SemaDeclCXX.cpp revision 225736
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/ASTMutationListener.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Lex/Preprocessor.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include <map>
37#include <set>
38
39using namespace clang;
40
41//===----------------------------------------------------------------------===//
42// CheckDefaultArgumentVisitor
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
47  /// the default argument of a parameter to determine whether it
48  /// contains any ill-formed subexpressions. For example, this will
49  /// diagnose the use of local variables or parameters within the
50  /// default argument expression.
51  class CheckDefaultArgumentVisitor
52    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
53    Expr *DefaultArg;
54    Sema *S;
55
56  public:
57    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
58      : DefaultArg(defarg), S(s) {}
59
60    bool VisitExpr(Expr *Node);
61    bool VisitDeclRefExpr(DeclRefExpr *DRE);
62    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
63  };
64
65  /// VisitExpr - Visit all of the children of this expression.
66  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
67    bool IsInvalid = false;
68    for (Stmt::child_range I = Node->children(); I; ++I)
69      IsInvalid |= Visit(*I);
70    return IsInvalid;
71  }
72
73  /// VisitDeclRefExpr - Visit a reference to a declaration, to
74  /// determine whether this declaration can be used in the default
75  /// argument expression.
76  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
77    NamedDecl *Decl = DRE->getDecl();
78    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
79      // C++ [dcl.fct.default]p9
80      //   Default arguments are evaluated each time the function is
81      //   called. The order of evaluation of function arguments is
82      //   unspecified. Consequently, parameters of a function shall not
83      //   be used in default argument expressions, even if they are not
84      //   evaluated. Parameters of a function declared before a default
85      //   argument expression are in scope and can hide namespace and
86      //   class member names.
87      return S->Diag(DRE->getSourceRange().getBegin(),
88                     diag::err_param_default_argument_references_param)
89         << Param->getDeclName() << DefaultArg->getSourceRange();
90    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
91      // C++ [dcl.fct.default]p7
92      //   Local variables shall not be used in default argument
93      //   expressions.
94      if (VDecl->isLocalVarDecl())
95        return S->Diag(DRE->getSourceRange().getBegin(),
96                       diag::err_param_default_argument_references_local)
97          << VDecl->getDeclName() << DefaultArg->getSourceRange();
98    }
99
100    return false;
101  }
102
103  /// VisitCXXThisExpr - Visit a C++ "this" expression.
104  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
105    // C++ [dcl.fct.default]p8:
106    //   The keyword this shall not be used in a default argument of a
107    //   member function.
108    return S->Diag(ThisE->getSourceRange().getBegin(),
109                   diag::err_param_default_argument_references_this)
110               << ThisE->getSourceRange();
111  }
112}
113
114void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
115  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
116  // If we have an MSAny or unknown spec already, don't bother.
117  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
118    return;
119
120  const FunctionProtoType *Proto
121    = Method->getType()->getAs<FunctionProtoType>();
122
123  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
124
125  // If this function can throw any exceptions, make a note of that.
126  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
127    ClearExceptions();
128    ComputedEST = EST;
129    return;
130  }
131
132  // FIXME: If the call to this decl is using any of its default arguments, we
133  // need to search them for potentially-throwing calls.
134
135  // If this function has a basic noexcept, it doesn't affect the outcome.
136  if (EST == EST_BasicNoexcept)
137    return;
138
139  // If we have a throw-all spec at this point, ignore the function.
140  if (ComputedEST == EST_None)
141    return;
142
143  // If we're still at noexcept(true) and there's a nothrow() callee,
144  // change to that specification.
145  if (EST == EST_DynamicNone) {
146    if (ComputedEST == EST_BasicNoexcept)
147      ComputedEST = EST_DynamicNone;
148    return;
149  }
150
151  // Check out noexcept specs.
152  if (EST == EST_ComputedNoexcept) {
153    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
154    assert(NR != FunctionProtoType::NR_NoNoexcept &&
155           "Must have noexcept result for EST_ComputedNoexcept.");
156    assert(NR != FunctionProtoType::NR_Dependent &&
157           "Should not generate implicit declarations for dependent cases, "
158           "and don't know how to handle them anyway.");
159
160    // noexcept(false) -> no spec on the new function
161    if (NR == FunctionProtoType::NR_Throw) {
162      ClearExceptions();
163      ComputedEST = EST_None;
164    }
165    // noexcept(true) won't change anything either.
166    return;
167  }
168
169  assert(EST == EST_Dynamic && "EST case not considered earlier.");
170  assert(ComputedEST != EST_None &&
171         "Shouldn't collect exceptions when throw-all is guaranteed.");
172  ComputedEST = EST_Dynamic;
173  // Record the exceptions in this function's exception specification.
174  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
175                                          EEnd = Proto->exception_end();
176       E != EEnd; ++E)
177    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
178      Exceptions.push_back(*E);
179}
180
181void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
182  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
183    return;
184
185  // FIXME:
186  //
187  // C++0x [except.spec]p14:
188  //   [An] implicit exception-specification specifies the type-id T if and
189  // only if T is allowed by the exception-specification of a function directly
190  // invoked by f's implicit definition; f shall allow all exceptions if any
191  // function it directly invokes allows all exceptions, and f shall allow no
192  // exceptions if every function it directly invokes allows no exceptions.
193  //
194  // Note in particular that if an implicit exception-specification is generated
195  // for a function containing a throw-expression, that specification can still
196  // be noexcept(true).
197  //
198  // Note also that 'directly invoked' is not defined in the standard, and there
199  // is no indication that we should only consider potentially-evaluated calls.
200  //
201  // Ultimately we should implement the intent of the standard: the exception
202  // specification should be the set of exceptions which can be thrown by the
203  // implicit definition. For now, we assume that any non-nothrow expression can
204  // throw any exception.
205
206  if (E->CanThrow(*Context))
207    ComputedEST = EST_None;
208}
209
210bool
211Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
212                              SourceLocation EqualLoc) {
213  if (RequireCompleteType(Param->getLocation(), Param->getType(),
214                          diag::err_typecheck_decl_incomplete_type)) {
215    Param->setInvalidDecl();
216    return true;
217  }
218
219  // C++ [dcl.fct.default]p5
220  //   A default argument expression is implicitly converted (clause
221  //   4) to the parameter type. The default argument expression has
222  //   the same semantic constraints as the initializer expression in
223  //   a declaration of a variable of the parameter type, using the
224  //   copy-initialization semantics (8.5).
225  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
226                                                                    Param);
227  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
228                                                           EqualLoc);
229  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
230  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
231                                      MultiExprArg(*this, &Arg, 1));
232  if (Result.isInvalid())
233    return true;
234  Arg = Result.takeAs<Expr>();
235
236  CheckImplicitConversions(Arg, EqualLoc);
237  Arg = MaybeCreateExprWithCleanups(Arg);
238
239  // Okay: add the default argument to the parameter
240  Param->setDefaultArg(Arg);
241
242  // We have already instantiated this parameter; provide each of the
243  // instantiations with the uninstantiated default argument.
244  UnparsedDefaultArgInstantiationsMap::iterator InstPos
245    = UnparsedDefaultArgInstantiations.find(Param);
246  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
247    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
248      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
249
250    // We're done tracking this parameter's instantiations.
251    UnparsedDefaultArgInstantiations.erase(InstPos);
252  }
253
254  return false;
255}
256
257/// ActOnParamDefaultArgument - Check whether the default argument
258/// provided for a function parameter is well-formed. If so, attach it
259/// to the parameter declaration.
260void
261Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
262                                Expr *DefaultArg) {
263  if (!param || !DefaultArg)
264    return;
265
266  ParmVarDecl *Param = cast<ParmVarDecl>(param);
267  UnparsedDefaultArgLocs.erase(Param);
268
269  // Default arguments are only permitted in C++
270  if (!getLangOptions().CPlusPlus) {
271    Diag(EqualLoc, diag::err_param_default_argument)
272      << DefaultArg->getSourceRange();
273    Param->setInvalidDecl();
274    return;
275  }
276
277  // Check for unexpanded parameter packs.
278  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
279    Param->setInvalidDecl();
280    return;
281  }
282
283  // Check that the default argument is well-formed
284  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
285  if (DefaultArgChecker.Visit(DefaultArg)) {
286    Param->setInvalidDecl();
287    return;
288  }
289
290  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
291}
292
293/// ActOnParamUnparsedDefaultArgument - We've seen a default
294/// argument for a function parameter, but we can't parse it yet
295/// because we're inside a class definition. Note that this default
296/// argument will be parsed later.
297void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
298                                             SourceLocation EqualLoc,
299                                             SourceLocation ArgLoc) {
300  if (!param)
301    return;
302
303  ParmVarDecl *Param = cast<ParmVarDecl>(param);
304  if (Param)
305    Param->setUnparsedDefaultArg();
306
307  UnparsedDefaultArgLocs[Param] = ArgLoc;
308}
309
310/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
311/// the default argument for the parameter param failed.
312void Sema::ActOnParamDefaultArgumentError(Decl *param) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317
318  Param->setInvalidDecl();
319
320  UnparsedDefaultArgLocs.erase(Param);
321}
322
323/// CheckExtraCXXDefaultArguments - Check for any extra default
324/// arguments in the declarator, which is not a function declaration
325/// or definition and therefore is not permitted to have default
326/// arguments. This routine should be invoked for every declarator
327/// that is not a function declaration or definition.
328void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
329  // C++ [dcl.fct.default]p3
330  //   A default argument expression shall be specified only in the
331  //   parameter-declaration-clause of a function declaration or in a
332  //   template-parameter (14.1). It shall not be specified for a
333  //   parameter pack. If it is specified in a
334  //   parameter-declaration-clause, it shall not occur within a
335  //   declarator or abstract-declarator of a parameter-declaration.
336  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
337    DeclaratorChunk &chunk = D.getTypeObject(i);
338    if (chunk.Kind == DeclaratorChunk::Function) {
339      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
340        ParmVarDecl *Param =
341          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
342        if (Param->hasUnparsedDefaultArg()) {
343          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
344          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
345            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
346          delete Toks;
347          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
348        } else if (Param->getDefaultArg()) {
349          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
350            << Param->getDefaultArg()->getSourceRange();
351          Param->setDefaultArg(0);
352        }
353      }
354    }
355  }
356}
357
358// MergeCXXFunctionDecl - Merge two declarations of the same C++
359// function, once we already know that they have the same
360// type. Subroutine of MergeFunctionDecl. Returns true if there was an
361// error, false otherwise.
362bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
363  bool Invalid = false;
364
365  // C++ [dcl.fct.default]p4:
366  //   For non-template functions, default arguments can be added in
367  //   later declarations of a function in the same
368  //   scope. Declarations in different scopes have completely
369  //   distinct sets of default arguments. That is, declarations in
370  //   inner scopes do not acquire default arguments from
371  //   declarations in outer scopes, and vice versa. In a given
372  //   function declaration, all parameters subsequent to a
373  //   parameter with a default argument shall have default
374  //   arguments supplied in this or previous declarations. A
375  //   default argument shall not be redefined by a later
376  //   declaration (not even to the same value).
377  //
378  // C++ [dcl.fct.default]p6:
379  //   Except for member functions of class templates, the default arguments
380  //   in a member function definition that appears outside of the class
381  //   definition are added to the set of default arguments provided by the
382  //   member function declaration in the class definition.
383  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
384    ParmVarDecl *OldParam = Old->getParamDecl(p);
385    ParmVarDecl *NewParam = New->getParamDecl(p);
386
387    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
388
389      unsigned DiagDefaultParamID =
390        diag::err_param_default_argument_redefinition;
391
392      // MSVC accepts that default parameters be redefined for member functions
393      // of template class. The new default parameter's value is ignored.
394      Invalid = true;
395      if (getLangOptions().Microsoft) {
396        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
397        if (MD && MD->getParent()->getDescribedClassTemplate()) {
398          // Merge the old default argument into the new parameter.
399          NewParam->setHasInheritedDefaultArg();
400          if (OldParam->hasUninstantiatedDefaultArg())
401            NewParam->setUninstantiatedDefaultArg(
402                                      OldParam->getUninstantiatedDefaultArg());
403          else
404            NewParam->setDefaultArg(OldParam->getInit());
405          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
406          Invalid = false;
407        }
408      }
409
410      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
411      // hint here. Alternatively, we could walk the type-source information
412      // for NewParam to find the last source location in the type... but it
413      // isn't worth the effort right now. This is the kind of test case that
414      // is hard to get right:
415      //   int f(int);
416      //   void g(int (*fp)(int) = f);
417      //   void g(int (*fp)(int) = &f);
418      Diag(NewParam->getLocation(), DiagDefaultParamID)
419        << NewParam->getDefaultArgRange();
420
421      // Look for the function declaration where the default argument was
422      // actually written, which may be a declaration prior to Old.
423      for (FunctionDecl *Older = Old->getPreviousDeclaration();
424           Older; Older = Older->getPreviousDeclaration()) {
425        if (!Older->getParamDecl(p)->hasDefaultArg())
426          break;
427
428        OldParam = Older->getParamDecl(p);
429      }
430
431      Diag(OldParam->getLocation(), diag::note_previous_definition)
432        << OldParam->getDefaultArgRange();
433    } else if (OldParam->hasDefaultArg()) {
434      // Merge the old default argument into the new parameter.
435      // It's important to use getInit() here;  getDefaultArg()
436      // strips off any top-level ExprWithCleanups.
437      NewParam->setHasInheritedDefaultArg();
438      if (OldParam->hasUninstantiatedDefaultArg())
439        NewParam->setUninstantiatedDefaultArg(
440                                      OldParam->getUninstantiatedDefaultArg());
441      else
442        NewParam->setDefaultArg(OldParam->getInit());
443    } else if (NewParam->hasDefaultArg()) {
444      if (New->getDescribedFunctionTemplate()) {
445        // Paragraph 4, quoted above, only applies to non-template functions.
446        Diag(NewParam->getLocation(),
447             diag::err_param_default_argument_template_redecl)
448          << NewParam->getDefaultArgRange();
449        Diag(Old->getLocation(), diag::note_template_prev_declaration)
450          << false;
451      } else if (New->getTemplateSpecializationKind()
452                   != TSK_ImplicitInstantiation &&
453                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
454        // C++ [temp.expr.spec]p21:
455        //   Default function arguments shall not be specified in a declaration
456        //   or a definition for one of the following explicit specializations:
457        //     - the explicit specialization of a function template;
458        //     - the explicit specialization of a member function template;
459        //     - the explicit specialization of a member function of a class
460        //       template where the class template specialization to which the
461        //       member function specialization belongs is implicitly
462        //       instantiated.
463        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
464          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
465          << New->getDeclName()
466          << NewParam->getDefaultArgRange();
467      } else if (New->getDeclContext()->isDependentContext()) {
468        // C++ [dcl.fct.default]p6 (DR217):
469        //   Default arguments for a member function of a class template shall
470        //   be specified on the initial declaration of the member function
471        //   within the class template.
472        //
473        // Reading the tea leaves a bit in DR217 and its reference to DR205
474        // leads me to the conclusion that one cannot add default function
475        // arguments for an out-of-line definition of a member function of a
476        // dependent type.
477        int WhichKind = 2;
478        if (CXXRecordDecl *Record
479              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
480          if (Record->getDescribedClassTemplate())
481            WhichKind = 0;
482          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
483            WhichKind = 1;
484          else
485            WhichKind = 2;
486        }
487
488        Diag(NewParam->getLocation(),
489             diag::err_param_default_argument_member_template_redecl)
490          << WhichKind
491          << NewParam->getDefaultArgRange();
492      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
493        CXXSpecialMember NewSM = getSpecialMember(Ctor),
494                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
495        if (NewSM != OldSM) {
496          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
497            << NewParam->getDefaultArgRange() << NewSM;
498          Diag(Old->getLocation(), diag::note_previous_declaration_special)
499            << OldSM;
500        }
501      }
502    }
503  }
504
505  if (CheckEquivalentExceptionSpec(Old, New))
506    Invalid = true;
507
508  return Invalid;
509}
510
511/// \brief Merge the exception specifications of two variable declarations.
512///
513/// This is called when there's a redeclaration of a VarDecl. The function
514/// checks if the redeclaration might have an exception specification and
515/// validates compatibility and merges the specs if necessary.
516void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
517  // Shortcut if exceptions are disabled.
518  if (!getLangOptions().CXXExceptions)
519    return;
520
521  assert(Context.hasSameType(New->getType(), Old->getType()) &&
522         "Should only be called if types are otherwise the same.");
523
524  QualType NewType = New->getType();
525  QualType OldType = Old->getType();
526
527  // We're only interested in pointers and references to functions, as well
528  // as pointers to member functions.
529  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
530    NewType = R->getPointeeType();
531    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
532  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
533    NewType = P->getPointeeType();
534    OldType = OldType->getAs<PointerType>()->getPointeeType();
535  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
536    NewType = M->getPointeeType();
537    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
538  }
539
540  if (!NewType->isFunctionProtoType())
541    return;
542
543  // There's lots of special cases for functions. For function pointers, system
544  // libraries are hopefully not as broken so that we don't need these
545  // workarounds.
546  if (CheckEquivalentExceptionSpec(
547        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
548        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
549    New->setInvalidDecl();
550  }
551}
552
553/// CheckCXXDefaultArguments - Verify that the default arguments for a
554/// function declaration are well-formed according to C++
555/// [dcl.fct.default].
556void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
557  unsigned NumParams = FD->getNumParams();
558  unsigned p;
559
560  // Find first parameter with a default argument
561  for (p = 0; p < NumParams; ++p) {
562    ParmVarDecl *Param = FD->getParamDecl(p);
563    if (Param->hasDefaultArg())
564      break;
565  }
566
567  // C++ [dcl.fct.default]p4:
568  //   In a given function declaration, all parameters
569  //   subsequent to a parameter with a default argument shall
570  //   have default arguments supplied in this or previous
571  //   declarations. A default argument shall not be redefined
572  //   by a later declaration (not even to the same value).
573  unsigned LastMissingDefaultArg = 0;
574  for (; p < NumParams; ++p) {
575    ParmVarDecl *Param = FD->getParamDecl(p);
576    if (!Param->hasDefaultArg()) {
577      if (Param->isInvalidDecl())
578        /* We already complained about this parameter. */;
579      else if (Param->getIdentifier())
580        Diag(Param->getLocation(),
581             diag::err_param_default_argument_missing_name)
582          << Param->getIdentifier();
583      else
584        Diag(Param->getLocation(),
585             diag::err_param_default_argument_missing);
586
587      LastMissingDefaultArg = p;
588    }
589  }
590
591  if (LastMissingDefaultArg > 0) {
592    // Some default arguments were missing. Clear out all of the
593    // default arguments up to (and including) the last missing
594    // default argument, so that we leave the function parameters
595    // in a semantically valid state.
596    for (p = 0; p <= LastMissingDefaultArg; ++p) {
597      ParmVarDecl *Param = FD->getParamDecl(p);
598      if (Param->hasDefaultArg()) {
599        Param->setDefaultArg(0);
600      }
601    }
602  }
603}
604
605/// isCurrentClassName - Determine whether the identifier II is the
606/// name of the class type currently being defined. In the case of
607/// nested classes, this will only return true if II is the name of
608/// the innermost class.
609bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
610                              const CXXScopeSpec *SS) {
611  assert(getLangOptions().CPlusPlus && "No class names in C!");
612
613  CXXRecordDecl *CurDecl;
614  if (SS && SS->isSet() && !SS->isInvalid()) {
615    DeclContext *DC = computeDeclContext(*SS, true);
616    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
617  } else
618    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
619
620  if (CurDecl && CurDecl->getIdentifier())
621    return &II == CurDecl->getIdentifier();
622  else
623    return false;
624}
625
626/// \brief Check the validity of a C++ base class specifier.
627///
628/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
629/// and returns NULL otherwise.
630CXXBaseSpecifier *
631Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
632                         SourceRange SpecifierRange,
633                         bool Virtual, AccessSpecifier Access,
634                         TypeSourceInfo *TInfo,
635                         SourceLocation EllipsisLoc) {
636  QualType BaseType = TInfo->getType();
637
638  // C++ [class.union]p1:
639  //   A union shall not have base classes.
640  if (Class->isUnion()) {
641    Diag(Class->getLocation(), diag::err_base_clause_on_union)
642      << SpecifierRange;
643    return 0;
644  }
645
646  if (EllipsisLoc.isValid() &&
647      !TInfo->getType()->containsUnexpandedParameterPack()) {
648    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
649      << TInfo->getTypeLoc().getSourceRange();
650    EllipsisLoc = SourceLocation();
651  }
652
653  if (BaseType->isDependentType())
654    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
655                                          Class->getTagKind() == TTK_Class,
656                                          Access, TInfo, EllipsisLoc);
657
658  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
659
660  // Base specifiers must be record types.
661  if (!BaseType->isRecordType()) {
662    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
663    return 0;
664  }
665
666  // C++ [class.union]p1:
667  //   A union shall not be used as a base class.
668  if (BaseType->isUnionType()) {
669    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
670    return 0;
671  }
672
673  // C++ [class.derived]p2:
674  //   The class-name in a base-specifier shall not be an incompletely
675  //   defined class.
676  if (RequireCompleteType(BaseLoc, BaseType,
677                          PDiag(diag::err_incomplete_base_class)
678                            << SpecifierRange)) {
679    Class->setInvalidDecl();
680    return 0;
681  }
682
683  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
684  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
685  assert(BaseDecl && "Record type has no declaration");
686  BaseDecl = BaseDecl->getDefinition();
687  assert(BaseDecl && "Base type is not incomplete, but has no definition");
688  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
689  assert(CXXBaseDecl && "Base type is not a C++ type");
690
691  // C++ [class]p3:
692  //   If a class is marked final and it appears as a base-type-specifier in
693  //   base-clause, the program is ill-formed.
694  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
695    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
696      << CXXBaseDecl->getDeclName();
697    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
698      << CXXBaseDecl->getDeclName();
699    return 0;
700  }
701
702  if (BaseDecl->isInvalidDecl())
703    Class->setInvalidDecl();
704
705  // Create the base specifier.
706  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
707                                        Class->getTagKind() == TTK_Class,
708                                        Access, TInfo, EllipsisLoc);
709}
710
711/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
712/// one entry in the base class list of a class specifier, for
713/// example:
714///    class foo : public bar, virtual private baz {
715/// 'public bar' and 'virtual private baz' are each base-specifiers.
716BaseResult
717Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
718                         bool Virtual, AccessSpecifier Access,
719                         ParsedType basetype, SourceLocation BaseLoc,
720                         SourceLocation EllipsisLoc) {
721  if (!classdecl)
722    return true;
723
724  AdjustDeclIfTemplate(classdecl);
725  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
726  if (!Class)
727    return true;
728
729  TypeSourceInfo *TInfo = 0;
730  GetTypeFromParser(basetype, &TInfo);
731
732  if (EllipsisLoc.isInvalid() &&
733      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
734                                      UPPC_BaseType))
735    return true;
736
737  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
738                                                      Virtual, Access, TInfo,
739                                                      EllipsisLoc))
740    return BaseSpec;
741
742  return true;
743}
744
745/// \brief Performs the actual work of attaching the given base class
746/// specifiers to a C++ class.
747bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
748                                unsigned NumBases) {
749 if (NumBases == 0)
750    return false;
751
752  // Used to keep track of which base types we have already seen, so
753  // that we can properly diagnose redundant direct base types. Note
754  // that the key is always the unqualified canonical type of the base
755  // class.
756  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
757
758  // Copy non-redundant base specifiers into permanent storage.
759  unsigned NumGoodBases = 0;
760  bool Invalid = false;
761  for (unsigned idx = 0; idx < NumBases; ++idx) {
762    QualType NewBaseType
763      = Context.getCanonicalType(Bases[idx]->getType());
764    NewBaseType = NewBaseType.getLocalUnqualifiedType();
765    if (KnownBaseTypes[NewBaseType]) {
766      // C++ [class.mi]p3:
767      //   A class shall not be specified as a direct base class of a
768      //   derived class more than once.
769      Diag(Bases[idx]->getSourceRange().getBegin(),
770           diag::err_duplicate_base_class)
771        << KnownBaseTypes[NewBaseType]->getType()
772        << Bases[idx]->getSourceRange();
773
774      // Delete the duplicate base class specifier; we're going to
775      // overwrite its pointer later.
776      Context.Deallocate(Bases[idx]);
777
778      Invalid = true;
779    } else {
780      // Okay, add this new base class.
781      KnownBaseTypes[NewBaseType] = Bases[idx];
782      Bases[NumGoodBases++] = Bases[idx];
783    }
784  }
785
786  // Attach the remaining base class specifiers to the derived class.
787  Class->setBases(Bases, NumGoodBases);
788
789  // Delete the remaining (good) base class specifiers, since their
790  // data has been copied into the CXXRecordDecl.
791  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
792    Context.Deallocate(Bases[idx]);
793
794  return Invalid;
795}
796
797/// ActOnBaseSpecifiers - Attach the given base specifiers to the
798/// class, after checking whether there are any duplicate base
799/// classes.
800void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
801                               unsigned NumBases) {
802  if (!ClassDecl || !Bases || !NumBases)
803    return;
804
805  AdjustDeclIfTemplate(ClassDecl);
806  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
807                       (CXXBaseSpecifier**)(Bases), NumBases);
808}
809
810static CXXRecordDecl *GetClassForType(QualType T) {
811  if (const RecordType *RT = T->getAs<RecordType>())
812    return cast<CXXRecordDecl>(RT->getDecl());
813  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
814    return ICT->getDecl();
815  else
816    return 0;
817}
818
819/// \brief Determine whether the type \p Derived is a C++ class that is
820/// derived from the type \p Base.
821bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
822  if (!getLangOptions().CPlusPlus)
823    return false;
824
825  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
826  if (!DerivedRD)
827    return false;
828
829  CXXRecordDecl *BaseRD = GetClassForType(Base);
830  if (!BaseRD)
831    return false;
832
833  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
834  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
835}
836
837/// \brief Determine whether the type \p Derived is a C++ class that is
838/// derived from the type \p Base.
839bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
840  if (!getLangOptions().CPlusPlus)
841    return false;
842
843  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
844  if (!DerivedRD)
845    return false;
846
847  CXXRecordDecl *BaseRD = GetClassForType(Base);
848  if (!BaseRD)
849    return false;
850
851  return DerivedRD->isDerivedFrom(BaseRD, Paths);
852}
853
854void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
855                              CXXCastPath &BasePathArray) {
856  assert(BasePathArray.empty() && "Base path array must be empty!");
857  assert(Paths.isRecordingPaths() && "Must record paths!");
858
859  const CXXBasePath &Path = Paths.front();
860
861  // We first go backward and check if we have a virtual base.
862  // FIXME: It would be better if CXXBasePath had the base specifier for
863  // the nearest virtual base.
864  unsigned Start = 0;
865  for (unsigned I = Path.size(); I != 0; --I) {
866    if (Path[I - 1].Base->isVirtual()) {
867      Start = I - 1;
868      break;
869    }
870  }
871
872  // Now add all bases.
873  for (unsigned I = Start, E = Path.size(); I != E; ++I)
874    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
875}
876
877/// \brief Determine whether the given base path includes a virtual
878/// base class.
879bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
880  for (CXXCastPath::const_iterator B = BasePath.begin(),
881                                BEnd = BasePath.end();
882       B != BEnd; ++B)
883    if ((*B)->isVirtual())
884      return true;
885
886  return false;
887}
888
889/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
890/// conversion (where Derived and Base are class types) is
891/// well-formed, meaning that the conversion is unambiguous (and
892/// that all of the base classes are accessible). Returns true
893/// and emits a diagnostic if the code is ill-formed, returns false
894/// otherwise. Loc is the location where this routine should point to
895/// if there is an error, and Range is the source range to highlight
896/// if there is an error.
897bool
898Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
899                                   unsigned InaccessibleBaseID,
900                                   unsigned AmbigiousBaseConvID,
901                                   SourceLocation Loc, SourceRange Range,
902                                   DeclarationName Name,
903                                   CXXCastPath *BasePath) {
904  // First, determine whether the path from Derived to Base is
905  // ambiguous. This is slightly more expensive than checking whether
906  // the Derived to Base conversion exists, because here we need to
907  // explore multiple paths to determine if there is an ambiguity.
908  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
909                     /*DetectVirtual=*/false);
910  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
911  assert(DerivationOkay &&
912         "Can only be used with a derived-to-base conversion");
913  (void)DerivationOkay;
914
915  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
916    if (InaccessibleBaseID) {
917      // Check that the base class can be accessed.
918      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
919                                   InaccessibleBaseID)) {
920        case AR_inaccessible:
921          return true;
922        case AR_accessible:
923        case AR_dependent:
924        case AR_delayed:
925          break;
926      }
927    }
928
929    // Build a base path if necessary.
930    if (BasePath)
931      BuildBasePathArray(Paths, *BasePath);
932    return false;
933  }
934
935  // We know that the derived-to-base conversion is ambiguous, and
936  // we're going to produce a diagnostic. Perform the derived-to-base
937  // search just one more time to compute all of the possible paths so
938  // that we can print them out. This is more expensive than any of
939  // the previous derived-to-base checks we've done, but at this point
940  // performance isn't as much of an issue.
941  Paths.clear();
942  Paths.setRecordingPaths(true);
943  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
944  assert(StillOkay && "Can only be used with a derived-to-base conversion");
945  (void)StillOkay;
946
947  // Build up a textual representation of the ambiguous paths, e.g.,
948  // D -> B -> A, that will be used to illustrate the ambiguous
949  // conversions in the diagnostic. We only print one of the paths
950  // to each base class subobject.
951  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
952
953  Diag(Loc, AmbigiousBaseConvID)
954  << Derived << Base << PathDisplayStr << Range << Name;
955  return true;
956}
957
958bool
959Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
960                                   SourceLocation Loc, SourceRange Range,
961                                   CXXCastPath *BasePath,
962                                   bool IgnoreAccess) {
963  return CheckDerivedToBaseConversion(Derived, Base,
964                                      IgnoreAccess ? 0
965                                       : diag::err_upcast_to_inaccessible_base,
966                                      diag::err_ambiguous_derived_to_base_conv,
967                                      Loc, Range, DeclarationName(),
968                                      BasePath);
969}
970
971
972/// @brief Builds a string representing ambiguous paths from a
973/// specific derived class to different subobjects of the same base
974/// class.
975///
976/// This function builds a string that can be used in error messages
977/// to show the different paths that one can take through the
978/// inheritance hierarchy to go from the derived class to different
979/// subobjects of a base class. The result looks something like this:
980/// @code
981/// struct D -> struct B -> struct A
982/// struct D -> struct C -> struct A
983/// @endcode
984std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
985  std::string PathDisplayStr;
986  std::set<unsigned> DisplayedPaths;
987  for (CXXBasePaths::paths_iterator Path = Paths.begin();
988       Path != Paths.end(); ++Path) {
989    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
990      // We haven't displayed a path to this particular base
991      // class subobject yet.
992      PathDisplayStr += "\n    ";
993      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
994      for (CXXBasePath::const_iterator Element = Path->begin();
995           Element != Path->end(); ++Element)
996        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
997    }
998  }
999
1000  return PathDisplayStr;
1001}
1002
1003//===----------------------------------------------------------------------===//
1004// C++ class member Handling
1005//===----------------------------------------------------------------------===//
1006
1007/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1008Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1009                                 SourceLocation ASLoc,
1010                                 SourceLocation ColonLoc) {
1011  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1012  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1013                                                  ASLoc, ColonLoc);
1014  CurContext->addHiddenDecl(ASDecl);
1015  return ASDecl;
1016}
1017
1018/// CheckOverrideControl - Check C++0x override control semantics.
1019void Sema::CheckOverrideControl(const Decl *D) {
1020  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
1021  if (!MD || !MD->isVirtual())
1022    return;
1023
1024  if (MD->isDependentContext())
1025    return;
1026
1027  // C++0x [class.virtual]p3:
1028  //   If a virtual function is marked with the virt-specifier override and does
1029  //   not override a member function of a base class,
1030  //   the program is ill-formed.
1031  bool HasOverriddenMethods =
1032    MD->begin_overridden_methods() != MD->end_overridden_methods();
1033  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1034    Diag(MD->getLocation(),
1035                 diag::err_function_marked_override_not_overriding)
1036      << MD->getDeclName();
1037    return;
1038  }
1039}
1040
1041/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1042/// function overrides a virtual member function marked 'final', according to
1043/// C++0x [class.virtual]p3.
1044bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1045                                                  const CXXMethodDecl *Old) {
1046  if (!Old->hasAttr<FinalAttr>())
1047    return false;
1048
1049  Diag(New->getLocation(), diag::err_final_function_overridden)
1050    << New->getDeclName();
1051  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1052  return true;
1053}
1054
1055/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1056/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1057/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1058/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1059/// present but parsing it has been deferred.
1060Decl *
1061Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1062                               MultiTemplateParamsArg TemplateParameterLists,
1063                               ExprTy *BW, const VirtSpecifiers &VS,
1064                               ExprTy *InitExpr, bool HasDeferredInit,
1065                               bool IsDefinition) {
1066  const DeclSpec &DS = D.getDeclSpec();
1067  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1068  DeclarationName Name = NameInfo.getName();
1069  SourceLocation Loc = NameInfo.getLoc();
1070
1071  // For anonymous bitfields, the location should point to the type.
1072  if (Loc.isInvalid())
1073    Loc = D.getSourceRange().getBegin();
1074
1075  Expr *BitWidth = static_cast<Expr*>(BW);
1076  Expr *Init = static_cast<Expr*>(InitExpr);
1077
1078  assert(isa<CXXRecordDecl>(CurContext));
1079  assert(!DS.isFriendSpecified());
1080  assert(!Init || !HasDeferredInit);
1081
1082  bool isFunc = D.isDeclarationOfFunction();
1083
1084  // C++ 9.2p6: A member shall not be declared to have automatic storage
1085  // duration (auto, register) or with the extern storage-class-specifier.
1086  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1087  // data members and cannot be applied to names declared const or static,
1088  // and cannot be applied to reference members.
1089  switch (DS.getStorageClassSpec()) {
1090    case DeclSpec::SCS_unspecified:
1091    case DeclSpec::SCS_typedef:
1092    case DeclSpec::SCS_static:
1093      // FALL THROUGH.
1094      break;
1095    case DeclSpec::SCS_mutable:
1096      if (isFunc) {
1097        if (DS.getStorageClassSpecLoc().isValid())
1098          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1099        else
1100          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1101
1102        // FIXME: It would be nicer if the keyword was ignored only for this
1103        // declarator. Otherwise we could get follow-up errors.
1104        D.getMutableDeclSpec().ClearStorageClassSpecs();
1105      }
1106      break;
1107    default:
1108      if (DS.getStorageClassSpecLoc().isValid())
1109        Diag(DS.getStorageClassSpecLoc(),
1110             diag::err_storageclass_invalid_for_member);
1111      else
1112        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1113      D.getMutableDeclSpec().ClearStorageClassSpecs();
1114  }
1115
1116  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1117                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1118                      !isFunc);
1119
1120  Decl *Member;
1121  if (isInstField) {
1122    CXXScopeSpec &SS = D.getCXXScopeSpec();
1123
1124    if (SS.isSet() && !SS.isInvalid()) {
1125      // The user provided a superfluous scope specifier inside a class
1126      // definition:
1127      //
1128      // class X {
1129      //   int X::member;
1130      // };
1131      DeclContext *DC = 0;
1132      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1133        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1134        << Name << FixItHint::CreateRemoval(SS.getRange());
1135      else
1136        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1137          << Name << SS.getRange();
1138
1139      SS.clear();
1140    }
1141
1142    // FIXME: Check for template parameters!
1143    // FIXME: Check that the name is an identifier!
1144    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1145                         HasDeferredInit, AS);
1146    assert(Member && "HandleField never returns null");
1147  } else {
1148    assert(!HasDeferredInit);
1149
1150    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1151    if (!Member) {
1152      return 0;
1153    }
1154
1155    // Non-instance-fields can't have a bitfield.
1156    if (BitWidth) {
1157      if (Member->isInvalidDecl()) {
1158        // don't emit another diagnostic.
1159      } else if (isa<VarDecl>(Member)) {
1160        // C++ 9.6p3: A bit-field shall not be a static member.
1161        // "static member 'A' cannot be a bit-field"
1162        Diag(Loc, diag::err_static_not_bitfield)
1163          << Name << BitWidth->getSourceRange();
1164      } else if (isa<TypedefDecl>(Member)) {
1165        // "typedef member 'x' cannot be a bit-field"
1166        Diag(Loc, diag::err_typedef_not_bitfield)
1167          << Name << BitWidth->getSourceRange();
1168      } else {
1169        // A function typedef ("typedef int f(); f a;").
1170        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1171        Diag(Loc, diag::err_not_integral_type_bitfield)
1172          << Name << cast<ValueDecl>(Member)->getType()
1173          << BitWidth->getSourceRange();
1174      }
1175
1176      BitWidth = 0;
1177      Member->setInvalidDecl();
1178    }
1179
1180    Member->setAccess(AS);
1181
1182    // If we have declared a member function template, set the access of the
1183    // templated declaration as well.
1184    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1185      FunTmpl->getTemplatedDecl()->setAccess(AS);
1186  }
1187
1188  if (VS.isOverrideSpecified()) {
1189    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1190    if (!MD || !MD->isVirtual()) {
1191      Diag(Member->getLocStart(),
1192           diag::override_keyword_only_allowed_on_virtual_member_functions)
1193        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1194    } else
1195      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1196  }
1197  if (VS.isFinalSpecified()) {
1198    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1199    if (!MD || !MD->isVirtual()) {
1200      Diag(Member->getLocStart(),
1201           diag::override_keyword_only_allowed_on_virtual_member_functions)
1202      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1203    } else
1204      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1205  }
1206
1207  if (VS.getLastLocation().isValid()) {
1208    // Update the end location of a method that has a virt-specifiers.
1209    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1210      MD->setRangeEnd(VS.getLastLocation());
1211  }
1212
1213  CheckOverrideControl(Member);
1214
1215  assert((Name || isInstField) && "No identifier for non-field ?");
1216
1217  if (Init)
1218    AddInitializerToDecl(Member, Init, false,
1219                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1220  else if (DS.getTypeSpecType() == DeclSpec::TST_auto &&
1221           DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1222    // C++0x [dcl.spec.auto]p4: 'auto' can only be used in the type of a static
1223    // data member if a brace-or-equal-initializer is provided.
1224    Diag(Loc, diag::err_auto_var_requires_init)
1225      << Name << cast<ValueDecl>(Member)->getType();
1226    Member->setInvalidDecl();
1227  }
1228
1229  FinalizeDeclaration(Member);
1230
1231  if (isInstField)
1232    FieldCollector->Add(cast<FieldDecl>(Member));
1233  return Member;
1234}
1235
1236/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1237/// in-class initializer for a non-static C++ class member. Such parsing
1238/// is deferred until the class is complete.
1239void
1240Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1241                                       Expr *InitExpr) {
1242  FieldDecl *FD = cast<FieldDecl>(D);
1243
1244  if (!InitExpr) {
1245    FD->setInvalidDecl();
1246    FD->removeInClassInitializer();
1247    return;
1248  }
1249
1250  ExprResult Init = InitExpr;
1251  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1252    // FIXME: if there is no EqualLoc, this is list-initialization.
1253    Init = PerformCopyInitialization(
1254      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1255    if (Init.isInvalid()) {
1256      FD->setInvalidDecl();
1257      return;
1258    }
1259
1260    CheckImplicitConversions(Init.get(), EqualLoc);
1261  }
1262
1263  // C++0x [class.base.init]p7:
1264  //   The initialization of each base and member constitutes a
1265  //   full-expression.
1266  Init = MaybeCreateExprWithCleanups(Init);
1267  if (Init.isInvalid()) {
1268    FD->setInvalidDecl();
1269    return;
1270  }
1271
1272  InitExpr = Init.release();
1273
1274  FD->setInClassInitializer(InitExpr);
1275}
1276
1277/// \brief Find the direct and/or virtual base specifiers that
1278/// correspond to the given base type, for use in base initialization
1279/// within a constructor.
1280static bool FindBaseInitializer(Sema &SemaRef,
1281                                CXXRecordDecl *ClassDecl,
1282                                QualType BaseType,
1283                                const CXXBaseSpecifier *&DirectBaseSpec,
1284                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1285  // First, check for a direct base class.
1286  DirectBaseSpec = 0;
1287  for (CXXRecordDecl::base_class_const_iterator Base
1288         = ClassDecl->bases_begin();
1289       Base != ClassDecl->bases_end(); ++Base) {
1290    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1291      // We found a direct base of this type. That's what we're
1292      // initializing.
1293      DirectBaseSpec = &*Base;
1294      break;
1295    }
1296  }
1297
1298  // Check for a virtual base class.
1299  // FIXME: We might be able to short-circuit this if we know in advance that
1300  // there are no virtual bases.
1301  VirtualBaseSpec = 0;
1302  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1303    // We haven't found a base yet; search the class hierarchy for a
1304    // virtual base class.
1305    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1306                       /*DetectVirtual=*/false);
1307    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1308                              BaseType, Paths)) {
1309      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1310           Path != Paths.end(); ++Path) {
1311        if (Path->back().Base->isVirtual()) {
1312          VirtualBaseSpec = Path->back().Base;
1313          break;
1314        }
1315      }
1316    }
1317  }
1318
1319  return DirectBaseSpec || VirtualBaseSpec;
1320}
1321
1322/// ActOnMemInitializer - Handle a C++ member initializer.
1323MemInitResult
1324Sema::ActOnMemInitializer(Decl *ConstructorD,
1325                          Scope *S,
1326                          CXXScopeSpec &SS,
1327                          IdentifierInfo *MemberOrBase,
1328                          ParsedType TemplateTypeTy,
1329                          SourceLocation IdLoc,
1330                          SourceLocation LParenLoc,
1331                          ExprTy **Args, unsigned NumArgs,
1332                          SourceLocation RParenLoc,
1333                          SourceLocation EllipsisLoc) {
1334  if (!ConstructorD)
1335    return true;
1336
1337  AdjustDeclIfTemplate(ConstructorD);
1338
1339  CXXConstructorDecl *Constructor
1340    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1341  if (!Constructor) {
1342    // The user wrote a constructor initializer on a function that is
1343    // not a C++ constructor. Ignore the error for now, because we may
1344    // have more member initializers coming; we'll diagnose it just
1345    // once in ActOnMemInitializers.
1346    return true;
1347  }
1348
1349  CXXRecordDecl *ClassDecl = Constructor->getParent();
1350
1351  // C++ [class.base.init]p2:
1352  //   Names in a mem-initializer-id are looked up in the scope of the
1353  //   constructor's class and, if not found in that scope, are looked
1354  //   up in the scope containing the constructor's definition.
1355  //   [Note: if the constructor's class contains a member with the
1356  //   same name as a direct or virtual base class of the class, a
1357  //   mem-initializer-id naming the member or base class and composed
1358  //   of a single identifier refers to the class member. A
1359  //   mem-initializer-id for the hidden base class may be specified
1360  //   using a qualified name. ]
1361  if (!SS.getScopeRep() && !TemplateTypeTy) {
1362    // Look for a member, first.
1363    FieldDecl *Member = 0;
1364    DeclContext::lookup_result Result
1365      = ClassDecl->lookup(MemberOrBase);
1366    if (Result.first != Result.second) {
1367      Member = dyn_cast<FieldDecl>(*Result.first);
1368
1369      if (Member) {
1370        if (EllipsisLoc.isValid())
1371          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1372            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1373
1374        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1375                                    LParenLoc, RParenLoc);
1376      }
1377
1378      // Handle anonymous union case.
1379      if (IndirectFieldDecl* IndirectField
1380            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1381        if (EllipsisLoc.isValid())
1382          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1383            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1384
1385         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1386                                       NumArgs, IdLoc,
1387                                       LParenLoc, RParenLoc);
1388      }
1389    }
1390  }
1391  // It didn't name a member, so see if it names a class.
1392  QualType BaseType;
1393  TypeSourceInfo *TInfo = 0;
1394
1395  if (TemplateTypeTy) {
1396    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1397  } else {
1398    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1399    LookupParsedName(R, S, &SS);
1400
1401    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1402    if (!TyD) {
1403      if (R.isAmbiguous()) return true;
1404
1405      // We don't want access-control diagnostics here.
1406      R.suppressDiagnostics();
1407
1408      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1409        bool NotUnknownSpecialization = false;
1410        DeclContext *DC = computeDeclContext(SS, false);
1411        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1412          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1413
1414        if (!NotUnknownSpecialization) {
1415          // When the scope specifier can refer to a member of an unknown
1416          // specialization, we take it as a type name.
1417          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1418                                       SS.getWithLocInContext(Context),
1419                                       *MemberOrBase, IdLoc);
1420          if (BaseType.isNull())
1421            return true;
1422
1423          R.clear();
1424          R.setLookupName(MemberOrBase);
1425        }
1426      }
1427
1428      // If no results were found, try to correct typos.
1429      TypoCorrection Corr;
1430      if (R.empty() && BaseType.isNull() &&
1431          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1432                              ClassDecl, false, CTC_NoKeywords))) {
1433        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1434        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1435        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1436          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1437            // We have found a non-static data member with a similar
1438            // name to what was typed; complain and initialize that
1439            // member.
1440            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1441              << MemberOrBase << true << CorrectedQuotedStr
1442              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1443            Diag(Member->getLocation(), diag::note_previous_decl)
1444              << CorrectedQuotedStr;
1445
1446            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1447                                          LParenLoc, RParenLoc);
1448          }
1449        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1450          const CXXBaseSpecifier *DirectBaseSpec;
1451          const CXXBaseSpecifier *VirtualBaseSpec;
1452          if (FindBaseInitializer(*this, ClassDecl,
1453                                  Context.getTypeDeclType(Type),
1454                                  DirectBaseSpec, VirtualBaseSpec)) {
1455            // We have found a direct or virtual base class with a
1456            // similar name to what was typed; complain and initialize
1457            // that base class.
1458            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1459              << MemberOrBase << false << CorrectedQuotedStr
1460              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1461
1462            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1463                                                             : VirtualBaseSpec;
1464            Diag(BaseSpec->getSourceRange().getBegin(),
1465                 diag::note_base_class_specified_here)
1466              << BaseSpec->getType()
1467              << BaseSpec->getSourceRange();
1468
1469            TyD = Type;
1470          }
1471        }
1472      }
1473
1474      if (!TyD && BaseType.isNull()) {
1475        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1476          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1477        return true;
1478      }
1479    }
1480
1481    if (BaseType.isNull()) {
1482      BaseType = Context.getTypeDeclType(TyD);
1483      if (SS.isSet()) {
1484        NestedNameSpecifier *Qualifier =
1485          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1486
1487        // FIXME: preserve source range information
1488        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1489      }
1490    }
1491  }
1492
1493  if (!TInfo)
1494    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1495
1496  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1497                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1498}
1499
1500/// Checks an initializer expression for use of uninitialized fields, such as
1501/// containing the field that is being initialized. Returns true if there is an
1502/// uninitialized field was used an updates the SourceLocation parameter; false
1503/// otherwise.
1504static bool InitExprContainsUninitializedFields(const Stmt *S,
1505                                                const ValueDecl *LhsField,
1506                                                SourceLocation *L) {
1507  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1508
1509  if (isa<CallExpr>(S)) {
1510    // Do not descend into function calls or constructors, as the use
1511    // of an uninitialized field may be valid. One would have to inspect
1512    // the contents of the function/ctor to determine if it is safe or not.
1513    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1514    // may be safe, depending on what the function/ctor does.
1515    return false;
1516  }
1517  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1518    const NamedDecl *RhsField = ME->getMemberDecl();
1519
1520    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1521      // The member expression points to a static data member.
1522      assert(VD->isStaticDataMember() &&
1523             "Member points to non-static data member!");
1524      (void)VD;
1525      return false;
1526    }
1527
1528    if (isa<EnumConstantDecl>(RhsField)) {
1529      // The member expression points to an enum.
1530      return false;
1531    }
1532
1533    if (RhsField == LhsField) {
1534      // Initializing a field with itself. Throw a warning.
1535      // But wait; there are exceptions!
1536      // Exception #1:  The field may not belong to this record.
1537      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1538      const Expr *base = ME->getBase();
1539      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1540        // Even though the field matches, it does not belong to this record.
1541        return false;
1542      }
1543      // None of the exceptions triggered; return true to indicate an
1544      // uninitialized field was used.
1545      *L = ME->getMemberLoc();
1546      return true;
1547    }
1548  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
1549    // sizeof/alignof doesn't reference contents, do not warn.
1550    return false;
1551  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1552    // address-of doesn't reference contents (the pointer may be dereferenced
1553    // in the same expression but it would be rare; and weird).
1554    if (UOE->getOpcode() == UO_AddrOf)
1555      return false;
1556  }
1557  for (Stmt::const_child_range it = S->children(); it; ++it) {
1558    if (!*it) {
1559      // An expression such as 'member(arg ?: "")' may trigger this.
1560      continue;
1561    }
1562    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1563      return true;
1564  }
1565  return false;
1566}
1567
1568MemInitResult
1569Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1570                             unsigned NumArgs, SourceLocation IdLoc,
1571                             SourceLocation LParenLoc,
1572                             SourceLocation RParenLoc) {
1573  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1574  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1575  assert((DirectMember || IndirectMember) &&
1576         "Member must be a FieldDecl or IndirectFieldDecl");
1577
1578  if (Member->isInvalidDecl())
1579    return true;
1580
1581  // Diagnose value-uses of fields to initialize themselves, e.g.
1582  //   foo(foo)
1583  // where foo is not also a parameter to the constructor.
1584  // TODO: implement -Wuninitialized and fold this into that framework.
1585  for (unsigned i = 0; i < NumArgs; ++i) {
1586    SourceLocation L;
1587    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1588      // FIXME: Return true in the case when other fields are used before being
1589      // uninitialized. For example, let this field be the i'th field. When
1590      // initializing the i'th field, throw a warning if any of the >= i'th
1591      // fields are used, as they are not yet initialized.
1592      // Right now we are only handling the case where the i'th field uses
1593      // itself in its initializer.
1594      Diag(L, diag::warn_field_is_uninit);
1595    }
1596  }
1597
1598  bool HasDependentArg = false;
1599  for (unsigned i = 0; i < NumArgs; i++)
1600    HasDependentArg |= Args[i]->isTypeDependent();
1601
1602  Expr *Init;
1603  if (Member->getType()->isDependentType() || HasDependentArg) {
1604    // Can't check initialization for a member of dependent type or when
1605    // any of the arguments are type-dependent expressions.
1606    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1607                                       RParenLoc,
1608                                       Member->getType().getNonReferenceType());
1609
1610    DiscardCleanupsInEvaluationContext();
1611  } else {
1612    // Initialize the member.
1613    InitializedEntity MemberEntity =
1614      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1615                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1616    InitializationKind Kind =
1617      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1618
1619    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1620
1621    ExprResult MemberInit =
1622      InitSeq.Perform(*this, MemberEntity, Kind,
1623                      MultiExprArg(*this, Args, NumArgs), 0);
1624    if (MemberInit.isInvalid())
1625      return true;
1626
1627    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1628
1629    // C++0x [class.base.init]p7:
1630    //   The initialization of each base and member constitutes a
1631    //   full-expression.
1632    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1633    if (MemberInit.isInvalid())
1634      return true;
1635
1636    // If we are in a dependent context, template instantiation will
1637    // perform this type-checking again. Just save the arguments that we
1638    // received in a ParenListExpr.
1639    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1640    // of the information that we have about the member
1641    // initializer. However, deconstructing the ASTs is a dicey process,
1642    // and this approach is far more likely to get the corner cases right.
1643    if (CurContext->isDependentContext())
1644      Init = new (Context) ParenListExpr(
1645          Context, LParenLoc, Args, NumArgs, RParenLoc,
1646          Member->getType().getNonReferenceType());
1647    else
1648      Init = MemberInit.get();
1649  }
1650
1651  if (DirectMember) {
1652    return new (Context) CXXCtorInitializer(Context, DirectMember,
1653                                                    IdLoc, LParenLoc, Init,
1654                                                    RParenLoc);
1655  } else {
1656    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1657                                                    IdLoc, LParenLoc, Init,
1658                                                    RParenLoc);
1659  }
1660}
1661
1662MemInitResult
1663Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1664                                 Expr **Args, unsigned NumArgs,
1665                                 SourceLocation NameLoc,
1666                                 SourceLocation LParenLoc,
1667                                 SourceLocation RParenLoc,
1668                                 CXXRecordDecl *ClassDecl) {
1669  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1670  if (!LangOpts.CPlusPlus0x)
1671    return Diag(Loc, diag::err_delegation_0x_only)
1672      << TInfo->getTypeLoc().getLocalSourceRange();
1673
1674  // Initialize the object.
1675  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
1676                                     QualType(ClassDecl->getTypeForDecl(), 0));
1677  InitializationKind Kind =
1678    InitializationKind::CreateDirect(NameLoc, LParenLoc, RParenLoc);
1679
1680  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
1681
1682  ExprResult DelegationInit =
1683    InitSeq.Perform(*this, DelegationEntity, Kind,
1684                    MultiExprArg(*this, Args, NumArgs), 0);
1685  if (DelegationInit.isInvalid())
1686    return true;
1687
1688  CXXConstructExpr *ConExpr = cast<CXXConstructExpr>(DelegationInit.get());
1689  CXXConstructorDecl *Constructor
1690    = ConExpr->getConstructor();
1691  assert(Constructor && "Delegating constructor with no target?");
1692
1693  CheckImplicitConversions(DelegationInit.get(), LParenLoc);
1694
1695  // C++0x [class.base.init]p7:
1696  //   The initialization of each base and member constitutes a
1697  //   full-expression.
1698  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
1699  if (DelegationInit.isInvalid())
1700    return true;
1701
1702  assert(!CurContext->isDependentContext());
1703  return new (Context) CXXCtorInitializer(Context, Loc, LParenLoc, Constructor,
1704                                          DelegationInit.takeAs<Expr>(),
1705                                          RParenLoc);
1706}
1707
1708MemInitResult
1709Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1710                           Expr **Args, unsigned NumArgs,
1711                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1712                           CXXRecordDecl *ClassDecl,
1713                           SourceLocation EllipsisLoc) {
1714  bool HasDependentArg = false;
1715  for (unsigned i = 0; i < NumArgs; i++)
1716    HasDependentArg |= Args[i]->isTypeDependent();
1717
1718  SourceLocation BaseLoc
1719    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1720
1721  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1722    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1723             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1724
1725  // C++ [class.base.init]p2:
1726  //   [...] Unless the mem-initializer-id names a nonstatic data
1727  //   member of the constructor's class or a direct or virtual base
1728  //   of that class, the mem-initializer is ill-formed. A
1729  //   mem-initializer-list can initialize a base class using any
1730  //   name that denotes that base class type.
1731  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1732
1733  if (EllipsisLoc.isValid()) {
1734    // This is a pack expansion.
1735    if (!BaseType->containsUnexpandedParameterPack())  {
1736      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1737        << SourceRange(BaseLoc, RParenLoc);
1738
1739      EllipsisLoc = SourceLocation();
1740    }
1741  } else {
1742    // Check for any unexpanded parameter packs.
1743    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1744      return true;
1745
1746    for (unsigned I = 0; I != NumArgs; ++I)
1747      if (DiagnoseUnexpandedParameterPack(Args[I]))
1748        return true;
1749  }
1750
1751  // Check for direct and virtual base classes.
1752  const CXXBaseSpecifier *DirectBaseSpec = 0;
1753  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1754  if (!Dependent) {
1755    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1756                                       BaseType))
1757      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs, BaseLoc,
1758                                        LParenLoc, RParenLoc, ClassDecl);
1759
1760    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1761                        VirtualBaseSpec);
1762
1763    // C++ [base.class.init]p2:
1764    // Unless the mem-initializer-id names a nonstatic data member of the
1765    // constructor's class or a direct or virtual base of that class, the
1766    // mem-initializer is ill-formed.
1767    if (!DirectBaseSpec && !VirtualBaseSpec) {
1768      // If the class has any dependent bases, then it's possible that
1769      // one of those types will resolve to the same type as
1770      // BaseType. Therefore, just treat this as a dependent base
1771      // class initialization.  FIXME: Should we try to check the
1772      // initialization anyway? It seems odd.
1773      if (ClassDecl->hasAnyDependentBases())
1774        Dependent = true;
1775      else
1776        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1777          << BaseType << Context.getTypeDeclType(ClassDecl)
1778          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1779    }
1780  }
1781
1782  if (Dependent) {
1783    // Can't check initialization for a base of dependent type or when
1784    // any of the arguments are type-dependent expressions.
1785    ExprResult BaseInit
1786      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1787                                          RParenLoc, BaseType));
1788
1789    DiscardCleanupsInEvaluationContext();
1790
1791    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1792                                                    /*IsVirtual=*/false,
1793                                                    LParenLoc,
1794                                                    BaseInit.takeAs<Expr>(),
1795                                                    RParenLoc,
1796                                                    EllipsisLoc);
1797  }
1798
1799  // C++ [base.class.init]p2:
1800  //   If a mem-initializer-id is ambiguous because it designates both
1801  //   a direct non-virtual base class and an inherited virtual base
1802  //   class, the mem-initializer is ill-formed.
1803  if (DirectBaseSpec && VirtualBaseSpec)
1804    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1805      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1806
1807  CXXBaseSpecifier *BaseSpec
1808    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1809  if (!BaseSpec)
1810    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1811
1812  // Initialize the base.
1813  InitializedEntity BaseEntity =
1814    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1815  InitializationKind Kind =
1816    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1817
1818  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1819
1820  ExprResult BaseInit =
1821    InitSeq.Perform(*this, BaseEntity, Kind,
1822                    MultiExprArg(*this, Args, NumArgs), 0);
1823  if (BaseInit.isInvalid())
1824    return true;
1825
1826  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1827
1828  // C++0x [class.base.init]p7:
1829  //   The initialization of each base and member constitutes a
1830  //   full-expression.
1831  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1832  if (BaseInit.isInvalid())
1833    return true;
1834
1835  // If we are in a dependent context, template instantiation will
1836  // perform this type-checking again. Just save the arguments that we
1837  // received in a ParenListExpr.
1838  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1839  // of the information that we have about the base
1840  // initializer. However, deconstructing the ASTs is a dicey process,
1841  // and this approach is far more likely to get the corner cases right.
1842  if (CurContext->isDependentContext()) {
1843    ExprResult Init
1844      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1845                                          RParenLoc, BaseType));
1846    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1847                                                    BaseSpec->isVirtual(),
1848                                                    LParenLoc,
1849                                                    Init.takeAs<Expr>(),
1850                                                    RParenLoc,
1851                                                    EllipsisLoc);
1852  }
1853
1854  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1855                                                  BaseSpec->isVirtual(),
1856                                                  LParenLoc,
1857                                                  BaseInit.takeAs<Expr>(),
1858                                                  RParenLoc,
1859                                                  EllipsisLoc);
1860}
1861
1862/// ImplicitInitializerKind - How an implicit base or member initializer should
1863/// initialize its base or member.
1864enum ImplicitInitializerKind {
1865  IIK_Default,
1866  IIK_Copy,
1867  IIK_Move
1868};
1869
1870static bool
1871BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1872                             ImplicitInitializerKind ImplicitInitKind,
1873                             CXXBaseSpecifier *BaseSpec,
1874                             bool IsInheritedVirtualBase,
1875                             CXXCtorInitializer *&CXXBaseInit) {
1876  InitializedEntity InitEntity
1877    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1878                                        IsInheritedVirtualBase);
1879
1880  ExprResult BaseInit;
1881
1882  switch (ImplicitInitKind) {
1883  case IIK_Default: {
1884    InitializationKind InitKind
1885      = InitializationKind::CreateDefault(Constructor->getLocation());
1886    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1887    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1888                               MultiExprArg(SemaRef, 0, 0));
1889    break;
1890  }
1891
1892  case IIK_Copy: {
1893    ParmVarDecl *Param = Constructor->getParamDecl(0);
1894    QualType ParamType = Param->getType().getNonReferenceType();
1895
1896    Expr *CopyCtorArg =
1897      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1898                          Constructor->getLocation(), ParamType,
1899                          VK_LValue, 0);
1900
1901    // Cast to the base class to avoid ambiguities.
1902    QualType ArgTy =
1903      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1904                                       ParamType.getQualifiers());
1905
1906    CXXCastPath BasePath;
1907    BasePath.push_back(BaseSpec);
1908    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1909                                            CK_UncheckedDerivedToBase,
1910                                            VK_LValue, &BasePath).take();
1911
1912    InitializationKind InitKind
1913      = InitializationKind::CreateDirect(Constructor->getLocation(),
1914                                         SourceLocation(), SourceLocation());
1915    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1916                                   &CopyCtorArg, 1);
1917    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1918                               MultiExprArg(&CopyCtorArg, 1));
1919    break;
1920  }
1921
1922  case IIK_Move:
1923    assert(false && "Unhandled initializer kind!");
1924  }
1925
1926  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1927  if (BaseInit.isInvalid())
1928    return true;
1929
1930  CXXBaseInit =
1931    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1932               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1933                                                        SourceLocation()),
1934                                             BaseSpec->isVirtual(),
1935                                             SourceLocation(),
1936                                             BaseInit.takeAs<Expr>(),
1937                                             SourceLocation(),
1938                                             SourceLocation());
1939
1940  return false;
1941}
1942
1943static bool
1944BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1945                               ImplicitInitializerKind ImplicitInitKind,
1946                               FieldDecl *Field,
1947                               CXXCtorInitializer *&CXXMemberInit) {
1948  if (Field->isInvalidDecl())
1949    return true;
1950
1951  SourceLocation Loc = Constructor->getLocation();
1952
1953  if (ImplicitInitKind == IIK_Copy) {
1954    ParmVarDecl *Param = Constructor->getParamDecl(0);
1955    QualType ParamType = Param->getType().getNonReferenceType();
1956
1957    // Suppress copying zero-width bitfields.
1958    if (const Expr *Width = Field->getBitWidth())
1959      if (Width->EvaluateAsInt(SemaRef.Context) == 0)
1960        return false;
1961
1962    Expr *MemberExprBase =
1963      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), Param,
1964                          Loc, ParamType, VK_LValue, 0);
1965
1966    // Build a reference to this field within the parameter.
1967    CXXScopeSpec SS;
1968    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1969                              Sema::LookupMemberName);
1970    MemberLookup.addDecl(Field, AS_public);
1971    MemberLookup.resolveKind();
1972    ExprResult CopyCtorArg
1973      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1974                                         ParamType, Loc,
1975                                         /*IsArrow=*/false,
1976                                         SS,
1977                                         /*FirstQualifierInScope=*/0,
1978                                         MemberLookup,
1979                                         /*TemplateArgs=*/0);
1980    if (CopyCtorArg.isInvalid())
1981      return true;
1982
1983    // When the field we are copying is an array, create index variables for
1984    // each dimension of the array. We use these index variables to subscript
1985    // the source array, and other clients (e.g., CodeGen) will perform the
1986    // necessary iteration with these index variables.
1987    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1988    QualType BaseType = Field->getType();
1989    QualType SizeType = SemaRef.Context.getSizeType();
1990    while (const ConstantArrayType *Array
1991                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1992      // Create the iteration variable for this array index.
1993      IdentifierInfo *IterationVarName = 0;
1994      {
1995        llvm::SmallString<8> Str;
1996        llvm::raw_svector_ostream OS(Str);
1997        OS << "__i" << IndexVariables.size();
1998        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1999      }
2000      VarDecl *IterationVar
2001        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2002                          IterationVarName, SizeType,
2003                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2004                          SC_None, SC_None);
2005      IndexVariables.push_back(IterationVar);
2006
2007      // Create a reference to the iteration variable.
2008      ExprResult IterationVarRef
2009        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
2010      assert(!IterationVarRef.isInvalid() &&
2011             "Reference to invented variable cannot fail!");
2012
2013      // Subscript the array with this iteration variable.
2014      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
2015                                                            Loc,
2016                                                        IterationVarRef.take(),
2017                                                            Loc);
2018      if (CopyCtorArg.isInvalid())
2019        return true;
2020
2021      BaseType = Array->getElementType();
2022    }
2023
2024    // Construct the entity that we will be initializing. For an array, this
2025    // will be first element in the array, which may require several levels
2026    // of array-subscript entities.
2027    llvm::SmallVector<InitializedEntity, 4> Entities;
2028    Entities.reserve(1 + IndexVariables.size());
2029    Entities.push_back(InitializedEntity::InitializeMember(Field));
2030    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2031      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2032                                                              0,
2033                                                              Entities.back()));
2034
2035    // Direct-initialize to use the copy constructor.
2036    InitializationKind InitKind =
2037      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2038
2039    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
2040    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2041                                   &CopyCtorArgE, 1);
2042
2043    ExprResult MemberInit
2044      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2045                        MultiExprArg(&CopyCtorArgE, 1));
2046    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2047    if (MemberInit.isInvalid())
2048      return true;
2049
2050    CXXMemberInit
2051      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
2052                                           MemberInit.takeAs<Expr>(), Loc,
2053                                           IndexVariables.data(),
2054                                           IndexVariables.size());
2055    return false;
2056  }
2057
2058  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2059
2060  QualType FieldBaseElementType =
2061    SemaRef.Context.getBaseElementType(Field->getType());
2062
2063  if (FieldBaseElementType->isRecordType()) {
2064    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
2065    InitializationKind InitKind =
2066      InitializationKind::CreateDefault(Loc);
2067
2068    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2069    ExprResult MemberInit =
2070      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2071
2072    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2073    if (MemberInit.isInvalid())
2074      return true;
2075
2076    CXXMemberInit =
2077      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2078                                                       Field, Loc, Loc,
2079                                                       MemberInit.get(),
2080                                                       Loc);
2081    return false;
2082  }
2083
2084  if (!Field->getParent()->isUnion()) {
2085    if (FieldBaseElementType->isReferenceType()) {
2086      SemaRef.Diag(Constructor->getLocation(),
2087                   diag::err_uninitialized_member_in_ctor)
2088      << (int)Constructor->isImplicit()
2089      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2090      << 0 << Field->getDeclName();
2091      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2092      return true;
2093    }
2094
2095    if (FieldBaseElementType.isConstQualified()) {
2096      SemaRef.Diag(Constructor->getLocation(),
2097                   diag::err_uninitialized_member_in_ctor)
2098      << (int)Constructor->isImplicit()
2099      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2100      << 1 << Field->getDeclName();
2101      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2102      return true;
2103    }
2104  }
2105
2106  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2107      FieldBaseElementType->isObjCRetainableType() &&
2108      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2109      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2110    // Instant objects:
2111    //   Default-initialize Objective-C pointers to NULL.
2112    CXXMemberInit
2113      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2114                                                 Loc, Loc,
2115                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2116                                                 Loc);
2117    return false;
2118  }
2119
2120  // Nothing to initialize.
2121  CXXMemberInit = 0;
2122  return false;
2123}
2124
2125namespace {
2126struct BaseAndFieldInfo {
2127  Sema &S;
2128  CXXConstructorDecl *Ctor;
2129  bool AnyErrorsInInits;
2130  ImplicitInitializerKind IIK;
2131  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2132  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
2133
2134  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2135    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2136    // FIXME: Handle implicit move constructors.
2137    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
2138      IIK = IIK_Copy;
2139    else
2140      IIK = IIK_Default;
2141  }
2142};
2143}
2144
2145static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2146                                    FieldDecl *Top, FieldDecl *Field) {
2147
2148  // Overwhelmingly common case: we have a direct initializer for this field.
2149  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2150    Info.AllToInit.push_back(Init);
2151    return false;
2152  }
2153
2154  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2155  // has a brace-or-equal-initializer, the entity is initialized as specified
2156  // in [dcl.init].
2157  if (Field->hasInClassInitializer()) {
2158    Info.AllToInit.push_back(
2159      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2160                                               SourceLocation(),
2161                                               SourceLocation(), 0,
2162                                               SourceLocation()));
2163    return false;
2164  }
2165
2166  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
2167    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
2168    assert(FieldClassType && "anonymous struct/union without record type");
2169    CXXRecordDecl *FieldClassDecl
2170      = cast<CXXRecordDecl>(FieldClassType->getDecl());
2171
2172    // Even though union members never have non-trivial default
2173    // constructions in C++03, we still build member initializers for aggregate
2174    // record types which can be union members, and C++0x allows non-trivial
2175    // default constructors for union members, so we ensure that only one
2176    // member is initialized for these.
2177    if (FieldClassDecl->isUnion()) {
2178      // First check for an explicit initializer for one field.
2179      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2180           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2181        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
2182          Info.AllToInit.push_back(Init);
2183
2184          // Once we've initialized a field of an anonymous union, the union
2185          // field in the class is also initialized, so exit immediately.
2186          return false;
2187        } else if ((*FA)->isAnonymousStructOrUnion()) {
2188          if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2189            return true;
2190        }
2191      }
2192
2193      // FIXME: C++0x unrestricted unions might call a default constructor here.
2194      return false;
2195    } else {
2196      // For structs, we simply descend through to initialize all members where
2197      // necessary.
2198      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
2199           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
2200        if (CollectFieldInitializer(SemaRef, Info, Top, *FA))
2201          return true;
2202      }
2203    }
2204  }
2205
2206  // Don't try to build an implicit initializer if there were semantic
2207  // errors in any of the initializers (and therefore we might be
2208  // missing some that the user actually wrote).
2209  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2210    return false;
2211
2212  CXXCtorInitializer *Init = 0;
2213  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
2214    return true;
2215
2216  if (Init)
2217    Info.AllToInit.push_back(Init);
2218
2219  return false;
2220}
2221
2222bool
2223Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2224                               CXXCtorInitializer *Initializer) {
2225  assert(Initializer->isDelegatingInitializer());
2226  Constructor->setNumCtorInitializers(1);
2227  CXXCtorInitializer **initializer =
2228    new (Context) CXXCtorInitializer*[1];
2229  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2230  Constructor->setCtorInitializers(initializer);
2231
2232  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2233    MarkDeclarationReferenced(Initializer->getSourceLocation(), Dtor);
2234    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2235  }
2236
2237  DelegatingCtorDecls.push_back(Constructor);
2238
2239  return false;
2240}
2241
2242bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2243                               CXXCtorInitializer **Initializers,
2244                               unsigned NumInitializers,
2245                               bool AnyErrors) {
2246  if (Constructor->getDeclContext()->isDependentContext()) {
2247    // Just store the initializers as written, they will be checked during
2248    // instantiation.
2249    if (NumInitializers > 0) {
2250      Constructor->setNumCtorInitializers(NumInitializers);
2251      CXXCtorInitializer **baseOrMemberInitializers =
2252        new (Context) CXXCtorInitializer*[NumInitializers];
2253      memcpy(baseOrMemberInitializers, Initializers,
2254             NumInitializers * sizeof(CXXCtorInitializer*));
2255      Constructor->setCtorInitializers(baseOrMemberInitializers);
2256    }
2257
2258    return false;
2259  }
2260
2261  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2262
2263  // We need to build the initializer AST according to order of construction
2264  // and not what user specified in the Initializers list.
2265  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2266  if (!ClassDecl)
2267    return true;
2268
2269  bool HadError = false;
2270
2271  for (unsigned i = 0; i < NumInitializers; i++) {
2272    CXXCtorInitializer *Member = Initializers[i];
2273
2274    if (Member->isBaseInitializer())
2275      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2276    else
2277      Info.AllBaseFields[Member->getAnyMember()] = Member;
2278  }
2279
2280  // Keep track of the direct virtual bases.
2281  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2282  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2283       E = ClassDecl->bases_end(); I != E; ++I) {
2284    if (I->isVirtual())
2285      DirectVBases.insert(I);
2286  }
2287
2288  // Push virtual bases before others.
2289  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2290       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2291
2292    if (CXXCtorInitializer *Value
2293        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2294      Info.AllToInit.push_back(Value);
2295    } else if (!AnyErrors) {
2296      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2297      CXXCtorInitializer *CXXBaseInit;
2298      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2299                                       VBase, IsInheritedVirtualBase,
2300                                       CXXBaseInit)) {
2301        HadError = true;
2302        continue;
2303      }
2304
2305      Info.AllToInit.push_back(CXXBaseInit);
2306    }
2307  }
2308
2309  // Non-virtual bases.
2310  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2311       E = ClassDecl->bases_end(); Base != E; ++Base) {
2312    // Virtuals are in the virtual base list and already constructed.
2313    if (Base->isVirtual())
2314      continue;
2315
2316    if (CXXCtorInitializer *Value
2317          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2318      Info.AllToInit.push_back(Value);
2319    } else if (!AnyErrors) {
2320      CXXCtorInitializer *CXXBaseInit;
2321      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2322                                       Base, /*IsInheritedVirtualBase=*/false,
2323                                       CXXBaseInit)) {
2324        HadError = true;
2325        continue;
2326      }
2327
2328      Info.AllToInit.push_back(CXXBaseInit);
2329    }
2330  }
2331
2332  // Fields.
2333  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2334       E = ClassDecl->field_end(); Field != E; ++Field) {
2335    if ((*Field)->getType()->isIncompleteArrayType()) {
2336      assert(ClassDecl->hasFlexibleArrayMember() &&
2337             "Incomplete array type is not valid");
2338      continue;
2339    }
2340    if (CollectFieldInitializer(*this, Info, *Field, *Field))
2341      HadError = true;
2342  }
2343
2344  NumInitializers = Info.AllToInit.size();
2345  if (NumInitializers > 0) {
2346    Constructor->setNumCtorInitializers(NumInitializers);
2347    CXXCtorInitializer **baseOrMemberInitializers =
2348      new (Context) CXXCtorInitializer*[NumInitializers];
2349    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2350           NumInitializers * sizeof(CXXCtorInitializer*));
2351    Constructor->setCtorInitializers(baseOrMemberInitializers);
2352
2353    // Constructors implicitly reference the base and member
2354    // destructors.
2355    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2356                                           Constructor->getParent());
2357  }
2358
2359  return HadError;
2360}
2361
2362static void *GetKeyForTopLevelField(FieldDecl *Field) {
2363  // For anonymous unions, use the class declaration as the key.
2364  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2365    if (RT->getDecl()->isAnonymousStructOrUnion())
2366      return static_cast<void *>(RT->getDecl());
2367  }
2368  return static_cast<void *>(Field);
2369}
2370
2371static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2372  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2373}
2374
2375static void *GetKeyForMember(ASTContext &Context,
2376                             CXXCtorInitializer *Member) {
2377  if (!Member->isAnyMemberInitializer())
2378    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2379
2380  // For fields injected into the class via declaration of an anonymous union,
2381  // use its anonymous union class declaration as the unique key.
2382  FieldDecl *Field = Member->getAnyMember();
2383
2384  // If the field is a member of an anonymous struct or union, our key
2385  // is the anonymous record decl that's a direct child of the class.
2386  RecordDecl *RD = Field->getParent();
2387  if (RD->isAnonymousStructOrUnion()) {
2388    while (true) {
2389      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2390      if (Parent->isAnonymousStructOrUnion())
2391        RD = Parent;
2392      else
2393        break;
2394    }
2395
2396    return static_cast<void *>(RD);
2397  }
2398
2399  return static_cast<void *>(Field);
2400}
2401
2402static void
2403DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2404                                  const CXXConstructorDecl *Constructor,
2405                                  CXXCtorInitializer **Inits,
2406                                  unsigned NumInits) {
2407  if (Constructor->getDeclContext()->isDependentContext())
2408    return;
2409
2410  // Don't check initializers order unless the warning is enabled at the
2411  // location of at least one initializer.
2412  bool ShouldCheckOrder = false;
2413  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2414    CXXCtorInitializer *Init = Inits[InitIndex];
2415    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2416                                         Init->getSourceLocation())
2417          != Diagnostic::Ignored) {
2418      ShouldCheckOrder = true;
2419      break;
2420    }
2421  }
2422  if (!ShouldCheckOrder)
2423    return;
2424
2425  // Build the list of bases and members in the order that they'll
2426  // actually be initialized.  The explicit initializers should be in
2427  // this same order but may be missing things.
2428  llvm::SmallVector<const void*, 32> IdealInitKeys;
2429
2430  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2431
2432  // 1. Virtual bases.
2433  for (CXXRecordDecl::base_class_const_iterator VBase =
2434       ClassDecl->vbases_begin(),
2435       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2436    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2437
2438  // 2. Non-virtual bases.
2439  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2440       E = ClassDecl->bases_end(); Base != E; ++Base) {
2441    if (Base->isVirtual())
2442      continue;
2443    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2444  }
2445
2446  // 3. Direct fields.
2447  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2448       E = ClassDecl->field_end(); Field != E; ++Field)
2449    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2450
2451  unsigned NumIdealInits = IdealInitKeys.size();
2452  unsigned IdealIndex = 0;
2453
2454  CXXCtorInitializer *PrevInit = 0;
2455  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2456    CXXCtorInitializer *Init = Inits[InitIndex];
2457    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2458
2459    // Scan forward to try to find this initializer in the idealized
2460    // initializers list.
2461    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2462      if (InitKey == IdealInitKeys[IdealIndex])
2463        break;
2464
2465    // If we didn't find this initializer, it must be because we
2466    // scanned past it on a previous iteration.  That can only
2467    // happen if we're out of order;  emit a warning.
2468    if (IdealIndex == NumIdealInits && PrevInit) {
2469      Sema::SemaDiagnosticBuilder D =
2470        SemaRef.Diag(PrevInit->getSourceLocation(),
2471                     diag::warn_initializer_out_of_order);
2472
2473      if (PrevInit->isAnyMemberInitializer())
2474        D << 0 << PrevInit->getAnyMember()->getDeclName();
2475      else
2476        D << 1 << PrevInit->getBaseClassInfo()->getType();
2477
2478      if (Init->isAnyMemberInitializer())
2479        D << 0 << Init->getAnyMember()->getDeclName();
2480      else
2481        D << 1 << Init->getBaseClassInfo()->getType();
2482
2483      // Move back to the initializer's location in the ideal list.
2484      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2485        if (InitKey == IdealInitKeys[IdealIndex])
2486          break;
2487
2488      assert(IdealIndex != NumIdealInits &&
2489             "initializer not found in initializer list");
2490    }
2491
2492    PrevInit = Init;
2493  }
2494}
2495
2496namespace {
2497bool CheckRedundantInit(Sema &S,
2498                        CXXCtorInitializer *Init,
2499                        CXXCtorInitializer *&PrevInit) {
2500  if (!PrevInit) {
2501    PrevInit = Init;
2502    return false;
2503  }
2504
2505  if (FieldDecl *Field = Init->getMember())
2506    S.Diag(Init->getSourceLocation(),
2507           diag::err_multiple_mem_initialization)
2508      << Field->getDeclName()
2509      << Init->getSourceRange();
2510  else {
2511    const Type *BaseClass = Init->getBaseClass();
2512    assert(BaseClass && "neither field nor base");
2513    S.Diag(Init->getSourceLocation(),
2514           diag::err_multiple_base_initialization)
2515      << QualType(BaseClass, 0)
2516      << Init->getSourceRange();
2517  }
2518  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2519    << 0 << PrevInit->getSourceRange();
2520
2521  return true;
2522}
2523
2524typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2525typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2526
2527bool CheckRedundantUnionInit(Sema &S,
2528                             CXXCtorInitializer *Init,
2529                             RedundantUnionMap &Unions) {
2530  FieldDecl *Field = Init->getAnyMember();
2531  RecordDecl *Parent = Field->getParent();
2532  if (!Parent->isAnonymousStructOrUnion())
2533    return false;
2534
2535  NamedDecl *Child = Field;
2536  do {
2537    if (Parent->isUnion()) {
2538      UnionEntry &En = Unions[Parent];
2539      if (En.first && En.first != Child) {
2540        S.Diag(Init->getSourceLocation(),
2541               diag::err_multiple_mem_union_initialization)
2542          << Field->getDeclName()
2543          << Init->getSourceRange();
2544        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2545          << 0 << En.second->getSourceRange();
2546        return true;
2547      } else if (!En.first) {
2548        En.first = Child;
2549        En.second = Init;
2550      }
2551    }
2552
2553    Child = Parent;
2554    Parent = cast<RecordDecl>(Parent->getDeclContext());
2555  } while (Parent->isAnonymousStructOrUnion());
2556
2557  return false;
2558}
2559}
2560
2561/// ActOnMemInitializers - Handle the member initializers for a constructor.
2562void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2563                                SourceLocation ColonLoc,
2564                                MemInitTy **meminits, unsigned NumMemInits,
2565                                bool AnyErrors) {
2566  if (!ConstructorDecl)
2567    return;
2568
2569  AdjustDeclIfTemplate(ConstructorDecl);
2570
2571  CXXConstructorDecl *Constructor
2572    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2573
2574  if (!Constructor) {
2575    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2576    return;
2577  }
2578
2579  CXXCtorInitializer **MemInits =
2580    reinterpret_cast<CXXCtorInitializer **>(meminits);
2581
2582  // Mapping for the duplicate initializers check.
2583  // For member initializers, this is keyed with a FieldDecl*.
2584  // For base initializers, this is keyed with a Type*.
2585  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2586
2587  // Mapping for the inconsistent anonymous-union initializers check.
2588  RedundantUnionMap MemberUnions;
2589
2590  bool HadError = false;
2591  for (unsigned i = 0; i < NumMemInits; i++) {
2592    CXXCtorInitializer *Init = MemInits[i];
2593
2594    // Set the source order index.
2595    Init->setSourceOrder(i);
2596
2597    if (Init->isAnyMemberInitializer()) {
2598      FieldDecl *Field = Init->getAnyMember();
2599      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2600          CheckRedundantUnionInit(*this, Init, MemberUnions))
2601        HadError = true;
2602    } else if (Init->isBaseInitializer()) {
2603      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2604      if (CheckRedundantInit(*this, Init, Members[Key]))
2605        HadError = true;
2606    } else {
2607      assert(Init->isDelegatingInitializer());
2608      // This must be the only initializer
2609      if (i != 0 || NumMemInits > 1) {
2610        Diag(MemInits[0]->getSourceLocation(),
2611             diag::err_delegating_initializer_alone)
2612          << MemInits[0]->getSourceRange();
2613        HadError = true;
2614        // We will treat this as being the only initializer.
2615      }
2616      SetDelegatingInitializer(Constructor, MemInits[i]);
2617      // Return immediately as the initializer is set.
2618      return;
2619    }
2620  }
2621
2622  if (HadError)
2623    return;
2624
2625  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2626
2627  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2628}
2629
2630void
2631Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2632                                             CXXRecordDecl *ClassDecl) {
2633  // Ignore dependent contexts.
2634  if (ClassDecl->isDependentContext())
2635    return;
2636
2637  // FIXME: all the access-control diagnostics are positioned on the
2638  // field/base declaration.  That's probably good; that said, the
2639  // user might reasonably want to know why the destructor is being
2640  // emitted, and we currently don't say.
2641
2642  // Non-static data members.
2643  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2644       E = ClassDecl->field_end(); I != E; ++I) {
2645    FieldDecl *Field = *I;
2646    if (Field->isInvalidDecl())
2647      continue;
2648    QualType FieldType = Context.getBaseElementType(Field->getType());
2649
2650    const RecordType* RT = FieldType->getAs<RecordType>();
2651    if (!RT)
2652      continue;
2653
2654    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2655    if (FieldClassDecl->isInvalidDecl())
2656      continue;
2657    if (FieldClassDecl->hasTrivialDestructor())
2658      continue;
2659
2660    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2661    assert(Dtor && "No dtor found for FieldClassDecl!");
2662    CheckDestructorAccess(Field->getLocation(), Dtor,
2663                          PDiag(diag::err_access_dtor_field)
2664                            << Field->getDeclName()
2665                            << FieldType);
2666
2667    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2668  }
2669
2670  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2671
2672  // Bases.
2673  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2674       E = ClassDecl->bases_end(); Base != E; ++Base) {
2675    // Bases are always records in a well-formed non-dependent class.
2676    const RecordType *RT = Base->getType()->getAs<RecordType>();
2677
2678    // Remember direct virtual bases.
2679    if (Base->isVirtual())
2680      DirectVirtualBases.insert(RT);
2681
2682    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2683    // If our base class is invalid, we probably can't get its dtor anyway.
2684    if (BaseClassDecl->isInvalidDecl())
2685      continue;
2686    // Ignore trivial destructors.
2687    if (BaseClassDecl->hasTrivialDestructor())
2688      continue;
2689
2690    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2691    assert(Dtor && "No dtor found for BaseClassDecl!");
2692
2693    // FIXME: caret should be on the start of the class name
2694    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2695                          PDiag(diag::err_access_dtor_base)
2696                            << Base->getType()
2697                            << Base->getSourceRange());
2698
2699    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2700  }
2701
2702  // Virtual bases.
2703  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2704       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2705
2706    // Bases are always records in a well-formed non-dependent class.
2707    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2708
2709    // Ignore direct virtual bases.
2710    if (DirectVirtualBases.count(RT))
2711      continue;
2712
2713    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2714    // If our base class is invalid, we probably can't get its dtor anyway.
2715    if (BaseClassDecl->isInvalidDecl())
2716      continue;
2717    // Ignore trivial destructors.
2718    if (BaseClassDecl->hasTrivialDestructor())
2719      continue;
2720
2721    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2722    assert(Dtor && "No dtor found for BaseClassDecl!");
2723    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2724                          PDiag(diag::err_access_dtor_vbase)
2725                            << VBase->getType());
2726
2727    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2728  }
2729}
2730
2731void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2732  if (!CDtorDecl)
2733    return;
2734
2735  if (CXXConstructorDecl *Constructor
2736      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2737    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2738}
2739
2740bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2741                                  unsigned DiagID, AbstractDiagSelID SelID) {
2742  if (SelID == -1)
2743    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2744  else
2745    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2746}
2747
2748bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2749                                  const PartialDiagnostic &PD) {
2750  if (!getLangOptions().CPlusPlus)
2751    return false;
2752
2753  if (const ArrayType *AT = Context.getAsArrayType(T))
2754    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2755
2756  if (const PointerType *PT = T->getAs<PointerType>()) {
2757    // Find the innermost pointer type.
2758    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2759      PT = T;
2760
2761    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2762      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2763  }
2764
2765  const RecordType *RT = T->getAs<RecordType>();
2766  if (!RT)
2767    return false;
2768
2769  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2770
2771  // We can't answer whether something is abstract until it has a
2772  // definition.  If it's currently being defined, we'll walk back
2773  // over all the declarations when we have a full definition.
2774  const CXXRecordDecl *Def = RD->getDefinition();
2775  if (!Def || Def->isBeingDefined())
2776    return false;
2777
2778  if (!RD->isAbstract())
2779    return false;
2780
2781  Diag(Loc, PD) << RD->getDeclName();
2782  DiagnoseAbstractType(RD);
2783
2784  return true;
2785}
2786
2787void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2788  // Check if we've already emitted the list of pure virtual functions
2789  // for this class.
2790  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2791    return;
2792
2793  CXXFinalOverriderMap FinalOverriders;
2794  RD->getFinalOverriders(FinalOverriders);
2795
2796  // Keep a set of seen pure methods so we won't diagnose the same method
2797  // more than once.
2798  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2799
2800  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2801                                   MEnd = FinalOverriders.end();
2802       M != MEnd;
2803       ++M) {
2804    for (OverridingMethods::iterator SO = M->second.begin(),
2805                                  SOEnd = M->second.end();
2806         SO != SOEnd; ++SO) {
2807      // C++ [class.abstract]p4:
2808      //   A class is abstract if it contains or inherits at least one
2809      //   pure virtual function for which the final overrider is pure
2810      //   virtual.
2811
2812      //
2813      if (SO->second.size() != 1)
2814        continue;
2815
2816      if (!SO->second.front().Method->isPure())
2817        continue;
2818
2819      if (!SeenPureMethods.insert(SO->second.front().Method))
2820        continue;
2821
2822      Diag(SO->second.front().Method->getLocation(),
2823           diag::note_pure_virtual_function)
2824        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2825    }
2826  }
2827
2828  if (!PureVirtualClassDiagSet)
2829    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2830  PureVirtualClassDiagSet->insert(RD);
2831}
2832
2833namespace {
2834struct AbstractUsageInfo {
2835  Sema &S;
2836  CXXRecordDecl *Record;
2837  CanQualType AbstractType;
2838  bool Invalid;
2839
2840  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2841    : S(S), Record(Record),
2842      AbstractType(S.Context.getCanonicalType(
2843                   S.Context.getTypeDeclType(Record))),
2844      Invalid(false) {}
2845
2846  void DiagnoseAbstractType() {
2847    if (Invalid) return;
2848    S.DiagnoseAbstractType(Record);
2849    Invalid = true;
2850  }
2851
2852  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2853};
2854
2855struct CheckAbstractUsage {
2856  AbstractUsageInfo &Info;
2857  const NamedDecl *Ctx;
2858
2859  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2860    : Info(Info), Ctx(Ctx) {}
2861
2862  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2863    switch (TL.getTypeLocClass()) {
2864#define ABSTRACT_TYPELOC(CLASS, PARENT)
2865#define TYPELOC(CLASS, PARENT) \
2866    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2867#include "clang/AST/TypeLocNodes.def"
2868    }
2869  }
2870
2871  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2872    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2873    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2874      if (!TL.getArg(I))
2875        continue;
2876
2877      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2878      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2879    }
2880  }
2881
2882  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2883    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2884  }
2885
2886  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2887    // Visit the type parameters from a permissive context.
2888    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2889      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2890      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2891        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2892          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2893      // TODO: other template argument types?
2894    }
2895  }
2896
2897  // Visit pointee types from a permissive context.
2898#define CheckPolymorphic(Type) \
2899  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2900    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2901  }
2902  CheckPolymorphic(PointerTypeLoc)
2903  CheckPolymorphic(ReferenceTypeLoc)
2904  CheckPolymorphic(MemberPointerTypeLoc)
2905  CheckPolymorphic(BlockPointerTypeLoc)
2906
2907  /// Handle all the types we haven't given a more specific
2908  /// implementation for above.
2909  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2910    // Every other kind of type that we haven't called out already
2911    // that has an inner type is either (1) sugar or (2) contains that
2912    // inner type in some way as a subobject.
2913    if (TypeLoc Next = TL.getNextTypeLoc())
2914      return Visit(Next, Sel);
2915
2916    // If there's no inner type and we're in a permissive context,
2917    // don't diagnose.
2918    if (Sel == Sema::AbstractNone) return;
2919
2920    // Check whether the type matches the abstract type.
2921    QualType T = TL.getType();
2922    if (T->isArrayType()) {
2923      Sel = Sema::AbstractArrayType;
2924      T = Info.S.Context.getBaseElementType(T);
2925    }
2926    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2927    if (CT != Info.AbstractType) return;
2928
2929    // It matched; do some magic.
2930    if (Sel == Sema::AbstractArrayType) {
2931      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2932        << T << TL.getSourceRange();
2933    } else {
2934      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2935        << Sel << T << TL.getSourceRange();
2936    }
2937    Info.DiagnoseAbstractType();
2938  }
2939};
2940
2941void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2942                                  Sema::AbstractDiagSelID Sel) {
2943  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2944}
2945
2946}
2947
2948/// Check for invalid uses of an abstract type in a method declaration.
2949static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2950                                    CXXMethodDecl *MD) {
2951  // No need to do the check on definitions, which require that
2952  // the return/param types be complete.
2953  if (MD->doesThisDeclarationHaveABody())
2954    return;
2955
2956  // For safety's sake, just ignore it if we don't have type source
2957  // information.  This should never happen for non-implicit methods,
2958  // but...
2959  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2960    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2961}
2962
2963/// Check for invalid uses of an abstract type within a class definition.
2964static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2965                                    CXXRecordDecl *RD) {
2966  for (CXXRecordDecl::decl_iterator
2967         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2968    Decl *D = *I;
2969    if (D->isImplicit()) continue;
2970
2971    // Methods and method templates.
2972    if (isa<CXXMethodDecl>(D)) {
2973      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2974    } else if (isa<FunctionTemplateDecl>(D)) {
2975      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2976      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2977
2978    // Fields and static variables.
2979    } else if (isa<FieldDecl>(D)) {
2980      FieldDecl *FD = cast<FieldDecl>(D);
2981      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2982        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2983    } else if (isa<VarDecl>(D)) {
2984      VarDecl *VD = cast<VarDecl>(D);
2985      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2986        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2987
2988    // Nested classes and class templates.
2989    } else if (isa<CXXRecordDecl>(D)) {
2990      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2991    } else if (isa<ClassTemplateDecl>(D)) {
2992      CheckAbstractClassUsage(Info,
2993                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2994    }
2995  }
2996}
2997
2998/// \brief Perform semantic checks on a class definition that has been
2999/// completing, introducing implicitly-declared members, checking for
3000/// abstract types, etc.
3001void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3002  if (!Record)
3003    return;
3004
3005  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3006    AbstractUsageInfo Info(*this, Record);
3007    CheckAbstractClassUsage(Info, Record);
3008  }
3009
3010  // If this is not an aggregate type and has no user-declared constructor,
3011  // complain about any non-static data members of reference or const scalar
3012  // type, since they will never get initializers.
3013  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3014      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
3015    bool Complained = false;
3016    for (RecordDecl::field_iterator F = Record->field_begin(),
3017                                 FEnd = Record->field_end();
3018         F != FEnd; ++F) {
3019      if (F->hasInClassInitializer())
3020        continue;
3021
3022      if (F->getType()->isReferenceType() ||
3023          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3024        if (!Complained) {
3025          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3026            << Record->getTagKind() << Record;
3027          Complained = true;
3028        }
3029
3030        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3031          << F->getType()->isReferenceType()
3032          << F->getDeclName();
3033      }
3034    }
3035  }
3036
3037  if (Record->isDynamicClass() && !Record->isDependentType())
3038    DynamicClasses.push_back(Record);
3039
3040  if (Record->getIdentifier()) {
3041    // C++ [class.mem]p13:
3042    //   If T is the name of a class, then each of the following shall have a
3043    //   name different from T:
3044    //     - every member of every anonymous union that is a member of class T.
3045    //
3046    // C++ [class.mem]p14:
3047    //   In addition, if class T has a user-declared constructor (12.1), every
3048    //   non-static data member of class T shall have a name different from T.
3049    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3050         R.first != R.second; ++R.first) {
3051      NamedDecl *D = *R.first;
3052      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3053          isa<IndirectFieldDecl>(D)) {
3054        Diag(D->getLocation(), diag::err_member_name_of_class)
3055          << D->getDeclName();
3056        break;
3057      }
3058    }
3059  }
3060
3061  // Warn if the class has virtual methods but non-virtual public destructor.
3062  if (Record->isPolymorphic() && !Record->isDependentType()) {
3063    CXXDestructorDecl *dtor = Record->getDestructor();
3064    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3065      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3066           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3067  }
3068
3069  // See if a method overloads virtual methods in a base
3070  /// class without overriding any.
3071  if (!Record->isDependentType()) {
3072    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3073                                     MEnd = Record->method_end();
3074         M != MEnd; ++M) {
3075      if (!(*M)->isStatic())
3076        DiagnoseHiddenVirtualMethods(Record, *M);
3077    }
3078  }
3079
3080  // Declare inherited constructors. We do this eagerly here because:
3081  // - The standard requires an eager diagnostic for conflicting inherited
3082  //   constructors from different classes.
3083  // - The lazy declaration of the other implicit constructors is so as to not
3084  //   waste space and performance on classes that are not meant to be
3085  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3086  //   have inherited constructors.
3087  DeclareInheritedConstructors(Record);
3088
3089  if (!Record->isDependentType())
3090    CheckExplicitlyDefaultedMethods(Record);
3091}
3092
3093void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3094  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3095                                      ME = Record->method_end();
3096       MI != ME; ++MI) {
3097    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3098      switch (getSpecialMember(*MI)) {
3099      case CXXDefaultConstructor:
3100        CheckExplicitlyDefaultedDefaultConstructor(
3101                                                  cast<CXXConstructorDecl>(*MI));
3102        break;
3103
3104      case CXXDestructor:
3105        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3106        break;
3107
3108      case CXXCopyConstructor:
3109        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3110        break;
3111
3112      case CXXCopyAssignment:
3113        CheckExplicitlyDefaultedCopyAssignment(*MI);
3114        break;
3115
3116      case CXXMoveConstructor:
3117      case CXXMoveAssignment:
3118        Diag(MI->getLocation(), diag::err_defaulted_move_unsupported);
3119        break;
3120
3121      default:
3122        // FIXME: Do moves once they exist
3123        llvm_unreachable("non-special member explicitly defaulted!");
3124      }
3125    }
3126  }
3127
3128}
3129
3130void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3131  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3132
3133  // Whether this was the first-declared instance of the constructor.
3134  // This affects whether we implicitly add an exception spec (and, eventually,
3135  // constexpr). It is also ill-formed to explicitly default a constructor such
3136  // that it would be deleted. (C++0x [decl.fct.def.default])
3137  bool First = CD == CD->getCanonicalDecl();
3138
3139  bool HadError = false;
3140  if (CD->getNumParams() != 0) {
3141    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3142      << CD->getSourceRange();
3143    HadError = true;
3144  }
3145
3146  ImplicitExceptionSpecification Spec
3147    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3148  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3149  if (EPI.ExceptionSpecType == EST_Delayed) {
3150    // Exception specification depends on some deferred part of the class. We'll
3151    // try again when the class's definition has been fully processed.
3152    return;
3153  }
3154  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3155                          *ExceptionType = Context.getFunctionType(
3156                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3157
3158  if (CtorType->hasExceptionSpec()) {
3159    if (CheckEquivalentExceptionSpec(
3160          PDiag(diag::err_incorrect_defaulted_exception_spec)
3161            << CXXDefaultConstructor,
3162          PDiag(),
3163          ExceptionType, SourceLocation(),
3164          CtorType, CD->getLocation())) {
3165      HadError = true;
3166    }
3167  } else if (First) {
3168    // We set the declaration to have the computed exception spec here.
3169    // We know there are no parameters.
3170    EPI.ExtInfo = CtorType->getExtInfo();
3171    CD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3172  }
3173
3174  if (HadError) {
3175    CD->setInvalidDecl();
3176    return;
3177  }
3178
3179  if (ShouldDeleteDefaultConstructor(CD)) {
3180    if (First) {
3181      CD->setDeletedAsWritten();
3182    } else {
3183      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3184        << CXXDefaultConstructor;
3185      CD->setInvalidDecl();
3186    }
3187  }
3188}
3189
3190void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3191  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3192
3193  // Whether this was the first-declared instance of the constructor.
3194  bool First = CD == CD->getCanonicalDecl();
3195
3196  bool HadError = false;
3197  if (CD->getNumParams() != 1) {
3198    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3199      << CD->getSourceRange();
3200    HadError = true;
3201  }
3202
3203  ImplicitExceptionSpecification Spec(Context);
3204  bool Const;
3205  llvm::tie(Spec, Const) =
3206    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3207
3208  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3209  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3210                          *ExceptionType = Context.getFunctionType(
3211                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3212
3213  // Check for parameter type matching.
3214  // This is a copy ctor so we know it's a cv-qualified reference to T.
3215  QualType ArgType = CtorType->getArgType(0);
3216  if (ArgType->getPointeeType().isVolatileQualified()) {
3217    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3218    HadError = true;
3219  }
3220  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3221    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3222    HadError = true;
3223  }
3224
3225  if (CtorType->hasExceptionSpec()) {
3226    if (CheckEquivalentExceptionSpec(
3227          PDiag(diag::err_incorrect_defaulted_exception_spec)
3228            << CXXCopyConstructor,
3229          PDiag(),
3230          ExceptionType, SourceLocation(),
3231          CtorType, CD->getLocation())) {
3232      HadError = true;
3233    }
3234  } else if (First) {
3235    // We set the declaration to have the computed exception spec here.
3236    // We duplicate the one parameter type.
3237    EPI.ExtInfo = CtorType->getExtInfo();
3238    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3239  }
3240
3241  if (HadError) {
3242    CD->setInvalidDecl();
3243    return;
3244  }
3245
3246  if (ShouldDeleteCopyConstructor(CD)) {
3247    if (First) {
3248      CD->setDeletedAsWritten();
3249    } else {
3250      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3251        << CXXCopyConstructor;
3252      CD->setInvalidDecl();
3253    }
3254  }
3255}
3256
3257void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3258  assert(MD->isExplicitlyDefaulted());
3259
3260  // Whether this was the first-declared instance of the operator
3261  bool First = MD == MD->getCanonicalDecl();
3262
3263  bool HadError = false;
3264  if (MD->getNumParams() != 1) {
3265    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3266      << MD->getSourceRange();
3267    HadError = true;
3268  }
3269
3270  QualType ReturnType =
3271    MD->getType()->getAs<FunctionType>()->getResultType();
3272  if (!ReturnType->isLValueReferenceType() ||
3273      !Context.hasSameType(
3274        Context.getCanonicalType(ReturnType->getPointeeType()),
3275        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
3276    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
3277    HadError = true;
3278  }
3279
3280  ImplicitExceptionSpecification Spec(Context);
3281  bool Const;
3282  llvm::tie(Spec, Const) =
3283    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
3284
3285  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3286  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
3287                          *ExceptionType = Context.getFunctionType(
3288                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3289
3290  QualType ArgType = OperType->getArgType(0);
3291  if (!ArgType->isReferenceType()) {
3292    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
3293    HadError = true;
3294  } else {
3295    if (ArgType->getPointeeType().isVolatileQualified()) {
3296      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
3297      HadError = true;
3298    }
3299    if (ArgType->getPointeeType().isConstQualified() && !Const) {
3300      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
3301      HadError = true;
3302    }
3303  }
3304
3305  if (OperType->getTypeQuals()) {
3306    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
3307    HadError = true;
3308  }
3309
3310  if (OperType->hasExceptionSpec()) {
3311    if (CheckEquivalentExceptionSpec(
3312          PDiag(diag::err_incorrect_defaulted_exception_spec)
3313            << CXXCopyAssignment,
3314          PDiag(),
3315          ExceptionType, SourceLocation(),
3316          OperType, MD->getLocation())) {
3317      HadError = true;
3318    }
3319  } else if (First) {
3320    // We set the declaration to have the computed exception spec here.
3321    // We duplicate the one parameter type.
3322    EPI.RefQualifier = OperType->getRefQualifier();
3323    EPI.ExtInfo = OperType->getExtInfo();
3324    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
3325  }
3326
3327  if (HadError) {
3328    MD->setInvalidDecl();
3329    return;
3330  }
3331
3332  if (ShouldDeleteCopyAssignmentOperator(MD)) {
3333    if (First) {
3334      MD->setDeletedAsWritten();
3335    } else {
3336      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
3337        << CXXCopyAssignment;
3338      MD->setInvalidDecl();
3339    }
3340  }
3341}
3342
3343void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
3344  assert(DD->isExplicitlyDefaulted());
3345
3346  // Whether this was the first-declared instance of the destructor.
3347  bool First = DD == DD->getCanonicalDecl();
3348
3349  ImplicitExceptionSpecification Spec
3350    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
3351  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3352  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
3353                          *ExceptionType = Context.getFunctionType(
3354                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3355
3356  if (DtorType->hasExceptionSpec()) {
3357    if (CheckEquivalentExceptionSpec(
3358          PDiag(diag::err_incorrect_defaulted_exception_spec)
3359            << CXXDestructor,
3360          PDiag(),
3361          ExceptionType, SourceLocation(),
3362          DtorType, DD->getLocation())) {
3363      DD->setInvalidDecl();
3364      return;
3365    }
3366  } else if (First) {
3367    // We set the declaration to have the computed exception spec here.
3368    // There are no parameters.
3369    EPI.ExtInfo = DtorType->getExtInfo();
3370    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
3371  }
3372
3373  if (ShouldDeleteDestructor(DD)) {
3374    if (First) {
3375      DD->setDeletedAsWritten();
3376    } else {
3377      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
3378        << CXXDestructor;
3379      DD->setInvalidDecl();
3380    }
3381  }
3382}
3383
3384bool Sema::ShouldDeleteDefaultConstructor(CXXConstructorDecl *CD) {
3385  CXXRecordDecl *RD = CD->getParent();
3386  assert(!RD->isDependentType() && "do deletion after instantiation");
3387  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3388    return false;
3389
3390  SourceLocation Loc = CD->getLocation();
3391
3392  // Do access control from the constructor
3393  ContextRAII CtorContext(*this, CD);
3394
3395  bool Union = RD->isUnion();
3396  bool AllConst = true;
3397
3398  // We do this because we should never actually use an anonymous
3399  // union's constructor.
3400  if (Union && RD->isAnonymousStructOrUnion())
3401    return false;
3402
3403  // FIXME: We should put some diagnostic logic right into this function.
3404
3405  // C++0x [class.ctor]/5
3406  //    A defaulted default constructor for class X is defined as deleted if:
3407
3408  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3409                                          BE = RD->bases_end();
3410       BI != BE; ++BI) {
3411    // We'll handle this one later
3412    if (BI->isVirtual())
3413      continue;
3414
3415    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3416    assert(BaseDecl && "base isn't a CXXRecordDecl");
3417
3418    // -- any [direct base class] has a type with a destructor that is
3419    //    deleted or inaccessible from the defaulted default constructor
3420    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3421    if (BaseDtor->isDeleted())
3422      return true;
3423    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3424        AR_accessible)
3425      return true;
3426
3427    // -- any [direct base class either] has no default constructor or
3428    //    overload resolution as applied to [its] default constructor
3429    //    results in an ambiguity or in a function that is deleted or
3430    //    inaccessible from the defaulted default constructor
3431    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3432    if (!BaseDefault || BaseDefault->isDeleted())
3433      return true;
3434
3435    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3436                               PDiag()) != AR_accessible)
3437      return true;
3438  }
3439
3440  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3441                                          BE = RD->vbases_end();
3442       BI != BE; ++BI) {
3443    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3444    assert(BaseDecl && "base isn't a CXXRecordDecl");
3445
3446    // -- any [virtual base class] has a type with a destructor that is
3447    //    delete or inaccessible from the defaulted default constructor
3448    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3449    if (BaseDtor->isDeleted())
3450      return true;
3451    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3452        AR_accessible)
3453      return true;
3454
3455    // -- any [virtual base class either] has no default constructor or
3456    //    overload resolution as applied to [its] default constructor
3457    //    results in an ambiguity or in a function that is deleted or
3458    //    inaccessible from the defaulted default constructor
3459    CXXConstructorDecl *BaseDefault = LookupDefaultConstructor(BaseDecl);
3460    if (!BaseDefault || BaseDefault->isDeleted())
3461      return true;
3462
3463    if (CheckConstructorAccess(Loc, BaseDefault, BaseDefault->getAccess(),
3464                               PDiag()) != AR_accessible)
3465      return true;
3466  }
3467
3468  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3469                                     FE = RD->field_end();
3470       FI != FE; ++FI) {
3471    if (FI->isInvalidDecl())
3472      continue;
3473
3474    QualType FieldType = Context.getBaseElementType(FI->getType());
3475    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3476
3477    // -- any non-static data member with no brace-or-equal-initializer is of
3478    //    reference type
3479    if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
3480      return true;
3481
3482    // -- X is a union and all its variant members are of const-qualified type
3483    //    (or array thereof)
3484    if (Union && !FieldType.isConstQualified())
3485      AllConst = false;
3486
3487    if (FieldRecord) {
3488      // -- X is a union-like class that has a variant member with a non-trivial
3489      //    default constructor
3490      if (Union && !FieldRecord->hasTrivialDefaultConstructor())
3491        return true;
3492
3493      CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3494      if (FieldDtor->isDeleted())
3495        return true;
3496      if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3497          AR_accessible)
3498        return true;
3499
3500      // -- any non-variant non-static data member of const-qualified type (or
3501      //    array thereof) with no brace-or-equal-initializer does not have a
3502      //    user-provided default constructor
3503      if (FieldType.isConstQualified() &&
3504          !FI->hasInClassInitializer() &&
3505          !FieldRecord->hasUserProvidedDefaultConstructor())
3506        return true;
3507
3508      if (!Union && FieldRecord->isUnion() &&
3509          FieldRecord->isAnonymousStructOrUnion()) {
3510        // We're okay to reuse AllConst here since we only care about the
3511        // value otherwise if we're in a union.
3512        AllConst = true;
3513
3514        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3515                                           UE = FieldRecord->field_end();
3516             UI != UE; ++UI) {
3517          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3518          CXXRecordDecl *UnionFieldRecord =
3519            UnionFieldType->getAsCXXRecordDecl();
3520
3521          if (!UnionFieldType.isConstQualified())
3522            AllConst = false;
3523
3524          if (UnionFieldRecord &&
3525              !UnionFieldRecord->hasTrivialDefaultConstructor())
3526            return true;
3527        }
3528
3529        if (AllConst)
3530          return true;
3531
3532        // Don't try to initialize the anonymous union
3533        // This is technically non-conformant, but sanity demands it.
3534        continue;
3535      }
3536
3537      // -- any non-static data member with no brace-or-equal-initializer has
3538      //    class type M (or array thereof) and either M has no default
3539      //    constructor or overload resolution as applied to M's default
3540      //    constructor results in an ambiguity or in a function that is deleted
3541      //    or inaccessible from the defaulted default constructor.
3542      if (!FI->hasInClassInitializer()) {
3543        CXXConstructorDecl *FieldDefault = LookupDefaultConstructor(FieldRecord);
3544        if (!FieldDefault || FieldDefault->isDeleted())
3545          return true;
3546        if (CheckConstructorAccess(Loc, FieldDefault, FieldDefault->getAccess(),
3547                                   PDiag()) != AR_accessible)
3548          return true;
3549      }
3550    } else if (!Union && FieldType.isConstQualified() &&
3551               !FI->hasInClassInitializer()) {
3552      // -- any non-variant non-static data member of const-qualified type (or
3553      //    array thereof) with no brace-or-equal-initializer does not have a
3554      //    user-provided default constructor
3555      return true;
3556    }
3557  }
3558
3559  if (Union && AllConst)
3560    return true;
3561
3562  return false;
3563}
3564
3565bool Sema::ShouldDeleteCopyConstructor(CXXConstructorDecl *CD) {
3566  CXXRecordDecl *RD = CD->getParent();
3567  assert(!RD->isDependentType() && "do deletion after instantiation");
3568  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3569    return false;
3570
3571  SourceLocation Loc = CD->getLocation();
3572
3573  // Do access control from the constructor
3574  ContextRAII CtorContext(*this, CD);
3575
3576  bool Union = RD->isUnion();
3577
3578  assert(!CD->getParamDecl(0)->getType()->getPointeeType().isNull() &&
3579         "copy assignment arg has no pointee type");
3580  unsigned ArgQuals =
3581    CD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3582      Qualifiers::Const : 0;
3583
3584  // We do this because we should never actually use an anonymous
3585  // union's constructor.
3586  if (Union && RD->isAnonymousStructOrUnion())
3587    return false;
3588
3589  // FIXME: We should put some diagnostic logic right into this function.
3590
3591  // C++0x [class.copy]/11
3592  //    A defaulted [copy] constructor for class X is defined as delete if X has:
3593
3594  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3595                                          BE = RD->bases_end();
3596       BI != BE; ++BI) {
3597    // We'll handle this one later
3598    if (BI->isVirtual())
3599      continue;
3600
3601    QualType BaseType = BI->getType();
3602    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3603    assert(BaseDecl && "base isn't a CXXRecordDecl");
3604
3605    // -- any [direct base class] of a type with a destructor that is deleted or
3606    //    inaccessible from the defaulted constructor
3607    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3608    if (BaseDtor->isDeleted())
3609      return true;
3610    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3611        AR_accessible)
3612      return true;
3613
3614    // -- a [direct base class] B that cannot be [copied] because overload
3615    //    resolution, as applied to B's [copy] constructor, results in an
3616    //    ambiguity or a function that is deleted or inaccessible from the
3617    //    defaulted constructor
3618    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3619    if (!BaseCtor || BaseCtor->isDeleted())
3620      return true;
3621    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3622        AR_accessible)
3623      return true;
3624  }
3625
3626  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3627                                          BE = RD->vbases_end();
3628       BI != BE; ++BI) {
3629    QualType BaseType = BI->getType();
3630    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3631    assert(BaseDecl && "base isn't a CXXRecordDecl");
3632
3633    // -- any [virtual base class] of a type with a destructor that is deleted or
3634    //    inaccessible from the defaulted constructor
3635    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3636    if (BaseDtor->isDeleted())
3637      return true;
3638    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3639        AR_accessible)
3640      return true;
3641
3642    // -- a [virtual base class] B that cannot be [copied] because overload
3643    //    resolution, as applied to B's [copy] constructor, results in an
3644    //    ambiguity or a function that is deleted or inaccessible from the
3645    //    defaulted constructor
3646    CXXConstructorDecl *BaseCtor = LookupCopyingConstructor(BaseDecl, ArgQuals);
3647    if (!BaseCtor || BaseCtor->isDeleted())
3648      return true;
3649    if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(), PDiag()) !=
3650        AR_accessible)
3651      return true;
3652  }
3653
3654  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3655                                     FE = RD->field_end();
3656       FI != FE; ++FI) {
3657    QualType FieldType = Context.getBaseElementType(FI->getType());
3658
3659    // -- for a copy constructor, a non-static data member of rvalue reference
3660    //    type
3661    if (FieldType->isRValueReferenceType())
3662      return true;
3663
3664    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3665
3666    if (FieldRecord) {
3667      // This is an anonymous union
3668      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3669        // Anonymous unions inside unions do not variant members create
3670        if (!Union) {
3671          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3672                                             UE = FieldRecord->field_end();
3673               UI != UE; ++UI) {
3674            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3675            CXXRecordDecl *UnionFieldRecord =
3676              UnionFieldType->getAsCXXRecordDecl();
3677
3678            // -- a variant member with a non-trivial [copy] constructor and X
3679            //    is a union-like class
3680            if (UnionFieldRecord &&
3681                !UnionFieldRecord->hasTrivialCopyConstructor())
3682              return true;
3683          }
3684        }
3685
3686        // Don't try to initalize an anonymous union
3687        continue;
3688      } else {
3689         // -- a variant member with a non-trivial [copy] constructor and X is a
3690         //    union-like class
3691        if (Union && !FieldRecord->hasTrivialCopyConstructor())
3692          return true;
3693
3694        // -- any [non-static data member] of a type with a destructor that is
3695        //    deleted or inaccessible from the defaulted constructor
3696        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3697        if (FieldDtor->isDeleted())
3698          return true;
3699        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3700            AR_accessible)
3701          return true;
3702      }
3703
3704    // -- a [non-static data member of class type (or array thereof)] B that
3705    //    cannot be [copied] because overload resolution, as applied to B's
3706    //    [copy] constructor, results in an ambiguity or a function that is
3707    //    deleted or inaccessible from the defaulted constructor
3708      CXXConstructorDecl *FieldCtor = LookupCopyingConstructor(FieldRecord,
3709                                                               ArgQuals);
3710      if (!FieldCtor || FieldCtor->isDeleted())
3711        return true;
3712      if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
3713                                 PDiag()) != AR_accessible)
3714        return true;
3715    }
3716  }
3717
3718  return false;
3719}
3720
3721bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
3722  CXXRecordDecl *RD = MD->getParent();
3723  assert(!RD->isDependentType() && "do deletion after instantiation");
3724  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3725    return false;
3726
3727  SourceLocation Loc = MD->getLocation();
3728
3729  // Do access control from the constructor
3730  ContextRAII MethodContext(*this, MD);
3731
3732  bool Union = RD->isUnion();
3733
3734  unsigned ArgQuals =
3735    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
3736      Qualifiers::Const : 0;
3737
3738  // We do this because we should never actually use an anonymous
3739  // union's constructor.
3740  if (Union && RD->isAnonymousStructOrUnion())
3741    return false;
3742
3743  // FIXME: We should put some diagnostic logic right into this function.
3744
3745  // C++0x [class.copy]/11
3746  //    A defaulted [copy] assignment operator for class X is defined as deleted
3747  //    if X has:
3748
3749  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3750                                          BE = RD->bases_end();
3751       BI != BE; ++BI) {
3752    // We'll handle this one later
3753    if (BI->isVirtual())
3754      continue;
3755
3756    QualType BaseType = BI->getType();
3757    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3758    assert(BaseDecl && "base isn't a CXXRecordDecl");
3759
3760    // -- a [direct base class] B that cannot be [copied] because overload
3761    //    resolution, as applied to B's [copy] assignment operator, results in
3762    //    an ambiguity or a function that is deleted or inaccessible from the
3763    //    assignment operator
3764    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3765                                                      0);
3766    if (!CopyOper || CopyOper->isDeleted())
3767      return true;
3768    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3769      return true;
3770  }
3771
3772  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3773                                          BE = RD->vbases_end();
3774       BI != BE; ++BI) {
3775    QualType BaseType = BI->getType();
3776    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
3777    assert(BaseDecl && "base isn't a CXXRecordDecl");
3778
3779    // -- a [virtual base class] B that cannot be [copied] because overload
3780    //    resolution, as applied to B's [copy] assignment operator, results in
3781    //    an ambiguity or a function that is deleted or inaccessible from the
3782    //    assignment operator
3783    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
3784                                                      0);
3785    if (!CopyOper || CopyOper->isDeleted())
3786      return true;
3787    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3788      return true;
3789  }
3790
3791  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3792                                     FE = RD->field_end();
3793       FI != FE; ++FI) {
3794    QualType FieldType = Context.getBaseElementType(FI->getType());
3795
3796    // -- a non-static data member of reference type
3797    if (FieldType->isReferenceType())
3798      return true;
3799
3800    // -- a non-static data member of const non-class type (or array thereof)
3801    if (FieldType.isConstQualified() && !FieldType->isRecordType())
3802      return true;
3803
3804    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3805
3806    if (FieldRecord) {
3807      // This is an anonymous union
3808      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3809        // Anonymous unions inside unions do not variant members create
3810        if (!Union) {
3811          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3812                                             UE = FieldRecord->field_end();
3813               UI != UE; ++UI) {
3814            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
3815            CXXRecordDecl *UnionFieldRecord =
3816              UnionFieldType->getAsCXXRecordDecl();
3817
3818            // -- a variant member with a non-trivial [copy] assignment operator
3819            //    and X is a union-like class
3820            if (UnionFieldRecord &&
3821                !UnionFieldRecord->hasTrivialCopyAssignment())
3822              return true;
3823          }
3824        }
3825
3826        // Don't try to initalize an anonymous union
3827        continue;
3828      // -- a variant member with a non-trivial [copy] assignment operator
3829      //    and X is a union-like class
3830      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
3831          return true;
3832      }
3833
3834      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
3835                                                        false, 0);
3836      if (!CopyOper || CopyOper->isDeleted())
3837        return false;
3838      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
3839        return false;
3840    }
3841  }
3842
3843  return false;
3844}
3845
3846bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
3847  CXXRecordDecl *RD = DD->getParent();
3848  assert(!RD->isDependentType() && "do deletion after instantiation");
3849  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
3850    return false;
3851
3852  SourceLocation Loc = DD->getLocation();
3853
3854  // Do access control from the destructor
3855  ContextRAII CtorContext(*this, DD);
3856
3857  bool Union = RD->isUnion();
3858
3859  // We do this because we should never actually use an anonymous
3860  // union's destructor.
3861  if (Union && RD->isAnonymousStructOrUnion())
3862    return false;
3863
3864  // C++0x [class.dtor]p5
3865  //    A defaulted destructor for a class X is defined as deleted if:
3866  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
3867                                          BE = RD->bases_end();
3868       BI != BE; ++BI) {
3869    // We'll handle this one later
3870    if (BI->isVirtual())
3871      continue;
3872
3873    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3874    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3875    assert(BaseDtor && "base has no destructor");
3876
3877    // -- any direct or virtual base class has a deleted destructor or
3878    //    a destructor that is inaccessible from the defaulted destructor
3879    if (BaseDtor->isDeleted())
3880      return true;
3881    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3882        AR_accessible)
3883      return true;
3884  }
3885
3886  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
3887                                          BE = RD->vbases_end();
3888       BI != BE; ++BI) {
3889    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
3890    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
3891    assert(BaseDtor && "base has no destructor");
3892
3893    // -- any direct or virtual base class has a deleted destructor or
3894    //    a destructor that is inaccessible from the defaulted destructor
3895    if (BaseDtor->isDeleted())
3896      return true;
3897    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
3898        AR_accessible)
3899      return true;
3900  }
3901
3902  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
3903                                     FE = RD->field_end();
3904       FI != FE; ++FI) {
3905    QualType FieldType = Context.getBaseElementType(FI->getType());
3906    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
3907    if (FieldRecord) {
3908      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
3909         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
3910                                            UE = FieldRecord->field_end();
3911              UI != UE; ++UI) {
3912           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
3913           CXXRecordDecl *UnionFieldRecord =
3914             UnionFieldType->getAsCXXRecordDecl();
3915
3916           // -- X is a union-like class that has a variant member with a non-
3917           //    trivial destructor.
3918           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
3919             return true;
3920         }
3921      // Technically we are supposed to do this next check unconditionally.
3922      // But that makes absolutely no sense.
3923      } else {
3924        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
3925
3926        // -- any of the non-static data members has class type M (or array
3927        //    thereof) and M has a deleted destructor or a destructor that is
3928        //    inaccessible from the defaulted destructor
3929        if (FieldDtor->isDeleted())
3930          return true;
3931        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
3932          AR_accessible)
3933        return true;
3934
3935        // -- X is a union-like class that has a variant member with a non-
3936        //    trivial destructor.
3937        if (Union && !FieldDtor->isTrivial())
3938          return true;
3939      }
3940    }
3941  }
3942
3943  if (DD->isVirtual()) {
3944    FunctionDecl *OperatorDelete = 0;
3945    DeclarationName Name =
3946      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3947    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
3948          false))
3949      return true;
3950  }
3951
3952
3953  return false;
3954}
3955
3956/// \brief Data used with FindHiddenVirtualMethod
3957namespace {
3958  struct FindHiddenVirtualMethodData {
3959    Sema *S;
3960    CXXMethodDecl *Method;
3961    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
3962    llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3963  };
3964}
3965
3966/// \brief Member lookup function that determines whether a given C++
3967/// method overloads virtual methods in a base class without overriding any,
3968/// to be used with CXXRecordDecl::lookupInBases().
3969static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
3970                                    CXXBasePath &Path,
3971                                    void *UserData) {
3972  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3973
3974  FindHiddenVirtualMethodData &Data
3975    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
3976
3977  DeclarationName Name = Data.Method->getDeclName();
3978  assert(Name.getNameKind() == DeclarationName::Identifier);
3979
3980  bool foundSameNameMethod = false;
3981  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
3982  for (Path.Decls = BaseRecord->lookup(Name);
3983       Path.Decls.first != Path.Decls.second;
3984       ++Path.Decls.first) {
3985    NamedDecl *D = *Path.Decls.first;
3986    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3987      MD = MD->getCanonicalDecl();
3988      foundSameNameMethod = true;
3989      // Interested only in hidden virtual methods.
3990      if (!MD->isVirtual())
3991        continue;
3992      // If the method we are checking overrides a method from its base
3993      // don't warn about the other overloaded methods.
3994      if (!Data.S->IsOverload(Data.Method, MD, false))
3995        return true;
3996      // Collect the overload only if its hidden.
3997      if (!Data.OverridenAndUsingBaseMethods.count(MD))
3998        overloadedMethods.push_back(MD);
3999    }
4000  }
4001
4002  if (foundSameNameMethod)
4003    Data.OverloadedMethods.append(overloadedMethods.begin(),
4004                                   overloadedMethods.end());
4005  return foundSameNameMethod;
4006}
4007
4008/// \brief See if a method overloads virtual methods in a base class without
4009/// overriding any.
4010void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4011  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4012                               MD->getLocation()) == Diagnostic::Ignored)
4013    return;
4014  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4015    return;
4016
4017  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4018                     /*bool RecordPaths=*/false,
4019                     /*bool DetectVirtual=*/false);
4020  FindHiddenVirtualMethodData Data;
4021  Data.Method = MD;
4022  Data.S = this;
4023
4024  // Keep the base methods that were overriden or introduced in the subclass
4025  // by 'using' in a set. A base method not in this set is hidden.
4026  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4027       res.first != res.second; ++res.first) {
4028    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4029      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4030                                          E = MD->end_overridden_methods();
4031           I != E; ++I)
4032        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4033    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4034      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4035        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4036  }
4037
4038  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4039      !Data.OverloadedMethods.empty()) {
4040    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4041      << MD << (Data.OverloadedMethods.size() > 1);
4042
4043    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4044      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4045      Diag(overloadedMD->getLocation(),
4046           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4047    }
4048  }
4049}
4050
4051void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4052                                             Decl *TagDecl,
4053                                             SourceLocation LBrac,
4054                                             SourceLocation RBrac,
4055                                             AttributeList *AttrList) {
4056  if (!TagDecl)
4057    return;
4058
4059  AdjustDeclIfTemplate(TagDecl);
4060
4061  ActOnFields(S, RLoc, TagDecl,
4062              // strict aliasing violation!
4063              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4064              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
4065
4066  CheckCompletedCXXClass(
4067                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4068}
4069
4070/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4071/// special functions, such as the default constructor, copy
4072/// constructor, or destructor, to the given C++ class (C++
4073/// [special]p1).  This routine can only be executed just before the
4074/// definition of the class is complete.
4075void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4076  if (!ClassDecl->hasUserDeclaredConstructor())
4077    ++ASTContext::NumImplicitDefaultConstructors;
4078
4079  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4080    ++ASTContext::NumImplicitCopyConstructors;
4081
4082  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4083    ++ASTContext::NumImplicitCopyAssignmentOperators;
4084
4085    // If we have a dynamic class, then the copy assignment operator may be
4086    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4087    // it shows up in the right place in the vtable and that we diagnose
4088    // problems with the implicit exception specification.
4089    if (ClassDecl->isDynamicClass())
4090      DeclareImplicitCopyAssignment(ClassDecl);
4091  }
4092
4093  if (!ClassDecl->hasUserDeclaredDestructor()) {
4094    ++ASTContext::NumImplicitDestructors;
4095
4096    // If we have a dynamic class, then the destructor may be virtual, so we
4097    // have to declare the destructor immediately. This ensures that, e.g., it
4098    // shows up in the right place in the vtable and that we diagnose problems
4099    // with the implicit exception specification.
4100    if (ClassDecl->isDynamicClass())
4101      DeclareImplicitDestructor(ClassDecl);
4102  }
4103}
4104
4105void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4106  if (!D)
4107    return;
4108
4109  int NumParamList = D->getNumTemplateParameterLists();
4110  for (int i = 0; i < NumParamList; i++) {
4111    TemplateParameterList* Params = D->getTemplateParameterList(i);
4112    for (TemplateParameterList::iterator Param = Params->begin(),
4113                                      ParamEnd = Params->end();
4114          Param != ParamEnd; ++Param) {
4115      NamedDecl *Named = cast<NamedDecl>(*Param);
4116      if (Named->getDeclName()) {
4117        S->AddDecl(Named);
4118        IdResolver.AddDecl(Named);
4119      }
4120    }
4121  }
4122}
4123
4124void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4125  if (!D)
4126    return;
4127
4128  TemplateParameterList *Params = 0;
4129  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4130    Params = Template->getTemplateParameters();
4131  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4132           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4133    Params = PartialSpec->getTemplateParameters();
4134  else
4135    return;
4136
4137  for (TemplateParameterList::iterator Param = Params->begin(),
4138                                    ParamEnd = Params->end();
4139       Param != ParamEnd; ++Param) {
4140    NamedDecl *Named = cast<NamedDecl>(*Param);
4141    if (Named->getDeclName()) {
4142      S->AddDecl(Named);
4143      IdResolver.AddDecl(Named);
4144    }
4145  }
4146}
4147
4148void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4149  if (!RecordD) return;
4150  AdjustDeclIfTemplate(RecordD);
4151  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4152  PushDeclContext(S, Record);
4153}
4154
4155void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4156  if (!RecordD) return;
4157  PopDeclContext();
4158}
4159
4160/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4161/// parsing a top-level (non-nested) C++ class, and we are now
4162/// parsing those parts of the given Method declaration that could
4163/// not be parsed earlier (C++ [class.mem]p2), such as default
4164/// arguments. This action should enter the scope of the given
4165/// Method declaration as if we had just parsed the qualified method
4166/// name. However, it should not bring the parameters into scope;
4167/// that will be performed by ActOnDelayedCXXMethodParameter.
4168void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4169}
4170
4171/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4172/// C++ method declaration. We're (re-)introducing the given
4173/// function parameter into scope for use in parsing later parts of
4174/// the method declaration. For example, we could see an
4175/// ActOnParamDefaultArgument event for this parameter.
4176void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4177  if (!ParamD)
4178    return;
4179
4180  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4181
4182  // If this parameter has an unparsed default argument, clear it out
4183  // to make way for the parsed default argument.
4184  if (Param->hasUnparsedDefaultArg())
4185    Param->setDefaultArg(0);
4186
4187  S->AddDecl(Param);
4188  if (Param->getDeclName())
4189    IdResolver.AddDecl(Param);
4190}
4191
4192/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4193/// processing the delayed method declaration for Method. The method
4194/// declaration is now considered finished. There may be a separate
4195/// ActOnStartOfFunctionDef action later (not necessarily
4196/// immediately!) for this method, if it was also defined inside the
4197/// class body.
4198void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4199  if (!MethodD)
4200    return;
4201
4202  AdjustDeclIfTemplate(MethodD);
4203
4204  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4205
4206  // Now that we have our default arguments, check the constructor
4207  // again. It could produce additional diagnostics or affect whether
4208  // the class has implicitly-declared destructors, among other
4209  // things.
4210  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4211    CheckConstructor(Constructor);
4212
4213  // Check the default arguments, which we may have added.
4214  if (!Method->isInvalidDecl())
4215    CheckCXXDefaultArguments(Method);
4216}
4217
4218/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4219/// the well-formedness of the constructor declarator @p D with type @p
4220/// R. If there are any errors in the declarator, this routine will
4221/// emit diagnostics and set the invalid bit to true.  In any case, the type
4222/// will be updated to reflect a well-formed type for the constructor and
4223/// returned.
4224QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4225                                          StorageClass &SC) {
4226  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4227
4228  // C++ [class.ctor]p3:
4229  //   A constructor shall not be virtual (10.3) or static (9.4). A
4230  //   constructor can be invoked for a const, volatile or const
4231  //   volatile object. A constructor shall not be declared const,
4232  //   volatile, or const volatile (9.3.2).
4233  if (isVirtual) {
4234    if (!D.isInvalidType())
4235      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4236        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4237        << SourceRange(D.getIdentifierLoc());
4238    D.setInvalidType();
4239  }
4240  if (SC == SC_Static) {
4241    if (!D.isInvalidType())
4242      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4243        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4244        << SourceRange(D.getIdentifierLoc());
4245    D.setInvalidType();
4246    SC = SC_None;
4247  }
4248
4249  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4250  if (FTI.TypeQuals != 0) {
4251    if (FTI.TypeQuals & Qualifiers::Const)
4252      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4253        << "const" << SourceRange(D.getIdentifierLoc());
4254    if (FTI.TypeQuals & Qualifiers::Volatile)
4255      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4256        << "volatile" << SourceRange(D.getIdentifierLoc());
4257    if (FTI.TypeQuals & Qualifiers::Restrict)
4258      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4259        << "restrict" << SourceRange(D.getIdentifierLoc());
4260    D.setInvalidType();
4261  }
4262
4263  // C++0x [class.ctor]p4:
4264  //   A constructor shall not be declared with a ref-qualifier.
4265  if (FTI.hasRefQualifier()) {
4266    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4267      << FTI.RefQualifierIsLValueRef
4268      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4269    D.setInvalidType();
4270  }
4271
4272  // Rebuild the function type "R" without any type qualifiers (in
4273  // case any of the errors above fired) and with "void" as the
4274  // return type, since constructors don't have return types.
4275  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4276  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4277    return R;
4278
4279  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4280  EPI.TypeQuals = 0;
4281  EPI.RefQualifier = RQ_None;
4282
4283  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4284                                 Proto->getNumArgs(), EPI);
4285}
4286
4287/// CheckConstructor - Checks a fully-formed constructor for
4288/// well-formedness, issuing any diagnostics required. Returns true if
4289/// the constructor declarator is invalid.
4290void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4291  CXXRecordDecl *ClassDecl
4292    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4293  if (!ClassDecl)
4294    return Constructor->setInvalidDecl();
4295
4296  // C++ [class.copy]p3:
4297  //   A declaration of a constructor for a class X is ill-formed if
4298  //   its first parameter is of type (optionally cv-qualified) X and
4299  //   either there are no other parameters or else all other
4300  //   parameters have default arguments.
4301  if (!Constructor->isInvalidDecl() &&
4302      ((Constructor->getNumParams() == 1) ||
4303       (Constructor->getNumParams() > 1 &&
4304        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4305      Constructor->getTemplateSpecializationKind()
4306                                              != TSK_ImplicitInstantiation) {
4307    QualType ParamType = Constructor->getParamDecl(0)->getType();
4308    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4309    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4310      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4311      const char *ConstRef
4312        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4313                                                        : " const &";
4314      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4315        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4316
4317      // FIXME: Rather that making the constructor invalid, we should endeavor
4318      // to fix the type.
4319      Constructor->setInvalidDecl();
4320    }
4321  }
4322}
4323
4324/// CheckDestructor - Checks a fully-formed destructor definition for
4325/// well-formedness, issuing any diagnostics required.  Returns true
4326/// on error.
4327bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4328  CXXRecordDecl *RD = Destructor->getParent();
4329
4330  if (Destructor->isVirtual()) {
4331    SourceLocation Loc;
4332
4333    if (!Destructor->isImplicit())
4334      Loc = Destructor->getLocation();
4335    else
4336      Loc = RD->getLocation();
4337
4338    // If we have a virtual destructor, look up the deallocation function
4339    FunctionDecl *OperatorDelete = 0;
4340    DeclarationName Name =
4341    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4342    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4343      return true;
4344
4345    MarkDeclarationReferenced(Loc, OperatorDelete);
4346
4347    Destructor->setOperatorDelete(OperatorDelete);
4348  }
4349
4350  return false;
4351}
4352
4353static inline bool
4354FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4355  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4356          FTI.ArgInfo[0].Param &&
4357          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4358}
4359
4360/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4361/// the well-formednes of the destructor declarator @p D with type @p
4362/// R. If there are any errors in the declarator, this routine will
4363/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4364/// will be updated to reflect a well-formed type for the destructor and
4365/// returned.
4366QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4367                                         StorageClass& SC) {
4368  // C++ [class.dtor]p1:
4369  //   [...] A typedef-name that names a class is a class-name
4370  //   (7.1.3); however, a typedef-name that names a class shall not
4371  //   be used as the identifier in the declarator for a destructor
4372  //   declaration.
4373  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4374  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4375    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4376      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4377  else if (const TemplateSpecializationType *TST =
4378             DeclaratorType->getAs<TemplateSpecializationType>())
4379    if (TST->isTypeAlias())
4380      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4381        << DeclaratorType << 1;
4382
4383  // C++ [class.dtor]p2:
4384  //   A destructor is used to destroy objects of its class type. A
4385  //   destructor takes no parameters, and no return type can be
4386  //   specified for it (not even void). The address of a destructor
4387  //   shall not be taken. A destructor shall not be static. A
4388  //   destructor can be invoked for a const, volatile or const
4389  //   volatile object. A destructor shall not be declared const,
4390  //   volatile or const volatile (9.3.2).
4391  if (SC == SC_Static) {
4392    if (!D.isInvalidType())
4393      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4394        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4395        << SourceRange(D.getIdentifierLoc())
4396        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4397
4398    SC = SC_None;
4399  }
4400  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4401    // Destructors don't have return types, but the parser will
4402    // happily parse something like:
4403    //
4404    //   class X {
4405    //     float ~X();
4406    //   };
4407    //
4408    // The return type will be eliminated later.
4409    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4410      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4411      << SourceRange(D.getIdentifierLoc());
4412  }
4413
4414  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4415  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4416    if (FTI.TypeQuals & Qualifiers::Const)
4417      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4418        << "const" << SourceRange(D.getIdentifierLoc());
4419    if (FTI.TypeQuals & Qualifiers::Volatile)
4420      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4421        << "volatile" << SourceRange(D.getIdentifierLoc());
4422    if (FTI.TypeQuals & Qualifiers::Restrict)
4423      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4424        << "restrict" << SourceRange(D.getIdentifierLoc());
4425    D.setInvalidType();
4426  }
4427
4428  // C++0x [class.dtor]p2:
4429  //   A destructor shall not be declared with a ref-qualifier.
4430  if (FTI.hasRefQualifier()) {
4431    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4432      << FTI.RefQualifierIsLValueRef
4433      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4434    D.setInvalidType();
4435  }
4436
4437  // Make sure we don't have any parameters.
4438  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4439    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4440
4441    // Delete the parameters.
4442    FTI.freeArgs();
4443    D.setInvalidType();
4444  }
4445
4446  // Make sure the destructor isn't variadic.
4447  if (FTI.isVariadic) {
4448    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4449    D.setInvalidType();
4450  }
4451
4452  // Rebuild the function type "R" without any type qualifiers or
4453  // parameters (in case any of the errors above fired) and with
4454  // "void" as the return type, since destructors don't have return
4455  // types.
4456  if (!D.isInvalidType())
4457    return R;
4458
4459  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4460  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4461  EPI.Variadic = false;
4462  EPI.TypeQuals = 0;
4463  EPI.RefQualifier = RQ_None;
4464  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4465}
4466
4467/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4468/// well-formednes of the conversion function declarator @p D with
4469/// type @p R. If there are any errors in the declarator, this routine
4470/// will emit diagnostics and return true. Otherwise, it will return
4471/// false. Either way, the type @p R will be updated to reflect a
4472/// well-formed type for the conversion operator.
4473void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
4474                                     StorageClass& SC) {
4475  // C++ [class.conv.fct]p1:
4476  //   Neither parameter types nor return type can be specified. The
4477  //   type of a conversion function (8.3.5) is "function taking no
4478  //   parameter returning conversion-type-id."
4479  if (SC == SC_Static) {
4480    if (!D.isInvalidType())
4481      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
4482        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4483        << SourceRange(D.getIdentifierLoc());
4484    D.setInvalidType();
4485    SC = SC_None;
4486  }
4487
4488  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
4489
4490  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4491    // Conversion functions don't have return types, but the parser will
4492    // happily parse something like:
4493    //
4494    //   class X {
4495    //     float operator bool();
4496    //   };
4497    //
4498    // The return type will be changed later anyway.
4499    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
4500      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4501      << SourceRange(D.getIdentifierLoc());
4502    D.setInvalidType();
4503  }
4504
4505  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4506
4507  // Make sure we don't have any parameters.
4508  if (Proto->getNumArgs() > 0) {
4509    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
4510
4511    // Delete the parameters.
4512    D.getFunctionTypeInfo().freeArgs();
4513    D.setInvalidType();
4514  } else if (Proto->isVariadic()) {
4515    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
4516    D.setInvalidType();
4517  }
4518
4519  // Diagnose "&operator bool()" and other such nonsense.  This
4520  // is actually a gcc extension which we don't support.
4521  if (Proto->getResultType() != ConvType) {
4522    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
4523      << Proto->getResultType();
4524    D.setInvalidType();
4525    ConvType = Proto->getResultType();
4526  }
4527
4528  // C++ [class.conv.fct]p4:
4529  //   The conversion-type-id shall not represent a function type nor
4530  //   an array type.
4531  if (ConvType->isArrayType()) {
4532    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
4533    ConvType = Context.getPointerType(ConvType);
4534    D.setInvalidType();
4535  } else if (ConvType->isFunctionType()) {
4536    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
4537    ConvType = Context.getPointerType(ConvType);
4538    D.setInvalidType();
4539  }
4540
4541  // Rebuild the function type "R" without any parameters (in case any
4542  // of the errors above fired) and with the conversion type as the
4543  // return type.
4544  if (D.isInvalidType())
4545    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
4546
4547  // C++0x explicit conversion operators.
4548  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
4549    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4550         diag::warn_explicit_conversion_functions)
4551      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
4552}
4553
4554/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
4555/// the declaration of the given C++ conversion function. This routine
4556/// is responsible for recording the conversion function in the C++
4557/// class, if possible.
4558Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
4559  assert(Conversion && "Expected to receive a conversion function declaration");
4560
4561  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
4562
4563  // Make sure we aren't redeclaring the conversion function.
4564  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
4565
4566  // C++ [class.conv.fct]p1:
4567  //   [...] A conversion function is never used to convert a
4568  //   (possibly cv-qualified) object to the (possibly cv-qualified)
4569  //   same object type (or a reference to it), to a (possibly
4570  //   cv-qualified) base class of that type (or a reference to it),
4571  //   or to (possibly cv-qualified) void.
4572  // FIXME: Suppress this warning if the conversion function ends up being a
4573  // virtual function that overrides a virtual function in a base class.
4574  QualType ClassType
4575    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4576  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
4577    ConvType = ConvTypeRef->getPointeeType();
4578  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
4579      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
4580    /* Suppress diagnostics for instantiations. */;
4581  else if (ConvType->isRecordType()) {
4582    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
4583    if (ConvType == ClassType)
4584      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
4585        << ClassType;
4586    else if (IsDerivedFrom(ClassType, ConvType))
4587      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
4588        <<  ClassType << ConvType;
4589  } else if (ConvType->isVoidType()) {
4590    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
4591      << ClassType << ConvType;
4592  }
4593
4594  if (FunctionTemplateDecl *ConversionTemplate
4595                                = Conversion->getDescribedFunctionTemplate())
4596    return ConversionTemplate;
4597
4598  return Conversion;
4599}
4600
4601//===----------------------------------------------------------------------===//
4602// Namespace Handling
4603//===----------------------------------------------------------------------===//
4604
4605
4606
4607/// ActOnStartNamespaceDef - This is called at the start of a namespace
4608/// definition.
4609Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
4610                                   SourceLocation InlineLoc,
4611                                   SourceLocation NamespaceLoc,
4612                                   SourceLocation IdentLoc,
4613                                   IdentifierInfo *II,
4614                                   SourceLocation LBrace,
4615                                   AttributeList *AttrList) {
4616  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
4617  // For anonymous namespace, take the location of the left brace.
4618  SourceLocation Loc = II ? IdentLoc : LBrace;
4619  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
4620                                                 StartLoc, Loc, II);
4621  Namespc->setInline(InlineLoc.isValid());
4622
4623  Scope *DeclRegionScope = NamespcScope->getParent();
4624
4625  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
4626
4627  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
4628    PushNamespaceVisibilityAttr(Attr);
4629
4630  if (II) {
4631    // C++ [namespace.def]p2:
4632    //   The identifier in an original-namespace-definition shall not
4633    //   have been previously defined in the declarative region in
4634    //   which the original-namespace-definition appears. The
4635    //   identifier in an original-namespace-definition is the name of
4636    //   the namespace. Subsequently in that declarative region, it is
4637    //   treated as an original-namespace-name.
4638    //
4639    // Since namespace names are unique in their scope, and we don't
4640    // look through using directives, just look for any ordinary names.
4641
4642    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
4643      Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
4644      Decl::IDNS_Namespace;
4645    NamedDecl *PrevDecl = 0;
4646    for (DeclContext::lookup_result R
4647            = CurContext->getRedeclContext()->lookup(II);
4648         R.first != R.second; ++R.first) {
4649      if ((*R.first)->getIdentifierNamespace() & IDNS) {
4650        PrevDecl = *R.first;
4651        break;
4652      }
4653    }
4654
4655    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
4656      // This is an extended namespace definition.
4657      if (Namespc->isInline() != OrigNS->isInline()) {
4658        // inline-ness must match
4659        if (OrigNS->isInline()) {
4660          // The user probably just forgot the 'inline', so suggest that it
4661          // be added back.
4662          Diag(Namespc->getLocation(),
4663               diag::warn_inline_namespace_reopened_noninline)
4664            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
4665        } else {
4666          Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4667            << Namespc->isInline();
4668        }
4669        Diag(OrigNS->getLocation(), diag::note_previous_definition);
4670
4671        // Recover by ignoring the new namespace's inline status.
4672        Namespc->setInline(OrigNS->isInline());
4673      }
4674
4675      // Attach this namespace decl to the chain of extended namespace
4676      // definitions.
4677      OrigNS->setNextNamespace(Namespc);
4678      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
4679
4680      // Remove the previous declaration from the scope.
4681      if (DeclRegionScope->isDeclScope(OrigNS)) {
4682        IdResolver.RemoveDecl(OrigNS);
4683        DeclRegionScope->RemoveDecl(OrigNS);
4684      }
4685    } else if (PrevDecl) {
4686      // This is an invalid name redefinition.
4687      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
4688       << Namespc->getDeclName();
4689      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4690      Namespc->setInvalidDecl();
4691      // Continue on to push Namespc as current DeclContext and return it.
4692    } else if (II->isStr("std") &&
4693               CurContext->getRedeclContext()->isTranslationUnit()) {
4694      // This is the first "real" definition of the namespace "std", so update
4695      // our cache of the "std" namespace to point at this definition.
4696      if (NamespaceDecl *StdNS = getStdNamespace()) {
4697        // We had already defined a dummy namespace "std". Link this new
4698        // namespace definition to the dummy namespace "std".
4699        StdNS->setNextNamespace(Namespc);
4700        StdNS->setLocation(IdentLoc);
4701        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
4702      }
4703
4704      // Make our StdNamespace cache point at the first real definition of the
4705      // "std" namespace.
4706      StdNamespace = Namespc;
4707
4708      // Add this instance of "std" to the set of known namespaces
4709      KnownNamespaces[Namespc] = false;
4710    } else if (!Namespc->isInline()) {
4711      // Since this is an "original" namespace, add it to the known set of
4712      // namespaces if it is not an inline namespace.
4713      KnownNamespaces[Namespc] = false;
4714    }
4715
4716    PushOnScopeChains(Namespc, DeclRegionScope);
4717  } else {
4718    // Anonymous namespaces.
4719    assert(Namespc->isAnonymousNamespace());
4720
4721    // Link the anonymous namespace into its parent.
4722    NamespaceDecl *PrevDecl;
4723    DeclContext *Parent = CurContext->getRedeclContext();
4724    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
4725      PrevDecl = TU->getAnonymousNamespace();
4726      TU->setAnonymousNamespace(Namespc);
4727    } else {
4728      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
4729      PrevDecl = ND->getAnonymousNamespace();
4730      ND->setAnonymousNamespace(Namespc);
4731    }
4732
4733    // Link the anonymous namespace with its previous declaration.
4734    if (PrevDecl) {
4735      assert(PrevDecl->isAnonymousNamespace());
4736      assert(!PrevDecl->getNextNamespace());
4737      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
4738      PrevDecl->setNextNamespace(Namespc);
4739
4740      if (Namespc->isInline() != PrevDecl->isInline()) {
4741        // inline-ness must match
4742        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
4743          << Namespc->isInline();
4744        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4745        Namespc->setInvalidDecl();
4746        // Recover by ignoring the new namespace's inline status.
4747        Namespc->setInline(PrevDecl->isInline());
4748      }
4749    }
4750
4751    CurContext->addDecl(Namespc);
4752
4753    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
4754    //   behaves as if it were replaced by
4755    //     namespace unique { /* empty body */ }
4756    //     using namespace unique;
4757    //     namespace unique { namespace-body }
4758    //   where all occurrences of 'unique' in a translation unit are
4759    //   replaced by the same identifier and this identifier differs
4760    //   from all other identifiers in the entire program.
4761
4762    // We just create the namespace with an empty name and then add an
4763    // implicit using declaration, just like the standard suggests.
4764    //
4765    // CodeGen enforces the "universally unique" aspect by giving all
4766    // declarations semantically contained within an anonymous
4767    // namespace internal linkage.
4768
4769    if (!PrevDecl) {
4770      UsingDirectiveDecl* UD
4771        = UsingDirectiveDecl::Create(Context, CurContext,
4772                                     /* 'using' */ LBrace,
4773                                     /* 'namespace' */ SourceLocation(),
4774                                     /* qualifier */ NestedNameSpecifierLoc(),
4775                                     /* identifier */ SourceLocation(),
4776                                     Namespc,
4777                                     /* Ancestor */ CurContext);
4778      UD->setImplicit();
4779      CurContext->addDecl(UD);
4780    }
4781  }
4782
4783  // Although we could have an invalid decl (i.e. the namespace name is a
4784  // redefinition), push it as current DeclContext and try to continue parsing.
4785  // FIXME: We should be able to push Namespc here, so that the each DeclContext
4786  // for the namespace has the declarations that showed up in that particular
4787  // namespace definition.
4788  PushDeclContext(NamespcScope, Namespc);
4789  return Namespc;
4790}
4791
4792/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
4793/// is a namespace alias, returns the namespace it points to.
4794static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
4795  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
4796    return AD->getNamespace();
4797  return dyn_cast_or_null<NamespaceDecl>(D);
4798}
4799
4800/// ActOnFinishNamespaceDef - This callback is called after a namespace is
4801/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
4802void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
4803  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
4804  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
4805  Namespc->setRBraceLoc(RBrace);
4806  PopDeclContext();
4807  if (Namespc->hasAttr<VisibilityAttr>())
4808    PopPragmaVisibility();
4809}
4810
4811CXXRecordDecl *Sema::getStdBadAlloc() const {
4812  return cast_or_null<CXXRecordDecl>(
4813                                  StdBadAlloc.get(Context.getExternalSource()));
4814}
4815
4816NamespaceDecl *Sema::getStdNamespace() const {
4817  return cast_or_null<NamespaceDecl>(
4818                                 StdNamespace.get(Context.getExternalSource()));
4819}
4820
4821/// \brief Retrieve the special "std" namespace, which may require us to
4822/// implicitly define the namespace.
4823NamespaceDecl *Sema::getOrCreateStdNamespace() {
4824  if (!StdNamespace) {
4825    // The "std" namespace has not yet been defined, so build one implicitly.
4826    StdNamespace = NamespaceDecl::Create(Context,
4827                                         Context.getTranslationUnitDecl(),
4828                                         SourceLocation(), SourceLocation(),
4829                                         &PP.getIdentifierTable().get("std"));
4830    getStdNamespace()->setImplicit(true);
4831  }
4832
4833  return getStdNamespace();
4834}
4835
4836/// \brief Determine whether a using statement is in a context where it will be
4837/// apply in all contexts.
4838static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
4839  switch (CurContext->getDeclKind()) {
4840    case Decl::TranslationUnit:
4841      return true;
4842    case Decl::LinkageSpec:
4843      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
4844    default:
4845      return false;
4846  }
4847}
4848
4849static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
4850                                       CXXScopeSpec &SS,
4851                                       SourceLocation IdentLoc,
4852                                       IdentifierInfo *Ident) {
4853  R.clear();
4854  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
4855                                               R.getLookupKind(), Sc, &SS, NULL,
4856                                               false, S.CTC_NoKeywords, NULL)) {
4857    if (Corrected.getCorrectionDeclAs<NamespaceDecl>() ||
4858        Corrected.getCorrectionDeclAs<NamespaceAliasDecl>()) {
4859      std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
4860      std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
4861      if (DeclContext *DC = S.computeDeclContext(SS, false))
4862        S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
4863          << Ident << DC << CorrectedQuotedStr << SS.getRange()
4864          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4865      else
4866        S.Diag(IdentLoc, diag::err_using_directive_suggest)
4867          << Ident << CorrectedQuotedStr
4868          << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
4869
4870      S.Diag(Corrected.getCorrectionDecl()->getLocation(),
4871           diag::note_namespace_defined_here) << CorrectedQuotedStr;
4872
4873      Ident = Corrected.getCorrectionAsIdentifierInfo();
4874      R.addDecl(Corrected.getCorrectionDecl());
4875      return true;
4876    }
4877    R.setLookupName(Ident);
4878  }
4879  return false;
4880}
4881
4882Decl *Sema::ActOnUsingDirective(Scope *S,
4883                                          SourceLocation UsingLoc,
4884                                          SourceLocation NamespcLoc,
4885                                          CXXScopeSpec &SS,
4886                                          SourceLocation IdentLoc,
4887                                          IdentifierInfo *NamespcName,
4888                                          AttributeList *AttrList) {
4889  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4890  assert(NamespcName && "Invalid NamespcName.");
4891  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
4892
4893  // This can only happen along a recovery path.
4894  while (S->getFlags() & Scope::TemplateParamScope)
4895    S = S->getParent();
4896  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4897
4898  UsingDirectiveDecl *UDir = 0;
4899  NestedNameSpecifier *Qualifier = 0;
4900  if (SS.isSet())
4901    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
4902
4903  // Lookup namespace name.
4904  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
4905  LookupParsedName(R, S, &SS);
4906  if (R.isAmbiguous())
4907    return 0;
4908
4909  if (R.empty()) {
4910    R.clear();
4911    // Allow "using namespace std;" or "using namespace ::std;" even if
4912    // "std" hasn't been defined yet, for GCC compatibility.
4913    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
4914        NamespcName->isStr("std")) {
4915      Diag(IdentLoc, diag::ext_using_undefined_std);
4916      R.addDecl(getOrCreateStdNamespace());
4917      R.resolveKind();
4918    }
4919    // Otherwise, attempt typo correction.
4920    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
4921  }
4922
4923  if (!R.empty()) {
4924    NamedDecl *Named = R.getFoundDecl();
4925    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
4926        && "expected namespace decl");
4927    // C++ [namespace.udir]p1:
4928    //   A using-directive specifies that the names in the nominated
4929    //   namespace can be used in the scope in which the
4930    //   using-directive appears after the using-directive. During
4931    //   unqualified name lookup (3.4.1), the names appear as if they
4932    //   were declared in the nearest enclosing namespace which
4933    //   contains both the using-directive and the nominated
4934    //   namespace. [Note: in this context, "contains" means "contains
4935    //   directly or indirectly". ]
4936
4937    // Find enclosing context containing both using-directive and
4938    // nominated namespace.
4939    NamespaceDecl *NS = getNamespaceDecl(Named);
4940    DeclContext *CommonAncestor = cast<DeclContext>(NS);
4941    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
4942      CommonAncestor = CommonAncestor->getParent();
4943
4944    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
4945                                      SS.getWithLocInContext(Context),
4946                                      IdentLoc, Named, CommonAncestor);
4947
4948    if (IsUsingDirectiveInToplevelContext(CurContext) &&
4949        !SourceMgr.isFromMainFile(SourceMgr.getInstantiationLoc(IdentLoc))) {
4950      Diag(IdentLoc, diag::warn_using_directive_in_header);
4951    }
4952
4953    PushUsingDirective(S, UDir);
4954  } else {
4955    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
4956  }
4957
4958  // FIXME: We ignore attributes for now.
4959  return UDir;
4960}
4961
4962void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
4963  // If scope has associated entity, then using directive is at namespace
4964  // or translation unit scope. We add UsingDirectiveDecls, into
4965  // it's lookup structure.
4966  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
4967    Ctx->addDecl(UDir);
4968  else
4969    // Otherwise it is block-sope. using-directives will affect lookup
4970    // only to the end of scope.
4971    S->PushUsingDirective(UDir);
4972}
4973
4974
4975Decl *Sema::ActOnUsingDeclaration(Scope *S,
4976                                  AccessSpecifier AS,
4977                                  bool HasUsingKeyword,
4978                                  SourceLocation UsingLoc,
4979                                  CXXScopeSpec &SS,
4980                                  UnqualifiedId &Name,
4981                                  AttributeList *AttrList,
4982                                  bool IsTypeName,
4983                                  SourceLocation TypenameLoc) {
4984  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
4985
4986  switch (Name.getKind()) {
4987  case UnqualifiedId::IK_ImplicitSelfParam:
4988  case UnqualifiedId::IK_Identifier:
4989  case UnqualifiedId::IK_OperatorFunctionId:
4990  case UnqualifiedId::IK_LiteralOperatorId:
4991  case UnqualifiedId::IK_ConversionFunctionId:
4992    break;
4993
4994  case UnqualifiedId::IK_ConstructorName:
4995  case UnqualifiedId::IK_ConstructorTemplateId:
4996    // C++0x inherited constructors.
4997    if (getLangOptions().CPlusPlus0x) break;
4998
4999    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
5000      << SS.getRange();
5001    return 0;
5002
5003  case UnqualifiedId::IK_DestructorName:
5004    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5005      << SS.getRange();
5006    return 0;
5007
5008  case UnqualifiedId::IK_TemplateId:
5009    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5010      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5011    return 0;
5012  }
5013
5014  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5015  DeclarationName TargetName = TargetNameInfo.getName();
5016  if (!TargetName)
5017    return 0;
5018
5019  // Warn about using declarations.
5020  // TODO: store that the declaration was written without 'using' and
5021  // talk about access decls instead of using decls in the
5022  // diagnostics.
5023  if (!HasUsingKeyword) {
5024    UsingLoc = Name.getSourceRange().getBegin();
5025
5026    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5027      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5028  }
5029
5030  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5031      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5032    return 0;
5033
5034  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5035                                        TargetNameInfo, AttrList,
5036                                        /* IsInstantiation */ false,
5037                                        IsTypeName, TypenameLoc);
5038  if (UD)
5039    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5040
5041  return UD;
5042}
5043
5044/// \brief Determine whether a using declaration considers the given
5045/// declarations as "equivalent", e.g., if they are redeclarations of
5046/// the same entity or are both typedefs of the same type.
5047static bool
5048IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5049                         bool &SuppressRedeclaration) {
5050  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5051    SuppressRedeclaration = false;
5052    return true;
5053  }
5054
5055  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5056    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5057      SuppressRedeclaration = true;
5058      return Context.hasSameType(TD1->getUnderlyingType(),
5059                                 TD2->getUnderlyingType());
5060    }
5061
5062  return false;
5063}
5064
5065
5066/// Determines whether to create a using shadow decl for a particular
5067/// decl, given the set of decls existing prior to this using lookup.
5068bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5069                                const LookupResult &Previous) {
5070  // Diagnose finding a decl which is not from a base class of the
5071  // current class.  We do this now because there are cases where this
5072  // function will silently decide not to build a shadow decl, which
5073  // will pre-empt further diagnostics.
5074  //
5075  // We don't need to do this in C++0x because we do the check once on
5076  // the qualifier.
5077  //
5078  // FIXME: diagnose the following if we care enough:
5079  //   struct A { int foo; };
5080  //   struct B : A { using A::foo; };
5081  //   template <class T> struct C : A {};
5082  //   template <class T> struct D : C<T> { using B::foo; } // <---
5083  // This is invalid (during instantiation) in C++03 because B::foo
5084  // resolves to the using decl in B, which is not a base class of D<T>.
5085  // We can't diagnose it immediately because C<T> is an unknown
5086  // specialization.  The UsingShadowDecl in D<T> then points directly
5087  // to A::foo, which will look well-formed when we instantiate.
5088  // The right solution is to not collapse the shadow-decl chain.
5089  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5090    DeclContext *OrigDC = Orig->getDeclContext();
5091
5092    // Handle enums and anonymous structs.
5093    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5094    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5095    while (OrigRec->isAnonymousStructOrUnion())
5096      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5097
5098    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5099      if (OrigDC == CurContext) {
5100        Diag(Using->getLocation(),
5101             diag::err_using_decl_nested_name_specifier_is_current_class)
5102          << Using->getQualifierLoc().getSourceRange();
5103        Diag(Orig->getLocation(), diag::note_using_decl_target);
5104        return true;
5105      }
5106
5107      Diag(Using->getQualifierLoc().getBeginLoc(),
5108           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5109        << Using->getQualifier()
5110        << cast<CXXRecordDecl>(CurContext)
5111        << Using->getQualifierLoc().getSourceRange();
5112      Diag(Orig->getLocation(), diag::note_using_decl_target);
5113      return true;
5114    }
5115  }
5116
5117  if (Previous.empty()) return false;
5118
5119  NamedDecl *Target = Orig;
5120  if (isa<UsingShadowDecl>(Target))
5121    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5122
5123  // If the target happens to be one of the previous declarations, we
5124  // don't have a conflict.
5125  //
5126  // FIXME: but we might be increasing its access, in which case we
5127  // should redeclare it.
5128  NamedDecl *NonTag = 0, *Tag = 0;
5129  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5130         I != E; ++I) {
5131    NamedDecl *D = (*I)->getUnderlyingDecl();
5132    bool Result;
5133    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5134      return Result;
5135
5136    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5137  }
5138
5139  if (Target->isFunctionOrFunctionTemplate()) {
5140    FunctionDecl *FD;
5141    if (isa<FunctionTemplateDecl>(Target))
5142      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5143    else
5144      FD = cast<FunctionDecl>(Target);
5145
5146    NamedDecl *OldDecl = 0;
5147    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5148    case Ovl_Overload:
5149      return false;
5150
5151    case Ovl_NonFunction:
5152      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5153      break;
5154
5155    // We found a decl with the exact signature.
5156    case Ovl_Match:
5157      // If we're in a record, we want to hide the target, so we
5158      // return true (without a diagnostic) to tell the caller not to
5159      // build a shadow decl.
5160      if (CurContext->isRecord())
5161        return true;
5162
5163      // If we're not in a record, this is an error.
5164      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5165      break;
5166    }
5167
5168    Diag(Target->getLocation(), diag::note_using_decl_target);
5169    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5170    return true;
5171  }
5172
5173  // Target is not a function.
5174
5175  if (isa<TagDecl>(Target)) {
5176    // No conflict between a tag and a non-tag.
5177    if (!Tag) return false;
5178
5179    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5180    Diag(Target->getLocation(), diag::note_using_decl_target);
5181    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5182    return true;
5183  }
5184
5185  // No conflict between a tag and a non-tag.
5186  if (!NonTag) return false;
5187
5188  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5189  Diag(Target->getLocation(), diag::note_using_decl_target);
5190  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5191  return true;
5192}
5193
5194/// Builds a shadow declaration corresponding to a 'using' declaration.
5195UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5196                                            UsingDecl *UD,
5197                                            NamedDecl *Orig) {
5198
5199  // If we resolved to another shadow declaration, just coalesce them.
5200  NamedDecl *Target = Orig;
5201  if (isa<UsingShadowDecl>(Target)) {
5202    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5203    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5204  }
5205
5206  UsingShadowDecl *Shadow
5207    = UsingShadowDecl::Create(Context, CurContext,
5208                              UD->getLocation(), UD, Target);
5209  UD->addShadowDecl(Shadow);
5210
5211  Shadow->setAccess(UD->getAccess());
5212  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5213    Shadow->setInvalidDecl();
5214
5215  if (S)
5216    PushOnScopeChains(Shadow, S);
5217  else
5218    CurContext->addDecl(Shadow);
5219
5220
5221  return Shadow;
5222}
5223
5224/// Hides a using shadow declaration.  This is required by the current
5225/// using-decl implementation when a resolvable using declaration in a
5226/// class is followed by a declaration which would hide or override
5227/// one or more of the using decl's targets; for example:
5228///
5229///   struct Base { void foo(int); };
5230///   struct Derived : Base {
5231///     using Base::foo;
5232///     void foo(int);
5233///   };
5234///
5235/// The governing language is C++03 [namespace.udecl]p12:
5236///
5237///   When a using-declaration brings names from a base class into a
5238///   derived class scope, member functions in the derived class
5239///   override and/or hide member functions with the same name and
5240///   parameter types in a base class (rather than conflicting).
5241///
5242/// There are two ways to implement this:
5243///   (1) optimistically create shadow decls when they're not hidden
5244///       by existing declarations, or
5245///   (2) don't create any shadow decls (or at least don't make them
5246///       visible) until we've fully parsed/instantiated the class.
5247/// The problem with (1) is that we might have to retroactively remove
5248/// a shadow decl, which requires several O(n) operations because the
5249/// decl structures are (very reasonably) not designed for removal.
5250/// (2) avoids this but is very fiddly and phase-dependent.
5251void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5252  if (Shadow->getDeclName().getNameKind() ==
5253        DeclarationName::CXXConversionFunctionName)
5254    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5255
5256  // Remove it from the DeclContext...
5257  Shadow->getDeclContext()->removeDecl(Shadow);
5258
5259  // ...and the scope, if applicable...
5260  if (S) {
5261    S->RemoveDecl(Shadow);
5262    IdResolver.RemoveDecl(Shadow);
5263  }
5264
5265  // ...and the using decl.
5266  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5267
5268  // TODO: complain somehow if Shadow was used.  It shouldn't
5269  // be possible for this to happen, because...?
5270}
5271
5272/// Builds a using declaration.
5273///
5274/// \param IsInstantiation - Whether this call arises from an
5275///   instantiation of an unresolved using declaration.  We treat
5276///   the lookup differently for these declarations.
5277NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5278                                       SourceLocation UsingLoc,
5279                                       CXXScopeSpec &SS,
5280                                       const DeclarationNameInfo &NameInfo,
5281                                       AttributeList *AttrList,
5282                                       bool IsInstantiation,
5283                                       bool IsTypeName,
5284                                       SourceLocation TypenameLoc) {
5285  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5286  SourceLocation IdentLoc = NameInfo.getLoc();
5287  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5288
5289  // FIXME: We ignore attributes for now.
5290
5291  if (SS.isEmpty()) {
5292    Diag(IdentLoc, diag::err_using_requires_qualname);
5293    return 0;
5294  }
5295
5296  // Do the redeclaration lookup in the current scope.
5297  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5298                        ForRedeclaration);
5299  Previous.setHideTags(false);
5300  if (S) {
5301    LookupName(Previous, S);
5302
5303    // It is really dumb that we have to do this.
5304    LookupResult::Filter F = Previous.makeFilter();
5305    while (F.hasNext()) {
5306      NamedDecl *D = F.next();
5307      if (!isDeclInScope(D, CurContext, S))
5308        F.erase();
5309    }
5310    F.done();
5311  } else {
5312    assert(IsInstantiation && "no scope in non-instantiation");
5313    assert(CurContext->isRecord() && "scope not record in instantiation");
5314    LookupQualifiedName(Previous, CurContext);
5315  }
5316
5317  // Check for invalid redeclarations.
5318  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5319    return 0;
5320
5321  // Check for bad qualifiers.
5322  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5323    return 0;
5324
5325  DeclContext *LookupContext = computeDeclContext(SS);
5326  NamedDecl *D;
5327  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5328  if (!LookupContext) {
5329    if (IsTypeName) {
5330      // FIXME: not all declaration name kinds are legal here
5331      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5332                                              UsingLoc, TypenameLoc,
5333                                              QualifierLoc,
5334                                              IdentLoc, NameInfo.getName());
5335    } else {
5336      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
5337                                           QualifierLoc, NameInfo);
5338    }
5339  } else {
5340    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
5341                          NameInfo, IsTypeName);
5342  }
5343  D->setAccess(AS);
5344  CurContext->addDecl(D);
5345
5346  if (!LookupContext) return D;
5347  UsingDecl *UD = cast<UsingDecl>(D);
5348
5349  if (RequireCompleteDeclContext(SS, LookupContext)) {
5350    UD->setInvalidDecl();
5351    return UD;
5352  }
5353
5354  // Constructor inheriting using decls get special treatment.
5355  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
5356    if (CheckInheritedConstructorUsingDecl(UD))
5357      UD->setInvalidDecl();
5358    return UD;
5359  }
5360
5361  // Otherwise, look up the target name.
5362
5363  LookupResult R(*this, NameInfo, LookupOrdinaryName);
5364  R.setUsingDeclaration(true);
5365
5366  // Unlike most lookups, we don't always want to hide tag
5367  // declarations: tag names are visible through the using declaration
5368  // even if hidden by ordinary names, *except* in a dependent context
5369  // where it's important for the sanity of two-phase lookup.
5370  if (!IsInstantiation)
5371    R.setHideTags(false);
5372
5373  LookupQualifiedName(R, LookupContext);
5374
5375  if (R.empty()) {
5376    Diag(IdentLoc, diag::err_no_member)
5377      << NameInfo.getName() << LookupContext << SS.getRange();
5378    UD->setInvalidDecl();
5379    return UD;
5380  }
5381
5382  if (R.isAmbiguous()) {
5383    UD->setInvalidDecl();
5384    return UD;
5385  }
5386
5387  if (IsTypeName) {
5388    // If we asked for a typename and got a non-type decl, error out.
5389    if (!R.getAsSingle<TypeDecl>()) {
5390      Diag(IdentLoc, diag::err_using_typename_non_type);
5391      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
5392        Diag((*I)->getUnderlyingDecl()->getLocation(),
5393             diag::note_using_decl_target);
5394      UD->setInvalidDecl();
5395      return UD;
5396    }
5397  } else {
5398    // If we asked for a non-typename and we got a type, error out,
5399    // but only if this is an instantiation of an unresolved using
5400    // decl.  Otherwise just silently find the type name.
5401    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
5402      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
5403      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
5404      UD->setInvalidDecl();
5405      return UD;
5406    }
5407  }
5408
5409  // C++0x N2914 [namespace.udecl]p6:
5410  // A using-declaration shall not name a namespace.
5411  if (R.getAsSingle<NamespaceDecl>()) {
5412    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
5413      << SS.getRange();
5414    UD->setInvalidDecl();
5415    return UD;
5416  }
5417
5418  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
5419    if (!CheckUsingShadowDecl(UD, *I, Previous))
5420      BuildUsingShadowDecl(S, UD, *I);
5421  }
5422
5423  return UD;
5424}
5425
5426/// Additional checks for a using declaration referring to a constructor name.
5427bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
5428  if (UD->isTypeName()) {
5429    // FIXME: Cannot specify typename when specifying constructor
5430    return true;
5431  }
5432
5433  const Type *SourceType = UD->getQualifier()->getAsType();
5434  assert(SourceType &&
5435         "Using decl naming constructor doesn't have type in scope spec.");
5436  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
5437
5438  // Check whether the named type is a direct base class.
5439  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
5440  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
5441  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
5442       BaseIt != BaseE; ++BaseIt) {
5443    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
5444    if (CanonicalSourceType == BaseType)
5445      break;
5446  }
5447
5448  if (BaseIt == BaseE) {
5449    // Did not find SourceType in the bases.
5450    Diag(UD->getUsingLocation(),
5451         diag::err_using_decl_constructor_not_in_direct_base)
5452      << UD->getNameInfo().getSourceRange()
5453      << QualType(SourceType, 0) << TargetClass;
5454    return true;
5455  }
5456
5457  BaseIt->setInheritConstructors();
5458
5459  return false;
5460}
5461
5462/// Checks that the given using declaration is not an invalid
5463/// redeclaration.  Note that this is checking only for the using decl
5464/// itself, not for any ill-formedness among the UsingShadowDecls.
5465bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
5466                                       bool isTypeName,
5467                                       const CXXScopeSpec &SS,
5468                                       SourceLocation NameLoc,
5469                                       const LookupResult &Prev) {
5470  // C++03 [namespace.udecl]p8:
5471  // C++0x [namespace.udecl]p10:
5472  //   A using-declaration is a declaration and can therefore be used
5473  //   repeatedly where (and only where) multiple declarations are
5474  //   allowed.
5475  //
5476  // That's in non-member contexts.
5477  if (!CurContext->getRedeclContext()->isRecord())
5478    return false;
5479
5480  NestedNameSpecifier *Qual
5481    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5482
5483  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
5484    NamedDecl *D = *I;
5485
5486    bool DTypename;
5487    NestedNameSpecifier *DQual;
5488    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
5489      DTypename = UD->isTypeName();
5490      DQual = UD->getQualifier();
5491    } else if (UnresolvedUsingValueDecl *UD
5492                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
5493      DTypename = false;
5494      DQual = UD->getQualifier();
5495    } else if (UnresolvedUsingTypenameDecl *UD
5496                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
5497      DTypename = true;
5498      DQual = UD->getQualifier();
5499    } else continue;
5500
5501    // using decls differ if one says 'typename' and the other doesn't.
5502    // FIXME: non-dependent using decls?
5503    if (isTypeName != DTypename) continue;
5504
5505    // using decls differ if they name different scopes (but note that
5506    // template instantiation can cause this check to trigger when it
5507    // didn't before instantiation).
5508    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
5509        Context.getCanonicalNestedNameSpecifier(DQual))
5510      continue;
5511
5512    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
5513    Diag(D->getLocation(), diag::note_using_decl) << 1;
5514    return true;
5515  }
5516
5517  return false;
5518}
5519
5520
5521/// Checks that the given nested-name qualifier used in a using decl
5522/// in the current context is appropriately related to the current
5523/// scope.  If an error is found, diagnoses it and returns true.
5524bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
5525                                   const CXXScopeSpec &SS,
5526                                   SourceLocation NameLoc) {
5527  DeclContext *NamedContext = computeDeclContext(SS);
5528
5529  if (!CurContext->isRecord()) {
5530    // C++03 [namespace.udecl]p3:
5531    // C++0x [namespace.udecl]p8:
5532    //   A using-declaration for a class member shall be a member-declaration.
5533
5534    // If we weren't able to compute a valid scope, it must be a
5535    // dependent class scope.
5536    if (!NamedContext || NamedContext->isRecord()) {
5537      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
5538        << SS.getRange();
5539      return true;
5540    }
5541
5542    // Otherwise, everything is known to be fine.
5543    return false;
5544  }
5545
5546  // The current scope is a record.
5547
5548  // If the named context is dependent, we can't decide much.
5549  if (!NamedContext) {
5550    // FIXME: in C++0x, we can diagnose if we can prove that the
5551    // nested-name-specifier does not refer to a base class, which is
5552    // still possible in some cases.
5553
5554    // Otherwise we have to conservatively report that things might be
5555    // okay.
5556    return false;
5557  }
5558
5559  if (!NamedContext->isRecord()) {
5560    // Ideally this would point at the last name in the specifier,
5561    // but we don't have that level of source info.
5562    Diag(SS.getRange().getBegin(),
5563         diag::err_using_decl_nested_name_specifier_is_not_class)
5564      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
5565    return true;
5566  }
5567
5568  if (!NamedContext->isDependentContext() &&
5569      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
5570    return true;
5571
5572  if (getLangOptions().CPlusPlus0x) {
5573    // C++0x [namespace.udecl]p3:
5574    //   In a using-declaration used as a member-declaration, the
5575    //   nested-name-specifier shall name a base class of the class
5576    //   being defined.
5577
5578    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
5579                                 cast<CXXRecordDecl>(NamedContext))) {
5580      if (CurContext == NamedContext) {
5581        Diag(NameLoc,
5582             diag::err_using_decl_nested_name_specifier_is_current_class)
5583          << SS.getRange();
5584        return true;
5585      }
5586
5587      Diag(SS.getRange().getBegin(),
5588           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5589        << (NestedNameSpecifier*) SS.getScopeRep()
5590        << cast<CXXRecordDecl>(CurContext)
5591        << SS.getRange();
5592      return true;
5593    }
5594
5595    return false;
5596  }
5597
5598  // C++03 [namespace.udecl]p4:
5599  //   A using-declaration used as a member-declaration shall refer
5600  //   to a member of a base class of the class being defined [etc.].
5601
5602  // Salient point: SS doesn't have to name a base class as long as
5603  // lookup only finds members from base classes.  Therefore we can
5604  // diagnose here only if we can prove that that can't happen,
5605  // i.e. if the class hierarchies provably don't intersect.
5606
5607  // TODO: it would be nice if "definitely valid" results were cached
5608  // in the UsingDecl and UsingShadowDecl so that these checks didn't
5609  // need to be repeated.
5610
5611  struct UserData {
5612    llvm::DenseSet<const CXXRecordDecl*> Bases;
5613
5614    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
5615      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5616      Data->Bases.insert(Base);
5617      return true;
5618    }
5619
5620    bool hasDependentBases(const CXXRecordDecl *Class) {
5621      return !Class->forallBases(collect, this);
5622    }
5623
5624    /// Returns true if the base is dependent or is one of the
5625    /// accumulated base classes.
5626    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
5627      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
5628      return !Data->Bases.count(Base);
5629    }
5630
5631    bool mightShareBases(const CXXRecordDecl *Class) {
5632      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
5633    }
5634  };
5635
5636  UserData Data;
5637
5638  // Returns false if we find a dependent base.
5639  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
5640    return false;
5641
5642  // Returns false if the class has a dependent base or if it or one
5643  // of its bases is present in the base set of the current context.
5644  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
5645    return false;
5646
5647  Diag(SS.getRange().getBegin(),
5648       diag::err_using_decl_nested_name_specifier_is_not_base_class)
5649    << (NestedNameSpecifier*) SS.getScopeRep()
5650    << cast<CXXRecordDecl>(CurContext)
5651    << SS.getRange();
5652
5653  return true;
5654}
5655
5656Decl *Sema::ActOnAliasDeclaration(Scope *S,
5657                                  AccessSpecifier AS,
5658                                  MultiTemplateParamsArg TemplateParamLists,
5659                                  SourceLocation UsingLoc,
5660                                  UnqualifiedId &Name,
5661                                  TypeResult Type) {
5662  // Skip up to the relevant declaration scope.
5663  while (S->getFlags() & Scope::TemplateParamScope)
5664    S = S->getParent();
5665  assert((S->getFlags() & Scope::DeclScope) &&
5666         "got alias-declaration outside of declaration scope");
5667
5668  if (Type.isInvalid())
5669    return 0;
5670
5671  bool Invalid = false;
5672  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
5673  TypeSourceInfo *TInfo = 0;
5674  GetTypeFromParser(Type.get(), &TInfo);
5675
5676  if (DiagnoseClassNameShadow(CurContext, NameInfo))
5677    return 0;
5678
5679  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
5680                                      UPPC_DeclarationType)) {
5681    Invalid = true;
5682    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
5683                                             TInfo->getTypeLoc().getBeginLoc());
5684  }
5685
5686  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
5687  LookupName(Previous, S);
5688
5689  // Warn about shadowing the name of a template parameter.
5690  if (Previous.isSingleResult() &&
5691      Previous.getFoundDecl()->isTemplateParameter()) {
5692    if (DiagnoseTemplateParameterShadow(Name.StartLocation,
5693                                        Previous.getFoundDecl()))
5694      Invalid = true;
5695    Previous.clear();
5696  }
5697
5698  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
5699         "name in alias declaration must be an identifier");
5700  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
5701                                               Name.StartLocation,
5702                                               Name.Identifier, TInfo);
5703
5704  NewTD->setAccess(AS);
5705
5706  if (Invalid)
5707    NewTD->setInvalidDecl();
5708
5709  CheckTypedefForVariablyModifiedType(S, NewTD);
5710  Invalid |= NewTD->isInvalidDecl();
5711
5712  bool Redeclaration = false;
5713
5714  NamedDecl *NewND;
5715  if (TemplateParamLists.size()) {
5716    TypeAliasTemplateDecl *OldDecl = 0;
5717    TemplateParameterList *OldTemplateParams = 0;
5718
5719    if (TemplateParamLists.size() != 1) {
5720      Diag(UsingLoc, diag::err_alias_template_extra_headers)
5721        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
5722         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
5723    }
5724    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
5725
5726    // Only consider previous declarations in the same scope.
5727    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
5728                         /*ExplicitInstantiationOrSpecialization*/false);
5729    if (!Previous.empty()) {
5730      Redeclaration = true;
5731
5732      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
5733      if (!OldDecl && !Invalid) {
5734        Diag(UsingLoc, diag::err_redefinition_different_kind)
5735          << Name.Identifier;
5736
5737        NamedDecl *OldD = Previous.getRepresentativeDecl();
5738        if (OldD->getLocation().isValid())
5739          Diag(OldD->getLocation(), diag::note_previous_definition);
5740
5741        Invalid = true;
5742      }
5743
5744      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
5745        if (TemplateParameterListsAreEqual(TemplateParams,
5746                                           OldDecl->getTemplateParameters(),
5747                                           /*Complain=*/true,
5748                                           TPL_TemplateMatch))
5749          OldTemplateParams = OldDecl->getTemplateParameters();
5750        else
5751          Invalid = true;
5752
5753        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
5754        if (!Invalid &&
5755            !Context.hasSameType(OldTD->getUnderlyingType(),
5756                                 NewTD->getUnderlyingType())) {
5757          // FIXME: The C++0x standard does not clearly say this is ill-formed,
5758          // but we can't reasonably accept it.
5759          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
5760            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
5761          if (OldTD->getLocation().isValid())
5762            Diag(OldTD->getLocation(), diag::note_previous_definition);
5763          Invalid = true;
5764        }
5765      }
5766    }
5767
5768    // Merge any previous default template arguments into our parameters,
5769    // and check the parameter list.
5770    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
5771                                   TPC_TypeAliasTemplate))
5772      return 0;
5773
5774    TypeAliasTemplateDecl *NewDecl =
5775      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
5776                                    Name.Identifier, TemplateParams,
5777                                    NewTD);
5778
5779    NewDecl->setAccess(AS);
5780
5781    if (Invalid)
5782      NewDecl->setInvalidDecl();
5783    else if (OldDecl)
5784      NewDecl->setPreviousDeclaration(OldDecl);
5785
5786    NewND = NewDecl;
5787  } else {
5788    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
5789    NewND = NewTD;
5790  }
5791
5792  if (!Redeclaration)
5793    PushOnScopeChains(NewND, S);
5794
5795  return NewND;
5796}
5797
5798Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
5799                                             SourceLocation NamespaceLoc,
5800                                             SourceLocation AliasLoc,
5801                                             IdentifierInfo *Alias,
5802                                             CXXScopeSpec &SS,
5803                                             SourceLocation IdentLoc,
5804                                             IdentifierInfo *Ident) {
5805
5806  // Lookup the namespace name.
5807  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
5808  LookupParsedName(R, S, &SS);
5809
5810  // Check if we have a previous declaration with the same name.
5811  NamedDecl *PrevDecl
5812    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
5813                       ForRedeclaration);
5814  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
5815    PrevDecl = 0;
5816
5817  if (PrevDecl) {
5818    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
5819      // We already have an alias with the same name that points to the same
5820      // namespace, so don't create a new one.
5821      // FIXME: At some point, we'll want to create the (redundant)
5822      // declaration to maintain better source information.
5823      if (!R.isAmbiguous() && !R.empty() &&
5824          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
5825        return 0;
5826    }
5827
5828    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
5829      diag::err_redefinition_different_kind;
5830    Diag(AliasLoc, DiagID) << Alias;
5831    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5832    return 0;
5833  }
5834
5835  if (R.isAmbiguous())
5836    return 0;
5837
5838  if (R.empty()) {
5839    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
5840      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
5841      return 0;
5842    }
5843  }
5844
5845  NamespaceAliasDecl *AliasDecl =
5846    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
5847                               Alias, SS.getWithLocInContext(Context),
5848                               IdentLoc, R.getFoundDecl());
5849
5850  PushOnScopeChains(AliasDecl, S);
5851  return AliasDecl;
5852}
5853
5854namespace {
5855  /// \brief Scoped object used to handle the state changes required in Sema
5856  /// to implicitly define the body of a C++ member function;
5857  class ImplicitlyDefinedFunctionScope {
5858    Sema &S;
5859    Sema::ContextRAII SavedContext;
5860
5861  public:
5862    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
5863      : S(S), SavedContext(S, Method)
5864    {
5865      S.PushFunctionScope();
5866      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
5867    }
5868
5869    ~ImplicitlyDefinedFunctionScope() {
5870      S.PopExpressionEvaluationContext();
5871      S.PopFunctionOrBlockScope();
5872    }
5873  };
5874}
5875
5876Sema::ImplicitExceptionSpecification
5877Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
5878  // C++ [except.spec]p14:
5879  //   An implicitly declared special member function (Clause 12) shall have an
5880  //   exception-specification. [...]
5881  ImplicitExceptionSpecification ExceptSpec(Context);
5882  if (ClassDecl->isInvalidDecl())
5883    return ExceptSpec;
5884
5885  // Direct base-class constructors.
5886  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
5887                                       BEnd = ClassDecl->bases_end();
5888       B != BEnd; ++B) {
5889    if (B->isVirtual()) // Handled below.
5890      continue;
5891
5892    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5893      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5894      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5895      // If this is a deleted function, add it anyway. This might be conformant
5896      // with the standard. This might not. I'm not sure. It might not matter.
5897      if (Constructor)
5898        ExceptSpec.CalledDecl(Constructor);
5899    }
5900  }
5901
5902  // Virtual base-class constructors.
5903  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
5904                                       BEnd = ClassDecl->vbases_end();
5905       B != BEnd; ++B) {
5906    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
5907      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
5908      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
5909      // If this is a deleted function, add it anyway. This might be conformant
5910      // with the standard. This might not. I'm not sure. It might not matter.
5911      if (Constructor)
5912        ExceptSpec.CalledDecl(Constructor);
5913    }
5914  }
5915
5916  // Field constructors.
5917  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
5918                               FEnd = ClassDecl->field_end();
5919       F != FEnd; ++F) {
5920    if (F->hasInClassInitializer()) {
5921      if (Expr *E = F->getInClassInitializer())
5922        ExceptSpec.CalledExpr(E);
5923      else if (!F->isInvalidDecl())
5924        ExceptSpec.SetDelayed();
5925    } else if (const RecordType *RecordTy
5926              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
5927      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5928      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
5929      // If this is a deleted function, add it anyway. This might be conformant
5930      // with the standard. This might not. I'm not sure. It might not matter.
5931      // In particular, the problem is that this function never gets called. It
5932      // might just be ill-formed because this function attempts to refer to
5933      // a deleted function here.
5934      if (Constructor)
5935        ExceptSpec.CalledDecl(Constructor);
5936    }
5937  }
5938
5939  return ExceptSpec;
5940}
5941
5942CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
5943                                                     CXXRecordDecl *ClassDecl) {
5944  // C++ [class.ctor]p5:
5945  //   A default constructor for a class X is a constructor of class X
5946  //   that can be called without an argument. If there is no
5947  //   user-declared constructor for class X, a default constructor is
5948  //   implicitly declared. An implicitly-declared default constructor
5949  //   is an inline public member of its class.
5950  assert(!ClassDecl->hasUserDeclaredConstructor() &&
5951         "Should not build implicit default constructor!");
5952
5953  ImplicitExceptionSpecification Spec =
5954    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
5955  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
5956
5957  // Create the actual constructor declaration.
5958  CanQualType ClassType
5959    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5960  SourceLocation ClassLoc = ClassDecl->getLocation();
5961  DeclarationName Name
5962    = Context.DeclarationNames.getCXXConstructorName(ClassType);
5963  DeclarationNameInfo NameInfo(Name, ClassLoc);
5964  CXXConstructorDecl *DefaultCon
5965    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
5966                                 Context.getFunctionType(Context.VoidTy,
5967                                                         0, 0, EPI),
5968                                 /*TInfo=*/0,
5969                                 /*isExplicit=*/false,
5970                                 /*isInline=*/true,
5971                                 /*isImplicitlyDeclared=*/true);
5972  DefaultCon->setAccess(AS_public);
5973  DefaultCon->setDefaulted();
5974  DefaultCon->setImplicit();
5975  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
5976
5977  // Note that we have declared this constructor.
5978  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
5979
5980  if (Scope *S = getScopeForContext(ClassDecl))
5981    PushOnScopeChains(DefaultCon, S, false);
5982  ClassDecl->addDecl(DefaultCon);
5983
5984  if (ShouldDeleteDefaultConstructor(DefaultCon))
5985    DefaultCon->setDeletedAsWritten();
5986
5987  return DefaultCon;
5988}
5989
5990void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
5991                                            CXXConstructorDecl *Constructor) {
5992  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5993          !Constructor->doesThisDeclarationHaveABody() &&
5994          !Constructor->isDeleted()) &&
5995    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
5996
5997  CXXRecordDecl *ClassDecl = Constructor->getParent();
5998  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
5999
6000  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6001  DiagnosticErrorTrap Trap(Diags);
6002  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6003      Trap.hasErrorOccurred()) {
6004    Diag(CurrentLocation, diag::note_member_synthesized_at)
6005      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6006    Constructor->setInvalidDecl();
6007    return;
6008  }
6009
6010  SourceLocation Loc = Constructor->getLocation();
6011  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6012
6013  Constructor->setUsed();
6014  MarkVTableUsed(CurrentLocation, ClassDecl);
6015
6016  if (ASTMutationListener *L = getASTMutationListener()) {
6017    L->CompletedImplicitDefinition(Constructor);
6018  }
6019}
6020
6021/// Get any existing defaulted default constructor for the given class. Do not
6022/// implicitly define one if it does not exist.
6023static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6024                                                             CXXRecordDecl *D) {
6025  ASTContext &Context = Self.Context;
6026  QualType ClassType = Context.getTypeDeclType(D);
6027  DeclarationName ConstructorName
6028    = Context.DeclarationNames.getCXXConstructorName(
6029                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6030
6031  DeclContext::lookup_const_iterator Con, ConEnd;
6032  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6033       Con != ConEnd; ++Con) {
6034    // A function template cannot be defaulted.
6035    if (isa<FunctionTemplateDecl>(*Con))
6036      continue;
6037
6038    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6039    if (Constructor->isDefaultConstructor())
6040      return Constructor->isDefaulted() ? Constructor : 0;
6041  }
6042  return 0;
6043}
6044
6045void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6046  if (!D) return;
6047  AdjustDeclIfTemplate(D);
6048
6049  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6050  CXXConstructorDecl *CtorDecl
6051    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6052
6053  if (!CtorDecl) return;
6054
6055  // Compute the exception specification for the default constructor.
6056  const FunctionProtoType *CtorTy =
6057    CtorDecl->getType()->castAs<FunctionProtoType>();
6058  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6059    ImplicitExceptionSpecification Spec =
6060      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6061    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6062    assert(EPI.ExceptionSpecType != EST_Delayed);
6063
6064    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6065  }
6066
6067  // If the default constructor is explicitly defaulted, checking the exception
6068  // specification is deferred until now.
6069  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6070      !ClassDecl->isDependentType())
6071    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6072}
6073
6074void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6075  // We start with an initial pass over the base classes to collect those that
6076  // inherit constructors from. If there are none, we can forgo all further
6077  // processing.
6078  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
6079  BasesVector BasesToInheritFrom;
6080  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6081                                          BaseE = ClassDecl->bases_end();
6082         BaseIt != BaseE; ++BaseIt) {
6083    if (BaseIt->getInheritConstructors()) {
6084      QualType Base = BaseIt->getType();
6085      if (Base->isDependentType()) {
6086        // If we inherit constructors from anything that is dependent, just
6087        // abort processing altogether. We'll get another chance for the
6088        // instantiations.
6089        return;
6090      }
6091      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6092    }
6093  }
6094  if (BasesToInheritFrom.empty())
6095    return;
6096
6097  // Now collect the constructors that we already have in the current class.
6098  // Those take precedence over inherited constructors.
6099  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6100  //   unless there is a user-declared constructor with the same signature in
6101  //   the class where the using-declaration appears.
6102  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6103  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6104                                    CtorE = ClassDecl->ctor_end();
6105       CtorIt != CtorE; ++CtorIt) {
6106    ExistingConstructors.insert(
6107        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6108  }
6109
6110  Scope *S = getScopeForContext(ClassDecl);
6111  DeclarationName CreatedCtorName =
6112      Context.DeclarationNames.getCXXConstructorName(
6113          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6114
6115  // Now comes the true work.
6116  // First, we keep a map from constructor types to the base that introduced
6117  // them. Needed for finding conflicting constructors. We also keep the
6118  // actually inserted declarations in there, for pretty diagnostics.
6119  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6120  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6121  ConstructorToSourceMap InheritedConstructors;
6122  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6123                             BaseE = BasesToInheritFrom.end();
6124       BaseIt != BaseE; ++BaseIt) {
6125    const RecordType *Base = *BaseIt;
6126    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6127    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6128    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6129                                      CtorE = BaseDecl->ctor_end();
6130         CtorIt != CtorE; ++CtorIt) {
6131      // Find the using declaration for inheriting this base's constructors.
6132      DeclarationName Name =
6133          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6134      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
6135          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
6136      SourceLocation UsingLoc = UD ? UD->getLocation() :
6137                                     ClassDecl->getLocation();
6138
6139      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6140      //   from the class X named in the using-declaration consists of actual
6141      //   constructors and notional constructors that result from the
6142      //   transformation of defaulted parameters as follows:
6143      //   - all non-template default constructors of X, and
6144      //   - for each non-template constructor of X that has at least one
6145      //     parameter with a default argument, the set of constructors that
6146      //     results from omitting any ellipsis parameter specification and
6147      //     successively omitting parameters with a default argument from the
6148      //     end of the parameter-type-list.
6149      CXXConstructorDecl *BaseCtor = *CtorIt;
6150      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6151      const FunctionProtoType *BaseCtorType =
6152          BaseCtor->getType()->getAs<FunctionProtoType>();
6153
6154      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6155                    maxParams = BaseCtor->getNumParams();
6156           params <= maxParams; ++params) {
6157        // Skip default constructors. They're never inherited.
6158        if (params == 0)
6159          continue;
6160        // Skip copy and move constructors for the same reason.
6161        if (CanBeCopyOrMove && params == 1)
6162          continue;
6163
6164        // Build up a function type for this particular constructor.
6165        // FIXME: The working paper does not consider that the exception spec
6166        // for the inheriting constructor might be larger than that of the
6167        // source. This code doesn't yet, either. When it does, this code will
6168        // need to be delayed until after exception specifications and in-class
6169        // member initializers are attached.
6170        const Type *NewCtorType;
6171        if (params == maxParams)
6172          NewCtorType = BaseCtorType;
6173        else {
6174          llvm::SmallVector<QualType, 16> Args;
6175          for (unsigned i = 0; i < params; ++i) {
6176            Args.push_back(BaseCtorType->getArgType(i));
6177          }
6178          FunctionProtoType::ExtProtoInfo ExtInfo =
6179              BaseCtorType->getExtProtoInfo();
6180          ExtInfo.Variadic = false;
6181          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6182                                                Args.data(), params, ExtInfo)
6183                       .getTypePtr();
6184        }
6185        const Type *CanonicalNewCtorType =
6186            Context.getCanonicalType(NewCtorType);
6187
6188        // Now that we have the type, first check if the class already has a
6189        // constructor with this signature.
6190        if (ExistingConstructors.count(CanonicalNewCtorType))
6191          continue;
6192
6193        // Then we check if we have already declared an inherited constructor
6194        // with this signature.
6195        std::pair<ConstructorToSourceMap::iterator, bool> result =
6196            InheritedConstructors.insert(std::make_pair(
6197                CanonicalNewCtorType,
6198                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6199        if (!result.second) {
6200          // Already in the map. If it came from a different class, that's an
6201          // error. Not if it's from the same.
6202          CanQualType PreviousBase = result.first->second.first;
6203          if (CanonicalBase != PreviousBase) {
6204            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6205            const CXXConstructorDecl *PrevBaseCtor =
6206                PrevCtor->getInheritedConstructor();
6207            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6208
6209            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6210            Diag(BaseCtor->getLocation(),
6211                 diag::note_using_decl_constructor_conflict_current_ctor);
6212            Diag(PrevBaseCtor->getLocation(),
6213                 diag::note_using_decl_constructor_conflict_previous_ctor);
6214            Diag(PrevCtor->getLocation(),
6215                 diag::note_using_decl_constructor_conflict_previous_using);
6216          }
6217          continue;
6218        }
6219
6220        // OK, we're there, now add the constructor.
6221        // C++0x [class.inhctor]p8: [...] that would be performed by a
6222        //   user-writtern inline constructor [...]
6223        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6224        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6225            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6226            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6227            /*ImplicitlyDeclared=*/true);
6228        NewCtor->setAccess(BaseCtor->getAccess());
6229
6230        // Build up the parameter decls and add them.
6231        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
6232        for (unsigned i = 0; i < params; ++i) {
6233          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6234                                                   UsingLoc, UsingLoc,
6235                                                   /*IdentifierInfo=*/0,
6236                                                   BaseCtorType->getArgType(i),
6237                                                   /*TInfo=*/0, SC_None,
6238                                                   SC_None, /*DefaultArg=*/0));
6239        }
6240        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
6241        NewCtor->setInheritedConstructor(BaseCtor);
6242
6243        PushOnScopeChains(NewCtor, S, false);
6244        ClassDecl->addDecl(NewCtor);
6245        result.first->second.second = NewCtor;
6246      }
6247    }
6248  }
6249}
6250
6251Sema::ImplicitExceptionSpecification
6252Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6253  // C++ [except.spec]p14:
6254  //   An implicitly declared special member function (Clause 12) shall have
6255  //   an exception-specification.
6256  ImplicitExceptionSpecification ExceptSpec(Context);
6257  if (ClassDecl->isInvalidDecl())
6258    return ExceptSpec;
6259
6260  // Direct base-class destructors.
6261  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6262                                       BEnd = ClassDecl->bases_end();
6263       B != BEnd; ++B) {
6264    if (B->isVirtual()) // Handled below.
6265      continue;
6266
6267    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6268      ExceptSpec.CalledDecl(
6269                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6270  }
6271
6272  // Virtual base-class destructors.
6273  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6274                                       BEnd = ClassDecl->vbases_end();
6275       B != BEnd; ++B) {
6276    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6277      ExceptSpec.CalledDecl(
6278                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6279  }
6280
6281  // Field destructors.
6282  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6283                               FEnd = ClassDecl->field_end();
6284       F != FEnd; ++F) {
6285    if (const RecordType *RecordTy
6286        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6287      ExceptSpec.CalledDecl(
6288                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6289  }
6290
6291  return ExceptSpec;
6292}
6293
6294CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6295  // C++ [class.dtor]p2:
6296  //   If a class has no user-declared destructor, a destructor is
6297  //   declared implicitly. An implicitly-declared destructor is an
6298  //   inline public member of its class.
6299
6300  ImplicitExceptionSpecification Spec =
6301      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6302  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6303
6304  // Create the actual destructor declaration.
6305  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6306
6307  CanQualType ClassType
6308    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6309  SourceLocation ClassLoc = ClassDecl->getLocation();
6310  DeclarationName Name
6311    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6312  DeclarationNameInfo NameInfo(Name, ClassLoc);
6313  CXXDestructorDecl *Destructor
6314      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6315                                  /*isInline=*/true,
6316                                  /*isImplicitlyDeclared=*/true);
6317  Destructor->setAccess(AS_public);
6318  Destructor->setDefaulted();
6319  Destructor->setImplicit();
6320  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6321
6322  // Note that we have declared this destructor.
6323  ++ASTContext::NumImplicitDestructorsDeclared;
6324
6325  // Introduce this destructor into its scope.
6326  if (Scope *S = getScopeForContext(ClassDecl))
6327    PushOnScopeChains(Destructor, S, false);
6328  ClassDecl->addDecl(Destructor);
6329
6330  // This could be uniqued if it ever proves significant.
6331  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
6332
6333  if (ShouldDeleteDestructor(Destructor))
6334    Destructor->setDeletedAsWritten();
6335
6336  AddOverriddenMethods(ClassDecl, Destructor);
6337
6338  return Destructor;
6339}
6340
6341void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
6342                                    CXXDestructorDecl *Destructor) {
6343  assert((Destructor->isDefaulted() &&
6344          !Destructor->doesThisDeclarationHaveABody()) &&
6345         "DefineImplicitDestructor - call it for implicit default dtor");
6346  CXXRecordDecl *ClassDecl = Destructor->getParent();
6347  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
6348
6349  if (Destructor->isInvalidDecl())
6350    return;
6351
6352  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
6353
6354  DiagnosticErrorTrap Trap(Diags);
6355  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6356                                         Destructor->getParent());
6357
6358  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
6359    Diag(CurrentLocation, diag::note_member_synthesized_at)
6360      << CXXDestructor << Context.getTagDeclType(ClassDecl);
6361
6362    Destructor->setInvalidDecl();
6363    return;
6364  }
6365
6366  SourceLocation Loc = Destructor->getLocation();
6367  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6368
6369  Destructor->setUsed();
6370  MarkVTableUsed(CurrentLocation, ClassDecl);
6371
6372  if (ASTMutationListener *L = getASTMutationListener()) {
6373    L->CompletedImplicitDefinition(Destructor);
6374  }
6375}
6376
6377void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
6378                                         CXXDestructorDecl *destructor) {
6379  // C++11 [class.dtor]p3:
6380  //   A declaration of a destructor that does not have an exception-
6381  //   specification is implicitly considered to have the same exception-
6382  //   specification as an implicit declaration.
6383  const FunctionProtoType *dtorType = destructor->getType()->
6384                                        getAs<FunctionProtoType>();
6385  if (dtorType->hasExceptionSpec())
6386    return;
6387
6388  ImplicitExceptionSpecification exceptSpec =
6389      ComputeDefaultedDtorExceptionSpec(classDecl);
6390
6391  // Replace the destructor's type.
6392  FunctionProtoType::ExtProtoInfo epi;
6393  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
6394  epi.NumExceptions = exceptSpec.size();
6395  epi.Exceptions = exceptSpec.data();
6396  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
6397
6398  destructor->setType(ty);
6399
6400  // FIXME: If the destructor has a body that could throw, and the newly created
6401  // spec doesn't allow exceptions, we should emit a warning, because this
6402  // change in behavior can break conforming C++03 programs at runtime.
6403  // However, we don't have a body yet, so it needs to be done somewhere else.
6404}
6405
6406/// \brief Builds a statement that copies the given entity from \p From to
6407/// \c To.
6408///
6409/// This routine is used to copy the members of a class with an
6410/// implicitly-declared copy assignment operator. When the entities being
6411/// copied are arrays, this routine builds for loops to copy them.
6412///
6413/// \param S The Sema object used for type-checking.
6414///
6415/// \param Loc The location where the implicit copy is being generated.
6416///
6417/// \param T The type of the expressions being copied. Both expressions must
6418/// have this type.
6419///
6420/// \param To The expression we are copying to.
6421///
6422/// \param From The expression we are copying from.
6423///
6424/// \param CopyingBaseSubobject Whether we're copying a base subobject.
6425/// Otherwise, it's a non-static member subobject.
6426///
6427/// \param Depth Internal parameter recording the depth of the recursion.
6428///
6429/// \returns A statement or a loop that copies the expressions.
6430static StmtResult
6431BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
6432                      Expr *To, Expr *From,
6433                      bool CopyingBaseSubobject, unsigned Depth = 0) {
6434  // C++0x [class.copy]p30:
6435  //   Each subobject is assigned in the manner appropriate to its type:
6436  //
6437  //     - if the subobject is of class type, the copy assignment operator
6438  //       for the class is used (as if by explicit qualification; that is,
6439  //       ignoring any possible virtual overriding functions in more derived
6440  //       classes);
6441  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
6442    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6443
6444    // Look for operator=.
6445    DeclarationName Name
6446      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6447    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
6448    S.LookupQualifiedName(OpLookup, ClassDecl, false);
6449
6450    // Filter out any result that isn't a copy-assignment operator.
6451    LookupResult::Filter F = OpLookup.makeFilter();
6452    while (F.hasNext()) {
6453      NamedDecl *D = F.next();
6454      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
6455        if (Method->isCopyAssignmentOperator())
6456          continue;
6457
6458      F.erase();
6459    }
6460    F.done();
6461
6462    // Suppress the protected check (C++ [class.protected]) for each of the
6463    // assignment operators we found. This strange dance is required when
6464    // we're assigning via a base classes's copy-assignment operator. To
6465    // ensure that we're getting the right base class subobject (without
6466    // ambiguities), we need to cast "this" to that subobject type; to
6467    // ensure that we don't go through the virtual call mechanism, we need
6468    // to qualify the operator= name with the base class (see below). However,
6469    // this means that if the base class has a protected copy assignment
6470    // operator, the protected member access check will fail. So, we
6471    // rewrite "protected" access to "public" access in this case, since we
6472    // know by construction that we're calling from a derived class.
6473    if (CopyingBaseSubobject) {
6474      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
6475           L != LEnd; ++L) {
6476        if (L.getAccess() == AS_protected)
6477          L.setAccess(AS_public);
6478      }
6479    }
6480
6481    // Create the nested-name-specifier that will be used to qualify the
6482    // reference to operator=; this is required to suppress the virtual
6483    // call mechanism.
6484    CXXScopeSpec SS;
6485    SS.MakeTrivial(S.Context,
6486                   NestedNameSpecifier::Create(S.Context, 0, false,
6487                                               T.getTypePtr()),
6488                   Loc);
6489
6490    // Create the reference to operator=.
6491    ExprResult OpEqualRef
6492      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
6493                                   /*FirstQualifierInScope=*/0, OpLookup,
6494                                   /*TemplateArgs=*/0,
6495                                   /*SuppressQualifierCheck=*/true);
6496    if (OpEqualRef.isInvalid())
6497      return StmtError();
6498
6499    // Build the call to the assignment operator.
6500
6501    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
6502                                                  OpEqualRef.takeAs<Expr>(),
6503                                                  Loc, &From, 1, Loc);
6504    if (Call.isInvalid())
6505      return StmtError();
6506
6507    return S.Owned(Call.takeAs<Stmt>());
6508  }
6509
6510  //     - if the subobject is of scalar type, the built-in assignment
6511  //       operator is used.
6512  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
6513  if (!ArrayTy) {
6514    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
6515    if (Assignment.isInvalid())
6516      return StmtError();
6517
6518    return S.Owned(Assignment.takeAs<Stmt>());
6519  }
6520
6521  //     - if the subobject is an array, each element is assigned, in the
6522  //       manner appropriate to the element type;
6523
6524  // Construct a loop over the array bounds, e.g.,
6525  //
6526  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
6527  //
6528  // that will copy each of the array elements.
6529  QualType SizeType = S.Context.getSizeType();
6530
6531  // Create the iteration variable.
6532  IdentifierInfo *IterationVarName = 0;
6533  {
6534    llvm::SmallString<8> Str;
6535    llvm::raw_svector_ostream OS(Str);
6536    OS << "__i" << Depth;
6537    IterationVarName = &S.Context.Idents.get(OS.str());
6538  }
6539  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
6540                                          IterationVarName, SizeType,
6541                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
6542                                          SC_None, SC_None);
6543
6544  // Initialize the iteration variable to zero.
6545  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
6546  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
6547
6548  // Create a reference to the iteration variable; we'll use this several
6549  // times throughout.
6550  Expr *IterationVarRef
6551    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
6552  assert(IterationVarRef && "Reference to invented variable cannot fail!");
6553
6554  // Create the DeclStmt that holds the iteration variable.
6555  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
6556
6557  // Create the comparison against the array bound.
6558  llvm::APInt Upper
6559    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
6560  Expr *Comparison
6561    = new (S.Context) BinaryOperator(IterationVarRef,
6562                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
6563                                     BO_NE, S.Context.BoolTy,
6564                                     VK_RValue, OK_Ordinary, Loc);
6565
6566  // Create the pre-increment of the iteration variable.
6567  Expr *Increment
6568    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
6569                                    VK_LValue, OK_Ordinary, Loc);
6570
6571  // Subscript the "from" and "to" expressions with the iteration variable.
6572  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
6573                                                         IterationVarRef, Loc));
6574  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
6575                                                       IterationVarRef, Loc));
6576
6577  // Build the copy for an individual element of the array.
6578  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
6579                                          To, From, CopyingBaseSubobject,
6580                                          Depth + 1);
6581  if (Copy.isInvalid())
6582    return StmtError();
6583
6584  // Construct the loop that copies all elements of this array.
6585  return S.ActOnForStmt(Loc, Loc, InitStmt,
6586                        S.MakeFullExpr(Comparison),
6587                        0, S.MakeFullExpr(Increment),
6588                        Loc, Copy.take());
6589}
6590
6591std::pair<Sema::ImplicitExceptionSpecification, bool>
6592Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
6593                                                   CXXRecordDecl *ClassDecl) {
6594  if (ClassDecl->isInvalidDecl())
6595    return std::make_pair(ImplicitExceptionSpecification(Context), false);
6596
6597  // C++ [class.copy]p10:
6598  //   If the class definition does not explicitly declare a copy
6599  //   assignment operator, one is declared implicitly.
6600  //   The implicitly-defined copy assignment operator for a class X
6601  //   will have the form
6602  //
6603  //       X& X::operator=(const X&)
6604  //
6605  //   if
6606  bool HasConstCopyAssignment = true;
6607
6608  //       -- each direct base class B of X has a copy assignment operator
6609  //          whose parameter is of type const B&, const volatile B& or B,
6610  //          and
6611  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6612                                       BaseEnd = ClassDecl->bases_end();
6613       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6614    // We'll handle this below
6615    if (LangOpts.CPlusPlus0x && Base->isVirtual())
6616      continue;
6617
6618    assert(!Base->getType()->isDependentType() &&
6619           "Cannot generate implicit members for class with dependent bases.");
6620    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6621    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6622                            &HasConstCopyAssignment);
6623  }
6624
6625  // In C++0x, the above citation has "or virtual added"
6626  if (LangOpts.CPlusPlus0x) {
6627    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6628                                         BaseEnd = ClassDecl->vbases_end();
6629         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
6630      assert(!Base->getType()->isDependentType() &&
6631             "Cannot generate implicit members for class with dependent bases.");
6632      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
6633      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
6634                              &HasConstCopyAssignment);
6635    }
6636  }
6637
6638  //       -- for all the nonstatic data members of X that are of a class
6639  //          type M (or array thereof), each such class type has a copy
6640  //          assignment operator whose parameter is of type const M&,
6641  //          const volatile M& or M.
6642  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6643                                  FieldEnd = ClassDecl->field_end();
6644       HasConstCopyAssignment && Field != FieldEnd;
6645       ++Field) {
6646    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6647    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6648      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
6649                              &HasConstCopyAssignment);
6650    }
6651  }
6652
6653  //   Otherwise, the implicitly declared copy assignment operator will
6654  //   have the form
6655  //
6656  //       X& X::operator=(X&)
6657
6658  // C++ [except.spec]p14:
6659  //   An implicitly declared special member function (Clause 12) shall have an
6660  //   exception-specification. [...]
6661
6662  // It is unspecified whether or not an implicit copy assignment operator
6663  // attempts to deduplicate calls to assignment operators of virtual bases are
6664  // made. As such, this exception specification is effectively unspecified.
6665  // Based on a similar decision made for constness in C++0x, we're erring on
6666  // the side of assuming such calls to be made regardless of whether they
6667  // actually happen.
6668  ImplicitExceptionSpecification ExceptSpec(Context);
6669  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
6670  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6671                                       BaseEnd = ClassDecl->bases_end();
6672       Base != BaseEnd; ++Base) {
6673    if (Base->isVirtual())
6674      continue;
6675
6676    CXXRecordDecl *BaseClassDecl
6677      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6678    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6679                                                            ArgQuals, false, 0))
6680      ExceptSpec.CalledDecl(CopyAssign);
6681  }
6682
6683  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
6684                                       BaseEnd = ClassDecl->vbases_end();
6685       Base != BaseEnd; ++Base) {
6686    CXXRecordDecl *BaseClassDecl
6687      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
6688    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
6689                                                            ArgQuals, false, 0))
6690      ExceptSpec.CalledDecl(CopyAssign);
6691  }
6692
6693  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6694                                  FieldEnd = ClassDecl->field_end();
6695       Field != FieldEnd;
6696       ++Field) {
6697    QualType FieldType = Context.getBaseElementType((*Field)->getType());
6698    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
6699      if (CXXMethodDecl *CopyAssign =
6700          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
6701        ExceptSpec.CalledDecl(CopyAssign);
6702    }
6703  }
6704
6705  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
6706}
6707
6708CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
6709  // Note: The following rules are largely analoguous to the copy
6710  // constructor rules. Note that virtual bases are not taken into account
6711  // for determining the argument type of the operator. Note also that
6712  // operators taking an object instead of a reference are allowed.
6713
6714  ImplicitExceptionSpecification Spec(Context);
6715  bool Const;
6716  llvm::tie(Spec, Const) =
6717    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
6718
6719  QualType ArgType = Context.getTypeDeclType(ClassDecl);
6720  QualType RetType = Context.getLValueReferenceType(ArgType);
6721  if (Const)
6722    ArgType = ArgType.withConst();
6723  ArgType = Context.getLValueReferenceType(ArgType);
6724
6725  //   An implicitly-declared copy assignment operator is an inline public
6726  //   member of its class.
6727  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6728  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
6729  SourceLocation ClassLoc = ClassDecl->getLocation();
6730  DeclarationNameInfo NameInfo(Name, ClassLoc);
6731  CXXMethodDecl *CopyAssignment
6732    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
6733                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
6734                            /*TInfo=*/0, /*isStatic=*/false,
6735                            /*StorageClassAsWritten=*/SC_None,
6736                            /*isInline=*/true,
6737                            SourceLocation());
6738  CopyAssignment->setAccess(AS_public);
6739  CopyAssignment->setDefaulted();
6740  CopyAssignment->setImplicit();
6741  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
6742
6743  // Add the parameter to the operator.
6744  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
6745                                               ClassLoc, ClassLoc, /*Id=*/0,
6746                                               ArgType, /*TInfo=*/0,
6747                                               SC_None,
6748                                               SC_None, 0);
6749  CopyAssignment->setParams(&FromParam, 1);
6750
6751  // Note that we have added this copy-assignment operator.
6752  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
6753
6754  if (Scope *S = getScopeForContext(ClassDecl))
6755    PushOnScopeChains(CopyAssignment, S, false);
6756  ClassDecl->addDecl(CopyAssignment);
6757
6758  // C++0x [class.copy]p18:
6759  //   ... If the class definition declares a move constructor or move
6760  //   assignment operator, the implicitly declared copy assignment operator is
6761  //   defined as deleted; ...
6762  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
6763      ClassDecl->hasUserDeclaredMoveAssignment() ||
6764      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
6765    CopyAssignment->setDeletedAsWritten();
6766
6767  AddOverriddenMethods(ClassDecl, CopyAssignment);
6768  return CopyAssignment;
6769}
6770
6771void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
6772                                        CXXMethodDecl *CopyAssignOperator) {
6773  assert((CopyAssignOperator->isDefaulted() &&
6774          CopyAssignOperator->isOverloadedOperator() &&
6775          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
6776          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
6777         "DefineImplicitCopyAssignment called for wrong function");
6778
6779  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
6780
6781  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
6782    CopyAssignOperator->setInvalidDecl();
6783    return;
6784  }
6785
6786  CopyAssignOperator->setUsed();
6787
6788  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
6789  DiagnosticErrorTrap Trap(Diags);
6790
6791  // C++0x [class.copy]p30:
6792  //   The implicitly-defined or explicitly-defaulted copy assignment operator
6793  //   for a non-union class X performs memberwise copy assignment of its
6794  //   subobjects. The direct base classes of X are assigned first, in the
6795  //   order of their declaration in the base-specifier-list, and then the
6796  //   immediate non-static data members of X are assigned, in the order in
6797  //   which they were declared in the class definition.
6798
6799  // The statements that form the synthesized function body.
6800  ASTOwningVector<Stmt*> Statements(*this);
6801
6802  // The parameter for the "other" object, which we are copying from.
6803  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
6804  Qualifiers OtherQuals = Other->getType().getQualifiers();
6805  QualType OtherRefType = Other->getType();
6806  if (const LValueReferenceType *OtherRef
6807                                = OtherRefType->getAs<LValueReferenceType>()) {
6808    OtherRefType = OtherRef->getPointeeType();
6809    OtherQuals = OtherRefType.getQualifiers();
6810  }
6811
6812  // Our location for everything implicitly-generated.
6813  SourceLocation Loc = CopyAssignOperator->getLocation();
6814
6815  // Construct a reference to the "other" object. We'll be using this
6816  // throughout the generated ASTs.
6817  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
6818  assert(OtherRef && "Reference to parameter cannot fail!");
6819
6820  // Construct the "this" pointer. We'll be using this throughout the generated
6821  // ASTs.
6822  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
6823  assert(This && "Reference to this cannot fail!");
6824
6825  // Assign base classes.
6826  bool Invalid = false;
6827  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
6828       E = ClassDecl->bases_end(); Base != E; ++Base) {
6829    // Form the assignment:
6830    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
6831    QualType BaseType = Base->getType().getUnqualifiedType();
6832    if (!BaseType->isRecordType()) {
6833      Invalid = true;
6834      continue;
6835    }
6836
6837    CXXCastPath BasePath;
6838    BasePath.push_back(Base);
6839
6840    // Construct the "from" expression, which is an implicit cast to the
6841    // appropriately-qualified base type.
6842    Expr *From = OtherRef;
6843    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
6844                             CK_UncheckedDerivedToBase,
6845                             VK_LValue, &BasePath).take();
6846
6847    // Dereference "this".
6848    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
6849
6850    // Implicitly cast "this" to the appropriately-qualified base type.
6851    To = ImpCastExprToType(To.take(),
6852                           Context.getCVRQualifiedType(BaseType,
6853                                     CopyAssignOperator->getTypeQualifiers()),
6854                           CK_UncheckedDerivedToBase,
6855                           VK_LValue, &BasePath);
6856
6857    // Build the copy.
6858    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
6859                                            To.get(), From,
6860                                            /*CopyingBaseSubobject=*/true);
6861    if (Copy.isInvalid()) {
6862      Diag(CurrentLocation, diag::note_member_synthesized_at)
6863        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6864      CopyAssignOperator->setInvalidDecl();
6865      return;
6866    }
6867
6868    // Success! Record the copy.
6869    Statements.push_back(Copy.takeAs<Expr>());
6870  }
6871
6872  // \brief Reference to the __builtin_memcpy function.
6873  Expr *BuiltinMemCpyRef = 0;
6874  // \brief Reference to the __builtin_objc_memmove_collectable function.
6875  Expr *CollectableMemCpyRef = 0;
6876
6877  // Assign non-static members.
6878  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
6879                                  FieldEnd = ClassDecl->field_end();
6880       Field != FieldEnd; ++Field) {
6881    // Check for members of reference type; we can't copy those.
6882    if (Field->getType()->isReferenceType()) {
6883      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6884        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
6885      Diag(Field->getLocation(), diag::note_declared_at);
6886      Diag(CurrentLocation, diag::note_member_synthesized_at)
6887        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6888      Invalid = true;
6889      continue;
6890    }
6891
6892    // Check for members of const-qualified, non-class type.
6893    QualType BaseType = Context.getBaseElementType(Field->getType());
6894    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
6895      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
6896        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
6897      Diag(Field->getLocation(), diag::note_declared_at);
6898      Diag(CurrentLocation, diag::note_member_synthesized_at)
6899        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
6900      Invalid = true;
6901      continue;
6902    }
6903
6904    // Suppress assigning zero-width bitfields.
6905    if (const Expr *Width = Field->getBitWidth())
6906      if (Width->EvaluateAsInt(Context) == 0)
6907        continue;
6908
6909    QualType FieldType = Field->getType().getNonReferenceType();
6910    if (FieldType->isIncompleteArrayType()) {
6911      assert(ClassDecl->hasFlexibleArrayMember() &&
6912             "Incomplete array type is not valid");
6913      continue;
6914    }
6915
6916    // Build references to the field in the object we're copying from and to.
6917    CXXScopeSpec SS; // Intentionally empty
6918    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
6919                              LookupMemberName);
6920    MemberLookup.addDecl(*Field);
6921    MemberLookup.resolveKind();
6922    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
6923                                               Loc, /*IsArrow=*/false,
6924                                               SS, 0, MemberLookup, 0);
6925    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
6926                                             Loc, /*IsArrow=*/true,
6927                                             SS, 0, MemberLookup, 0);
6928    assert(!From.isInvalid() && "Implicit field reference cannot fail");
6929    assert(!To.isInvalid() && "Implicit field reference cannot fail");
6930
6931    // If the field should be copied with __builtin_memcpy rather than via
6932    // explicit assignments, do so. This optimization only applies for arrays
6933    // of scalars and arrays of class type with trivial copy-assignment
6934    // operators.
6935    if (FieldType->isArrayType() &&
6936        BaseType.hasTrivialCopyAssignment(Context)) {
6937      // Compute the size of the memory buffer to be copied.
6938      QualType SizeType = Context.getSizeType();
6939      llvm::APInt Size(Context.getTypeSize(SizeType),
6940                       Context.getTypeSizeInChars(BaseType).getQuantity());
6941      for (const ConstantArrayType *Array
6942              = Context.getAsConstantArrayType(FieldType);
6943           Array;
6944           Array = Context.getAsConstantArrayType(Array->getElementType())) {
6945        llvm::APInt ArraySize
6946          = Array->getSize().zextOrTrunc(Size.getBitWidth());
6947        Size *= ArraySize;
6948      }
6949
6950      // Take the address of the field references for "from" and "to".
6951      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
6952      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
6953
6954      bool NeedsCollectableMemCpy =
6955          (BaseType->isRecordType() &&
6956           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
6957
6958      if (NeedsCollectableMemCpy) {
6959        if (!CollectableMemCpyRef) {
6960          // Create a reference to the __builtin_objc_memmove_collectable function.
6961          LookupResult R(*this,
6962                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
6963                         Loc, LookupOrdinaryName);
6964          LookupName(R, TUScope, true);
6965
6966          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
6967          if (!CollectableMemCpy) {
6968            // Something went horribly wrong earlier, and we will have
6969            // complained about it.
6970            Invalid = true;
6971            continue;
6972          }
6973
6974          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
6975                                                  CollectableMemCpy->getType(),
6976                                                  VK_LValue, Loc, 0).take();
6977          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
6978        }
6979      }
6980      // Create a reference to the __builtin_memcpy builtin function.
6981      else if (!BuiltinMemCpyRef) {
6982        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
6983                       LookupOrdinaryName);
6984        LookupName(R, TUScope, true);
6985
6986        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
6987        if (!BuiltinMemCpy) {
6988          // Something went horribly wrong earlier, and we will have complained
6989          // about it.
6990          Invalid = true;
6991          continue;
6992        }
6993
6994        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
6995                                            BuiltinMemCpy->getType(),
6996                                            VK_LValue, Loc, 0).take();
6997        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
6998      }
6999
7000      ASTOwningVector<Expr*> CallArgs(*this);
7001      CallArgs.push_back(To.takeAs<Expr>());
7002      CallArgs.push_back(From.takeAs<Expr>());
7003      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7004      ExprResult Call = ExprError();
7005      if (NeedsCollectableMemCpy)
7006        Call = ActOnCallExpr(/*Scope=*/0,
7007                             CollectableMemCpyRef,
7008                             Loc, move_arg(CallArgs),
7009                             Loc);
7010      else
7011        Call = ActOnCallExpr(/*Scope=*/0,
7012                             BuiltinMemCpyRef,
7013                             Loc, move_arg(CallArgs),
7014                             Loc);
7015
7016      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7017      Statements.push_back(Call.takeAs<Expr>());
7018      continue;
7019    }
7020
7021    // Build the copy of this field.
7022    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7023                                                  To.get(), From.get(),
7024                                              /*CopyingBaseSubobject=*/false);
7025    if (Copy.isInvalid()) {
7026      Diag(CurrentLocation, diag::note_member_synthesized_at)
7027        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7028      CopyAssignOperator->setInvalidDecl();
7029      return;
7030    }
7031
7032    // Success! Record the copy.
7033    Statements.push_back(Copy.takeAs<Stmt>());
7034  }
7035
7036  if (!Invalid) {
7037    // Add a "return *this;"
7038    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7039
7040    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7041    if (Return.isInvalid())
7042      Invalid = true;
7043    else {
7044      Statements.push_back(Return.takeAs<Stmt>());
7045
7046      if (Trap.hasErrorOccurred()) {
7047        Diag(CurrentLocation, diag::note_member_synthesized_at)
7048          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7049        Invalid = true;
7050      }
7051    }
7052  }
7053
7054  if (Invalid) {
7055    CopyAssignOperator->setInvalidDecl();
7056    return;
7057  }
7058
7059  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7060                                            /*isStmtExpr=*/false);
7061  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7062  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7063
7064  if (ASTMutationListener *L = getASTMutationListener()) {
7065    L->CompletedImplicitDefinition(CopyAssignOperator);
7066  }
7067}
7068
7069std::pair<Sema::ImplicitExceptionSpecification, bool>
7070Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
7071  if (ClassDecl->isInvalidDecl())
7072    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7073
7074  // C++ [class.copy]p5:
7075  //   The implicitly-declared copy constructor for a class X will
7076  //   have the form
7077  //
7078  //       X::X(const X&)
7079  //
7080  //   if
7081  // FIXME: It ought to be possible to store this on the record.
7082  bool HasConstCopyConstructor = true;
7083
7084  //     -- each direct or virtual base class B of X has a copy
7085  //        constructor whose first parameter is of type const B& or
7086  //        const volatile B&, and
7087  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7088                                       BaseEnd = ClassDecl->bases_end();
7089       HasConstCopyConstructor && Base != BaseEnd;
7090       ++Base) {
7091    // Virtual bases are handled below.
7092    if (Base->isVirtual())
7093      continue;
7094
7095    CXXRecordDecl *BaseClassDecl
7096      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7097    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7098                             &HasConstCopyConstructor);
7099  }
7100
7101  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7102                                       BaseEnd = ClassDecl->vbases_end();
7103       HasConstCopyConstructor && Base != BaseEnd;
7104       ++Base) {
7105    CXXRecordDecl *BaseClassDecl
7106      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7107    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
7108                             &HasConstCopyConstructor);
7109  }
7110
7111  //     -- for all the nonstatic data members of X that are of a
7112  //        class type M (or array thereof), each such class type
7113  //        has a copy constructor whose first parameter is of type
7114  //        const M& or const volatile M&.
7115  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7116                                  FieldEnd = ClassDecl->field_end();
7117       HasConstCopyConstructor && Field != FieldEnd;
7118       ++Field) {
7119    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7120    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7121      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
7122                               &HasConstCopyConstructor);
7123    }
7124  }
7125  //   Otherwise, the implicitly declared copy constructor will have
7126  //   the form
7127  //
7128  //       X::X(X&)
7129
7130  // C++ [except.spec]p14:
7131  //   An implicitly declared special member function (Clause 12) shall have an
7132  //   exception-specification. [...]
7133  ImplicitExceptionSpecification ExceptSpec(Context);
7134  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
7135  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7136                                       BaseEnd = ClassDecl->bases_end();
7137       Base != BaseEnd;
7138       ++Base) {
7139    // Virtual bases are handled below.
7140    if (Base->isVirtual())
7141      continue;
7142
7143    CXXRecordDecl *BaseClassDecl
7144      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7145    if (CXXConstructorDecl *CopyConstructor =
7146          LookupCopyingConstructor(BaseClassDecl, Quals))
7147      ExceptSpec.CalledDecl(CopyConstructor);
7148  }
7149  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7150                                       BaseEnd = ClassDecl->vbases_end();
7151       Base != BaseEnd;
7152       ++Base) {
7153    CXXRecordDecl *BaseClassDecl
7154      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7155    if (CXXConstructorDecl *CopyConstructor =
7156          LookupCopyingConstructor(BaseClassDecl, Quals))
7157      ExceptSpec.CalledDecl(CopyConstructor);
7158  }
7159  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7160                                  FieldEnd = ClassDecl->field_end();
7161       Field != FieldEnd;
7162       ++Field) {
7163    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7164    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7165      if (CXXConstructorDecl *CopyConstructor =
7166        LookupCopyingConstructor(FieldClassDecl, Quals))
7167      ExceptSpec.CalledDecl(CopyConstructor);
7168    }
7169  }
7170
7171  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
7172}
7173
7174CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
7175                                                    CXXRecordDecl *ClassDecl) {
7176  // C++ [class.copy]p4:
7177  //   If the class definition does not explicitly declare a copy
7178  //   constructor, one is declared implicitly.
7179
7180  ImplicitExceptionSpecification Spec(Context);
7181  bool Const;
7182  llvm::tie(Spec, Const) =
7183    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
7184
7185  QualType ClassType = Context.getTypeDeclType(ClassDecl);
7186  QualType ArgType = ClassType;
7187  if (Const)
7188    ArgType = ArgType.withConst();
7189  ArgType = Context.getLValueReferenceType(ArgType);
7190
7191  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7192
7193  DeclarationName Name
7194    = Context.DeclarationNames.getCXXConstructorName(
7195                                           Context.getCanonicalType(ClassType));
7196  SourceLocation ClassLoc = ClassDecl->getLocation();
7197  DeclarationNameInfo NameInfo(Name, ClassLoc);
7198
7199  //   An implicitly-declared copy constructor is an inline public
7200  //   member of its class.
7201  CXXConstructorDecl *CopyConstructor
7202    = CXXConstructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7203                                 Context.getFunctionType(Context.VoidTy,
7204                                                         &ArgType, 1, EPI),
7205                                 /*TInfo=*/0,
7206                                 /*isExplicit=*/false,
7207                                 /*isInline=*/true,
7208                                 /*isImplicitlyDeclared=*/true);
7209  CopyConstructor->setAccess(AS_public);
7210  CopyConstructor->setDefaulted();
7211  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
7212
7213  // Note that we have declared this constructor.
7214  ++ASTContext::NumImplicitCopyConstructorsDeclared;
7215
7216  // Add the parameter to the constructor.
7217  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
7218                                               ClassLoc, ClassLoc,
7219                                               /*IdentifierInfo=*/0,
7220                                               ArgType, /*TInfo=*/0,
7221                                               SC_None,
7222                                               SC_None, 0);
7223  CopyConstructor->setParams(&FromParam, 1);
7224
7225  if (Scope *S = getScopeForContext(ClassDecl))
7226    PushOnScopeChains(CopyConstructor, S, false);
7227  ClassDecl->addDecl(CopyConstructor);
7228
7229  // C++0x [class.copy]p7:
7230  //   ... If the class definition declares a move constructor or move
7231  //   assignment operator, the implicitly declared constructor is defined as
7232  //   deleted; ...
7233  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
7234      ClassDecl->hasUserDeclaredMoveAssignment() ||
7235      ShouldDeleteCopyConstructor(CopyConstructor))
7236    CopyConstructor->setDeletedAsWritten();
7237
7238  return CopyConstructor;
7239}
7240
7241void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
7242                                   CXXConstructorDecl *CopyConstructor) {
7243  assert((CopyConstructor->isDefaulted() &&
7244          CopyConstructor->isCopyConstructor() &&
7245          !CopyConstructor->doesThisDeclarationHaveABody()) &&
7246         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
7247
7248  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
7249  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
7250
7251  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
7252  DiagnosticErrorTrap Trap(Diags);
7253
7254  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
7255      Trap.hasErrorOccurred()) {
7256    Diag(CurrentLocation, diag::note_member_synthesized_at)
7257      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
7258    CopyConstructor->setInvalidDecl();
7259  }  else {
7260    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
7261                                               CopyConstructor->getLocation(),
7262                                               MultiStmtArg(*this, 0, 0),
7263                                               /*isStmtExpr=*/false)
7264                                                              .takeAs<Stmt>());
7265  }
7266
7267  CopyConstructor->setUsed();
7268
7269  if (ASTMutationListener *L = getASTMutationListener()) {
7270    L->CompletedImplicitDefinition(CopyConstructor);
7271  }
7272}
7273
7274ExprResult
7275Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7276                            CXXConstructorDecl *Constructor,
7277                            MultiExprArg ExprArgs,
7278                            bool RequiresZeroInit,
7279                            unsigned ConstructKind,
7280                            SourceRange ParenRange) {
7281  bool Elidable = false;
7282
7283  // C++0x [class.copy]p34:
7284  //   When certain criteria are met, an implementation is allowed to
7285  //   omit the copy/move construction of a class object, even if the
7286  //   copy/move constructor and/or destructor for the object have
7287  //   side effects. [...]
7288  //     - when a temporary class object that has not been bound to a
7289  //       reference (12.2) would be copied/moved to a class object
7290  //       with the same cv-unqualified type, the copy/move operation
7291  //       can be omitted by constructing the temporary object
7292  //       directly into the target of the omitted copy/move
7293  if (ConstructKind == CXXConstructExpr::CK_Complete &&
7294      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
7295    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
7296    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
7297  }
7298
7299  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
7300                               Elidable, move(ExprArgs), RequiresZeroInit,
7301                               ConstructKind, ParenRange);
7302}
7303
7304/// BuildCXXConstructExpr - Creates a complete call to a constructor,
7305/// including handling of its default argument expressions.
7306ExprResult
7307Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
7308                            CXXConstructorDecl *Constructor, bool Elidable,
7309                            MultiExprArg ExprArgs,
7310                            bool RequiresZeroInit,
7311                            unsigned ConstructKind,
7312                            SourceRange ParenRange) {
7313  unsigned NumExprs = ExprArgs.size();
7314  Expr **Exprs = (Expr **)ExprArgs.release();
7315
7316  for (specific_attr_iterator<NonNullAttr>
7317           i = Constructor->specific_attr_begin<NonNullAttr>(),
7318           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
7319    const NonNullAttr *NonNull = *i;
7320    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
7321  }
7322
7323  MarkDeclarationReferenced(ConstructLoc, Constructor);
7324  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
7325                                        Constructor, Elidable, Exprs, NumExprs,
7326                                        RequiresZeroInit,
7327              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
7328                                        ParenRange));
7329}
7330
7331bool Sema::InitializeVarWithConstructor(VarDecl *VD,
7332                                        CXXConstructorDecl *Constructor,
7333                                        MultiExprArg Exprs) {
7334  // FIXME: Provide the correct paren SourceRange when available.
7335  ExprResult TempResult =
7336    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
7337                          move(Exprs), false, CXXConstructExpr::CK_Complete,
7338                          SourceRange());
7339  if (TempResult.isInvalid())
7340    return true;
7341
7342  Expr *Temp = TempResult.takeAs<Expr>();
7343  CheckImplicitConversions(Temp, VD->getLocation());
7344  MarkDeclarationReferenced(VD->getLocation(), Constructor);
7345  Temp = MaybeCreateExprWithCleanups(Temp);
7346  VD->setInit(Temp);
7347
7348  return false;
7349}
7350
7351void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
7352  if (VD->isInvalidDecl()) return;
7353
7354  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
7355  if (ClassDecl->isInvalidDecl()) return;
7356  if (ClassDecl->hasTrivialDestructor()) return;
7357  if (ClassDecl->isDependentContext()) return;
7358
7359  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
7360  MarkDeclarationReferenced(VD->getLocation(), Destructor);
7361  CheckDestructorAccess(VD->getLocation(), Destructor,
7362                        PDiag(diag::err_access_dtor_var)
7363                        << VD->getDeclName()
7364                        << VD->getType());
7365
7366  if (!VD->hasGlobalStorage()) return;
7367
7368  // Emit warning for non-trivial dtor in global scope (a real global,
7369  // class-static, function-static).
7370  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
7371
7372  // TODO: this should be re-enabled for static locals by !CXAAtExit
7373  if (!VD->isStaticLocal())
7374    Diag(VD->getLocation(), diag::warn_global_destructor);
7375}
7376
7377/// AddCXXDirectInitializerToDecl - This action is called immediately after
7378/// ActOnDeclarator, when a C++ direct initializer is present.
7379/// e.g: "int x(1);"
7380void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
7381                                         SourceLocation LParenLoc,
7382                                         MultiExprArg Exprs,
7383                                         SourceLocation RParenLoc,
7384                                         bool TypeMayContainAuto) {
7385  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
7386
7387  // If there is no declaration, there was an error parsing it.  Just ignore
7388  // the initializer.
7389  if (RealDecl == 0)
7390    return;
7391
7392  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7393  if (!VDecl) {
7394    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7395    RealDecl->setInvalidDecl();
7396    return;
7397  }
7398
7399  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7400  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
7401    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
7402    if (Exprs.size() > 1) {
7403      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
7404           diag::err_auto_var_init_multiple_expressions)
7405        << VDecl->getDeclName() << VDecl->getType()
7406        << VDecl->getSourceRange();
7407      RealDecl->setInvalidDecl();
7408      return;
7409    }
7410
7411    Expr *Init = Exprs.get()[0];
7412    TypeSourceInfo *DeducedType = 0;
7413    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
7414      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
7415        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
7416        << Init->getSourceRange();
7417    if (!DeducedType) {
7418      RealDecl->setInvalidDecl();
7419      return;
7420    }
7421    VDecl->setTypeSourceInfo(DeducedType);
7422    VDecl->setType(DeducedType->getType());
7423
7424    // In ARC, infer lifetime.
7425    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7426      VDecl->setInvalidDecl();
7427
7428    // If this is a redeclaration, check that the type we just deduced matches
7429    // the previously declared type.
7430    if (VarDecl *Old = VDecl->getPreviousDeclaration())
7431      MergeVarDeclTypes(VDecl, Old);
7432  }
7433
7434  // We will represent direct-initialization similarly to copy-initialization:
7435  //    int x(1);  -as-> int x = 1;
7436  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7437  //
7438  // Clients that want to distinguish between the two forms, can check for
7439  // direct initializer using VarDecl::hasCXXDirectInitializer().
7440  // A major benefit is that clients that don't particularly care about which
7441  // exactly form was it (like the CodeGen) can handle both cases without
7442  // special case code.
7443
7444  // C++ 8.5p11:
7445  // The form of initialization (using parentheses or '=') is generally
7446  // insignificant, but does matter when the entity being initialized has a
7447  // class type.
7448
7449  if (!VDecl->getType()->isDependentType() &&
7450      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
7451                          diag::err_typecheck_decl_incomplete_type)) {
7452    VDecl->setInvalidDecl();
7453    return;
7454  }
7455
7456  // The variable can not have an abstract class type.
7457  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7458                             diag::err_abstract_type_in_decl,
7459                             AbstractVariableType))
7460    VDecl->setInvalidDecl();
7461
7462  const VarDecl *Def;
7463  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7464    Diag(VDecl->getLocation(), diag::err_redefinition)
7465    << VDecl->getDeclName();
7466    Diag(Def->getLocation(), diag::note_previous_definition);
7467    VDecl->setInvalidDecl();
7468    return;
7469  }
7470
7471  // C++ [class.static.data]p4
7472  //   If a static data member is of const integral or const
7473  //   enumeration type, its declaration in the class definition can
7474  //   specify a constant-initializer which shall be an integral
7475  //   constant expression (5.19). In that case, the member can appear
7476  //   in integral constant expressions. The member shall still be
7477  //   defined in a namespace scope if it is used in the program and the
7478  //   namespace scope definition shall not contain an initializer.
7479  //
7480  // We already performed a redefinition check above, but for static
7481  // data members we also need to check whether there was an in-class
7482  // declaration with an initializer.
7483  const VarDecl* PrevInit = 0;
7484  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7485    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
7486    Diag(PrevInit->getLocation(), diag::note_previous_definition);
7487    return;
7488  }
7489
7490  bool IsDependent = false;
7491  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
7492    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
7493      VDecl->setInvalidDecl();
7494      return;
7495    }
7496
7497    if (Exprs.get()[I]->isTypeDependent())
7498      IsDependent = true;
7499  }
7500
7501  // If either the declaration has a dependent type or if any of the
7502  // expressions is type-dependent, we represent the initialization
7503  // via a ParenListExpr for later use during template instantiation.
7504  if (VDecl->getType()->isDependentType() || IsDependent) {
7505    // Let clients know that initialization was done with a direct initializer.
7506    VDecl->setCXXDirectInitializer(true);
7507
7508    // Store the initialization expressions as a ParenListExpr.
7509    unsigned NumExprs = Exprs.size();
7510    VDecl->setInit(new (Context) ParenListExpr(
7511        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
7512        VDecl->getType().getNonReferenceType()));
7513    return;
7514  }
7515
7516  // Capture the variable that is being initialized and the style of
7517  // initialization.
7518  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7519
7520  // FIXME: Poor source location information.
7521  InitializationKind Kind
7522    = InitializationKind::CreateDirect(VDecl->getLocation(),
7523                                       LParenLoc, RParenLoc);
7524
7525  InitializationSequence InitSeq(*this, Entity, Kind,
7526                                 Exprs.get(), Exprs.size());
7527  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
7528  if (Result.isInvalid()) {
7529    VDecl->setInvalidDecl();
7530    return;
7531  }
7532
7533  CheckImplicitConversions(Result.get(), LParenLoc);
7534
7535  Result = MaybeCreateExprWithCleanups(Result);
7536  VDecl->setInit(Result.takeAs<Expr>());
7537  VDecl->setCXXDirectInitializer(true);
7538
7539  CheckCompleteVariableDeclaration(VDecl);
7540}
7541
7542/// \brief Given a constructor and the set of arguments provided for the
7543/// constructor, convert the arguments and add any required default arguments
7544/// to form a proper call to this constructor.
7545///
7546/// \returns true if an error occurred, false otherwise.
7547bool
7548Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
7549                              MultiExprArg ArgsPtr,
7550                              SourceLocation Loc,
7551                              ASTOwningVector<Expr*> &ConvertedArgs) {
7552  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
7553  unsigned NumArgs = ArgsPtr.size();
7554  Expr **Args = (Expr **)ArgsPtr.get();
7555
7556  const FunctionProtoType *Proto
7557    = Constructor->getType()->getAs<FunctionProtoType>();
7558  assert(Proto && "Constructor without a prototype?");
7559  unsigned NumArgsInProto = Proto->getNumArgs();
7560
7561  // If too few arguments are available, we'll fill in the rest with defaults.
7562  if (NumArgs < NumArgsInProto)
7563    ConvertedArgs.reserve(NumArgsInProto);
7564  else
7565    ConvertedArgs.reserve(NumArgs);
7566
7567  VariadicCallType CallType =
7568    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7569  llvm::SmallVector<Expr *, 8> AllArgs;
7570  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
7571                                        Proto, 0, Args, NumArgs, AllArgs,
7572                                        CallType);
7573  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
7574    ConvertedArgs.push_back(AllArgs[i]);
7575  return Invalid;
7576}
7577
7578static inline bool
7579CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
7580                                       const FunctionDecl *FnDecl) {
7581  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
7582  if (isa<NamespaceDecl>(DC)) {
7583    return SemaRef.Diag(FnDecl->getLocation(),
7584                        diag::err_operator_new_delete_declared_in_namespace)
7585      << FnDecl->getDeclName();
7586  }
7587
7588  if (isa<TranslationUnitDecl>(DC) &&
7589      FnDecl->getStorageClass() == SC_Static) {
7590    return SemaRef.Diag(FnDecl->getLocation(),
7591                        diag::err_operator_new_delete_declared_static)
7592      << FnDecl->getDeclName();
7593  }
7594
7595  return false;
7596}
7597
7598static inline bool
7599CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
7600                            CanQualType ExpectedResultType,
7601                            CanQualType ExpectedFirstParamType,
7602                            unsigned DependentParamTypeDiag,
7603                            unsigned InvalidParamTypeDiag) {
7604  QualType ResultType =
7605    FnDecl->getType()->getAs<FunctionType>()->getResultType();
7606
7607  // Check that the result type is not dependent.
7608  if (ResultType->isDependentType())
7609    return SemaRef.Diag(FnDecl->getLocation(),
7610                        diag::err_operator_new_delete_dependent_result_type)
7611    << FnDecl->getDeclName() << ExpectedResultType;
7612
7613  // Check that the result type is what we expect.
7614  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
7615    return SemaRef.Diag(FnDecl->getLocation(),
7616                        diag::err_operator_new_delete_invalid_result_type)
7617    << FnDecl->getDeclName() << ExpectedResultType;
7618
7619  // A function template must have at least 2 parameters.
7620  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
7621    return SemaRef.Diag(FnDecl->getLocation(),
7622                      diag::err_operator_new_delete_template_too_few_parameters)
7623        << FnDecl->getDeclName();
7624
7625  // The function decl must have at least 1 parameter.
7626  if (FnDecl->getNumParams() == 0)
7627    return SemaRef.Diag(FnDecl->getLocation(),
7628                        diag::err_operator_new_delete_too_few_parameters)
7629      << FnDecl->getDeclName();
7630
7631  // Check the the first parameter type is not dependent.
7632  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
7633  if (FirstParamType->isDependentType())
7634    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
7635      << FnDecl->getDeclName() << ExpectedFirstParamType;
7636
7637  // Check that the first parameter type is what we expect.
7638  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
7639      ExpectedFirstParamType)
7640    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
7641    << FnDecl->getDeclName() << ExpectedFirstParamType;
7642
7643  return false;
7644}
7645
7646static bool
7647CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7648  // C++ [basic.stc.dynamic.allocation]p1:
7649  //   A program is ill-formed if an allocation function is declared in a
7650  //   namespace scope other than global scope or declared static in global
7651  //   scope.
7652  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7653    return true;
7654
7655  CanQualType SizeTy =
7656    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
7657
7658  // C++ [basic.stc.dynamic.allocation]p1:
7659  //  The return type shall be void*. The first parameter shall have type
7660  //  std::size_t.
7661  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
7662                                  SizeTy,
7663                                  diag::err_operator_new_dependent_param_type,
7664                                  diag::err_operator_new_param_type))
7665    return true;
7666
7667  // C++ [basic.stc.dynamic.allocation]p1:
7668  //  The first parameter shall not have an associated default argument.
7669  if (FnDecl->getParamDecl(0)->hasDefaultArg())
7670    return SemaRef.Diag(FnDecl->getLocation(),
7671                        diag::err_operator_new_default_arg)
7672      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
7673
7674  return false;
7675}
7676
7677static bool
7678CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
7679  // C++ [basic.stc.dynamic.deallocation]p1:
7680  //   A program is ill-formed if deallocation functions are declared in a
7681  //   namespace scope other than global scope or declared static in global
7682  //   scope.
7683  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
7684    return true;
7685
7686  // C++ [basic.stc.dynamic.deallocation]p2:
7687  //   Each deallocation function shall return void and its first parameter
7688  //   shall be void*.
7689  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
7690                                  SemaRef.Context.VoidPtrTy,
7691                                 diag::err_operator_delete_dependent_param_type,
7692                                 diag::err_operator_delete_param_type))
7693    return true;
7694
7695  return false;
7696}
7697
7698/// CheckOverloadedOperatorDeclaration - Check whether the declaration
7699/// of this overloaded operator is well-formed. If so, returns false;
7700/// otherwise, emits appropriate diagnostics and returns true.
7701bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
7702  assert(FnDecl && FnDecl->isOverloadedOperator() &&
7703         "Expected an overloaded operator declaration");
7704
7705  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
7706
7707  // C++ [over.oper]p5:
7708  //   The allocation and deallocation functions, operator new,
7709  //   operator new[], operator delete and operator delete[], are
7710  //   described completely in 3.7.3. The attributes and restrictions
7711  //   found in the rest of this subclause do not apply to them unless
7712  //   explicitly stated in 3.7.3.
7713  if (Op == OO_Delete || Op == OO_Array_Delete)
7714    return CheckOperatorDeleteDeclaration(*this, FnDecl);
7715
7716  if (Op == OO_New || Op == OO_Array_New)
7717    return CheckOperatorNewDeclaration(*this, FnDecl);
7718
7719  // C++ [over.oper]p6:
7720  //   An operator function shall either be a non-static member
7721  //   function or be a non-member function and have at least one
7722  //   parameter whose type is a class, a reference to a class, an
7723  //   enumeration, or a reference to an enumeration.
7724  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
7725    if (MethodDecl->isStatic())
7726      return Diag(FnDecl->getLocation(),
7727                  diag::err_operator_overload_static) << FnDecl->getDeclName();
7728  } else {
7729    bool ClassOrEnumParam = false;
7730    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
7731                                   ParamEnd = FnDecl->param_end();
7732         Param != ParamEnd; ++Param) {
7733      QualType ParamType = (*Param)->getType().getNonReferenceType();
7734      if (ParamType->isDependentType() || ParamType->isRecordType() ||
7735          ParamType->isEnumeralType()) {
7736        ClassOrEnumParam = true;
7737        break;
7738      }
7739    }
7740
7741    if (!ClassOrEnumParam)
7742      return Diag(FnDecl->getLocation(),
7743                  diag::err_operator_overload_needs_class_or_enum)
7744        << FnDecl->getDeclName();
7745  }
7746
7747  // C++ [over.oper]p8:
7748  //   An operator function cannot have default arguments (8.3.6),
7749  //   except where explicitly stated below.
7750  //
7751  // Only the function-call operator allows default arguments
7752  // (C++ [over.call]p1).
7753  if (Op != OO_Call) {
7754    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
7755         Param != FnDecl->param_end(); ++Param) {
7756      if ((*Param)->hasDefaultArg())
7757        return Diag((*Param)->getLocation(),
7758                    diag::err_operator_overload_default_arg)
7759          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
7760    }
7761  }
7762
7763  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
7764    { false, false, false }
7765#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
7766    , { Unary, Binary, MemberOnly }
7767#include "clang/Basic/OperatorKinds.def"
7768  };
7769
7770  bool CanBeUnaryOperator = OperatorUses[Op][0];
7771  bool CanBeBinaryOperator = OperatorUses[Op][1];
7772  bool MustBeMemberOperator = OperatorUses[Op][2];
7773
7774  // C++ [over.oper]p8:
7775  //   [...] Operator functions cannot have more or fewer parameters
7776  //   than the number required for the corresponding operator, as
7777  //   described in the rest of this subclause.
7778  unsigned NumParams = FnDecl->getNumParams()
7779                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
7780  if (Op != OO_Call &&
7781      ((NumParams == 1 && !CanBeUnaryOperator) ||
7782       (NumParams == 2 && !CanBeBinaryOperator) ||
7783       (NumParams < 1) || (NumParams > 2))) {
7784    // We have the wrong number of parameters.
7785    unsigned ErrorKind;
7786    if (CanBeUnaryOperator && CanBeBinaryOperator) {
7787      ErrorKind = 2;  // 2 -> unary or binary.
7788    } else if (CanBeUnaryOperator) {
7789      ErrorKind = 0;  // 0 -> unary
7790    } else {
7791      assert(CanBeBinaryOperator &&
7792             "All non-call overloaded operators are unary or binary!");
7793      ErrorKind = 1;  // 1 -> binary
7794    }
7795
7796    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
7797      << FnDecl->getDeclName() << NumParams << ErrorKind;
7798  }
7799
7800  // Overloaded operators other than operator() cannot be variadic.
7801  if (Op != OO_Call &&
7802      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
7803    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
7804      << FnDecl->getDeclName();
7805  }
7806
7807  // Some operators must be non-static member functions.
7808  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
7809    return Diag(FnDecl->getLocation(),
7810                diag::err_operator_overload_must_be_member)
7811      << FnDecl->getDeclName();
7812  }
7813
7814  // C++ [over.inc]p1:
7815  //   The user-defined function called operator++ implements the
7816  //   prefix and postfix ++ operator. If this function is a member
7817  //   function with no parameters, or a non-member function with one
7818  //   parameter of class or enumeration type, it defines the prefix
7819  //   increment operator ++ for objects of that type. If the function
7820  //   is a member function with one parameter (which shall be of type
7821  //   int) or a non-member function with two parameters (the second
7822  //   of which shall be of type int), it defines the postfix
7823  //   increment operator ++ for objects of that type.
7824  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
7825    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
7826    bool ParamIsInt = false;
7827    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
7828      ParamIsInt = BT->getKind() == BuiltinType::Int;
7829
7830    if (!ParamIsInt)
7831      return Diag(LastParam->getLocation(),
7832                  diag::err_operator_overload_post_incdec_must_be_int)
7833        << LastParam->getType() << (Op == OO_MinusMinus);
7834  }
7835
7836  return false;
7837}
7838
7839/// CheckLiteralOperatorDeclaration - Check whether the declaration
7840/// of this literal operator function is well-formed. If so, returns
7841/// false; otherwise, emits appropriate diagnostics and returns true.
7842bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
7843  DeclContext *DC = FnDecl->getDeclContext();
7844  Decl::Kind Kind = DC->getDeclKind();
7845  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
7846      Kind != Decl::LinkageSpec) {
7847    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
7848      << FnDecl->getDeclName();
7849    return true;
7850  }
7851
7852  bool Valid = false;
7853
7854  // template <char...> type operator "" name() is the only valid template
7855  // signature, and the only valid signature with no parameters.
7856  if (FnDecl->param_size() == 0) {
7857    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
7858      // Must have only one template parameter
7859      TemplateParameterList *Params = TpDecl->getTemplateParameters();
7860      if (Params->size() == 1) {
7861        NonTypeTemplateParmDecl *PmDecl =
7862          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
7863
7864        // The template parameter must be a char parameter pack.
7865        if (PmDecl && PmDecl->isTemplateParameterPack() &&
7866            Context.hasSameType(PmDecl->getType(), Context.CharTy))
7867          Valid = true;
7868      }
7869    }
7870  } else {
7871    // Check the first parameter
7872    FunctionDecl::param_iterator Param = FnDecl->param_begin();
7873
7874    QualType T = (*Param)->getType();
7875
7876    // unsigned long long int, long double, and any character type are allowed
7877    // as the only parameters.
7878    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
7879        Context.hasSameType(T, Context.LongDoubleTy) ||
7880        Context.hasSameType(T, Context.CharTy) ||
7881        Context.hasSameType(T, Context.WCharTy) ||
7882        Context.hasSameType(T, Context.Char16Ty) ||
7883        Context.hasSameType(T, Context.Char32Ty)) {
7884      if (++Param == FnDecl->param_end())
7885        Valid = true;
7886      goto FinishedParams;
7887    }
7888
7889    // Otherwise it must be a pointer to const; let's strip those qualifiers.
7890    const PointerType *PT = T->getAs<PointerType>();
7891    if (!PT)
7892      goto FinishedParams;
7893    T = PT->getPointeeType();
7894    if (!T.isConstQualified())
7895      goto FinishedParams;
7896    T = T.getUnqualifiedType();
7897
7898    // Move on to the second parameter;
7899    ++Param;
7900
7901    // If there is no second parameter, the first must be a const char *
7902    if (Param == FnDecl->param_end()) {
7903      if (Context.hasSameType(T, Context.CharTy))
7904        Valid = true;
7905      goto FinishedParams;
7906    }
7907
7908    // const char *, const wchar_t*, const char16_t*, and const char32_t*
7909    // are allowed as the first parameter to a two-parameter function
7910    if (!(Context.hasSameType(T, Context.CharTy) ||
7911          Context.hasSameType(T, Context.WCharTy) ||
7912          Context.hasSameType(T, Context.Char16Ty) ||
7913          Context.hasSameType(T, Context.Char32Ty)))
7914      goto FinishedParams;
7915
7916    // The second and final parameter must be an std::size_t
7917    T = (*Param)->getType().getUnqualifiedType();
7918    if (Context.hasSameType(T, Context.getSizeType()) &&
7919        ++Param == FnDecl->param_end())
7920      Valid = true;
7921  }
7922
7923  // FIXME: This diagnostic is absolutely terrible.
7924FinishedParams:
7925  if (!Valid) {
7926    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
7927      << FnDecl->getDeclName();
7928    return true;
7929  }
7930
7931  return false;
7932}
7933
7934/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
7935/// linkage specification, including the language and (if present)
7936/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
7937/// the location of the language string literal, which is provided
7938/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
7939/// the '{' brace. Otherwise, this linkage specification does not
7940/// have any braces.
7941Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
7942                                           SourceLocation LangLoc,
7943                                           llvm::StringRef Lang,
7944                                           SourceLocation LBraceLoc) {
7945  LinkageSpecDecl::LanguageIDs Language;
7946  if (Lang == "\"C\"")
7947    Language = LinkageSpecDecl::lang_c;
7948  else if (Lang == "\"C++\"")
7949    Language = LinkageSpecDecl::lang_cxx;
7950  else {
7951    Diag(LangLoc, diag::err_bad_language);
7952    return 0;
7953  }
7954
7955  // FIXME: Add all the various semantics of linkage specifications
7956
7957  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
7958                                               ExternLoc, LangLoc, Language);
7959  CurContext->addDecl(D);
7960  PushDeclContext(S, D);
7961  return D;
7962}
7963
7964/// ActOnFinishLinkageSpecification - Complete the definition of
7965/// the C++ linkage specification LinkageSpec. If RBraceLoc is
7966/// valid, it's the position of the closing '}' brace in a linkage
7967/// specification that uses braces.
7968Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
7969                                            Decl *LinkageSpec,
7970                                            SourceLocation RBraceLoc) {
7971  if (LinkageSpec) {
7972    if (RBraceLoc.isValid()) {
7973      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
7974      LSDecl->setRBraceLoc(RBraceLoc);
7975    }
7976    PopDeclContext();
7977  }
7978  return LinkageSpec;
7979}
7980
7981/// \brief Perform semantic analysis for the variable declaration that
7982/// occurs within a C++ catch clause, returning the newly-created
7983/// variable.
7984VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
7985                                         TypeSourceInfo *TInfo,
7986                                         SourceLocation StartLoc,
7987                                         SourceLocation Loc,
7988                                         IdentifierInfo *Name) {
7989  bool Invalid = false;
7990  QualType ExDeclType = TInfo->getType();
7991
7992  // Arrays and functions decay.
7993  if (ExDeclType->isArrayType())
7994    ExDeclType = Context.getArrayDecayedType(ExDeclType);
7995  else if (ExDeclType->isFunctionType())
7996    ExDeclType = Context.getPointerType(ExDeclType);
7997
7998  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
7999  // The exception-declaration shall not denote a pointer or reference to an
8000  // incomplete type, other than [cv] void*.
8001  // N2844 forbids rvalue references.
8002  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
8003    Diag(Loc, diag::err_catch_rvalue_ref);
8004    Invalid = true;
8005  }
8006
8007  // GCC allows catching pointers and references to incomplete types
8008  // as an extension; so do we, but we warn by default.
8009
8010  QualType BaseType = ExDeclType;
8011  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
8012  unsigned DK = diag::err_catch_incomplete;
8013  bool IncompleteCatchIsInvalid = true;
8014  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
8015    BaseType = Ptr->getPointeeType();
8016    Mode = 1;
8017    DK = diag::ext_catch_incomplete_ptr;
8018    IncompleteCatchIsInvalid = false;
8019  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
8020    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
8021    BaseType = Ref->getPointeeType();
8022    Mode = 2;
8023    DK = diag::ext_catch_incomplete_ref;
8024    IncompleteCatchIsInvalid = false;
8025  }
8026  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
8027      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
8028      IncompleteCatchIsInvalid)
8029    Invalid = true;
8030
8031  if (!Invalid && !ExDeclType->isDependentType() &&
8032      RequireNonAbstractType(Loc, ExDeclType,
8033                             diag::err_abstract_type_in_decl,
8034                             AbstractVariableType))
8035    Invalid = true;
8036
8037  // Only the non-fragile NeXT runtime currently supports C++ catches
8038  // of ObjC types, and no runtime supports catching ObjC types by value.
8039  if (!Invalid && getLangOptions().ObjC1) {
8040    QualType T = ExDeclType;
8041    if (const ReferenceType *RT = T->getAs<ReferenceType>())
8042      T = RT->getPointeeType();
8043
8044    if (T->isObjCObjectType()) {
8045      Diag(Loc, diag::err_objc_object_catch);
8046      Invalid = true;
8047    } else if (T->isObjCObjectPointerType()) {
8048      if (!getLangOptions().ObjCNonFragileABI)
8049        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
8050    }
8051  }
8052
8053  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
8054                                    ExDeclType, TInfo, SC_None, SC_None);
8055  ExDecl->setExceptionVariable(true);
8056
8057  if (!Invalid && !ExDeclType->isDependentType()) {
8058    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
8059      // C++ [except.handle]p16:
8060      //   The object declared in an exception-declaration or, if the
8061      //   exception-declaration does not specify a name, a temporary (12.2) is
8062      //   copy-initialized (8.5) from the exception object. [...]
8063      //   The object is destroyed when the handler exits, after the destruction
8064      //   of any automatic objects initialized within the handler.
8065      //
8066      // We just pretend to initialize the object with itself, then make sure
8067      // it can be destroyed later.
8068      QualType initType = ExDeclType;
8069
8070      InitializedEntity entity =
8071        InitializedEntity::InitializeVariable(ExDecl);
8072      InitializationKind initKind =
8073        InitializationKind::CreateCopy(Loc, SourceLocation());
8074
8075      Expr *opaqueValue =
8076        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
8077      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
8078      ExprResult result = sequence.Perform(*this, entity, initKind,
8079                                           MultiExprArg(&opaqueValue, 1));
8080      if (result.isInvalid())
8081        Invalid = true;
8082      else {
8083        // If the constructor used was non-trivial, set this as the
8084        // "initializer".
8085        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
8086        if (!construct->getConstructor()->isTrivial()) {
8087          Expr *init = MaybeCreateExprWithCleanups(construct);
8088          ExDecl->setInit(init);
8089        }
8090
8091        // And make sure it's destructable.
8092        FinalizeVarWithDestructor(ExDecl, recordType);
8093      }
8094    }
8095  }
8096
8097  if (Invalid)
8098    ExDecl->setInvalidDecl();
8099
8100  return ExDecl;
8101}
8102
8103/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
8104/// handler.
8105Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
8106  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8107  bool Invalid = D.isInvalidType();
8108
8109  // Check for unexpanded parameter packs.
8110  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8111                                               UPPC_ExceptionType)) {
8112    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8113                                             D.getIdentifierLoc());
8114    Invalid = true;
8115  }
8116
8117  IdentifierInfo *II = D.getIdentifier();
8118  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
8119                                             LookupOrdinaryName,
8120                                             ForRedeclaration)) {
8121    // The scope should be freshly made just for us. There is just no way
8122    // it contains any previous declaration.
8123    assert(!S->isDeclScope(PrevDecl));
8124    if (PrevDecl->isTemplateParameter()) {
8125      // Maybe we will complain about the shadowed template parameter.
8126      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8127    }
8128  }
8129
8130  if (D.getCXXScopeSpec().isSet() && !Invalid) {
8131    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
8132      << D.getCXXScopeSpec().getRange();
8133    Invalid = true;
8134  }
8135
8136  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
8137                                              D.getSourceRange().getBegin(),
8138                                              D.getIdentifierLoc(),
8139                                              D.getIdentifier());
8140  if (Invalid)
8141    ExDecl->setInvalidDecl();
8142
8143  // Add the exception declaration into this scope.
8144  if (II)
8145    PushOnScopeChains(ExDecl, S);
8146  else
8147    CurContext->addDecl(ExDecl);
8148
8149  ProcessDeclAttributes(S, ExDecl, D);
8150  return ExDecl;
8151}
8152
8153Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
8154                                         Expr *AssertExpr,
8155                                         Expr *AssertMessageExpr_,
8156                                         SourceLocation RParenLoc) {
8157  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
8158
8159  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
8160    llvm::APSInt Value(32);
8161    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
8162      Diag(StaticAssertLoc,
8163           diag::err_static_assert_expression_is_not_constant) <<
8164        AssertExpr->getSourceRange();
8165      return 0;
8166    }
8167
8168    if (Value == 0) {
8169      Diag(StaticAssertLoc, diag::err_static_assert_failed)
8170        << AssertMessage->getString() << AssertExpr->getSourceRange();
8171    }
8172  }
8173
8174  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
8175    return 0;
8176
8177  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
8178                                        AssertExpr, AssertMessage, RParenLoc);
8179
8180  CurContext->addDecl(Decl);
8181  return Decl;
8182}
8183
8184/// \brief Perform semantic analysis of the given friend type declaration.
8185///
8186/// \returns A friend declaration that.
8187FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
8188                                      TypeSourceInfo *TSInfo) {
8189  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
8190
8191  QualType T = TSInfo->getType();
8192  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
8193
8194  if (!getLangOptions().CPlusPlus0x) {
8195    // C++03 [class.friend]p2:
8196    //   An elaborated-type-specifier shall be used in a friend declaration
8197    //   for a class.*
8198    //
8199    //   * The class-key of the elaborated-type-specifier is required.
8200    if (!ActiveTemplateInstantiations.empty()) {
8201      // Do not complain about the form of friend template types during
8202      // template instantiation; we will already have complained when the
8203      // template was declared.
8204    } else if (!T->isElaboratedTypeSpecifier()) {
8205      // If we evaluated the type to a record type, suggest putting
8206      // a tag in front.
8207      if (const RecordType *RT = T->getAs<RecordType>()) {
8208        RecordDecl *RD = RT->getDecl();
8209
8210        std::string InsertionText = std::string(" ") + RD->getKindName();
8211
8212        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
8213          << (unsigned) RD->getTagKind()
8214          << T
8215          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
8216                                        InsertionText);
8217      } else {
8218        Diag(FriendLoc, diag::ext_nonclass_type_friend)
8219          << T
8220          << SourceRange(FriendLoc, TypeRange.getEnd());
8221      }
8222    } else if (T->getAs<EnumType>()) {
8223      Diag(FriendLoc, diag::ext_enum_friend)
8224        << T
8225        << SourceRange(FriendLoc, TypeRange.getEnd());
8226    }
8227  }
8228
8229  // C++0x [class.friend]p3:
8230  //   If the type specifier in a friend declaration designates a (possibly
8231  //   cv-qualified) class type, that class is declared as a friend; otherwise,
8232  //   the friend declaration is ignored.
8233
8234  // FIXME: C++0x has some syntactic restrictions on friend type declarations
8235  // in [class.friend]p3 that we do not implement.
8236
8237  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
8238}
8239
8240/// Handle a friend tag declaration where the scope specifier was
8241/// templated.
8242Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
8243                                    unsigned TagSpec, SourceLocation TagLoc,
8244                                    CXXScopeSpec &SS,
8245                                    IdentifierInfo *Name, SourceLocation NameLoc,
8246                                    AttributeList *Attr,
8247                                    MultiTemplateParamsArg TempParamLists) {
8248  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8249
8250  bool isExplicitSpecialization = false;
8251  bool Invalid = false;
8252
8253  if (TemplateParameterList *TemplateParams
8254        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
8255                                                  TempParamLists.get(),
8256                                                  TempParamLists.size(),
8257                                                  /*friend*/ true,
8258                                                  isExplicitSpecialization,
8259                                                  Invalid)) {
8260    if (TemplateParams->size() > 0) {
8261      // This is a declaration of a class template.
8262      if (Invalid)
8263        return 0;
8264
8265      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
8266                                SS, Name, NameLoc, Attr,
8267                                TemplateParams, AS_public,
8268                                TempParamLists.size() - 1,
8269                   (TemplateParameterList**) TempParamLists.release()).take();
8270    } else {
8271      // The "template<>" header is extraneous.
8272      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8273        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8274      isExplicitSpecialization = true;
8275    }
8276  }
8277
8278  if (Invalid) return 0;
8279
8280  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
8281
8282  bool isAllExplicitSpecializations = true;
8283  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
8284    if (TempParamLists.get()[I]->size()) {
8285      isAllExplicitSpecializations = false;
8286      break;
8287    }
8288  }
8289
8290  // FIXME: don't ignore attributes.
8291
8292  // If it's explicit specializations all the way down, just forget
8293  // about the template header and build an appropriate non-templated
8294  // friend.  TODO: for source fidelity, remember the headers.
8295  if (isAllExplicitSpecializations) {
8296    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8297    ElaboratedTypeKeyword Keyword
8298      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8299    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
8300                                   *Name, NameLoc);
8301    if (T.isNull())
8302      return 0;
8303
8304    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8305    if (isa<DependentNameType>(T)) {
8306      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8307      TL.setKeywordLoc(TagLoc);
8308      TL.setQualifierLoc(QualifierLoc);
8309      TL.setNameLoc(NameLoc);
8310    } else {
8311      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
8312      TL.setKeywordLoc(TagLoc);
8313      TL.setQualifierLoc(QualifierLoc);
8314      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
8315    }
8316
8317    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8318                                            TSI, FriendLoc);
8319    Friend->setAccess(AS_public);
8320    CurContext->addDecl(Friend);
8321    return Friend;
8322  }
8323
8324  // Handle the case of a templated-scope friend class.  e.g.
8325  //   template <class T> class A<T>::B;
8326  // FIXME: we don't support these right now.
8327  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8328  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
8329  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8330  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
8331  TL.setKeywordLoc(TagLoc);
8332  TL.setQualifierLoc(SS.getWithLocInContext(Context));
8333  TL.setNameLoc(NameLoc);
8334
8335  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
8336                                          TSI, FriendLoc);
8337  Friend->setAccess(AS_public);
8338  Friend->setUnsupportedFriend(true);
8339  CurContext->addDecl(Friend);
8340  return Friend;
8341}
8342
8343
8344/// Handle a friend type declaration.  This works in tandem with
8345/// ActOnTag.
8346///
8347/// Notes on friend class templates:
8348///
8349/// We generally treat friend class declarations as if they were
8350/// declaring a class.  So, for example, the elaborated type specifier
8351/// in a friend declaration is required to obey the restrictions of a
8352/// class-head (i.e. no typedefs in the scope chain), template
8353/// parameters are required to match up with simple template-ids, &c.
8354/// However, unlike when declaring a template specialization, it's
8355/// okay to refer to a template specialization without an empty
8356/// template parameter declaration, e.g.
8357///   friend class A<T>::B<unsigned>;
8358/// We permit this as a special case; if there are any template
8359/// parameters present at all, require proper matching, i.e.
8360///   template <> template <class T> friend class A<int>::B;
8361Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
8362                                MultiTemplateParamsArg TempParams) {
8363  SourceLocation Loc = DS.getSourceRange().getBegin();
8364
8365  assert(DS.isFriendSpecified());
8366  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8367
8368  // Try to convert the decl specifier to a type.  This works for
8369  // friend templates because ActOnTag never produces a ClassTemplateDecl
8370  // for a TUK_Friend.
8371  Declarator TheDeclarator(DS, Declarator::MemberContext);
8372  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
8373  QualType T = TSI->getType();
8374  if (TheDeclarator.isInvalidType())
8375    return 0;
8376
8377  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
8378    return 0;
8379
8380  // This is definitely an error in C++98.  It's probably meant to
8381  // be forbidden in C++0x, too, but the specification is just
8382  // poorly written.
8383  //
8384  // The problem is with declarations like the following:
8385  //   template <T> friend A<T>::foo;
8386  // where deciding whether a class C is a friend or not now hinges
8387  // on whether there exists an instantiation of A that causes
8388  // 'foo' to equal C.  There are restrictions on class-heads
8389  // (which we declare (by fiat) elaborated friend declarations to
8390  // be) that makes this tractable.
8391  //
8392  // FIXME: handle "template <> friend class A<T>;", which
8393  // is possibly well-formed?  Who even knows?
8394  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
8395    Diag(Loc, diag::err_tagless_friend_type_template)
8396      << DS.getSourceRange();
8397    return 0;
8398  }
8399
8400  // C++98 [class.friend]p1: A friend of a class is a function
8401  //   or class that is not a member of the class . . .
8402  // This is fixed in DR77, which just barely didn't make the C++03
8403  // deadline.  It's also a very silly restriction that seriously
8404  // affects inner classes and which nobody else seems to implement;
8405  // thus we never diagnose it, not even in -pedantic.
8406  //
8407  // But note that we could warn about it: it's always useless to
8408  // friend one of your own members (it's not, however, worthless to
8409  // friend a member of an arbitrary specialization of your template).
8410
8411  Decl *D;
8412  if (unsigned NumTempParamLists = TempParams.size())
8413    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
8414                                   NumTempParamLists,
8415                                   TempParams.release(),
8416                                   TSI,
8417                                   DS.getFriendSpecLoc());
8418  else
8419    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
8420
8421  if (!D)
8422    return 0;
8423
8424  D->setAccess(AS_public);
8425  CurContext->addDecl(D);
8426
8427  return D;
8428}
8429
8430Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
8431                                    MultiTemplateParamsArg TemplateParams) {
8432  const DeclSpec &DS = D.getDeclSpec();
8433
8434  assert(DS.isFriendSpecified());
8435  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
8436
8437  SourceLocation Loc = D.getIdentifierLoc();
8438  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8439  QualType T = TInfo->getType();
8440
8441  // C++ [class.friend]p1
8442  //   A friend of a class is a function or class....
8443  // Note that this sees through typedefs, which is intended.
8444  // It *doesn't* see through dependent types, which is correct
8445  // according to [temp.arg.type]p3:
8446  //   If a declaration acquires a function type through a
8447  //   type dependent on a template-parameter and this causes
8448  //   a declaration that does not use the syntactic form of a
8449  //   function declarator to have a function type, the program
8450  //   is ill-formed.
8451  if (!T->isFunctionType()) {
8452    Diag(Loc, diag::err_unexpected_friend);
8453
8454    // It might be worthwhile to try to recover by creating an
8455    // appropriate declaration.
8456    return 0;
8457  }
8458
8459  // C++ [namespace.memdef]p3
8460  //  - If a friend declaration in a non-local class first declares a
8461  //    class or function, the friend class or function is a member
8462  //    of the innermost enclosing namespace.
8463  //  - The name of the friend is not found by simple name lookup
8464  //    until a matching declaration is provided in that namespace
8465  //    scope (either before or after the class declaration granting
8466  //    friendship).
8467  //  - If a friend function is called, its name may be found by the
8468  //    name lookup that considers functions from namespaces and
8469  //    classes associated with the types of the function arguments.
8470  //  - When looking for a prior declaration of a class or a function
8471  //    declared as a friend, scopes outside the innermost enclosing
8472  //    namespace scope are not considered.
8473
8474  CXXScopeSpec &SS = D.getCXXScopeSpec();
8475  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8476  DeclarationName Name = NameInfo.getName();
8477  assert(Name);
8478
8479  // Check for unexpanded parameter packs.
8480  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
8481      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
8482      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
8483    return 0;
8484
8485  // The context we found the declaration in, or in which we should
8486  // create the declaration.
8487  DeclContext *DC;
8488  Scope *DCScope = S;
8489  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
8490                        ForRedeclaration);
8491
8492  // FIXME: there are different rules in local classes
8493
8494  // There are four cases here.
8495  //   - There's no scope specifier, in which case we just go to the
8496  //     appropriate scope and look for a function or function template
8497  //     there as appropriate.
8498  // Recover from invalid scope qualifiers as if they just weren't there.
8499  if (SS.isInvalid() || !SS.isSet()) {
8500    // C++0x [namespace.memdef]p3:
8501    //   If the name in a friend declaration is neither qualified nor
8502    //   a template-id and the declaration is a function or an
8503    //   elaborated-type-specifier, the lookup to determine whether
8504    //   the entity has been previously declared shall not consider
8505    //   any scopes outside the innermost enclosing namespace.
8506    // C++0x [class.friend]p11:
8507    //   If a friend declaration appears in a local class and the name
8508    //   specified is an unqualified name, a prior declaration is
8509    //   looked up without considering scopes that are outside the
8510    //   innermost enclosing non-class scope. For a friend function
8511    //   declaration, if there is no prior declaration, the program is
8512    //   ill-formed.
8513    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
8514    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
8515
8516    // Find the appropriate context according to the above.
8517    DC = CurContext;
8518    while (true) {
8519      // Skip class contexts.  If someone can cite chapter and verse
8520      // for this behavior, that would be nice --- it's what GCC and
8521      // EDG do, and it seems like a reasonable intent, but the spec
8522      // really only says that checks for unqualified existing
8523      // declarations should stop at the nearest enclosing namespace,
8524      // not that they should only consider the nearest enclosing
8525      // namespace.
8526      while (DC->isRecord())
8527        DC = DC->getParent();
8528
8529      LookupQualifiedName(Previous, DC);
8530
8531      // TODO: decide what we think about using declarations.
8532      if (isLocal || !Previous.empty())
8533        break;
8534
8535      if (isTemplateId) {
8536        if (isa<TranslationUnitDecl>(DC)) break;
8537      } else {
8538        if (DC->isFileContext()) break;
8539      }
8540      DC = DC->getParent();
8541    }
8542
8543    // C++ [class.friend]p1: A friend of a class is a function or
8544    //   class that is not a member of the class . . .
8545    // C++0x changes this for both friend types and functions.
8546    // Most C++ 98 compilers do seem to give an error here, so
8547    // we do, too.
8548    if (!Previous.empty() && DC->Equals(CurContext)
8549        && !getLangOptions().CPlusPlus0x)
8550      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8551
8552    DCScope = getScopeForDeclContext(S, DC);
8553
8554  //   - There's a non-dependent scope specifier, in which case we
8555  //     compute it and do a previous lookup there for a function
8556  //     or function template.
8557  } else if (!SS.getScopeRep()->isDependent()) {
8558    DC = computeDeclContext(SS);
8559    if (!DC) return 0;
8560
8561    if (RequireCompleteDeclContext(SS, DC)) return 0;
8562
8563    LookupQualifiedName(Previous, DC);
8564
8565    // Ignore things found implicitly in the wrong scope.
8566    // TODO: better diagnostics for this case.  Suggesting the right
8567    // qualified scope would be nice...
8568    LookupResult::Filter F = Previous.makeFilter();
8569    while (F.hasNext()) {
8570      NamedDecl *D = F.next();
8571      if (!DC->InEnclosingNamespaceSetOf(
8572              D->getDeclContext()->getRedeclContext()))
8573        F.erase();
8574    }
8575    F.done();
8576
8577    if (Previous.empty()) {
8578      D.setInvalidType();
8579      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
8580      return 0;
8581    }
8582
8583    // C++ [class.friend]p1: A friend of a class is a function or
8584    //   class that is not a member of the class . . .
8585    if (DC->Equals(CurContext))
8586      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
8587
8588  //   - There's a scope specifier that does not match any template
8589  //     parameter lists, in which case we use some arbitrary context,
8590  //     create a method or method template, and wait for instantiation.
8591  //   - There's a scope specifier that does match some template
8592  //     parameter lists, which we don't handle right now.
8593  } else {
8594    DC = CurContext;
8595    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
8596  }
8597
8598  if (!DC->isRecord()) {
8599    // This implies that it has to be an operator or function.
8600    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
8601        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
8602        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
8603      Diag(Loc, diag::err_introducing_special_friend) <<
8604        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
8605         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
8606      return 0;
8607    }
8608  }
8609
8610  bool Redeclaration = false;
8611  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
8612                                          move(TemplateParams),
8613                                          IsDefinition,
8614                                          Redeclaration);
8615  if (!ND) return 0;
8616
8617  assert(ND->getDeclContext() == DC);
8618  assert(ND->getLexicalDeclContext() == CurContext);
8619
8620  // Add the function declaration to the appropriate lookup tables,
8621  // adjusting the redeclarations list as necessary.  We don't
8622  // want to do this yet if the friending class is dependent.
8623  //
8624  // Also update the scope-based lookup if the target context's
8625  // lookup context is in lexical scope.
8626  if (!CurContext->isDependentContext()) {
8627    DC = DC->getRedeclContext();
8628    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
8629    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8630      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
8631  }
8632
8633  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
8634                                       D.getIdentifierLoc(), ND,
8635                                       DS.getFriendSpecLoc());
8636  FrD->setAccess(AS_public);
8637  CurContext->addDecl(FrD);
8638
8639  if (ND->isInvalidDecl())
8640    FrD->setInvalidDecl();
8641  else {
8642    FunctionDecl *FD;
8643    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
8644      FD = FTD->getTemplatedDecl();
8645    else
8646      FD = cast<FunctionDecl>(ND);
8647
8648    // Mark templated-scope function declarations as unsupported.
8649    if (FD->getNumTemplateParameterLists())
8650      FrD->setUnsupportedFriend(true);
8651  }
8652
8653  return ND;
8654}
8655
8656void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
8657  AdjustDeclIfTemplate(Dcl);
8658
8659  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
8660  if (!Fn) {
8661    Diag(DelLoc, diag::err_deleted_non_function);
8662    return;
8663  }
8664  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
8665    Diag(DelLoc, diag::err_deleted_decl_not_first);
8666    Diag(Prev->getLocation(), diag::note_previous_declaration);
8667    // If the declaration wasn't the first, we delete the function anyway for
8668    // recovery.
8669  }
8670  Fn->setDeletedAsWritten();
8671}
8672
8673void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
8674  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
8675
8676  if (MD) {
8677    if (MD->getParent()->isDependentType()) {
8678      MD->setDefaulted();
8679      MD->setExplicitlyDefaulted();
8680      return;
8681    }
8682
8683    CXXSpecialMember Member = getSpecialMember(MD);
8684    if (Member == CXXInvalid) {
8685      Diag(DefaultLoc, diag::err_default_special_members);
8686      return;
8687    }
8688
8689    MD->setDefaulted();
8690    MD->setExplicitlyDefaulted();
8691
8692    // If this definition appears within the record, do the checking when
8693    // the record is complete.
8694    const FunctionDecl *Primary = MD;
8695    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
8696      // Find the uninstantiated declaration that actually had the '= default'
8697      // on it.
8698      MD->getTemplateInstantiationPattern()->isDefined(Primary);
8699
8700    if (Primary == Primary->getCanonicalDecl())
8701      return;
8702
8703    switch (Member) {
8704    case CXXDefaultConstructor: {
8705      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8706      CheckExplicitlyDefaultedDefaultConstructor(CD);
8707      if (!CD->isInvalidDecl())
8708        DefineImplicitDefaultConstructor(DefaultLoc, CD);
8709      break;
8710    }
8711
8712    case CXXCopyConstructor: {
8713      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
8714      CheckExplicitlyDefaultedCopyConstructor(CD);
8715      if (!CD->isInvalidDecl())
8716        DefineImplicitCopyConstructor(DefaultLoc, CD);
8717      break;
8718    }
8719
8720    case CXXCopyAssignment: {
8721      CheckExplicitlyDefaultedCopyAssignment(MD);
8722      if (!MD->isInvalidDecl())
8723        DefineImplicitCopyAssignment(DefaultLoc, MD);
8724      break;
8725    }
8726
8727    case CXXDestructor: {
8728      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
8729      CheckExplicitlyDefaultedDestructor(DD);
8730      if (!DD->isInvalidDecl())
8731        DefineImplicitDestructor(DefaultLoc, DD);
8732      break;
8733    }
8734
8735    case CXXMoveConstructor:
8736    case CXXMoveAssignment:
8737      Diag(Dcl->getLocation(), diag::err_defaulted_move_unsupported);
8738      break;
8739
8740    default:
8741      // FIXME: Do the rest once we have move functions
8742      break;
8743    }
8744  } else {
8745    Diag(DefaultLoc, diag::err_default_special_members);
8746  }
8747}
8748
8749static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
8750  for (Stmt::child_range CI = S->children(); CI; ++CI) {
8751    Stmt *SubStmt = *CI;
8752    if (!SubStmt)
8753      continue;
8754    if (isa<ReturnStmt>(SubStmt))
8755      Self.Diag(SubStmt->getSourceRange().getBegin(),
8756           diag::err_return_in_constructor_handler);
8757    if (!isa<Expr>(SubStmt))
8758      SearchForReturnInStmt(Self, SubStmt);
8759  }
8760}
8761
8762void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
8763  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
8764    CXXCatchStmt *Handler = TryBlock->getHandler(I);
8765    SearchForReturnInStmt(*this, Handler);
8766  }
8767}
8768
8769bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
8770                                             const CXXMethodDecl *Old) {
8771  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
8772  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
8773
8774  if (Context.hasSameType(NewTy, OldTy) ||
8775      NewTy->isDependentType() || OldTy->isDependentType())
8776    return false;
8777
8778  // Check if the return types are covariant
8779  QualType NewClassTy, OldClassTy;
8780
8781  /// Both types must be pointers or references to classes.
8782  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
8783    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
8784      NewClassTy = NewPT->getPointeeType();
8785      OldClassTy = OldPT->getPointeeType();
8786    }
8787  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
8788    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
8789      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
8790        NewClassTy = NewRT->getPointeeType();
8791        OldClassTy = OldRT->getPointeeType();
8792      }
8793    }
8794  }
8795
8796  // The return types aren't either both pointers or references to a class type.
8797  if (NewClassTy.isNull()) {
8798    Diag(New->getLocation(),
8799         diag::err_different_return_type_for_overriding_virtual_function)
8800      << New->getDeclName() << NewTy << OldTy;
8801    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8802
8803    return true;
8804  }
8805
8806  // C++ [class.virtual]p6:
8807  //   If the return type of D::f differs from the return type of B::f, the
8808  //   class type in the return type of D::f shall be complete at the point of
8809  //   declaration of D::f or shall be the class type D.
8810  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
8811    if (!RT->isBeingDefined() &&
8812        RequireCompleteType(New->getLocation(), NewClassTy,
8813                            PDiag(diag::err_covariant_return_incomplete)
8814                              << New->getDeclName()))
8815    return true;
8816  }
8817
8818  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
8819    // Check if the new class derives from the old class.
8820    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
8821      Diag(New->getLocation(),
8822           diag::err_covariant_return_not_derived)
8823      << New->getDeclName() << NewTy << OldTy;
8824      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8825      return true;
8826    }
8827
8828    // Check if we the conversion from derived to base is valid.
8829    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
8830                    diag::err_covariant_return_inaccessible_base,
8831                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
8832                    // FIXME: Should this point to the return type?
8833                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
8834      // FIXME: this note won't trigger for delayed access control
8835      // diagnostics, and it's impossible to get an undelayed error
8836      // here from access control during the original parse because
8837      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
8838      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8839      return true;
8840    }
8841  }
8842
8843  // The qualifiers of the return types must be the same.
8844  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
8845    Diag(New->getLocation(),
8846         diag::err_covariant_return_type_different_qualifications)
8847    << New->getDeclName() << NewTy << OldTy;
8848    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8849    return true;
8850  };
8851
8852
8853  // The new class type must have the same or less qualifiers as the old type.
8854  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
8855    Diag(New->getLocation(),
8856         diag::err_covariant_return_type_class_type_more_qualified)
8857    << New->getDeclName() << NewTy << OldTy;
8858    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
8859    return true;
8860  };
8861
8862  return false;
8863}
8864
8865/// \brief Mark the given method pure.
8866///
8867/// \param Method the method to be marked pure.
8868///
8869/// \param InitRange the source range that covers the "0" initializer.
8870bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
8871  SourceLocation EndLoc = InitRange.getEnd();
8872  if (EndLoc.isValid())
8873    Method->setRangeEnd(EndLoc);
8874
8875  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
8876    Method->setPure();
8877    return false;
8878  }
8879
8880  if (!Method->isInvalidDecl())
8881    Diag(Method->getLocation(), diag::err_non_virtual_pure)
8882      << Method->getDeclName() << InitRange;
8883  return true;
8884}
8885
8886/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
8887/// an initializer for the out-of-line declaration 'Dcl'.  The scope
8888/// is a fresh scope pushed for just this purpose.
8889///
8890/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
8891/// static data member of class X, names should be looked up in the scope of
8892/// class X.
8893void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
8894  // If there is no declaration, there was an error parsing it.
8895  if (D == 0 || D->isInvalidDecl()) return;
8896
8897  // We should only get called for declarations with scope specifiers, like:
8898  //   int foo::bar;
8899  assert(D->isOutOfLine());
8900  EnterDeclaratorContext(S, D->getDeclContext());
8901}
8902
8903/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
8904/// initializer for the out-of-line declaration 'D'.
8905void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
8906  // If there is no declaration, there was an error parsing it.
8907  if (D == 0 || D->isInvalidDecl()) return;
8908
8909  assert(D->isOutOfLine());
8910  ExitDeclaratorContext(S);
8911}
8912
8913/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
8914/// C++ if/switch/while/for statement.
8915/// e.g: "if (int x = f()) {...}"
8916DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
8917  // C++ 6.4p2:
8918  // The declarator shall not specify a function or an array.
8919  // The type-specifier-seq shall not contain typedef and shall not declare a
8920  // new class or enumeration.
8921  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
8922         "Parser allowed 'typedef' as storage class of condition decl.");
8923
8924  Decl *Dcl = ActOnDeclarator(S, D);
8925  if (!Dcl)
8926    return true;
8927
8928  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
8929    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
8930      << D.getSourceRange();
8931    return true;
8932  }
8933
8934  return Dcl;
8935}
8936
8937void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
8938                          bool DefinitionRequired) {
8939  // Ignore any vtable uses in unevaluated operands or for classes that do
8940  // not have a vtable.
8941  if (!Class->isDynamicClass() || Class->isDependentContext() ||
8942      CurContext->isDependentContext() ||
8943      ExprEvalContexts.back().Context == Unevaluated)
8944    return;
8945
8946  // Try to insert this class into the map.
8947  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
8948  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
8949    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
8950  if (!Pos.second) {
8951    // If we already had an entry, check to see if we are promoting this vtable
8952    // to required a definition. If so, we need to reappend to the VTableUses
8953    // list, since we may have already processed the first entry.
8954    if (DefinitionRequired && !Pos.first->second) {
8955      Pos.first->second = true;
8956    } else {
8957      // Otherwise, we can early exit.
8958      return;
8959    }
8960  }
8961
8962  // Local classes need to have their virtual members marked
8963  // immediately. For all other classes, we mark their virtual members
8964  // at the end of the translation unit.
8965  if (Class->isLocalClass())
8966    MarkVirtualMembersReferenced(Loc, Class);
8967  else
8968    VTableUses.push_back(std::make_pair(Class, Loc));
8969}
8970
8971bool Sema::DefineUsedVTables() {
8972  if (VTableUses.empty())
8973    return false;
8974
8975  // Note: The VTableUses vector could grow as a result of marking
8976  // the members of a class as "used", so we check the size each
8977  // time through the loop and prefer indices (with are stable) to
8978  // iterators (which are not).
8979  bool DefinedAnything = false;
8980  for (unsigned I = 0; I != VTableUses.size(); ++I) {
8981    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
8982    if (!Class)
8983      continue;
8984
8985    SourceLocation Loc = VTableUses[I].second;
8986
8987    // If this class has a key function, but that key function is
8988    // defined in another translation unit, we don't need to emit the
8989    // vtable even though we're using it.
8990    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
8991    if (KeyFunction && !KeyFunction->hasBody()) {
8992      switch (KeyFunction->getTemplateSpecializationKind()) {
8993      case TSK_Undeclared:
8994      case TSK_ExplicitSpecialization:
8995      case TSK_ExplicitInstantiationDeclaration:
8996        // The key function is in another translation unit.
8997        continue;
8998
8999      case TSK_ExplicitInstantiationDefinition:
9000      case TSK_ImplicitInstantiation:
9001        // We will be instantiating the key function.
9002        break;
9003      }
9004    } else if (!KeyFunction) {
9005      // If we have a class with no key function that is the subject
9006      // of an explicit instantiation declaration, suppress the
9007      // vtable; it will live with the explicit instantiation
9008      // definition.
9009      bool IsExplicitInstantiationDeclaration
9010        = Class->getTemplateSpecializationKind()
9011                                      == TSK_ExplicitInstantiationDeclaration;
9012      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
9013                                 REnd = Class->redecls_end();
9014           R != REnd; ++R) {
9015        TemplateSpecializationKind TSK
9016          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
9017        if (TSK == TSK_ExplicitInstantiationDeclaration)
9018          IsExplicitInstantiationDeclaration = true;
9019        else if (TSK == TSK_ExplicitInstantiationDefinition) {
9020          IsExplicitInstantiationDeclaration = false;
9021          break;
9022        }
9023      }
9024
9025      if (IsExplicitInstantiationDeclaration)
9026        continue;
9027    }
9028
9029    // Mark all of the virtual members of this class as referenced, so
9030    // that we can build a vtable. Then, tell the AST consumer that a
9031    // vtable for this class is required.
9032    DefinedAnything = true;
9033    MarkVirtualMembersReferenced(Loc, Class);
9034    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
9035    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
9036
9037    // Optionally warn if we're emitting a weak vtable.
9038    if (Class->getLinkage() == ExternalLinkage &&
9039        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
9040      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
9041        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
9042    }
9043  }
9044  VTableUses.clear();
9045
9046  return DefinedAnything;
9047}
9048
9049void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
9050                                        const CXXRecordDecl *RD) {
9051  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
9052       e = RD->method_end(); i != e; ++i) {
9053    CXXMethodDecl *MD = *i;
9054
9055    // C++ [basic.def.odr]p2:
9056    //   [...] A virtual member function is used if it is not pure. [...]
9057    if (MD->isVirtual() && !MD->isPure())
9058      MarkDeclarationReferenced(Loc, MD);
9059  }
9060
9061  // Only classes that have virtual bases need a VTT.
9062  if (RD->getNumVBases() == 0)
9063    return;
9064
9065  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
9066           e = RD->bases_end(); i != e; ++i) {
9067    const CXXRecordDecl *Base =
9068        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
9069    if (Base->getNumVBases() == 0)
9070      continue;
9071    MarkVirtualMembersReferenced(Loc, Base);
9072  }
9073}
9074
9075/// SetIvarInitializers - This routine builds initialization ASTs for the
9076/// Objective-C implementation whose ivars need be initialized.
9077void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
9078  if (!getLangOptions().CPlusPlus)
9079    return;
9080  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
9081    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
9082    CollectIvarsToConstructOrDestruct(OID, ivars);
9083    if (ivars.empty())
9084      return;
9085    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
9086    for (unsigned i = 0; i < ivars.size(); i++) {
9087      FieldDecl *Field = ivars[i];
9088      if (Field->isInvalidDecl())
9089        continue;
9090
9091      CXXCtorInitializer *Member;
9092      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
9093      InitializationKind InitKind =
9094        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
9095
9096      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
9097      ExprResult MemberInit =
9098        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
9099      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
9100      // Note, MemberInit could actually come back empty if no initialization
9101      // is required (e.g., because it would call a trivial default constructor)
9102      if (!MemberInit.get() || MemberInit.isInvalid())
9103        continue;
9104
9105      Member =
9106        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
9107                                         SourceLocation(),
9108                                         MemberInit.takeAs<Expr>(),
9109                                         SourceLocation());
9110      AllToInit.push_back(Member);
9111
9112      // Be sure that the destructor is accessible and is marked as referenced.
9113      if (const RecordType *RecordTy
9114                  = Context.getBaseElementType(Field->getType())
9115                                                        ->getAs<RecordType>()) {
9116                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
9117        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
9118          MarkDeclarationReferenced(Field->getLocation(), Destructor);
9119          CheckDestructorAccess(Field->getLocation(), Destructor,
9120                            PDiag(diag::err_access_dtor_ivar)
9121                              << Context.getBaseElementType(Field->getType()));
9122        }
9123      }
9124    }
9125    ObjCImplementation->setIvarInitializers(Context,
9126                                            AllToInit.data(), AllToInit.size());
9127  }
9128}
9129
9130static
9131void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
9132                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
9133                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
9134                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
9135                           Sema &S) {
9136  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9137                                                   CE = Current.end();
9138  if (Ctor->isInvalidDecl())
9139    return;
9140
9141  const FunctionDecl *FNTarget = 0;
9142  CXXConstructorDecl *Target;
9143
9144  // We ignore the result here since if we don't have a body, Target will be
9145  // null below.
9146  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
9147  Target
9148= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
9149
9150  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
9151                     // Avoid dereferencing a null pointer here.
9152                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
9153
9154  if (!Current.insert(Canonical))
9155    return;
9156
9157  // We know that beyond here, we aren't chaining into a cycle.
9158  if (!Target || !Target->isDelegatingConstructor() ||
9159      Target->isInvalidDecl() || Valid.count(TCanonical)) {
9160    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9161      Valid.insert(*CI);
9162    Current.clear();
9163  // We've hit a cycle.
9164  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
9165             Current.count(TCanonical)) {
9166    // If we haven't diagnosed this cycle yet, do so now.
9167    if (!Invalid.count(TCanonical)) {
9168      S.Diag((*Ctor->init_begin())->getSourceLocation(),
9169             diag::warn_delegating_ctor_cycle)
9170        << Ctor;
9171
9172      // Don't add a note for a function delegating directo to itself.
9173      if (TCanonical != Canonical)
9174        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
9175
9176      CXXConstructorDecl *C = Target;
9177      while (C->getCanonicalDecl() != Canonical) {
9178        (void)C->getTargetConstructor()->hasBody(FNTarget);
9179        assert(FNTarget && "Ctor cycle through bodiless function");
9180
9181        C
9182       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
9183        S.Diag(C->getLocation(), diag::note_which_delegates_to);
9184      }
9185    }
9186
9187    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
9188      Invalid.insert(*CI);
9189    Current.clear();
9190  } else {
9191    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
9192  }
9193}
9194
9195
9196void Sema::CheckDelegatingCtorCycles() {
9197  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
9198
9199  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
9200                                                   CE = Current.end();
9201
9202  for (llvm::SmallVector<CXXConstructorDecl*, 4>::iterator
9203         I = DelegatingCtorDecls.begin(),
9204         E = DelegatingCtorDecls.end();
9205       I != E; ++I) {
9206   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
9207  }
9208
9209  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
9210    (*CI)->setInvalidDecl();
9211}
9212