classes, we mark their virtual members
12223  // at the end of the translation unit.
12224  if (Class->isLocalClass())
12225    MarkVirtualMembersReferenced(Loc, Class);
12226  else
12227    VTableUses.push_back(std::make_pair(Class, Loc));
12228}
12229
12230bool Sema::DefineUsedVTables() {
12231  LoadExternalVTableUses();
12232  if (VTableUses.empty())
12233    return false;
12234
12235  // Note: The VTableUses vector could grow as a result of marking
12236  // the members of a class as "used", so we check the size each
12237  // time through the loop and prefer indices (which are stable) to
12238  // iterators (which are not).
12239  bool DefinedAnything = false;
12240  for (unsigned I = 0; I != VTableUses.size(); ++I) {
12241    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12242    if (!Class)
12243      continue;
12244
12245    SourceLocation Loc = VTableUses[I].second;
12246
12247    bool DefineVTable = true;
12248
12249    // If this class has a key function, but that key function is
12250    // defined in another translation unit, we don't need to emit the
12251    // vtable even though we're using it.
12252    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12253    if (KeyFunction && !KeyFunction->hasBody()) {
12254      // The key function is in another translation unit.
12255      DefineVTable = false;
12256      TemplateSpecializationKind TSK =
12257          KeyFunction->getTemplateSpecializationKind();
12258      assert(TSK != TSK_ExplicitInstantiationDefinition &&
12259             TSK != TSK_ImplicitInstantiation &&
12260             "Instantiations don't have key functions");
12261      (void)TSK;
12262    } else if (!KeyFunction) {
12263      // If we have a class with no key function that is the subject
12264      // of an explicit instantiation declaration, suppress the
12265      // vtable; it will live with the explicit instantiation
12266      // definition.
12267      bool IsExplicitInstantiationDeclaration
12268        = Class->getTemplateSpecializationKind()
12269                                      == TSK_ExplicitInstantiationDeclaration;
12270      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
12271                                 REnd = Class->redecls_end();
12272           R != REnd; ++R) {
12273        TemplateSpecializationKind TSK
12274          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
12275        if (TSK == TSK_ExplicitInstantiationDeclaration)
12276          IsExplicitInstantiationDeclaration = true;
12277        else if (TSK == TSK_ExplicitInstantiationDefinition) {
12278          IsExplicitInstantiationDeclaration = false;
12279          break;
12280        }
12281      }
12282
12283      if (IsExplicitInstantiationDeclaration)
12284        DefineVTable = false;
12285    }
12286
12287    // The exception specifications for all virtual members may be needed even
12288    // if we are not providing an authoritative form of the vtable in this TU.
12289    // We may choose to emit it available_externally anyway.
12290    if (!DefineVTable) {
12291      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12292      continue;
12293    }
12294
12295    // Mark all of the virtual members of this class as referenced, so
12296    // that we can build a vtable. Then, tell the AST consumer that a
12297    // vtable for this class is required.
12298    DefinedAnything = true;
12299    MarkVirtualMembersReferenced(Loc, Class);
12300    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12301    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12302
12303    // Optionally warn if we're emitting a weak vtable.
12304    if (Class->isExternallyVisible() &&
12305        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12306      const FunctionDecl *KeyFunctionDef = 0;
12307      if (!KeyFunction ||
12308          (KeyFunction->hasBody(KeyFunctionDef) &&
12309           KeyFunctionDef->isInlined()))
12310        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12311             TSK_ExplicitInstantiationDefinition
12312             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12313          << Class;
12314    }
12315  }
12316  VTableUses.clear();
12317
12318  return DefinedAnything;
12319}
12320
12321void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12322                                                 const CXXRecordDecl *RD) {
12323  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12324                                      E = RD->method_end(); I != E; ++I)
12325    if ((*I)->isVirtual() && !(*I)->isPure())
12326      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12327}
12328
12329void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12330                                        const CXXRecordDecl *RD) {
12331  // Mark all functions which will appear in RD's vtable as used.
12332  CXXFinalOverriderMap FinalOverriders;
12333  RD->getFinalOverriders(FinalOverriders);
12334  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12335                                            E = FinalOverriders.end();
12336       I != E; ++I) {
12337    for (OverridingMethods::const_iterator OI = I->second.begin(),
12338                                           OE = I->second.end();
12339         OI != OE; ++OI) {
12340      assert(OI->second.size() > 0 && "no final overrider");
12341      CXXMethodDecl *Overrider = OI->second.front().Method;
12342
12343      // C++ [basic.def.odr]p2:
12344      //   [...] A virtual member function is used if it is not pure. [...]
12345      if (!Overrider->isPure())
12346        MarkFunctionReferenced(Loc, Overrider);
12347    }
12348  }
12349
12350  // Only classes that have virtual bases need a VTT.
12351  if (RD->getNumVBases() == 0)
12352    return;
12353
12354  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12355           e = RD->bases_end(); i != e; ++i) {
12356    const CXXRecordDecl *Base =
12357        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12358    if (Base->getNumVBases() == 0)
12359      continue;
12360    MarkVirtualMembersReferenced(Loc, Base);
12361  }
12362}
12363
12364/// SetIvarInitializers - This routine builds initialization ASTs for the
12365/// Objective-C implementation whose ivars need be initialized.
12366void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12367  if (!getLangOpts().CPlusPlus)
12368    return;
12369  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12370    SmallVector<ObjCIvarDecl*, 8> ivars;
12371    CollectIvarsToConstructOrDestruct(OID, ivars);
12372    if (ivars.empty())
12373      return;
12374    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12375    for (unsigned i = 0; i < ivars.size(); i++) {
12376      FieldDecl *Field = ivars[i];
12377      if (Field->isInvalidDecl())
12378        continue;
12379
12380      CXXCtorInitializer *Member;
12381      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12382      InitializationKind InitKind =
12383        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12384
12385      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12386      ExprResult MemberInit =
12387        InitSeq.Perform(*this, InitEntity, InitKind, None);
12388      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12389      // Note, MemberInit could actually come back empty if no initialization
12390      // is required (e.g., because it would call a trivial default constructor)
12391      if (!MemberInit.get() || MemberInit.isInvalid())
12392        continue;
12393
12394      Member =
12395        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12396                                         SourceLocation(),
12397                                         MemberInit.takeAs<Expr>(),
12398                                         SourceLocation());
12399      AllToInit.push_back(Member);
12400
12401      // Be sure that the destructor is accessible and is marked as referenced.
12402      if (const RecordType *RecordTy
12403                  = Context.getBaseElementType(Field->getType())
12404                                                        ->getAs<RecordType>()) {
12405                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12406        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12407          MarkFunctionReferenced(Field->getLocation(), Destructor);
12408          CheckDestructorAccess(Field->getLocation(), Destructor,
12409                            PDiag(diag::err_access_dtor_ivar)
12410                              << Context.getBaseElementType(Field->getType()));
12411        }
12412      }
12413    }
12414    ObjCImplementation->setIvarInitializers(Context,
12415                                            AllToInit.data(), AllToInit.size());
12416  }
12417}
12418
12419static
12420void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12421                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12422                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12423                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12424                           Sema &S) {
12425  if (Ctor->isInvalidDecl())
12426    return;
12427
12428  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12429
12430  // Target may not be determinable yet, for instance if this is a dependent
12431  // call in an uninstantiated template.
12432  if (Target) {
12433    const FunctionDecl *FNTarget = 0;
12434    (void)Target->hasBody(FNTarget);
12435    Target = const_cast<CXXConstructorDecl*>(
12436      cast_or_null<CXXConstructorDecl>(FNTarget));
12437  }
12438
12439  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12440                     // Avoid dereferencing a null pointer here.
12441                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12442
12443  if (!Current.insert(Canonical))
12444    return;
12445
12446  // We know that beyond here, we aren't chaining into a cycle.
12447  if (!Target || !Target->isDelegatingConstructor() ||
12448      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12449    Valid.insert(Current.begin(), Current.end());
12450    Current.clear();
12451  // We've hit a cycle.
12452  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12453             Current.count(TCanonical)) {
12454    // If we haven't diagnosed this cycle yet, do so now.
12455    if (!Invalid.count(TCanonical)) {
12456      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12457             diag::warn_delegating_ctor_cycle)
12458        << Ctor;
12459
12460      // Don't add a note for a function delegating directly to itself.
12461      if (TCanonical != Canonical)
12462        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12463
12464      CXXConstructorDecl *C = Target;
12465      while (C->getCanonicalDecl() != Canonical) {
12466        const FunctionDecl *FNTarget = 0;
12467        (void)C->getTargetConstructor()->hasBody(FNTarget);
12468        assert(FNTarget && "Ctor cycle through bodiless function");
12469
12470        C = const_cast<CXXConstructorDecl*>(
12471          cast<CXXConstructorDecl>(FNTarget));
12472        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12473      }
12474    }
12475
12476    Invalid.insert(Current.begin(), Current.end());
12477    Current.clear();
12478  } else {
12479    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12480  }
12481}
12482
12483
12484void Sema::CheckDelegatingCtorCycles() {
12485  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12486
12487  for (DelegatingCtorDeclsType::iterator
12488         I = DelegatingCtorDecls.begin(ExternalSource),
12489         E = DelegatingCtorDecls.end();
12490       I != E; ++I)
12491    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12492
12493  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12494                                                         CE = Invalid.end();
12495       CI != CE; ++CI)
12496    (*CI)->setInvalidDecl();
12497}
12498
12499namespace {
12500  /// \brief AST visitor that finds references to the 'this' expression.
12501  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12502    Sema &S;
12503
12504  public:
12505    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12506
12507    bool VisitCXXThisExpr(CXXThisExpr *E) {
12508      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12509        << E->isImplicit();
12510      return false;
12511    }
12512  };
12513}
12514
12515bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12516  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12517  if (!TSInfo)
12518    return false;
12519
12520  TypeLoc TL = TSInfo->getTypeLoc();
12521  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12522  if (!ProtoTL)
12523    return false;
12524
12525  // C++11 [expr.prim.general]p3:
12526  //   [The expression this] shall not appear before the optional
12527  //   cv-qualifier-seq and it shall not appear within the declaration of a
12528  //   static member function (although its type and value category are defined
12529  //   within a static member function as they are within a non-static member
12530  //   function). [ Note: this is because declaration matching does not occur
12531  //  until the complete declarator is known. - end note ]
12532  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12533  FindCXXThisExpr Finder(*this);
12534
12535  // If the return type came after the cv-qualifier-seq, check it now.
12536  if (Proto->hasTrailingReturn() &&
12537      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12538    return true;
12539
12540  // Check the exception specification.
12541  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12542    return true;
12543
12544  return checkThisInStaticMemberFunctionAttributes(Method);
12545}
12546
12547bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12548  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12549  if (!TSInfo)
12550    return false;
12551
12552  TypeLoc TL = TSInfo->getTypeLoc();
12553  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12554  if (!ProtoTL)
12555    return false;
12556
12557  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12558  FindCXXThisExpr Finder(*this);
12559
12560  switch (Proto->getExceptionSpecType()) {
12561  case EST_Uninstantiated:
12562  case EST_Unevaluated:
12563  case EST_BasicNoexcept:
12564  case EST_DynamicNone:
12565  case EST_MSAny:
12566  case EST_None:
12567    break;
12568
12569  case EST_ComputedNoexcept:
12570    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12571      return true;
12572
12573  case EST_Dynamic:
12574    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12575         EEnd = Proto->exception_end();
12576         E != EEnd; ++E) {
12577      if (!Finder.TraverseType(*E))
12578        return true;
12579    }
12580    break;
12581  }
12582
12583  return false;
12584}
12585
12586bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12587  FindCXXThisExpr Finder(*this);
12588
12589  // Check attributes.
12590  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12591       A != AEnd; ++A) {
12592    // FIXME: This should be emitted by tblgen.
12593    Expr *Arg = 0;
12594    ArrayRef<Expr *> Args;
12595    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12596      Arg = G->getArg();
12597    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12598      Arg = G->getArg();
12599    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12600      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12601    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12602      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12603    else if (ExclusiveLockFunctionAttr *ELF
12604               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12605      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12606    else if (SharedLockFunctionAttr *SLF
12607               = dyn_cast<SharedLockFunctionAttr>(*A))
12608      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12609    else if (ExclusiveTrylockFunctionAttr *ETLF
12610               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12611      Arg = ETLF->getSuccessValue();
12612      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12613    } else if (SharedTrylockFunctionAttr *STLF
12614                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12615      Arg = STLF->getSuccessValue();
12616      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12617    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12618      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12619    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12620      Arg = LR->getArg();
12621    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12622      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12623    else if (ExclusiveLocksRequiredAttr *ELR
12624               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12625      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12626    else if (SharedLocksRequiredAttr *SLR
12627               = dyn_cast<SharedLocksRequiredAttr>(*A))
12628      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12629
12630    if (Arg && !Finder.TraverseStmt(Arg))
12631      return true;
12632
12633    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12634      if (!Finder.TraverseStmt(Args[I]))
12635        return true;
12636    }
12637  }
12638
12639  return false;
12640}
12641
12642void
12643Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12644                                  ArrayRef<ParsedType> DynamicExceptions,
12645                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12646                                  Expr *NoexceptExpr,
12647                                  SmallVectorImpl<QualType> &Exceptions,
12648                                  FunctionProtoType::ExtProtoInfo &EPI) {
12649  Exceptions.clear();
12650  EPI.ExceptionSpecType = EST;
12651  if (EST == EST_Dynamic) {
12652    Exceptions.reserve(DynamicExceptions.size());
12653    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12654      // FIXME: Preserve type source info.
12655      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12656
12657      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12658      collectUnexpandedParameterPacks(ET, Unexpanded);
12659      if (!Unexpanded.empty()) {
12660        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12661                                         UPPC_ExceptionType,
12662                                         Unexpanded);
12663        continue;
12664      }
12665
12666      // Check that the type is valid for an exception spec, and
12667      // drop it if not.
12668      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12669        Exceptions.push_back(ET);
12670    }
12671    EPI.NumExceptions = Exceptions.size();
12672    EPI.Exceptions = Exceptions.data();
12673    return;
12674  }
12675
12676  if (EST == EST_ComputedNoexcept) {
12677    // If an error occurred, there's no expression here.
12678    if (NoexceptExpr) {
12679      assert((NoexceptExpr->isTypeDependent() ||
12680              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12681              Context.BoolTy) &&
12682             "Parser should have made sure that the expression is boolean");
12683      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12684        EPI.ExceptionSpecType = EST_BasicNoexcept;
12685        return;
12686      }
12687
12688      if (!NoexceptExpr->isValueDependent())
12689        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12690                         diag::err_noexcept_needs_constant_expression,
12691                         /*AllowFold*/ false).take();
12692      EPI.NoexceptExpr = NoexceptExpr;
12693    }
12694    return;
12695  }
12696}
12697
12698/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12699Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12700  // Implicitly declared functions (e.g. copy constructors) are
12701  // __host__ __device__
12702  if (D->isImplicit())
12703    return CFT_HostDevice;
12704
12705  if (D->hasAttr<CUDAGlobalAttr>())
12706    return CFT_Global;
12707
12708  if (D->hasAttr<CUDADeviceAttr>()) {
12709    if (D->hasAttr<CUDAHostAttr>())
12710      return CFT_HostDevice;
12711    return CFT_Device;
12712  }
12713
12714  return CFT_Host;
12715}
12716
12717bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12718                           CUDAFunctionTarget CalleeTarget) {
12719  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12720  // Callable from the device only."
12721  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12722    return true;
12723
12724  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12725  // Callable from the host only."
12726  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12727  // Callable from the host only."
12728  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12729      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12730    return true;
12731
12732  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12733    return true;
12734
12735  return false;
12736}
12737
12738/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12739///
12740MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12741                                       SourceLocation DeclStart,
12742                                       Declarator &D, Expr *BitWidth,
12743                                       InClassInitStyle InitStyle,
12744                                       AccessSpecifier AS,
12745                                       AttributeList *MSPropertyAttr) {
12746  IdentifierInfo *II = D.getIdentifier();
12747  if (!II) {
12748    Diag(DeclStart, diag::err_anonymous_property);
12749    return NULL;
12750  }
12751  SourceLocation Loc = D.getIdentifierLoc();
12752
12753  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12754  QualType T = TInfo->getType();
12755  if (getLangOpts().CPlusPlus) {
12756    CheckExtraCXXDefaultArguments(D);
12757
12758    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12759                                        UPPC_DataMemberType)) {
12760      D.setInvalidType();
12761      T = Context.IntTy;
12762      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12763    }
12764  }
12765
12766  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12767
12768  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12769    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12770         diag::err_invalid_thread)
12771      << DeclSpec::getSpecifierName(TSCS);
12772
12773  // Check to see if this name was declared as a member previously
12774  NamedDecl *PrevDecl = 0;
12775  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12776  LookupName(Previous, S);
12777  switch (Previous.getResultKind()) {
12778  case LookupResult::Found:
12779  case LookupResult::FoundUnresolvedValue:
12780    PrevDecl = Previous.getAsSingle<NamedDecl>();
12781    break;
12782
12783  case LookupResult::FoundOverloaded:
12784    PrevDecl = Previous.getRepresentativeDecl();
12785    break;
12786
12787  case LookupResult::NotFound:
12788  case LookupResult::NotFoundInCurrentInstantiation:
12789  case LookupResult::Ambiguous:
12790    break;
12791  }
12792
12793  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12794    // Maybe we will complain about the shadowed template parameter.
12795    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12796    // Just pretend that we didn't see the previous declaration.
12797    PrevDecl = 0;
12798  }
12799
12800  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12801    PrevDecl = 0;
12802
12803  SourceLocation TSSL = D.getLocStart();
12804  MSPropertyDecl *NewPD;
12805  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12806  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12807                                       II, T, TInfo, TSSL,
12808                                       Data.GetterId, Data.SetterId);
12809  ProcessDeclAttributes(TUScope, NewPD, D);
12810  NewPD->setAccess(AS);
12811
12812  if (NewPD->isInvalidDecl())
12813    Record->setInvalidDecl();
12814
12815  if (D.getDeclSpec().isModulePrivateSpecified())
12816    NewPD->setModulePrivate();
12817
12818  if (NewPD->isInvalidDecl() && PrevDecl) {
12819    // Don't introduce NewFD into scope; there's already something
12820    // with the same name in the same scope.
12821  } else if (II) {
12822    PushOnScopeChains(NewPD, S);
12823  } else
12824    Record->addDecl(NewPD);
12825
12826  return NewPD;
12827}
12828