SemaDeclCXX.cpp revision 235633
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
671                                     << ArgIndex+1 << PD->getSourceRange()
672                                     << isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           PDiag(diag::err_constexpr_non_literal_return)))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if ((*I)->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          PDiag(diag::err_incomplete_base_class)
1059                            << SpecifierRange)) {
1060    Class->setInvalidDecl();
1061    return 0;
1062  }
1063
1064  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1065  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1066  assert(BaseDecl && "Record type has no declaration");
1067  BaseDecl = BaseDecl->getDefinition();
1068  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1069  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1070  assert(CXXBaseDecl && "Base type is not a C++ type");
1071
1072  // C++ [class]p3:
1073  //   If a class is marked final and it appears as a base-type-specifier in
1074  //   base-clause, the program is ill-formed.
1075  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1076    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1077      << CXXBaseDecl->getDeclName();
1078    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1079      << CXXBaseDecl->getDeclName();
1080    return 0;
1081  }
1082
1083  if (BaseDecl->isInvalidDecl())
1084    Class->setInvalidDecl();
1085
1086  // Create the base specifier.
1087  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1088                                        Class->getTagKind() == TTK_Class,
1089                                        Access, TInfo, EllipsisLoc);
1090}
1091
1092/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1093/// one entry in the base class list of a class specifier, for
1094/// example:
1095///    class foo : public bar, virtual private baz {
1096/// 'public bar' and 'virtual private baz' are each base-specifiers.
1097BaseResult
1098Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1099                         bool Virtual, AccessSpecifier Access,
1100                         ParsedType basetype, SourceLocation BaseLoc,
1101                         SourceLocation EllipsisLoc) {
1102  if (!classdecl)
1103    return true;
1104
1105  AdjustDeclIfTemplate(classdecl);
1106  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1107  if (!Class)
1108    return true;
1109
1110  TypeSourceInfo *TInfo = 0;
1111  GetTypeFromParser(basetype, &TInfo);
1112
1113  if (EllipsisLoc.isInvalid() &&
1114      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1115                                      UPPC_BaseType))
1116    return true;
1117
1118  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1119                                                      Virtual, Access, TInfo,
1120                                                      EllipsisLoc))
1121    return BaseSpec;
1122
1123  return true;
1124}
1125
1126/// \brief Performs the actual work of attaching the given base class
1127/// specifiers to a C++ class.
1128bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1129                                unsigned NumBases) {
1130 if (NumBases == 0)
1131    return false;
1132
1133  // Used to keep track of which base types we have already seen, so
1134  // that we can properly diagnose redundant direct base types. Note
1135  // that the key is always the unqualified canonical type of the base
1136  // class.
1137  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1138
1139  // Copy non-redundant base specifiers into permanent storage.
1140  unsigned NumGoodBases = 0;
1141  bool Invalid = false;
1142  for (unsigned idx = 0; idx < NumBases; ++idx) {
1143    QualType NewBaseType
1144      = Context.getCanonicalType(Bases[idx]->getType());
1145    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1146
1147    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1148    if (KnownBase) {
1149      // C++ [class.mi]p3:
1150      //   A class shall not be specified as a direct base class of a
1151      //   derived class more than once.
1152      Diag(Bases[idx]->getLocStart(),
1153           diag::err_duplicate_base_class)
1154        << KnownBase->getType()
1155        << Bases[idx]->getSourceRange();
1156
1157      // Delete the duplicate base class specifier; we're going to
1158      // overwrite its pointer later.
1159      Context.Deallocate(Bases[idx]);
1160
1161      Invalid = true;
1162    } else {
1163      // Okay, add this new base class.
1164      KnownBase = Bases[idx];
1165      Bases[NumGoodBases++] = Bases[idx];
1166      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1167        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1168          if (RD->hasAttr<WeakAttr>())
1169            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1170    }
1171  }
1172
1173  // Attach the remaining base class specifiers to the derived class.
1174  Class->setBases(Bases, NumGoodBases);
1175
1176  // Delete the remaining (good) base class specifiers, since their
1177  // data has been copied into the CXXRecordDecl.
1178  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1179    Context.Deallocate(Bases[idx]);
1180
1181  return Invalid;
1182}
1183
1184/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1185/// class, after checking whether there are any duplicate base
1186/// classes.
1187void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1188                               unsigned NumBases) {
1189  if (!ClassDecl || !Bases || !NumBases)
1190    return;
1191
1192  AdjustDeclIfTemplate(ClassDecl);
1193  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1194                       (CXXBaseSpecifier**)(Bases), NumBases);
1195}
1196
1197static CXXRecordDecl *GetClassForType(QualType T) {
1198  if (const RecordType *RT = T->getAs<RecordType>())
1199    return cast<CXXRecordDecl>(RT->getDecl());
1200  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1201    return ICT->getDecl();
1202  else
1203    return 0;
1204}
1205
1206/// \brief Determine whether the type \p Derived is a C++ class that is
1207/// derived from the type \p Base.
1208bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1209  if (!getLangOpts().CPlusPlus)
1210    return false;
1211
1212  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1213  if (!DerivedRD)
1214    return false;
1215
1216  CXXRecordDecl *BaseRD = GetClassForType(Base);
1217  if (!BaseRD)
1218    return false;
1219
1220  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1221  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1222}
1223
1224/// \brief Determine whether the type \p Derived is a C++ class that is
1225/// derived from the type \p Base.
1226bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1227  if (!getLangOpts().CPlusPlus)
1228    return false;
1229
1230  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1231  if (!DerivedRD)
1232    return false;
1233
1234  CXXRecordDecl *BaseRD = GetClassForType(Base);
1235  if (!BaseRD)
1236    return false;
1237
1238  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1239}
1240
1241void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1242                              CXXCastPath &BasePathArray) {
1243  assert(BasePathArray.empty() && "Base path array must be empty!");
1244  assert(Paths.isRecordingPaths() && "Must record paths!");
1245
1246  const CXXBasePath &Path = Paths.front();
1247
1248  // We first go backward and check if we have a virtual base.
1249  // FIXME: It would be better if CXXBasePath had the base specifier for
1250  // the nearest virtual base.
1251  unsigned Start = 0;
1252  for (unsigned I = Path.size(); I != 0; --I) {
1253    if (Path[I - 1].Base->isVirtual()) {
1254      Start = I - 1;
1255      break;
1256    }
1257  }
1258
1259  // Now add all bases.
1260  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1261    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1262}
1263
1264/// \brief Determine whether the given base path includes a virtual
1265/// base class.
1266bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1267  for (CXXCastPath::const_iterator B = BasePath.begin(),
1268                                BEnd = BasePath.end();
1269       B != BEnd; ++B)
1270    if ((*B)->isVirtual())
1271      return true;
1272
1273  return false;
1274}
1275
1276/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1277/// conversion (where Derived and Base are class types) is
1278/// well-formed, meaning that the conversion is unambiguous (and
1279/// that all of the base classes are accessible). Returns true
1280/// and emits a diagnostic if the code is ill-formed, returns false
1281/// otherwise. Loc is the location where this routine should point to
1282/// if there is an error, and Range is the source range to highlight
1283/// if there is an error.
1284bool
1285Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1286                                   unsigned InaccessibleBaseID,
1287                                   unsigned AmbigiousBaseConvID,
1288                                   SourceLocation Loc, SourceRange Range,
1289                                   DeclarationName Name,
1290                                   CXXCastPath *BasePath) {
1291  // First, determine whether the path from Derived to Base is
1292  // ambiguous. This is slightly more expensive than checking whether
1293  // the Derived to Base conversion exists, because here we need to
1294  // explore multiple paths to determine if there is an ambiguity.
1295  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1296                     /*DetectVirtual=*/false);
1297  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1298  assert(DerivationOkay &&
1299         "Can only be used with a derived-to-base conversion");
1300  (void)DerivationOkay;
1301
1302  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1303    if (InaccessibleBaseID) {
1304      // Check that the base class can be accessed.
1305      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1306                                   InaccessibleBaseID)) {
1307        case AR_inaccessible:
1308          return true;
1309        case AR_accessible:
1310        case AR_dependent:
1311        case AR_delayed:
1312          break;
1313      }
1314    }
1315
1316    // Build a base path if necessary.
1317    if (BasePath)
1318      BuildBasePathArray(Paths, *BasePath);
1319    return false;
1320  }
1321
1322  // We know that the derived-to-base conversion is ambiguous, and
1323  // we're going to produce a diagnostic. Perform the derived-to-base
1324  // search just one more time to compute all of the possible paths so
1325  // that we can print them out. This is more expensive than any of
1326  // the previous derived-to-base checks we've done, but at this point
1327  // performance isn't as much of an issue.
1328  Paths.clear();
1329  Paths.setRecordingPaths(true);
1330  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1331  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1332  (void)StillOkay;
1333
1334  // Build up a textual representation of the ambiguous paths, e.g.,
1335  // D -> B -> A, that will be used to illustrate the ambiguous
1336  // conversions in the diagnostic. We only print one of the paths
1337  // to each base class subobject.
1338  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1339
1340  Diag(Loc, AmbigiousBaseConvID)
1341  << Derived << Base << PathDisplayStr << Range << Name;
1342  return true;
1343}
1344
1345bool
1346Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1347                                   SourceLocation Loc, SourceRange Range,
1348                                   CXXCastPath *BasePath,
1349                                   bool IgnoreAccess) {
1350  return CheckDerivedToBaseConversion(Derived, Base,
1351                                      IgnoreAccess ? 0
1352                                       : diag::err_upcast_to_inaccessible_base,
1353                                      diag::err_ambiguous_derived_to_base_conv,
1354                                      Loc, Range, DeclarationName(),
1355                                      BasePath);
1356}
1357
1358
1359/// @brief Builds a string representing ambiguous paths from a
1360/// specific derived class to different subobjects of the same base
1361/// class.
1362///
1363/// This function builds a string that can be used in error messages
1364/// to show the different paths that one can take through the
1365/// inheritance hierarchy to go from the derived class to different
1366/// subobjects of a base class. The result looks something like this:
1367/// @code
1368/// struct D -> struct B -> struct A
1369/// struct D -> struct C -> struct A
1370/// @endcode
1371std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1372  std::string PathDisplayStr;
1373  std::set<unsigned> DisplayedPaths;
1374  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1375       Path != Paths.end(); ++Path) {
1376    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1377      // We haven't displayed a path to this particular base
1378      // class subobject yet.
1379      PathDisplayStr += "\n    ";
1380      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1381      for (CXXBasePath::const_iterator Element = Path->begin();
1382           Element != Path->end(); ++Element)
1383        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1384    }
1385  }
1386
1387  return PathDisplayStr;
1388}
1389
1390//===----------------------------------------------------------------------===//
1391// C++ class member Handling
1392//===----------------------------------------------------------------------===//
1393
1394/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1395bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1396                                SourceLocation ASLoc,
1397                                SourceLocation ColonLoc,
1398                                AttributeList *Attrs) {
1399  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1400  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1401                                                  ASLoc, ColonLoc);
1402  CurContext->addHiddenDecl(ASDecl);
1403  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1404}
1405
1406/// CheckOverrideControl - Check C++0x override control semantics.
1407void Sema::CheckOverrideControl(const Decl *D) {
1408  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1409  if (!MD || !MD->isVirtual())
1410    return;
1411
1412  if (MD->isDependentContext())
1413    return;
1414
1415  // C++0x [class.virtual]p3:
1416  //   If a virtual function is marked with the virt-specifier override and does
1417  //   not override a member function of a base class,
1418  //   the program is ill-formed.
1419  bool HasOverriddenMethods =
1420    MD->begin_overridden_methods() != MD->end_overridden_methods();
1421  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1422    Diag(MD->getLocation(),
1423                 diag::err_function_marked_override_not_overriding)
1424      << MD->getDeclName();
1425    return;
1426  }
1427}
1428
1429/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1430/// function overrides a virtual member function marked 'final', according to
1431/// C++0x [class.virtual]p3.
1432bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1433                                                  const CXXMethodDecl *Old) {
1434  if (!Old->hasAttr<FinalAttr>())
1435    return false;
1436
1437  Diag(New->getLocation(), diag::err_final_function_overridden)
1438    << New->getDeclName();
1439  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1440  return true;
1441}
1442
1443/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1444/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1445/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1446/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1447/// present but parsing it has been deferred.
1448Decl *
1449Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1450                               MultiTemplateParamsArg TemplateParameterLists,
1451                               Expr *BW, const VirtSpecifiers &VS,
1452                               bool HasDeferredInit) {
1453  const DeclSpec &DS = D.getDeclSpec();
1454  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1455  DeclarationName Name = NameInfo.getName();
1456  SourceLocation Loc = NameInfo.getLoc();
1457
1458  // For anonymous bitfields, the location should point to the type.
1459  if (Loc.isInvalid())
1460    Loc = D.getLocStart();
1461
1462  Expr *BitWidth = static_cast<Expr*>(BW);
1463
1464  assert(isa<CXXRecordDecl>(CurContext));
1465  assert(!DS.isFriendSpecified());
1466
1467  bool isFunc = D.isDeclarationOfFunction();
1468
1469  // C++ 9.2p6: A member shall not be declared to have automatic storage
1470  // duration (auto, register) or with the extern storage-class-specifier.
1471  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1472  // data members and cannot be applied to names declared const or static,
1473  // and cannot be applied to reference members.
1474  switch (DS.getStorageClassSpec()) {
1475    case DeclSpec::SCS_unspecified:
1476    case DeclSpec::SCS_typedef:
1477    case DeclSpec::SCS_static:
1478      // FALL THROUGH.
1479      break;
1480    case DeclSpec::SCS_mutable:
1481      if (isFunc) {
1482        if (DS.getStorageClassSpecLoc().isValid())
1483          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1484        else
1485          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1486
1487        // FIXME: It would be nicer if the keyword was ignored only for this
1488        // declarator. Otherwise we could get follow-up errors.
1489        D.getMutableDeclSpec().ClearStorageClassSpecs();
1490      }
1491      break;
1492    default:
1493      if (DS.getStorageClassSpecLoc().isValid())
1494        Diag(DS.getStorageClassSpecLoc(),
1495             diag::err_storageclass_invalid_for_member);
1496      else
1497        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1498      D.getMutableDeclSpec().ClearStorageClassSpecs();
1499  }
1500
1501  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1502                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1503                      !isFunc);
1504
1505  Decl *Member;
1506  if (isInstField) {
1507    CXXScopeSpec &SS = D.getCXXScopeSpec();
1508
1509    // Data members must have identifiers for names.
1510    if (Name.getNameKind() != DeclarationName::Identifier) {
1511      Diag(Loc, diag::err_bad_variable_name)
1512        << Name;
1513      return 0;
1514    }
1515
1516    IdentifierInfo *II = Name.getAsIdentifierInfo();
1517
1518    // Member field could not be with "template" keyword.
1519    // So TemplateParameterLists should be empty in this case.
1520    if (TemplateParameterLists.size()) {
1521      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1522      if (TemplateParams->size()) {
1523        // There is no such thing as a member field template.
1524        Diag(D.getIdentifierLoc(), diag::err_template_member)
1525            << II
1526            << SourceRange(TemplateParams->getTemplateLoc(),
1527                TemplateParams->getRAngleLoc());
1528      } else {
1529        // There is an extraneous 'template<>' for this member.
1530        Diag(TemplateParams->getTemplateLoc(),
1531            diag::err_template_member_noparams)
1532            << II
1533            << SourceRange(TemplateParams->getTemplateLoc(),
1534                TemplateParams->getRAngleLoc());
1535      }
1536      return 0;
1537    }
1538
1539    if (SS.isSet() && !SS.isInvalid()) {
1540      // The user provided a superfluous scope specifier inside a class
1541      // definition:
1542      //
1543      // class X {
1544      //   int X::member;
1545      // };
1546      if (DeclContext *DC = computeDeclContext(SS, false))
1547        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1548      else
1549        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1550          << Name << SS.getRange();
1551
1552      SS.clear();
1553    }
1554
1555    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1556                         HasDeferredInit, AS);
1557    assert(Member && "HandleField never returns null");
1558  } else {
1559    assert(!HasDeferredInit);
1560
1561    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1562    if (!Member) {
1563      return 0;
1564    }
1565
1566    // Non-instance-fields can't have a bitfield.
1567    if (BitWidth) {
1568      if (Member->isInvalidDecl()) {
1569        // don't emit another diagnostic.
1570      } else if (isa<VarDecl>(Member)) {
1571        // C++ 9.6p3: A bit-field shall not be a static member.
1572        // "static member 'A' cannot be a bit-field"
1573        Diag(Loc, diag::err_static_not_bitfield)
1574          << Name << BitWidth->getSourceRange();
1575      } else if (isa<TypedefDecl>(Member)) {
1576        // "typedef member 'x' cannot be a bit-field"
1577        Diag(Loc, diag::err_typedef_not_bitfield)
1578          << Name << BitWidth->getSourceRange();
1579      } else {
1580        // A function typedef ("typedef int f(); f a;").
1581        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1582        Diag(Loc, diag::err_not_integral_type_bitfield)
1583          << Name << cast<ValueDecl>(Member)->getType()
1584          << BitWidth->getSourceRange();
1585      }
1586
1587      BitWidth = 0;
1588      Member->setInvalidDecl();
1589    }
1590
1591    Member->setAccess(AS);
1592
1593    // If we have declared a member function template, set the access of the
1594    // templated declaration as well.
1595    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1596      FunTmpl->getTemplatedDecl()->setAccess(AS);
1597  }
1598
1599  if (VS.isOverrideSpecified()) {
1600    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1601    if (!MD || !MD->isVirtual()) {
1602      Diag(Member->getLocStart(),
1603           diag::override_keyword_only_allowed_on_virtual_member_functions)
1604        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1605    } else
1606      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1607  }
1608  if (VS.isFinalSpecified()) {
1609    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1610    if (!MD || !MD->isVirtual()) {
1611      Diag(Member->getLocStart(),
1612           diag::override_keyword_only_allowed_on_virtual_member_functions)
1613      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1614    } else
1615      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1616  }
1617
1618  if (VS.getLastLocation().isValid()) {
1619    // Update the end location of a method that has a virt-specifiers.
1620    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1621      MD->setRangeEnd(VS.getLastLocation());
1622  }
1623
1624  CheckOverrideControl(Member);
1625
1626  assert((Name || isInstField) && "No identifier for non-field ?");
1627
1628  if (isInstField)
1629    FieldCollector->Add(cast<FieldDecl>(Member));
1630  return Member;
1631}
1632
1633/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1634/// in-class initializer for a non-static C++ class member, and after
1635/// instantiating an in-class initializer in a class template. Such actions
1636/// are deferred until the class is complete.
1637void
1638Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1639                                       Expr *InitExpr) {
1640  FieldDecl *FD = cast<FieldDecl>(D);
1641
1642  if (!InitExpr) {
1643    FD->setInvalidDecl();
1644    FD->removeInClassInitializer();
1645    return;
1646  }
1647
1648  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1649    FD->setInvalidDecl();
1650    FD->removeInClassInitializer();
1651    return;
1652  }
1653
1654  ExprResult Init = InitExpr;
1655  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1656    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1657      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1658        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1659    }
1660    Expr **Inits = &InitExpr;
1661    unsigned NumInits = 1;
1662    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1663    InitializationKind Kind = EqualLoc.isInvalid()
1664        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1665        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1666    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1667    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1668    if (Init.isInvalid()) {
1669      FD->setInvalidDecl();
1670      return;
1671    }
1672
1673    CheckImplicitConversions(Init.get(), EqualLoc);
1674  }
1675
1676  // C++0x [class.base.init]p7:
1677  //   The initialization of each base and member constitutes a
1678  //   full-expression.
1679  Init = MaybeCreateExprWithCleanups(Init);
1680  if (Init.isInvalid()) {
1681    FD->setInvalidDecl();
1682    return;
1683  }
1684
1685  InitExpr = Init.release();
1686
1687  FD->setInClassInitializer(InitExpr);
1688}
1689
1690/// \brief Find the direct and/or virtual base specifiers that
1691/// correspond to the given base type, for use in base initialization
1692/// within a constructor.
1693static bool FindBaseInitializer(Sema &SemaRef,
1694                                CXXRecordDecl *ClassDecl,
1695                                QualType BaseType,
1696                                const CXXBaseSpecifier *&DirectBaseSpec,
1697                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1698  // First, check for a direct base class.
1699  DirectBaseSpec = 0;
1700  for (CXXRecordDecl::base_class_const_iterator Base
1701         = ClassDecl->bases_begin();
1702       Base != ClassDecl->bases_end(); ++Base) {
1703    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1704      // We found a direct base of this type. That's what we're
1705      // initializing.
1706      DirectBaseSpec = &*Base;
1707      break;
1708    }
1709  }
1710
1711  // Check for a virtual base class.
1712  // FIXME: We might be able to short-circuit this if we know in advance that
1713  // there are no virtual bases.
1714  VirtualBaseSpec = 0;
1715  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1716    // We haven't found a base yet; search the class hierarchy for a
1717    // virtual base class.
1718    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1719                       /*DetectVirtual=*/false);
1720    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1721                              BaseType, Paths)) {
1722      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1723           Path != Paths.end(); ++Path) {
1724        if (Path->back().Base->isVirtual()) {
1725          VirtualBaseSpec = Path->back().Base;
1726          break;
1727        }
1728      }
1729    }
1730  }
1731
1732  return DirectBaseSpec || VirtualBaseSpec;
1733}
1734
1735/// \brief Handle a C++ member initializer using braced-init-list syntax.
1736MemInitResult
1737Sema::ActOnMemInitializer(Decl *ConstructorD,
1738                          Scope *S,
1739                          CXXScopeSpec &SS,
1740                          IdentifierInfo *MemberOrBase,
1741                          ParsedType TemplateTypeTy,
1742                          const DeclSpec &DS,
1743                          SourceLocation IdLoc,
1744                          Expr *InitList,
1745                          SourceLocation EllipsisLoc) {
1746  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1747                             DS, IdLoc, InitList,
1748                             EllipsisLoc);
1749}
1750
1751/// \brief Handle a C++ member initializer using parentheses syntax.
1752MemInitResult
1753Sema::ActOnMemInitializer(Decl *ConstructorD,
1754                          Scope *S,
1755                          CXXScopeSpec &SS,
1756                          IdentifierInfo *MemberOrBase,
1757                          ParsedType TemplateTypeTy,
1758                          const DeclSpec &DS,
1759                          SourceLocation IdLoc,
1760                          SourceLocation LParenLoc,
1761                          Expr **Args, unsigned NumArgs,
1762                          SourceLocation RParenLoc,
1763                          SourceLocation EllipsisLoc) {
1764  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1765                                           RParenLoc);
1766  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1767                             DS, IdLoc, List, EllipsisLoc);
1768}
1769
1770namespace {
1771
1772// Callback to only accept typo corrections that can be a valid C++ member
1773// intializer: either a non-static field member or a base class.
1774class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1775 public:
1776  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1777      : ClassDecl(ClassDecl) {}
1778
1779  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1780    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1781      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1782        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1783      else
1784        return isa<TypeDecl>(ND);
1785    }
1786    return false;
1787  }
1788
1789 private:
1790  CXXRecordDecl *ClassDecl;
1791};
1792
1793}
1794
1795/// \brief Handle a C++ member initializer.
1796MemInitResult
1797Sema::BuildMemInitializer(Decl *ConstructorD,
1798                          Scope *S,
1799                          CXXScopeSpec &SS,
1800                          IdentifierInfo *MemberOrBase,
1801                          ParsedType TemplateTypeTy,
1802                          const DeclSpec &DS,
1803                          SourceLocation IdLoc,
1804                          Expr *Init,
1805                          SourceLocation EllipsisLoc) {
1806  if (!ConstructorD)
1807    return true;
1808
1809  AdjustDeclIfTemplate(ConstructorD);
1810
1811  CXXConstructorDecl *Constructor
1812    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1813  if (!Constructor) {
1814    // The user wrote a constructor initializer on a function that is
1815    // not a C++ constructor. Ignore the error for now, because we may
1816    // have more member initializers coming; we'll diagnose it just
1817    // once in ActOnMemInitializers.
1818    return true;
1819  }
1820
1821  CXXRecordDecl *ClassDecl = Constructor->getParent();
1822
1823  // C++ [class.base.init]p2:
1824  //   Names in a mem-initializer-id are looked up in the scope of the
1825  //   constructor's class and, if not found in that scope, are looked
1826  //   up in the scope containing the constructor's definition.
1827  //   [Note: if the constructor's class contains a member with the
1828  //   same name as a direct or virtual base class of the class, a
1829  //   mem-initializer-id naming the member or base class and composed
1830  //   of a single identifier refers to the class member. A
1831  //   mem-initializer-id for the hidden base class may be specified
1832  //   using a qualified name. ]
1833  if (!SS.getScopeRep() && !TemplateTypeTy) {
1834    // Look for a member, first.
1835    DeclContext::lookup_result Result
1836      = ClassDecl->lookup(MemberOrBase);
1837    if (Result.first != Result.second) {
1838      ValueDecl *Member;
1839      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1840          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1841        if (EllipsisLoc.isValid())
1842          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1843            << MemberOrBase
1844            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1845
1846        return BuildMemberInitializer(Member, Init, IdLoc);
1847      }
1848    }
1849  }
1850  // It didn't name a member, so see if it names a class.
1851  QualType BaseType;
1852  TypeSourceInfo *TInfo = 0;
1853
1854  if (TemplateTypeTy) {
1855    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1856  } else if (DS.getTypeSpecType() == TST_decltype) {
1857    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1858  } else {
1859    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1860    LookupParsedName(R, S, &SS);
1861
1862    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1863    if (!TyD) {
1864      if (R.isAmbiguous()) return true;
1865
1866      // We don't want access-control diagnostics here.
1867      R.suppressDiagnostics();
1868
1869      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1870        bool NotUnknownSpecialization = false;
1871        DeclContext *DC = computeDeclContext(SS, false);
1872        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1873          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1874
1875        if (!NotUnknownSpecialization) {
1876          // When the scope specifier can refer to a member of an unknown
1877          // specialization, we take it as a type name.
1878          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1879                                       SS.getWithLocInContext(Context),
1880                                       *MemberOrBase, IdLoc);
1881          if (BaseType.isNull())
1882            return true;
1883
1884          R.clear();
1885          R.setLookupName(MemberOrBase);
1886        }
1887      }
1888
1889      // If no results were found, try to correct typos.
1890      TypoCorrection Corr;
1891      MemInitializerValidatorCCC Validator(ClassDecl);
1892      if (R.empty() && BaseType.isNull() &&
1893          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1894                              Validator, ClassDecl))) {
1895        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1896        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1897        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1898          // We have found a non-static data member with a similar
1899          // name to what was typed; complain and initialize that
1900          // member.
1901          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1902            << MemberOrBase << true << CorrectedQuotedStr
1903            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1904          Diag(Member->getLocation(), diag::note_previous_decl)
1905            << CorrectedQuotedStr;
1906
1907          return BuildMemberInitializer(Member, Init, IdLoc);
1908        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1909          const CXXBaseSpecifier *DirectBaseSpec;
1910          const CXXBaseSpecifier *VirtualBaseSpec;
1911          if (FindBaseInitializer(*this, ClassDecl,
1912                                  Context.getTypeDeclType(Type),
1913                                  DirectBaseSpec, VirtualBaseSpec)) {
1914            // We have found a direct or virtual base class with a
1915            // similar name to what was typed; complain and initialize
1916            // that base class.
1917            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1918              << MemberOrBase << false << CorrectedQuotedStr
1919              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1920
1921            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1922                                                             : VirtualBaseSpec;
1923            Diag(BaseSpec->getLocStart(),
1924                 diag::note_base_class_specified_here)
1925              << BaseSpec->getType()
1926              << BaseSpec->getSourceRange();
1927
1928            TyD = Type;
1929          }
1930        }
1931      }
1932
1933      if (!TyD && BaseType.isNull()) {
1934        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1935          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1936        return true;
1937      }
1938    }
1939
1940    if (BaseType.isNull()) {
1941      BaseType = Context.getTypeDeclType(TyD);
1942      if (SS.isSet()) {
1943        NestedNameSpecifier *Qualifier =
1944          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1945
1946        // FIXME: preserve source range information
1947        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1948      }
1949    }
1950  }
1951
1952  if (!TInfo)
1953    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1954
1955  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1956}
1957
1958/// Checks a member initializer expression for cases where reference (or
1959/// pointer) members are bound to by-value parameters (or their addresses).
1960static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1961                                               Expr *Init,
1962                                               SourceLocation IdLoc) {
1963  QualType MemberTy = Member->getType();
1964
1965  // We only handle pointers and references currently.
1966  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1967  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1968    return;
1969
1970  const bool IsPointer = MemberTy->isPointerType();
1971  if (IsPointer) {
1972    if (const UnaryOperator *Op
1973          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1974      // The only case we're worried about with pointers requires taking the
1975      // address.
1976      if (Op->getOpcode() != UO_AddrOf)
1977        return;
1978
1979      Init = Op->getSubExpr();
1980    } else {
1981      // We only handle address-of expression initializers for pointers.
1982      return;
1983    }
1984  }
1985
1986  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1987    // Taking the address of a temporary will be diagnosed as a hard error.
1988    if (IsPointer)
1989      return;
1990
1991    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1992      << Member << Init->getSourceRange();
1993  } else if (const DeclRefExpr *DRE
1994               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1995    // We only warn when referring to a non-reference parameter declaration.
1996    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1997    if (!Parameter || Parameter->getType()->isReferenceType())
1998      return;
1999
2000    S.Diag(Init->getExprLoc(),
2001           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2002                     : diag::warn_bind_ref_member_to_parameter)
2003      << Member << Parameter << Init->getSourceRange();
2004  } else {
2005    // Other initializers are fine.
2006    return;
2007  }
2008
2009  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2010    << (unsigned)IsPointer;
2011}
2012
2013/// Checks an initializer expression for use of uninitialized fields, such as
2014/// containing the field that is being initialized. Returns true if there is an
2015/// uninitialized field was used an updates the SourceLocation parameter; false
2016/// otherwise.
2017static bool InitExprContainsUninitializedFields(const Stmt *S,
2018                                                const ValueDecl *LhsField,
2019                                                SourceLocation *L) {
2020  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2021
2022  if (isa<CallExpr>(S)) {
2023    // Do not descend into function calls or constructors, as the use
2024    // of an uninitialized field may be valid. One would have to inspect
2025    // the contents of the function/ctor to determine if it is safe or not.
2026    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2027    // may be safe, depending on what the function/ctor does.
2028    return false;
2029  }
2030  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2031    const NamedDecl *RhsField = ME->getMemberDecl();
2032
2033    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2034      // The member expression points to a static data member.
2035      assert(VD->isStaticDataMember() &&
2036             "Member points to non-static data member!");
2037      (void)VD;
2038      return false;
2039    }
2040
2041    if (isa<EnumConstantDecl>(RhsField)) {
2042      // The member expression points to an enum.
2043      return false;
2044    }
2045
2046    if (RhsField == LhsField) {
2047      // Initializing a field with itself. Throw a warning.
2048      // But wait; there are exceptions!
2049      // Exception #1:  The field may not belong to this record.
2050      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2051      const Expr *base = ME->getBase();
2052      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2053        // Even though the field matches, it does not belong to this record.
2054        return false;
2055      }
2056      // None of the exceptions triggered; return true to indicate an
2057      // uninitialized field was used.
2058      *L = ME->getMemberLoc();
2059      return true;
2060    }
2061  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2062    // sizeof/alignof doesn't reference contents, do not warn.
2063    return false;
2064  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2065    // address-of doesn't reference contents (the pointer may be dereferenced
2066    // in the same expression but it would be rare; and weird).
2067    if (UOE->getOpcode() == UO_AddrOf)
2068      return false;
2069  }
2070  for (Stmt::const_child_range it = S->children(); it; ++it) {
2071    if (!*it) {
2072      // An expression such as 'member(arg ?: "")' may trigger this.
2073      continue;
2074    }
2075    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2076      return true;
2077  }
2078  return false;
2079}
2080
2081MemInitResult
2082Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2083                             SourceLocation IdLoc) {
2084  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2085  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2086  assert((DirectMember || IndirectMember) &&
2087         "Member must be a FieldDecl or IndirectFieldDecl");
2088
2089  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2090    return true;
2091
2092  if (Member->isInvalidDecl())
2093    return true;
2094
2095  // Diagnose value-uses of fields to initialize themselves, e.g.
2096  //   foo(foo)
2097  // where foo is not also a parameter to the constructor.
2098  // TODO: implement -Wuninitialized and fold this into that framework.
2099  Expr **Args;
2100  unsigned NumArgs;
2101  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2102    Args = ParenList->getExprs();
2103    NumArgs = ParenList->getNumExprs();
2104  } else {
2105    InitListExpr *InitList = cast<InitListExpr>(Init);
2106    Args = InitList->getInits();
2107    NumArgs = InitList->getNumInits();
2108  }
2109  for (unsigned i = 0; i < NumArgs; ++i) {
2110    SourceLocation L;
2111    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2112      // FIXME: Return true in the case when other fields are used before being
2113      // uninitialized. For example, let this field be the i'th field. When
2114      // initializing the i'th field, throw a warning if any of the >= i'th
2115      // fields are used, as they are not yet initialized.
2116      // Right now we are only handling the case where the i'th field uses
2117      // itself in its initializer.
2118      Diag(L, diag::warn_field_is_uninit);
2119    }
2120  }
2121
2122  SourceRange InitRange = Init->getSourceRange();
2123
2124  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2125    // Can't check initialization for a member of dependent type or when
2126    // any of the arguments are type-dependent expressions.
2127    DiscardCleanupsInEvaluationContext();
2128  } else {
2129    bool InitList = false;
2130    if (isa<InitListExpr>(Init)) {
2131      InitList = true;
2132      Args = &Init;
2133      NumArgs = 1;
2134
2135      if (isStdInitializerList(Member->getType(), 0)) {
2136        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2137            << /*at end of ctor*/1 << InitRange;
2138      }
2139    }
2140
2141    // Initialize the member.
2142    InitializedEntity MemberEntity =
2143      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2144                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2145    InitializationKind Kind =
2146      InitList ? InitializationKind::CreateDirectList(IdLoc)
2147               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2148                                                  InitRange.getEnd());
2149
2150    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2151    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2152                                            MultiExprArg(*this, Args, NumArgs),
2153                                            0);
2154    if (MemberInit.isInvalid())
2155      return true;
2156
2157    CheckImplicitConversions(MemberInit.get(),
2158                             InitRange.getBegin());
2159
2160    // C++0x [class.base.init]p7:
2161    //   The initialization of each base and member constitutes a
2162    //   full-expression.
2163    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2164    if (MemberInit.isInvalid())
2165      return true;
2166
2167    // If we are in a dependent context, template instantiation will
2168    // perform this type-checking again. Just save the arguments that we
2169    // received.
2170    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2171    // of the information that we have about the member
2172    // initializer. However, deconstructing the ASTs is a dicey process,
2173    // and this approach is far more likely to get the corner cases right.
2174    if (CurContext->isDependentContext()) {
2175      // The existing Init will do fine.
2176    } else {
2177      Init = MemberInit.get();
2178      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2179    }
2180  }
2181
2182  if (DirectMember) {
2183    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2184                                            InitRange.getBegin(), Init,
2185                                            InitRange.getEnd());
2186  } else {
2187    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2188                                            InitRange.getBegin(), Init,
2189                                            InitRange.getEnd());
2190  }
2191}
2192
2193MemInitResult
2194Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2195                                 CXXRecordDecl *ClassDecl) {
2196  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2197  if (!LangOpts.CPlusPlus0x)
2198    return Diag(NameLoc, diag::err_delegating_ctor)
2199      << TInfo->getTypeLoc().getLocalSourceRange();
2200  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2201
2202  bool InitList = true;
2203  Expr **Args = &Init;
2204  unsigned NumArgs = 1;
2205  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2206    InitList = false;
2207    Args = ParenList->getExprs();
2208    NumArgs = ParenList->getNumExprs();
2209  }
2210
2211  SourceRange InitRange = Init->getSourceRange();
2212  // Initialize the object.
2213  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2214                                     QualType(ClassDecl->getTypeForDecl(), 0));
2215  InitializationKind Kind =
2216    InitList ? InitializationKind::CreateDirectList(NameLoc)
2217             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2218                                                InitRange.getEnd());
2219  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2220  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2221                                              MultiExprArg(*this, Args,NumArgs),
2222                                              0);
2223  if (DelegationInit.isInvalid())
2224    return true;
2225
2226  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2227         "Delegating constructor with no target?");
2228
2229  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2230
2231  // C++0x [class.base.init]p7:
2232  //   The initialization of each base and member constitutes a
2233  //   full-expression.
2234  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2235  if (DelegationInit.isInvalid())
2236    return true;
2237
2238  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2239                                          DelegationInit.takeAs<Expr>(),
2240                                          InitRange.getEnd());
2241}
2242
2243MemInitResult
2244Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2245                           Expr *Init, CXXRecordDecl *ClassDecl,
2246                           SourceLocation EllipsisLoc) {
2247  SourceLocation BaseLoc
2248    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2249
2250  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2251    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2252             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2253
2254  // C++ [class.base.init]p2:
2255  //   [...] Unless the mem-initializer-id names a nonstatic data
2256  //   member of the constructor's class or a direct or virtual base
2257  //   of that class, the mem-initializer is ill-formed. A
2258  //   mem-initializer-list can initialize a base class using any
2259  //   name that denotes that base class type.
2260  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2261
2262  SourceRange InitRange = Init->getSourceRange();
2263  if (EllipsisLoc.isValid()) {
2264    // This is a pack expansion.
2265    if (!BaseType->containsUnexpandedParameterPack())  {
2266      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2267        << SourceRange(BaseLoc, InitRange.getEnd());
2268
2269      EllipsisLoc = SourceLocation();
2270    }
2271  } else {
2272    // Check for any unexpanded parameter packs.
2273    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2274      return true;
2275
2276    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2277      return true;
2278  }
2279
2280  // Check for direct and virtual base classes.
2281  const CXXBaseSpecifier *DirectBaseSpec = 0;
2282  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2283  if (!Dependent) {
2284    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2285                                       BaseType))
2286      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2287
2288    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2289                        VirtualBaseSpec);
2290
2291    // C++ [base.class.init]p2:
2292    // Unless the mem-initializer-id names a nonstatic data member of the
2293    // constructor's class or a direct or virtual base of that class, the
2294    // mem-initializer is ill-formed.
2295    if (!DirectBaseSpec && !VirtualBaseSpec) {
2296      // If the class has any dependent bases, then it's possible that
2297      // one of those types will resolve to the same type as
2298      // BaseType. Therefore, just treat this as a dependent base
2299      // class initialization.  FIXME: Should we try to check the
2300      // initialization anyway? It seems odd.
2301      if (ClassDecl->hasAnyDependentBases())
2302        Dependent = true;
2303      else
2304        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2305          << BaseType << Context.getTypeDeclType(ClassDecl)
2306          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2307    }
2308  }
2309
2310  if (Dependent) {
2311    DiscardCleanupsInEvaluationContext();
2312
2313    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2314                                            /*IsVirtual=*/false,
2315                                            InitRange.getBegin(), Init,
2316                                            InitRange.getEnd(), EllipsisLoc);
2317  }
2318
2319  // C++ [base.class.init]p2:
2320  //   If a mem-initializer-id is ambiguous because it designates both
2321  //   a direct non-virtual base class and an inherited virtual base
2322  //   class, the mem-initializer is ill-formed.
2323  if (DirectBaseSpec && VirtualBaseSpec)
2324    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2325      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2326
2327  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2328  if (!BaseSpec)
2329    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2330
2331  // Initialize the base.
2332  bool InitList = true;
2333  Expr **Args = &Init;
2334  unsigned NumArgs = 1;
2335  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2336    InitList = false;
2337    Args = ParenList->getExprs();
2338    NumArgs = ParenList->getNumExprs();
2339  }
2340
2341  InitializedEntity BaseEntity =
2342    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2343  InitializationKind Kind =
2344    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2345             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2346                                                InitRange.getEnd());
2347  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2348  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2349                                          MultiExprArg(*this, Args, NumArgs),
2350                                          0);
2351  if (BaseInit.isInvalid())
2352    return true;
2353
2354  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2355
2356  // C++0x [class.base.init]p7:
2357  //   The initialization of each base and member constitutes a
2358  //   full-expression.
2359  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2360  if (BaseInit.isInvalid())
2361    return true;
2362
2363  // If we are in a dependent context, template instantiation will
2364  // perform this type-checking again. Just save the arguments that we
2365  // received in a ParenListExpr.
2366  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2367  // of the information that we have about the base
2368  // initializer. However, deconstructing the ASTs is a dicey process,
2369  // and this approach is far more likely to get the corner cases right.
2370  if (CurContext->isDependentContext())
2371    BaseInit = Owned(Init);
2372
2373  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2374                                          BaseSpec->isVirtual(),
2375                                          InitRange.getBegin(),
2376                                          BaseInit.takeAs<Expr>(),
2377                                          InitRange.getEnd(), EllipsisLoc);
2378}
2379
2380// Create a static_cast\<T&&>(expr).
2381static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2382  QualType ExprType = E->getType();
2383  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2384  SourceLocation ExprLoc = E->getLocStart();
2385  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2386      TargetType, ExprLoc);
2387
2388  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2389                                   SourceRange(ExprLoc, ExprLoc),
2390                                   E->getSourceRange()).take();
2391}
2392
2393/// ImplicitInitializerKind - How an implicit base or member initializer should
2394/// initialize its base or member.
2395enum ImplicitInitializerKind {
2396  IIK_Default,
2397  IIK_Copy,
2398  IIK_Move
2399};
2400
2401static bool
2402BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2403                             ImplicitInitializerKind ImplicitInitKind,
2404                             CXXBaseSpecifier *BaseSpec,
2405                             bool IsInheritedVirtualBase,
2406                             CXXCtorInitializer *&CXXBaseInit) {
2407  InitializedEntity InitEntity
2408    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2409                                        IsInheritedVirtualBase);
2410
2411  ExprResult BaseInit;
2412
2413  switch (ImplicitInitKind) {
2414  case IIK_Default: {
2415    InitializationKind InitKind
2416      = InitializationKind::CreateDefault(Constructor->getLocation());
2417    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2418    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2419                               MultiExprArg(SemaRef, 0, 0));
2420    break;
2421  }
2422
2423  case IIK_Move:
2424  case IIK_Copy: {
2425    bool Moving = ImplicitInitKind == IIK_Move;
2426    ParmVarDecl *Param = Constructor->getParamDecl(0);
2427    QualType ParamType = Param->getType().getNonReferenceType();
2428
2429    Expr *CopyCtorArg =
2430      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2431                          SourceLocation(), Param, false,
2432                          Constructor->getLocation(), ParamType,
2433                          VK_LValue, 0);
2434
2435    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2436
2437    // Cast to the base class to avoid ambiguities.
2438    QualType ArgTy =
2439      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2440                                       ParamType.getQualifiers());
2441
2442    if (Moving) {
2443      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2444    }
2445
2446    CXXCastPath BasePath;
2447    BasePath.push_back(BaseSpec);
2448    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2449                                            CK_UncheckedDerivedToBase,
2450                                            Moving ? VK_XValue : VK_LValue,
2451                                            &BasePath).take();
2452
2453    InitializationKind InitKind
2454      = InitializationKind::CreateDirect(Constructor->getLocation(),
2455                                         SourceLocation(), SourceLocation());
2456    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2457                                   &CopyCtorArg, 1);
2458    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2459                               MultiExprArg(&CopyCtorArg, 1));
2460    break;
2461  }
2462  }
2463
2464  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2465  if (BaseInit.isInvalid())
2466    return true;
2467
2468  CXXBaseInit =
2469    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2470               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2471                                                        SourceLocation()),
2472                                             BaseSpec->isVirtual(),
2473                                             SourceLocation(),
2474                                             BaseInit.takeAs<Expr>(),
2475                                             SourceLocation(),
2476                                             SourceLocation());
2477
2478  return false;
2479}
2480
2481static bool RefersToRValueRef(Expr *MemRef) {
2482  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2483  return Referenced->getType()->isRValueReferenceType();
2484}
2485
2486static bool
2487BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2488                               ImplicitInitializerKind ImplicitInitKind,
2489                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2490                               CXXCtorInitializer *&CXXMemberInit) {
2491  if (Field->isInvalidDecl())
2492    return true;
2493
2494  SourceLocation Loc = Constructor->getLocation();
2495
2496  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2497    bool Moving = ImplicitInitKind == IIK_Move;
2498    ParmVarDecl *Param = Constructor->getParamDecl(0);
2499    QualType ParamType = Param->getType().getNonReferenceType();
2500
2501    // Suppress copying zero-width bitfields.
2502    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2503      return false;
2504
2505    Expr *MemberExprBase =
2506      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2507                          SourceLocation(), Param, false,
2508                          Loc, ParamType, VK_LValue, 0);
2509
2510    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2511
2512    if (Moving) {
2513      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2514    }
2515
2516    // Build a reference to this field within the parameter.
2517    CXXScopeSpec SS;
2518    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2519                              Sema::LookupMemberName);
2520    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2521                                  : cast<ValueDecl>(Field), AS_public);
2522    MemberLookup.resolveKind();
2523    ExprResult CtorArg
2524      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2525                                         ParamType, Loc,
2526                                         /*IsArrow=*/false,
2527                                         SS,
2528                                         /*TemplateKWLoc=*/SourceLocation(),
2529                                         /*FirstQualifierInScope=*/0,
2530                                         MemberLookup,
2531                                         /*TemplateArgs=*/0);
2532    if (CtorArg.isInvalid())
2533      return true;
2534
2535    // C++11 [class.copy]p15:
2536    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2537    //     with static_cast<T&&>(x.m);
2538    if (RefersToRValueRef(CtorArg.get())) {
2539      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2540    }
2541
2542    // When the field we are copying is an array, create index variables for
2543    // each dimension of the array. We use these index variables to subscript
2544    // the source array, and other clients (e.g., CodeGen) will perform the
2545    // necessary iteration with these index variables.
2546    SmallVector<VarDecl *, 4> IndexVariables;
2547    QualType BaseType = Field->getType();
2548    QualType SizeType = SemaRef.Context.getSizeType();
2549    bool InitializingArray = false;
2550    while (const ConstantArrayType *Array
2551                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2552      InitializingArray = true;
2553      // Create the iteration variable for this array index.
2554      IdentifierInfo *IterationVarName = 0;
2555      {
2556        SmallString<8> Str;
2557        llvm::raw_svector_ostream OS(Str);
2558        OS << "__i" << IndexVariables.size();
2559        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2560      }
2561      VarDecl *IterationVar
2562        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2563                          IterationVarName, SizeType,
2564                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2565                          SC_None, SC_None);
2566      IndexVariables.push_back(IterationVar);
2567
2568      // Create a reference to the iteration variable.
2569      ExprResult IterationVarRef
2570        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2571      assert(!IterationVarRef.isInvalid() &&
2572             "Reference to invented variable cannot fail!");
2573      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2574      assert(!IterationVarRef.isInvalid() &&
2575             "Conversion of invented variable cannot fail!");
2576
2577      // Subscript the array with this iteration variable.
2578      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2579                                                        IterationVarRef.take(),
2580                                                        Loc);
2581      if (CtorArg.isInvalid())
2582        return true;
2583
2584      BaseType = Array->getElementType();
2585    }
2586
2587    // The array subscript expression is an lvalue, which is wrong for moving.
2588    if (Moving && InitializingArray)
2589      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2590
2591    // Construct the entity that we will be initializing. For an array, this
2592    // will be first element in the array, which may require several levels
2593    // of array-subscript entities.
2594    SmallVector<InitializedEntity, 4> Entities;
2595    Entities.reserve(1 + IndexVariables.size());
2596    if (Indirect)
2597      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2598    else
2599      Entities.push_back(InitializedEntity::InitializeMember(Field));
2600    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2601      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2602                                                              0,
2603                                                              Entities.back()));
2604
2605    // Direct-initialize to use the copy constructor.
2606    InitializationKind InitKind =
2607      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2608
2609    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2610    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2611                                   &CtorArgE, 1);
2612
2613    ExprResult MemberInit
2614      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2615                        MultiExprArg(&CtorArgE, 1));
2616    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2617    if (MemberInit.isInvalid())
2618      return true;
2619
2620    if (Indirect) {
2621      assert(IndexVariables.size() == 0 &&
2622             "Indirect field improperly initialized");
2623      CXXMemberInit
2624        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2625                                                   Loc, Loc,
2626                                                   MemberInit.takeAs<Expr>(),
2627                                                   Loc);
2628    } else
2629      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2630                                                 Loc, MemberInit.takeAs<Expr>(),
2631                                                 Loc,
2632                                                 IndexVariables.data(),
2633                                                 IndexVariables.size());
2634    return false;
2635  }
2636
2637  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2638
2639  QualType FieldBaseElementType =
2640    SemaRef.Context.getBaseElementType(Field->getType());
2641
2642  if (FieldBaseElementType->isRecordType()) {
2643    InitializedEntity InitEntity
2644      = Indirect? InitializedEntity::InitializeMember(Indirect)
2645                : InitializedEntity::InitializeMember(Field);
2646    InitializationKind InitKind =
2647      InitializationKind::CreateDefault(Loc);
2648
2649    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2650    ExprResult MemberInit =
2651      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2652
2653    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2654    if (MemberInit.isInvalid())
2655      return true;
2656
2657    if (Indirect)
2658      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2659                                                               Indirect, Loc,
2660                                                               Loc,
2661                                                               MemberInit.get(),
2662                                                               Loc);
2663    else
2664      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2665                                                               Field, Loc, Loc,
2666                                                               MemberInit.get(),
2667                                                               Loc);
2668    return false;
2669  }
2670
2671  if (!Field->getParent()->isUnion()) {
2672    if (FieldBaseElementType->isReferenceType()) {
2673      SemaRef.Diag(Constructor->getLocation(),
2674                   diag::err_uninitialized_member_in_ctor)
2675      << (int)Constructor->isImplicit()
2676      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2677      << 0 << Field->getDeclName();
2678      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2679      return true;
2680    }
2681
2682    if (FieldBaseElementType.isConstQualified()) {
2683      SemaRef.Diag(Constructor->getLocation(),
2684                   diag::err_uninitialized_member_in_ctor)
2685      << (int)Constructor->isImplicit()
2686      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2687      << 1 << Field->getDeclName();
2688      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2689      return true;
2690    }
2691  }
2692
2693  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2694      FieldBaseElementType->isObjCRetainableType() &&
2695      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2696      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2697    // Instant objects:
2698    //   Default-initialize Objective-C pointers to NULL.
2699    CXXMemberInit
2700      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2701                                                 Loc, Loc,
2702                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2703                                                 Loc);
2704    return false;
2705  }
2706
2707  // Nothing to initialize.
2708  CXXMemberInit = 0;
2709  return false;
2710}
2711
2712namespace {
2713struct BaseAndFieldInfo {
2714  Sema &S;
2715  CXXConstructorDecl *Ctor;
2716  bool AnyErrorsInInits;
2717  ImplicitInitializerKind IIK;
2718  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2719  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2720
2721  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2722    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2723    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2724    if (Generated && Ctor->isCopyConstructor())
2725      IIK = IIK_Copy;
2726    else if (Generated && Ctor->isMoveConstructor())
2727      IIK = IIK_Move;
2728    else
2729      IIK = IIK_Default;
2730  }
2731
2732  bool isImplicitCopyOrMove() const {
2733    switch (IIK) {
2734    case IIK_Copy:
2735    case IIK_Move:
2736      return true;
2737
2738    case IIK_Default:
2739      return false;
2740    }
2741
2742    llvm_unreachable("Invalid ImplicitInitializerKind!");
2743  }
2744};
2745}
2746
2747/// \brief Determine whether the given indirect field declaration is somewhere
2748/// within an anonymous union.
2749static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2750  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2751                                      CEnd = F->chain_end();
2752       C != CEnd; ++C)
2753    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2754      if (Record->isUnion())
2755        return true;
2756
2757  return false;
2758}
2759
2760/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2761/// array type.
2762static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2763  if (T->isIncompleteArrayType())
2764    return true;
2765
2766  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2767    if (!ArrayT->getSize())
2768      return true;
2769
2770    T = ArrayT->getElementType();
2771  }
2772
2773  return false;
2774}
2775
2776static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2777                                    FieldDecl *Field,
2778                                    IndirectFieldDecl *Indirect = 0) {
2779
2780  // Overwhelmingly common case: we have a direct initializer for this field.
2781  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2782    Info.AllToInit.push_back(Init);
2783    return false;
2784  }
2785
2786  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2787  // has a brace-or-equal-initializer, the entity is initialized as specified
2788  // in [dcl.init].
2789  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2790    CXXCtorInitializer *Init;
2791    if (Indirect)
2792      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2793                                                      SourceLocation(),
2794                                                      SourceLocation(), 0,
2795                                                      SourceLocation());
2796    else
2797      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2798                                                      SourceLocation(),
2799                                                      SourceLocation(), 0,
2800                                                      SourceLocation());
2801    Info.AllToInit.push_back(Init);
2802    return false;
2803  }
2804
2805  // Don't build an implicit initializer for union members if none was
2806  // explicitly specified.
2807  if (Field->getParent()->isUnion() ||
2808      (Indirect && isWithinAnonymousUnion(Indirect)))
2809    return false;
2810
2811  // Don't initialize incomplete or zero-length arrays.
2812  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2813    return false;
2814
2815  // Don't try to build an implicit initializer if there were semantic
2816  // errors in any of the initializers (and therefore we might be
2817  // missing some that the user actually wrote).
2818  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2819    return false;
2820
2821  CXXCtorInitializer *Init = 0;
2822  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2823                                     Indirect, Init))
2824    return true;
2825
2826  if (Init)
2827    Info.AllToInit.push_back(Init);
2828
2829  return false;
2830}
2831
2832bool
2833Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2834                               CXXCtorInitializer *Initializer) {
2835  assert(Initializer->isDelegatingInitializer());
2836  Constructor->setNumCtorInitializers(1);
2837  CXXCtorInitializer **initializer =
2838    new (Context) CXXCtorInitializer*[1];
2839  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2840  Constructor->setCtorInitializers(initializer);
2841
2842  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2843    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2844    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2845  }
2846
2847  DelegatingCtorDecls.push_back(Constructor);
2848
2849  return false;
2850}
2851
2852bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2853                               CXXCtorInitializer **Initializers,
2854                               unsigned NumInitializers,
2855                               bool AnyErrors) {
2856  if (Constructor->isDependentContext()) {
2857    // Just store the initializers as written, they will be checked during
2858    // instantiation.
2859    if (NumInitializers > 0) {
2860      Constructor->setNumCtorInitializers(NumInitializers);
2861      CXXCtorInitializer **baseOrMemberInitializers =
2862        new (Context) CXXCtorInitializer*[NumInitializers];
2863      memcpy(baseOrMemberInitializers, Initializers,
2864             NumInitializers * sizeof(CXXCtorInitializer*));
2865      Constructor->setCtorInitializers(baseOrMemberInitializers);
2866    }
2867
2868    return false;
2869  }
2870
2871  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2872
2873  // We need to build the initializer AST according to order of construction
2874  // and not what user specified in the Initializers list.
2875  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2876  if (!ClassDecl)
2877    return true;
2878
2879  bool HadError = false;
2880
2881  for (unsigned i = 0; i < NumInitializers; i++) {
2882    CXXCtorInitializer *Member = Initializers[i];
2883
2884    if (Member->isBaseInitializer())
2885      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2886    else
2887      Info.AllBaseFields[Member->getAnyMember()] = Member;
2888  }
2889
2890  // Keep track of the direct virtual bases.
2891  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2892  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2893       E = ClassDecl->bases_end(); I != E; ++I) {
2894    if (I->isVirtual())
2895      DirectVBases.insert(I);
2896  }
2897
2898  // Push virtual bases before others.
2899  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2900       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2901
2902    if (CXXCtorInitializer *Value
2903        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2904      Info.AllToInit.push_back(Value);
2905    } else if (!AnyErrors) {
2906      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2907      CXXCtorInitializer *CXXBaseInit;
2908      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2909                                       VBase, IsInheritedVirtualBase,
2910                                       CXXBaseInit)) {
2911        HadError = true;
2912        continue;
2913      }
2914
2915      Info.AllToInit.push_back(CXXBaseInit);
2916    }
2917  }
2918
2919  // Non-virtual bases.
2920  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2921       E = ClassDecl->bases_end(); Base != E; ++Base) {
2922    // Virtuals are in the virtual base list and already constructed.
2923    if (Base->isVirtual())
2924      continue;
2925
2926    if (CXXCtorInitializer *Value
2927          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2928      Info.AllToInit.push_back(Value);
2929    } else if (!AnyErrors) {
2930      CXXCtorInitializer *CXXBaseInit;
2931      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2932                                       Base, /*IsInheritedVirtualBase=*/false,
2933                                       CXXBaseInit)) {
2934        HadError = true;
2935        continue;
2936      }
2937
2938      Info.AllToInit.push_back(CXXBaseInit);
2939    }
2940  }
2941
2942  // Fields.
2943  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2944                               MemEnd = ClassDecl->decls_end();
2945       Mem != MemEnd; ++Mem) {
2946    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2947      // C++ [class.bit]p2:
2948      //   A declaration for a bit-field that omits the identifier declares an
2949      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2950      //   initialized.
2951      if (F->isUnnamedBitfield())
2952        continue;
2953
2954      // If we're not generating the implicit copy/move constructor, then we'll
2955      // handle anonymous struct/union fields based on their individual
2956      // indirect fields.
2957      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2958        continue;
2959
2960      if (CollectFieldInitializer(*this, Info, F))
2961        HadError = true;
2962      continue;
2963    }
2964
2965    // Beyond this point, we only consider default initialization.
2966    if (Info.IIK != IIK_Default)
2967      continue;
2968
2969    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2970      if (F->getType()->isIncompleteArrayType()) {
2971        assert(ClassDecl->hasFlexibleArrayMember() &&
2972               "Incomplete array type is not valid");
2973        continue;
2974      }
2975
2976      // Initialize each field of an anonymous struct individually.
2977      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2978        HadError = true;
2979
2980      continue;
2981    }
2982  }
2983
2984  NumInitializers = Info.AllToInit.size();
2985  if (NumInitializers > 0) {
2986    Constructor->setNumCtorInitializers(NumInitializers);
2987    CXXCtorInitializer **baseOrMemberInitializers =
2988      new (Context) CXXCtorInitializer*[NumInitializers];
2989    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2990           NumInitializers * sizeof(CXXCtorInitializer*));
2991    Constructor->setCtorInitializers(baseOrMemberInitializers);
2992
2993    // Constructors implicitly reference the base and member
2994    // destructors.
2995    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2996                                           Constructor->getParent());
2997  }
2998
2999  return HadError;
3000}
3001
3002static void *GetKeyForTopLevelField(FieldDecl *Field) {
3003  // For anonymous unions, use the class declaration as the key.
3004  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3005    if (RT->getDecl()->isAnonymousStructOrUnion())
3006      return static_cast<void *>(RT->getDecl());
3007  }
3008  return static_cast<void *>(Field);
3009}
3010
3011static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3012  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3013}
3014
3015static void *GetKeyForMember(ASTContext &Context,
3016                             CXXCtorInitializer *Member) {
3017  if (!Member->isAnyMemberInitializer())
3018    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3019
3020  // For fields injected into the class via declaration of an anonymous union,
3021  // use its anonymous union class declaration as the unique key.
3022  FieldDecl *Field = Member->getAnyMember();
3023
3024  // If the field is a member of an anonymous struct or union, our key
3025  // is the anonymous record decl that's a direct child of the class.
3026  RecordDecl *RD = Field->getParent();
3027  if (RD->isAnonymousStructOrUnion()) {
3028    while (true) {
3029      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3030      if (Parent->isAnonymousStructOrUnion())
3031        RD = Parent;
3032      else
3033        break;
3034    }
3035
3036    return static_cast<void *>(RD);
3037  }
3038
3039  return static_cast<void *>(Field);
3040}
3041
3042static void
3043DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3044                                  const CXXConstructorDecl *Constructor,
3045                                  CXXCtorInitializer **Inits,
3046                                  unsigned NumInits) {
3047  if (Constructor->getDeclContext()->isDependentContext())
3048    return;
3049
3050  // Don't check initializers order unless the warning is enabled at the
3051  // location of at least one initializer.
3052  bool ShouldCheckOrder = false;
3053  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3054    CXXCtorInitializer *Init = Inits[InitIndex];
3055    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3056                                         Init->getSourceLocation())
3057          != DiagnosticsEngine::Ignored) {
3058      ShouldCheckOrder = true;
3059      break;
3060    }
3061  }
3062  if (!ShouldCheckOrder)
3063    return;
3064
3065  // Build the list of bases and members in the order that they'll
3066  // actually be initialized.  The explicit initializers should be in
3067  // this same order but may be missing things.
3068  SmallVector<const void*, 32> IdealInitKeys;
3069
3070  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3071
3072  // 1. Virtual bases.
3073  for (CXXRecordDecl::base_class_const_iterator VBase =
3074       ClassDecl->vbases_begin(),
3075       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3076    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3077
3078  // 2. Non-virtual bases.
3079  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3080       E = ClassDecl->bases_end(); Base != E; ++Base) {
3081    if (Base->isVirtual())
3082      continue;
3083    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3084  }
3085
3086  // 3. Direct fields.
3087  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3088       E = ClassDecl->field_end(); Field != E; ++Field) {
3089    if (Field->isUnnamedBitfield())
3090      continue;
3091
3092    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3093  }
3094
3095  unsigned NumIdealInits = IdealInitKeys.size();
3096  unsigned IdealIndex = 0;
3097
3098  CXXCtorInitializer *PrevInit = 0;
3099  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3100    CXXCtorInitializer *Init = Inits[InitIndex];
3101    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3102
3103    // Scan forward to try to find this initializer in the idealized
3104    // initializers list.
3105    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3106      if (InitKey == IdealInitKeys[IdealIndex])
3107        break;
3108
3109    // If we didn't find this initializer, it must be because we
3110    // scanned past it on a previous iteration.  That can only
3111    // happen if we're out of order;  emit a warning.
3112    if (IdealIndex == NumIdealInits && PrevInit) {
3113      Sema::SemaDiagnosticBuilder D =
3114        SemaRef.Diag(PrevInit->getSourceLocation(),
3115                     diag::warn_initializer_out_of_order);
3116
3117      if (PrevInit->isAnyMemberInitializer())
3118        D << 0 << PrevInit->getAnyMember()->getDeclName();
3119      else
3120        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3121
3122      if (Init->isAnyMemberInitializer())
3123        D << 0 << Init->getAnyMember()->getDeclName();
3124      else
3125        D << 1 << Init->getTypeSourceInfo()->getType();
3126
3127      // Move back to the initializer's location in the ideal list.
3128      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3129        if (InitKey == IdealInitKeys[IdealIndex])
3130          break;
3131
3132      assert(IdealIndex != NumIdealInits &&
3133             "initializer not found in initializer list");
3134    }
3135
3136    PrevInit = Init;
3137  }
3138}
3139
3140namespace {
3141bool CheckRedundantInit(Sema &S,
3142                        CXXCtorInitializer *Init,
3143                        CXXCtorInitializer *&PrevInit) {
3144  if (!PrevInit) {
3145    PrevInit = Init;
3146    return false;
3147  }
3148
3149  if (FieldDecl *Field = Init->getMember())
3150    S.Diag(Init->getSourceLocation(),
3151           diag::err_multiple_mem_initialization)
3152      << Field->getDeclName()
3153      << Init->getSourceRange();
3154  else {
3155    const Type *BaseClass = Init->getBaseClass();
3156    assert(BaseClass && "neither field nor base");
3157    S.Diag(Init->getSourceLocation(),
3158           diag::err_multiple_base_initialization)
3159      << QualType(BaseClass, 0)
3160      << Init->getSourceRange();
3161  }
3162  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3163    << 0 << PrevInit->getSourceRange();
3164
3165  return true;
3166}
3167
3168typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3169typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3170
3171bool CheckRedundantUnionInit(Sema &S,
3172                             CXXCtorInitializer *Init,
3173                             RedundantUnionMap &Unions) {
3174  FieldDecl *Field = Init->getAnyMember();
3175  RecordDecl *Parent = Field->getParent();
3176  NamedDecl *Child = Field;
3177
3178  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3179    if (Parent->isUnion()) {
3180      UnionEntry &En = Unions[Parent];
3181      if (En.first && En.first != Child) {
3182        S.Diag(Init->getSourceLocation(),
3183               diag::err_multiple_mem_union_initialization)
3184          << Field->getDeclName()
3185          << Init->getSourceRange();
3186        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3187          << 0 << En.second->getSourceRange();
3188        return true;
3189      }
3190      if (!En.first) {
3191        En.first = Child;
3192        En.second = Init;
3193      }
3194      if (!Parent->isAnonymousStructOrUnion())
3195        return false;
3196    }
3197
3198    Child = Parent;
3199    Parent = cast<RecordDecl>(Parent->getDeclContext());
3200  }
3201
3202  return false;
3203}
3204}
3205
3206/// ActOnMemInitializers - Handle the member initializers for a constructor.
3207void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3208                                SourceLocation ColonLoc,
3209                                CXXCtorInitializer **meminits,
3210                                unsigned NumMemInits,
3211                                bool AnyErrors) {
3212  if (!ConstructorDecl)
3213    return;
3214
3215  AdjustDeclIfTemplate(ConstructorDecl);
3216
3217  CXXConstructorDecl *Constructor
3218    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3219
3220  if (!Constructor) {
3221    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3222    return;
3223  }
3224
3225  CXXCtorInitializer **MemInits =
3226    reinterpret_cast<CXXCtorInitializer **>(meminits);
3227
3228  // Mapping for the duplicate initializers check.
3229  // For member initializers, this is keyed with a FieldDecl*.
3230  // For base initializers, this is keyed with a Type*.
3231  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3232
3233  // Mapping for the inconsistent anonymous-union initializers check.
3234  RedundantUnionMap MemberUnions;
3235
3236  bool HadError = false;
3237  for (unsigned i = 0; i < NumMemInits; i++) {
3238    CXXCtorInitializer *Init = MemInits[i];
3239
3240    // Set the source order index.
3241    Init->setSourceOrder(i);
3242
3243    if (Init->isAnyMemberInitializer()) {
3244      FieldDecl *Field = Init->getAnyMember();
3245      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3246          CheckRedundantUnionInit(*this, Init, MemberUnions))
3247        HadError = true;
3248    } else if (Init->isBaseInitializer()) {
3249      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3250      if (CheckRedundantInit(*this, Init, Members[Key]))
3251        HadError = true;
3252    } else {
3253      assert(Init->isDelegatingInitializer());
3254      // This must be the only initializer
3255      if (i != 0 || NumMemInits > 1) {
3256        Diag(MemInits[0]->getSourceLocation(),
3257             diag::err_delegating_initializer_alone)
3258          << MemInits[0]->getSourceRange();
3259        HadError = true;
3260        // We will treat this as being the only initializer.
3261      }
3262      SetDelegatingInitializer(Constructor, MemInits[i]);
3263      // Return immediately as the initializer is set.
3264      return;
3265    }
3266  }
3267
3268  if (HadError)
3269    return;
3270
3271  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3272
3273  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3274}
3275
3276void
3277Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3278                                             CXXRecordDecl *ClassDecl) {
3279  // Ignore dependent contexts. Also ignore unions, since their members never
3280  // have destructors implicitly called.
3281  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3282    return;
3283
3284  // FIXME: all the access-control diagnostics are positioned on the
3285  // field/base declaration.  That's probably good; that said, the
3286  // user might reasonably want to know why the destructor is being
3287  // emitted, and we currently don't say.
3288
3289  // Non-static data members.
3290  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3291       E = ClassDecl->field_end(); I != E; ++I) {
3292    FieldDecl *Field = *I;
3293    if (Field->isInvalidDecl())
3294      continue;
3295
3296    // Don't destroy incomplete or zero-length arrays.
3297    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3298      continue;
3299
3300    QualType FieldType = Context.getBaseElementType(Field->getType());
3301
3302    const RecordType* RT = FieldType->getAs<RecordType>();
3303    if (!RT)
3304      continue;
3305
3306    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3307    if (FieldClassDecl->isInvalidDecl())
3308      continue;
3309    if (FieldClassDecl->hasIrrelevantDestructor())
3310      continue;
3311    // The destructor for an implicit anonymous union member is never invoked.
3312    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3313      continue;
3314
3315    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3316    assert(Dtor && "No dtor found for FieldClassDecl!");
3317    CheckDestructorAccess(Field->getLocation(), Dtor,
3318                          PDiag(diag::err_access_dtor_field)
3319                            << Field->getDeclName()
3320                            << FieldType);
3321
3322    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3323    DiagnoseUseOfDecl(Dtor, Location);
3324  }
3325
3326  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3327
3328  // Bases.
3329  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3330       E = ClassDecl->bases_end(); Base != E; ++Base) {
3331    // Bases are always records in a well-formed non-dependent class.
3332    const RecordType *RT = Base->getType()->getAs<RecordType>();
3333
3334    // Remember direct virtual bases.
3335    if (Base->isVirtual())
3336      DirectVirtualBases.insert(RT);
3337
3338    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3339    // If our base class is invalid, we probably can't get its dtor anyway.
3340    if (BaseClassDecl->isInvalidDecl())
3341      continue;
3342    if (BaseClassDecl->hasIrrelevantDestructor())
3343      continue;
3344
3345    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3346    assert(Dtor && "No dtor found for BaseClassDecl!");
3347
3348    // FIXME: caret should be on the start of the class name
3349    CheckDestructorAccess(Base->getLocStart(), Dtor,
3350                          PDiag(diag::err_access_dtor_base)
3351                            << Base->getType()
3352                            << Base->getSourceRange(),
3353                          Context.getTypeDeclType(ClassDecl));
3354
3355    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3356    DiagnoseUseOfDecl(Dtor, Location);
3357  }
3358
3359  // Virtual bases.
3360  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3361       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3362
3363    // Bases are always records in a well-formed non-dependent class.
3364    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3365
3366    // Ignore direct virtual bases.
3367    if (DirectVirtualBases.count(RT))
3368      continue;
3369
3370    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3371    // If our base class is invalid, we probably can't get its dtor anyway.
3372    if (BaseClassDecl->isInvalidDecl())
3373      continue;
3374    if (BaseClassDecl->hasIrrelevantDestructor())
3375      continue;
3376
3377    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3378    assert(Dtor && "No dtor found for BaseClassDecl!");
3379    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3380                          PDiag(diag::err_access_dtor_vbase)
3381                            << VBase->getType(),
3382                          Context.getTypeDeclType(ClassDecl));
3383
3384    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3385    DiagnoseUseOfDecl(Dtor, Location);
3386  }
3387}
3388
3389void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3390  if (!CDtorDecl)
3391    return;
3392
3393  if (CXXConstructorDecl *Constructor
3394      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3395    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3396}
3397
3398bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3399                                  unsigned DiagID, AbstractDiagSelID SelID) {
3400  if (SelID == -1)
3401    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3402  else
3403    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3404}
3405
3406bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3407                                  const PartialDiagnostic &PD) {
3408  if (!getLangOpts().CPlusPlus)
3409    return false;
3410
3411  if (const ArrayType *AT = Context.getAsArrayType(T))
3412    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3413
3414  if (const PointerType *PT = T->getAs<PointerType>()) {
3415    // Find the innermost pointer type.
3416    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3417      PT = T;
3418
3419    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3420      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3421  }
3422
3423  const RecordType *RT = T->getAs<RecordType>();
3424  if (!RT)
3425    return false;
3426
3427  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3428
3429  // We can't answer whether something is abstract until it has a
3430  // definition.  If it's currently being defined, we'll walk back
3431  // over all the declarations when we have a full definition.
3432  const CXXRecordDecl *Def = RD->getDefinition();
3433  if (!Def || Def->isBeingDefined())
3434    return false;
3435
3436  if (!RD->isAbstract())
3437    return false;
3438
3439  Diag(Loc, PD) << RD->getDeclName();
3440  DiagnoseAbstractType(RD);
3441
3442  return true;
3443}
3444
3445void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3446  // Check if we've already emitted the list of pure virtual functions
3447  // for this class.
3448  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3449    return;
3450
3451  CXXFinalOverriderMap FinalOverriders;
3452  RD->getFinalOverriders(FinalOverriders);
3453
3454  // Keep a set of seen pure methods so we won't diagnose the same method
3455  // more than once.
3456  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3457
3458  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3459                                   MEnd = FinalOverriders.end();
3460       M != MEnd;
3461       ++M) {
3462    for (OverridingMethods::iterator SO = M->second.begin(),
3463                                  SOEnd = M->second.end();
3464         SO != SOEnd; ++SO) {
3465      // C++ [class.abstract]p4:
3466      //   A class is abstract if it contains or inherits at least one
3467      //   pure virtual function for which the final overrider is pure
3468      //   virtual.
3469
3470      //
3471      if (SO->second.size() != 1)
3472        continue;
3473
3474      if (!SO->second.front().Method->isPure())
3475        continue;
3476
3477      if (!SeenPureMethods.insert(SO->second.front().Method))
3478        continue;
3479
3480      Diag(SO->second.front().Method->getLocation(),
3481           diag::note_pure_virtual_function)
3482        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3483    }
3484  }
3485
3486  if (!PureVirtualClassDiagSet)
3487    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3488  PureVirtualClassDiagSet->insert(RD);
3489}
3490
3491namespace {
3492struct AbstractUsageInfo {
3493  Sema &S;
3494  CXXRecordDecl *Record;
3495  CanQualType AbstractType;
3496  bool Invalid;
3497
3498  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3499    : S(S), Record(Record),
3500      AbstractType(S.Context.getCanonicalType(
3501                   S.Context.getTypeDeclType(Record))),
3502      Invalid(false) {}
3503
3504  void DiagnoseAbstractType() {
3505    if (Invalid) return;
3506    S.DiagnoseAbstractType(Record);
3507    Invalid = true;
3508  }
3509
3510  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3511};
3512
3513struct CheckAbstractUsage {
3514  AbstractUsageInfo &Info;
3515  const NamedDecl *Ctx;
3516
3517  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3518    : Info(Info), Ctx(Ctx) {}
3519
3520  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3521    switch (TL.getTypeLocClass()) {
3522#define ABSTRACT_TYPELOC(CLASS, PARENT)
3523#define TYPELOC(CLASS, PARENT) \
3524    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3525#include "clang/AST/TypeLocNodes.def"
3526    }
3527  }
3528
3529  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3530    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3531    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3532      if (!TL.getArg(I))
3533        continue;
3534
3535      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3536      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3537    }
3538  }
3539
3540  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3541    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3542  }
3543
3544  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3545    // Visit the type parameters from a permissive context.
3546    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3547      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3548      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3549        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3550          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3551      // TODO: other template argument types?
3552    }
3553  }
3554
3555  // Visit pointee types from a permissive context.
3556#define CheckPolymorphic(Type) \
3557  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3558    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3559  }
3560  CheckPolymorphic(PointerTypeLoc)
3561  CheckPolymorphic(ReferenceTypeLoc)
3562  CheckPolymorphic(MemberPointerTypeLoc)
3563  CheckPolymorphic(BlockPointerTypeLoc)
3564  CheckPolymorphic(AtomicTypeLoc)
3565
3566  /// Handle all the types we haven't given a more specific
3567  /// implementation for above.
3568  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3569    // Every other kind of type that we haven't called out already
3570    // that has an inner type is either (1) sugar or (2) contains that
3571    // inner type in some way as a subobject.
3572    if (TypeLoc Next = TL.getNextTypeLoc())
3573      return Visit(Next, Sel);
3574
3575    // If there's no inner type and we're in a permissive context,
3576    // don't diagnose.
3577    if (Sel == Sema::AbstractNone) return;
3578
3579    // Check whether the type matches the abstract type.
3580    QualType T = TL.getType();
3581    if (T->isArrayType()) {
3582      Sel = Sema::AbstractArrayType;
3583      T = Info.S.Context.getBaseElementType(T);
3584    }
3585    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3586    if (CT != Info.AbstractType) return;
3587
3588    // It matched; do some magic.
3589    if (Sel == Sema::AbstractArrayType) {
3590      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3591        << T << TL.getSourceRange();
3592    } else {
3593      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3594        << Sel << T << TL.getSourceRange();
3595    }
3596    Info.DiagnoseAbstractType();
3597  }
3598};
3599
3600void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3601                                  Sema::AbstractDiagSelID Sel) {
3602  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3603}
3604
3605}
3606
3607/// Check for invalid uses of an abstract type in a method declaration.
3608static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3609                                    CXXMethodDecl *MD) {
3610  // No need to do the check on definitions, which require that
3611  // the return/param types be complete.
3612  if (MD->doesThisDeclarationHaveABody())
3613    return;
3614
3615  // For safety's sake, just ignore it if we don't have type source
3616  // information.  This should never happen for non-implicit methods,
3617  // but...
3618  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3619    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3620}
3621
3622/// Check for invalid uses of an abstract type within a class definition.
3623static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3624                                    CXXRecordDecl *RD) {
3625  for (CXXRecordDecl::decl_iterator
3626         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3627    Decl *D = *I;
3628    if (D->isImplicit()) continue;
3629
3630    // Methods and method templates.
3631    if (isa<CXXMethodDecl>(D)) {
3632      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3633    } else if (isa<FunctionTemplateDecl>(D)) {
3634      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3635      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3636
3637    // Fields and static variables.
3638    } else if (isa<FieldDecl>(D)) {
3639      FieldDecl *FD = cast<FieldDecl>(D);
3640      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3641        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3642    } else if (isa<VarDecl>(D)) {
3643      VarDecl *VD = cast<VarDecl>(D);
3644      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3645        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3646
3647    // Nested classes and class templates.
3648    } else if (isa<CXXRecordDecl>(D)) {
3649      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3650    } else if (isa<ClassTemplateDecl>(D)) {
3651      CheckAbstractClassUsage(Info,
3652                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3653    }
3654  }
3655}
3656
3657/// \brief Perform semantic checks on a class definition that has been
3658/// completing, introducing implicitly-declared members, checking for
3659/// abstract types, etc.
3660void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3661  if (!Record)
3662    return;
3663
3664  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3665    AbstractUsageInfo Info(*this, Record);
3666    CheckAbstractClassUsage(Info, Record);
3667  }
3668
3669  // If this is not an aggregate type and has no user-declared constructor,
3670  // complain about any non-static data members of reference or const scalar
3671  // type, since they will never get initializers.
3672  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3673      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3674      !Record->isLambda()) {
3675    bool Complained = false;
3676    for (RecordDecl::field_iterator F = Record->field_begin(),
3677                                 FEnd = Record->field_end();
3678         F != FEnd; ++F) {
3679      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3680        continue;
3681
3682      if (F->getType()->isReferenceType() ||
3683          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3684        if (!Complained) {
3685          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3686            << Record->getTagKind() << Record;
3687          Complained = true;
3688        }
3689
3690        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3691          << F->getType()->isReferenceType()
3692          << F->getDeclName();
3693      }
3694    }
3695  }
3696
3697  if (Record->isDynamicClass() && !Record->isDependentType())
3698    DynamicClasses.push_back(Record);
3699
3700  if (Record->getIdentifier()) {
3701    // C++ [class.mem]p13:
3702    //   If T is the name of a class, then each of the following shall have a
3703    //   name different from T:
3704    //     - every member of every anonymous union that is a member of class T.
3705    //
3706    // C++ [class.mem]p14:
3707    //   In addition, if class T has a user-declared constructor (12.1), every
3708    //   non-static data member of class T shall have a name different from T.
3709    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3710         R.first != R.second; ++R.first) {
3711      NamedDecl *D = *R.first;
3712      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3713          isa<IndirectFieldDecl>(D)) {
3714        Diag(D->getLocation(), diag::err_member_name_of_class)
3715          << D->getDeclName();
3716        break;
3717      }
3718    }
3719  }
3720
3721  // Warn if the class has virtual methods but non-virtual public destructor.
3722  if (Record->isPolymorphic() && !Record->isDependentType()) {
3723    CXXDestructorDecl *dtor = Record->getDestructor();
3724    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3725      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3726           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3727  }
3728
3729  // See if a method overloads virtual methods in a base
3730  /// class without overriding any.
3731  if (!Record->isDependentType()) {
3732    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3733                                     MEnd = Record->method_end();
3734         M != MEnd; ++M) {
3735      if (!(*M)->isStatic())
3736        DiagnoseHiddenVirtualMethods(Record, *M);
3737    }
3738  }
3739
3740  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3741  // function that is not a constructor declares that member function to be
3742  // const. [...] The class of which that function is a member shall be
3743  // a literal type.
3744  //
3745  // If the class has virtual bases, any constexpr members will already have
3746  // been diagnosed by the checks performed on the member declaration, so
3747  // suppress this (less useful) diagnostic.
3748  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3749      !Record->isLiteral() && !Record->getNumVBases()) {
3750    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3751                                     MEnd = Record->method_end();
3752         M != MEnd; ++M) {
3753      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3754        switch (Record->getTemplateSpecializationKind()) {
3755        case TSK_ImplicitInstantiation:
3756        case TSK_ExplicitInstantiationDeclaration:
3757        case TSK_ExplicitInstantiationDefinition:
3758          // If a template instantiates to a non-literal type, but its members
3759          // instantiate to constexpr functions, the template is technically
3760          // ill-formed, but we allow it for sanity.
3761          continue;
3762
3763        case TSK_Undeclared:
3764        case TSK_ExplicitSpecialization:
3765          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3766                             PDiag(diag::err_constexpr_method_non_literal));
3767          break;
3768        }
3769
3770        // Only produce one error per class.
3771        break;
3772      }
3773    }
3774  }
3775
3776  // Declare inherited constructors. We do this eagerly here because:
3777  // - The standard requires an eager diagnostic for conflicting inherited
3778  //   constructors from different classes.
3779  // - The lazy declaration of the other implicit constructors is so as to not
3780  //   waste space and performance on classes that are not meant to be
3781  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3782  //   have inherited constructors.
3783  DeclareInheritedConstructors(Record);
3784
3785  if (!Record->isDependentType())
3786    CheckExplicitlyDefaultedMethods(Record);
3787}
3788
3789void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3790  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3791                                      ME = Record->method_end();
3792       MI != ME; ++MI) {
3793    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3794      switch (getSpecialMember(*MI)) {
3795      case CXXDefaultConstructor:
3796        CheckExplicitlyDefaultedDefaultConstructor(
3797                                                  cast<CXXConstructorDecl>(*MI));
3798        break;
3799
3800      case CXXDestructor:
3801        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3802        break;
3803
3804      case CXXCopyConstructor:
3805        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3806        break;
3807
3808      case CXXCopyAssignment:
3809        CheckExplicitlyDefaultedCopyAssignment(*MI);
3810        break;
3811
3812      case CXXMoveConstructor:
3813        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3814        break;
3815
3816      case CXXMoveAssignment:
3817        CheckExplicitlyDefaultedMoveAssignment(*MI);
3818        break;
3819
3820      case CXXInvalid:
3821        llvm_unreachable("non-special member explicitly defaulted!");
3822      }
3823    }
3824  }
3825
3826}
3827
3828void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3829  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3830
3831  // Whether this was the first-declared instance of the constructor.
3832  // This affects whether we implicitly add an exception spec (and, eventually,
3833  // constexpr). It is also ill-formed to explicitly default a constructor such
3834  // that it would be deleted. (C++0x [decl.fct.def.default])
3835  bool First = CD == CD->getCanonicalDecl();
3836
3837  bool HadError = false;
3838  if (CD->getNumParams() != 0) {
3839    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3840      << CD->getSourceRange();
3841    HadError = true;
3842  }
3843
3844  ImplicitExceptionSpecification Spec
3845    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3846  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3847  if (EPI.ExceptionSpecType == EST_Delayed) {
3848    // Exception specification depends on some deferred part of the class. We'll
3849    // try again when the class's definition has been fully processed.
3850    return;
3851  }
3852  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3853                          *ExceptionType = Context.getFunctionType(
3854                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3855
3856  // C++11 [dcl.fct.def.default]p2:
3857  //   An explicitly-defaulted function may be declared constexpr only if it
3858  //   would have been implicitly declared as constexpr,
3859  // Do not apply this rule to templates, since core issue 1358 makes such
3860  // functions always instantiate to constexpr functions.
3861  if (CD->isConstexpr() &&
3862      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3863    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3864      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3865        << CXXDefaultConstructor;
3866      HadError = true;
3867    }
3868  }
3869  //   and may have an explicit exception-specification only if it is compatible
3870  //   with the exception-specification on the implicit declaration.
3871  if (CtorType->hasExceptionSpec()) {
3872    if (CheckEquivalentExceptionSpec(
3873          PDiag(diag::err_incorrect_defaulted_exception_spec)
3874            << CXXDefaultConstructor,
3875          PDiag(),
3876          ExceptionType, SourceLocation(),
3877          CtorType, CD->getLocation())) {
3878      HadError = true;
3879    }
3880  }
3881
3882  //   If a function is explicitly defaulted on its first declaration,
3883  if (First) {
3884    //  -- it is implicitly considered to be constexpr if the implicit
3885    //     definition would be,
3886    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3887
3888    //  -- it is implicitly considered to have the same
3889    //     exception-specification as if it had been implicitly declared
3890    //
3891    // FIXME: a compatible, but different, explicit exception specification
3892    // will be silently overridden. We should issue a warning if this happens.
3893    EPI.ExtInfo = CtorType->getExtInfo();
3894
3895    // Such a function is also trivial if the implicitly-declared function
3896    // would have been.
3897    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3898  }
3899
3900  if (HadError) {
3901    CD->setInvalidDecl();
3902    return;
3903  }
3904
3905  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3906    if (First) {
3907      CD->setDeletedAsWritten();
3908    } else {
3909      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3910        << CXXDefaultConstructor;
3911      CD->setInvalidDecl();
3912    }
3913  }
3914}
3915
3916void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3917  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3918
3919  // Whether this was the first-declared instance of the constructor.
3920  bool First = CD == CD->getCanonicalDecl();
3921
3922  bool HadError = false;
3923  if (CD->getNumParams() != 1) {
3924    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3925      << CD->getSourceRange();
3926    HadError = true;
3927  }
3928
3929  ImplicitExceptionSpecification Spec(*this);
3930  bool Const;
3931  llvm::tie(Spec, Const) =
3932    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3933
3934  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3935  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3936                          *ExceptionType = Context.getFunctionType(
3937                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3938
3939  // Check for parameter type matching.
3940  // This is a copy ctor so we know it's a cv-qualified reference to T.
3941  QualType ArgType = CtorType->getArgType(0);
3942  if (ArgType->getPointeeType().isVolatileQualified()) {
3943    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3944    HadError = true;
3945  }
3946  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3947    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3948    HadError = true;
3949  }
3950
3951  // C++11 [dcl.fct.def.default]p2:
3952  //   An explicitly-defaulted function may be declared constexpr only if it
3953  //   would have been implicitly declared as constexpr,
3954  // Do not apply this rule to templates, since core issue 1358 makes such
3955  // functions always instantiate to constexpr functions.
3956  if (CD->isConstexpr() &&
3957      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3958    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3959      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3960        << CXXCopyConstructor;
3961      HadError = true;
3962    }
3963  }
3964  //   and may have an explicit exception-specification only if it is compatible
3965  //   with the exception-specification on the implicit declaration.
3966  if (CtorType->hasExceptionSpec()) {
3967    if (CheckEquivalentExceptionSpec(
3968          PDiag(diag::err_incorrect_defaulted_exception_spec)
3969            << CXXCopyConstructor,
3970          PDiag(),
3971          ExceptionType, SourceLocation(),
3972          CtorType, CD->getLocation())) {
3973      HadError = true;
3974    }
3975  }
3976
3977  //   If a function is explicitly defaulted on its first declaration,
3978  if (First) {
3979    //  -- it is implicitly considered to be constexpr if the implicit
3980    //     definition would be,
3981    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3982
3983    //  -- it is implicitly considered to have the same
3984    //     exception-specification as if it had been implicitly declared, and
3985    //
3986    // FIXME: a compatible, but different, explicit exception specification
3987    // will be silently overridden. We should issue a warning if this happens.
3988    EPI.ExtInfo = CtorType->getExtInfo();
3989
3990    //  -- [...] it shall have the same parameter type as if it had been
3991    //     implicitly declared.
3992    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3993
3994    // Such a function is also trivial if the implicitly-declared function
3995    // would have been.
3996    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3997  }
3998
3999  if (HadError) {
4000    CD->setInvalidDecl();
4001    return;
4002  }
4003
4004  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
4005    if (First) {
4006      CD->setDeletedAsWritten();
4007    } else {
4008      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4009        << CXXCopyConstructor;
4010      CD->setInvalidDecl();
4011    }
4012  }
4013}
4014
4015void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
4016  assert(MD->isExplicitlyDefaulted());
4017
4018  // Whether this was the first-declared instance of the operator
4019  bool First = MD == MD->getCanonicalDecl();
4020
4021  bool HadError = false;
4022  if (MD->getNumParams() != 1) {
4023    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4024      << MD->getSourceRange();
4025    HadError = true;
4026  }
4027
4028  QualType ReturnType =
4029    MD->getType()->getAs<FunctionType>()->getResultType();
4030  if (!ReturnType->isLValueReferenceType() ||
4031      !Context.hasSameType(
4032        Context.getCanonicalType(ReturnType->getPointeeType()),
4033        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4034    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4035    HadError = true;
4036  }
4037
4038  ImplicitExceptionSpecification Spec(*this);
4039  bool Const;
4040  llvm::tie(Spec, Const) =
4041    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4042
4043  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4044  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4045                          *ExceptionType = Context.getFunctionType(
4046                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4047
4048  QualType ArgType = OperType->getArgType(0);
4049  if (!ArgType->isLValueReferenceType()) {
4050    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4051    HadError = true;
4052  } else {
4053    if (ArgType->getPointeeType().isVolatileQualified()) {
4054      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4055      HadError = true;
4056    }
4057    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4058      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4059      HadError = true;
4060    }
4061  }
4062
4063  if (OperType->getTypeQuals()) {
4064    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4065    HadError = true;
4066  }
4067
4068  if (OperType->hasExceptionSpec()) {
4069    if (CheckEquivalentExceptionSpec(
4070          PDiag(diag::err_incorrect_defaulted_exception_spec)
4071            << CXXCopyAssignment,
4072          PDiag(),
4073          ExceptionType, SourceLocation(),
4074          OperType, MD->getLocation())) {
4075      HadError = true;
4076    }
4077  }
4078  if (First) {
4079    // We set the declaration to have the computed exception spec here.
4080    // We duplicate the one parameter type.
4081    EPI.RefQualifier = OperType->getRefQualifier();
4082    EPI.ExtInfo = OperType->getExtInfo();
4083    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4084
4085    // Such a function is also trivial if the implicitly-declared function
4086    // would have been.
4087    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4088  }
4089
4090  if (HadError) {
4091    MD->setInvalidDecl();
4092    return;
4093  }
4094
4095  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4096    if (First) {
4097      MD->setDeletedAsWritten();
4098    } else {
4099      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4100        << CXXCopyAssignment;
4101      MD->setInvalidDecl();
4102    }
4103  }
4104}
4105
4106void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4107  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4108
4109  // Whether this was the first-declared instance of the constructor.
4110  bool First = CD == CD->getCanonicalDecl();
4111
4112  bool HadError = false;
4113  if (CD->getNumParams() != 1) {
4114    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4115      << CD->getSourceRange();
4116    HadError = true;
4117  }
4118
4119  ImplicitExceptionSpecification Spec(
4120      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4121
4122  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4123  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4124                          *ExceptionType = Context.getFunctionType(
4125                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4126
4127  // Check for parameter type matching.
4128  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4129  QualType ArgType = CtorType->getArgType(0);
4130  if (ArgType->getPointeeType().isVolatileQualified()) {
4131    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4132    HadError = true;
4133  }
4134  if (ArgType->getPointeeType().isConstQualified()) {
4135    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4136    HadError = true;
4137  }
4138
4139  // C++11 [dcl.fct.def.default]p2:
4140  //   An explicitly-defaulted function may be declared constexpr only if it
4141  //   would have been implicitly declared as constexpr,
4142  // Do not apply this rule to templates, since core issue 1358 makes such
4143  // functions always instantiate to constexpr functions.
4144  if (CD->isConstexpr() &&
4145      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4146    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4147      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4148        << CXXMoveConstructor;
4149      HadError = true;
4150    }
4151  }
4152  //   and may have an explicit exception-specification only if it is compatible
4153  //   with the exception-specification on the implicit declaration.
4154  if (CtorType->hasExceptionSpec()) {
4155    if (CheckEquivalentExceptionSpec(
4156          PDiag(diag::err_incorrect_defaulted_exception_spec)
4157            << CXXMoveConstructor,
4158          PDiag(),
4159          ExceptionType, SourceLocation(),
4160          CtorType, CD->getLocation())) {
4161      HadError = true;
4162    }
4163  }
4164
4165  //   If a function is explicitly defaulted on its first declaration,
4166  if (First) {
4167    //  -- it is implicitly considered to be constexpr if the implicit
4168    //     definition would be,
4169    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4170
4171    //  -- it is implicitly considered to have the same
4172    //     exception-specification as if it had been implicitly declared, and
4173    //
4174    // FIXME: a compatible, but different, explicit exception specification
4175    // will be silently overridden. We should issue a warning if this happens.
4176    EPI.ExtInfo = CtorType->getExtInfo();
4177
4178    //  -- [...] it shall have the same parameter type as if it had been
4179    //     implicitly declared.
4180    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4181
4182    // Such a function is also trivial if the implicitly-declared function
4183    // would have been.
4184    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4185  }
4186
4187  if (HadError) {
4188    CD->setInvalidDecl();
4189    return;
4190  }
4191
4192  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4193    if (First) {
4194      CD->setDeletedAsWritten();
4195    } else {
4196      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4197        << CXXMoveConstructor;
4198      CD->setInvalidDecl();
4199    }
4200  }
4201}
4202
4203void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4204  assert(MD->isExplicitlyDefaulted());
4205
4206  // Whether this was the first-declared instance of the operator
4207  bool First = MD == MD->getCanonicalDecl();
4208
4209  bool HadError = false;
4210  if (MD->getNumParams() != 1) {
4211    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4212      << MD->getSourceRange();
4213    HadError = true;
4214  }
4215
4216  QualType ReturnType =
4217    MD->getType()->getAs<FunctionType>()->getResultType();
4218  if (!ReturnType->isLValueReferenceType() ||
4219      !Context.hasSameType(
4220        Context.getCanonicalType(ReturnType->getPointeeType()),
4221        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4222    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4223    HadError = true;
4224  }
4225
4226  ImplicitExceptionSpecification Spec(
4227      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4228
4229  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4230  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4231                          *ExceptionType = Context.getFunctionType(
4232                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4233
4234  QualType ArgType = OperType->getArgType(0);
4235  if (!ArgType->isRValueReferenceType()) {
4236    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4237    HadError = true;
4238  } else {
4239    if (ArgType->getPointeeType().isVolatileQualified()) {
4240      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4241      HadError = true;
4242    }
4243    if (ArgType->getPointeeType().isConstQualified()) {
4244      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4245      HadError = true;
4246    }
4247  }
4248
4249  if (OperType->getTypeQuals()) {
4250    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4251    HadError = true;
4252  }
4253
4254  if (OperType->hasExceptionSpec()) {
4255    if (CheckEquivalentExceptionSpec(
4256          PDiag(diag::err_incorrect_defaulted_exception_spec)
4257            << CXXMoveAssignment,
4258          PDiag(),
4259          ExceptionType, SourceLocation(),
4260          OperType, MD->getLocation())) {
4261      HadError = true;
4262    }
4263  }
4264  if (First) {
4265    // We set the declaration to have the computed exception spec here.
4266    // We duplicate the one parameter type.
4267    EPI.RefQualifier = OperType->getRefQualifier();
4268    EPI.ExtInfo = OperType->getExtInfo();
4269    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4270
4271    // Such a function is also trivial if the implicitly-declared function
4272    // would have been.
4273    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4274  }
4275
4276  if (HadError) {
4277    MD->setInvalidDecl();
4278    return;
4279  }
4280
4281  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4282    if (First) {
4283      MD->setDeletedAsWritten();
4284    } else {
4285      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4286        << CXXMoveAssignment;
4287      MD->setInvalidDecl();
4288    }
4289  }
4290}
4291
4292void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4293  assert(DD->isExplicitlyDefaulted());
4294
4295  // Whether this was the first-declared instance of the destructor.
4296  bool First = DD == DD->getCanonicalDecl();
4297
4298  ImplicitExceptionSpecification Spec
4299    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4300  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4301  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4302                          *ExceptionType = Context.getFunctionType(
4303                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4304
4305  if (DtorType->hasExceptionSpec()) {
4306    if (CheckEquivalentExceptionSpec(
4307          PDiag(diag::err_incorrect_defaulted_exception_spec)
4308            << CXXDestructor,
4309          PDiag(),
4310          ExceptionType, SourceLocation(),
4311          DtorType, DD->getLocation())) {
4312      DD->setInvalidDecl();
4313      return;
4314    }
4315  }
4316  if (First) {
4317    // We set the declaration to have the computed exception spec here.
4318    // There are no parameters.
4319    EPI.ExtInfo = DtorType->getExtInfo();
4320    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4321
4322    // Such a function is also trivial if the implicitly-declared function
4323    // would have been.
4324    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4325  }
4326
4327  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4328    if (First) {
4329      DD->setDeletedAsWritten();
4330    } else {
4331      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4332        << CXXDestructor;
4333      DD->setInvalidDecl();
4334    }
4335  }
4336}
4337
4338namespace {
4339struct SpecialMemberDeletionInfo {
4340  Sema &S;
4341  CXXMethodDecl *MD;
4342  Sema::CXXSpecialMember CSM;
4343  bool Diagnose;
4344
4345  // Properties of the special member, computed for convenience.
4346  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4347  SourceLocation Loc;
4348
4349  bool AllFieldsAreConst;
4350
4351  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4352                            Sema::CXXSpecialMember CSM, bool Diagnose)
4353    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4354      IsConstructor(false), IsAssignment(false), IsMove(false),
4355      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4356      AllFieldsAreConst(true) {
4357    switch (CSM) {
4358      case Sema::CXXDefaultConstructor:
4359      case Sema::CXXCopyConstructor:
4360        IsConstructor = true;
4361        break;
4362      case Sema::CXXMoveConstructor:
4363        IsConstructor = true;
4364        IsMove = true;
4365        break;
4366      case Sema::CXXCopyAssignment:
4367        IsAssignment = true;
4368        break;
4369      case Sema::CXXMoveAssignment:
4370        IsAssignment = true;
4371        IsMove = true;
4372        break;
4373      case Sema::CXXDestructor:
4374        break;
4375      case Sema::CXXInvalid:
4376        llvm_unreachable("invalid special member kind");
4377    }
4378
4379    if (MD->getNumParams()) {
4380      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4381      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4382    }
4383  }
4384
4385  bool inUnion() const { return MD->getParent()->isUnion(); }
4386
4387  /// Look up the corresponding special member in the given class.
4388  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4389    unsigned TQ = MD->getTypeQualifiers();
4390    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4391                                 MD->getRefQualifier() == RQ_RValue,
4392                                 TQ & Qualifiers::Const,
4393                                 TQ & Qualifiers::Volatile);
4394  }
4395
4396  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4397
4398  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4399  bool shouldDeleteForField(FieldDecl *FD);
4400  bool shouldDeleteForAllConstMembers();
4401
4402  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4403  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4404                                    Sema::SpecialMemberOverloadResult *SMOR,
4405                                    bool IsDtorCallInCtor);
4406
4407  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4408};
4409}
4410
4411/// Is the given special member inaccessible when used on the given
4412/// sub-object.
4413bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4414                                             CXXMethodDecl *target) {
4415  /// If we're operating on a base class, the object type is the
4416  /// type of this special member.
4417  QualType objectTy;
4418  AccessSpecifier access = target->getAccess();;
4419  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4420    objectTy = S.Context.getTypeDeclType(MD->getParent());
4421    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4422
4423  // If we're operating on a field, the object type is the type of the field.
4424  } else {
4425    objectTy = S.Context.getTypeDeclType(target->getParent());
4426  }
4427
4428  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4429}
4430
4431/// Check whether we should delete a special member due to the implicit
4432/// definition containing a call to a special member of a subobject.
4433bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4434    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4435    bool IsDtorCallInCtor) {
4436  CXXMethodDecl *Decl = SMOR->getMethod();
4437  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4438
4439  int DiagKind = -1;
4440
4441  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4442    DiagKind = !Decl ? 0 : 1;
4443  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4444    DiagKind = 2;
4445  else if (!isAccessible(Subobj, Decl))
4446    DiagKind = 3;
4447  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4448           !Decl->isTrivial()) {
4449    // A member of a union must have a trivial corresponding special member.
4450    // As a weird special case, a destructor call from a union's constructor
4451    // must be accessible and non-deleted, but need not be trivial. Such a
4452    // destructor is never actually called, but is semantically checked as
4453    // if it were.
4454    DiagKind = 4;
4455  }
4456
4457  if (DiagKind == -1)
4458    return false;
4459
4460  if (Diagnose) {
4461    if (Field) {
4462      S.Diag(Field->getLocation(),
4463             diag::note_deleted_special_member_class_subobject)
4464        << CSM << MD->getParent() << /*IsField*/true
4465        << Field << DiagKind << IsDtorCallInCtor;
4466    } else {
4467      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4468      S.Diag(Base->getLocStart(),
4469             diag::note_deleted_special_member_class_subobject)
4470        << CSM << MD->getParent() << /*IsField*/false
4471        << Base->getType() << DiagKind << IsDtorCallInCtor;
4472    }
4473
4474    if (DiagKind == 1)
4475      S.NoteDeletedFunction(Decl);
4476    // FIXME: Explain inaccessibility if DiagKind == 3.
4477  }
4478
4479  return true;
4480}
4481
4482/// Check whether we should delete a special member function due to having a
4483/// direct or virtual base class or static data member of class type M.
4484bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4485    CXXRecordDecl *Class, Subobject Subobj) {
4486  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4487
4488  // C++11 [class.ctor]p5:
4489  // -- any direct or virtual base class, or non-static data member with no
4490  //    brace-or-equal-initializer, has class type M (or array thereof) and
4491  //    either M has no default constructor or overload resolution as applied
4492  //    to M's default constructor results in an ambiguity or in a function
4493  //    that is deleted or inaccessible
4494  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4495  // -- a direct or virtual base class B that cannot be copied/moved because
4496  //    overload resolution, as applied to B's corresponding special member,
4497  //    results in an ambiguity or a function that is deleted or inaccessible
4498  //    from the defaulted special member
4499  // C++11 [class.dtor]p5:
4500  // -- any direct or virtual base class [...] has a type with a destructor
4501  //    that is deleted or inaccessible
4502  if (!(CSM == Sema::CXXDefaultConstructor &&
4503        Field && Field->hasInClassInitializer()) &&
4504      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4505    return true;
4506
4507  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4508  // -- any direct or virtual base class or non-static data member has a
4509  //    type with a destructor that is deleted or inaccessible
4510  if (IsConstructor) {
4511    Sema::SpecialMemberOverloadResult *SMOR =
4512        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4513                              false, false, false, false, false);
4514    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4515      return true;
4516  }
4517
4518  return false;
4519}
4520
4521/// Check whether we should delete a special member function due to the class
4522/// having a particular direct or virtual base class.
4523bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4524  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4525  return shouldDeleteForClassSubobject(BaseClass, Base);
4526}
4527
4528/// Check whether we should delete a special member function due to the class
4529/// having a particular non-static data member.
4530bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4531  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4532  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4533
4534  if (CSM == Sema::CXXDefaultConstructor) {
4535    // For a default constructor, all references must be initialized in-class
4536    // and, if a union, it must have a non-const member.
4537    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4538      if (Diagnose)
4539        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4540          << MD->getParent() << FD << FieldType << /*Reference*/0;
4541      return true;
4542    }
4543    // C++11 [class.ctor]p5: any non-variant non-static data member of
4544    // const-qualified type (or array thereof) with no
4545    // brace-or-equal-initializer does not have a user-provided default
4546    // constructor.
4547    if (!inUnion() && FieldType.isConstQualified() &&
4548        !FD->hasInClassInitializer() &&
4549        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4550      if (Diagnose)
4551        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4552          << MD->getParent() << FD << FieldType << /*Const*/1;
4553      return true;
4554    }
4555
4556    if (inUnion() && !FieldType.isConstQualified())
4557      AllFieldsAreConst = false;
4558  } else if (CSM == Sema::CXXCopyConstructor) {
4559    // For a copy constructor, data members must not be of rvalue reference
4560    // type.
4561    if (FieldType->isRValueReferenceType()) {
4562      if (Diagnose)
4563        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4564          << MD->getParent() << FD << FieldType;
4565      return true;
4566    }
4567  } else if (IsAssignment) {
4568    // For an assignment operator, data members must not be of reference type.
4569    if (FieldType->isReferenceType()) {
4570      if (Diagnose)
4571        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4572          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4573      return true;
4574    }
4575    if (!FieldRecord && FieldType.isConstQualified()) {
4576      // C++11 [class.copy]p23:
4577      // -- a non-static data member of const non-class type (or array thereof)
4578      if (Diagnose)
4579        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4580          << IsMove << MD->getParent() << FD << FieldType << /*Const*/1;
4581      return true;
4582    }
4583  }
4584
4585  if (FieldRecord) {
4586    // Some additional restrictions exist on the variant members.
4587    if (!inUnion() && FieldRecord->isUnion() &&
4588        FieldRecord->isAnonymousStructOrUnion()) {
4589      bool AllVariantFieldsAreConst = true;
4590
4591      // FIXME: Handle anonymous unions declared within anonymous unions.
4592      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4593                                         UE = FieldRecord->field_end();
4594           UI != UE; ++UI) {
4595        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4596
4597        if (!UnionFieldType.isConstQualified())
4598          AllVariantFieldsAreConst = false;
4599
4600        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4601        if (UnionFieldRecord &&
4602            shouldDeleteForClassSubobject(UnionFieldRecord, *UI))
4603          return true;
4604      }
4605
4606      // At least one member in each anonymous union must be non-const
4607      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4608          FieldRecord->field_begin() != FieldRecord->field_end()) {
4609        if (Diagnose)
4610          S.Diag(FieldRecord->getLocation(),
4611                 diag::note_deleted_default_ctor_all_const)
4612            << MD->getParent() << /*anonymous union*/1;
4613        return true;
4614      }
4615
4616      // Don't check the implicit member of the anonymous union type.
4617      // This is technically non-conformant, but sanity demands it.
4618      return false;
4619    }
4620
4621    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4622      return true;
4623  }
4624
4625  return false;
4626}
4627
4628/// C++11 [class.ctor] p5:
4629///   A defaulted default constructor for a class X is defined as deleted if
4630/// X is a union and all of its variant members are of const-qualified type.
4631bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4632  // This is a silly definition, because it gives an empty union a deleted
4633  // default constructor. Don't do that.
4634  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4635      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4636    if (Diagnose)
4637      S.Diag(MD->getParent()->getLocation(),
4638             diag::note_deleted_default_ctor_all_const)
4639        << MD->getParent() << /*not anonymous union*/0;
4640    return true;
4641  }
4642  return false;
4643}
4644
4645/// Determine whether a defaulted special member function should be defined as
4646/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4647/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4648bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4649                                     bool Diagnose) {
4650  assert(!MD->isInvalidDecl());
4651  CXXRecordDecl *RD = MD->getParent();
4652  assert(!RD->isDependentType() && "do deletion after instantiation");
4653  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4654    return false;
4655
4656  // C++11 [expr.lambda.prim]p19:
4657  //   The closure type associated with a lambda-expression has a
4658  //   deleted (8.4.3) default constructor and a deleted copy
4659  //   assignment operator.
4660  if (RD->isLambda() &&
4661      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4662    if (Diagnose)
4663      Diag(RD->getLocation(), diag::note_lambda_decl);
4664    return true;
4665  }
4666
4667  // For an anonymous struct or union, the copy and assignment special members
4668  // will never be used, so skip the check. For an anonymous union declared at
4669  // namespace scope, the constructor and destructor are used.
4670  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4671      RD->isAnonymousStructOrUnion())
4672    return false;
4673
4674  // C++11 [class.copy]p7, p18:
4675  //   If the class definition declares a move constructor or move assignment
4676  //   operator, an implicitly declared copy constructor or copy assignment
4677  //   operator is defined as deleted.
4678  if (MD->isImplicit() &&
4679      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4680    CXXMethodDecl *UserDeclaredMove = 0;
4681
4682    // In Microsoft mode, a user-declared move only causes the deletion of the
4683    // corresponding copy operation, not both copy operations.
4684    if (RD->hasUserDeclaredMoveConstructor() &&
4685        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4686      if (!Diagnose) return true;
4687      UserDeclaredMove = RD->getMoveConstructor();
4688      assert(UserDeclaredMove);
4689    } else if (RD->hasUserDeclaredMoveAssignment() &&
4690               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4691      if (!Diagnose) return true;
4692      UserDeclaredMove = RD->getMoveAssignmentOperator();
4693      assert(UserDeclaredMove);
4694    }
4695
4696    if (UserDeclaredMove) {
4697      Diag(UserDeclaredMove->getLocation(),
4698           diag::note_deleted_copy_user_declared_move)
4699        << (CSM == CXXCopyAssignment) << RD
4700        << UserDeclaredMove->isMoveAssignmentOperator();
4701      return true;
4702    }
4703  }
4704
4705  // Do access control from the special member function
4706  ContextRAII MethodContext(*this, MD);
4707
4708  // C++11 [class.dtor]p5:
4709  // -- for a virtual destructor, lookup of the non-array deallocation function
4710  //    results in an ambiguity or in a function that is deleted or inaccessible
4711  if (CSM == CXXDestructor && MD->isVirtual()) {
4712    FunctionDecl *OperatorDelete = 0;
4713    DeclarationName Name =
4714      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4715    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4716                                 OperatorDelete, false)) {
4717      if (Diagnose)
4718        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4719      return true;
4720    }
4721  }
4722
4723  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4724
4725  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4726                                          BE = RD->bases_end(); BI != BE; ++BI)
4727    if (!BI->isVirtual() &&
4728        SMI.shouldDeleteForBase(BI))
4729      return true;
4730
4731  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4732                                          BE = RD->vbases_end(); BI != BE; ++BI)
4733    if (SMI.shouldDeleteForBase(BI))
4734      return true;
4735
4736  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4737                                     FE = RD->field_end(); FI != FE; ++FI)
4738    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4739        SMI.shouldDeleteForField(*FI))
4740      return true;
4741
4742  if (SMI.shouldDeleteForAllConstMembers())
4743    return true;
4744
4745  return false;
4746}
4747
4748/// \brief Data used with FindHiddenVirtualMethod
4749namespace {
4750  struct FindHiddenVirtualMethodData {
4751    Sema *S;
4752    CXXMethodDecl *Method;
4753    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4754    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4755  };
4756}
4757
4758/// \brief Member lookup function that determines whether a given C++
4759/// method overloads virtual methods in a base class without overriding any,
4760/// to be used with CXXRecordDecl::lookupInBases().
4761static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4762                                    CXXBasePath &Path,
4763                                    void *UserData) {
4764  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4765
4766  FindHiddenVirtualMethodData &Data
4767    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4768
4769  DeclarationName Name = Data.Method->getDeclName();
4770  assert(Name.getNameKind() == DeclarationName::Identifier);
4771
4772  bool foundSameNameMethod = false;
4773  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4774  for (Path.Decls = BaseRecord->lookup(Name);
4775       Path.Decls.first != Path.Decls.second;
4776       ++Path.Decls.first) {
4777    NamedDecl *D = *Path.Decls.first;
4778    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4779      MD = MD->getCanonicalDecl();
4780      foundSameNameMethod = true;
4781      // Interested only in hidden virtual methods.
4782      if (!MD->isVirtual())
4783        continue;
4784      // If the method we are checking overrides a method from its base
4785      // don't warn about the other overloaded methods.
4786      if (!Data.S->IsOverload(Data.Method, MD, false))
4787        return true;
4788      // Collect the overload only if its hidden.
4789      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4790        overloadedMethods.push_back(MD);
4791    }
4792  }
4793
4794  if (foundSameNameMethod)
4795    Data.OverloadedMethods.append(overloadedMethods.begin(),
4796                                   overloadedMethods.end());
4797  return foundSameNameMethod;
4798}
4799
4800/// \brief See if a method overloads virtual methods in a base class without
4801/// overriding any.
4802void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4803  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4804                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4805    return;
4806  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4807    return;
4808
4809  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4810                     /*bool RecordPaths=*/false,
4811                     /*bool DetectVirtual=*/false);
4812  FindHiddenVirtualMethodData Data;
4813  Data.Method = MD;
4814  Data.S = this;
4815
4816  // Keep the base methods that were overriden or introduced in the subclass
4817  // by 'using' in a set. A base method not in this set is hidden.
4818  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4819       res.first != res.second; ++res.first) {
4820    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4821      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4822                                          E = MD->end_overridden_methods();
4823           I != E; ++I)
4824        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4825    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4826      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4827        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4828  }
4829
4830  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4831      !Data.OverloadedMethods.empty()) {
4832    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4833      << MD << (Data.OverloadedMethods.size() > 1);
4834
4835    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4836      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4837      Diag(overloadedMD->getLocation(),
4838           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4839    }
4840  }
4841}
4842
4843void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4844                                             Decl *TagDecl,
4845                                             SourceLocation LBrac,
4846                                             SourceLocation RBrac,
4847                                             AttributeList *AttrList) {
4848  if (!TagDecl)
4849    return;
4850
4851  AdjustDeclIfTemplate(TagDecl);
4852
4853  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4854              // strict aliasing violation!
4855              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4856              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4857
4858  CheckCompletedCXXClass(
4859                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4860}
4861
4862/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4863/// special functions, such as the default constructor, copy
4864/// constructor, or destructor, to the given C++ class (C++
4865/// [special]p1).  This routine can only be executed just before the
4866/// definition of the class is complete.
4867void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4868  if (!ClassDecl->hasUserDeclaredConstructor())
4869    ++ASTContext::NumImplicitDefaultConstructors;
4870
4871  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4872    ++ASTContext::NumImplicitCopyConstructors;
4873
4874  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4875    ++ASTContext::NumImplicitMoveConstructors;
4876
4877  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4878    ++ASTContext::NumImplicitCopyAssignmentOperators;
4879
4880    // If we have a dynamic class, then the copy assignment operator may be
4881    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4882    // it shows up in the right place in the vtable and that we diagnose
4883    // problems with the implicit exception specification.
4884    if (ClassDecl->isDynamicClass())
4885      DeclareImplicitCopyAssignment(ClassDecl);
4886  }
4887
4888  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4889    ++ASTContext::NumImplicitMoveAssignmentOperators;
4890
4891    // Likewise for the move assignment operator.
4892    if (ClassDecl->isDynamicClass())
4893      DeclareImplicitMoveAssignment(ClassDecl);
4894  }
4895
4896  if (!ClassDecl->hasUserDeclaredDestructor()) {
4897    ++ASTContext::NumImplicitDestructors;
4898
4899    // If we have a dynamic class, then the destructor may be virtual, so we
4900    // have to declare the destructor immediately. This ensures that, e.g., it
4901    // shows up in the right place in the vtable and that we diagnose problems
4902    // with the implicit exception specification.
4903    if (ClassDecl->isDynamicClass())
4904      DeclareImplicitDestructor(ClassDecl);
4905  }
4906}
4907
4908void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4909  if (!D)
4910    return;
4911
4912  int NumParamList = D->getNumTemplateParameterLists();
4913  for (int i = 0; i < NumParamList; i++) {
4914    TemplateParameterList* Params = D->getTemplateParameterList(i);
4915    for (TemplateParameterList::iterator Param = Params->begin(),
4916                                      ParamEnd = Params->end();
4917          Param != ParamEnd; ++Param) {
4918      NamedDecl *Named = cast<NamedDecl>(*Param);
4919      if (Named->getDeclName()) {
4920        S->AddDecl(Named);
4921        IdResolver.AddDecl(Named);
4922      }
4923    }
4924  }
4925}
4926
4927void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4928  if (!D)
4929    return;
4930
4931  TemplateParameterList *Params = 0;
4932  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4933    Params = Template->getTemplateParameters();
4934  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4935           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4936    Params = PartialSpec->getTemplateParameters();
4937  else
4938    return;
4939
4940  for (TemplateParameterList::iterator Param = Params->begin(),
4941                                    ParamEnd = Params->end();
4942       Param != ParamEnd; ++Param) {
4943    NamedDecl *Named = cast<NamedDecl>(*Param);
4944    if (Named->getDeclName()) {
4945      S->AddDecl(Named);
4946      IdResolver.AddDecl(Named);
4947    }
4948  }
4949}
4950
4951void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4952  if (!RecordD) return;
4953  AdjustDeclIfTemplate(RecordD);
4954  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4955  PushDeclContext(S, Record);
4956}
4957
4958void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4959  if (!RecordD) return;
4960  PopDeclContext();
4961}
4962
4963/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4964/// parsing a top-level (non-nested) C++ class, and we are now
4965/// parsing those parts of the given Method declaration that could
4966/// not be parsed earlier (C++ [class.mem]p2), such as default
4967/// arguments. This action should enter the scope of the given
4968/// Method declaration as if we had just parsed the qualified method
4969/// name. However, it should not bring the parameters into scope;
4970/// that will be performed by ActOnDelayedCXXMethodParameter.
4971void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4972}
4973
4974/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4975/// C++ method declaration. We're (re-)introducing the given
4976/// function parameter into scope for use in parsing later parts of
4977/// the method declaration. For example, we could see an
4978/// ActOnParamDefaultArgument event for this parameter.
4979void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4980  if (!ParamD)
4981    return;
4982
4983  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4984
4985  // If this parameter has an unparsed default argument, clear it out
4986  // to make way for the parsed default argument.
4987  if (Param->hasUnparsedDefaultArg())
4988    Param->setDefaultArg(0);
4989
4990  S->AddDecl(Param);
4991  if (Param->getDeclName())
4992    IdResolver.AddDecl(Param);
4993}
4994
4995/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4996/// processing the delayed method declaration for Method. The method
4997/// declaration is now considered finished. There may be a separate
4998/// ActOnStartOfFunctionDef action later (not necessarily
4999/// immediately!) for this method, if it was also defined inside the
5000/// class body.
5001void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5002  if (!MethodD)
5003    return;
5004
5005  AdjustDeclIfTemplate(MethodD);
5006
5007  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5008
5009  // Now that we have our default arguments, check the constructor
5010  // again. It could produce additional diagnostics or affect whether
5011  // the class has implicitly-declared destructors, among other
5012  // things.
5013  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5014    CheckConstructor(Constructor);
5015
5016  // Check the default arguments, which we may have added.
5017  if (!Method->isInvalidDecl())
5018    CheckCXXDefaultArguments(Method);
5019}
5020
5021/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5022/// the well-formedness of the constructor declarator @p D with type @p
5023/// R. If there are any errors in the declarator, this routine will
5024/// emit diagnostics and set the invalid bit to true.  In any case, the type
5025/// will be updated to reflect a well-formed type for the constructor and
5026/// returned.
5027QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5028                                          StorageClass &SC) {
5029  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5030
5031  // C++ [class.ctor]p3:
5032  //   A constructor shall not be virtual (10.3) or static (9.4). A
5033  //   constructor can be invoked for a const, volatile or const
5034  //   volatile object. A constructor shall not be declared const,
5035  //   volatile, or const volatile (9.3.2).
5036  if (isVirtual) {
5037    if (!D.isInvalidType())
5038      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5039        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5040        << SourceRange(D.getIdentifierLoc());
5041    D.setInvalidType();
5042  }
5043  if (SC == SC_Static) {
5044    if (!D.isInvalidType())
5045      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5046        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5047        << SourceRange(D.getIdentifierLoc());
5048    D.setInvalidType();
5049    SC = SC_None;
5050  }
5051
5052  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5053  if (FTI.TypeQuals != 0) {
5054    if (FTI.TypeQuals & Qualifiers::Const)
5055      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5056        << "const" << SourceRange(D.getIdentifierLoc());
5057    if (FTI.TypeQuals & Qualifiers::Volatile)
5058      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5059        << "volatile" << SourceRange(D.getIdentifierLoc());
5060    if (FTI.TypeQuals & Qualifiers::Restrict)
5061      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5062        << "restrict" << SourceRange(D.getIdentifierLoc());
5063    D.setInvalidType();
5064  }
5065
5066  // C++0x [class.ctor]p4:
5067  //   A constructor shall not be declared with a ref-qualifier.
5068  if (FTI.hasRefQualifier()) {
5069    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5070      << FTI.RefQualifierIsLValueRef
5071      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5072    D.setInvalidType();
5073  }
5074
5075  // Rebuild the function type "R" without any type qualifiers (in
5076  // case any of the errors above fired) and with "void" as the
5077  // return type, since constructors don't have return types.
5078  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5079  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5080    return R;
5081
5082  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5083  EPI.TypeQuals = 0;
5084  EPI.RefQualifier = RQ_None;
5085
5086  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5087                                 Proto->getNumArgs(), EPI);
5088}
5089
5090/// CheckConstructor - Checks a fully-formed constructor for
5091/// well-formedness, issuing any diagnostics required. Returns true if
5092/// the constructor declarator is invalid.
5093void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5094  CXXRecordDecl *ClassDecl
5095    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5096  if (!ClassDecl)
5097    return Constructor->setInvalidDecl();
5098
5099  // C++ [class.copy]p3:
5100  //   A declaration of a constructor for a class X is ill-formed if
5101  //   its first parameter is of type (optionally cv-qualified) X and
5102  //   either there are no other parameters or else all other
5103  //   parameters have default arguments.
5104  if (!Constructor->isInvalidDecl() &&
5105      ((Constructor->getNumParams() == 1) ||
5106       (Constructor->getNumParams() > 1 &&
5107        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5108      Constructor->getTemplateSpecializationKind()
5109                                              != TSK_ImplicitInstantiation) {
5110    QualType ParamType = Constructor->getParamDecl(0)->getType();
5111    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5112    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5113      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5114      const char *ConstRef
5115        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5116                                                        : " const &";
5117      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5118        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5119
5120      // FIXME: Rather that making the constructor invalid, we should endeavor
5121      // to fix the type.
5122      Constructor->setInvalidDecl();
5123    }
5124  }
5125}
5126
5127/// CheckDestructor - Checks a fully-formed destructor definition for
5128/// well-formedness, issuing any diagnostics required.  Returns true
5129/// on error.
5130bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5131  CXXRecordDecl *RD = Destructor->getParent();
5132
5133  if (Destructor->isVirtual()) {
5134    SourceLocation Loc;
5135
5136    if (!Destructor->isImplicit())
5137      Loc = Destructor->getLocation();
5138    else
5139      Loc = RD->getLocation();
5140
5141    // If we have a virtual destructor, look up the deallocation function
5142    FunctionDecl *OperatorDelete = 0;
5143    DeclarationName Name =
5144    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5145    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5146      return true;
5147
5148    MarkFunctionReferenced(Loc, OperatorDelete);
5149
5150    Destructor->setOperatorDelete(OperatorDelete);
5151  }
5152
5153  return false;
5154}
5155
5156static inline bool
5157FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5158  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5159          FTI.ArgInfo[0].Param &&
5160          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5161}
5162
5163/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5164/// the well-formednes of the destructor declarator @p D with type @p
5165/// R. If there are any errors in the declarator, this routine will
5166/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5167/// will be updated to reflect a well-formed type for the destructor and
5168/// returned.
5169QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5170                                         StorageClass& SC) {
5171  // C++ [class.dtor]p1:
5172  //   [...] A typedef-name that names a class is a class-name
5173  //   (7.1.3); however, a typedef-name that names a class shall not
5174  //   be used as the identifier in the declarator for a destructor
5175  //   declaration.
5176  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5177  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5178    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5179      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5180  else if (const TemplateSpecializationType *TST =
5181             DeclaratorType->getAs<TemplateSpecializationType>())
5182    if (TST->isTypeAlias())
5183      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5184        << DeclaratorType << 1;
5185
5186  // C++ [class.dtor]p2:
5187  //   A destructor is used to destroy objects of its class type. A
5188  //   destructor takes no parameters, and no return type can be
5189  //   specified for it (not even void). The address of a destructor
5190  //   shall not be taken. A destructor shall not be static. A
5191  //   destructor can be invoked for a const, volatile or const
5192  //   volatile object. A destructor shall not be declared const,
5193  //   volatile or const volatile (9.3.2).
5194  if (SC == SC_Static) {
5195    if (!D.isInvalidType())
5196      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5197        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5198        << SourceRange(D.getIdentifierLoc())
5199        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5200
5201    SC = SC_None;
5202  }
5203  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5204    // Destructors don't have return types, but the parser will
5205    // happily parse something like:
5206    //
5207    //   class X {
5208    //     float ~X();
5209    //   };
5210    //
5211    // The return type will be eliminated later.
5212    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5213      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5214      << SourceRange(D.getIdentifierLoc());
5215  }
5216
5217  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5218  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5219    if (FTI.TypeQuals & Qualifiers::Const)
5220      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5221        << "const" << SourceRange(D.getIdentifierLoc());
5222    if (FTI.TypeQuals & Qualifiers::Volatile)
5223      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5224        << "volatile" << SourceRange(D.getIdentifierLoc());
5225    if (FTI.TypeQuals & Qualifiers::Restrict)
5226      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5227        << "restrict" << SourceRange(D.getIdentifierLoc());
5228    D.setInvalidType();
5229  }
5230
5231  // C++0x [class.dtor]p2:
5232  //   A destructor shall not be declared with a ref-qualifier.
5233  if (FTI.hasRefQualifier()) {
5234    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5235      << FTI.RefQualifierIsLValueRef
5236      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5237    D.setInvalidType();
5238  }
5239
5240  // Make sure we don't have any parameters.
5241  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5242    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5243
5244    // Delete the parameters.
5245    FTI.freeArgs();
5246    D.setInvalidType();
5247  }
5248
5249  // Make sure the destructor isn't variadic.
5250  if (FTI.isVariadic) {
5251    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5252    D.setInvalidType();
5253  }
5254
5255  // Rebuild the function type "R" without any type qualifiers or
5256  // parameters (in case any of the errors above fired) and with
5257  // "void" as the return type, since destructors don't have return
5258  // types.
5259  if (!D.isInvalidType())
5260    return R;
5261
5262  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5263  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5264  EPI.Variadic = false;
5265  EPI.TypeQuals = 0;
5266  EPI.RefQualifier = RQ_None;
5267  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5268}
5269
5270/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5271/// well-formednes of the conversion function declarator @p D with
5272/// type @p R. If there are any errors in the declarator, this routine
5273/// will emit diagnostics and return true. Otherwise, it will return
5274/// false. Either way, the type @p R will be updated to reflect a
5275/// well-formed type for the conversion operator.
5276void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5277                                     StorageClass& SC) {
5278  // C++ [class.conv.fct]p1:
5279  //   Neither parameter types nor return type can be specified. The
5280  //   type of a conversion function (8.3.5) is "function taking no
5281  //   parameter returning conversion-type-id."
5282  if (SC == SC_Static) {
5283    if (!D.isInvalidType())
5284      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5285        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5286        << SourceRange(D.getIdentifierLoc());
5287    D.setInvalidType();
5288    SC = SC_None;
5289  }
5290
5291  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5292
5293  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5294    // Conversion functions don't have return types, but the parser will
5295    // happily parse something like:
5296    //
5297    //   class X {
5298    //     float operator bool();
5299    //   };
5300    //
5301    // The return type will be changed later anyway.
5302    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5303      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5304      << SourceRange(D.getIdentifierLoc());
5305    D.setInvalidType();
5306  }
5307
5308  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5309
5310  // Make sure we don't have any parameters.
5311  if (Proto->getNumArgs() > 0) {
5312    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5313
5314    // Delete the parameters.
5315    D.getFunctionTypeInfo().freeArgs();
5316    D.setInvalidType();
5317  } else if (Proto->isVariadic()) {
5318    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5319    D.setInvalidType();
5320  }
5321
5322  // Diagnose "&operator bool()" and other such nonsense.  This
5323  // is actually a gcc extension which we don't support.
5324  if (Proto->getResultType() != ConvType) {
5325    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5326      << Proto->getResultType();
5327    D.setInvalidType();
5328    ConvType = Proto->getResultType();
5329  }
5330
5331  // C++ [class.conv.fct]p4:
5332  //   The conversion-type-id shall not represent a function type nor
5333  //   an array type.
5334  if (ConvType->isArrayType()) {
5335    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5336    ConvType = Context.getPointerType(ConvType);
5337    D.setInvalidType();
5338  } else if (ConvType->isFunctionType()) {
5339    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5340    ConvType = Context.getPointerType(ConvType);
5341    D.setInvalidType();
5342  }
5343
5344  // Rebuild the function type "R" without any parameters (in case any
5345  // of the errors above fired) and with the conversion type as the
5346  // return type.
5347  if (D.isInvalidType())
5348    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5349
5350  // C++0x explicit conversion operators.
5351  if (D.getDeclSpec().isExplicitSpecified())
5352    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5353         getLangOpts().CPlusPlus0x ?
5354           diag::warn_cxx98_compat_explicit_conversion_functions :
5355           diag::ext_explicit_conversion_functions)
5356      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5357}
5358
5359/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5360/// the declaration of the given C++ conversion function. This routine
5361/// is responsible for recording the conversion function in the C++
5362/// class, if possible.
5363Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5364  assert(Conversion && "Expected to receive a conversion function declaration");
5365
5366  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5367
5368  // Make sure we aren't redeclaring the conversion function.
5369  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5370
5371  // C++ [class.conv.fct]p1:
5372  //   [...] A conversion function is never used to convert a
5373  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5374  //   same object type (or a reference to it), to a (possibly
5375  //   cv-qualified) base class of that type (or a reference to it),
5376  //   or to (possibly cv-qualified) void.
5377  // FIXME: Suppress this warning if the conversion function ends up being a
5378  // virtual function that overrides a virtual function in a base class.
5379  QualType ClassType
5380    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5381  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5382    ConvType = ConvTypeRef->getPointeeType();
5383  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5384      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5385    /* Suppress diagnostics for instantiations. */;
5386  else if (ConvType->isRecordType()) {
5387    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5388    if (ConvType == ClassType)
5389      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5390        << ClassType;
5391    else if (IsDerivedFrom(ClassType, ConvType))
5392      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5393        <<  ClassType << ConvType;
5394  } else if (ConvType->isVoidType()) {
5395    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5396      << ClassType << ConvType;
5397  }
5398
5399  if (FunctionTemplateDecl *ConversionTemplate
5400                                = Conversion->getDescribedFunctionTemplate())
5401    return ConversionTemplate;
5402
5403  return Conversion;
5404}
5405
5406//===----------------------------------------------------------------------===//
5407// Namespace Handling
5408//===----------------------------------------------------------------------===//
5409
5410
5411
5412/// ActOnStartNamespaceDef - This is called at the start of a namespace
5413/// definition.
5414Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5415                                   SourceLocation InlineLoc,
5416                                   SourceLocation NamespaceLoc,
5417                                   SourceLocation IdentLoc,
5418                                   IdentifierInfo *II,
5419                                   SourceLocation LBrace,
5420                                   AttributeList *AttrList) {
5421  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5422  // For anonymous namespace, take the location of the left brace.
5423  SourceLocation Loc = II ? IdentLoc : LBrace;
5424  bool IsInline = InlineLoc.isValid();
5425  bool IsInvalid = false;
5426  bool IsStd = false;
5427  bool AddToKnown = false;
5428  Scope *DeclRegionScope = NamespcScope->getParent();
5429
5430  NamespaceDecl *PrevNS = 0;
5431  if (II) {
5432    // C++ [namespace.def]p2:
5433    //   The identifier in an original-namespace-definition shall not
5434    //   have been previously defined in the declarative region in
5435    //   which the original-namespace-definition appears. The
5436    //   identifier in an original-namespace-definition is the name of
5437    //   the namespace. Subsequently in that declarative region, it is
5438    //   treated as an original-namespace-name.
5439    //
5440    // Since namespace names are unique in their scope, and we don't
5441    // look through using directives, just look for any ordinary names.
5442
5443    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5444    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5445    Decl::IDNS_Namespace;
5446    NamedDecl *PrevDecl = 0;
5447    for (DeclContext::lookup_result R
5448         = CurContext->getRedeclContext()->lookup(II);
5449         R.first != R.second; ++R.first) {
5450      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5451        PrevDecl = *R.first;
5452        break;
5453      }
5454    }
5455
5456    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5457
5458    if (PrevNS) {
5459      // This is an extended namespace definition.
5460      if (IsInline != PrevNS->isInline()) {
5461        // inline-ness must match
5462        if (PrevNS->isInline()) {
5463          // The user probably just forgot the 'inline', so suggest that it
5464          // be added back.
5465          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5466            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5467        } else {
5468          Diag(Loc, diag::err_inline_namespace_mismatch)
5469            << IsInline;
5470        }
5471        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5472
5473        IsInline = PrevNS->isInline();
5474      }
5475    } else if (PrevDecl) {
5476      // This is an invalid name redefinition.
5477      Diag(Loc, diag::err_redefinition_different_kind)
5478        << II;
5479      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5480      IsInvalid = true;
5481      // Continue on to push Namespc as current DeclContext and return it.
5482    } else if (II->isStr("std") &&
5483               CurContext->getRedeclContext()->isTranslationUnit()) {
5484      // This is the first "real" definition of the namespace "std", so update
5485      // our cache of the "std" namespace to point at this definition.
5486      PrevNS = getStdNamespace();
5487      IsStd = true;
5488      AddToKnown = !IsInline;
5489    } else {
5490      // We've seen this namespace for the first time.
5491      AddToKnown = !IsInline;
5492    }
5493  } else {
5494    // Anonymous namespaces.
5495
5496    // Determine whether the parent already has an anonymous namespace.
5497    DeclContext *Parent = CurContext->getRedeclContext();
5498    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5499      PrevNS = TU->getAnonymousNamespace();
5500    } else {
5501      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5502      PrevNS = ND->getAnonymousNamespace();
5503    }
5504
5505    if (PrevNS && IsInline != PrevNS->isInline()) {
5506      // inline-ness must match
5507      Diag(Loc, diag::err_inline_namespace_mismatch)
5508        << IsInline;
5509      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5510
5511      // Recover by ignoring the new namespace's inline status.
5512      IsInline = PrevNS->isInline();
5513    }
5514  }
5515
5516  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5517                                                 StartLoc, Loc, II, PrevNS);
5518  if (IsInvalid)
5519    Namespc->setInvalidDecl();
5520
5521  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5522
5523  // FIXME: Should we be merging attributes?
5524  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5525    PushNamespaceVisibilityAttr(Attr, Loc);
5526
5527  if (IsStd)
5528    StdNamespace = Namespc;
5529  if (AddToKnown)
5530    KnownNamespaces[Namespc] = false;
5531
5532  if (II) {
5533    PushOnScopeChains(Namespc, DeclRegionScope);
5534  } else {
5535    // Link the anonymous namespace into its parent.
5536    DeclContext *Parent = CurContext->getRedeclContext();
5537    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5538      TU->setAnonymousNamespace(Namespc);
5539    } else {
5540      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5541    }
5542
5543    CurContext->addDecl(Namespc);
5544
5545    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5546    //   behaves as if it were replaced by
5547    //     namespace unique { /* empty body */ }
5548    //     using namespace unique;
5549    //     namespace unique { namespace-body }
5550    //   where all occurrences of 'unique' in a translation unit are
5551    //   replaced by the same identifier and this identifier differs
5552    //   from all other identifiers in the entire program.
5553
5554    // We just create the namespace with an empty name and then add an
5555    // implicit using declaration, just like the standard suggests.
5556    //
5557    // CodeGen enforces the "universally unique" aspect by giving all
5558    // declarations semantically contained within an anonymous
5559    // namespace internal linkage.
5560
5561    if (!PrevNS) {
5562      UsingDirectiveDecl* UD
5563        = UsingDirectiveDecl::Create(Context, CurContext,
5564                                     /* 'using' */ LBrace,
5565                                     /* 'namespace' */ SourceLocation(),
5566                                     /* qualifier */ NestedNameSpecifierLoc(),
5567                                     /* identifier */ SourceLocation(),
5568                                     Namespc,
5569                                     /* Ancestor */ CurContext);
5570      UD->setImplicit();
5571      CurContext->addDecl(UD);
5572    }
5573  }
5574
5575  // Although we could have an invalid decl (i.e. the namespace name is a
5576  // redefinition), push it as current DeclContext and try to continue parsing.
5577  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5578  // for the namespace has the declarations that showed up in that particular
5579  // namespace definition.
5580  PushDeclContext(NamespcScope, Namespc);
5581  return Namespc;
5582}
5583
5584/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5585/// is a namespace alias, returns the namespace it points to.
5586static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5587  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5588    return AD->getNamespace();
5589  return dyn_cast_or_null<NamespaceDecl>(D);
5590}
5591
5592/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5593/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5594void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5595  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5596  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5597  Namespc->setRBraceLoc(RBrace);
5598  PopDeclContext();
5599  if (Namespc->hasAttr<VisibilityAttr>())
5600    PopPragmaVisibility(true, RBrace);
5601}
5602
5603CXXRecordDecl *Sema::getStdBadAlloc() const {
5604  return cast_or_null<CXXRecordDecl>(
5605                                  StdBadAlloc.get(Context.getExternalSource()));
5606}
5607
5608NamespaceDecl *Sema::getStdNamespace() const {
5609  return cast_or_null<NamespaceDecl>(
5610                                 StdNamespace.get(Context.getExternalSource()));
5611}
5612
5613/// \brief Retrieve the special "std" namespace, which may require us to
5614/// implicitly define the namespace.
5615NamespaceDecl *Sema::getOrCreateStdNamespace() {
5616  if (!StdNamespace) {
5617    // The "std" namespace has not yet been defined, so build one implicitly.
5618    StdNamespace = NamespaceDecl::Create(Context,
5619                                         Context.getTranslationUnitDecl(),
5620                                         /*Inline=*/false,
5621                                         SourceLocation(), SourceLocation(),
5622                                         &PP.getIdentifierTable().get("std"),
5623                                         /*PrevDecl=*/0);
5624    getStdNamespace()->setImplicit(true);
5625  }
5626
5627  return getStdNamespace();
5628}
5629
5630bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5631  assert(getLangOpts().CPlusPlus &&
5632         "Looking for std::initializer_list outside of C++.");
5633
5634  // We're looking for implicit instantiations of
5635  // template <typename E> class std::initializer_list.
5636
5637  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5638    return false;
5639
5640  ClassTemplateDecl *Template = 0;
5641  const TemplateArgument *Arguments = 0;
5642
5643  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5644
5645    ClassTemplateSpecializationDecl *Specialization =
5646        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5647    if (!Specialization)
5648      return false;
5649
5650    Template = Specialization->getSpecializedTemplate();
5651    Arguments = Specialization->getTemplateArgs().data();
5652  } else if (const TemplateSpecializationType *TST =
5653                 Ty->getAs<TemplateSpecializationType>()) {
5654    Template = dyn_cast_or_null<ClassTemplateDecl>(
5655        TST->getTemplateName().getAsTemplateDecl());
5656    Arguments = TST->getArgs();
5657  }
5658  if (!Template)
5659    return false;
5660
5661  if (!StdInitializerList) {
5662    // Haven't recognized std::initializer_list yet, maybe this is it.
5663    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5664    if (TemplateClass->getIdentifier() !=
5665            &PP.getIdentifierTable().get("initializer_list") ||
5666        !getStdNamespace()->InEnclosingNamespaceSetOf(
5667            TemplateClass->getDeclContext()))
5668      return false;
5669    // This is a template called std::initializer_list, but is it the right
5670    // template?
5671    TemplateParameterList *Params = Template->getTemplateParameters();
5672    if (Params->getMinRequiredArguments() != 1)
5673      return false;
5674    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5675      return false;
5676
5677    // It's the right template.
5678    StdInitializerList = Template;
5679  }
5680
5681  if (Template != StdInitializerList)
5682    return false;
5683
5684  // This is an instance of std::initializer_list. Find the argument type.
5685  if (Element)
5686    *Element = Arguments[0].getAsType();
5687  return true;
5688}
5689
5690static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5691  NamespaceDecl *Std = S.getStdNamespace();
5692  if (!Std) {
5693    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5694    return 0;
5695  }
5696
5697  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5698                      Loc, Sema::LookupOrdinaryName);
5699  if (!S.LookupQualifiedName(Result, Std)) {
5700    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5701    return 0;
5702  }
5703  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5704  if (!Template) {
5705    Result.suppressDiagnostics();
5706    // We found something weird. Complain about the first thing we found.
5707    NamedDecl *Found = *Result.begin();
5708    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5709    return 0;
5710  }
5711
5712  // We found some template called std::initializer_list. Now verify that it's
5713  // correct.
5714  TemplateParameterList *Params = Template->getTemplateParameters();
5715  if (Params->getMinRequiredArguments() != 1 ||
5716      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5717    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5718    return 0;
5719  }
5720
5721  return Template;
5722}
5723
5724QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5725  if (!StdInitializerList) {
5726    StdInitializerList = LookupStdInitializerList(*this, Loc);
5727    if (!StdInitializerList)
5728      return QualType();
5729  }
5730
5731  TemplateArgumentListInfo Args(Loc, Loc);
5732  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5733                                       Context.getTrivialTypeSourceInfo(Element,
5734                                                                        Loc)));
5735  return Context.getCanonicalType(
5736      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5737}
5738
5739bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5740  // C++ [dcl.init.list]p2:
5741  //   A constructor is an initializer-list constructor if its first parameter
5742  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5743  //   std::initializer_list<E> for some type E, and either there are no other
5744  //   parameters or else all other parameters have default arguments.
5745  if (Ctor->getNumParams() < 1 ||
5746      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5747    return false;
5748
5749  QualType ArgType = Ctor->getParamDecl(0)->getType();
5750  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5751    ArgType = RT->getPointeeType().getUnqualifiedType();
5752
5753  return isStdInitializerList(ArgType, 0);
5754}
5755
5756/// \brief Determine whether a using statement is in a context where it will be
5757/// apply in all contexts.
5758static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5759  switch (CurContext->getDeclKind()) {
5760    case Decl::TranslationUnit:
5761      return true;
5762    case Decl::LinkageSpec:
5763      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5764    default:
5765      return false;
5766  }
5767}
5768
5769namespace {
5770
5771// Callback to only accept typo corrections that are namespaces.
5772class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5773 public:
5774  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5775    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5776      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5777    }
5778    return false;
5779  }
5780};
5781
5782}
5783
5784static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5785                                       CXXScopeSpec &SS,
5786                                       SourceLocation IdentLoc,
5787                                       IdentifierInfo *Ident) {
5788  NamespaceValidatorCCC Validator;
5789  R.clear();
5790  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5791                                               R.getLookupKind(), Sc, &SS,
5792                                               Validator)) {
5793    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5794    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5795    if (DeclContext *DC = S.computeDeclContext(SS, false))
5796      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5797        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5798        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5799    else
5800      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5801        << Ident << CorrectedQuotedStr
5802        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5803
5804    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5805         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5806
5807    R.addDecl(Corrected.getCorrectionDecl());
5808    return true;
5809  }
5810  return false;
5811}
5812
5813Decl *Sema::ActOnUsingDirective(Scope *S,
5814                                          SourceLocation UsingLoc,
5815                                          SourceLocation NamespcLoc,
5816                                          CXXScopeSpec &SS,
5817                                          SourceLocation IdentLoc,
5818                                          IdentifierInfo *NamespcName,
5819                                          AttributeList *AttrList) {
5820  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5821  assert(NamespcName && "Invalid NamespcName.");
5822  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5823
5824  // This can only happen along a recovery path.
5825  while (S->getFlags() & Scope::TemplateParamScope)
5826    S = S->getParent();
5827  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5828
5829  UsingDirectiveDecl *UDir = 0;
5830  NestedNameSpecifier *Qualifier = 0;
5831  if (SS.isSet())
5832    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5833
5834  // Lookup namespace name.
5835  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5836  LookupParsedName(R, S, &SS);
5837  if (R.isAmbiguous())
5838    return 0;
5839
5840  if (R.empty()) {
5841    R.clear();
5842    // Allow "using namespace std;" or "using namespace ::std;" even if
5843    // "std" hasn't been defined yet, for GCC compatibility.
5844    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5845        NamespcName->isStr("std")) {
5846      Diag(IdentLoc, diag::ext_using_undefined_std);
5847      R.addDecl(getOrCreateStdNamespace());
5848      R.resolveKind();
5849    }
5850    // Otherwise, attempt typo correction.
5851    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5852  }
5853
5854  if (!R.empty()) {
5855    NamedDecl *Named = R.getFoundDecl();
5856    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5857        && "expected namespace decl");
5858    // C++ [namespace.udir]p1:
5859    //   A using-directive specifies that the names in the nominated
5860    //   namespace can be used in the scope in which the
5861    //   using-directive appears after the using-directive. During
5862    //   unqualified name lookup (3.4.1), the names appear as if they
5863    //   were declared in the nearest enclosing namespace which
5864    //   contains both the using-directive and the nominated
5865    //   namespace. [Note: in this context, "contains" means "contains
5866    //   directly or indirectly". ]
5867
5868    // Find enclosing context containing both using-directive and
5869    // nominated namespace.
5870    NamespaceDecl *NS = getNamespaceDecl(Named);
5871    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5872    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5873      CommonAncestor = CommonAncestor->getParent();
5874
5875    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5876                                      SS.getWithLocInContext(Context),
5877                                      IdentLoc, Named, CommonAncestor);
5878
5879    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5880        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5881      Diag(IdentLoc, diag::warn_using_directive_in_header);
5882    }
5883
5884    PushUsingDirective(S, UDir);
5885  } else {
5886    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5887  }
5888
5889  // FIXME: We ignore attributes for now.
5890  return UDir;
5891}
5892
5893void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5894  // If the scope has an associated entity and the using directive is at
5895  // namespace or translation unit scope, add the UsingDirectiveDecl into
5896  // its lookup structure so qualified name lookup can find it.
5897  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5898  if (Ctx && !Ctx->isFunctionOrMethod())
5899    Ctx->addDecl(UDir);
5900  else
5901    // Otherwise, it is at block sope. The using-directives will affect lookup
5902    // only to the end of the scope.
5903    S->PushUsingDirective(UDir);
5904}
5905
5906
5907Decl *Sema::ActOnUsingDeclaration(Scope *S,
5908                                  AccessSpecifier AS,
5909                                  bool HasUsingKeyword,
5910                                  SourceLocation UsingLoc,
5911                                  CXXScopeSpec &SS,
5912                                  UnqualifiedId &Name,
5913                                  AttributeList *AttrList,
5914                                  bool IsTypeName,
5915                                  SourceLocation TypenameLoc) {
5916  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5917
5918  switch (Name.getKind()) {
5919  case UnqualifiedId::IK_ImplicitSelfParam:
5920  case UnqualifiedId::IK_Identifier:
5921  case UnqualifiedId::IK_OperatorFunctionId:
5922  case UnqualifiedId::IK_LiteralOperatorId:
5923  case UnqualifiedId::IK_ConversionFunctionId:
5924    break;
5925
5926  case UnqualifiedId::IK_ConstructorName:
5927  case UnqualifiedId::IK_ConstructorTemplateId:
5928    // C++11 inheriting constructors.
5929    Diag(Name.getLocStart(),
5930         getLangOpts().CPlusPlus0x ?
5931           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5932           //        instead once inheriting constructors work.
5933           diag::err_using_decl_constructor_unsupported :
5934           diag::err_using_decl_constructor)
5935      << SS.getRange();
5936
5937    if (getLangOpts().CPlusPlus0x) break;
5938
5939    return 0;
5940
5941  case UnqualifiedId::IK_DestructorName:
5942    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5943      << SS.getRange();
5944    return 0;
5945
5946  case UnqualifiedId::IK_TemplateId:
5947    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5948      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5949    return 0;
5950  }
5951
5952  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5953  DeclarationName TargetName = TargetNameInfo.getName();
5954  if (!TargetName)
5955    return 0;
5956
5957  // Warn about using declarations.
5958  // TODO: store that the declaration was written without 'using' and
5959  // talk about access decls instead of using decls in the
5960  // diagnostics.
5961  if (!HasUsingKeyword) {
5962    UsingLoc = Name.getLocStart();
5963
5964    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5965      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5966  }
5967
5968  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5969      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5970    return 0;
5971
5972  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5973                                        TargetNameInfo, AttrList,
5974                                        /* IsInstantiation */ false,
5975                                        IsTypeName, TypenameLoc);
5976  if (UD)
5977    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5978
5979  return UD;
5980}
5981
5982/// \brief Determine whether a using declaration considers the given
5983/// declarations as "equivalent", e.g., if they are redeclarations of
5984/// the same entity or are both typedefs of the same type.
5985static bool
5986IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5987                         bool &SuppressRedeclaration) {
5988  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5989    SuppressRedeclaration = false;
5990    return true;
5991  }
5992
5993  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5994    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5995      SuppressRedeclaration = true;
5996      return Context.hasSameType(TD1->getUnderlyingType(),
5997                                 TD2->getUnderlyingType());
5998    }
5999
6000  return false;
6001}
6002
6003
6004/// Determines whether to create a using shadow decl for a particular
6005/// decl, given the set of decls existing prior to this using lookup.
6006bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6007                                const LookupResult &Previous) {
6008  // Diagnose finding a decl which is not from a base class of the
6009  // current class.  We do this now because there are cases where this
6010  // function will silently decide not to build a shadow decl, which
6011  // will pre-empt further diagnostics.
6012  //
6013  // We don't need to do this in C++0x because we do the check once on
6014  // the qualifier.
6015  //
6016  // FIXME: diagnose the following if we care enough:
6017  //   struct A { int foo; };
6018  //   struct B : A { using A::foo; };
6019  //   template <class T> struct C : A {};
6020  //   template <class T> struct D : C<T> { using B::foo; } // <---
6021  // This is invalid (during instantiation) in C++03 because B::foo
6022  // resolves to the using decl in B, which is not a base class of D<T>.
6023  // We can't diagnose it immediately because C<T> is an unknown
6024  // specialization.  The UsingShadowDecl in D<T> then points directly
6025  // to A::foo, which will look well-formed when we instantiate.
6026  // The right solution is to not collapse the shadow-decl chain.
6027  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
6028    DeclContext *OrigDC = Orig->getDeclContext();
6029
6030    // Handle enums and anonymous structs.
6031    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6032    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6033    while (OrigRec->isAnonymousStructOrUnion())
6034      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6035
6036    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6037      if (OrigDC == CurContext) {
6038        Diag(Using->getLocation(),
6039             diag::err_using_decl_nested_name_specifier_is_current_class)
6040          << Using->getQualifierLoc().getSourceRange();
6041        Diag(Orig->getLocation(), diag::note_using_decl_target);
6042        return true;
6043      }
6044
6045      Diag(Using->getQualifierLoc().getBeginLoc(),
6046           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6047        << Using->getQualifier()
6048        << cast<CXXRecordDecl>(CurContext)
6049        << Using->getQualifierLoc().getSourceRange();
6050      Diag(Orig->getLocation(), diag::note_using_decl_target);
6051      return true;
6052    }
6053  }
6054
6055  if (Previous.empty()) return false;
6056
6057  NamedDecl *Target = Orig;
6058  if (isa<UsingShadowDecl>(Target))
6059    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6060
6061  // If the target happens to be one of the previous declarations, we
6062  // don't have a conflict.
6063  //
6064  // FIXME: but we might be increasing its access, in which case we
6065  // should redeclare it.
6066  NamedDecl *NonTag = 0, *Tag = 0;
6067  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6068         I != E; ++I) {
6069    NamedDecl *D = (*I)->getUnderlyingDecl();
6070    bool Result;
6071    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6072      return Result;
6073
6074    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6075  }
6076
6077  if (Target->isFunctionOrFunctionTemplate()) {
6078    FunctionDecl *FD;
6079    if (isa<FunctionTemplateDecl>(Target))
6080      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6081    else
6082      FD = cast<FunctionDecl>(Target);
6083
6084    NamedDecl *OldDecl = 0;
6085    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6086    case Ovl_Overload:
6087      return false;
6088
6089    case Ovl_NonFunction:
6090      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6091      break;
6092
6093    // We found a decl with the exact signature.
6094    case Ovl_Match:
6095      // If we're in a record, we want to hide the target, so we
6096      // return true (without a diagnostic) to tell the caller not to
6097      // build a shadow decl.
6098      if (CurContext->isRecord())
6099        return true;
6100
6101      // If we're not in a record, this is an error.
6102      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6103      break;
6104    }
6105
6106    Diag(Target->getLocation(), diag::note_using_decl_target);
6107    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6108    return true;
6109  }
6110
6111  // Target is not a function.
6112
6113  if (isa<TagDecl>(Target)) {
6114    // No conflict between a tag and a non-tag.
6115    if (!Tag) return false;
6116
6117    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6118    Diag(Target->getLocation(), diag::note_using_decl_target);
6119    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6120    return true;
6121  }
6122
6123  // No conflict between a tag and a non-tag.
6124  if (!NonTag) return false;
6125
6126  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6127  Diag(Target->getLocation(), diag::note_using_decl_target);
6128  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6129  return true;
6130}
6131
6132/// Builds a shadow declaration corresponding to a 'using' declaration.
6133UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6134                                            UsingDecl *UD,
6135                                            NamedDecl *Orig) {
6136
6137  // If we resolved to another shadow declaration, just coalesce them.
6138  NamedDecl *Target = Orig;
6139  if (isa<UsingShadowDecl>(Target)) {
6140    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6141    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6142  }
6143
6144  UsingShadowDecl *Shadow
6145    = UsingShadowDecl::Create(Context, CurContext,
6146                              UD->getLocation(), UD, Target);
6147  UD->addShadowDecl(Shadow);
6148
6149  Shadow->setAccess(UD->getAccess());
6150  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6151    Shadow->setInvalidDecl();
6152
6153  if (S)
6154    PushOnScopeChains(Shadow, S);
6155  else
6156    CurContext->addDecl(Shadow);
6157
6158
6159  return Shadow;
6160}
6161
6162/// Hides a using shadow declaration.  This is required by the current
6163/// using-decl implementation when a resolvable using declaration in a
6164/// class is followed by a declaration which would hide or override
6165/// one or more of the using decl's targets; for example:
6166///
6167///   struct Base { void foo(int); };
6168///   struct Derived : Base {
6169///     using Base::foo;
6170///     void foo(int);
6171///   };
6172///
6173/// The governing language is C++03 [namespace.udecl]p12:
6174///
6175///   When a using-declaration brings names from a base class into a
6176///   derived class scope, member functions in the derived class
6177///   override and/or hide member functions with the same name and
6178///   parameter types in a base class (rather than conflicting).
6179///
6180/// There are two ways to implement this:
6181///   (1) optimistically create shadow decls when they're not hidden
6182///       by existing declarations, or
6183///   (2) don't create any shadow decls (or at least don't make them
6184///       visible) until we've fully parsed/instantiated the class.
6185/// The problem with (1) is that we might have to retroactively remove
6186/// a shadow decl, which requires several O(n) operations because the
6187/// decl structures are (very reasonably) not designed for removal.
6188/// (2) avoids this but is very fiddly and phase-dependent.
6189void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6190  if (Shadow->getDeclName().getNameKind() ==
6191        DeclarationName::CXXConversionFunctionName)
6192    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6193
6194  // Remove it from the DeclContext...
6195  Shadow->getDeclContext()->removeDecl(Shadow);
6196
6197  // ...and the scope, if applicable...
6198  if (S) {
6199    S->RemoveDecl(Shadow);
6200    IdResolver.RemoveDecl(Shadow);
6201  }
6202
6203  // ...and the using decl.
6204  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6205
6206  // TODO: complain somehow if Shadow was used.  It shouldn't
6207  // be possible for this to happen, because...?
6208}
6209
6210/// Builds a using declaration.
6211///
6212/// \param IsInstantiation - Whether this call arises from an
6213///   instantiation of an unresolved using declaration.  We treat
6214///   the lookup differently for these declarations.
6215NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6216                                       SourceLocation UsingLoc,
6217                                       CXXScopeSpec &SS,
6218                                       const DeclarationNameInfo &NameInfo,
6219                                       AttributeList *AttrList,
6220                                       bool IsInstantiation,
6221                                       bool IsTypeName,
6222                                       SourceLocation TypenameLoc) {
6223  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6224  SourceLocation IdentLoc = NameInfo.getLoc();
6225  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6226
6227  // FIXME: We ignore attributes for now.
6228
6229  if (SS.isEmpty()) {
6230    Diag(IdentLoc, diag::err_using_requires_qualname);
6231    return 0;
6232  }
6233
6234  // Do the redeclaration lookup in the current scope.
6235  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6236                        ForRedeclaration);
6237  Previous.setHideTags(false);
6238  if (S) {
6239    LookupName(Previous, S);
6240
6241    // It is really dumb that we have to do this.
6242    LookupResult::Filter F = Previous.makeFilter();
6243    while (F.hasNext()) {
6244      NamedDecl *D = F.next();
6245      if (!isDeclInScope(D, CurContext, S))
6246        F.erase();
6247    }
6248    F.done();
6249  } else {
6250    assert(IsInstantiation && "no scope in non-instantiation");
6251    assert(CurContext->isRecord() && "scope not record in instantiation");
6252    LookupQualifiedName(Previous, CurContext);
6253  }
6254
6255  // Check for invalid redeclarations.
6256  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6257    return 0;
6258
6259  // Check for bad qualifiers.
6260  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6261    return 0;
6262
6263  DeclContext *LookupContext = computeDeclContext(SS);
6264  NamedDecl *D;
6265  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6266  if (!LookupContext) {
6267    if (IsTypeName) {
6268      // FIXME: not all declaration name kinds are legal here
6269      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6270                                              UsingLoc, TypenameLoc,
6271                                              QualifierLoc,
6272                                              IdentLoc, NameInfo.getName());
6273    } else {
6274      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6275                                           QualifierLoc, NameInfo);
6276    }
6277  } else {
6278    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6279                          NameInfo, IsTypeName);
6280  }
6281  D->setAccess(AS);
6282  CurContext->addDecl(D);
6283
6284  if (!LookupContext) return D;
6285  UsingDecl *UD = cast<UsingDecl>(D);
6286
6287  if (RequireCompleteDeclContext(SS, LookupContext)) {
6288    UD->setInvalidDecl();
6289    return UD;
6290  }
6291
6292  // The normal rules do not apply to inheriting constructor declarations.
6293  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6294    if (CheckInheritingConstructorUsingDecl(UD))
6295      UD->setInvalidDecl();
6296    return UD;
6297  }
6298
6299  // Otherwise, look up the target name.
6300
6301  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6302
6303  // Unlike most lookups, we don't always want to hide tag
6304  // declarations: tag names are visible through the using declaration
6305  // even if hidden by ordinary names, *except* in a dependent context
6306  // where it's important for the sanity of two-phase lookup.
6307  if (!IsInstantiation)
6308    R.setHideTags(false);
6309
6310  // For the purposes of this lookup, we have a base object type
6311  // equal to that of the current context.
6312  if (CurContext->isRecord()) {
6313    R.setBaseObjectType(
6314                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6315  }
6316
6317  LookupQualifiedName(R, LookupContext);
6318
6319  if (R.empty()) {
6320    Diag(IdentLoc, diag::err_no_member)
6321      << NameInfo.getName() << LookupContext << SS.getRange();
6322    UD->setInvalidDecl();
6323    return UD;
6324  }
6325
6326  if (R.isAmbiguous()) {
6327    UD->setInvalidDecl();
6328    return UD;
6329  }
6330
6331  if (IsTypeName) {
6332    // If we asked for a typename and got a non-type decl, error out.
6333    if (!R.getAsSingle<TypeDecl>()) {
6334      Diag(IdentLoc, diag::err_using_typename_non_type);
6335      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6336        Diag((*I)->getUnderlyingDecl()->getLocation(),
6337             diag::note_using_decl_target);
6338      UD->setInvalidDecl();
6339      return UD;
6340    }
6341  } else {
6342    // If we asked for a non-typename and we got a type, error out,
6343    // but only if this is an instantiation of an unresolved using
6344    // decl.  Otherwise just silently find the type name.
6345    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6346      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6347      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6348      UD->setInvalidDecl();
6349      return UD;
6350    }
6351  }
6352
6353  // C++0x N2914 [namespace.udecl]p6:
6354  // A using-declaration shall not name a namespace.
6355  if (R.getAsSingle<NamespaceDecl>()) {
6356    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6357      << SS.getRange();
6358    UD->setInvalidDecl();
6359    return UD;
6360  }
6361
6362  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6363    if (!CheckUsingShadowDecl(UD, *I, Previous))
6364      BuildUsingShadowDecl(S, UD, *I);
6365  }
6366
6367  return UD;
6368}
6369
6370/// Additional checks for a using declaration referring to a constructor name.
6371bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6372  assert(!UD->isTypeName() && "expecting a constructor name");
6373
6374  const Type *SourceType = UD->getQualifier()->getAsType();
6375  assert(SourceType &&
6376         "Using decl naming constructor doesn't have type in scope spec.");
6377  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6378
6379  // Check whether the named type is a direct base class.
6380  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6381  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6382  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6383       BaseIt != BaseE; ++BaseIt) {
6384    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6385    if (CanonicalSourceType == BaseType)
6386      break;
6387    if (BaseIt->getType()->isDependentType())
6388      break;
6389  }
6390
6391  if (BaseIt == BaseE) {
6392    // Did not find SourceType in the bases.
6393    Diag(UD->getUsingLocation(),
6394         diag::err_using_decl_constructor_not_in_direct_base)
6395      << UD->getNameInfo().getSourceRange()
6396      << QualType(SourceType, 0) << TargetClass;
6397    return true;
6398  }
6399
6400  if (!CurContext->isDependentContext())
6401    BaseIt->setInheritConstructors();
6402
6403  return false;
6404}
6405
6406/// Checks that the given using declaration is not an invalid
6407/// redeclaration.  Note that this is checking only for the using decl
6408/// itself, not for any ill-formedness among the UsingShadowDecls.
6409bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6410                                       bool isTypeName,
6411                                       const CXXScopeSpec &SS,
6412                                       SourceLocation NameLoc,
6413                                       const LookupResult &Prev) {
6414  // C++03 [namespace.udecl]p8:
6415  // C++0x [namespace.udecl]p10:
6416  //   A using-declaration is a declaration and can therefore be used
6417  //   repeatedly where (and only where) multiple declarations are
6418  //   allowed.
6419  //
6420  // That's in non-member contexts.
6421  if (!CurContext->getRedeclContext()->isRecord())
6422    return false;
6423
6424  NestedNameSpecifier *Qual
6425    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6426
6427  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6428    NamedDecl *D = *I;
6429
6430    bool DTypename;
6431    NestedNameSpecifier *DQual;
6432    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6433      DTypename = UD->isTypeName();
6434      DQual = UD->getQualifier();
6435    } else if (UnresolvedUsingValueDecl *UD
6436                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6437      DTypename = false;
6438      DQual = UD->getQualifier();
6439    } else if (UnresolvedUsingTypenameDecl *UD
6440                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6441      DTypename = true;
6442      DQual = UD->getQualifier();
6443    } else continue;
6444
6445    // using decls differ if one says 'typename' and the other doesn't.
6446    // FIXME: non-dependent using decls?
6447    if (isTypeName != DTypename) continue;
6448
6449    // using decls differ if they name different scopes (but note that
6450    // template instantiation can cause this check to trigger when it
6451    // didn't before instantiation).
6452    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6453        Context.getCanonicalNestedNameSpecifier(DQual))
6454      continue;
6455
6456    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6457    Diag(D->getLocation(), diag::note_using_decl) << 1;
6458    return true;
6459  }
6460
6461  return false;
6462}
6463
6464
6465/// Checks that the given nested-name qualifier used in a using decl
6466/// in the current context is appropriately related to the current
6467/// scope.  If an error is found, diagnoses it and returns true.
6468bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6469                                   const CXXScopeSpec &SS,
6470                                   SourceLocation NameLoc) {
6471  DeclContext *NamedContext = computeDeclContext(SS);
6472
6473  if (!CurContext->isRecord()) {
6474    // C++03 [namespace.udecl]p3:
6475    // C++0x [namespace.udecl]p8:
6476    //   A using-declaration for a class member shall be a member-declaration.
6477
6478    // If we weren't able to compute a valid scope, it must be a
6479    // dependent class scope.
6480    if (!NamedContext || NamedContext->isRecord()) {
6481      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6482        << SS.getRange();
6483      return true;
6484    }
6485
6486    // Otherwise, everything is known to be fine.
6487    return false;
6488  }
6489
6490  // The current scope is a record.
6491
6492  // If the named context is dependent, we can't decide much.
6493  if (!NamedContext) {
6494    // FIXME: in C++0x, we can diagnose if we can prove that the
6495    // nested-name-specifier does not refer to a base class, which is
6496    // still possible in some cases.
6497
6498    // Otherwise we have to conservatively report that things might be
6499    // okay.
6500    return false;
6501  }
6502
6503  if (!NamedContext->isRecord()) {
6504    // Ideally this would point at the last name in the specifier,
6505    // but we don't have that level of source info.
6506    Diag(SS.getRange().getBegin(),
6507         diag::err_using_decl_nested_name_specifier_is_not_class)
6508      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6509    return true;
6510  }
6511
6512  if (!NamedContext->isDependentContext() &&
6513      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6514    return true;
6515
6516  if (getLangOpts().CPlusPlus0x) {
6517    // C++0x [namespace.udecl]p3:
6518    //   In a using-declaration used as a member-declaration, the
6519    //   nested-name-specifier shall name a base class of the class
6520    //   being defined.
6521
6522    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6523                                 cast<CXXRecordDecl>(NamedContext))) {
6524      if (CurContext == NamedContext) {
6525        Diag(NameLoc,
6526             diag::err_using_decl_nested_name_specifier_is_current_class)
6527          << SS.getRange();
6528        return true;
6529      }
6530
6531      Diag(SS.getRange().getBegin(),
6532           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6533        << (NestedNameSpecifier*) SS.getScopeRep()
6534        << cast<CXXRecordDecl>(CurContext)
6535        << SS.getRange();
6536      return true;
6537    }
6538
6539    return false;
6540  }
6541
6542  // C++03 [namespace.udecl]p4:
6543  //   A using-declaration used as a member-declaration shall refer
6544  //   to a member of a base class of the class being defined [etc.].
6545
6546  // Salient point: SS doesn't have to name a base class as long as
6547  // lookup only finds members from base classes.  Therefore we can
6548  // diagnose here only if we can prove that that can't happen,
6549  // i.e. if the class hierarchies provably don't intersect.
6550
6551  // TODO: it would be nice if "definitely valid" results were cached
6552  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6553  // need to be repeated.
6554
6555  struct UserData {
6556    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6557
6558    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6559      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6560      Data->Bases.insert(Base);
6561      return true;
6562    }
6563
6564    bool hasDependentBases(const CXXRecordDecl *Class) {
6565      return !Class->forallBases(collect, this);
6566    }
6567
6568    /// Returns true if the base is dependent or is one of the
6569    /// accumulated base classes.
6570    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6571      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6572      return !Data->Bases.count(Base);
6573    }
6574
6575    bool mightShareBases(const CXXRecordDecl *Class) {
6576      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6577    }
6578  };
6579
6580  UserData Data;
6581
6582  // Returns false if we find a dependent base.
6583  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6584    return false;
6585
6586  // Returns false if the class has a dependent base or if it or one
6587  // of its bases is present in the base set of the current context.
6588  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6589    return false;
6590
6591  Diag(SS.getRange().getBegin(),
6592       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6593    << (NestedNameSpecifier*) SS.getScopeRep()
6594    << cast<CXXRecordDecl>(CurContext)
6595    << SS.getRange();
6596
6597  return true;
6598}
6599
6600Decl *Sema::ActOnAliasDeclaration(Scope *S,
6601                                  AccessSpecifier AS,
6602                                  MultiTemplateParamsArg TemplateParamLists,
6603                                  SourceLocation UsingLoc,
6604                                  UnqualifiedId &Name,
6605                                  TypeResult Type) {
6606  // Skip up to the relevant declaration scope.
6607  while (S->getFlags() & Scope::TemplateParamScope)
6608    S = S->getParent();
6609  assert((S->getFlags() & Scope::DeclScope) &&
6610         "got alias-declaration outside of declaration scope");
6611
6612  if (Type.isInvalid())
6613    return 0;
6614
6615  bool Invalid = false;
6616  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6617  TypeSourceInfo *TInfo = 0;
6618  GetTypeFromParser(Type.get(), &TInfo);
6619
6620  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6621    return 0;
6622
6623  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6624                                      UPPC_DeclarationType)) {
6625    Invalid = true;
6626    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6627                                             TInfo->getTypeLoc().getBeginLoc());
6628  }
6629
6630  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6631  LookupName(Previous, S);
6632
6633  // Warn about shadowing the name of a template parameter.
6634  if (Previous.isSingleResult() &&
6635      Previous.getFoundDecl()->isTemplateParameter()) {
6636    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6637    Previous.clear();
6638  }
6639
6640  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6641         "name in alias declaration must be an identifier");
6642  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6643                                               Name.StartLocation,
6644                                               Name.Identifier, TInfo);
6645
6646  NewTD->setAccess(AS);
6647
6648  if (Invalid)
6649    NewTD->setInvalidDecl();
6650
6651  CheckTypedefForVariablyModifiedType(S, NewTD);
6652  Invalid |= NewTD->isInvalidDecl();
6653
6654  bool Redeclaration = false;
6655
6656  NamedDecl *NewND;
6657  if (TemplateParamLists.size()) {
6658    TypeAliasTemplateDecl *OldDecl = 0;
6659    TemplateParameterList *OldTemplateParams = 0;
6660
6661    if (TemplateParamLists.size() != 1) {
6662      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6663        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6664         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6665    }
6666    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6667
6668    // Only consider previous declarations in the same scope.
6669    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6670                         /*ExplicitInstantiationOrSpecialization*/false);
6671    if (!Previous.empty()) {
6672      Redeclaration = true;
6673
6674      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6675      if (!OldDecl && !Invalid) {
6676        Diag(UsingLoc, diag::err_redefinition_different_kind)
6677          << Name.Identifier;
6678
6679        NamedDecl *OldD = Previous.getRepresentativeDecl();
6680        if (OldD->getLocation().isValid())
6681          Diag(OldD->getLocation(), diag::note_previous_definition);
6682
6683        Invalid = true;
6684      }
6685
6686      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6687        if (TemplateParameterListsAreEqual(TemplateParams,
6688                                           OldDecl->getTemplateParameters(),
6689                                           /*Complain=*/true,
6690                                           TPL_TemplateMatch))
6691          OldTemplateParams = OldDecl->getTemplateParameters();
6692        else
6693          Invalid = true;
6694
6695        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6696        if (!Invalid &&
6697            !Context.hasSameType(OldTD->getUnderlyingType(),
6698                                 NewTD->getUnderlyingType())) {
6699          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6700          // but we can't reasonably accept it.
6701          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6702            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6703          if (OldTD->getLocation().isValid())
6704            Diag(OldTD->getLocation(), diag::note_previous_definition);
6705          Invalid = true;
6706        }
6707      }
6708    }
6709
6710    // Merge any previous default template arguments into our parameters,
6711    // and check the parameter list.
6712    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6713                                   TPC_TypeAliasTemplate))
6714      return 0;
6715
6716    TypeAliasTemplateDecl *NewDecl =
6717      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6718                                    Name.Identifier, TemplateParams,
6719                                    NewTD);
6720
6721    NewDecl->setAccess(AS);
6722
6723    if (Invalid)
6724      NewDecl->setInvalidDecl();
6725    else if (OldDecl)
6726      NewDecl->setPreviousDeclaration(OldDecl);
6727
6728    NewND = NewDecl;
6729  } else {
6730    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6731    NewND = NewTD;
6732  }
6733
6734  if (!Redeclaration)
6735    PushOnScopeChains(NewND, S);
6736
6737  return NewND;
6738}
6739
6740Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6741                                             SourceLocation NamespaceLoc,
6742                                             SourceLocation AliasLoc,
6743                                             IdentifierInfo *Alias,
6744                                             CXXScopeSpec &SS,
6745                                             SourceLocation IdentLoc,
6746                                             IdentifierInfo *Ident) {
6747
6748  // Lookup the namespace name.
6749  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6750  LookupParsedName(R, S, &SS);
6751
6752  // Check if we have a previous declaration with the same name.
6753  NamedDecl *PrevDecl
6754    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6755                       ForRedeclaration);
6756  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6757    PrevDecl = 0;
6758
6759  if (PrevDecl) {
6760    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6761      // We already have an alias with the same name that points to the same
6762      // namespace, so don't create a new one.
6763      // FIXME: At some point, we'll want to create the (redundant)
6764      // declaration to maintain better source information.
6765      if (!R.isAmbiguous() && !R.empty() &&
6766          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6767        return 0;
6768    }
6769
6770    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6771      diag::err_redefinition_different_kind;
6772    Diag(AliasLoc, DiagID) << Alias;
6773    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6774    return 0;
6775  }
6776
6777  if (R.isAmbiguous())
6778    return 0;
6779
6780  if (R.empty()) {
6781    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6782      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6783      return 0;
6784    }
6785  }
6786
6787  NamespaceAliasDecl *AliasDecl =
6788    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6789                               Alias, SS.getWithLocInContext(Context),
6790                               IdentLoc, R.getFoundDecl());
6791
6792  PushOnScopeChains(AliasDecl, S);
6793  return AliasDecl;
6794}
6795
6796namespace {
6797  /// \brief Scoped object used to handle the state changes required in Sema
6798  /// to implicitly define the body of a C++ member function;
6799  class ImplicitlyDefinedFunctionScope {
6800    Sema &S;
6801    Sema::ContextRAII SavedContext;
6802
6803  public:
6804    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6805      : S(S), SavedContext(S, Method)
6806    {
6807      S.PushFunctionScope();
6808      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6809    }
6810
6811    ~ImplicitlyDefinedFunctionScope() {
6812      S.PopExpressionEvaluationContext();
6813      S.PopFunctionScopeInfo();
6814    }
6815  };
6816}
6817
6818Sema::ImplicitExceptionSpecification
6819Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6820  // C++ [except.spec]p14:
6821  //   An implicitly declared special member function (Clause 12) shall have an
6822  //   exception-specification. [...]
6823  ImplicitExceptionSpecification ExceptSpec(*this);
6824  if (ClassDecl->isInvalidDecl())
6825    return ExceptSpec;
6826
6827  // Direct base-class constructors.
6828  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6829                                       BEnd = ClassDecl->bases_end();
6830       B != BEnd; ++B) {
6831    if (B->isVirtual()) // Handled below.
6832      continue;
6833
6834    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6835      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6836      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6837      // If this is a deleted function, add it anyway. This might be conformant
6838      // with the standard. This might not. I'm not sure. It might not matter.
6839      if (Constructor)
6840        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6841    }
6842  }
6843
6844  // Virtual base-class constructors.
6845  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6846                                       BEnd = ClassDecl->vbases_end();
6847       B != BEnd; ++B) {
6848    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6849      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6850      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6851      // If this is a deleted function, add it anyway. This might be conformant
6852      // with the standard. This might not. I'm not sure. It might not matter.
6853      if (Constructor)
6854        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6855    }
6856  }
6857
6858  // Field constructors.
6859  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6860                               FEnd = ClassDecl->field_end();
6861       F != FEnd; ++F) {
6862    if (F->hasInClassInitializer()) {
6863      if (Expr *E = F->getInClassInitializer())
6864        ExceptSpec.CalledExpr(E);
6865      else if (!F->isInvalidDecl())
6866        ExceptSpec.SetDelayed();
6867    } else if (const RecordType *RecordTy
6868              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6869      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6870      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6871      // If this is a deleted function, add it anyway. This might be conformant
6872      // with the standard. This might not. I'm not sure. It might not matter.
6873      // In particular, the problem is that this function never gets called. It
6874      // might just be ill-formed because this function attempts to refer to
6875      // a deleted function here.
6876      if (Constructor)
6877        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6878    }
6879  }
6880
6881  return ExceptSpec;
6882}
6883
6884CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6885                                                     CXXRecordDecl *ClassDecl) {
6886  // C++ [class.ctor]p5:
6887  //   A default constructor for a class X is a constructor of class X
6888  //   that can be called without an argument. If there is no
6889  //   user-declared constructor for class X, a default constructor is
6890  //   implicitly declared. An implicitly-declared default constructor
6891  //   is an inline public member of its class.
6892  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6893         "Should not build implicit default constructor!");
6894
6895  ImplicitExceptionSpecification Spec =
6896    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6897  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6898
6899  // Create the actual constructor declaration.
6900  CanQualType ClassType
6901    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6902  SourceLocation ClassLoc = ClassDecl->getLocation();
6903  DeclarationName Name
6904    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6905  DeclarationNameInfo NameInfo(Name, ClassLoc);
6906  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6907      Context, ClassDecl, ClassLoc, NameInfo,
6908      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6909      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6910      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6911        getLangOpts().CPlusPlus0x);
6912  DefaultCon->setAccess(AS_public);
6913  DefaultCon->setDefaulted();
6914  DefaultCon->setImplicit();
6915  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6916
6917  // Note that we have declared this constructor.
6918  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6919
6920  if (Scope *S = getScopeForContext(ClassDecl))
6921    PushOnScopeChains(DefaultCon, S, false);
6922  ClassDecl->addDecl(DefaultCon);
6923
6924  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6925    DefaultCon->setDeletedAsWritten();
6926
6927  return DefaultCon;
6928}
6929
6930void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6931                                            CXXConstructorDecl *Constructor) {
6932  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6933          !Constructor->doesThisDeclarationHaveABody() &&
6934          !Constructor->isDeleted()) &&
6935    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6936
6937  CXXRecordDecl *ClassDecl = Constructor->getParent();
6938  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6939
6940  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6941  DiagnosticErrorTrap Trap(Diags);
6942  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6943      Trap.hasErrorOccurred()) {
6944    Diag(CurrentLocation, diag::note_member_synthesized_at)
6945      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6946    Constructor->setInvalidDecl();
6947    return;
6948  }
6949
6950  SourceLocation Loc = Constructor->getLocation();
6951  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6952
6953  Constructor->setUsed();
6954  MarkVTableUsed(CurrentLocation, ClassDecl);
6955
6956  if (ASTMutationListener *L = getASTMutationListener()) {
6957    L->CompletedImplicitDefinition(Constructor);
6958  }
6959}
6960
6961/// Get any existing defaulted default constructor for the given class. Do not
6962/// implicitly define one if it does not exist.
6963static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6964                                                             CXXRecordDecl *D) {
6965  ASTContext &Context = Self.Context;
6966  QualType ClassType = Context.getTypeDeclType(D);
6967  DeclarationName ConstructorName
6968    = Context.DeclarationNames.getCXXConstructorName(
6969                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6970
6971  DeclContext::lookup_const_iterator Con, ConEnd;
6972  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6973       Con != ConEnd; ++Con) {
6974    // A function template cannot be defaulted.
6975    if (isa<FunctionTemplateDecl>(*Con))
6976      continue;
6977
6978    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6979    if (Constructor->isDefaultConstructor())
6980      return Constructor->isDefaulted() ? Constructor : 0;
6981  }
6982  return 0;
6983}
6984
6985void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6986  if (!D) return;
6987  AdjustDeclIfTemplate(D);
6988
6989  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6990  CXXConstructorDecl *CtorDecl
6991    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6992
6993  if (!CtorDecl) return;
6994
6995  // Compute the exception specification for the default constructor.
6996  const FunctionProtoType *CtorTy =
6997    CtorDecl->getType()->castAs<FunctionProtoType>();
6998  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6999    // FIXME: Don't do this unless the exception spec is needed.
7000    ImplicitExceptionSpecification Spec =
7001      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7002    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7003    assert(EPI.ExceptionSpecType != EST_Delayed);
7004
7005    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7006  }
7007
7008  // If the default constructor is explicitly defaulted, checking the exception
7009  // specification is deferred until now.
7010  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7011      !ClassDecl->isDependentType())
7012    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7013}
7014
7015void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7016  // We start with an initial pass over the base classes to collect those that
7017  // inherit constructors from. If there are none, we can forgo all further
7018  // processing.
7019  typedef SmallVector<const RecordType *, 4> BasesVector;
7020  BasesVector BasesToInheritFrom;
7021  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7022                                          BaseE = ClassDecl->bases_end();
7023         BaseIt != BaseE; ++BaseIt) {
7024    if (BaseIt->getInheritConstructors()) {
7025      QualType Base = BaseIt->getType();
7026      if (Base->isDependentType()) {
7027        // If we inherit constructors from anything that is dependent, just
7028        // abort processing altogether. We'll get another chance for the
7029        // instantiations.
7030        return;
7031      }
7032      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7033    }
7034  }
7035  if (BasesToInheritFrom.empty())
7036    return;
7037
7038  // Now collect the constructors that we already have in the current class.
7039  // Those take precedence over inherited constructors.
7040  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7041  //   unless there is a user-declared constructor with the same signature in
7042  //   the class where the using-declaration appears.
7043  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7044  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7045                                    CtorE = ClassDecl->ctor_end();
7046       CtorIt != CtorE; ++CtorIt) {
7047    ExistingConstructors.insert(
7048        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7049  }
7050
7051  DeclarationName CreatedCtorName =
7052      Context.DeclarationNames.getCXXConstructorName(
7053          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7054
7055  // Now comes the true work.
7056  // First, we keep a map from constructor types to the base that introduced
7057  // them. Needed for finding conflicting constructors. We also keep the
7058  // actually inserted declarations in there, for pretty diagnostics.
7059  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7060  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7061  ConstructorToSourceMap InheritedConstructors;
7062  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7063                             BaseE = BasesToInheritFrom.end();
7064       BaseIt != BaseE; ++BaseIt) {
7065    const RecordType *Base = *BaseIt;
7066    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7067    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7068    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7069                                      CtorE = BaseDecl->ctor_end();
7070         CtorIt != CtorE; ++CtorIt) {
7071      // Find the using declaration for inheriting this base's constructors.
7072      // FIXME: Don't perform name lookup just to obtain a source location!
7073      DeclarationName Name =
7074          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7075      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
7076      LookupQualifiedName(Result, CurContext);
7077      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
7078      SourceLocation UsingLoc = UD ? UD->getLocation() :
7079                                     ClassDecl->getLocation();
7080
7081      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7082      //   from the class X named in the using-declaration consists of actual
7083      //   constructors and notional constructors that result from the
7084      //   transformation of defaulted parameters as follows:
7085      //   - all non-template default constructors of X, and
7086      //   - for each non-template constructor of X that has at least one
7087      //     parameter with a default argument, the set of constructors that
7088      //     results from omitting any ellipsis parameter specification and
7089      //     successively omitting parameters with a default argument from the
7090      //     end of the parameter-type-list.
7091      CXXConstructorDecl *BaseCtor = *CtorIt;
7092      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7093      const FunctionProtoType *BaseCtorType =
7094          BaseCtor->getType()->getAs<FunctionProtoType>();
7095
7096      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7097                    maxParams = BaseCtor->getNumParams();
7098           params <= maxParams; ++params) {
7099        // Skip default constructors. They're never inherited.
7100        if (params == 0)
7101          continue;
7102        // Skip copy and move constructors for the same reason.
7103        if (CanBeCopyOrMove && params == 1)
7104          continue;
7105
7106        // Build up a function type for this particular constructor.
7107        // FIXME: The working paper does not consider that the exception spec
7108        // for the inheriting constructor might be larger than that of the
7109        // source. This code doesn't yet, either. When it does, this code will
7110        // need to be delayed until after exception specifications and in-class
7111        // member initializers are attached.
7112        const Type *NewCtorType;
7113        if (params == maxParams)
7114          NewCtorType = BaseCtorType;
7115        else {
7116          SmallVector<QualType, 16> Args;
7117          for (unsigned i = 0; i < params; ++i) {
7118            Args.push_back(BaseCtorType->getArgType(i));
7119          }
7120          FunctionProtoType::ExtProtoInfo ExtInfo =
7121              BaseCtorType->getExtProtoInfo();
7122          ExtInfo.Variadic = false;
7123          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7124                                                Args.data(), params, ExtInfo)
7125                       .getTypePtr();
7126        }
7127        const Type *CanonicalNewCtorType =
7128            Context.getCanonicalType(NewCtorType);
7129
7130        // Now that we have the type, first check if the class already has a
7131        // constructor with this signature.
7132        if (ExistingConstructors.count(CanonicalNewCtorType))
7133          continue;
7134
7135        // Then we check if we have already declared an inherited constructor
7136        // with this signature.
7137        std::pair<ConstructorToSourceMap::iterator, bool> result =
7138            InheritedConstructors.insert(std::make_pair(
7139                CanonicalNewCtorType,
7140                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7141        if (!result.second) {
7142          // Already in the map. If it came from a different class, that's an
7143          // error. Not if it's from the same.
7144          CanQualType PreviousBase = result.first->second.first;
7145          if (CanonicalBase != PreviousBase) {
7146            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7147            const CXXConstructorDecl *PrevBaseCtor =
7148                PrevCtor->getInheritedConstructor();
7149            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7150
7151            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7152            Diag(BaseCtor->getLocation(),
7153                 diag::note_using_decl_constructor_conflict_current_ctor);
7154            Diag(PrevBaseCtor->getLocation(),
7155                 diag::note_using_decl_constructor_conflict_previous_ctor);
7156            Diag(PrevCtor->getLocation(),
7157                 diag::note_using_decl_constructor_conflict_previous_using);
7158          }
7159          continue;
7160        }
7161
7162        // OK, we're there, now add the constructor.
7163        // C++0x [class.inhctor]p8: [...] that would be performed by a
7164        //   user-written inline constructor [...]
7165        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7166        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7167            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7168            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7169            /*ImplicitlyDeclared=*/true,
7170            // FIXME: Due to a defect in the standard, we treat inherited
7171            // constructors as constexpr even if that makes them ill-formed.
7172            /*Constexpr=*/BaseCtor->isConstexpr());
7173        NewCtor->setAccess(BaseCtor->getAccess());
7174
7175        // Build up the parameter decls and add them.
7176        SmallVector<ParmVarDecl *, 16> ParamDecls;
7177        for (unsigned i = 0; i < params; ++i) {
7178          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7179                                                   UsingLoc, UsingLoc,
7180                                                   /*IdentifierInfo=*/0,
7181                                                   BaseCtorType->getArgType(i),
7182                                                   /*TInfo=*/0, SC_None,
7183                                                   SC_None, /*DefaultArg=*/0));
7184        }
7185        NewCtor->setParams(ParamDecls);
7186        NewCtor->setInheritedConstructor(BaseCtor);
7187
7188        ClassDecl->addDecl(NewCtor);
7189        result.first->second.second = NewCtor;
7190      }
7191    }
7192  }
7193}
7194
7195Sema::ImplicitExceptionSpecification
7196Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7197  // C++ [except.spec]p14:
7198  //   An implicitly declared special member function (Clause 12) shall have
7199  //   an exception-specification.
7200  ImplicitExceptionSpecification ExceptSpec(*this);
7201  if (ClassDecl->isInvalidDecl())
7202    return ExceptSpec;
7203
7204  // Direct base-class destructors.
7205  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7206                                       BEnd = ClassDecl->bases_end();
7207       B != BEnd; ++B) {
7208    if (B->isVirtual()) // Handled below.
7209      continue;
7210
7211    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7212      ExceptSpec.CalledDecl(B->getLocStart(),
7213                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7214  }
7215
7216  // Virtual base-class destructors.
7217  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7218                                       BEnd = ClassDecl->vbases_end();
7219       B != BEnd; ++B) {
7220    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7221      ExceptSpec.CalledDecl(B->getLocStart(),
7222                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7223  }
7224
7225  // Field destructors.
7226  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7227                               FEnd = ClassDecl->field_end();
7228       F != FEnd; ++F) {
7229    if (const RecordType *RecordTy
7230        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7231      ExceptSpec.CalledDecl(F->getLocation(),
7232                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7233  }
7234
7235  return ExceptSpec;
7236}
7237
7238CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7239  // C++ [class.dtor]p2:
7240  //   If a class has no user-declared destructor, a destructor is
7241  //   declared implicitly. An implicitly-declared destructor is an
7242  //   inline public member of its class.
7243
7244  ImplicitExceptionSpecification Spec =
7245      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7246  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7247
7248  // Create the actual destructor declaration.
7249  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7250
7251  CanQualType ClassType
7252    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7253  SourceLocation ClassLoc = ClassDecl->getLocation();
7254  DeclarationName Name
7255    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7256  DeclarationNameInfo NameInfo(Name, ClassLoc);
7257  CXXDestructorDecl *Destructor
7258      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7259                                  /*isInline=*/true,
7260                                  /*isImplicitlyDeclared=*/true);
7261  Destructor->setAccess(AS_public);
7262  Destructor->setDefaulted();
7263  Destructor->setImplicit();
7264  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7265
7266  // Note that we have declared this destructor.
7267  ++ASTContext::NumImplicitDestructorsDeclared;
7268
7269  // Introduce this destructor into its scope.
7270  if (Scope *S = getScopeForContext(ClassDecl))
7271    PushOnScopeChains(Destructor, S, false);
7272  ClassDecl->addDecl(Destructor);
7273
7274  // This could be uniqued if it ever proves significant.
7275  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7276
7277  AddOverriddenMethods(ClassDecl, Destructor);
7278
7279  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7280    Destructor->setDeletedAsWritten();
7281
7282  return Destructor;
7283}
7284
7285void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7286                                    CXXDestructorDecl *Destructor) {
7287  assert((Destructor->isDefaulted() &&
7288          !Destructor->doesThisDeclarationHaveABody() &&
7289          !Destructor->isDeleted()) &&
7290         "DefineImplicitDestructor - call it for implicit default dtor");
7291  CXXRecordDecl *ClassDecl = Destructor->getParent();
7292  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7293
7294  if (Destructor->isInvalidDecl())
7295    return;
7296
7297  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7298
7299  DiagnosticErrorTrap Trap(Diags);
7300  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7301                                         Destructor->getParent());
7302
7303  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7304    Diag(CurrentLocation, diag::note_member_synthesized_at)
7305      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7306
7307    Destructor->setInvalidDecl();
7308    return;
7309  }
7310
7311  SourceLocation Loc = Destructor->getLocation();
7312  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7313  Destructor->setImplicitlyDefined(true);
7314  Destructor->setUsed();
7315  MarkVTableUsed(CurrentLocation, ClassDecl);
7316
7317  if (ASTMutationListener *L = getASTMutationListener()) {
7318    L->CompletedImplicitDefinition(Destructor);
7319  }
7320}
7321
7322void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7323                                         CXXDestructorDecl *destructor) {
7324  // C++11 [class.dtor]p3:
7325  //   A declaration of a destructor that does not have an exception-
7326  //   specification is implicitly considered to have the same exception-
7327  //   specification as an implicit declaration.
7328  const FunctionProtoType *dtorType = destructor->getType()->
7329                                        getAs<FunctionProtoType>();
7330  if (dtorType->hasExceptionSpec())
7331    return;
7332
7333  ImplicitExceptionSpecification exceptSpec =
7334      ComputeDefaultedDtorExceptionSpec(classDecl);
7335
7336  // Replace the destructor's type, building off the existing one. Fortunately,
7337  // the only thing of interest in the destructor type is its extended info.
7338  // The return and arguments are fixed.
7339  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7340  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7341  epi.NumExceptions = exceptSpec.size();
7342  epi.Exceptions = exceptSpec.data();
7343  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7344
7345  destructor->setType(ty);
7346
7347  // FIXME: If the destructor has a body that could throw, and the newly created
7348  // spec doesn't allow exceptions, we should emit a warning, because this
7349  // change in behavior can break conforming C++03 programs at runtime.
7350  // However, we don't have a body yet, so it needs to be done somewhere else.
7351}
7352
7353/// \brief Builds a statement that copies/moves the given entity from \p From to
7354/// \c To.
7355///
7356/// This routine is used to copy/move the members of a class with an
7357/// implicitly-declared copy/move assignment operator. When the entities being
7358/// copied are arrays, this routine builds for loops to copy them.
7359///
7360/// \param S The Sema object used for type-checking.
7361///
7362/// \param Loc The location where the implicit copy/move is being generated.
7363///
7364/// \param T The type of the expressions being copied/moved. Both expressions
7365/// must have this type.
7366///
7367/// \param To The expression we are copying/moving to.
7368///
7369/// \param From The expression we are copying/moving from.
7370///
7371/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7372/// Otherwise, it's a non-static member subobject.
7373///
7374/// \param Copying Whether we're copying or moving.
7375///
7376/// \param Depth Internal parameter recording the depth of the recursion.
7377///
7378/// \returns A statement or a loop that copies the expressions.
7379static StmtResult
7380BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7381                      Expr *To, Expr *From,
7382                      bool CopyingBaseSubobject, bool Copying,
7383                      unsigned Depth = 0) {
7384  // C++0x [class.copy]p28:
7385  //   Each subobject is assigned in the manner appropriate to its type:
7386  //
7387  //     - if the subobject is of class type, as if by a call to operator= with
7388  //       the subobject as the object expression and the corresponding
7389  //       subobject of x as a single function argument (as if by explicit
7390  //       qualification; that is, ignoring any possible virtual overriding
7391  //       functions in more derived classes);
7392  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7393    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7394
7395    // Look for operator=.
7396    DeclarationName Name
7397      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7398    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7399    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7400
7401    // Filter out any result that isn't a copy/move-assignment operator.
7402    LookupResult::Filter F = OpLookup.makeFilter();
7403    while (F.hasNext()) {
7404      NamedDecl *D = F.next();
7405      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7406        if (Method->isCopyAssignmentOperator() ||
7407            (!Copying && Method->isMoveAssignmentOperator()))
7408          continue;
7409
7410      F.erase();
7411    }
7412    F.done();
7413
7414    // Suppress the protected check (C++ [class.protected]) for each of the
7415    // assignment operators we found. This strange dance is required when
7416    // we're assigning via a base classes's copy-assignment operator. To
7417    // ensure that we're getting the right base class subobject (without
7418    // ambiguities), we need to cast "this" to that subobject type; to
7419    // ensure that we don't go through the virtual call mechanism, we need
7420    // to qualify the operator= name with the base class (see below). However,
7421    // this means that if the base class has a protected copy assignment
7422    // operator, the protected member access check will fail. So, we
7423    // rewrite "protected" access to "public" access in this case, since we
7424    // know by construction that we're calling from a derived class.
7425    if (CopyingBaseSubobject) {
7426      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7427           L != LEnd; ++L) {
7428        if (L.getAccess() == AS_protected)
7429          L.setAccess(AS_public);
7430      }
7431    }
7432
7433    // Create the nested-name-specifier that will be used to qualify the
7434    // reference to operator=; this is required to suppress the virtual
7435    // call mechanism.
7436    CXXScopeSpec SS;
7437    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7438    SS.MakeTrivial(S.Context,
7439                   NestedNameSpecifier::Create(S.Context, 0, false,
7440                                               CanonicalT),
7441                   Loc);
7442
7443    // Create the reference to operator=.
7444    ExprResult OpEqualRef
7445      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7446                                   /*TemplateKWLoc=*/SourceLocation(),
7447                                   /*FirstQualifierInScope=*/0,
7448                                   OpLookup,
7449                                   /*TemplateArgs=*/0,
7450                                   /*SuppressQualifierCheck=*/true);
7451    if (OpEqualRef.isInvalid())
7452      return StmtError();
7453
7454    // Build the call to the assignment operator.
7455
7456    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7457                                                  OpEqualRef.takeAs<Expr>(),
7458                                                  Loc, &From, 1, Loc);
7459    if (Call.isInvalid())
7460      return StmtError();
7461
7462    return S.Owned(Call.takeAs<Stmt>());
7463  }
7464
7465  //     - if the subobject is of scalar type, the built-in assignment
7466  //       operator is used.
7467  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7468  if (!ArrayTy) {
7469    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7470    if (Assignment.isInvalid())
7471      return StmtError();
7472
7473    return S.Owned(Assignment.takeAs<Stmt>());
7474  }
7475
7476  //     - if the subobject is an array, each element is assigned, in the
7477  //       manner appropriate to the element type;
7478
7479  // Construct a loop over the array bounds, e.g.,
7480  //
7481  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7482  //
7483  // that will copy each of the array elements.
7484  QualType SizeType = S.Context.getSizeType();
7485
7486  // Create the iteration variable.
7487  IdentifierInfo *IterationVarName = 0;
7488  {
7489    SmallString<8> Str;
7490    llvm::raw_svector_ostream OS(Str);
7491    OS << "__i" << Depth;
7492    IterationVarName = &S.Context.Idents.get(OS.str());
7493  }
7494  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7495                                          IterationVarName, SizeType,
7496                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7497                                          SC_None, SC_None);
7498
7499  // Initialize the iteration variable to zero.
7500  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7501  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7502
7503  // Create a reference to the iteration variable; we'll use this several
7504  // times throughout.
7505  Expr *IterationVarRef
7506    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7507  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7508  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7509  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7510
7511  // Create the DeclStmt that holds the iteration variable.
7512  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7513
7514  // Create the comparison against the array bound.
7515  llvm::APInt Upper
7516    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7517  Expr *Comparison
7518    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7519                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7520                                     BO_NE, S.Context.BoolTy,
7521                                     VK_RValue, OK_Ordinary, Loc);
7522
7523  // Create the pre-increment of the iteration variable.
7524  Expr *Increment
7525    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7526                                    VK_LValue, OK_Ordinary, Loc);
7527
7528  // Subscript the "from" and "to" expressions with the iteration variable.
7529  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7530                                                         IterationVarRefRVal,
7531                                                         Loc));
7532  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7533                                                       IterationVarRefRVal,
7534                                                       Loc));
7535  if (!Copying) // Cast to rvalue
7536    From = CastForMoving(S, From);
7537
7538  // Build the copy/move for an individual element of the array.
7539  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7540                                          To, From, CopyingBaseSubobject,
7541                                          Copying, Depth + 1);
7542  if (Copy.isInvalid())
7543    return StmtError();
7544
7545  // Construct the loop that copies all elements of this array.
7546  return S.ActOnForStmt(Loc, Loc, InitStmt,
7547                        S.MakeFullExpr(Comparison),
7548                        0, S.MakeFullExpr(Increment),
7549                        Loc, Copy.take());
7550}
7551
7552std::pair<Sema::ImplicitExceptionSpecification, bool>
7553Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7554                                                   CXXRecordDecl *ClassDecl) {
7555  if (ClassDecl->isInvalidDecl())
7556    return std::make_pair(ImplicitExceptionSpecification(*this), false);
7557
7558  // C++ [class.copy]p10:
7559  //   If the class definition does not explicitly declare a copy
7560  //   assignment operator, one is declared implicitly.
7561  //   The implicitly-defined copy assignment operator for a class X
7562  //   will have the form
7563  //
7564  //       X& X::operator=(const X&)
7565  //
7566  //   if
7567  bool HasConstCopyAssignment = true;
7568
7569  //       -- each direct base class B of X has a copy assignment operator
7570  //          whose parameter is of type const B&, const volatile B& or B,
7571  //          and
7572  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7573                                       BaseEnd = ClassDecl->bases_end();
7574       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7575    // We'll handle this below
7576    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7577      continue;
7578
7579    assert(!Base->getType()->isDependentType() &&
7580           "Cannot generate implicit members for class with dependent bases.");
7581    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7582    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7583                            &HasConstCopyAssignment);
7584  }
7585
7586  // In C++11, the above citation has "or virtual" added
7587  if (LangOpts.CPlusPlus0x) {
7588    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7589                                         BaseEnd = ClassDecl->vbases_end();
7590         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7591      assert(!Base->getType()->isDependentType() &&
7592             "Cannot generate implicit members for class with dependent bases.");
7593      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7594      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7595                              &HasConstCopyAssignment);
7596    }
7597  }
7598
7599  //       -- for all the nonstatic data members of X that are of a class
7600  //          type M (or array thereof), each such class type has a copy
7601  //          assignment operator whose parameter is of type const M&,
7602  //          const volatile M& or M.
7603  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7604                                  FieldEnd = ClassDecl->field_end();
7605       HasConstCopyAssignment && Field != FieldEnd;
7606       ++Field) {
7607    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7608    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7609      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7610                              &HasConstCopyAssignment);
7611    }
7612  }
7613
7614  //   Otherwise, the implicitly declared copy assignment operator will
7615  //   have the form
7616  //
7617  //       X& X::operator=(X&)
7618
7619  // C++ [except.spec]p14:
7620  //   An implicitly declared special member function (Clause 12) shall have an
7621  //   exception-specification. [...]
7622
7623  // It is unspecified whether or not an implicit copy assignment operator
7624  // attempts to deduplicate calls to assignment operators of virtual bases are
7625  // made. As such, this exception specification is effectively unspecified.
7626  // Based on a similar decision made for constness in C++0x, we're erring on
7627  // the side of assuming such calls to be made regardless of whether they
7628  // actually happen.
7629  ImplicitExceptionSpecification ExceptSpec(*this);
7630  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7631  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7632                                       BaseEnd = ClassDecl->bases_end();
7633       Base != BaseEnd; ++Base) {
7634    if (Base->isVirtual())
7635      continue;
7636
7637    CXXRecordDecl *BaseClassDecl
7638      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7639    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7640                                                            ArgQuals, false, 0))
7641      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7642  }
7643
7644  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7645                                       BaseEnd = ClassDecl->vbases_end();
7646       Base != BaseEnd; ++Base) {
7647    CXXRecordDecl *BaseClassDecl
7648      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7649    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7650                                                            ArgQuals, false, 0))
7651      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7652  }
7653
7654  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7655                                  FieldEnd = ClassDecl->field_end();
7656       Field != FieldEnd;
7657       ++Field) {
7658    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7659    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7660      if (CXXMethodDecl *CopyAssign =
7661          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7662        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7663    }
7664  }
7665
7666  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7667}
7668
7669CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7670  // Note: The following rules are largely analoguous to the copy
7671  // constructor rules. Note that virtual bases are not taken into account
7672  // for determining the argument type of the operator. Note also that
7673  // operators taking an object instead of a reference are allowed.
7674
7675  ImplicitExceptionSpecification Spec(*this);
7676  bool Const;
7677  llvm::tie(Spec, Const) =
7678    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7679
7680  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7681  QualType RetType = Context.getLValueReferenceType(ArgType);
7682  if (Const)
7683    ArgType = ArgType.withConst();
7684  ArgType = Context.getLValueReferenceType(ArgType);
7685
7686  //   An implicitly-declared copy assignment operator is an inline public
7687  //   member of its class.
7688  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7689  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7690  SourceLocation ClassLoc = ClassDecl->getLocation();
7691  DeclarationNameInfo NameInfo(Name, ClassLoc);
7692  CXXMethodDecl *CopyAssignment
7693    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7694                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7695                            /*TInfo=*/0, /*isStatic=*/false,
7696                            /*StorageClassAsWritten=*/SC_None,
7697                            /*isInline=*/true, /*isConstexpr=*/false,
7698                            SourceLocation());
7699  CopyAssignment->setAccess(AS_public);
7700  CopyAssignment->setDefaulted();
7701  CopyAssignment->setImplicit();
7702  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7703
7704  // Add the parameter to the operator.
7705  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7706                                               ClassLoc, ClassLoc, /*Id=*/0,
7707                                               ArgType, /*TInfo=*/0,
7708                                               SC_None,
7709                                               SC_None, 0);
7710  CopyAssignment->setParams(FromParam);
7711
7712  // Note that we have added this copy-assignment operator.
7713  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7714
7715  if (Scope *S = getScopeForContext(ClassDecl))
7716    PushOnScopeChains(CopyAssignment, S, false);
7717  ClassDecl->addDecl(CopyAssignment);
7718
7719  // C++0x [class.copy]p19:
7720  //   ....  If the class definition does not explicitly declare a copy
7721  //   assignment operator, there is no user-declared move constructor, and
7722  //   there is no user-declared move assignment operator, a copy assignment
7723  //   operator is implicitly declared as defaulted.
7724  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7725    CopyAssignment->setDeletedAsWritten();
7726
7727  AddOverriddenMethods(ClassDecl, CopyAssignment);
7728  return CopyAssignment;
7729}
7730
7731void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7732                                        CXXMethodDecl *CopyAssignOperator) {
7733  assert((CopyAssignOperator->isDefaulted() &&
7734          CopyAssignOperator->isOverloadedOperator() &&
7735          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7736          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7737          !CopyAssignOperator->isDeleted()) &&
7738         "DefineImplicitCopyAssignment called for wrong function");
7739
7740  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7741
7742  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7743    CopyAssignOperator->setInvalidDecl();
7744    return;
7745  }
7746
7747  CopyAssignOperator->setUsed();
7748
7749  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7750  DiagnosticErrorTrap Trap(Diags);
7751
7752  // C++0x [class.copy]p30:
7753  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7754  //   for a non-union class X performs memberwise copy assignment of its
7755  //   subobjects. The direct base classes of X are assigned first, in the
7756  //   order of their declaration in the base-specifier-list, and then the
7757  //   immediate non-static data members of X are assigned, in the order in
7758  //   which they were declared in the class definition.
7759
7760  // The statements that form the synthesized function body.
7761  ASTOwningVector<Stmt*> Statements(*this);
7762
7763  // The parameter for the "other" object, which we are copying from.
7764  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7765  Qualifiers OtherQuals = Other->getType().getQualifiers();
7766  QualType OtherRefType = Other->getType();
7767  if (const LValueReferenceType *OtherRef
7768                                = OtherRefType->getAs<LValueReferenceType>()) {
7769    OtherRefType = OtherRef->getPointeeType();
7770    OtherQuals = OtherRefType.getQualifiers();
7771  }
7772
7773  // Our location for everything implicitly-generated.
7774  SourceLocation Loc = CopyAssignOperator->getLocation();
7775
7776  // Construct a reference to the "other" object. We'll be using this
7777  // throughout the generated ASTs.
7778  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7779  assert(OtherRef && "Reference to parameter cannot fail!");
7780
7781  // Construct the "this" pointer. We'll be using this throughout the generated
7782  // ASTs.
7783  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7784  assert(This && "Reference to this cannot fail!");
7785
7786  // Assign base classes.
7787  bool Invalid = false;
7788  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7789       E = ClassDecl->bases_end(); Base != E; ++Base) {
7790    // Form the assignment:
7791    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7792    QualType BaseType = Base->getType().getUnqualifiedType();
7793    if (!BaseType->isRecordType()) {
7794      Invalid = true;
7795      continue;
7796    }
7797
7798    CXXCastPath BasePath;
7799    BasePath.push_back(Base);
7800
7801    // Construct the "from" expression, which is an implicit cast to the
7802    // appropriately-qualified base type.
7803    Expr *From = OtherRef;
7804    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7805                             CK_UncheckedDerivedToBase,
7806                             VK_LValue, &BasePath).take();
7807
7808    // Dereference "this".
7809    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7810
7811    // Implicitly cast "this" to the appropriately-qualified base type.
7812    To = ImpCastExprToType(To.take(),
7813                           Context.getCVRQualifiedType(BaseType,
7814                                     CopyAssignOperator->getTypeQualifiers()),
7815                           CK_UncheckedDerivedToBase,
7816                           VK_LValue, &BasePath);
7817
7818    // Build the copy.
7819    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7820                                            To.get(), From,
7821                                            /*CopyingBaseSubobject=*/true,
7822                                            /*Copying=*/true);
7823    if (Copy.isInvalid()) {
7824      Diag(CurrentLocation, diag::note_member_synthesized_at)
7825        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7826      CopyAssignOperator->setInvalidDecl();
7827      return;
7828    }
7829
7830    // Success! Record the copy.
7831    Statements.push_back(Copy.takeAs<Expr>());
7832  }
7833
7834  // \brief Reference to the __builtin_memcpy function.
7835  Expr *BuiltinMemCpyRef = 0;
7836  // \brief Reference to the __builtin_objc_memmove_collectable function.
7837  Expr *CollectableMemCpyRef = 0;
7838
7839  // Assign non-static members.
7840  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7841                                  FieldEnd = ClassDecl->field_end();
7842       Field != FieldEnd; ++Field) {
7843    if (Field->isUnnamedBitfield())
7844      continue;
7845
7846    // Check for members of reference type; we can't copy those.
7847    if (Field->getType()->isReferenceType()) {
7848      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7849        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7850      Diag(Field->getLocation(), diag::note_declared_at);
7851      Diag(CurrentLocation, diag::note_member_synthesized_at)
7852        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7853      Invalid = true;
7854      continue;
7855    }
7856
7857    // Check for members of const-qualified, non-class type.
7858    QualType BaseType = Context.getBaseElementType(Field->getType());
7859    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7860      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7861        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7862      Diag(Field->getLocation(), diag::note_declared_at);
7863      Diag(CurrentLocation, diag::note_member_synthesized_at)
7864        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7865      Invalid = true;
7866      continue;
7867    }
7868
7869    // Suppress assigning zero-width bitfields.
7870    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7871      continue;
7872
7873    QualType FieldType = Field->getType().getNonReferenceType();
7874    if (FieldType->isIncompleteArrayType()) {
7875      assert(ClassDecl->hasFlexibleArrayMember() &&
7876             "Incomplete array type is not valid");
7877      continue;
7878    }
7879
7880    // Build references to the field in the object we're copying from and to.
7881    CXXScopeSpec SS; // Intentionally empty
7882    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7883                              LookupMemberName);
7884    MemberLookup.addDecl(*Field);
7885    MemberLookup.resolveKind();
7886    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7887                                               Loc, /*IsArrow=*/false,
7888                                               SS, SourceLocation(), 0,
7889                                               MemberLookup, 0);
7890    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7891                                             Loc, /*IsArrow=*/true,
7892                                             SS, SourceLocation(), 0,
7893                                             MemberLookup, 0);
7894    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7895    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7896
7897    // If the field should be copied with __builtin_memcpy rather than via
7898    // explicit assignments, do so. This optimization only applies for arrays
7899    // of scalars and arrays of class type with trivial copy-assignment
7900    // operators.
7901    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7902        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7903      // Compute the size of the memory buffer to be copied.
7904      QualType SizeType = Context.getSizeType();
7905      llvm::APInt Size(Context.getTypeSize(SizeType),
7906                       Context.getTypeSizeInChars(BaseType).getQuantity());
7907      for (const ConstantArrayType *Array
7908              = Context.getAsConstantArrayType(FieldType);
7909           Array;
7910           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7911        llvm::APInt ArraySize
7912          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7913        Size *= ArraySize;
7914      }
7915
7916      // Take the address of the field references for "from" and "to".
7917      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7918      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7919
7920      bool NeedsCollectableMemCpy =
7921          (BaseType->isRecordType() &&
7922           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7923
7924      if (NeedsCollectableMemCpy) {
7925        if (!CollectableMemCpyRef) {
7926          // Create a reference to the __builtin_objc_memmove_collectable function.
7927          LookupResult R(*this,
7928                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7929                         Loc, LookupOrdinaryName);
7930          LookupName(R, TUScope, true);
7931
7932          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7933          if (!CollectableMemCpy) {
7934            // Something went horribly wrong earlier, and we will have
7935            // complained about it.
7936            Invalid = true;
7937            continue;
7938          }
7939
7940          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7941                                                  CollectableMemCpy->getType(),
7942                                                  VK_LValue, Loc, 0).take();
7943          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7944        }
7945      }
7946      // Create a reference to the __builtin_memcpy builtin function.
7947      else if (!BuiltinMemCpyRef) {
7948        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7949                       LookupOrdinaryName);
7950        LookupName(R, TUScope, true);
7951
7952        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7953        if (!BuiltinMemCpy) {
7954          // Something went horribly wrong earlier, and we will have complained
7955          // about it.
7956          Invalid = true;
7957          continue;
7958        }
7959
7960        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7961                                            BuiltinMemCpy->getType(),
7962                                            VK_LValue, Loc, 0).take();
7963        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7964      }
7965
7966      ASTOwningVector<Expr*> CallArgs(*this);
7967      CallArgs.push_back(To.takeAs<Expr>());
7968      CallArgs.push_back(From.takeAs<Expr>());
7969      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7970      ExprResult Call = ExprError();
7971      if (NeedsCollectableMemCpy)
7972        Call = ActOnCallExpr(/*Scope=*/0,
7973                             CollectableMemCpyRef,
7974                             Loc, move_arg(CallArgs),
7975                             Loc);
7976      else
7977        Call = ActOnCallExpr(/*Scope=*/0,
7978                             BuiltinMemCpyRef,
7979                             Loc, move_arg(CallArgs),
7980                             Loc);
7981
7982      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7983      Statements.push_back(Call.takeAs<Expr>());
7984      continue;
7985    }
7986
7987    // Build the copy of this field.
7988    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7989                                            To.get(), From.get(),
7990                                            /*CopyingBaseSubobject=*/false,
7991                                            /*Copying=*/true);
7992    if (Copy.isInvalid()) {
7993      Diag(CurrentLocation, diag::note_member_synthesized_at)
7994        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7995      CopyAssignOperator->setInvalidDecl();
7996      return;
7997    }
7998
7999    // Success! Record the copy.
8000    Statements.push_back(Copy.takeAs<Stmt>());
8001  }
8002
8003  if (!Invalid) {
8004    // Add a "return *this;"
8005    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8006
8007    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8008    if (Return.isInvalid())
8009      Invalid = true;
8010    else {
8011      Statements.push_back(Return.takeAs<Stmt>());
8012
8013      if (Trap.hasErrorOccurred()) {
8014        Diag(CurrentLocation, diag::note_member_synthesized_at)
8015          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8016        Invalid = true;
8017      }
8018    }
8019  }
8020
8021  if (Invalid) {
8022    CopyAssignOperator->setInvalidDecl();
8023    return;
8024  }
8025
8026  StmtResult Body;
8027  {
8028    CompoundScopeRAII CompoundScope(*this);
8029    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8030                             /*isStmtExpr=*/false);
8031    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8032  }
8033  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8034
8035  if (ASTMutationListener *L = getASTMutationListener()) {
8036    L->CompletedImplicitDefinition(CopyAssignOperator);
8037  }
8038}
8039
8040Sema::ImplicitExceptionSpecification
8041Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8042  ImplicitExceptionSpecification ExceptSpec(*this);
8043
8044  if (ClassDecl->isInvalidDecl())
8045    return ExceptSpec;
8046
8047  // C++0x [except.spec]p14:
8048  //   An implicitly declared special member function (Clause 12) shall have an
8049  //   exception-specification. [...]
8050
8051  // It is unspecified whether or not an implicit move assignment operator
8052  // attempts to deduplicate calls to assignment operators of virtual bases are
8053  // made. As such, this exception specification is effectively unspecified.
8054  // Based on a similar decision made for constness in C++0x, we're erring on
8055  // the side of assuming such calls to be made regardless of whether they
8056  // actually happen.
8057  // Note that a move constructor is not implicitly declared when there are
8058  // virtual bases, but it can still be user-declared and explicitly defaulted.
8059  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8060                                       BaseEnd = ClassDecl->bases_end();
8061       Base != BaseEnd; ++Base) {
8062    if (Base->isVirtual())
8063      continue;
8064
8065    CXXRecordDecl *BaseClassDecl
8066      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8067    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8068                                                           false, 0))
8069      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8070  }
8071
8072  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8073                                       BaseEnd = ClassDecl->vbases_end();
8074       Base != BaseEnd; ++Base) {
8075    CXXRecordDecl *BaseClassDecl
8076      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8077    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8078                                                           false, 0))
8079      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
8080  }
8081
8082  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8083                                  FieldEnd = ClassDecl->field_end();
8084       Field != FieldEnd;
8085       ++Field) {
8086    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8087    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8088      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8089                                                             false, 0))
8090        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
8091    }
8092  }
8093
8094  return ExceptSpec;
8095}
8096
8097/// Determine whether the class type has any direct or indirect virtual base
8098/// classes which have a non-trivial move assignment operator.
8099static bool
8100hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
8101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8102                                          BaseEnd = ClassDecl->vbases_end();
8103       Base != BaseEnd; ++Base) {
8104    CXXRecordDecl *BaseClass =
8105        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8106
8107    // Try to declare the move assignment. If it would be deleted, then the
8108    // class does not have a non-trivial move assignment.
8109    if (BaseClass->needsImplicitMoveAssignment())
8110      S.DeclareImplicitMoveAssignment(BaseClass);
8111
8112    // If the class has both a trivial move assignment and a non-trivial move
8113    // assignment, hasTrivialMoveAssignment() is false.
8114    if (BaseClass->hasDeclaredMoveAssignment() &&
8115        !BaseClass->hasTrivialMoveAssignment())
8116      return true;
8117  }
8118
8119  return false;
8120}
8121
8122/// Determine whether the given type either has a move constructor or is
8123/// trivially copyable.
8124static bool
8125hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
8126  Type = S.Context.getBaseElementType(Type);
8127
8128  // FIXME: Technically, non-trivially-copyable non-class types, such as
8129  // reference types, are supposed to return false here, but that appears
8130  // to be a standard defect.
8131  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
8132  if (!ClassDecl)
8133    return true;
8134
8135  if (Type.isTriviallyCopyableType(S.Context))
8136    return true;
8137
8138  if (IsConstructor) {
8139    if (ClassDecl->needsImplicitMoveConstructor())
8140      S.DeclareImplicitMoveConstructor(ClassDecl);
8141    return ClassDecl->hasDeclaredMoveConstructor();
8142  }
8143
8144  if (ClassDecl->needsImplicitMoveAssignment())
8145    S.DeclareImplicitMoveAssignment(ClassDecl);
8146  return ClassDecl->hasDeclaredMoveAssignment();
8147}
8148
8149/// Determine whether all non-static data members and direct or virtual bases
8150/// of class \p ClassDecl have either a move operation, or are trivially
8151/// copyable.
8152static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
8153                                            bool IsConstructor) {
8154  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8155                                          BaseEnd = ClassDecl->bases_end();
8156       Base != BaseEnd; ++Base) {
8157    if (Base->isVirtual())
8158      continue;
8159
8160    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8161      return false;
8162  }
8163
8164  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8165                                          BaseEnd = ClassDecl->vbases_end();
8166       Base != BaseEnd; ++Base) {
8167    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
8168      return false;
8169  }
8170
8171  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8172                                     FieldEnd = ClassDecl->field_end();
8173       Field != FieldEnd; ++Field) {
8174    if (!hasMoveOrIsTriviallyCopyable(S, (*Field)->getType(), IsConstructor))
8175      return false;
8176  }
8177
8178  return true;
8179}
8180
8181CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8182  // C++11 [class.copy]p20:
8183  //   If the definition of a class X does not explicitly declare a move
8184  //   assignment operator, one will be implicitly declared as defaulted
8185  //   if and only if:
8186  //
8187  //   - [first 4 bullets]
8188  assert(ClassDecl->needsImplicitMoveAssignment());
8189
8190  // [Checked after we build the declaration]
8191  //   - the move assignment operator would not be implicitly defined as
8192  //     deleted,
8193
8194  // [DR1402]:
8195  //   - X has no direct or indirect virtual base class with a non-trivial
8196  //     move assignment operator, and
8197  //   - each of X's non-static data members and direct or virtual base classes
8198  //     has a type that either has a move assignment operator or is trivially
8199  //     copyable.
8200  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
8201      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
8202    ClassDecl->setFailedImplicitMoveAssignment();
8203    return 0;
8204  }
8205
8206  // Note: The following rules are largely analoguous to the move
8207  // constructor rules.
8208
8209  ImplicitExceptionSpecification Spec(
8210      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8211
8212  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8213  QualType RetType = Context.getLValueReferenceType(ArgType);
8214  ArgType = Context.getRValueReferenceType(ArgType);
8215
8216  //   An implicitly-declared move assignment operator is an inline public
8217  //   member of its class.
8218  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8219  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8220  SourceLocation ClassLoc = ClassDecl->getLocation();
8221  DeclarationNameInfo NameInfo(Name, ClassLoc);
8222  CXXMethodDecl *MoveAssignment
8223    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8224                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8225                            /*TInfo=*/0, /*isStatic=*/false,
8226                            /*StorageClassAsWritten=*/SC_None,
8227                            /*isInline=*/true,
8228                            /*isConstexpr=*/false,
8229                            SourceLocation());
8230  MoveAssignment->setAccess(AS_public);
8231  MoveAssignment->setDefaulted();
8232  MoveAssignment->setImplicit();
8233  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8234
8235  // Add the parameter to the operator.
8236  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8237                                               ClassLoc, ClassLoc, /*Id=*/0,
8238                                               ArgType, /*TInfo=*/0,
8239                                               SC_None,
8240                                               SC_None, 0);
8241  MoveAssignment->setParams(FromParam);
8242
8243  // Note that we have added this copy-assignment operator.
8244  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8245
8246  // C++0x [class.copy]p9:
8247  //   If the definition of a class X does not explicitly declare a move
8248  //   assignment operator, one will be implicitly declared as defaulted if and
8249  //   only if:
8250  //   [...]
8251  //   - the move assignment operator would not be implicitly defined as
8252  //     deleted.
8253  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8254    // Cache this result so that we don't try to generate this over and over
8255    // on every lookup, leaking memory and wasting time.
8256    ClassDecl->setFailedImplicitMoveAssignment();
8257    return 0;
8258  }
8259
8260  if (Scope *S = getScopeForContext(ClassDecl))
8261    PushOnScopeChains(MoveAssignment, S, false);
8262  ClassDecl->addDecl(MoveAssignment);
8263
8264  AddOverriddenMethods(ClassDecl, MoveAssignment);
8265  return MoveAssignment;
8266}
8267
8268void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8269                                        CXXMethodDecl *MoveAssignOperator) {
8270  assert((MoveAssignOperator->isDefaulted() &&
8271          MoveAssignOperator->isOverloadedOperator() &&
8272          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8273          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8274          !MoveAssignOperator->isDeleted()) &&
8275         "DefineImplicitMoveAssignment called for wrong function");
8276
8277  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8278
8279  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8280    MoveAssignOperator->setInvalidDecl();
8281    return;
8282  }
8283
8284  MoveAssignOperator->setUsed();
8285
8286  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8287  DiagnosticErrorTrap Trap(Diags);
8288
8289  // C++0x [class.copy]p28:
8290  //   The implicitly-defined or move assignment operator for a non-union class
8291  //   X performs memberwise move assignment of its subobjects. The direct base
8292  //   classes of X are assigned first, in the order of their declaration in the
8293  //   base-specifier-list, and then the immediate non-static data members of X
8294  //   are assigned, in the order in which they were declared in the class
8295  //   definition.
8296
8297  // The statements that form the synthesized function body.
8298  ASTOwningVector<Stmt*> Statements(*this);
8299
8300  // The parameter for the "other" object, which we are move from.
8301  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8302  QualType OtherRefType = Other->getType()->
8303      getAs<RValueReferenceType>()->getPointeeType();
8304  assert(OtherRefType.getQualifiers() == 0 &&
8305         "Bad argument type of defaulted move assignment");
8306
8307  // Our location for everything implicitly-generated.
8308  SourceLocation Loc = MoveAssignOperator->getLocation();
8309
8310  // Construct a reference to the "other" object. We'll be using this
8311  // throughout the generated ASTs.
8312  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8313  assert(OtherRef && "Reference to parameter cannot fail!");
8314  // Cast to rvalue.
8315  OtherRef = CastForMoving(*this, OtherRef);
8316
8317  // Construct the "this" pointer. We'll be using this throughout the generated
8318  // ASTs.
8319  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8320  assert(This && "Reference to this cannot fail!");
8321
8322  // Assign base classes.
8323  bool Invalid = false;
8324  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8325       E = ClassDecl->bases_end(); Base != E; ++Base) {
8326    // Form the assignment:
8327    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8328    QualType BaseType = Base->getType().getUnqualifiedType();
8329    if (!BaseType->isRecordType()) {
8330      Invalid = true;
8331      continue;
8332    }
8333
8334    CXXCastPath BasePath;
8335    BasePath.push_back(Base);
8336
8337    // Construct the "from" expression, which is an implicit cast to the
8338    // appropriately-qualified base type.
8339    Expr *From = OtherRef;
8340    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8341                             VK_XValue, &BasePath).take();
8342
8343    // Dereference "this".
8344    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8345
8346    // Implicitly cast "this" to the appropriately-qualified base type.
8347    To = ImpCastExprToType(To.take(),
8348                           Context.getCVRQualifiedType(BaseType,
8349                                     MoveAssignOperator->getTypeQualifiers()),
8350                           CK_UncheckedDerivedToBase,
8351                           VK_LValue, &BasePath);
8352
8353    // Build the move.
8354    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8355                                            To.get(), From,
8356                                            /*CopyingBaseSubobject=*/true,
8357                                            /*Copying=*/false);
8358    if (Move.isInvalid()) {
8359      Diag(CurrentLocation, diag::note_member_synthesized_at)
8360        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8361      MoveAssignOperator->setInvalidDecl();
8362      return;
8363    }
8364
8365    // Success! Record the move.
8366    Statements.push_back(Move.takeAs<Expr>());
8367  }
8368
8369  // \brief Reference to the __builtin_memcpy function.
8370  Expr *BuiltinMemCpyRef = 0;
8371  // \brief Reference to the __builtin_objc_memmove_collectable function.
8372  Expr *CollectableMemCpyRef = 0;
8373
8374  // Assign non-static members.
8375  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8376                                  FieldEnd = ClassDecl->field_end();
8377       Field != FieldEnd; ++Field) {
8378    if (Field->isUnnamedBitfield())
8379      continue;
8380
8381    // Check for members of reference type; we can't move those.
8382    if (Field->getType()->isReferenceType()) {
8383      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8384        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8385      Diag(Field->getLocation(), diag::note_declared_at);
8386      Diag(CurrentLocation, diag::note_member_synthesized_at)
8387        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8388      Invalid = true;
8389      continue;
8390    }
8391
8392    // Check for members of const-qualified, non-class type.
8393    QualType BaseType = Context.getBaseElementType(Field->getType());
8394    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8395      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8396        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8397      Diag(Field->getLocation(), diag::note_declared_at);
8398      Diag(CurrentLocation, diag::note_member_synthesized_at)
8399        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8400      Invalid = true;
8401      continue;
8402    }
8403
8404    // Suppress assigning zero-width bitfields.
8405    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8406      continue;
8407
8408    QualType FieldType = Field->getType().getNonReferenceType();
8409    if (FieldType->isIncompleteArrayType()) {
8410      assert(ClassDecl->hasFlexibleArrayMember() &&
8411             "Incomplete array type is not valid");
8412      continue;
8413    }
8414
8415    // Build references to the field in the object we're copying from and to.
8416    CXXScopeSpec SS; // Intentionally empty
8417    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8418                              LookupMemberName);
8419    MemberLookup.addDecl(*Field);
8420    MemberLookup.resolveKind();
8421    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8422                                               Loc, /*IsArrow=*/false,
8423                                               SS, SourceLocation(), 0,
8424                                               MemberLookup, 0);
8425    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8426                                             Loc, /*IsArrow=*/true,
8427                                             SS, SourceLocation(), 0,
8428                                             MemberLookup, 0);
8429    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8430    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8431
8432    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8433        "Member reference with rvalue base must be rvalue except for reference "
8434        "members, which aren't allowed for move assignment.");
8435
8436    // If the field should be copied with __builtin_memcpy rather than via
8437    // explicit assignments, do so. This optimization only applies for arrays
8438    // of scalars and arrays of class type with trivial move-assignment
8439    // operators.
8440    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8441        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8442      // Compute the size of the memory buffer to be copied.
8443      QualType SizeType = Context.getSizeType();
8444      llvm::APInt Size(Context.getTypeSize(SizeType),
8445                       Context.getTypeSizeInChars(BaseType).getQuantity());
8446      for (const ConstantArrayType *Array
8447              = Context.getAsConstantArrayType(FieldType);
8448           Array;
8449           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8450        llvm::APInt ArraySize
8451          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8452        Size *= ArraySize;
8453      }
8454
8455      // Take the address of the field references for "from" and "to". We
8456      // directly construct UnaryOperators here because semantic analysis
8457      // does not permit us to take the address of an xvalue.
8458      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8459                             Context.getPointerType(From.get()->getType()),
8460                             VK_RValue, OK_Ordinary, Loc);
8461      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8462                           Context.getPointerType(To.get()->getType()),
8463                           VK_RValue, OK_Ordinary, Loc);
8464
8465      bool NeedsCollectableMemCpy =
8466          (BaseType->isRecordType() &&
8467           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8468
8469      if (NeedsCollectableMemCpy) {
8470        if (!CollectableMemCpyRef) {
8471          // Create a reference to the __builtin_objc_memmove_collectable function.
8472          LookupResult R(*this,
8473                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8474                         Loc, LookupOrdinaryName);
8475          LookupName(R, TUScope, true);
8476
8477          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8478          if (!CollectableMemCpy) {
8479            // Something went horribly wrong earlier, and we will have
8480            // complained about it.
8481            Invalid = true;
8482            continue;
8483          }
8484
8485          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8486                                                  CollectableMemCpy->getType(),
8487                                                  VK_LValue, Loc, 0).take();
8488          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8489        }
8490      }
8491      // Create a reference to the __builtin_memcpy builtin function.
8492      else if (!BuiltinMemCpyRef) {
8493        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8494                       LookupOrdinaryName);
8495        LookupName(R, TUScope, true);
8496
8497        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8498        if (!BuiltinMemCpy) {
8499          // Something went horribly wrong earlier, and we will have complained
8500          // about it.
8501          Invalid = true;
8502          continue;
8503        }
8504
8505        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8506                                            BuiltinMemCpy->getType(),
8507                                            VK_LValue, Loc, 0).take();
8508        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8509      }
8510
8511      ASTOwningVector<Expr*> CallArgs(*this);
8512      CallArgs.push_back(To.takeAs<Expr>());
8513      CallArgs.push_back(From.takeAs<Expr>());
8514      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8515      ExprResult Call = ExprError();
8516      if (NeedsCollectableMemCpy)
8517        Call = ActOnCallExpr(/*Scope=*/0,
8518                             CollectableMemCpyRef,
8519                             Loc, move_arg(CallArgs),
8520                             Loc);
8521      else
8522        Call = ActOnCallExpr(/*Scope=*/0,
8523                             BuiltinMemCpyRef,
8524                             Loc, move_arg(CallArgs),
8525                             Loc);
8526
8527      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8528      Statements.push_back(Call.takeAs<Expr>());
8529      continue;
8530    }
8531
8532    // Build the move of this field.
8533    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8534                                            To.get(), From.get(),
8535                                            /*CopyingBaseSubobject=*/false,
8536                                            /*Copying=*/false);
8537    if (Move.isInvalid()) {
8538      Diag(CurrentLocation, diag::note_member_synthesized_at)
8539        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8540      MoveAssignOperator->setInvalidDecl();
8541      return;
8542    }
8543
8544    // Success! Record the copy.
8545    Statements.push_back(Move.takeAs<Stmt>());
8546  }
8547
8548  if (!Invalid) {
8549    // Add a "return *this;"
8550    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8551
8552    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8553    if (Return.isInvalid())
8554      Invalid = true;
8555    else {
8556      Statements.push_back(Return.takeAs<Stmt>());
8557
8558      if (Trap.hasErrorOccurred()) {
8559        Diag(CurrentLocation, diag::note_member_synthesized_at)
8560          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8561        Invalid = true;
8562      }
8563    }
8564  }
8565
8566  if (Invalid) {
8567    MoveAssignOperator->setInvalidDecl();
8568    return;
8569  }
8570
8571  StmtResult Body;
8572  {
8573    CompoundScopeRAII CompoundScope(*this);
8574    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8575                             /*isStmtExpr=*/false);
8576    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8577  }
8578  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8579
8580  if (ASTMutationListener *L = getASTMutationListener()) {
8581    L->CompletedImplicitDefinition(MoveAssignOperator);
8582  }
8583}
8584
8585std::pair<Sema::ImplicitExceptionSpecification, bool>
8586Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8587  if (ClassDecl->isInvalidDecl())
8588    return std::make_pair(ImplicitExceptionSpecification(*this), false);
8589
8590  // C++ [class.copy]p5:
8591  //   The implicitly-declared copy constructor for a class X will
8592  //   have the form
8593  //
8594  //       X::X(const X&)
8595  //
8596  //   if
8597  // FIXME: It ought to be possible to store this on the record.
8598  bool HasConstCopyConstructor = true;
8599
8600  //     -- each direct or virtual base class B of X has a copy
8601  //        constructor whose first parameter is of type const B& or
8602  //        const volatile B&, and
8603  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8604                                       BaseEnd = ClassDecl->bases_end();
8605       HasConstCopyConstructor && Base != BaseEnd;
8606       ++Base) {
8607    // Virtual bases are handled below.
8608    if (Base->isVirtual())
8609      continue;
8610
8611    CXXRecordDecl *BaseClassDecl
8612      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8613    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8614                             &HasConstCopyConstructor);
8615  }
8616
8617  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8618                                       BaseEnd = ClassDecl->vbases_end();
8619       HasConstCopyConstructor && Base != BaseEnd;
8620       ++Base) {
8621    CXXRecordDecl *BaseClassDecl
8622      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8623    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8624                             &HasConstCopyConstructor);
8625  }
8626
8627  //     -- for all the nonstatic data members of X that are of a
8628  //        class type M (or array thereof), each such class type
8629  //        has a copy constructor whose first parameter is of type
8630  //        const M& or const volatile M&.
8631  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8632                                  FieldEnd = ClassDecl->field_end();
8633       HasConstCopyConstructor && Field != FieldEnd;
8634       ++Field) {
8635    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8636    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8637      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8638                               &HasConstCopyConstructor);
8639    }
8640  }
8641  //   Otherwise, the implicitly declared copy constructor will have
8642  //   the form
8643  //
8644  //       X::X(X&)
8645
8646  // C++ [except.spec]p14:
8647  //   An implicitly declared special member function (Clause 12) shall have an
8648  //   exception-specification. [...]
8649  ImplicitExceptionSpecification ExceptSpec(*this);
8650  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8651  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8652                                       BaseEnd = ClassDecl->bases_end();
8653       Base != BaseEnd;
8654       ++Base) {
8655    // Virtual bases are handled below.
8656    if (Base->isVirtual())
8657      continue;
8658
8659    CXXRecordDecl *BaseClassDecl
8660      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8661    if (CXXConstructorDecl *CopyConstructor =
8662          LookupCopyingConstructor(BaseClassDecl, Quals))
8663      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8664  }
8665  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8666                                       BaseEnd = ClassDecl->vbases_end();
8667       Base != BaseEnd;
8668       ++Base) {
8669    CXXRecordDecl *BaseClassDecl
8670      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8671    if (CXXConstructorDecl *CopyConstructor =
8672          LookupCopyingConstructor(BaseClassDecl, Quals))
8673      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8674  }
8675  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8676                                  FieldEnd = ClassDecl->field_end();
8677       Field != FieldEnd;
8678       ++Field) {
8679    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8680    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8681      if (CXXConstructorDecl *CopyConstructor =
8682        LookupCopyingConstructor(FieldClassDecl, Quals))
8683      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8684    }
8685  }
8686
8687  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8688}
8689
8690CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8691                                                    CXXRecordDecl *ClassDecl) {
8692  // C++ [class.copy]p4:
8693  //   If the class definition does not explicitly declare a copy
8694  //   constructor, one is declared implicitly.
8695
8696  ImplicitExceptionSpecification Spec(*this);
8697  bool Const;
8698  llvm::tie(Spec, Const) =
8699    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8700
8701  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8702  QualType ArgType = ClassType;
8703  if (Const)
8704    ArgType = ArgType.withConst();
8705  ArgType = Context.getLValueReferenceType(ArgType);
8706
8707  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8708
8709  DeclarationName Name
8710    = Context.DeclarationNames.getCXXConstructorName(
8711                                           Context.getCanonicalType(ClassType));
8712  SourceLocation ClassLoc = ClassDecl->getLocation();
8713  DeclarationNameInfo NameInfo(Name, ClassLoc);
8714
8715  //   An implicitly-declared copy constructor is an inline public
8716  //   member of its class.
8717  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8718      Context, ClassDecl, ClassLoc, NameInfo,
8719      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8720      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8721      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8722        getLangOpts().CPlusPlus0x);
8723  CopyConstructor->setAccess(AS_public);
8724  CopyConstructor->setDefaulted();
8725  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8726
8727  // Note that we have declared this constructor.
8728  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8729
8730  // Add the parameter to the constructor.
8731  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8732                                               ClassLoc, ClassLoc,
8733                                               /*IdentifierInfo=*/0,
8734                                               ArgType, /*TInfo=*/0,
8735                                               SC_None,
8736                                               SC_None, 0);
8737  CopyConstructor->setParams(FromParam);
8738
8739  if (Scope *S = getScopeForContext(ClassDecl))
8740    PushOnScopeChains(CopyConstructor, S, false);
8741  ClassDecl->addDecl(CopyConstructor);
8742
8743  // C++11 [class.copy]p8:
8744  //   ... If the class definition does not explicitly declare a copy
8745  //   constructor, there is no user-declared move constructor, and there is no
8746  //   user-declared move assignment operator, a copy constructor is implicitly
8747  //   declared as defaulted.
8748  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8749    CopyConstructor->setDeletedAsWritten();
8750
8751  return CopyConstructor;
8752}
8753
8754void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8755                                   CXXConstructorDecl *CopyConstructor) {
8756  assert((CopyConstructor->isDefaulted() &&
8757          CopyConstructor->isCopyConstructor() &&
8758          !CopyConstructor->doesThisDeclarationHaveABody() &&
8759          !CopyConstructor->isDeleted()) &&
8760         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8761
8762  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8763  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8764
8765  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8766  DiagnosticErrorTrap Trap(Diags);
8767
8768  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8769      Trap.hasErrorOccurred()) {
8770    Diag(CurrentLocation, diag::note_member_synthesized_at)
8771      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8772    CopyConstructor->setInvalidDecl();
8773  }  else {
8774    Sema::CompoundScopeRAII CompoundScope(*this);
8775    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8776                                               CopyConstructor->getLocation(),
8777                                               MultiStmtArg(*this, 0, 0),
8778                                               /*isStmtExpr=*/false)
8779                                                              .takeAs<Stmt>());
8780    CopyConstructor->setImplicitlyDefined(true);
8781  }
8782
8783  CopyConstructor->setUsed();
8784  if (ASTMutationListener *L = getASTMutationListener()) {
8785    L->CompletedImplicitDefinition(CopyConstructor);
8786  }
8787}
8788
8789Sema::ImplicitExceptionSpecification
8790Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8791  // C++ [except.spec]p14:
8792  //   An implicitly declared special member function (Clause 12) shall have an
8793  //   exception-specification. [...]
8794  ImplicitExceptionSpecification ExceptSpec(*this);
8795  if (ClassDecl->isInvalidDecl())
8796    return ExceptSpec;
8797
8798  // Direct base-class constructors.
8799  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8800                                       BEnd = ClassDecl->bases_end();
8801       B != BEnd; ++B) {
8802    if (B->isVirtual()) // Handled below.
8803      continue;
8804
8805    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8806      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8807      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8808      // If this is a deleted function, add it anyway. This might be conformant
8809      // with the standard. This might not. I'm not sure. It might not matter.
8810      if (Constructor)
8811        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8812    }
8813  }
8814
8815  // Virtual base-class constructors.
8816  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8817                                       BEnd = ClassDecl->vbases_end();
8818       B != BEnd; ++B) {
8819    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8820      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8821      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8822      // If this is a deleted function, add it anyway. This might be conformant
8823      // with the standard. This might not. I'm not sure. It might not matter.
8824      if (Constructor)
8825        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8826    }
8827  }
8828
8829  // Field constructors.
8830  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8831                               FEnd = ClassDecl->field_end();
8832       F != FEnd; ++F) {
8833    if (const RecordType *RecordTy
8834              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8835      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8836      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8837      // If this is a deleted function, add it anyway. This might be conformant
8838      // with the standard. This might not. I'm not sure. It might not matter.
8839      // In particular, the problem is that this function never gets called. It
8840      // might just be ill-formed because this function attempts to refer to
8841      // a deleted function here.
8842      if (Constructor)
8843        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8844    }
8845  }
8846
8847  return ExceptSpec;
8848}
8849
8850CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8851                                                    CXXRecordDecl *ClassDecl) {
8852  // C++11 [class.copy]p9:
8853  //   If the definition of a class X does not explicitly declare a move
8854  //   constructor, one will be implicitly declared as defaulted if and only if:
8855  //
8856  //   - [first 4 bullets]
8857  assert(ClassDecl->needsImplicitMoveConstructor());
8858
8859  // [Checked after we build the declaration]
8860  //   - the move assignment operator would not be implicitly defined as
8861  //     deleted,
8862
8863  // [DR1402]:
8864  //   - each of X's non-static data members and direct or virtual base classes
8865  //     has a type that either has a move constructor or is trivially copyable.
8866  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8867    ClassDecl->setFailedImplicitMoveConstructor();
8868    return 0;
8869  }
8870
8871  ImplicitExceptionSpecification Spec(
8872      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8873
8874  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8875  QualType ArgType = Context.getRValueReferenceType(ClassType);
8876
8877  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8878
8879  DeclarationName Name
8880    = Context.DeclarationNames.getCXXConstructorName(
8881                                           Context.getCanonicalType(ClassType));
8882  SourceLocation ClassLoc = ClassDecl->getLocation();
8883  DeclarationNameInfo NameInfo(Name, ClassLoc);
8884
8885  // C++0x [class.copy]p11:
8886  //   An implicitly-declared copy/move constructor is an inline public
8887  //   member of its class.
8888  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8889      Context, ClassDecl, ClassLoc, NameInfo,
8890      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8891      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8892      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8893        getLangOpts().CPlusPlus0x);
8894  MoveConstructor->setAccess(AS_public);
8895  MoveConstructor->setDefaulted();
8896  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8897
8898  // Add the parameter to the constructor.
8899  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8900                                               ClassLoc, ClassLoc,
8901                                               /*IdentifierInfo=*/0,
8902                                               ArgType, /*TInfo=*/0,
8903                                               SC_None,
8904                                               SC_None, 0);
8905  MoveConstructor->setParams(FromParam);
8906
8907  // C++0x [class.copy]p9:
8908  //   If the definition of a class X does not explicitly declare a move
8909  //   constructor, one will be implicitly declared as defaulted if and only if:
8910  //   [...]
8911  //   - the move constructor would not be implicitly defined as deleted.
8912  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8913    // Cache this result so that we don't try to generate this over and over
8914    // on every lookup, leaking memory and wasting time.
8915    ClassDecl->setFailedImplicitMoveConstructor();
8916    return 0;
8917  }
8918
8919  // Note that we have declared this constructor.
8920  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8921
8922  if (Scope *S = getScopeForContext(ClassDecl))
8923    PushOnScopeChains(MoveConstructor, S, false);
8924  ClassDecl->addDecl(MoveConstructor);
8925
8926  return MoveConstructor;
8927}
8928
8929void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8930                                   CXXConstructorDecl *MoveConstructor) {
8931  assert((MoveConstructor->isDefaulted() &&
8932          MoveConstructor->isMoveConstructor() &&
8933          !MoveConstructor->doesThisDeclarationHaveABody() &&
8934          !MoveConstructor->isDeleted()) &&
8935         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8936
8937  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8938  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8939
8940  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8941  DiagnosticErrorTrap Trap(Diags);
8942
8943  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8944      Trap.hasErrorOccurred()) {
8945    Diag(CurrentLocation, diag::note_member_synthesized_at)
8946      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8947    MoveConstructor->setInvalidDecl();
8948  }  else {
8949    Sema::CompoundScopeRAII CompoundScope(*this);
8950    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8951                                               MoveConstructor->getLocation(),
8952                                               MultiStmtArg(*this, 0, 0),
8953                                               /*isStmtExpr=*/false)
8954                                                              .takeAs<Stmt>());
8955    MoveConstructor->setImplicitlyDefined(true);
8956  }
8957
8958  MoveConstructor->setUsed();
8959
8960  if (ASTMutationListener *L = getASTMutationListener()) {
8961    L->CompletedImplicitDefinition(MoveConstructor);
8962  }
8963}
8964
8965bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8966  return FD->isDeleted() &&
8967         (FD->isDefaulted() || FD->isImplicit()) &&
8968         isa<CXXMethodDecl>(FD);
8969}
8970
8971/// \brief Mark the call operator of the given lambda closure type as "used".
8972static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8973  CXXMethodDecl *CallOperator
8974    = cast<CXXMethodDecl>(
8975        *Lambda->lookup(
8976          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8977  CallOperator->setReferenced();
8978  CallOperator->setUsed();
8979}
8980
8981void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8982       SourceLocation CurrentLocation,
8983       CXXConversionDecl *Conv)
8984{
8985  CXXRecordDecl *Lambda = Conv->getParent();
8986
8987  // Make sure that the lambda call operator is marked used.
8988  markLambdaCallOperatorUsed(*this, Lambda);
8989
8990  Conv->setUsed();
8991
8992  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8993  DiagnosticErrorTrap Trap(Diags);
8994
8995  // Return the address of the __invoke function.
8996  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8997  CXXMethodDecl *Invoke
8998    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8999  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9000                                       VK_LValue, Conv->getLocation()).take();
9001  assert(FunctionRef && "Can't refer to __invoke function?");
9002  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9003  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
9004                                           Conv->getLocation(),
9005                                           Conv->getLocation()));
9006
9007  // Fill in the __invoke function with a dummy implementation. IR generation
9008  // will fill in the actual details.
9009  Invoke->setUsed();
9010  Invoke->setReferenced();
9011  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
9012                                             Conv->getLocation()));
9013
9014  if (ASTMutationListener *L = getASTMutationListener()) {
9015    L->CompletedImplicitDefinition(Conv);
9016    L->CompletedImplicitDefinition(Invoke);
9017  }
9018}
9019
9020void Sema::DefineImplicitLambdaToBlockPointerConversion(
9021       SourceLocation CurrentLocation,
9022       CXXConversionDecl *Conv)
9023{
9024  Conv->setUsed();
9025
9026  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
9027  DiagnosticErrorTrap Trap(Diags);
9028
9029  // Copy-initialize the lambda object as needed to capture it.
9030  Expr *This = ActOnCXXThis(CurrentLocation).take();
9031  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
9032
9033  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
9034                                                        Conv->getLocation(),
9035                                                        Conv, DerefThis);
9036
9037  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
9038  // behavior.  Note that only the general conversion function does this
9039  // (since it's unusable otherwise); in the case where we inline the
9040  // block literal, it has block literal lifetime semantics.
9041  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
9042    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
9043                                          CK_CopyAndAutoreleaseBlockObject,
9044                                          BuildBlock.get(), 0, VK_RValue);
9045
9046  if (BuildBlock.isInvalid()) {
9047    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9048    Conv->setInvalidDecl();
9049    return;
9050  }
9051
9052  // Create the return statement that returns the block from the conversion
9053  // function.
9054  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
9055  if (Return.isInvalid()) {
9056    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
9057    Conv->setInvalidDecl();
9058    return;
9059  }
9060
9061  // Set the body of the conversion function.
9062  Stmt *ReturnS = Return.take();
9063  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
9064                                           Conv->getLocation(),
9065                                           Conv->getLocation()));
9066
9067  // We're done; notify the mutation listener, if any.
9068  if (ASTMutationListener *L = getASTMutationListener()) {
9069    L->CompletedImplicitDefinition(Conv);
9070  }
9071}
9072
9073/// \brief Determine whether the given list arguments contains exactly one
9074/// "real" (non-default) argument.
9075static bool hasOneRealArgument(MultiExprArg Args) {
9076  switch (Args.size()) {
9077  case 0:
9078    return false;
9079
9080  default:
9081    if (!Args.get()[1]->isDefaultArgument())
9082      return false;
9083
9084    // fall through
9085  case 1:
9086    return !Args.get()[0]->isDefaultArgument();
9087  }
9088
9089  return false;
9090}
9091
9092ExprResult
9093Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9094                            CXXConstructorDecl *Constructor,
9095                            MultiExprArg ExprArgs,
9096                            bool HadMultipleCandidates,
9097                            bool RequiresZeroInit,
9098                            unsigned ConstructKind,
9099                            SourceRange ParenRange) {
9100  bool Elidable = false;
9101
9102  // C++0x [class.copy]p34:
9103  //   When certain criteria are met, an implementation is allowed to
9104  //   omit the copy/move construction of a class object, even if the
9105  //   copy/move constructor and/or destructor for the object have
9106  //   side effects. [...]
9107  //     - when a temporary class object that has not been bound to a
9108  //       reference (12.2) would be copied/moved to a class object
9109  //       with the same cv-unqualified type, the copy/move operation
9110  //       can be omitted by constructing the temporary object
9111  //       directly into the target of the omitted copy/move
9112  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9113      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
9114    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9115    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9116  }
9117
9118  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9119                               Elidable, move(ExprArgs), HadMultipleCandidates,
9120                               RequiresZeroInit, ConstructKind, ParenRange);
9121}
9122
9123/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9124/// including handling of its default argument expressions.
9125ExprResult
9126Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9127                            CXXConstructorDecl *Constructor, bool Elidable,
9128                            MultiExprArg ExprArgs,
9129                            bool HadMultipleCandidates,
9130                            bool RequiresZeroInit,
9131                            unsigned ConstructKind,
9132                            SourceRange ParenRange) {
9133  unsigned NumExprs = ExprArgs.size();
9134  Expr **Exprs = (Expr **)ExprArgs.release();
9135
9136  for (specific_attr_iterator<NonNullAttr>
9137           i = Constructor->specific_attr_begin<NonNullAttr>(),
9138           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9139    const NonNullAttr *NonNull = *i;
9140    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9141  }
9142
9143  MarkFunctionReferenced(ConstructLoc, Constructor);
9144  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9145                                        Constructor, Elidable, Exprs, NumExprs,
9146                                        HadMultipleCandidates, /*FIXME*/false,
9147                                        RequiresZeroInit,
9148              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9149                                        ParenRange));
9150}
9151
9152bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9153                                        CXXConstructorDecl *Constructor,
9154                                        MultiExprArg Exprs,
9155                                        bool HadMultipleCandidates) {
9156  // FIXME: Provide the correct paren SourceRange when available.
9157  ExprResult TempResult =
9158    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9159                          move(Exprs), HadMultipleCandidates, false,
9160                          CXXConstructExpr::CK_Complete, SourceRange());
9161  if (TempResult.isInvalid())
9162    return true;
9163
9164  Expr *Temp = TempResult.takeAs<Expr>();
9165  CheckImplicitConversions(Temp, VD->getLocation());
9166  MarkFunctionReferenced(VD->getLocation(), Constructor);
9167  Temp = MaybeCreateExprWithCleanups(Temp);
9168  VD->setInit(Temp);
9169
9170  return false;
9171}
9172
9173void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9174  if (VD->isInvalidDecl()) return;
9175
9176  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9177  if (ClassDecl->isInvalidDecl()) return;
9178  if (ClassDecl->hasIrrelevantDestructor()) return;
9179  if (ClassDecl->isDependentContext()) return;
9180
9181  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9182  MarkFunctionReferenced(VD->getLocation(), Destructor);
9183  CheckDestructorAccess(VD->getLocation(), Destructor,
9184                        PDiag(diag::err_access_dtor_var)
9185                        << VD->getDeclName()
9186                        << VD->getType());
9187  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9188
9189  if (!VD->hasGlobalStorage()) return;
9190
9191  // Emit warning for non-trivial dtor in global scope (a real global,
9192  // class-static, function-static).
9193  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9194
9195  // TODO: this should be re-enabled for static locals by !CXAAtExit
9196  if (!VD->isStaticLocal())
9197    Diag(VD->getLocation(), diag::warn_global_destructor);
9198}
9199
9200/// \brief Given a constructor and the set of arguments provided for the
9201/// constructor, convert the arguments and add any required default arguments
9202/// to form a proper call to this constructor.
9203///
9204/// \returns true if an error occurred, false otherwise.
9205bool
9206Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9207                              MultiExprArg ArgsPtr,
9208                              SourceLocation Loc,
9209                              ASTOwningVector<Expr*> &ConvertedArgs,
9210                              bool AllowExplicit) {
9211  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9212  unsigned NumArgs = ArgsPtr.size();
9213  Expr **Args = (Expr **)ArgsPtr.get();
9214
9215  const FunctionProtoType *Proto
9216    = Constructor->getType()->getAs<FunctionProtoType>();
9217  assert(Proto && "Constructor without a prototype?");
9218  unsigned NumArgsInProto = Proto->getNumArgs();
9219
9220  // If too few arguments are available, we'll fill in the rest with defaults.
9221  if (NumArgs < NumArgsInProto)
9222    ConvertedArgs.reserve(NumArgsInProto);
9223  else
9224    ConvertedArgs.reserve(NumArgs);
9225
9226  VariadicCallType CallType =
9227    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9228  SmallVector<Expr *, 8> AllArgs;
9229  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9230                                        Proto, 0, Args, NumArgs, AllArgs,
9231                                        CallType, AllowExplicit);
9232  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9233
9234  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9235
9236  // FIXME: Missing call to CheckFunctionCall or equivalent
9237
9238  return Invalid;
9239}
9240
9241static inline bool
9242CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9243                                       const FunctionDecl *FnDecl) {
9244  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9245  if (isa<NamespaceDecl>(DC)) {
9246    return SemaRef.Diag(FnDecl->getLocation(),
9247                        diag::err_operator_new_delete_declared_in_namespace)
9248      << FnDecl->getDeclName();
9249  }
9250
9251  if (isa<TranslationUnitDecl>(DC) &&
9252      FnDecl->getStorageClass() == SC_Static) {
9253    return SemaRef.Diag(FnDecl->getLocation(),
9254                        diag::err_operator_new_delete_declared_static)
9255      << FnDecl->getDeclName();
9256  }
9257
9258  return false;
9259}
9260
9261static inline bool
9262CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9263                            CanQualType ExpectedResultType,
9264                            CanQualType ExpectedFirstParamType,
9265                            unsigned DependentParamTypeDiag,
9266                            unsigned InvalidParamTypeDiag) {
9267  QualType ResultType =
9268    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9269
9270  // Check that the result type is not dependent.
9271  if (ResultType->isDependentType())
9272    return SemaRef.Diag(FnDecl->getLocation(),
9273                        diag::err_operator_new_delete_dependent_result_type)
9274    << FnDecl->getDeclName() << ExpectedResultType;
9275
9276  // Check that the result type is what we expect.
9277  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9278    return SemaRef.Diag(FnDecl->getLocation(),
9279                        diag::err_operator_new_delete_invalid_result_type)
9280    << FnDecl->getDeclName() << ExpectedResultType;
9281
9282  // A function template must have at least 2 parameters.
9283  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9284    return SemaRef.Diag(FnDecl->getLocation(),
9285                      diag::err_operator_new_delete_template_too_few_parameters)
9286        << FnDecl->getDeclName();
9287
9288  // The function decl must have at least 1 parameter.
9289  if (FnDecl->getNumParams() == 0)
9290    return SemaRef.Diag(FnDecl->getLocation(),
9291                        diag::err_operator_new_delete_too_few_parameters)
9292      << FnDecl->getDeclName();
9293
9294  // Check the the first parameter type is not dependent.
9295  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9296  if (FirstParamType->isDependentType())
9297    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9298      << FnDecl->getDeclName() << ExpectedFirstParamType;
9299
9300  // Check that the first parameter type is what we expect.
9301  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9302      ExpectedFirstParamType)
9303    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9304    << FnDecl->getDeclName() << ExpectedFirstParamType;
9305
9306  return false;
9307}
9308
9309static bool
9310CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9311  // C++ [basic.stc.dynamic.allocation]p1:
9312  //   A program is ill-formed if an allocation function is declared in a
9313  //   namespace scope other than global scope or declared static in global
9314  //   scope.
9315  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9316    return true;
9317
9318  CanQualType SizeTy =
9319    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9320
9321  // C++ [basic.stc.dynamic.allocation]p1:
9322  //  The return type shall be void*. The first parameter shall have type
9323  //  std::size_t.
9324  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9325                                  SizeTy,
9326                                  diag::err_operator_new_dependent_param_type,
9327                                  diag::err_operator_new_param_type))
9328    return true;
9329
9330  // C++ [basic.stc.dynamic.allocation]p1:
9331  //  The first parameter shall not have an associated default argument.
9332  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9333    return SemaRef.Diag(FnDecl->getLocation(),
9334                        diag::err_operator_new_default_arg)
9335      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9336
9337  return false;
9338}
9339
9340static bool
9341CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9342  // C++ [basic.stc.dynamic.deallocation]p1:
9343  //   A program is ill-formed if deallocation functions are declared in a
9344  //   namespace scope other than global scope or declared static in global
9345  //   scope.
9346  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9347    return true;
9348
9349  // C++ [basic.stc.dynamic.deallocation]p2:
9350  //   Each deallocation function shall return void and its first parameter
9351  //   shall be void*.
9352  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9353                                  SemaRef.Context.VoidPtrTy,
9354                                 diag::err_operator_delete_dependent_param_type,
9355                                 diag::err_operator_delete_param_type))
9356    return true;
9357
9358  return false;
9359}
9360
9361/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9362/// of this overloaded operator is well-formed. If so, returns false;
9363/// otherwise, emits appropriate diagnostics and returns true.
9364bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9365  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9366         "Expected an overloaded operator declaration");
9367
9368  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9369
9370  // C++ [over.oper]p5:
9371  //   The allocation and deallocation functions, operator new,
9372  //   operator new[], operator delete and operator delete[], are
9373  //   described completely in 3.7.3. The attributes and restrictions
9374  //   found in the rest of this subclause do not apply to them unless
9375  //   explicitly stated in 3.7.3.
9376  if (Op == OO_Delete || Op == OO_Array_Delete)
9377    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9378
9379  if (Op == OO_New || Op == OO_Array_New)
9380    return CheckOperatorNewDeclaration(*this, FnDecl);
9381
9382  // C++ [over.oper]p6:
9383  //   An operator function shall either be a non-static member
9384  //   function or be a non-member function and have at least one
9385  //   parameter whose type is a class, a reference to a class, an
9386  //   enumeration, or a reference to an enumeration.
9387  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9388    if (MethodDecl->isStatic())
9389      return Diag(FnDecl->getLocation(),
9390                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9391  } else {
9392    bool ClassOrEnumParam = false;
9393    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9394                                   ParamEnd = FnDecl->param_end();
9395         Param != ParamEnd; ++Param) {
9396      QualType ParamType = (*Param)->getType().getNonReferenceType();
9397      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9398          ParamType->isEnumeralType()) {
9399        ClassOrEnumParam = true;
9400        break;
9401      }
9402    }
9403
9404    if (!ClassOrEnumParam)
9405      return Diag(FnDecl->getLocation(),
9406                  diag::err_operator_overload_needs_class_or_enum)
9407        << FnDecl->getDeclName();
9408  }
9409
9410  // C++ [over.oper]p8:
9411  //   An operator function cannot have default arguments (8.3.6),
9412  //   except where explicitly stated below.
9413  //
9414  // Only the function-call operator allows default arguments
9415  // (C++ [over.call]p1).
9416  if (Op != OO_Call) {
9417    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9418         Param != FnDecl->param_end(); ++Param) {
9419      if ((*Param)->hasDefaultArg())
9420        return Diag((*Param)->getLocation(),
9421                    diag::err_operator_overload_default_arg)
9422          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9423    }
9424  }
9425
9426  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9427    { false, false, false }
9428#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9429    , { Unary, Binary, MemberOnly }
9430#include "clang/Basic/OperatorKinds.def"
9431  };
9432
9433  bool CanBeUnaryOperator = OperatorUses[Op][0];
9434  bool CanBeBinaryOperator = OperatorUses[Op][1];
9435  bool MustBeMemberOperator = OperatorUses[Op][2];
9436
9437  // C++ [over.oper]p8:
9438  //   [...] Operator functions cannot have more or fewer parameters
9439  //   than the number required for the corresponding operator, as
9440  //   described in the rest of this subclause.
9441  unsigned NumParams = FnDecl->getNumParams()
9442                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9443  if (Op != OO_Call &&
9444      ((NumParams == 1 && !CanBeUnaryOperator) ||
9445       (NumParams == 2 && !CanBeBinaryOperator) ||
9446       (NumParams < 1) || (NumParams > 2))) {
9447    // We have the wrong number of parameters.
9448    unsigned ErrorKind;
9449    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9450      ErrorKind = 2;  // 2 -> unary or binary.
9451    } else if (CanBeUnaryOperator) {
9452      ErrorKind = 0;  // 0 -> unary
9453    } else {
9454      assert(CanBeBinaryOperator &&
9455             "All non-call overloaded operators are unary or binary!");
9456      ErrorKind = 1;  // 1 -> binary
9457    }
9458
9459    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9460      << FnDecl->getDeclName() << NumParams << ErrorKind;
9461  }
9462
9463  // Overloaded operators other than operator() cannot be variadic.
9464  if (Op != OO_Call &&
9465      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9466    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9467      << FnDecl->getDeclName();
9468  }
9469
9470  // Some operators must be non-static member functions.
9471  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9472    return Diag(FnDecl->getLocation(),
9473                diag::err_operator_overload_must_be_member)
9474      << FnDecl->getDeclName();
9475  }
9476
9477  // C++ [over.inc]p1:
9478  //   The user-defined function called operator++ implements the
9479  //   prefix and postfix ++ operator. If this function is a member
9480  //   function with no parameters, or a non-member function with one
9481  //   parameter of class or enumeration type, it defines the prefix
9482  //   increment operator ++ for objects of that type. If the function
9483  //   is a member function with one parameter (which shall be of type
9484  //   int) or a non-member function with two parameters (the second
9485  //   of which shall be of type int), it defines the postfix
9486  //   increment operator ++ for objects of that type.
9487  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9488    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9489    bool ParamIsInt = false;
9490    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9491      ParamIsInt = BT->getKind() == BuiltinType::Int;
9492
9493    if (!ParamIsInt)
9494      return Diag(LastParam->getLocation(),
9495                  diag::err_operator_overload_post_incdec_must_be_int)
9496        << LastParam->getType() << (Op == OO_MinusMinus);
9497  }
9498
9499  return false;
9500}
9501
9502/// CheckLiteralOperatorDeclaration - Check whether the declaration
9503/// of this literal operator function is well-formed. If so, returns
9504/// false; otherwise, emits appropriate diagnostics and returns true.
9505bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9506  if (isa<CXXMethodDecl>(FnDecl)) {
9507    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9508      << FnDecl->getDeclName();
9509    return true;
9510  }
9511
9512  if (FnDecl->isExternC()) {
9513    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9514    return true;
9515  }
9516
9517  bool Valid = false;
9518
9519  // This might be the definition of a literal operator template.
9520  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9521  // This might be a specialization of a literal operator template.
9522  if (!TpDecl)
9523    TpDecl = FnDecl->getPrimaryTemplate();
9524
9525  // template <char...> type operator "" name() is the only valid template
9526  // signature, and the only valid signature with no parameters.
9527  if (TpDecl) {
9528    if (FnDecl->param_size() == 0) {
9529      // Must have only one template parameter
9530      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9531      if (Params->size() == 1) {
9532        NonTypeTemplateParmDecl *PmDecl =
9533          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9534
9535        // The template parameter must be a char parameter pack.
9536        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9537            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9538          Valid = true;
9539      }
9540    }
9541  } else if (FnDecl->param_size()) {
9542    // Check the first parameter
9543    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9544
9545    QualType T = (*Param)->getType().getUnqualifiedType();
9546
9547    // unsigned long long int, long double, and any character type are allowed
9548    // as the only parameters.
9549    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9550        Context.hasSameType(T, Context.LongDoubleTy) ||
9551        Context.hasSameType(T, Context.CharTy) ||
9552        Context.hasSameType(T, Context.WCharTy) ||
9553        Context.hasSameType(T, Context.Char16Ty) ||
9554        Context.hasSameType(T, Context.Char32Ty)) {
9555      if (++Param == FnDecl->param_end())
9556        Valid = true;
9557      goto FinishedParams;
9558    }
9559
9560    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9561    const PointerType *PT = T->getAs<PointerType>();
9562    if (!PT)
9563      goto FinishedParams;
9564    T = PT->getPointeeType();
9565    if (!T.isConstQualified() || T.isVolatileQualified())
9566      goto FinishedParams;
9567    T = T.getUnqualifiedType();
9568
9569    // Move on to the second parameter;
9570    ++Param;
9571
9572    // If there is no second parameter, the first must be a const char *
9573    if (Param == FnDecl->param_end()) {
9574      if (Context.hasSameType(T, Context.CharTy))
9575        Valid = true;
9576      goto FinishedParams;
9577    }
9578
9579    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9580    // are allowed as the first parameter to a two-parameter function
9581    if (!(Context.hasSameType(T, Context.CharTy) ||
9582          Context.hasSameType(T, Context.WCharTy) ||
9583          Context.hasSameType(T, Context.Char16Ty) ||
9584          Context.hasSameType(T, Context.Char32Ty)))
9585      goto FinishedParams;
9586
9587    // The second and final parameter must be an std::size_t
9588    T = (*Param)->getType().getUnqualifiedType();
9589    if (Context.hasSameType(T, Context.getSizeType()) &&
9590        ++Param == FnDecl->param_end())
9591      Valid = true;
9592  }
9593
9594  // FIXME: This diagnostic is absolutely terrible.
9595FinishedParams:
9596  if (!Valid) {
9597    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9598      << FnDecl->getDeclName();
9599    return true;
9600  }
9601
9602  // A parameter-declaration-clause containing a default argument is not
9603  // equivalent to any of the permitted forms.
9604  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9605                                    ParamEnd = FnDecl->param_end();
9606       Param != ParamEnd; ++Param) {
9607    if ((*Param)->hasDefaultArg()) {
9608      Diag((*Param)->getDefaultArgRange().getBegin(),
9609           diag::err_literal_operator_default_argument)
9610        << (*Param)->getDefaultArgRange();
9611      break;
9612    }
9613  }
9614
9615  StringRef LiteralName
9616    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9617  if (LiteralName[0] != '_') {
9618    // C++11 [usrlit.suffix]p1:
9619    //   Literal suffix identifiers that do not start with an underscore
9620    //   are reserved for future standardization.
9621    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9622  }
9623
9624  return false;
9625}
9626
9627/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9628/// linkage specification, including the language and (if present)
9629/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9630/// the location of the language string literal, which is provided
9631/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9632/// the '{' brace. Otherwise, this linkage specification does not
9633/// have any braces.
9634Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9635                                           SourceLocation LangLoc,
9636                                           StringRef Lang,
9637                                           SourceLocation LBraceLoc) {
9638  LinkageSpecDecl::LanguageIDs Language;
9639  if (Lang == "\"C\"")
9640    Language = LinkageSpecDecl::lang_c;
9641  else if (Lang == "\"C++\"")
9642    Language = LinkageSpecDecl::lang_cxx;
9643  else {
9644    Diag(LangLoc, diag::err_bad_language);
9645    return 0;
9646  }
9647
9648  // FIXME: Add all the various semantics of linkage specifications
9649
9650  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9651                                               ExternLoc, LangLoc, Language);
9652  CurContext->addDecl(D);
9653  PushDeclContext(S, D);
9654  return D;
9655}
9656
9657/// ActOnFinishLinkageSpecification - Complete the definition of
9658/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9659/// valid, it's the position of the closing '}' brace in a linkage
9660/// specification that uses braces.
9661Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9662                                            Decl *LinkageSpec,
9663                                            SourceLocation RBraceLoc) {
9664  if (LinkageSpec) {
9665    if (RBraceLoc.isValid()) {
9666      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9667      LSDecl->setRBraceLoc(RBraceLoc);
9668    }
9669    PopDeclContext();
9670  }
9671  return LinkageSpec;
9672}
9673
9674/// \brief Perform semantic analysis for the variable declaration that
9675/// occurs within a C++ catch clause, returning the newly-created
9676/// variable.
9677VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9678                                         TypeSourceInfo *TInfo,
9679                                         SourceLocation StartLoc,
9680                                         SourceLocation Loc,
9681                                         IdentifierInfo *Name) {
9682  bool Invalid = false;
9683  QualType ExDeclType = TInfo->getType();
9684
9685  // Arrays and functions decay.
9686  if (ExDeclType->isArrayType())
9687    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9688  else if (ExDeclType->isFunctionType())
9689    ExDeclType = Context.getPointerType(ExDeclType);
9690
9691  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9692  // The exception-declaration shall not denote a pointer or reference to an
9693  // incomplete type, other than [cv] void*.
9694  // N2844 forbids rvalue references.
9695  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9696    Diag(Loc, diag::err_catch_rvalue_ref);
9697    Invalid = true;
9698  }
9699
9700  QualType BaseType = ExDeclType;
9701  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9702  unsigned DK = diag::err_catch_incomplete;
9703  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9704    BaseType = Ptr->getPointeeType();
9705    Mode = 1;
9706    DK = diag::err_catch_incomplete_ptr;
9707  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9708    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9709    BaseType = Ref->getPointeeType();
9710    Mode = 2;
9711    DK = diag::err_catch_incomplete_ref;
9712  }
9713  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9714      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9715    Invalid = true;
9716
9717  if (!Invalid && !ExDeclType->isDependentType() &&
9718      RequireNonAbstractType(Loc, ExDeclType,
9719                             diag::err_abstract_type_in_decl,
9720                             AbstractVariableType))
9721    Invalid = true;
9722
9723  // Only the non-fragile NeXT runtime currently supports C++ catches
9724  // of ObjC types, and no runtime supports catching ObjC types by value.
9725  if (!Invalid && getLangOpts().ObjC1) {
9726    QualType T = ExDeclType;
9727    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9728      T = RT->getPointeeType();
9729
9730    if (T->isObjCObjectType()) {
9731      Diag(Loc, diag::err_objc_object_catch);
9732      Invalid = true;
9733    } else if (T->isObjCObjectPointerType()) {
9734      if (!getLangOpts().ObjCNonFragileABI)
9735        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9736    }
9737  }
9738
9739  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9740                                    ExDeclType, TInfo, SC_None, SC_None);
9741  ExDecl->setExceptionVariable(true);
9742
9743  // In ARC, infer 'retaining' for variables of retainable type.
9744  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9745    Invalid = true;
9746
9747  if (!Invalid && !ExDeclType->isDependentType()) {
9748    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9749      // C++ [except.handle]p16:
9750      //   The object declared in an exception-declaration or, if the
9751      //   exception-declaration does not specify a name, a temporary (12.2) is
9752      //   copy-initialized (8.5) from the exception object. [...]
9753      //   The object is destroyed when the handler exits, after the destruction
9754      //   of any automatic objects initialized within the handler.
9755      //
9756      // We just pretend to initialize the object with itself, then make sure
9757      // it can be destroyed later.
9758      QualType initType = ExDeclType;
9759
9760      InitializedEntity entity =
9761        InitializedEntity::InitializeVariable(ExDecl);
9762      InitializationKind initKind =
9763        InitializationKind::CreateCopy(Loc, SourceLocation());
9764
9765      Expr *opaqueValue =
9766        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9767      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9768      ExprResult result = sequence.Perform(*this, entity, initKind,
9769                                           MultiExprArg(&opaqueValue, 1));
9770      if (result.isInvalid())
9771        Invalid = true;
9772      else {
9773        // If the constructor used was non-trivial, set this as the
9774        // "initializer".
9775        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9776        if (!construct->getConstructor()->isTrivial()) {
9777          Expr *init = MaybeCreateExprWithCleanups(construct);
9778          ExDecl->setInit(init);
9779        }
9780
9781        // And make sure it's destructable.
9782        FinalizeVarWithDestructor(ExDecl, recordType);
9783      }
9784    }
9785  }
9786
9787  if (Invalid)
9788    ExDecl->setInvalidDecl();
9789
9790  return ExDecl;
9791}
9792
9793/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9794/// handler.
9795Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9796  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9797  bool Invalid = D.isInvalidType();
9798
9799  // Check for unexpanded parameter packs.
9800  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9801                                               UPPC_ExceptionType)) {
9802    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9803                                             D.getIdentifierLoc());
9804    Invalid = true;
9805  }
9806
9807  IdentifierInfo *II = D.getIdentifier();
9808  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9809                                             LookupOrdinaryName,
9810                                             ForRedeclaration)) {
9811    // The scope should be freshly made just for us. There is just no way
9812    // it contains any previous declaration.
9813    assert(!S->isDeclScope(PrevDecl));
9814    if (PrevDecl->isTemplateParameter()) {
9815      // Maybe we will complain about the shadowed template parameter.
9816      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9817      PrevDecl = 0;
9818    }
9819  }
9820
9821  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9822    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9823      << D.getCXXScopeSpec().getRange();
9824    Invalid = true;
9825  }
9826
9827  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9828                                              D.getLocStart(),
9829                                              D.getIdentifierLoc(),
9830                                              D.getIdentifier());
9831  if (Invalid)
9832    ExDecl->setInvalidDecl();
9833
9834  // Add the exception declaration into this scope.
9835  if (II)
9836    PushOnScopeChains(ExDecl, S);
9837  else
9838    CurContext->addDecl(ExDecl);
9839
9840  ProcessDeclAttributes(S, ExDecl, D);
9841  return ExDecl;
9842}
9843
9844Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9845                                         Expr *AssertExpr,
9846                                         Expr *AssertMessageExpr_,
9847                                         SourceLocation RParenLoc) {
9848  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9849
9850  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9851    // In a static_assert-declaration, the constant-expression shall be a
9852    // constant expression that can be contextually converted to bool.
9853    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9854    if (Converted.isInvalid())
9855      return 0;
9856
9857    llvm::APSInt Cond;
9858    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9859          PDiag(diag::err_static_assert_expression_is_not_constant),
9860          /*AllowFold=*/false).isInvalid())
9861      return 0;
9862
9863    if (!Cond) {
9864      llvm::SmallString<256> MsgBuffer;
9865      llvm::raw_svector_ostream Msg(MsgBuffer);
9866      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9867      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9868        << Msg.str() << AssertExpr->getSourceRange();
9869    }
9870  }
9871
9872  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9873    return 0;
9874
9875  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9876                                        AssertExpr, AssertMessage, RParenLoc);
9877
9878  CurContext->addDecl(Decl);
9879  return Decl;
9880}
9881
9882/// \brief Perform semantic analysis of the given friend type declaration.
9883///
9884/// \returns A friend declaration that.
9885FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9886                                      SourceLocation FriendLoc,
9887                                      TypeSourceInfo *TSInfo) {
9888  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9889
9890  QualType T = TSInfo->getType();
9891  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9892
9893  // C++03 [class.friend]p2:
9894  //   An elaborated-type-specifier shall be used in a friend declaration
9895  //   for a class.*
9896  //
9897  //   * The class-key of the elaborated-type-specifier is required.
9898  if (!ActiveTemplateInstantiations.empty()) {
9899    // Do not complain about the form of friend template types during
9900    // template instantiation; we will already have complained when the
9901    // template was declared.
9902  } else if (!T->isElaboratedTypeSpecifier()) {
9903    // If we evaluated the type to a record type, suggest putting
9904    // a tag in front.
9905    if (const RecordType *RT = T->getAs<RecordType>()) {
9906      RecordDecl *RD = RT->getDecl();
9907
9908      std::string InsertionText = std::string(" ") + RD->getKindName();
9909
9910      Diag(TypeRange.getBegin(),
9911           getLangOpts().CPlusPlus0x ?
9912             diag::warn_cxx98_compat_unelaborated_friend_type :
9913             diag::ext_unelaborated_friend_type)
9914        << (unsigned) RD->getTagKind()
9915        << T
9916        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9917                                      InsertionText);
9918    } else {
9919      Diag(FriendLoc,
9920           getLangOpts().CPlusPlus0x ?
9921             diag::warn_cxx98_compat_nonclass_type_friend :
9922             diag::ext_nonclass_type_friend)
9923        << T
9924        << SourceRange(FriendLoc, TypeRange.getEnd());
9925    }
9926  } else if (T->getAs<EnumType>()) {
9927    Diag(FriendLoc,
9928         getLangOpts().CPlusPlus0x ?
9929           diag::warn_cxx98_compat_enum_friend :
9930           diag::ext_enum_friend)
9931      << T
9932      << SourceRange(FriendLoc, TypeRange.getEnd());
9933  }
9934
9935  // C++0x [class.friend]p3:
9936  //   If the type specifier in a friend declaration designates a (possibly
9937  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9938  //   the friend declaration is ignored.
9939
9940  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9941  // in [class.friend]p3 that we do not implement.
9942
9943  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9944}
9945
9946/// Handle a friend tag declaration where the scope specifier was
9947/// templated.
9948Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9949                                    unsigned TagSpec, SourceLocation TagLoc,
9950                                    CXXScopeSpec &SS,
9951                                    IdentifierInfo *Name, SourceLocation NameLoc,
9952                                    AttributeList *Attr,
9953                                    MultiTemplateParamsArg TempParamLists) {
9954  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9955
9956  bool isExplicitSpecialization = false;
9957  bool Invalid = false;
9958
9959  if (TemplateParameterList *TemplateParams
9960        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9961                                                  TempParamLists.get(),
9962                                                  TempParamLists.size(),
9963                                                  /*friend*/ true,
9964                                                  isExplicitSpecialization,
9965                                                  Invalid)) {
9966    if (TemplateParams->size() > 0) {
9967      // This is a declaration of a class template.
9968      if (Invalid)
9969        return 0;
9970
9971      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9972                                SS, Name, NameLoc, Attr,
9973                                TemplateParams, AS_public,
9974                                /*ModulePrivateLoc=*/SourceLocation(),
9975                                TempParamLists.size() - 1,
9976                   (TemplateParameterList**) TempParamLists.release()).take();
9977    } else {
9978      // The "template<>" header is extraneous.
9979      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9980        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9981      isExplicitSpecialization = true;
9982    }
9983  }
9984
9985  if (Invalid) return 0;
9986
9987  bool isAllExplicitSpecializations = true;
9988  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9989    if (TempParamLists.get()[I]->size()) {
9990      isAllExplicitSpecializations = false;
9991      break;
9992    }
9993  }
9994
9995  // FIXME: don't ignore attributes.
9996
9997  // If it's explicit specializations all the way down, just forget
9998  // about the template header and build an appropriate non-templated
9999  // friend.  TODO: for source fidelity, remember the headers.
10000  if (isAllExplicitSpecializations) {
10001    if (SS.isEmpty()) {
10002      bool Owned = false;
10003      bool IsDependent = false;
10004      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10005                      Attr, AS_public,
10006                      /*ModulePrivateLoc=*/SourceLocation(),
10007                      MultiTemplateParamsArg(), Owned, IsDependent,
10008                      /*ScopedEnumKWLoc=*/SourceLocation(),
10009                      /*ScopedEnumUsesClassTag=*/false,
10010                      /*UnderlyingType=*/TypeResult());
10011    }
10012
10013    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10014    ElaboratedTypeKeyword Keyword
10015      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10016    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10017                                   *Name, NameLoc);
10018    if (T.isNull())
10019      return 0;
10020
10021    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10022    if (isa<DependentNameType>(T)) {
10023      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10024      TL.setElaboratedKeywordLoc(TagLoc);
10025      TL.setQualifierLoc(QualifierLoc);
10026      TL.setNameLoc(NameLoc);
10027    } else {
10028      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10029      TL.setElaboratedKeywordLoc(TagLoc);
10030      TL.setQualifierLoc(QualifierLoc);
10031      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10032    }
10033
10034    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10035                                            TSI, FriendLoc);
10036    Friend->setAccess(AS_public);
10037    CurContext->addDecl(Friend);
10038    return Friend;
10039  }
10040
10041  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10042
10043
10044
10045  // Handle the case of a templated-scope friend class.  e.g.
10046  //   template <class T> class A<T>::B;
10047  // FIXME: we don't support these right now.
10048  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10049  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10050  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10051  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10052  TL.setElaboratedKeywordLoc(TagLoc);
10053  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10054  TL.setNameLoc(NameLoc);
10055
10056  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10057                                          TSI, FriendLoc);
10058  Friend->setAccess(AS_public);
10059  Friend->setUnsupportedFriend(true);
10060  CurContext->addDecl(Friend);
10061  return Friend;
10062}
10063
10064
10065/// Handle a friend type declaration.  This works in tandem with
10066/// ActOnTag.
10067///
10068/// Notes on friend class templates:
10069///
10070/// We generally treat friend class declarations as if they were
10071/// declaring a class.  So, for example, the elaborated type specifier
10072/// in a friend declaration is required to obey the restrictions of a
10073/// class-head (i.e. no typedefs in the scope chain), template
10074/// parameters are required to match up with simple template-ids, &c.
10075/// However, unlike when declaring a template specialization, it's
10076/// okay to refer to a template specialization without an empty
10077/// template parameter declaration, e.g.
10078///   friend class A<T>::B<unsigned>;
10079/// We permit this as a special case; if there are any template
10080/// parameters present at all, require proper matching, i.e.
10081///   template <> template <class T> friend class A<int>::B;
10082Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10083                                MultiTemplateParamsArg TempParams) {
10084  SourceLocation Loc = DS.getLocStart();
10085
10086  assert(DS.isFriendSpecified());
10087  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10088
10089  // Try to convert the decl specifier to a type.  This works for
10090  // friend templates because ActOnTag never produces a ClassTemplateDecl
10091  // for a TUK_Friend.
10092  Declarator TheDeclarator(DS, Declarator::MemberContext);
10093  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10094  QualType T = TSI->getType();
10095  if (TheDeclarator.isInvalidType())
10096    return 0;
10097
10098  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10099    return 0;
10100
10101  // This is definitely an error in C++98.  It's probably meant to
10102  // be forbidden in C++0x, too, but the specification is just
10103  // poorly written.
10104  //
10105  // The problem is with declarations like the following:
10106  //   template <T> friend A<T>::foo;
10107  // where deciding whether a class C is a friend or not now hinges
10108  // on whether there exists an instantiation of A that causes
10109  // 'foo' to equal C.  There are restrictions on class-heads
10110  // (which we declare (by fiat) elaborated friend declarations to
10111  // be) that makes this tractable.
10112  //
10113  // FIXME: handle "template <> friend class A<T>;", which
10114  // is possibly well-formed?  Who even knows?
10115  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10116    Diag(Loc, diag::err_tagless_friend_type_template)
10117      << DS.getSourceRange();
10118    return 0;
10119  }
10120
10121  // C++98 [class.friend]p1: A friend of a class is a function
10122  //   or class that is not a member of the class . . .
10123  // This is fixed in DR77, which just barely didn't make the C++03
10124  // deadline.  It's also a very silly restriction that seriously
10125  // affects inner classes and which nobody else seems to implement;
10126  // thus we never diagnose it, not even in -pedantic.
10127  //
10128  // But note that we could warn about it: it's always useless to
10129  // friend one of your own members (it's not, however, worthless to
10130  // friend a member of an arbitrary specialization of your template).
10131
10132  Decl *D;
10133  if (unsigned NumTempParamLists = TempParams.size())
10134    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10135                                   NumTempParamLists,
10136                                   TempParams.release(),
10137                                   TSI,
10138                                   DS.getFriendSpecLoc());
10139  else
10140    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10141
10142  if (!D)
10143    return 0;
10144
10145  D->setAccess(AS_public);
10146  CurContext->addDecl(D);
10147
10148  return D;
10149}
10150
10151Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10152                                    MultiTemplateParamsArg TemplateParams) {
10153  const DeclSpec &DS = D.getDeclSpec();
10154
10155  assert(DS.isFriendSpecified());
10156  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10157
10158  SourceLocation Loc = D.getIdentifierLoc();
10159  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10160
10161  // C++ [class.friend]p1
10162  //   A friend of a class is a function or class....
10163  // Note that this sees through typedefs, which is intended.
10164  // It *doesn't* see through dependent types, which is correct
10165  // according to [temp.arg.type]p3:
10166  //   If a declaration acquires a function type through a
10167  //   type dependent on a template-parameter and this causes
10168  //   a declaration that does not use the syntactic form of a
10169  //   function declarator to have a function type, the program
10170  //   is ill-formed.
10171  if (!TInfo->getType()->isFunctionType()) {
10172    Diag(Loc, diag::err_unexpected_friend);
10173
10174    // It might be worthwhile to try to recover by creating an
10175    // appropriate declaration.
10176    return 0;
10177  }
10178
10179  // C++ [namespace.memdef]p3
10180  //  - If a friend declaration in a non-local class first declares a
10181  //    class or function, the friend class or function is a member
10182  //    of the innermost enclosing namespace.
10183  //  - The name of the friend is not found by simple name lookup
10184  //    until a matching declaration is provided in that namespace
10185  //    scope (either before or after the class declaration granting
10186  //    friendship).
10187  //  - If a friend function is called, its name may be found by the
10188  //    name lookup that considers functions from namespaces and
10189  //    classes associated with the types of the function arguments.
10190  //  - When looking for a prior declaration of a class or a function
10191  //    declared as a friend, scopes outside the innermost enclosing
10192  //    namespace scope are not considered.
10193
10194  CXXScopeSpec &SS = D.getCXXScopeSpec();
10195  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10196  DeclarationName Name = NameInfo.getName();
10197  assert(Name);
10198
10199  // Check for unexpanded parameter packs.
10200  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10201      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10202      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10203    return 0;
10204
10205  // The context we found the declaration in, or in which we should
10206  // create the declaration.
10207  DeclContext *DC;
10208  Scope *DCScope = S;
10209  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10210                        ForRedeclaration);
10211
10212  // FIXME: there are different rules in local classes
10213
10214  // There are four cases here.
10215  //   - There's no scope specifier, in which case we just go to the
10216  //     appropriate scope and look for a function or function template
10217  //     there as appropriate.
10218  // Recover from invalid scope qualifiers as if they just weren't there.
10219  if (SS.isInvalid() || !SS.isSet()) {
10220    // C++0x [namespace.memdef]p3:
10221    //   If the name in a friend declaration is neither qualified nor
10222    //   a template-id and the declaration is a function or an
10223    //   elaborated-type-specifier, the lookup to determine whether
10224    //   the entity has been previously declared shall not consider
10225    //   any scopes outside the innermost enclosing namespace.
10226    // C++0x [class.friend]p11:
10227    //   If a friend declaration appears in a local class and the name
10228    //   specified is an unqualified name, a prior declaration is
10229    //   looked up without considering scopes that are outside the
10230    //   innermost enclosing non-class scope. For a friend function
10231    //   declaration, if there is no prior declaration, the program is
10232    //   ill-formed.
10233    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10234    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10235
10236    // Find the appropriate context according to the above.
10237    DC = CurContext;
10238    while (true) {
10239      // Skip class contexts.  If someone can cite chapter and verse
10240      // for this behavior, that would be nice --- it's what GCC and
10241      // EDG do, and it seems like a reasonable intent, but the spec
10242      // really only says that checks for unqualified existing
10243      // declarations should stop at the nearest enclosing namespace,
10244      // not that they should only consider the nearest enclosing
10245      // namespace.
10246      while (DC->isRecord() || DC->isTransparentContext())
10247        DC = DC->getParent();
10248
10249      LookupQualifiedName(Previous, DC);
10250
10251      // TODO: decide what we think about using declarations.
10252      if (isLocal || !Previous.empty())
10253        break;
10254
10255      if (isTemplateId) {
10256        if (isa<TranslationUnitDecl>(DC)) break;
10257      } else {
10258        if (DC->isFileContext()) break;
10259      }
10260      DC = DC->getParent();
10261    }
10262
10263    // C++ [class.friend]p1: A friend of a class is a function or
10264    //   class that is not a member of the class . . .
10265    // C++11 changes this for both friend types and functions.
10266    // Most C++ 98 compilers do seem to give an error here, so
10267    // we do, too.
10268    if (!Previous.empty() && DC->Equals(CurContext))
10269      Diag(DS.getFriendSpecLoc(),
10270           getLangOpts().CPlusPlus0x ?
10271             diag::warn_cxx98_compat_friend_is_member :
10272             diag::err_friend_is_member);
10273
10274    DCScope = getScopeForDeclContext(S, DC);
10275
10276    // C++ [class.friend]p6:
10277    //   A function can be defined in a friend declaration of a class if and
10278    //   only if the class is a non-local class (9.8), the function name is
10279    //   unqualified, and the function has namespace scope.
10280    if (isLocal && D.isFunctionDefinition()) {
10281      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10282    }
10283
10284  //   - There's a non-dependent scope specifier, in which case we
10285  //     compute it and do a previous lookup there for a function
10286  //     or function template.
10287  } else if (!SS.getScopeRep()->isDependent()) {
10288    DC = computeDeclContext(SS);
10289    if (!DC) return 0;
10290
10291    if (RequireCompleteDeclContext(SS, DC)) return 0;
10292
10293    LookupQualifiedName(Previous, DC);
10294
10295    // Ignore things found implicitly in the wrong scope.
10296    // TODO: better diagnostics for this case.  Suggesting the right
10297    // qualified scope would be nice...
10298    LookupResult::Filter F = Previous.makeFilter();
10299    while (F.hasNext()) {
10300      NamedDecl *D = F.next();
10301      if (!DC->InEnclosingNamespaceSetOf(
10302              D->getDeclContext()->getRedeclContext()))
10303        F.erase();
10304    }
10305    F.done();
10306
10307    if (Previous.empty()) {
10308      D.setInvalidType();
10309      Diag(Loc, diag::err_qualified_friend_not_found)
10310          << Name << TInfo->getType();
10311      return 0;
10312    }
10313
10314    // C++ [class.friend]p1: A friend of a class is a function or
10315    //   class that is not a member of the class . . .
10316    if (DC->Equals(CurContext))
10317      Diag(DS.getFriendSpecLoc(),
10318           getLangOpts().CPlusPlus0x ?
10319             diag::warn_cxx98_compat_friend_is_member :
10320             diag::err_friend_is_member);
10321
10322    if (D.isFunctionDefinition()) {
10323      // C++ [class.friend]p6:
10324      //   A function can be defined in a friend declaration of a class if and
10325      //   only if the class is a non-local class (9.8), the function name is
10326      //   unqualified, and the function has namespace scope.
10327      SemaDiagnosticBuilder DB
10328        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10329
10330      DB << SS.getScopeRep();
10331      if (DC->isFileContext())
10332        DB << FixItHint::CreateRemoval(SS.getRange());
10333      SS.clear();
10334    }
10335
10336  //   - There's a scope specifier that does not match any template
10337  //     parameter lists, in which case we use some arbitrary context,
10338  //     create a method or method template, and wait for instantiation.
10339  //   - There's a scope specifier that does match some template
10340  //     parameter lists, which we don't handle right now.
10341  } else {
10342    if (D.isFunctionDefinition()) {
10343      // C++ [class.friend]p6:
10344      //   A function can be defined in a friend declaration of a class if and
10345      //   only if the class is a non-local class (9.8), the function name is
10346      //   unqualified, and the function has namespace scope.
10347      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10348        << SS.getScopeRep();
10349    }
10350
10351    DC = CurContext;
10352    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10353  }
10354
10355  if (!DC->isRecord()) {
10356    // This implies that it has to be an operator or function.
10357    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10358        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10359        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10360      Diag(Loc, diag::err_introducing_special_friend) <<
10361        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10362         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10363      return 0;
10364    }
10365  }
10366
10367  // FIXME: This is an egregious hack to cope with cases where the scope stack
10368  // does not contain the declaration context, i.e., in an out-of-line
10369  // definition of a class.
10370  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10371  if (!DCScope) {
10372    FakeDCScope.setEntity(DC);
10373    DCScope = &FakeDCScope;
10374  }
10375
10376  bool AddToScope = true;
10377  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10378                                          move(TemplateParams), AddToScope);
10379  if (!ND) return 0;
10380
10381  assert(ND->getDeclContext() == DC);
10382  assert(ND->getLexicalDeclContext() == CurContext);
10383
10384  // Add the function declaration to the appropriate lookup tables,
10385  // adjusting the redeclarations list as necessary.  We don't
10386  // want to do this yet if the friending class is dependent.
10387  //
10388  // Also update the scope-based lookup if the target context's
10389  // lookup context is in lexical scope.
10390  if (!CurContext->isDependentContext()) {
10391    DC = DC->getRedeclContext();
10392    DC->makeDeclVisibleInContext(ND);
10393    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10394      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10395  }
10396
10397  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10398                                       D.getIdentifierLoc(), ND,
10399                                       DS.getFriendSpecLoc());
10400  FrD->setAccess(AS_public);
10401  CurContext->addDecl(FrD);
10402
10403  if (ND->isInvalidDecl())
10404    FrD->setInvalidDecl();
10405  else {
10406    FunctionDecl *FD;
10407    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10408      FD = FTD->getTemplatedDecl();
10409    else
10410      FD = cast<FunctionDecl>(ND);
10411
10412    // Mark templated-scope function declarations as unsupported.
10413    if (FD->getNumTemplateParameterLists())
10414      FrD->setUnsupportedFriend(true);
10415  }
10416
10417  return ND;
10418}
10419
10420void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10421  AdjustDeclIfTemplate(Dcl);
10422
10423  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10424  if (!Fn) {
10425    Diag(DelLoc, diag::err_deleted_non_function);
10426    return;
10427  }
10428  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10429    Diag(DelLoc, diag::err_deleted_decl_not_first);
10430    Diag(Prev->getLocation(), diag::note_previous_declaration);
10431    // If the declaration wasn't the first, we delete the function anyway for
10432    // recovery.
10433  }
10434  Fn->setDeletedAsWritten();
10435
10436  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10437  if (!MD)
10438    return;
10439
10440  // A deleted special member function is trivial if the corresponding
10441  // implicitly-declared function would have been.
10442  switch (getSpecialMember(MD)) {
10443  case CXXInvalid:
10444    break;
10445  case CXXDefaultConstructor:
10446    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10447    break;
10448  case CXXCopyConstructor:
10449    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10450    break;
10451  case CXXMoveConstructor:
10452    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10453    break;
10454  case CXXCopyAssignment:
10455    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10456    break;
10457  case CXXMoveAssignment:
10458    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10459    break;
10460  case CXXDestructor:
10461    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10462    break;
10463  }
10464}
10465
10466void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10467  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10468
10469  if (MD) {
10470    if (MD->getParent()->isDependentType()) {
10471      MD->setDefaulted();
10472      MD->setExplicitlyDefaulted();
10473      return;
10474    }
10475
10476    CXXSpecialMember Member = getSpecialMember(MD);
10477    if (Member == CXXInvalid) {
10478      Diag(DefaultLoc, diag::err_default_special_members);
10479      return;
10480    }
10481
10482    MD->setDefaulted();
10483    MD->setExplicitlyDefaulted();
10484
10485    // If this definition appears within the record, do the checking when
10486    // the record is complete.
10487    const FunctionDecl *Primary = MD;
10488    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10489      // Find the uninstantiated declaration that actually had the '= default'
10490      // on it.
10491      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10492
10493    if (Primary == Primary->getCanonicalDecl())
10494      return;
10495
10496    switch (Member) {
10497    case CXXDefaultConstructor: {
10498      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10499      CheckExplicitlyDefaultedDefaultConstructor(CD);
10500      if (!CD->isInvalidDecl())
10501        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10502      break;
10503    }
10504
10505    case CXXCopyConstructor: {
10506      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10507      CheckExplicitlyDefaultedCopyConstructor(CD);
10508      if (!CD->isInvalidDecl())
10509        DefineImplicitCopyConstructor(DefaultLoc, CD);
10510      break;
10511    }
10512
10513    case CXXCopyAssignment: {
10514      CheckExplicitlyDefaultedCopyAssignment(MD);
10515      if (!MD->isInvalidDecl())
10516        DefineImplicitCopyAssignment(DefaultLoc, MD);
10517      break;
10518    }
10519
10520    case CXXDestructor: {
10521      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10522      CheckExplicitlyDefaultedDestructor(DD);
10523      if (!DD->isInvalidDecl())
10524        DefineImplicitDestructor(DefaultLoc, DD);
10525      break;
10526    }
10527
10528    case CXXMoveConstructor: {
10529      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10530      CheckExplicitlyDefaultedMoveConstructor(CD);
10531      if (!CD->isInvalidDecl())
10532        DefineImplicitMoveConstructor(DefaultLoc, CD);
10533      break;
10534    }
10535
10536    case CXXMoveAssignment: {
10537      CheckExplicitlyDefaultedMoveAssignment(MD);
10538      if (!MD->isInvalidDecl())
10539        DefineImplicitMoveAssignment(DefaultLoc, MD);
10540      break;
10541    }
10542
10543    case CXXInvalid:
10544      llvm_unreachable("Invalid special member.");
10545    }
10546  } else {
10547    Diag(DefaultLoc, diag::err_default_special_members);
10548  }
10549}
10550
10551static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10552  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10553    Stmt *SubStmt = *CI;
10554    if (!SubStmt)
10555      continue;
10556    if (isa<ReturnStmt>(SubStmt))
10557      Self.Diag(SubStmt->getLocStart(),
10558           diag::err_return_in_constructor_handler);
10559    if (!isa<Expr>(SubStmt))
10560      SearchForReturnInStmt(Self, SubStmt);
10561  }
10562}
10563
10564void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10565  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10566    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10567    SearchForReturnInStmt(*this, Handler);
10568  }
10569}
10570
10571bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10572                                             const CXXMethodDecl *Old) {
10573  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10574  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10575
10576  if (Context.hasSameType(NewTy, OldTy) ||
10577      NewTy->isDependentType() || OldTy->isDependentType())
10578    return false;
10579
10580  // Check if the return types are covariant
10581  QualType NewClassTy, OldClassTy;
10582
10583  /// Both types must be pointers or references to classes.
10584  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10585    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10586      NewClassTy = NewPT->getPointeeType();
10587      OldClassTy = OldPT->getPointeeType();
10588    }
10589  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10590    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10591      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10592        NewClassTy = NewRT->getPointeeType();
10593        OldClassTy = OldRT->getPointeeType();
10594      }
10595    }
10596  }
10597
10598  // The return types aren't either both pointers or references to a class type.
10599  if (NewClassTy.isNull()) {
10600    Diag(New->getLocation(),
10601         diag::err_different_return_type_for_overriding_virtual_function)
10602      << New->getDeclName() << NewTy << OldTy;
10603    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10604
10605    return true;
10606  }
10607
10608  // C++ [class.virtual]p6:
10609  //   If the return type of D::f differs from the return type of B::f, the
10610  //   class type in the return type of D::f shall be complete at the point of
10611  //   declaration of D::f or shall be the class type D.
10612  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10613    if (!RT->isBeingDefined() &&
10614        RequireCompleteType(New->getLocation(), NewClassTy,
10615                            PDiag(diag::err_covariant_return_incomplete)
10616                              << New->getDeclName()))
10617    return true;
10618  }
10619
10620  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10621    // Check if the new class derives from the old class.
10622    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10623      Diag(New->getLocation(),
10624           diag::err_covariant_return_not_derived)
10625      << New->getDeclName() << NewTy << OldTy;
10626      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10627      return true;
10628    }
10629
10630    // Check if we the conversion from derived to base is valid.
10631    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10632                    diag::err_covariant_return_inaccessible_base,
10633                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10634                    // FIXME: Should this point to the return type?
10635                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10636      // FIXME: this note won't trigger for delayed access control
10637      // diagnostics, and it's impossible to get an undelayed error
10638      // here from access control during the original parse because
10639      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10640      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10641      return true;
10642    }
10643  }
10644
10645  // The qualifiers of the return types must be the same.
10646  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10647    Diag(New->getLocation(),
10648         diag::err_covariant_return_type_different_qualifications)
10649    << New->getDeclName() << NewTy << OldTy;
10650    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10651    return true;
10652  };
10653
10654
10655  // The new class type must have the same or less qualifiers as the old type.
10656  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10657    Diag(New->getLocation(),
10658         diag::err_covariant_return_type_class_type_more_qualified)
10659    << New->getDeclName() << NewTy << OldTy;
10660    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10661    return true;
10662  };
10663
10664  return false;
10665}
10666
10667/// \brief Mark the given method pure.
10668///
10669/// \param Method the method to be marked pure.
10670///
10671/// \param InitRange the source range that covers the "0" initializer.
10672bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10673  SourceLocation EndLoc = InitRange.getEnd();
10674  if (EndLoc.isValid())
10675    Method->setRangeEnd(EndLoc);
10676
10677  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10678    Method->setPure();
10679    return false;
10680  }
10681
10682  if (!Method->isInvalidDecl())
10683    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10684      << Method->getDeclName() << InitRange;
10685  return true;
10686}
10687
10688/// \brief Determine whether the given declaration is a static data member.
10689static bool isStaticDataMember(Decl *D) {
10690  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10691  if (!Var)
10692    return false;
10693
10694  return Var->isStaticDataMember();
10695}
10696/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10697/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10698/// is a fresh scope pushed for just this purpose.
10699///
10700/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10701/// static data member of class X, names should be looked up in the scope of
10702/// class X.
10703void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10704  // If there is no declaration, there was an error parsing it.
10705  if (D == 0 || D->isInvalidDecl()) return;
10706
10707  // We should only get called for declarations with scope specifiers, like:
10708  //   int foo::bar;
10709  assert(D->isOutOfLine());
10710  EnterDeclaratorContext(S, D->getDeclContext());
10711
10712  // If we are parsing the initializer for a static data member, push a
10713  // new expression evaluation context that is associated with this static
10714  // data member.
10715  if (isStaticDataMember(D))
10716    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10717}
10718
10719/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10720/// initializer for the out-of-line declaration 'D'.
10721void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10722  // If there is no declaration, there was an error parsing it.
10723  if (D == 0 || D->isInvalidDecl()) return;
10724
10725  if (isStaticDataMember(D))
10726    PopExpressionEvaluationContext();
10727
10728  assert(D->isOutOfLine());
10729  ExitDeclaratorContext(S);
10730}
10731
10732/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10733/// C++ if/switch/while/for statement.
10734/// e.g: "if (int x = f()) {...}"
10735DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10736  // C++ 6.4p2:
10737  // The declarator shall not specify a function or an array.
10738  // The type-specifier-seq shall not contain typedef and shall not declare a
10739  // new class or enumeration.
10740  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10741         "Parser allowed 'typedef' as storage class of condition decl.");
10742
10743  Decl *Dcl = ActOnDeclarator(S, D);
10744  if (!Dcl)
10745    return true;
10746
10747  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10748    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10749      << D.getSourceRange();
10750    return true;
10751  }
10752
10753  return Dcl;
10754}
10755
10756void Sema::LoadExternalVTableUses() {
10757  if (!ExternalSource)
10758    return;
10759
10760  SmallVector<ExternalVTableUse, 4> VTables;
10761  ExternalSource->ReadUsedVTables(VTables);
10762  SmallVector<VTableUse, 4> NewUses;
10763  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10764    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10765      = VTablesUsed.find(VTables[I].Record);
10766    // Even if a definition wasn't required before, it may be required now.
10767    if (Pos != VTablesUsed.end()) {
10768      if (!Pos->second && VTables[I].DefinitionRequired)
10769        Pos->second = true;
10770      continue;
10771    }
10772
10773    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10774    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10775  }
10776
10777  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10778}
10779
10780void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10781                          bool DefinitionRequired) {
10782  // Ignore any vtable uses in unevaluated operands or for classes that do
10783  // not have a vtable.
10784  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10785      CurContext->isDependentContext() ||
10786      ExprEvalContexts.back().Context == Unevaluated)
10787    return;
10788
10789  // Try to insert this class into the map.
10790  LoadExternalVTableUses();
10791  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10792  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10793    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10794  if (!Pos.second) {
10795    // If we already had an entry, check to see if we are promoting this vtable
10796    // to required a definition. If so, we need to reappend to the VTableUses
10797    // list, since we may have already processed the first entry.
10798    if (DefinitionRequired && !Pos.first->second) {
10799      Pos.first->second = true;
10800    } else {
10801      // Otherwise, we can early exit.
10802      return;
10803    }
10804  }
10805
10806  // Local classes need to have their virtual members marked
10807  // immediately. For all other classes, we mark their virtual members
10808  // at the end of the translation unit.
10809  if (Class->isLocalClass())
10810    MarkVirtualMembersReferenced(Loc, Class);
10811  else
10812    VTableUses.push_back(std::make_pair(Class, Loc));
10813}
10814
10815bool Sema::DefineUsedVTables() {
10816  LoadExternalVTableUses();
10817  if (VTableUses.empty())
10818    return false;
10819
10820  // Note: The VTableUses vector could grow as a result of marking
10821  // the members of a class as "used", so we check the size each
10822  // time through the loop and prefer indices (with are stable) to
10823  // iterators (which are not).
10824  bool DefinedAnything = false;
10825  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10826    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10827    if (!Class)
10828      continue;
10829
10830    SourceLocation Loc = VTableUses[I].second;
10831
10832    // If this class has a key function, but that key function is
10833    // defined in another translation unit, we don't need to emit the
10834    // vtable even though we're using it.
10835    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10836    if (KeyFunction && !KeyFunction->hasBody()) {
10837      switch (KeyFunction->getTemplateSpecializationKind()) {
10838      case TSK_Undeclared:
10839      case TSK_ExplicitSpecialization:
10840      case TSK_ExplicitInstantiationDeclaration:
10841        // The key function is in another translation unit.
10842        continue;
10843
10844      case TSK_ExplicitInstantiationDefinition:
10845      case TSK_ImplicitInstantiation:
10846        // We will be instantiating the key function.
10847        break;
10848      }
10849    } else if (!KeyFunction) {
10850      // If we have a class with no key function that is the subject
10851      // of an explicit instantiation declaration, suppress the
10852      // vtable; it will live with the explicit instantiation
10853      // definition.
10854      bool IsExplicitInstantiationDeclaration
10855        = Class->getTemplateSpecializationKind()
10856                                      == TSK_ExplicitInstantiationDeclaration;
10857      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10858                                 REnd = Class->redecls_end();
10859           R != REnd; ++R) {
10860        TemplateSpecializationKind TSK
10861          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10862        if (TSK == TSK_ExplicitInstantiationDeclaration)
10863          IsExplicitInstantiationDeclaration = true;
10864        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10865          IsExplicitInstantiationDeclaration = false;
10866          break;
10867        }
10868      }
10869
10870      if (IsExplicitInstantiationDeclaration)
10871        continue;
10872    }
10873
10874    // Mark all of the virtual members of this class as referenced, so
10875    // that we can build a vtable. Then, tell the AST consumer that a
10876    // vtable for this class is required.
10877    DefinedAnything = true;
10878    MarkVirtualMembersReferenced(Loc, Class);
10879    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10880    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10881
10882    // Optionally warn if we're emitting a weak vtable.
10883    if (Class->getLinkage() == ExternalLinkage &&
10884        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10885      const FunctionDecl *KeyFunctionDef = 0;
10886      if (!KeyFunction ||
10887          (KeyFunction->hasBody(KeyFunctionDef) &&
10888           KeyFunctionDef->isInlined()))
10889        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10890             TSK_ExplicitInstantiationDefinition
10891             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10892          << Class;
10893    }
10894  }
10895  VTableUses.clear();
10896
10897  return DefinedAnything;
10898}
10899
10900void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10901                                        const CXXRecordDecl *RD) {
10902  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10903       e = RD->method_end(); i != e; ++i) {
10904    CXXMethodDecl *MD = *i;
10905
10906    // C++ [basic.def.odr]p2:
10907    //   [...] A virtual member function is used if it is not pure. [...]
10908    if (MD->isVirtual() && !MD->isPure())
10909      MarkFunctionReferenced(Loc, MD);
10910  }
10911
10912  // Only classes that have virtual bases need a VTT.
10913  if (RD->getNumVBases() == 0)
10914    return;
10915
10916  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10917           e = RD->bases_end(); i != e; ++i) {
10918    const CXXRecordDecl *Base =
10919        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10920    if (Base->getNumVBases() == 0)
10921      continue;
10922    MarkVirtualMembersReferenced(Loc, Base);
10923  }
10924}
10925
10926/// SetIvarInitializers - This routine builds initialization ASTs for the
10927/// Objective-C implementation whose ivars need be initialized.
10928void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10929  if (!getLangOpts().CPlusPlus)
10930    return;
10931  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10932    SmallVector<ObjCIvarDecl*, 8> ivars;
10933    CollectIvarsToConstructOrDestruct(OID, ivars);
10934    if (ivars.empty())
10935      return;
10936    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10937    for (unsigned i = 0; i < ivars.size(); i++) {
10938      FieldDecl *Field = ivars[i];
10939      if (Field->isInvalidDecl())
10940        continue;
10941
10942      CXXCtorInitializer *Member;
10943      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10944      InitializationKind InitKind =
10945        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10946
10947      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10948      ExprResult MemberInit =
10949        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10950      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10951      // Note, MemberInit could actually come back empty if no initialization
10952      // is required (e.g., because it would call a trivial default constructor)
10953      if (!MemberInit.get() || MemberInit.isInvalid())
10954        continue;
10955
10956      Member =
10957        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10958                                         SourceLocation(),
10959                                         MemberInit.takeAs<Expr>(),
10960                                         SourceLocation());
10961      AllToInit.push_back(Member);
10962
10963      // Be sure that the destructor is accessible and is marked as referenced.
10964      if (const RecordType *RecordTy
10965                  = Context.getBaseElementType(Field->getType())
10966                                                        ->getAs<RecordType>()) {
10967                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10968        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10969          MarkFunctionReferenced(Field->getLocation(), Destructor);
10970          CheckDestructorAccess(Field->getLocation(), Destructor,
10971                            PDiag(diag::err_access_dtor_ivar)
10972                              << Context.getBaseElementType(Field->getType()));
10973        }
10974      }
10975    }
10976    ObjCImplementation->setIvarInitializers(Context,
10977                                            AllToInit.data(), AllToInit.size());
10978  }
10979}
10980
10981static
10982void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10983                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10984                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10985                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10986                           Sema &S) {
10987  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10988                                                   CE = Current.end();
10989  if (Ctor->isInvalidDecl())
10990    return;
10991
10992  const FunctionDecl *FNTarget = 0;
10993  CXXConstructorDecl *Target;
10994
10995  // We ignore the result here since if we don't have a body, Target will be
10996  // null below.
10997  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10998  Target
10999= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11000
11001  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11002                     // Avoid dereferencing a null pointer here.
11003                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11004
11005  if (!Current.insert(Canonical))
11006    return;
11007
11008  // We know that beyond here, we aren't chaining into a cycle.
11009  if (!Target || !Target->isDelegatingConstructor() ||
11010      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11011    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11012      Valid.insert(*CI);
11013    Current.clear();
11014  // We've hit a cycle.
11015  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11016             Current.count(TCanonical)) {
11017    // If we haven't diagnosed this cycle yet, do so now.
11018    if (!Invalid.count(TCanonical)) {
11019      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11020             diag::warn_delegating_ctor_cycle)
11021        << Ctor;
11022
11023      // Don't add a note for a function delegating directo to itself.
11024      if (TCanonical != Canonical)
11025        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11026
11027      CXXConstructorDecl *C = Target;
11028      while (C->getCanonicalDecl() != Canonical) {
11029        (void)C->getTargetConstructor()->hasBody(FNTarget);
11030        assert(FNTarget && "Ctor cycle through bodiless function");
11031
11032        C
11033       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11034        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11035      }
11036    }
11037
11038    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11039      Invalid.insert(*CI);
11040    Current.clear();
11041  } else {
11042    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11043  }
11044}
11045
11046
11047void Sema::CheckDelegatingCtorCycles() {
11048  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11049
11050  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11051                                                   CE = Current.end();
11052
11053  for (DelegatingCtorDeclsType::iterator
11054         I = DelegatingCtorDecls.begin(ExternalSource),
11055         E = DelegatingCtorDecls.end();
11056       I != E; ++I) {
11057   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11058  }
11059
11060  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11061    (*CI)->setInvalidDecl();
11062}
11063
11064namespace {
11065  /// \brief AST visitor that finds references to the 'this' expression.
11066  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
11067    Sema &S;
11068
11069  public:
11070    explicit FindCXXThisExpr(Sema &S) : S(S) { }
11071
11072    bool VisitCXXThisExpr(CXXThisExpr *E) {
11073      S.Diag(E->getLocation(), diag::err_this_static_member_func)
11074        << E->isImplicit();
11075      return false;
11076    }
11077  };
11078}
11079
11080bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
11081  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11082  if (!TSInfo)
11083    return false;
11084
11085  TypeLoc TL = TSInfo->getTypeLoc();
11086  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11087  if (!ProtoTL)
11088    return false;
11089
11090  // C++11 [expr.prim.general]p3:
11091  //   [The expression this] shall not appear before the optional
11092  //   cv-qualifier-seq and it shall not appear within the declaration of a
11093  //   static member function (although its type and value category are defined
11094  //   within a static member function as they are within a non-static member
11095  //   function). [ Note: this is because declaration matching does not occur
11096  //  until the complete declarator is known. - end note ]
11097  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11098  FindCXXThisExpr Finder(*this);
11099
11100  // If the return type came after the cv-qualifier-seq, check it now.
11101  if (Proto->hasTrailingReturn() &&
11102      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
11103    return true;
11104
11105  // Check the exception specification.
11106  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
11107    return true;
11108
11109  return checkThisInStaticMemberFunctionAttributes(Method);
11110}
11111
11112bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
11113  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
11114  if (!TSInfo)
11115    return false;
11116
11117  TypeLoc TL = TSInfo->getTypeLoc();
11118  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
11119  if (!ProtoTL)
11120    return false;
11121
11122  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
11123  FindCXXThisExpr Finder(*this);
11124
11125  switch (Proto->getExceptionSpecType()) {
11126  case EST_Uninstantiated:
11127  case EST_BasicNoexcept:
11128  case EST_Delayed:
11129  case EST_DynamicNone:
11130  case EST_MSAny:
11131  case EST_None:
11132    break;
11133
11134  case EST_ComputedNoexcept:
11135    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
11136      return true;
11137
11138  case EST_Dynamic:
11139    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
11140         EEnd = Proto->exception_end();
11141         E != EEnd; ++E) {
11142      if (!Finder.TraverseType(*E))
11143        return true;
11144    }
11145    break;
11146  }
11147
11148  return false;
11149}
11150
11151bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
11152  FindCXXThisExpr Finder(*this);
11153
11154  // Check attributes.
11155  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
11156       A != AEnd; ++A) {
11157    // FIXME: This should be emitted by tblgen.
11158    Expr *Arg = 0;
11159    ArrayRef<Expr *> Args;
11160    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
11161      Arg = G->getArg();
11162    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
11163      Arg = G->getArg();
11164    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
11165      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
11166    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
11167      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
11168    else if (ExclusiveLockFunctionAttr *ELF
11169               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
11170      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
11171    else if (SharedLockFunctionAttr *SLF
11172               = dyn_cast<SharedLockFunctionAttr>(*A))
11173      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
11174    else if (ExclusiveTrylockFunctionAttr *ETLF
11175               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
11176      Arg = ETLF->getSuccessValue();
11177      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
11178    } else if (SharedTrylockFunctionAttr *STLF
11179                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
11180      Arg = STLF->getSuccessValue();
11181      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
11182    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
11183      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
11184    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
11185      Arg = LR->getArg();
11186    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
11187      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
11188    else if (ExclusiveLocksRequiredAttr *ELR
11189               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
11190      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
11191    else if (SharedLocksRequiredAttr *SLR
11192               = dyn_cast<SharedLocksRequiredAttr>(*A))
11193      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
11194
11195    if (Arg && !Finder.TraverseStmt(Arg))
11196      return true;
11197
11198    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
11199      if (!Finder.TraverseStmt(Args[I]))
11200        return true;
11201    }
11202  }
11203
11204  return false;
11205}
11206
11207void
11208Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
11209                                  ArrayRef<ParsedType> DynamicExceptions,
11210                                  ArrayRef<SourceRange> DynamicExceptionRanges,
11211                                  Expr *NoexceptExpr,
11212                                  llvm::SmallVectorImpl<QualType> &Exceptions,
11213                                  FunctionProtoType::ExtProtoInfo &EPI) {
11214  Exceptions.clear();
11215  EPI.ExceptionSpecType = EST;
11216  if (EST == EST_Dynamic) {
11217    Exceptions.reserve(DynamicExceptions.size());
11218    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
11219      // FIXME: Preserve type source info.
11220      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
11221
11222      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
11223      collectUnexpandedParameterPacks(ET, Unexpanded);
11224      if (!Unexpanded.empty()) {
11225        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
11226                                         UPPC_ExceptionType,
11227                                         Unexpanded);
11228        continue;
11229      }
11230
11231      // Check that the type is valid for an exception spec, and
11232      // drop it if not.
11233      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11234        Exceptions.push_back(ET);
11235    }
11236    EPI.NumExceptions = Exceptions.size();
11237    EPI.Exceptions = Exceptions.data();
11238    return;
11239  }
11240
11241  if (EST == EST_ComputedNoexcept) {
11242    // If an error occurred, there's no expression here.
11243    if (NoexceptExpr) {
11244      assert((NoexceptExpr->isTypeDependent() ||
11245              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11246              Context.BoolTy) &&
11247             "Parser should have made sure that the expression is boolean");
11248      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11249        EPI.ExceptionSpecType = EST_BasicNoexcept;
11250        return;
11251      }
11252
11253      if (!NoexceptExpr->isValueDependent())
11254        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11255                         PDiag(diag::err_noexcept_needs_constant_expression),
11256                         /*AllowFold*/ false).take();
11257      EPI.NoexceptExpr = NoexceptExpr;
11258    }
11259    return;
11260  }
11261}
11262
11263void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
11264             ExceptionSpecificationType EST,
11265             SourceRange SpecificationRange,
11266             ArrayRef<ParsedType> DynamicExceptions,
11267             ArrayRef<SourceRange> DynamicExceptionRanges,
11268             Expr *NoexceptExpr) {
11269  if (!MethodD)
11270    return;
11271
11272  // Dig out the method we're referring to.
11273  CXXMethodDecl *Method = 0;
11274  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
11275    Method = dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
11276  else
11277    Method = dyn_cast<CXXMethodDecl>(MethodD);
11278
11279  if (!Method)
11280    return;
11281
11282  // Dig out the prototype. This should never fail.
11283  const FunctionProtoType *Proto
11284    = dyn_cast<FunctionProtoType>(Method->getType());
11285  if (!Proto)
11286    return;
11287
11288  // Check the exception specification.
11289  llvm::SmallVector<QualType, 4> Exceptions;
11290  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
11291  checkExceptionSpecification(EST, DynamicExceptions, DynamicExceptionRanges,
11292                              NoexceptExpr, Exceptions, EPI);
11293
11294  // Rebuild the function type.
11295  QualType T = Context.getFunctionType(Proto->getResultType(),
11296                                       Proto->arg_type_begin(),
11297                                       Proto->getNumArgs(),
11298                                       EPI);
11299  if (TypeSourceInfo *TSInfo = Method->getTypeSourceInfo()) {
11300    // FIXME: When we get proper type location information for exceptions,
11301    // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
11302    // up the TypeSourceInfo;
11303    assert(TypeLoc::getFullDataSizeForType(T)
11304             == TypeLoc::getFullDataSizeForType(Method->getType()) &&
11305           "TypeLoc size mismatch with delayed exception specification");
11306    TSInfo->overrideType(T);
11307  }
11308
11309  Method->setType(T);
11310
11311  if (Method->isStatic())
11312    checkThisInStaticMemberFunctionExceptionSpec(Method);
11313
11314  if (Method->isVirtual()) {
11315    // Check overrides, which we previously had to delay.
11316    for (CXXMethodDecl::method_iterator O = Method->begin_overridden_methods(),
11317                                     OEnd = Method->end_overridden_methods();
11318         O != OEnd; ++O)
11319      CheckOverridingFunctionExceptionSpec(Method, *O);
11320  }
11321}
11322
11323/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11324Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11325  // Implicitly declared functions (e.g. copy constructors) are
11326  // __host__ __device__
11327  if (D->isImplicit())
11328    return CFT_HostDevice;
11329
11330  if (D->hasAttr<CUDAGlobalAttr>())
11331    return CFT_Global;
11332
11333  if (D->hasAttr<CUDADeviceAttr>()) {
11334    if (D->hasAttr<CUDAHostAttr>())
11335      return CFT_HostDevice;
11336    else
11337      return CFT_Device;
11338  }
11339
11340  return CFT_Host;
11341}
11342
11343bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11344                           CUDAFunctionTarget CalleeTarget) {
11345  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11346  // Callable from the device only."
11347  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11348    return true;
11349
11350  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11351  // Callable from the host only."
11352  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11353  // Callable from the host only."
11354  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11355      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11356    return true;
11357
11358  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11359    return true;
11360
11361  return false;
11362}
11363