SemaDeclCXX.cpp revision 218893
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_range I = Node->children(); I; ++I)
67      IsInvalid |= Visit(*I);
68    return IsInvalid;
69  }
70
71  /// VisitDeclRefExpr - Visit a reference to a declaration, to
72  /// determine whether this declaration can be used in the default
73  /// argument expression.
74  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
75    NamedDecl *Decl = DRE->getDecl();
76    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
77      // C++ [dcl.fct.default]p9
78      //   Default arguments are evaluated each time the function is
79      //   called. The order of evaluation of function arguments is
80      //   unspecified. Consequently, parameters of a function shall not
81      //   be used in default argument expressions, even if they are not
82      //   evaluated. Parameters of a function declared before a default
83      //   argument expression are in scope and can hide namespace and
84      //   class member names.
85      return S->Diag(DRE->getSourceRange().getBegin(),
86                     diag::err_param_default_argument_references_param)
87         << Param->getDeclName() << DefaultArg->getSourceRange();
88    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
89      // C++ [dcl.fct.default]p7
90      //   Local variables shall not be used in default argument
91      //   expressions.
92      if (VDecl->isLocalVarDecl())
93        return S->Diag(DRE->getSourceRange().getBegin(),
94                       diag::err_param_default_argument_references_local)
95          << VDecl->getDeclName() << DefaultArg->getSourceRange();
96    }
97
98    return false;
99  }
100
101  /// VisitCXXThisExpr - Visit a C++ "this" expression.
102  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
103    // C++ [dcl.fct.default]p8:
104    //   The keyword this shall not be used in a default argument of a
105    //   member function.
106    return S->Diag(ThisE->getSourceRange().getBegin(),
107                   diag::err_param_default_argument_references_this)
108               << ThisE->getSourceRange();
109  }
110}
111
112bool
113Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
114                              SourceLocation EqualLoc) {
115  if (RequireCompleteType(Param->getLocation(), Param->getType(),
116                          diag::err_typecheck_decl_incomplete_type)) {
117    Param->setInvalidDecl();
118    return true;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
128                                                                    Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
132  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
133                                      MultiExprArg(*this, &Arg, 1));
134  if (Result.isInvalid())
135    return true;
136  Arg = Result.takeAs<Expr>();
137
138  CheckImplicitConversions(Arg, EqualLoc);
139  Arg = MaybeCreateExprWithCleanups(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  // We have already instantiated this parameter; provide each of the
145  // instantiations with the uninstantiated default argument.
146  UnparsedDefaultArgInstantiationsMap::iterator InstPos
147    = UnparsedDefaultArgInstantiations.find(Param);
148  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
149    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
150      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
151
152    // We're done tracking this parameter's instantiations.
153    UnparsedDefaultArgInstantiations.erase(InstPos);
154  }
155
156  return false;
157}
158
159/// ActOnParamDefaultArgument - Check whether the default argument
160/// provided for a function parameter is well-formed. If so, attach it
161/// to the parameter declaration.
162void
163Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
164                                Expr *DefaultArg) {
165  if (!param || !DefaultArg)
166    return;
167
168  ParmVarDecl *Param = cast<ParmVarDecl>(param);
169  UnparsedDefaultArgLocs.erase(Param);
170
171  // Default arguments are only permitted in C++
172  if (!getLangOptions().CPlusPlus) {
173    Diag(EqualLoc, diag::err_param_default_argument)
174      << DefaultArg->getSourceRange();
175    Param->setInvalidDecl();
176    return;
177  }
178
179  // Check for unexpanded parameter packs.
180  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
181    Param->setInvalidDecl();
182    return;
183  }
184
185  // Check that the default argument is well-formed
186  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
187  if (DefaultArgChecker.Visit(DefaultArg)) {
188    Param->setInvalidDecl();
189    return;
190  }
191
192  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
193}
194
195/// ActOnParamUnparsedDefaultArgument - We've seen a default
196/// argument for a function parameter, but we can't parse it yet
197/// because we're inside a class definition. Note that this default
198/// argument will be parsed later.
199void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
200                                             SourceLocation EqualLoc,
201                                             SourceLocation ArgLoc) {
202  if (!param)
203    return;
204
205  ParmVarDecl *Param = cast<ParmVarDecl>(param);
206  if (Param)
207    Param->setUnparsedDefaultArg();
208
209  UnparsedDefaultArgLocs[Param] = ArgLoc;
210}
211
212/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
213/// the default argument for the parameter param failed.
214void Sema::ActOnParamDefaultArgumentError(Decl *param) {
215  if (!param)
216    return;
217
218  ParmVarDecl *Param = cast<ParmVarDecl>(param);
219
220  Param->setInvalidDecl();
221
222  UnparsedDefaultArgLocs.erase(Param);
223}
224
225/// CheckExtraCXXDefaultArguments - Check for any extra default
226/// arguments in the declarator, which is not a function declaration
227/// or definition and therefore is not permitted to have default
228/// arguments. This routine should be invoked for every declarator
229/// that is not a function declaration or definition.
230void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
231  // C++ [dcl.fct.default]p3
232  //   A default argument expression shall be specified only in the
233  //   parameter-declaration-clause of a function declaration or in a
234  //   template-parameter (14.1). It shall not be specified for a
235  //   parameter pack. If it is specified in a
236  //   parameter-declaration-clause, it shall not occur within a
237  //   declarator or abstract-declarator of a parameter-declaration.
238  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
239    DeclaratorChunk &chunk = D.getTypeObject(i);
240    if (chunk.Kind == DeclaratorChunk::Function) {
241      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
242        ParmVarDecl *Param =
243          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
244        if (Param->hasUnparsedDefaultArg()) {
245          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
248          delete Toks;
249          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
250        } else if (Param->getDefaultArg()) {
251          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
252            << Param->getDefaultArg()->getSourceRange();
253          Param->setDefaultArg(0);
254        }
255      }
256    }
257  }
258}
259
260// MergeCXXFunctionDecl - Merge two declarations of the same C++
261// function, once we already know that they have the same
262// type. Subroutine of MergeFunctionDecl. Returns true if there was an
263// error, false otherwise.
264bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
265  bool Invalid = false;
266
267  // C++ [dcl.fct.default]p4:
268  //   For non-template functions, default arguments can be added in
269  //   later declarations of a function in the same
270  //   scope. Declarations in different scopes have completely
271  //   distinct sets of default arguments. That is, declarations in
272  //   inner scopes do not acquire default arguments from
273  //   declarations in outer scopes, and vice versa. In a given
274  //   function declaration, all parameters subsequent to a
275  //   parameter with a default argument shall have default
276  //   arguments supplied in this or previous declarations. A
277  //   default argument shall not be redefined by a later
278  //   declaration (not even to the same value).
279  //
280  // C++ [dcl.fct.default]p6:
281  //   Except for member functions of class templates, the default arguments
282  //   in a member function definition that appears outside of the class
283  //   definition are added to the set of default arguments provided by the
284  //   member function declaration in the class definition.
285  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
286    ParmVarDecl *OldParam = Old->getParamDecl(p);
287    ParmVarDecl *NewParam = New->getParamDecl(p);
288
289    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
290      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
291      // hint here. Alternatively, we could walk the type-source information
292      // for NewParam to find the last source location in the type... but it
293      // isn't worth the effort right now. This is the kind of test case that
294      // is hard to get right:
295
296      //   int f(int);
297      //   void g(int (*fp)(int) = f);
298      //   void g(int (*fp)(int) = &f);
299      Diag(NewParam->getLocation(),
300           diag::err_param_default_argument_redefinition)
301        << NewParam->getDefaultArgRange();
302
303      // Look for the function declaration where the default argument was
304      // actually written, which may be a declaration prior to Old.
305      for (FunctionDecl *Older = Old->getPreviousDeclaration();
306           Older; Older = Older->getPreviousDeclaration()) {
307        if (!Older->getParamDecl(p)->hasDefaultArg())
308          break;
309
310        OldParam = Older->getParamDecl(p);
311      }
312
313      Diag(OldParam->getLocation(), diag::note_previous_definition)
314        << OldParam->getDefaultArgRange();
315      Invalid = true;
316    } else if (OldParam->hasDefaultArg()) {
317      // Merge the old default argument into the new parameter.
318      // It's important to use getInit() here;  getDefaultArg()
319      // strips off any top-level ExprWithCleanups.
320      NewParam->setHasInheritedDefaultArg();
321      if (OldParam->hasUninstantiatedDefaultArg())
322        NewParam->setUninstantiatedDefaultArg(
323                                      OldParam->getUninstantiatedDefaultArg());
324      else
325        NewParam->setDefaultArg(OldParam->getInit());
326    } else if (NewParam->hasDefaultArg()) {
327      if (New->getDescribedFunctionTemplate()) {
328        // Paragraph 4, quoted above, only applies to non-template functions.
329        Diag(NewParam->getLocation(),
330             diag::err_param_default_argument_template_redecl)
331          << NewParam->getDefaultArgRange();
332        Diag(Old->getLocation(), diag::note_template_prev_declaration)
333          << false;
334      } else if (New->getTemplateSpecializationKind()
335                   != TSK_ImplicitInstantiation &&
336                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
337        // C++ [temp.expr.spec]p21:
338        //   Default function arguments shall not be specified in a declaration
339        //   or a definition for one of the following explicit specializations:
340        //     - the explicit specialization of a function template;
341        //     - the explicit specialization of a member function template;
342        //     - the explicit specialization of a member function of a class
343        //       template where the class template specialization to which the
344        //       member function specialization belongs is implicitly
345        //       instantiated.
346        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
347          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
348          << New->getDeclName()
349          << NewParam->getDefaultArgRange();
350      } else if (New->getDeclContext()->isDependentContext()) {
351        // C++ [dcl.fct.default]p6 (DR217):
352        //   Default arguments for a member function of a class template shall
353        //   be specified on the initial declaration of the member function
354        //   within the class template.
355        //
356        // Reading the tea leaves a bit in DR217 and its reference to DR205
357        // leads me to the conclusion that one cannot add default function
358        // arguments for an out-of-line definition of a member function of a
359        // dependent type.
360        int WhichKind = 2;
361        if (CXXRecordDecl *Record
362              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
363          if (Record->getDescribedClassTemplate())
364            WhichKind = 0;
365          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
366            WhichKind = 1;
367          else
368            WhichKind = 2;
369        }
370
371        Diag(NewParam->getLocation(),
372             diag::err_param_default_argument_member_template_redecl)
373          << WhichKind
374          << NewParam->getDefaultArgRange();
375      }
376    }
377  }
378
379  if (CheckEquivalentExceptionSpec(Old, New))
380    Invalid = true;
381
382  return Invalid;
383}
384
385/// CheckCXXDefaultArguments - Verify that the default arguments for a
386/// function declaration are well-formed according to C++
387/// [dcl.fct.default].
388void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
389  unsigned NumParams = FD->getNumParams();
390  unsigned p;
391
392  // Find first parameter with a default argument
393  for (p = 0; p < NumParams; ++p) {
394    ParmVarDecl *Param = FD->getParamDecl(p);
395    if (Param->hasDefaultArg())
396      break;
397  }
398
399  // C++ [dcl.fct.default]p4:
400  //   In a given function declaration, all parameters
401  //   subsequent to a parameter with a default argument shall
402  //   have default arguments supplied in this or previous
403  //   declarations. A default argument shall not be redefined
404  //   by a later declaration (not even to the same value).
405  unsigned LastMissingDefaultArg = 0;
406  for (; p < NumParams; ++p) {
407    ParmVarDecl *Param = FD->getParamDecl(p);
408    if (!Param->hasDefaultArg()) {
409      if (Param->isInvalidDecl())
410        /* We already complained about this parameter. */;
411      else if (Param->getIdentifier())
412        Diag(Param->getLocation(),
413             diag::err_param_default_argument_missing_name)
414          << Param->getIdentifier();
415      else
416        Diag(Param->getLocation(),
417             diag::err_param_default_argument_missing);
418
419      LastMissingDefaultArg = p;
420    }
421  }
422
423  if (LastMissingDefaultArg > 0) {
424    // Some default arguments were missing. Clear out all of the
425    // default arguments up to (and including) the last missing
426    // default argument, so that we leave the function parameters
427    // in a semantically valid state.
428    for (p = 0; p <= LastMissingDefaultArg; ++p) {
429      ParmVarDecl *Param = FD->getParamDecl(p);
430      if (Param->hasDefaultArg()) {
431        Param->setDefaultArg(0);
432      }
433    }
434  }
435}
436
437/// isCurrentClassName - Determine whether the identifier II is the
438/// name of the class type currently being defined. In the case of
439/// nested classes, this will only return true if II is the name of
440/// the innermost class.
441bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
442                              const CXXScopeSpec *SS) {
443  assert(getLangOptions().CPlusPlus && "No class names in C!");
444
445  CXXRecordDecl *CurDecl;
446  if (SS && SS->isSet() && !SS->isInvalid()) {
447    DeclContext *DC = computeDeclContext(*SS, true);
448    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
449  } else
450    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
451
452  if (CurDecl && CurDecl->getIdentifier())
453    return &II == CurDecl->getIdentifier();
454  else
455    return false;
456}
457
458/// \brief Check the validity of a C++ base class specifier.
459///
460/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
461/// and returns NULL otherwise.
462CXXBaseSpecifier *
463Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
464                         SourceRange SpecifierRange,
465                         bool Virtual, AccessSpecifier Access,
466                         TypeSourceInfo *TInfo,
467                         SourceLocation EllipsisLoc) {
468  QualType BaseType = TInfo->getType();
469
470  // C++ [class.union]p1:
471  //   A union shall not have base classes.
472  if (Class->isUnion()) {
473    Diag(Class->getLocation(), diag::err_base_clause_on_union)
474      << SpecifierRange;
475    return 0;
476  }
477
478  if (EllipsisLoc.isValid() &&
479      !TInfo->getType()->containsUnexpandedParameterPack()) {
480    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
481      << TInfo->getTypeLoc().getSourceRange();
482    EllipsisLoc = SourceLocation();
483  }
484
485  if (BaseType->isDependentType())
486    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
487                                          Class->getTagKind() == TTK_Class,
488                                          Access, TInfo, EllipsisLoc);
489
490  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
491
492  // Base specifiers must be record types.
493  if (!BaseType->isRecordType()) {
494    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
495    return 0;
496  }
497
498  // C++ [class.union]p1:
499  //   A union shall not be used as a base class.
500  if (BaseType->isUnionType()) {
501    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
502    return 0;
503  }
504
505  // C++ [class.derived]p2:
506  //   The class-name in a base-specifier shall not be an incompletely
507  //   defined class.
508  if (RequireCompleteType(BaseLoc, BaseType,
509                          PDiag(diag::err_incomplete_base_class)
510                            << SpecifierRange)) {
511    Class->setInvalidDecl();
512    return 0;
513  }
514
515  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
516  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
517  assert(BaseDecl && "Record type has no declaration");
518  BaseDecl = BaseDecl->getDefinition();
519  assert(BaseDecl && "Base type is not incomplete, but has no definition");
520  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
521  assert(CXXBaseDecl && "Base type is not a C++ type");
522
523  // C++ [class.derived]p2:
524  //   If a class is marked with the class-virt-specifier final and it appears
525  //   as a base-type-specifier in a base-clause (10 class.derived), the program
526  //   is ill-formed.
527  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
528    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
529      << CXXBaseDecl->getDeclName();
530    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
531      << CXXBaseDecl->getDeclName();
532    return 0;
533  }
534
535  if (BaseDecl->isInvalidDecl())
536    Class->setInvalidDecl();
537
538  // Create the base specifier.
539  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
540                                        Class->getTagKind() == TTK_Class,
541                                        Access, TInfo, EllipsisLoc);
542}
543
544/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
545/// one entry in the base class list of a class specifier, for
546/// example:
547///    class foo : public bar, virtual private baz {
548/// 'public bar' and 'virtual private baz' are each base-specifiers.
549BaseResult
550Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
551                         bool Virtual, AccessSpecifier Access,
552                         ParsedType basetype, SourceLocation BaseLoc,
553                         SourceLocation EllipsisLoc) {
554  if (!classdecl)
555    return true;
556
557  AdjustDeclIfTemplate(classdecl);
558  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
559  if (!Class)
560    return true;
561
562  TypeSourceInfo *TInfo = 0;
563  GetTypeFromParser(basetype, &TInfo);
564
565  if (EllipsisLoc.isInvalid() &&
566      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
567                                      UPPC_BaseType))
568    return true;
569
570  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
571                                                      Virtual, Access, TInfo,
572                                                      EllipsisLoc))
573    return BaseSpec;
574
575  return true;
576}
577
578/// \brief Performs the actual work of attaching the given base class
579/// specifiers to a C++ class.
580bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
581                                unsigned NumBases) {
582 if (NumBases == 0)
583    return false;
584
585  // Used to keep track of which base types we have already seen, so
586  // that we can properly diagnose redundant direct base types. Note
587  // that the key is always the unqualified canonical type of the base
588  // class.
589  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
590
591  // Copy non-redundant base specifiers into permanent storage.
592  unsigned NumGoodBases = 0;
593  bool Invalid = false;
594  for (unsigned idx = 0; idx < NumBases; ++idx) {
595    QualType NewBaseType
596      = Context.getCanonicalType(Bases[idx]->getType());
597    NewBaseType = NewBaseType.getLocalUnqualifiedType();
598    if (!Class->hasObjectMember()) {
599      if (const RecordType *FDTTy =
600            NewBaseType.getTypePtr()->getAs<RecordType>())
601        if (FDTTy->getDecl()->hasObjectMember())
602          Class->setHasObjectMember(true);
603    }
604
605    if (KnownBaseTypes[NewBaseType]) {
606      // C++ [class.mi]p3:
607      //   A class shall not be specified as a direct base class of a
608      //   derived class more than once.
609      Diag(Bases[idx]->getSourceRange().getBegin(),
610           diag::err_duplicate_base_class)
611        << KnownBaseTypes[NewBaseType]->getType()
612        << Bases[idx]->getSourceRange();
613
614      // Delete the duplicate base class specifier; we're going to
615      // overwrite its pointer later.
616      Context.Deallocate(Bases[idx]);
617
618      Invalid = true;
619    } else {
620      // Okay, add this new base class.
621      KnownBaseTypes[NewBaseType] = Bases[idx];
622      Bases[NumGoodBases++] = Bases[idx];
623    }
624  }
625
626  // Attach the remaining base class specifiers to the derived class.
627  Class->setBases(Bases, NumGoodBases);
628
629  // Delete the remaining (good) base class specifiers, since their
630  // data has been copied into the CXXRecordDecl.
631  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
632    Context.Deallocate(Bases[idx]);
633
634  return Invalid;
635}
636
637/// ActOnBaseSpecifiers - Attach the given base specifiers to the
638/// class, after checking whether there are any duplicate base
639/// classes.
640void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
641                               unsigned NumBases) {
642  if (!ClassDecl || !Bases || !NumBases)
643    return;
644
645  AdjustDeclIfTemplate(ClassDecl);
646  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
647                       (CXXBaseSpecifier**)(Bases), NumBases);
648}
649
650static CXXRecordDecl *GetClassForType(QualType T) {
651  if (const RecordType *RT = T->getAs<RecordType>())
652    return cast<CXXRecordDecl>(RT->getDecl());
653  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
654    return ICT->getDecl();
655  else
656    return 0;
657}
658
659/// \brief Determine whether the type \p Derived is a C++ class that is
660/// derived from the type \p Base.
661bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
662  if (!getLangOptions().CPlusPlus)
663    return false;
664
665  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
666  if (!DerivedRD)
667    return false;
668
669  CXXRecordDecl *BaseRD = GetClassForType(Base);
670  if (!BaseRD)
671    return false;
672
673  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
674  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
675}
676
677/// \brief Determine whether the type \p Derived is a C++ class that is
678/// derived from the type \p Base.
679bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
680  if (!getLangOptions().CPlusPlus)
681    return false;
682
683  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
684  if (!DerivedRD)
685    return false;
686
687  CXXRecordDecl *BaseRD = GetClassForType(Base);
688  if (!BaseRD)
689    return false;
690
691  return DerivedRD->isDerivedFrom(BaseRD, Paths);
692}
693
694void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
695                              CXXCastPath &BasePathArray) {
696  assert(BasePathArray.empty() && "Base path array must be empty!");
697  assert(Paths.isRecordingPaths() && "Must record paths!");
698
699  const CXXBasePath &Path = Paths.front();
700
701  // We first go backward and check if we have a virtual base.
702  // FIXME: It would be better if CXXBasePath had the base specifier for
703  // the nearest virtual base.
704  unsigned Start = 0;
705  for (unsigned I = Path.size(); I != 0; --I) {
706    if (Path[I - 1].Base->isVirtual()) {
707      Start = I - 1;
708      break;
709    }
710  }
711
712  // Now add all bases.
713  for (unsigned I = Start, E = Path.size(); I != E; ++I)
714    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
715}
716
717/// \brief Determine whether the given base path includes a virtual
718/// base class.
719bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
720  for (CXXCastPath::const_iterator B = BasePath.begin(),
721                                BEnd = BasePath.end();
722       B != BEnd; ++B)
723    if ((*B)->isVirtual())
724      return true;
725
726  return false;
727}
728
729/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
730/// conversion (where Derived and Base are class types) is
731/// well-formed, meaning that the conversion is unambiguous (and
732/// that all of the base classes are accessible). Returns true
733/// and emits a diagnostic if the code is ill-formed, returns false
734/// otherwise. Loc is the location where this routine should point to
735/// if there is an error, and Range is the source range to highlight
736/// if there is an error.
737bool
738Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
739                                   unsigned InaccessibleBaseID,
740                                   unsigned AmbigiousBaseConvID,
741                                   SourceLocation Loc, SourceRange Range,
742                                   DeclarationName Name,
743                                   CXXCastPath *BasePath) {
744  // First, determine whether the path from Derived to Base is
745  // ambiguous. This is slightly more expensive than checking whether
746  // the Derived to Base conversion exists, because here we need to
747  // explore multiple paths to determine if there is an ambiguity.
748  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
749                     /*DetectVirtual=*/false);
750  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
751  assert(DerivationOkay &&
752         "Can only be used with a derived-to-base conversion");
753  (void)DerivationOkay;
754
755  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
756    if (InaccessibleBaseID) {
757      // Check that the base class can be accessed.
758      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
759                                   InaccessibleBaseID)) {
760        case AR_inaccessible:
761          return true;
762        case AR_accessible:
763        case AR_dependent:
764        case AR_delayed:
765          break;
766      }
767    }
768
769    // Build a base path if necessary.
770    if (BasePath)
771      BuildBasePathArray(Paths, *BasePath);
772    return false;
773  }
774
775  // We know that the derived-to-base conversion is ambiguous, and
776  // we're going to produce a diagnostic. Perform the derived-to-base
777  // search just one more time to compute all of the possible paths so
778  // that we can print them out. This is more expensive than any of
779  // the previous derived-to-base checks we've done, but at this point
780  // performance isn't as much of an issue.
781  Paths.clear();
782  Paths.setRecordingPaths(true);
783  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(StillOkay && "Can only be used with a derived-to-base conversion");
785  (void)StillOkay;
786
787  // Build up a textual representation of the ambiguous paths, e.g.,
788  // D -> B -> A, that will be used to illustrate the ambiguous
789  // conversions in the diagnostic. We only print one of the paths
790  // to each base class subobject.
791  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
792
793  Diag(Loc, AmbigiousBaseConvID)
794  << Derived << Base << PathDisplayStr << Range << Name;
795  return true;
796}
797
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   SourceLocation Loc, SourceRange Range,
801                                   CXXCastPath *BasePath,
802                                   bool IgnoreAccess) {
803  return CheckDerivedToBaseConversion(Derived, Base,
804                                      IgnoreAccess ? 0
805                                       : diag::err_upcast_to_inaccessible_base,
806                                      diag::err_ambiguous_derived_to_base_conv,
807                                      Loc, Range, DeclarationName(),
808                                      BasePath);
809}
810
811
812/// @brief Builds a string representing ambiguous paths from a
813/// specific derived class to different subobjects of the same base
814/// class.
815///
816/// This function builds a string that can be used in error messages
817/// to show the different paths that one can take through the
818/// inheritance hierarchy to go from the derived class to different
819/// subobjects of a base class. The result looks something like this:
820/// @code
821/// struct D -> struct B -> struct A
822/// struct D -> struct C -> struct A
823/// @endcode
824std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
825  std::string PathDisplayStr;
826  std::set<unsigned> DisplayedPaths;
827  for (CXXBasePaths::paths_iterator Path = Paths.begin();
828       Path != Paths.end(); ++Path) {
829    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
830      // We haven't displayed a path to this particular base
831      // class subobject yet.
832      PathDisplayStr += "\n    ";
833      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
834      for (CXXBasePath::const_iterator Element = Path->begin();
835           Element != Path->end(); ++Element)
836        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
837    }
838  }
839
840  return PathDisplayStr;
841}
842
843//===----------------------------------------------------------------------===//
844// C++ class member Handling
845//===----------------------------------------------------------------------===//
846
847/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
848Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
849                                 SourceLocation ASLoc,
850                                 SourceLocation ColonLoc) {
851  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
852  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
853                                                  ASLoc, ColonLoc);
854  CurContext->addHiddenDecl(ASDecl);
855  return ASDecl;
856}
857
858/// CheckOverrideControl - Check C++0x override control semantics.
859void Sema::CheckOverrideControl(const Decl *D) {
860  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
861  if (!MD || !MD->isVirtual())
862    return;
863
864  if (MD->isDependentContext())
865    return;
866
867  // C++0x [class.virtual]p3:
868  //   If a virtual function is marked with the virt-specifier override and does
869  //   not override a member function of a base class,
870  //   the program is ill-formed.
871  bool HasOverriddenMethods =
872    MD->begin_overridden_methods() != MD->end_overridden_methods();
873  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
874    Diag(MD->getLocation(),
875                 diag::err_function_marked_override_not_overriding)
876      << MD->getDeclName();
877    return;
878  }
879
880  // C++0x [class.derived]p8:
881  //   In a class definition marked with the class-virt-specifier explicit,
882  //   if a virtual member function that is neither implicitly-declared nor a
883  //   destructor overrides a member function of a base class and it is not
884  //   marked with the virt-specifier override, the program is ill-formed.
885  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
886      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
887    llvm::SmallVector<const CXXMethodDecl*, 4>
888      OverriddenMethods(MD->begin_overridden_methods(),
889                        MD->end_overridden_methods());
890
891    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
892      << MD->getDeclName()
893      << (unsigned)OverriddenMethods.size();
894
895    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
896      Diag(OverriddenMethods[I]->getLocation(),
897           diag::note_overridden_virtual_function);
898  }
899}
900
901/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
902/// function overrides a virtual member function marked 'final', according to
903/// C++0x [class.virtual]p3.
904bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
905                                                  const CXXMethodDecl *Old) {
906  if (!Old->hasAttr<FinalAttr>())
907    return false;
908
909  Diag(New->getLocation(), diag::err_final_function_overridden)
910    << New->getDeclName();
911  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
912  return true;
913}
914
915/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
916/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
917/// bitfield width if there is one and 'InitExpr' specifies the initializer if
918/// any.
919Decl *
920Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
921                               MultiTemplateParamsArg TemplateParameterLists,
922                               ExprTy *BW, const VirtSpecifiers &VS,
923                               ExprTy *InitExpr, bool IsDefinition,
924                               bool Deleted) {
925  const DeclSpec &DS = D.getDeclSpec();
926  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
927  DeclarationName Name = NameInfo.getName();
928  SourceLocation Loc = NameInfo.getLoc();
929
930  // For anonymous bitfields, the location should point to the type.
931  if (Loc.isInvalid())
932    Loc = D.getSourceRange().getBegin();
933
934  Expr *BitWidth = static_cast<Expr*>(BW);
935  Expr *Init = static_cast<Expr*>(InitExpr);
936
937  assert(isa<CXXRecordDecl>(CurContext));
938  assert(!DS.isFriendSpecified());
939
940  bool isFunc = false;
941  if (D.isFunctionDeclarator())
942    isFunc = true;
943  else if (D.getNumTypeObjects() == 0 &&
944           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
945    QualType TDType = GetTypeFromParser(DS.getRepAsType());
946    isFunc = TDType->isFunctionType();
947  }
948
949  // C++ 9.2p6: A member shall not be declared to have automatic storage
950  // duration (auto, register) or with the extern storage-class-specifier.
951  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
952  // data members and cannot be applied to names declared const or static,
953  // and cannot be applied to reference members.
954  switch (DS.getStorageClassSpec()) {
955    case DeclSpec::SCS_unspecified:
956    case DeclSpec::SCS_typedef:
957    case DeclSpec::SCS_static:
958      // FALL THROUGH.
959      break;
960    case DeclSpec::SCS_mutable:
961      if (isFunc) {
962        if (DS.getStorageClassSpecLoc().isValid())
963          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
964        else
965          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
966
967        // FIXME: It would be nicer if the keyword was ignored only for this
968        // declarator. Otherwise we could get follow-up errors.
969        D.getMutableDeclSpec().ClearStorageClassSpecs();
970      }
971      break;
972    default:
973      if (DS.getStorageClassSpecLoc().isValid())
974        Diag(DS.getStorageClassSpecLoc(),
975             diag::err_storageclass_invalid_for_member);
976      else
977        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
978      D.getMutableDeclSpec().ClearStorageClassSpecs();
979  }
980
981  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
982                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
983                      !isFunc);
984
985  Decl *Member;
986  if (isInstField) {
987    CXXScopeSpec &SS = D.getCXXScopeSpec();
988
989
990    if (SS.isSet() && !SS.isInvalid()) {
991      // The user provided a superfluous scope specifier inside a class
992      // definition:
993      //
994      // class X {
995      //   int X::member;
996      // };
997      DeclContext *DC = 0;
998      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
999        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1000        << Name << FixItHint::CreateRemoval(SS.getRange());
1001      else
1002        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1003          << Name << SS.getRange();
1004
1005      SS.clear();
1006    }
1007
1008    // FIXME: Check for template parameters!
1009    // FIXME: Check that the name is an identifier!
1010    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1011                         AS);
1012    assert(Member && "HandleField never returns null");
1013  } else {
1014    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1015    if (!Member) {
1016      return 0;
1017    }
1018
1019    // Non-instance-fields can't have a bitfield.
1020    if (BitWidth) {
1021      if (Member->isInvalidDecl()) {
1022        // don't emit another diagnostic.
1023      } else if (isa<VarDecl>(Member)) {
1024        // C++ 9.6p3: A bit-field shall not be a static member.
1025        // "static member 'A' cannot be a bit-field"
1026        Diag(Loc, diag::err_static_not_bitfield)
1027          << Name << BitWidth->getSourceRange();
1028      } else if (isa<TypedefDecl>(Member)) {
1029        // "typedef member 'x' cannot be a bit-field"
1030        Diag(Loc, diag::err_typedef_not_bitfield)
1031          << Name << BitWidth->getSourceRange();
1032      } else {
1033        // A function typedef ("typedef int f(); f a;").
1034        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1035        Diag(Loc, diag::err_not_integral_type_bitfield)
1036          << Name << cast<ValueDecl>(Member)->getType()
1037          << BitWidth->getSourceRange();
1038      }
1039
1040      BitWidth = 0;
1041      Member->setInvalidDecl();
1042    }
1043
1044    Member->setAccess(AS);
1045
1046    // If we have declared a member function template, set the access of the
1047    // templated declaration as well.
1048    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1049      FunTmpl->getTemplatedDecl()->setAccess(AS);
1050  }
1051
1052  if (VS.isOverrideSpecified()) {
1053    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1054    if (!MD || !MD->isVirtual()) {
1055      Diag(Member->getLocStart(),
1056           diag::override_keyword_only_allowed_on_virtual_member_functions)
1057        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1058    } else
1059      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1060  }
1061  if (VS.isFinalSpecified()) {
1062    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1063    if (!MD || !MD->isVirtual()) {
1064      Diag(Member->getLocStart(),
1065           diag::override_keyword_only_allowed_on_virtual_member_functions)
1066      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1067    } else
1068      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1069  }
1070
1071  CheckOverrideControl(Member);
1072
1073  assert((Name || isInstField) && "No identifier for non-field ?");
1074
1075  if (Init)
1076    AddInitializerToDecl(Member, Init, false,
1077                         DS.getTypeSpecType() == DeclSpec::TST_auto);
1078  if (Deleted) // FIXME: Source location is not very good.
1079    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1080
1081  if (isInstField)
1082    FieldCollector->Add(cast<FieldDecl>(Member));
1083  return Member;
1084}
1085
1086/// \brief Find the direct and/or virtual base specifiers that
1087/// correspond to the given base type, for use in base initialization
1088/// within a constructor.
1089static bool FindBaseInitializer(Sema &SemaRef,
1090                                CXXRecordDecl *ClassDecl,
1091                                QualType BaseType,
1092                                const CXXBaseSpecifier *&DirectBaseSpec,
1093                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1094  // First, check for a direct base class.
1095  DirectBaseSpec = 0;
1096  for (CXXRecordDecl::base_class_const_iterator Base
1097         = ClassDecl->bases_begin();
1098       Base != ClassDecl->bases_end(); ++Base) {
1099    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1100      // We found a direct base of this type. That's what we're
1101      // initializing.
1102      DirectBaseSpec = &*Base;
1103      break;
1104    }
1105  }
1106
1107  // Check for a virtual base class.
1108  // FIXME: We might be able to short-circuit this if we know in advance that
1109  // there are no virtual bases.
1110  VirtualBaseSpec = 0;
1111  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1112    // We haven't found a base yet; search the class hierarchy for a
1113    // virtual base class.
1114    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1115                       /*DetectVirtual=*/false);
1116    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1117                              BaseType, Paths)) {
1118      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1119           Path != Paths.end(); ++Path) {
1120        if (Path->back().Base->isVirtual()) {
1121          VirtualBaseSpec = Path->back().Base;
1122          break;
1123        }
1124      }
1125    }
1126  }
1127
1128  return DirectBaseSpec || VirtualBaseSpec;
1129}
1130
1131/// ActOnMemInitializer - Handle a C++ member initializer.
1132MemInitResult
1133Sema::ActOnMemInitializer(Decl *ConstructorD,
1134                          Scope *S,
1135                          CXXScopeSpec &SS,
1136                          IdentifierInfo *MemberOrBase,
1137                          ParsedType TemplateTypeTy,
1138                          SourceLocation IdLoc,
1139                          SourceLocation LParenLoc,
1140                          ExprTy **Args, unsigned NumArgs,
1141                          SourceLocation RParenLoc,
1142                          SourceLocation EllipsisLoc) {
1143  if (!ConstructorD)
1144    return true;
1145
1146  AdjustDeclIfTemplate(ConstructorD);
1147
1148  CXXConstructorDecl *Constructor
1149    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1150  if (!Constructor) {
1151    // The user wrote a constructor initializer on a function that is
1152    // not a C++ constructor. Ignore the error for now, because we may
1153    // have more member initializers coming; we'll diagnose it just
1154    // once in ActOnMemInitializers.
1155    return true;
1156  }
1157
1158  CXXRecordDecl *ClassDecl = Constructor->getParent();
1159
1160  // C++ [class.base.init]p2:
1161  //   Names in a mem-initializer-id are looked up in the scope of the
1162  //   constructor's class and, if not found in that scope, are looked
1163  //   up in the scope containing the constructor's definition.
1164  //   [Note: if the constructor's class contains a member with the
1165  //   same name as a direct or virtual base class of the class, a
1166  //   mem-initializer-id naming the member or base class and composed
1167  //   of a single identifier refers to the class member. A
1168  //   mem-initializer-id for the hidden base class may be specified
1169  //   using a qualified name. ]
1170  if (!SS.getScopeRep() && !TemplateTypeTy) {
1171    // Look for a member, first.
1172    FieldDecl *Member = 0;
1173    DeclContext::lookup_result Result
1174      = ClassDecl->lookup(MemberOrBase);
1175    if (Result.first != Result.second) {
1176      Member = dyn_cast<FieldDecl>(*Result.first);
1177
1178      if (Member) {
1179        if (EllipsisLoc.isValid())
1180          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1181            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1182
1183        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1184                                    LParenLoc, RParenLoc);
1185      }
1186
1187      // Handle anonymous union case.
1188      if (IndirectFieldDecl* IndirectField
1189            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1190        if (EllipsisLoc.isValid())
1191          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1192            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1193
1194         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1195                                       NumArgs, IdLoc,
1196                                       LParenLoc, RParenLoc);
1197      }
1198    }
1199  }
1200  // It didn't name a member, so see if it names a class.
1201  QualType BaseType;
1202  TypeSourceInfo *TInfo = 0;
1203
1204  if (TemplateTypeTy) {
1205    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1206  } else {
1207    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1208    LookupParsedName(R, S, &SS);
1209
1210    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1211    if (!TyD) {
1212      if (R.isAmbiguous()) return true;
1213
1214      // We don't want access-control diagnostics here.
1215      R.suppressDiagnostics();
1216
1217      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1218        bool NotUnknownSpecialization = false;
1219        DeclContext *DC = computeDeclContext(SS, false);
1220        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1221          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1222
1223        if (!NotUnknownSpecialization) {
1224          // When the scope specifier can refer to a member of an unknown
1225          // specialization, we take it as a type name.
1226          BaseType = CheckTypenameType(ETK_None,
1227                                       (NestedNameSpecifier *)SS.getScopeRep(),
1228                                       *MemberOrBase, SourceLocation(),
1229                                       SS.getRange(), IdLoc);
1230          if (BaseType.isNull())
1231            return true;
1232
1233          R.clear();
1234          R.setLookupName(MemberOrBase);
1235        }
1236      }
1237
1238      // If no results were found, try to correct typos.
1239      if (R.empty() && BaseType.isNull() &&
1240          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1241          R.isSingleResult()) {
1242        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1243          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1244            // We have found a non-static data member with a similar
1245            // name to what was typed; complain and initialize that
1246            // member.
1247            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1248              << MemberOrBase << true << R.getLookupName()
1249              << FixItHint::CreateReplacement(R.getNameLoc(),
1250                                              R.getLookupName().getAsString());
1251            Diag(Member->getLocation(), diag::note_previous_decl)
1252              << Member->getDeclName();
1253
1254            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1255                                          LParenLoc, RParenLoc);
1256          }
1257        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1258          const CXXBaseSpecifier *DirectBaseSpec;
1259          const CXXBaseSpecifier *VirtualBaseSpec;
1260          if (FindBaseInitializer(*this, ClassDecl,
1261                                  Context.getTypeDeclType(Type),
1262                                  DirectBaseSpec, VirtualBaseSpec)) {
1263            // We have found a direct or virtual base class with a
1264            // similar name to what was typed; complain and initialize
1265            // that base class.
1266            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1267              << MemberOrBase << false << R.getLookupName()
1268              << FixItHint::CreateReplacement(R.getNameLoc(),
1269                                              R.getLookupName().getAsString());
1270
1271            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1272                                                             : VirtualBaseSpec;
1273            Diag(BaseSpec->getSourceRange().getBegin(),
1274                 diag::note_base_class_specified_here)
1275              << BaseSpec->getType()
1276              << BaseSpec->getSourceRange();
1277
1278            TyD = Type;
1279          }
1280        }
1281      }
1282
1283      if (!TyD && BaseType.isNull()) {
1284        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1285          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1286        return true;
1287      }
1288    }
1289
1290    if (BaseType.isNull()) {
1291      BaseType = Context.getTypeDeclType(TyD);
1292      if (SS.isSet()) {
1293        NestedNameSpecifier *Qualifier =
1294          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1295
1296        // FIXME: preserve source range information
1297        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1298      }
1299    }
1300  }
1301
1302  if (!TInfo)
1303    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1304
1305  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1306                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1307}
1308
1309/// Checks an initializer expression for use of uninitialized fields, such as
1310/// containing the field that is being initialized. Returns true if there is an
1311/// uninitialized field was used an updates the SourceLocation parameter; false
1312/// otherwise.
1313static bool InitExprContainsUninitializedFields(const Stmt *S,
1314                                                const ValueDecl *LhsField,
1315                                                SourceLocation *L) {
1316  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1317
1318  if (isa<CallExpr>(S)) {
1319    // Do not descend into function calls or constructors, as the use
1320    // of an uninitialized field may be valid. One would have to inspect
1321    // the contents of the function/ctor to determine if it is safe or not.
1322    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1323    // may be safe, depending on what the function/ctor does.
1324    return false;
1325  }
1326  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1327    const NamedDecl *RhsField = ME->getMemberDecl();
1328
1329    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1330      // The member expression points to a static data member.
1331      assert(VD->isStaticDataMember() &&
1332             "Member points to non-static data member!");
1333      (void)VD;
1334      return false;
1335    }
1336
1337    if (isa<EnumConstantDecl>(RhsField)) {
1338      // The member expression points to an enum.
1339      return false;
1340    }
1341
1342    if (RhsField == LhsField) {
1343      // Initializing a field with itself. Throw a warning.
1344      // But wait; there are exceptions!
1345      // Exception #1:  The field may not belong to this record.
1346      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1347      const Expr *base = ME->getBase();
1348      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1349        // Even though the field matches, it does not belong to this record.
1350        return false;
1351      }
1352      // None of the exceptions triggered; return true to indicate an
1353      // uninitialized field was used.
1354      *L = ME->getMemberLoc();
1355      return true;
1356    }
1357  } else if (isa<SizeOfAlignOfExpr>(S)) {
1358    // sizeof/alignof doesn't reference contents, do not warn.
1359    return false;
1360  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1361    // address-of doesn't reference contents (the pointer may be dereferenced
1362    // in the same expression but it would be rare; and weird).
1363    if (UOE->getOpcode() == UO_AddrOf)
1364      return false;
1365  }
1366  for (Stmt::const_child_range it = S->children(); it; ++it) {
1367    if (!*it) {
1368      // An expression such as 'member(arg ?: "")' may trigger this.
1369      continue;
1370    }
1371    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1372      return true;
1373  }
1374  return false;
1375}
1376
1377MemInitResult
1378Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1379                             unsigned NumArgs, SourceLocation IdLoc,
1380                             SourceLocation LParenLoc,
1381                             SourceLocation RParenLoc) {
1382  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1383  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1384  assert((DirectMember || IndirectMember) &&
1385         "Member must be a FieldDecl or IndirectFieldDecl");
1386
1387  if (Member->isInvalidDecl())
1388    return true;
1389
1390  // Diagnose value-uses of fields to initialize themselves, e.g.
1391  //   foo(foo)
1392  // where foo is not also a parameter to the constructor.
1393  // TODO: implement -Wuninitialized and fold this into that framework.
1394  for (unsigned i = 0; i < NumArgs; ++i) {
1395    SourceLocation L;
1396    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1397      // FIXME: Return true in the case when other fields are used before being
1398      // uninitialized. For example, let this field be the i'th field. When
1399      // initializing the i'th field, throw a warning if any of the >= i'th
1400      // fields are used, as they are not yet initialized.
1401      // Right now we are only handling the case where the i'th field uses
1402      // itself in its initializer.
1403      Diag(L, diag::warn_field_is_uninit);
1404    }
1405  }
1406
1407  bool HasDependentArg = false;
1408  for (unsigned i = 0; i < NumArgs; i++)
1409    HasDependentArg |= Args[i]->isTypeDependent();
1410
1411  Expr *Init;
1412  if (Member->getType()->isDependentType() || HasDependentArg) {
1413    // Can't check initialization for a member of dependent type or when
1414    // any of the arguments are type-dependent expressions.
1415    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1416                                       RParenLoc);
1417
1418    // Erase any temporaries within this evaluation context; we're not
1419    // going to track them in the AST, since we'll be rebuilding the
1420    // ASTs during template instantiation.
1421    ExprTemporaries.erase(
1422              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1423                          ExprTemporaries.end());
1424  } else {
1425    // Initialize the member.
1426    InitializedEntity MemberEntity =
1427      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1428                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1429    InitializationKind Kind =
1430      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1431
1432    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1433
1434    ExprResult MemberInit =
1435      InitSeq.Perform(*this, MemberEntity, Kind,
1436                      MultiExprArg(*this, Args, NumArgs), 0);
1437    if (MemberInit.isInvalid())
1438      return true;
1439
1440    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1441
1442    // C++0x [class.base.init]p7:
1443    //   The initialization of each base and member constitutes a
1444    //   full-expression.
1445    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1446    if (MemberInit.isInvalid())
1447      return true;
1448
1449    // If we are in a dependent context, template instantiation will
1450    // perform this type-checking again. Just save the arguments that we
1451    // received in a ParenListExpr.
1452    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1453    // of the information that we have about the member
1454    // initializer. However, deconstructing the ASTs is a dicey process,
1455    // and this approach is far more likely to get the corner cases right.
1456    if (CurContext->isDependentContext())
1457      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1458                                               RParenLoc);
1459    else
1460      Init = MemberInit.get();
1461  }
1462
1463  if (DirectMember) {
1464    return new (Context) CXXCtorInitializer(Context, DirectMember,
1465                                                    IdLoc, LParenLoc, Init,
1466                                                    RParenLoc);
1467  } else {
1468    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1469                                                    IdLoc, LParenLoc, Init,
1470                                                    RParenLoc);
1471  }
1472}
1473
1474MemInitResult
1475Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1476                                 Expr **Args, unsigned NumArgs,
1477                                 SourceLocation LParenLoc,
1478                                 SourceLocation RParenLoc,
1479                                 CXXRecordDecl *ClassDecl,
1480                                 SourceLocation EllipsisLoc) {
1481  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1482  if (!LangOpts.CPlusPlus0x)
1483    return Diag(Loc, diag::err_delegation_0x_only)
1484      << TInfo->getTypeLoc().getLocalSourceRange();
1485
1486  return Diag(Loc, diag::err_delegation_unimplemented)
1487    << TInfo->getTypeLoc().getLocalSourceRange();
1488}
1489
1490MemInitResult
1491Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1492                           Expr **Args, unsigned NumArgs,
1493                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1494                           CXXRecordDecl *ClassDecl,
1495                           SourceLocation EllipsisLoc) {
1496  bool HasDependentArg = false;
1497  for (unsigned i = 0; i < NumArgs; i++)
1498    HasDependentArg |= Args[i]->isTypeDependent();
1499
1500  SourceLocation BaseLoc
1501    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1502
1503  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1504    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1505             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1506
1507  // C++ [class.base.init]p2:
1508  //   [...] Unless the mem-initializer-id names a nonstatic data
1509  //   member of the constructor's class or a direct or virtual base
1510  //   of that class, the mem-initializer is ill-formed. A
1511  //   mem-initializer-list can initialize a base class using any
1512  //   name that denotes that base class type.
1513  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1514
1515  if (EllipsisLoc.isValid()) {
1516    // This is a pack expansion.
1517    if (!BaseType->containsUnexpandedParameterPack())  {
1518      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1519        << SourceRange(BaseLoc, RParenLoc);
1520
1521      EllipsisLoc = SourceLocation();
1522    }
1523  } else {
1524    // Check for any unexpanded parameter packs.
1525    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1526      return true;
1527
1528    for (unsigned I = 0; I != NumArgs; ++I)
1529      if (DiagnoseUnexpandedParameterPack(Args[I]))
1530        return true;
1531  }
1532
1533  // Check for direct and virtual base classes.
1534  const CXXBaseSpecifier *DirectBaseSpec = 0;
1535  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1536  if (!Dependent) {
1537    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1538                                       BaseType))
1539      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1540                                        LParenLoc, RParenLoc, ClassDecl,
1541                                        EllipsisLoc);
1542
1543    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1544                        VirtualBaseSpec);
1545
1546    // C++ [base.class.init]p2:
1547    // Unless the mem-initializer-id names a nonstatic data member of the
1548    // constructor's class or a direct or virtual base of that class, the
1549    // mem-initializer is ill-formed.
1550    if (!DirectBaseSpec && !VirtualBaseSpec) {
1551      // If the class has any dependent bases, then it's possible that
1552      // one of those types will resolve to the same type as
1553      // BaseType. Therefore, just treat this as a dependent base
1554      // class initialization.  FIXME: Should we try to check the
1555      // initialization anyway? It seems odd.
1556      if (ClassDecl->hasAnyDependentBases())
1557        Dependent = true;
1558      else
1559        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1560          << BaseType << Context.getTypeDeclType(ClassDecl)
1561          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1562    }
1563  }
1564
1565  if (Dependent) {
1566    // Can't check initialization for a base of dependent type or when
1567    // any of the arguments are type-dependent expressions.
1568    ExprResult BaseInit
1569      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1570                                          RParenLoc));
1571
1572    // Erase any temporaries within this evaluation context; we're not
1573    // going to track them in the AST, since we'll be rebuilding the
1574    // ASTs during template instantiation.
1575    ExprTemporaries.erase(
1576              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1577                          ExprTemporaries.end());
1578
1579    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1580                                                    /*IsVirtual=*/false,
1581                                                    LParenLoc,
1582                                                    BaseInit.takeAs<Expr>(),
1583                                                    RParenLoc,
1584                                                    EllipsisLoc);
1585  }
1586
1587  // C++ [base.class.init]p2:
1588  //   If a mem-initializer-id is ambiguous because it designates both
1589  //   a direct non-virtual base class and an inherited virtual base
1590  //   class, the mem-initializer is ill-formed.
1591  if (DirectBaseSpec && VirtualBaseSpec)
1592    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1593      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1594
1595  CXXBaseSpecifier *BaseSpec
1596    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1597  if (!BaseSpec)
1598    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1599
1600  // Initialize the base.
1601  InitializedEntity BaseEntity =
1602    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1603  InitializationKind Kind =
1604    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1605
1606  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1607
1608  ExprResult BaseInit =
1609    InitSeq.Perform(*this, BaseEntity, Kind,
1610                    MultiExprArg(*this, Args, NumArgs), 0);
1611  if (BaseInit.isInvalid())
1612    return true;
1613
1614  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1615
1616  // C++0x [class.base.init]p7:
1617  //   The initialization of each base and member constitutes a
1618  //   full-expression.
1619  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1620  if (BaseInit.isInvalid())
1621    return true;
1622
1623  // If we are in a dependent context, template instantiation will
1624  // perform this type-checking again. Just save the arguments that we
1625  // received in a ParenListExpr.
1626  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1627  // of the information that we have about the base
1628  // initializer. However, deconstructing the ASTs is a dicey process,
1629  // and this approach is far more likely to get the corner cases right.
1630  if (CurContext->isDependentContext()) {
1631    ExprResult Init
1632      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1633                                          RParenLoc));
1634    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1635                                                    BaseSpec->isVirtual(),
1636                                                    LParenLoc,
1637                                                    Init.takeAs<Expr>(),
1638                                                    RParenLoc,
1639                                                    EllipsisLoc);
1640  }
1641
1642  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1643                                                  BaseSpec->isVirtual(),
1644                                                  LParenLoc,
1645                                                  BaseInit.takeAs<Expr>(),
1646                                                  RParenLoc,
1647                                                  EllipsisLoc);
1648}
1649
1650/// ImplicitInitializerKind - How an implicit base or member initializer should
1651/// initialize its base or member.
1652enum ImplicitInitializerKind {
1653  IIK_Default,
1654  IIK_Copy,
1655  IIK_Move
1656};
1657
1658static bool
1659BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1660                             ImplicitInitializerKind ImplicitInitKind,
1661                             CXXBaseSpecifier *BaseSpec,
1662                             bool IsInheritedVirtualBase,
1663                             CXXCtorInitializer *&CXXBaseInit) {
1664  InitializedEntity InitEntity
1665    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1666                                        IsInheritedVirtualBase);
1667
1668  ExprResult BaseInit;
1669
1670  switch (ImplicitInitKind) {
1671  case IIK_Default: {
1672    InitializationKind InitKind
1673      = InitializationKind::CreateDefault(Constructor->getLocation());
1674    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1675    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1676                               MultiExprArg(SemaRef, 0, 0));
1677    break;
1678  }
1679
1680  case IIK_Copy: {
1681    ParmVarDecl *Param = Constructor->getParamDecl(0);
1682    QualType ParamType = Param->getType().getNonReferenceType();
1683
1684    Expr *CopyCtorArg =
1685      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1686                          Constructor->getLocation(), ParamType,
1687                          VK_LValue, 0);
1688
1689    // Cast to the base class to avoid ambiguities.
1690    QualType ArgTy =
1691      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1692                                       ParamType.getQualifiers());
1693
1694    CXXCastPath BasePath;
1695    BasePath.push_back(BaseSpec);
1696    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1697                              CK_UncheckedDerivedToBase,
1698                              VK_LValue, &BasePath);
1699
1700    InitializationKind InitKind
1701      = InitializationKind::CreateDirect(Constructor->getLocation(),
1702                                         SourceLocation(), SourceLocation());
1703    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1704                                   &CopyCtorArg, 1);
1705    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1706                               MultiExprArg(&CopyCtorArg, 1));
1707    break;
1708  }
1709
1710  case IIK_Move:
1711    assert(false && "Unhandled initializer kind!");
1712  }
1713
1714  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1715  if (BaseInit.isInvalid())
1716    return true;
1717
1718  CXXBaseInit =
1719    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1720               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1721                                                        SourceLocation()),
1722                                             BaseSpec->isVirtual(),
1723                                             SourceLocation(),
1724                                             BaseInit.takeAs<Expr>(),
1725                                             SourceLocation(),
1726                                             SourceLocation());
1727
1728  return false;
1729}
1730
1731static bool
1732BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1733                               ImplicitInitializerKind ImplicitInitKind,
1734                               FieldDecl *Field,
1735                               CXXCtorInitializer *&CXXMemberInit) {
1736  if (Field->isInvalidDecl())
1737    return true;
1738
1739  SourceLocation Loc = Constructor->getLocation();
1740
1741  if (ImplicitInitKind == IIK_Copy) {
1742    ParmVarDecl *Param = Constructor->getParamDecl(0);
1743    QualType ParamType = Param->getType().getNonReferenceType();
1744
1745    Expr *MemberExprBase =
1746      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1747                          Loc, ParamType, VK_LValue, 0);
1748
1749    // Build a reference to this field within the parameter.
1750    CXXScopeSpec SS;
1751    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1752                              Sema::LookupMemberName);
1753    MemberLookup.addDecl(Field, AS_public);
1754    MemberLookup.resolveKind();
1755    ExprResult CopyCtorArg
1756      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1757                                         ParamType, Loc,
1758                                         /*IsArrow=*/false,
1759                                         SS,
1760                                         /*FirstQualifierInScope=*/0,
1761                                         MemberLookup,
1762                                         /*TemplateArgs=*/0);
1763    if (CopyCtorArg.isInvalid())
1764      return true;
1765
1766    // When the field we are copying is an array, create index variables for
1767    // each dimension of the array. We use these index variables to subscript
1768    // the source array, and other clients (e.g., CodeGen) will perform the
1769    // necessary iteration with these index variables.
1770    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1771    QualType BaseType = Field->getType();
1772    QualType SizeType = SemaRef.Context.getSizeType();
1773    while (const ConstantArrayType *Array
1774                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1775      // Create the iteration variable for this array index.
1776      IdentifierInfo *IterationVarName = 0;
1777      {
1778        llvm::SmallString<8> Str;
1779        llvm::raw_svector_ostream OS(Str);
1780        OS << "__i" << IndexVariables.size();
1781        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1782      }
1783      VarDecl *IterationVar
1784        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1785                          IterationVarName, SizeType,
1786                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1787                          SC_None, SC_None);
1788      IndexVariables.push_back(IterationVar);
1789
1790      // Create a reference to the iteration variable.
1791      ExprResult IterationVarRef
1792        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1793      assert(!IterationVarRef.isInvalid() &&
1794             "Reference to invented variable cannot fail!");
1795
1796      // Subscript the array with this iteration variable.
1797      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1798                                                            Loc,
1799                                                        IterationVarRef.take(),
1800                                                            Loc);
1801      if (CopyCtorArg.isInvalid())
1802        return true;
1803
1804      BaseType = Array->getElementType();
1805    }
1806
1807    // Construct the entity that we will be initializing. For an array, this
1808    // will be first element in the array, which may require several levels
1809    // of array-subscript entities.
1810    llvm::SmallVector<InitializedEntity, 4> Entities;
1811    Entities.reserve(1 + IndexVariables.size());
1812    Entities.push_back(InitializedEntity::InitializeMember(Field));
1813    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1814      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1815                                                              0,
1816                                                              Entities.back()));
1817
1818    // Direct-initialize to use the copy constructor.
1819    InitializationKind InitKind =
1820      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1821
1822    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1823    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1824                                   &CopyCtorArgE, 1);
1825
1826    ExprResult MemberInit
1827      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1828                        MultiExprArg(&CopyCtorArgE, 1));
1829    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1830    if (MemberInit.isInvalid())
1831      return true;
1832
1833    CXXMemberInit
1834      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1835                                           MemberInit.takeAs<Expr>(), Loc,
1836                                           IndexVariables.data(),
1837                                           IndexVariables.size());
1838    return false;
1839  }
1840
1841  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1842
1843  QualType FieldBaseElementType =
1844    SemaRef.Context.getBaseElementType(Field->getType());
1845
1846  if (FieldBaseElementType->isRecordType()) {
1847    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1848    InitializationKind InitKind =
1849      InitializationKind::CreateDefault(Loc);
1850
1851    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1852    ExprResult MemberInit =
1853      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1854
1855    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1856    if (MemberInit.isInvalid())
1857      return true;
1858
1859    CXXMemberInit =
1860      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1861                                                       Field, Loc, Loc,
1862                                                       MemberInit.get(),
1863                                                       Loc);
1864    return false;
1865  }
1866
1867  if (FieldBaseElementType->isReferenceType()) {
1868    SemaRef.Diag(Constructor->getLocation(),
1869                 diag::err_uninitialized_member_in_ctor)
1870    << (int)Constructor->isImplicit()
1871    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1872    << 0 << Field->getDeclName();
1873    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1874    return true;
1875  }
1876
1877  if (FieldBaseElementType.isConstQualified()) {
1878    SemaRef.Diag(Constructor->getLocation(),
1879                 diag::err_uninitialized_member_in_ctor)
1880    << (int)Constructor->isImplicit()
1881    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1882    << 1 << Field->getDeclName();
1883    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1884    return true;
1885  }
1886
1887  // Nothing to initialize.
1888  CXXMemberInit = 0;
1889  return false;
1890}
1891
1892namespace {
1893struct BaseAndFieldInfo {
1894  Sema &S;
1895  CXXConstructorDecl *Ctor;
1896  bool AnyErrorsInInits;
1897  ImplicitInitializerKind IIK;
1898  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1899  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1900
1901  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1902    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1903    // FIXME: Handle implicit move constructors.
1904    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1905      IIK = IIK_Copy;
1906    else
1907      IIK = IIK_Default;
1908  }
1909};
1910}
1911
1912static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1913                                    FieldDecl *Top, FieldDecl *Field) {
1914
1915  // Overwhelmingly common case: we have a direct initializer for this field.
1916  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1917    Info.AllToInit.push_back(Init);
1918    return false;
1919  }
1920
1921  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1922    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1923    assert(FieldClassType && "anonymous struct/union without record type");
1924    CXXRecordDecl *FieldClassDecl
1925      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1926
1927    // Even though union members never have non-trivial default
1928    // constructions in C++03, we still build member initializers for aggregate
1929    // record types which can be union members, and C++0x allows non-trivial
1930    // default constructors for union members, so we ensure that only one
1931    // member is initialized for these.
1932    if (FieldClassDecl->isUnion()) {
1933      // First check for an explicit initializer for one field.
1934      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1935           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1936        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1937          Info.AllToInit.push_back(Init);
1938
1939          // Once we've initialized a field of an anonymous union, the union
1940          // field in the class is also initialized, so exit immediately.
1941          return false;
1942        } else if ((*FA)->isAnonymousStructOrUnion()) {
1943          if (CollectFieldInitializer(Info, Top, *FA))
1944            return true;
1945        }
1946      }
1947
1948      // Fallthrough and construct a default initializer for the union as
1949      // a whole, which can call its default constructor if such a thing exists
1950      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1951      // behavior going forward with C++0x, when anonymous unions there are
1952      // finalized, we should revisit this.
1953    } else {
1954      // For structs, we simply descend through to initialize all members where
1955      // necessary.
1956      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1957           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1958        if (CollectFieldInitializer(Info, Top, *FA))
1959          return true;
1960      }
1961    }
1962  }
1963
1964  // Don't try to build an implicit initializer if there were semantic
1965  // errors in any of the initializers (and therefore we might be
1966  // missing some that the user actually wrote).
1967  if (Info.AnyErrorsInInits)
1968    return false;
1969
1970  CXXCtorInitializer *Init = 0;
1971  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1972    return true;
1973
1974  if (Init)
1975    Info.AllToInit.push_back(Init);
1976
1977  return false;
1978}
1979
1980bool
1981Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1982                                  CXXCtorInitializer **Initializers,
1983                                  unsigned NumInitializers,
1984                                  bool AnyErrors) {
1985  if (Constructor->getDeclContext()->isDependentContext()) {
1986    // Just store the initializers as written, they will be checked during
1987    // instantiation.
1988    if (NumInitializers > 0) {
1989      Constructor->setNumCtorInitializers(NumInitializers);
1990      CXXCtorInitializer **baseOrMemberInitializers =
1991        new (Context) CXXCtorInitializer*[NumInitializers];
1992      memcpy(baseOrMemberInitializers, Initializers,
1993             NumInitializers * sizeof(CXXCtorInitializer*));
1994      Constructor->setCtorInitializers(baseOrMemberInitializers);
1995    }
1996
1997    return false;
1998  }
1999
2000  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2001
2002  // We need to build the initializer AST according to order of construction
2003  // and not what user specified in the Initializers list.
2004  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2005  if (!ClassDecl)
2006    return true;
2007
2008  bool HadError = false;
2009
2010  for (unsigned i = 0; i < NumInitializers; i++) {
2011    CXXCtorInitializer *Member = Initializers[i];
2012
2013    if (Member->isBaseInitializer())
2014      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2015    else
2016      Info.AllBaseFields[Member->getAnyMember()] = Member;
2017  }
2018
2019  // Keep track of the direct virtual bases.
2020  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2021  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2022       E = ClassDecl->bases_end(); I != E; ++I) {
2023    if (I->isVirtual())
2024      DirectVBases.insert(I);
2025  }
2026
2027  // Push virtual bases before others.
2028  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2029       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2030
2031    if (CXXCtorInitializer *Value
2032        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2033      Info.AllToInit.push_back(Value);
2034    } else if (!AnyErrors) {
2035      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2036      CXXCtorInitializer *CXXBaseInit;
2037      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2038                                       VBase, IsInheritedVirtualBase,
2039                                       CXXBaseInit)) {
2040        HadError = true;
2041        continue;
2042      }
2043
2044      Info.AllToInit.push_back(CXXBaseInit);
2045    }
2046  }
2047
2048  // Non-virtual bases.
2049  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2050       E = ClassDecl->bases_end(); Base != E; ++Base) {
2051    // Virtuals are in the virtual base list and already constructed.
2052    if (Base->isVirtual())
2053      continue;
2054
2055    if (CXXCtorInitializer *Value
2056          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2057      Info.AllToInit.push_back(Value);
2058    } else if (!AnyErrors) {
2059      CXXCtorInitializer *CXXBaseInit;
2060      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2061                                       Base, /*IsInheritedVirtualBase=*/false,
2062                                       CXXBaseInit)) {
2063        HadError = true;
2064        continue;
2065      }
2066
2067      Info.AllToInit.push_back(CXXBaseInit);
2068    }
2069  }
2070
2071  // Fields.
2072  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2073       E = ClassDecl->field_end(); Field != E; ++Field) {
2074    if ((*Field)->getType()->isIncompleteArrayType()) {
2075      assert(ClassDecl->hasFlexibleArrayMember() &&
2076             "Incomplete array type is not valid");
2077      continue;
2078    }
2079    if (CollectFieldInitializer(Info, *Field, *Field))
2080      HadError = true;
2081  }
2082
2083  NumInitializers = Info.AllToInit.size();
2084  if (NumInitializers > 0) {
2085    Constructor->setNumCtorInitializers(NumInitializers);
2086    CXXCtorInitializer **baseOrMemberInitializers =
2087      new (Context) CXXCtorInitializer*[NumInitializers];
2088    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2089           NumInitializers * sizeof(CXXCtorInitializer*));
2090    Constructor->setCtorInitializers(baseOrMemberInitializers);
2091
2092    // Constructors implicitly reference the base and member
2093    // destructors.
2094    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2095                                           Constructor->getParent());
2096  }
2097
2098  return HadError;
2099}
2100
2101static void *GetKeyForTopLevelField(FieldDecl *Field) {
2102  // For anonymous unions, use the class declaration as the key.
2103  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2104    if (RT->getDecl()->isAnonymousStructOrUnion())
2105      return static_cast<void *>(RT->getDecl());
2106  }
2107  return static_cast<void *>(Field);
2108}
2109
2110static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2111  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2112}
2113
2114static void *GetKeyForMember(ASTContext &Context,
2115                             CXXCtorInitializer *Member) {
2116  if (!Member->isAnyMemberInitializer())
2117    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2118
2119  // For fields injected into the class via declaration of an anonymous union,
2120  // use its anonymous union class declaration as the unique key.
2121  FieldDecl *Field = Member->getAnyMember();
2122
2123  // If the field is a member of an anonymous struct or union, our key
2124  // is the anonymous record decl that's a direct child of the class.
2125  RecordDecl *RD = Field->getParent();
2126  if (RD->isAnonymousStructOrUnion()) {
2127    while (true) {
2128      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2129      if (Parent->isAnonymousStructOrUnion())
2130        RD = Parent;
2131      else
2132        break;
2133    }
2134
2135    return static_cast<void *>(RD);
2136  }
2137
2138  return static_cast<void *>(Field);
2139}
2140
2141static void
2142DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2143                                  const CXXConstructorDecl *Constructor,
2144                                  CXXCtorInitializer **Inits,
2145                                  unsigned NumInits) {
2146  if (Constructor->getDeclContext()->isDependentContext())
2147    return;
2148
2149  // Don't check initializers order unless the warning is enabled at the
2150  // location of at least one initializer.
2151  bool ShouldCheckOrder = false;
2152  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2153    CXXCtorInitializer *Init = Inits[InitIndex];
2154    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2155                                         Init->getSourceLocation())
2156          != Diagnostic::Ignored) {
2157      ShouldCheckOrder = true;
2158      break;
2159    }
2160  }
2161  if (!ShouldCheckOrder)
2162    return;
2163
2164  // Build the list of bases and members in the order that they'll
2165  // actually be initialized.  The explicit initializers should be in
2166  // this same order but may be missing things.
2167  llvm::SmallVector<const void*, 32> IdealInitKeys;
2168
2169  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2170
2171  // 1. Virtual bases.
2172  for (CXXRecordDecl::base_class_const_iterator VBase =
2173       ClassDecl->vbases_begin(),
2174       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2175    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2176
2177  // 2. Non-virtual bases.
2178  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2179       E = ClassDecl->bases_end(); Base != E; ++Base) {
2180    if (Base->isVirtual())
2181      continue;
2182    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2183  }
2184
2185  // 3. Direct fields.
2186  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2187       E = ClassDecl->field_end(); Field != E; ++Field)
2188    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2189
2190  unsigned NumIdealInits = IdealInitKeys.size();
2191  unsigned IdealIndex = 0;
2192
2193  CXXCtorInitializer *PrevInit = 0;
2194  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2195    CXXCtorInitializer *Init = Inits[InitIndex];
2196    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2197
2198    // Scan forward to try to find this initializer in the idealized
2199    // initializers list.
2200    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2201      if (InitKey == IdealInitKeys[IdealIndex])
2202        break;
2203
2204    // If we didn't find this initializer, it must be because we
2205    // scanned past it on a previous iteration.  That can only
2206    // happen if we're out of order;  emit a warning.
2207    if (IdealIndex == NumIdealInits && PrevInit) {
2208      Sema::SemaDiagnosticBuilder D =
2209        SemaRef.Diag(PrevInit->getSourceLocation(),
2210                     diag::warn_initializer_out_of_order);
2211
2212      if (PrevInit->isAnyMemberInitializer())
2213        D << 0 << PrevInit->getAnyMember()->getDeclName();
2214      else
2215        D << 1 << PrevInit->getBaseClassInfo()->getType();
2216
2217      if (Init->isAnyMemberInitializer())
2218        D << 0 << Init->getAnyMember()->getDeclName();
2219      else
2220        D << 1 << Init->getBaseClassInfo()->getType();
2221
2222      // Move back to the initializer's location in the ideal list.
2223      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2224        if (InitKey == IdealInitKeys[IdealIndex])
2225          break;
2226
2227      assert(IdealIndex != NumIdealInits &&
2228             "initializer not found in initializer list");
2229    }
2230
2231    PrevInit = Init;
2232  }
2233}
2234
2235namespace {
2236bool CheckRedundantInit(Sema &S,
2237                        CXXCtorInitializer *Init,
2238                        CXXCtorInitializer *&PrevInit) {
2239  if (!PrevInit) {
2240    PrevInit = Init;
2241    return false;
2242  }
2243
2244  if (FieldDecl *Field = Init->getMember())
2245    S.Diag(Init->getSourceLocation(),
2246           diag::err_multiple_mem_initialization)
2247      << Field->getDeclName()
2248      << Init->getSourceRange();
2249  else {
2250    const Type *BaseClass = Init->getBaseClass();
2251    assert(BaseClass && "neither field nor base");
2252    S.Diag(Init->getSourceLocation(),
2253           diag::err_multiple_base_initialization)
2254      << QualType(BaseClass, 0)
2255      << Init->getSourceRange();
2256  }
2257  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2258    << 0 << PrevInit->getSourceRange();
2259
2260  return true;
2261}
2262
2263typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2264typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2265
2266bool CheckRedundantUnionInit(Sema &S,
2267                             CXXCtorInitializer *Init,
2268                             RedundantUnionMap &Unions) {
2269  FieldDecl *Field = Init->getAnyMember();
2270  RecordDecl *Parent = Field->getParent();
2271  if (!Parent->isAnonymousStructOrUnion())
2272    return false;
2273
2274  NamedDecl *Child = Field;
2275  do {
2276    if (Parent->isUnion()) {
2277      UnionEntry &En = Unions[Parent];
2278      if (En.first && En.first != Child) {
2279        S.Diag(Init->getSourceLocation(),
2280               diag::err_multiple_mem_union_initialization)
2281          << Field->getDeclName()
2282          << Init->getSourceRange();
2283        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2284          << 0 << En.second->getSourceRange();
2285        return true;
2286      } else if (!En.first) {
2287        En.first = Child;
2288        En.second = Init;
2289      }
2290    }
2291
2292    Child = Parent;
2293    Parent = cast<RecordDecl>(Parent->getDeclContext());
2294  } while (Parent->isAnonymousStructOrUnion());
2295
2296  return false;
2297}
2298}
2299
2300/// ActOnMemInitializers - Handle the member initializers for a constructor.
2301void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2302                                SourceLocation ColonLoc,
2303                                MemInitTy **meminits, unsigned NumMemInits,
2304                                bool AnyErrors) {
2305  if (!ConstructorDecl)
2306    return;
2307
2308  AdjustDeclIfTemplate(ConstructorDecl);
2309
2310  CXXConstructorDecl *Constructor
2311    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2312
2313  if (!Constructor) {
2314    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2315    return;
2316  }
2317
2318  CXXCtorInitializer **MemInits =
2319    reinterpret_cast<CXXCtorInitializer **>(meminits);
2320
2321  // Mapping for the duplicate initializers check.
2322  // For member initializers, this is keyed with a FieldDecl*.
2323  // For base initializers, this is keyed with a Type*.
2324  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2325
2326  // Mapping for the inconsistent anonymous-union initializers check.
2327  RedundantUnionMap MemberUnions;
2328
2329  bool HadError = false;
2330  for (unsigned i = 0; i < NumMemInits; i++) {
2331    CXXCtorInitializer *Init = MemInits[i];
2332
2333    // Set the source order index.
2334    Init->setSourceOrder(i);
2335
2336    if (Init->isAnyMemberInitializer()) {
2337      FieldDecl *Field = Init->getAnyMember();
2338      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2339          CheckRedundantUnionInit(*this, Init, MemberUnions))
2340        HadError = true;
2341    } else {
2342      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2343      if (CheckRedundantInit(*this, Init, Members[Key]))
2344        HadError = true;
2345    }
2346  }
2347
2348  if (HadError)
2349    return;
2350
2351  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2352
2353  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2354}
2355
2356void
2357Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2358                                             CXXRecordDecl *ClassDecl) {
2359  // Ignore dependent contexts.
2360  if (ClassDecl->isDependentContext())
2361    return;
2362
2363  // FIXME: all the access-control diagnostics are positioned on the
2364  // field/base declaration.  That's probably good; that said, the
2365  // user might reasonably want to know why the destructor is being
2366  // emitted, and we currently don't say.
2367
2368  // Non-static data members.
2369  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2370       E = ClassDecl->field_end(); I != E; ++I) {
2371    FieldDecl *Field = *I;
2372    if (Field->isInvalidDecl())
2373      continue;
2374    QualType FieldType = Context.getBaseElementType(Field->getType());
2375
2376    const RecordType* RT = FieldType->getAs<RecordType>();
2377    if (!RT)
2378      continue;
2379
2380    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2381    if (FieldClassDecl->hasTrivialDestructor())
2382      continue;
2383
2384    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2385    CheckDestructorAccess(Field->getLocation(), Dtor,
2386                          PDiag(diag::err_access_dtor_field)
2387                            << Field->getDeclName()
2388                            << FieldType);
2389
2390    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2391  }
2392
2393  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2394
2395  // Bases.
2396  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2397       E = ClassDecl->bases_end(); Base != E; ++Base) {
2398    // Bases are always records in a well-formed non-dependent class.
2399    const RecordType *RT = Base->getType()->getAs<RecordType>();
2400
2401    // Remember direct virtual bases.
2402    if (Base->isVirtual())
2403      DirectVirtualBases.insert(RT);
2404
2405    // Ignore trivial destructors.
2406    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2407    if (BaseClassDecl->hasTrivialDestructor())
2408      continue;
2409
2410    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2411
2412    // FIXME: caret should be on the start of the class name
2413    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2414                          PDiag(diag::err_access_dtor_base)
2415                            << Base->getType()
2416                            << Base->getSourceRange());
2417
2418    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2419  }
2420
2421  // Virtual bases.
2422  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2423       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2424
2425    // Bases are always records in a well-formed non-dependent class.
2426    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2427
2428    // Ignore direct virtual bases.
2429    if (DirectVirtualBases.count(RT))
2430      continue;
2431
2432    // Ignore trivial destructors.
2433    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2434    if (BaseClassDecl->hasTrivialDestructor())
2435      continue;
2436
2437    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2438    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2439                          PDiag(diag::err_access_dtor_vbase)
2440                            << VBase->getType());
2441
2442    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2443  }
2444}
2445
2446void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2447  if (!CDtorDecl)
2448    return;
2449
2450  if (CXXConstructorDecl *Constructor
2451      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2452    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2453}
2454
2455bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2456                                  unsigned DiagID, AbstractDiagSelID SelID) {
2457  if (SelID == -1)
2458    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2459  else
2460    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2461}
2462
2463bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2464                                  const PartialDiagnostic &PD) {
2465  if (!getLangOptions().CPlusPlus)
2466    return false;
2467
2468  if (const ArrayType *AT = Context.getAsArrayType(T))
2469    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2470
2471  if (const PointerType *PT = T->getAs<PointerType>()) {
2472    // Find the innermost pointer type.
2473    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2474      PT = T;
2475
2476    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2477      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2478  }
2479
2480  const RecordType *RT = T->getAs<RecordType>();
2481  if (!RT)
2482    return false;
2483
2484  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2485
2486  // We can't answer whether something is abstract until it has a
2487  // definition.  If it's currently being defined, we'll walk back
2488  // over all the declarations when we have a full definition.
2489  const CXXRecordDecl *Def = RD->getDefinition();
2490  if (!Def || Def->isBeingDefined())
2491    return false;
2492
2493  if (!RD->isAbstract())
2494    return false;
2495
2496  Diag(Loc, PD) << RD->getDeclName();
2497  DiagnoseAbstractType(RD);
2498
2499  return true;
2500}
2501
2502void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2503  // Check if we've already emitted the list of pure virtual functions
2504  // for this class.
2505  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2506    return;
2507
2508  CXXFinalOverriderMap FinalOverriders;
2509  RD->getFinalOverriders(FinalOverriders);
2510
2511  // Keep a set of seen pure methods so we won't diagnose the same method
2512  // more than once.
2513  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2514
2515  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2516                                   MEnd = FinalOverriders.end();
2517       M != MEnd;
2518       ++M) {
2519    for (OverridingMethods::iterator SO = M->second.begin(),
2520                                  SOEnd = M->second.end();
2521         SO != SOEnd; ++SO) {
2522      // C++ [class.abstract]p4:
2523      //   A class is abstract if it contains or inherits at least one
2524      //   pure virtual function for which the final overrider is pure
2525      //   virtual.
2526
2527      //
2528      if (SO->second.size() != 1)
2529        continue;
2530
2531      if (!SO->second.front().Method->isPure())
2532        continue;
2533
2534      if (!SeenPureMethods.insert(SO->second.front().Method))
2535        continue;
2536
2537      Diag(SO->second.front().Method->getLocation(),
2538           diag::note_pure_virtual_function)
2539        << SO->second.front().Method->getDeclName() << RD->getDeclName();
2540    }
2541  }
2542
2543  if (!PureVirtualClassDiagSet)
2544    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2545  PureVirtualClassDiagSet->insert(RD);
2546}
2547
2548namespace {
2549struct AbstractUsageInfo {
2550  Sema &S;
2551  CXXRecordDecl *Record;
2552  CanQualType AbstractType;
2553  bool Invalid;
2554
2555  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2556    : S(S), Record(Record),
2557      AbstractType(S.Context.getCanonicalType(
2558                   S.Context.getTypeDeclType(Record))),
2559      Invalid(false) {}
2560
2561  void DiagnoseAbstractType() {
2562    if (Invalid) return;
2563    S.DiagnoseAbstractType(Record);
2564    Invalid = true;
2565  }
2566
2567  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2568};
2569
2570struct CheckAbstractUsage {
2571  AbstractUsageInfo &Info;
2572  const NamedDecl *Ctx;
2573
2574  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2575    : Info(Info), Ctx(Ctx) {}
2576
2577  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2578    switch (TL.getTypeLocClass()) {
2579#define ABSTRACT_TYPELOC(CLASS, PARENT)
2580#define TYPELOC(CLASS, PARENT) \
2581    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2582#include "clang/AST/TypeLocNodes.def"
2583    }
2584  }
2585
2586  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2587    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2588    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2589      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2590      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2591    }
2592  }
2593
2594  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2595    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2596  }
2597
2598  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2599    // Visit the type parameters from a permissive context.
2600    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2601      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2602      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2603        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2604          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2605      // TODO: other template argument types?
2606    }
2607  }
2608
2609  // Visit pointee types from a permissive context.
2610#define CheckPolymorphic(Type) \
2611  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2612    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2613  }
2614  CheckPolymorphic(PointerTypeLoc)
2615  CheckPolymorphic(ReferenceTypeLoc)
2616  CheckPolymorphic(MemberPointerTypeLoc)
2617  CheckPolymorphic(BlockPointerTypeLoc)
2618
2619  /// Handle all the types we haven't given a more specific
2620  /// implementation for above.
2621  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2622    // Every other kind of type that we haven't called out already
2623    // that has an inner type is either (1) sugar or (2) contains that
2624    // inner type in some way as a subobject.
2625    if (TypeLoc Next = TL.getNextTypeLoc())
2626      return Visit(Next, Sel);
2627
2628    // If there's no inner type and we're in a permissive context,
2629    // don't diagnose.
2630    if (Sel == Sema::AbstractNone) return;
2631
2632    // Check whether the type matches the abstract type.
2633    QualType T = TL.getType();
2634    if (T->isArrayType()) {
2635      Sel = Sema::AbstractArrayType;
2636      T = Info.S.Context.getBaseElementType(T);
2637    }
2638    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2639    if (CT != Info.AbstractType) return;
2640
2641    // It matched; do some magic.
2642    if (Sel == Sema::AbstractArrayType) {
2643      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2644        << T << TL.getSourceRange();
2645    } else {
2646      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2647        << Sel << T << TL.getSourceRange();
2648    }
2649    Info.DiagnoseAbstractType();
2650  }
2651};
2652
2653void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2654                                  Sema::AbstractDiagSelID Sel) {
2655  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2656}
2657
2658}
2659
2660/// Check for invalid uses of an abstract type in a method declaration.
2661static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2662                                    CXXMethodDecl *MD) {
2663  // No need to do the check on definitions, which require that
2664  // the return/param types be complete.
2665  if (MD->isThisDeclarationADefinition())
2666    return;
2667
2668  // For safety's sake, just ignore it if we don't have type source
2669  // information.  This should never happen for non-implicit methods,
2670  // but...
2671  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2672    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2673}
2674
2675/// Check for invalid uses of an abstract type within a class definition.
2676static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2677                                    CXXRecordDecl *RD) {
2678  for (CXXRecordDecl::decl_iterator
2679         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2680    Decl *D = *I;
2681    if (D->isImplicit()) continue;
2682
2683    // Methods and method templates.
2684    if (isa<CXXMethodDecl>(D)) {
2685      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2686    } else if (isa<FunctionTemplateDecl>(D)) {
2687      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2688      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2689
2690    // Fields and static variables.
2691    } else if (isa<FieldDecl>(D)) {
2692      FieldDecl *FD = cast<FieldDecl>(D);
2693      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2694        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2695    } else if (isa<VarDecl>(D)) {
2696      VarDecl *VD = cast<VarDecl>(D);
2697      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2698        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2699
2700    // Nested classes and class templates.
2701    } else if (isa<CXXRecordDecl>(D)) {
2702      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2703    } else if (isa<ClassTemplateDecl>(D)) {
2704      CheckAbstractClassUsage(Info,
2705                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2706    }
2707  }
2708}
2709
2710/// \brief Perform semantic checks on a class definition that has been
2711/// completing, introducing implicitly-declared members, checking for
2712/// abstract types, etc.
2713void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2714  if (!Record)
2715    return;
2716
2717  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2718    AbstractUsageInfo Info(*this, Record);
2719    CheckAbstractClassUsage(Info, Record);
2720  }
2721
2722  // If this is not an aggregate type and has no user-declared constructor,
2723  // complain about any non-static data members of reference or const scalar
2724  // type, since they will never get initializers.
2725  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2726      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2727    bool Complained = false;
2728    for (RecordDecl::field_iterator F = Record->field_begin(),
2729                                 FEnd = Record->field_end();
2730         F != FEnd; ++F) {
2731      if (F->getType()->isReferenceType() ||
2732          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2733        if (!Complained) {
2734          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2735            << Record->getTagKind() << Record;
2736          Complained = true;
2737        }
2738
2739        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2740          << F->getType()->isReferenceType()
2741          << F->getDeclName();
2742      }
2743    }
2744  }
2745
2746  if (Record->isDynamicClass() && !Record->isDependentType())
2747    DynamicClasses.push_back(Record);
2748
2749  if (Record->getIdentifier()) {
2750    // C++ [class.mem]p13:
2751    //   If T is the name of a class, then each of the following shall have a
2752    //   name different from T:
2753    //     - every member of every anonymous union that is a member of class T.
2754    //
2755    // C++ [class.mem]p14:
2756    //   In addition, if class T has a user-declared constructor (12.1), every
2757    //   non-static data member of class T shall have a name different from T.
2758    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2759         R.first != R.second; ++R.first) {
2760      NamedDecl *D = *R.first;
2761      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2762          isa<IndirectFieldDecl>(D)) {
2763        Diag(D->getLocation(), diag::err_member_name_of_class)
2764          << D->getDeclName();
2765        break;
2766      }
2767    }
2768  }
2769
2770  // Warn if the class has virtual methods but non-virtual public destructor.
2771  if (Record->isPolymorphic() && !Record->isDependentType()) {
2772    CXXDestructorDecl *dtor = Record->getDestructor();
2773    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2774      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2775           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2776  }
2777
2778  // See if a method overloads virtual methods in a base
2779  /// class without overriding any.
2780  if (!Record->isDependentType()) {
2781    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2782                                     MEnd = Record->method_end();
2783         M != MEnd; ++M) {
2784      DiagnoseHiddenVirtualMethods(Record, *M);
2785    }
2786  }
2787
2788  // Declare inherited constructors. We do this eagerly here because:
2789  // - The standard requires an eager diagnostic for conflicting inherited
2790  //   constructors from different classes.
2791  // - The lazy declaration of the other implicit constructors is so as to not
2792  //   waste space and performance on classes that are not meant to be
2793  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2794  //   have inherited constructors.
2795  DeclareInheritedConstructors(Record);
2796}
2797
2798/// \brief Data used with FindHiddenVirtualMethod
2799struct FindHiddenVirtualMethodData {
2800  Sema *S;
2801  CXXMethodDecl *Method;
2802  llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2803  llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2804};
2805
2806/// \brief Member lookup function that determines whether a given C++
2807/// method overloads virtual methods in a base class without overriding any,
2808/// to be used with CXXRecordDecl::lookupInBases().
2809static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2810                                    CXXBasePath &Path,
2811                                    void *UserData) {
2812  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2813
2814  FindHiddenVirtualMethodData &Data
2815    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2816
2817  DeclarationName Name = Data.Method->getDeclName();
2818  assert(Name.getNameKind() == DeclarationName::Identifier);
2819
2820  bool foundSameNameMethod = false;
2821  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2822  for (Path.Decls = BaseRecord->lookup(Name);
2823       Path.Decls.first != Path.Decls.second;
2824       ++Path.Decls.first) {
2825    NamedDecl *D = *Path.Decls.first;
2826    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2827      MD = MD->getCanonicalDecl();
2828      foundSameNameMethod = true;
2829      // Interested only in hidden virtual methods.
2830      if (!MD->isVirtual())
2831        continue;
2832      // If the method we are checking overrides a method from its base
2833      // don't warn about the other overloaded methods.
2834      if (!Data.S->IsOverload(Data.Method, MD, false))
2835        return true;
2836      // Collect the overload only if its hidden.
2837      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2838        overloadedMethods.push_back(MD);
2839    }
2840  }
2841
2842  if (foundSameNameMethod)
2843    Data.OverloadedMethods.append(overloadedMethods.begin(),
2844                                   overloadedMethods.end());
2845  return foundSameNameMethod;
2846}
2847
2848/// \brief See if a method overloads virtual methods in a base class without
2849/// overriding any.
2850void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2851  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2852                               MD->getLocation()) == Diagnostic::Ignored)
2853    return;
2854  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2855    return;
2856
2857  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2858                     /*bool RecordPaths=*/false,
2859                     /*bool DetectVirtual=*/false);
2860  FindHiddenVirtualMethodData Data;
2861  Data.Method = MD;
2862  Data.S = this;
2863
2864  // Keep the base methods that were overriden or introduced in the subclass
2865  // by 'using' in a set. A base method not in this set is hidden.
2866  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2867       res.first != res.second; ++res.first) {
2868    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2869      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2870                                          E = MD->end_overridden_methods();
2871           I != E; ++I)
2872        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2873    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2874      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2875        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2876  }
2877
2878  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2879      !Data.OverloadedMethods.empty()) {
2880    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2881      << MD << (Data.OverloadedMethods.size() > 1);
2882
2883    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2884      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2885      Diag(overloadedMD->getLocation(),
2886           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2887    }
2888  }
2889}
2890
2891void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2892                                             Decl *TagDecl,
2893                                             SourceLocation LBrac,
2894                                             SourceLocation RBrac,
2895                                             AttributeList *AttrList) {
2896  if (!TagDecl)
2897    return;
2898
2899  AdjustDeclIfTemplate(TagDecl);
2900
2901  ActOnFields(S, RLoc, TagDecl,
2902              // strict aliasing violation!
2903              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2904              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2905
2906  CheckCompletedCXXClass(
2907                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2908}
2909
2910namespace {
2911  /// \brief Helper class that collects exception specifications for
2912  /// implicitly-declared special member functions.
2913  class ImplicitExceptionSpecification {
2914    ASTContext &Context;
2915    bool AllowsAllExceptions;
2916    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2917    llvm::SmallVector<QualType, 4> Exceptions;
2918
2919  public:
2920    explicit ImplicitExceptionSpecification(ASTContext &Context)
2921      : Context(Context), AllowsAllExceptions(false) { }
2922
2923    /// \brief Whether the special member function should have any
2924    /// exception specification at all.
2925    bool hasExceptionSpecification() const {
2926      return !AllowsAllExceptions;
2927    }
2928
2929    /// \brief Whether the special member function should have a
2930    /// throw(...) exception specification (a Microsoft extension).
2931    bool hasAnyExceptionSpecification() const {
2932      return false;
2933    }
2934
2935    /// \brief The number of exceptions in the exception specification.
2936    unsigned size() const { return Exceptions.size(); }
2937
2938    /// \brief The set of exceptions in the exception specification.
2939    const QualType *data() const { return Exceptions.data(); }
2940
2941    /// \brief Note that
2942    void CalledDecl(CXXMethodDecl *Method) {
2943      // If we already know that we allow all exceptions, do nothing.
2944      if (AllowsAllExceptions || !Method)
2945        return;
2946
2947      const FunctionProtoType *Proto
2948        = Method->getType()->getAs<FunctionProtoType>();
2949
2950      // If this function can throw any exceptions, make a note of that.
2951      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2952        AllowsAllExceptions = true;
2953        ExceptionsSeen.clear();
2954        Exceptions.clear();
2955        return;
2956      }
2957
2958      // Record the exceptions in this function's exception specification.
2959      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2960                                              EEnd = Proto->exception_end();
2961           E != EEnd; ++E)
2962        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2963          Exceptions.push_back(*E);
2964    }
2965  };
2966}
2967
2968
2969/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2970/// special functions, such as the default constructor, copy
2971/// constructor, or destructor, to the given C++ class (C++
2972/// [special]p1).  This routine can only be executed just before the
2973/// definition of the class is complete.
2974void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2975  if (!ClassDecl->hasUserDeclaredConstructor())
2976    ++ASTContext::NumImplicitDefaultConstructors;
2977
2978  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2979    ++ASTContext::NumImplicitCopyConstructors;
2980
2981  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2982    ++ASTContext::NumImplicitCopyAssignmentOperators;
2983
2984    // If we have a dynamic class, then the copy assignment operator may be
2985    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2986    // it shows up in the right place in the vtable and that we diagnose
2987    // problems with the implicit exception specification.
2988    if (ClassDecl->isDynamicClass())
2989      DeclareImplicitCopyAssignment(ClassDecl);
2990  }
2991
2992  if (!ClassDecl->hasUserDeclaredDestructor()) {
2993    ++ASTContext::NumImplicitDestructors;
2994
2995    // If we have a dynamic class, then the destructor may be virtual, so we
2996    // have to declare the destructor immediately. This ensures that, e.g., it
2997    // shows up in the right place in the vtable and that we diagnose problems
2998    // with the implicit exception specification.
2999    if (ClassDecl->isDynamicClass())
3000      DeclareImplicitDestructor(ClassDecl);
3001  }
3002}
3003
3004void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3005  if (!D)
3006    return;
3007
3008  TemplateParameterList *Params = 0;
3009  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3010    Params = Template->getTemplateParameters();
3011  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3012           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3013    Params = PartialSpec->getTemplateParameters();
3014  else
3015    return;
3016
3017  for (TemplateParameterList::iterator Param = Params->begin(),
3018                                    ParamEnd = Params->end();
3019       Param != ParamEnd; ++Param) {
3020    NamedDecl *Named = cast<NamedDecl>(*Param);
3021    if (Named->getDeclName()) {
3022      S->AddDecl(Named);
3023      IdResolver.AddDecl(Named);
3024    }
3025  }
3026}
3027
3028void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3029  if (!RecordD) return;
3030  AdjustDeclIfTemplate(RecordD);
3031  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3032  PushDeclContext(S, Record);
3033}
3034
3035void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3036  if (!RecordD) return;
3037  PopDeclContext();
3038}
3039
3040/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3041/// parsing a top-level (non-nested) C++ class, and we are now
3042/// parsing those parts of the given Method declaration that could
3043/// not be parsed earlier (C++ [class.mem]p2), such as default
3044/// arguments. This action should enter the scope of the given
3045/// Method declaration as if we had just parsed the qualified method
3046/// name. However, it should not bring the parameters into scope;
3047/// that will be performed by ActOnDelayedCXXMethodParameter.
3048void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3049}
3050
3051/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3052/// C++ method declaration. We're (re-)introducing the given
3053/// function parameter into scope for use in parsing later parts of
3054/// the method declaration. For example, we could see an
3055/// ActOnParamDefaultArgument event for this parameter.
3056void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3057  if (!ParamD)
3058    return;
3059
3060  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3061
3062  // If this parameter has an unparsed default argument, clear it out
3063  // to make way for the parsed default argument.
3064  if (Param->hasUnparsedDefaultArg())
3065    Param->setDefaultArg(0);
3066
3067  S->AddDecl(Param);
3068  if (Param->getDeclName())
3069    IdResolver.AddDecl(Param);
3070}
3071
3072/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3073/// processing the delayed method declaration for Method. The method
3074/// declaration is now considered finished. There may be a separate
3075/// ActOnStartOfFunctionDef action later (not necessarily
3076/// immediately!) for this method, if it was also defined inside the
3077/// class body.
3078void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3079  if (!MethodD)
3080    return;
3081
3082  AdjustDeclIfTemplate(MethodD);
3083
3084  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3085
3086  // Now that we have our default arguments, check the constructor
3087  // again. It could produce additional diagnostics or affect whether
3088  // the class has implicitly-declared destructors, among other
3089  // things.
3090  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3091    CheckConstructor(Constructor);
3092
3093  // Check the default arguments, which we may have added.
3094  if (!Method->isInvalidDecl())
3095    CheckCXXDefaultArguments(Method);
3096}
3097
3098/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3099/// the well-formedness of the constructor declarator @p D with type @p
3100/// R. If there are any errors in the declarator, this routine will
3101/// emit diagnostics and set the invalid bit to true.  In any case, the type
3102/// will be updated to reflect a well-formed type for the constructor and
3103/// returned.
3104QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3105                                          StorageClass &SC) {
3106  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3107
3108  // C++ [class.ctor]p3:
3109  //   A constructor shall not be virtual (10.3) or static (9.4). A
3110  //   constructor can be invoked for a const, volatile or const
3111  //   volatile object. A constructor shall not be declared const,
3112  //   volatile, or const volatile (9.3.2).
3113  if (isVirtual) {
3114    if (!D.isInvalidType())
3115      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3116        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3117        << SourceRange(D.getIdentifierLoc());
3118    D.setInvalidType();
3119  }
3120  if (SC == SC_Static) {
3121    if (!D.isInvalidType())
3122      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3123        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3124        << SourceRange(D.getIdentifierLoc());
3125    D.setInvalidType();
3126    SC = SC_None;
3127  }
3128
3129  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3130  if (FTI.TypeQuals != 0) {
3131    if (FTI.TypeQuals & Qualifiers::Const)
3132      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3133        << "const" << SourceRange(D.getIdentifierLoc());
3134    if (FTI.TypeQuals & Qualifiers::Volatile)
3135      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3136        << "volatile" << SourceRange(D.getIdentifierLoc());
3137    if (FTI.TypeQuals & Qualifiers::Restrict)
3138      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3139        << "restrict" << SourceRange(D.getIdentifierLoc());
3140    D.setInvalidType();
3141  }
3142
3143  // C++0x [class.ctor]p4:
3144  //   A constructor shall not be declared with a ref-qualifier.
3145  if (FTI.hasRefQualifier()) {
3146    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3147      << FTI.RefQualifierIsLValueRef
3148      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3149    D.setInvalidType();
3150  }
3151
3152  // Rebuild the function type "R" without any type qualifiers (in
3153  // case any of the errors above fired) and with "void" as the
3154  // return type, since constructors don't have return types.
3155  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3156  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3157    return R;
3158
3159  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3160  EPI.TypeQuals = 0;
3161  EPI.RefQualifier = RQ_None;
3162
3163  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3164                                 Proto->getNumArgs(), EPI);
3165}
3166
3167/// CheckConstructor - Checks a fully-formed constructor for
3168/// well-formedness, issuing any diagnostics required. Returns true if
3169/// the constructor declarator is invalid.
3170void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3171  CXXRecordDecl *ClassDecl
3172    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3173  if (!ClassDecl)
3174    return Constructor->setInvalidDecl();
3175
3176  // C++ [class.copy]p3:
3177  //   A declaration of a constructor for a class X is ill-formed if
3178  //   its first parameter is of type (optionally cv-qualified) X and
3179  //   either there are no other parameters or else all other
3180  //   parameters have default arguments.
3181  if (!Constructor->isInvalidDecl() &&
3182      ((Constructor->getNumParams() == 1) ||
3183       (Constructor->getNumParams() > 1 &&
3184        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3185      Constructor->getTemplateSpecializationKind()
3186                                              != TSK_ImplicitInstantiation) {
3187    QualType ParamType = Constructor->getParamDecl(0)->getType();
3188    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3189    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3190      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3191      const char *ConstRef
3192        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3193                                                        : " const &";
3194      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3195        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3196
3197      // FIXME: Rather that making the constructor invalid, we should endeavor
3198      // to fix the type.
3199      Constructor->setInvalidDecl();
3200    }
3201  }
3202}
3203
3204/// CheckDestructor - Checks a fully-formed destructor definition for
3205/// well-formedness, issuing any diagnostics required.  Returns true
3206/// on error.
3207bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3208  CXXRecordDecl *RD = Destructor->getParent();
3209
3210  if (Destructor->isVirtual()) {
3211    SourceLocation Loc;
3212
3213    if (!Destructor->isImplicit())
3214      Loc = Destructor->getLocation();
3215    else
3216      Loc = RD->getLocation();
3217
3218    // If we have a virtual destructor, look up the deallocation function
3219    FunctionDecl *OperatorDelete = 0;
3220    DeclarationName Name =
3221    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3222    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3223      return true;
3224
3225    MarkDeclarationReferenced(Loc, OperatorDelete);
3226
3227    Destructor->setOperatorDelete(OperatorDelete);
3228  }
3229
3230  return false;
3231}
3232
3233static inline bool
3234FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3235  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3236          FTI.ArgInfo[0].Param &&
3237          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3238}
3239
3240/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3241/// the well-formednes of the destructor declarator @p D with type @p
3242/// R. If there are any errors in the declarator, this routine will
3243/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3244/// will be updated to reflect a well-formed type for the destructor and
3245/// returned.
3246QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3247                                         StorageClass& SC) {
3248  // C++ [class.dtor]p1:
3249  //   [...] A typedef-name that names a class is a class-name
3250  //   (7.1.3); however, a typedef-name that names a class shall not
3251  //   be used as the identifier in the declarator for a destructor
3252  //   declaration.
3253  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3254  if (isa<TypedefType>(DeclaratorType))
3255    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3256      << DeclaratorType;
3257
3258  // C++ [class.dtor]p2:
3259  //   A destructor is used to destroy objects of its class type. A
3260  //   destructor takes no parameters, and no return type can be
3261  //   specified for it (not even void). The address of a destructor
3262  //   shall not be taken. A destructor shall not be static. A
3263  //   destructor can be invoked for a const, volatile or const
3264  //   volatile object. A destructor shall not be declared const,
3265  //   volatile or const volatile (9.3.2).
3266  if (SC == SC_Static) {
3267    if (!D.isInvalidType())
3268      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3269        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3270        << SourceRange(D.getIdentifierLoc())
3271        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3272
3273    SC = SC_None;
3274  }
3275  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3276    // Destructors don't have return types, but the parser will
3277    // happily parse something like:
3278    //
3279    //   class X {
3280    //     float ~X();
3281    //   };
3282    //
3283    // The return type will be eliminated later.
3284    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3285      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3286      << SourceRange(D.getIdentifierLoc());
3287  }
3288
3289  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3290  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3291    if (FTI.TypeQuals & Qualifiers::Const)
3292      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3293        << "const" << SourceRange(D.getIdentifierLoc());
3294    if (FTI.TypeQuals & Qualifiers::Volatile)
3295      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3296        << "volatile" << SourceRange(D.getIdentifierLoc());
3297    if (FTI.TypeQuals & Qualifiers::Restrict)
3298      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3299        << "restrict" << SourceRange(D.getIdentifierLoc());
3300    D.setInvalidType();
3301  }
3302
3303  // C++0x [class.dtor]p2:
3304  //   A destructor shall not be declared with a ref-qualifier.
3305  if (FTI.hasRefQualifier()) {
3306    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3307      << FTI.RefQualifierIsLValueRef
3308      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3309    D.setInvalidType();
3310  }
3311
3312  // Make sure we don't have any parameters.
3313  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3314    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3315
3316    // Delete the parameters.
3317    FTI.freeArgs();
3318    D.setInvalidType();
3319  }
3320
3321  // Make sure the destructor isn't variadic.
3322  if (FTI.isVariadic) {
3323    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3324    D.setInvalidType();
3325  }
3326
3327  // Rebuild the function type "R" without any type qualifiers or
3328  // parameters (in case any of the errors above fired) and with
3329  // "void" as the return type, since destructors don't have return
3330  // types.
3331  if (!D.isInvalidType())
3332    return R;
3333
3334  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3335  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3336  EPI.Variadic = false;
3337  EPI.TypeQuals = 0;
3338  EPI.RefQualifier = RQ_None;
3339  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3340}
3341
3342/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3343/// well-formednes of the conversion function declarator @p D with
3344/// type @p R. If there are any errors in the declarator, this routine
3345/// will emit diagnostics and return true. Otherwise, it will return
3346/// false. Either way, the type @p R will be updated to reflect a
3347/// well-formed type for the conversion operator.
3348void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3349                                     StorageClass& SC) {
3350  // C++ [class.conv.fct]p1:
3351  //   Neither parameter types nor return type can be specified. The
3352  //   type of a conversion function (8.3.5) is "function taking no
3353  //   parameter returning conversion-type-id."
3354  if (SC == SC_Static) {
3355    if (!D.isInvalidType())
3356      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3357        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3358        << SourceRange(D.getIdentifierLoc());
3359    D.setInvalidType();
3360    SC = SC_None;
3361  }
3362
3363  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3364
3365  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3366    // Conversion functions don't have return types, but the parser will
3367    // happily parse something like:
3368    //
3369    //   class X {
3370    //     float operator bool();
3371    //   };
3372    //
3373    // The return type will be changed later anyway.
3374    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3375      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3376      << SourceRange(D.getIdentifierLoc());
3377    D.setInvalidType();
3378  }
3379
3380  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3381
3382  // Make sure we don't have any parameters.
3383  if (Proto->getNumArgs() > 0) {
3384    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3385
3386    // Delete the parameters.
3387    D.getFunctionTypeInfo().freeArgs();
3388    D.setInvalidType();
3389  } else if (Proto->isVariadic()) {
3390    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3391    D.setInvalidType();
3392  }
3393
3394  // Diagnose "&operator bool()" and other such nonsense.  This
3395  // is actually a gcc extension which we don't support.
3396  if (Proto->getResultType() != ConvType) {
3397    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3398      << Proto->getResultType();
3399    D.setInvalidType();
3400    ConvType = Proto->getResultType();
3401  }
3402
3403  // C++ [class.conv.fct]p4:
3404  //   The conversion-type-id shall not represent a function type nor
3405  //   an array type.
3406  if (ConvType->isArrayType()) {
3407    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3408    ConvType = Context.getPointerType(ConvType);
3409    D.setInvalidType();
3410  } else if (ConvType->isFunctionType()) {
3411    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3412    ConvType = Context.getPointerType(ConvType);
3413    D.setInvalidType();
3414  }
3415
3416  // Rebuild the function type "R" without any parameters (in case any
3417  // of the errors above fired) and with the conversion type as the
3418  // return type.
3419  if (D.isInvalidType())
3420    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3421
3422  // C++0x explicit conversion operators.
3423  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3424    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3425         diag::warn_explicit_conversion_functions)
3426      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3427}
3428
3429/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3430/// the declaration of the given C++ conversion function. This routine
3431/// is responsible for recording the conversion function in the C++
3432/// class, if possible.
3433Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3434  assert(Conversion && "Expected to receive a conversion function declaration");
3435
3436  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3437
3438  // Make sure we aren't redeclaring the conversion function.
3439  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3440
3441  // C++ [class.conv.fct]p1:
3442  //   [...] A conversion function is never used to convert a
3443  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3444  //   same object type (or a reference to it), to a (possibly
3445  //   cv-qualified) base class of that type (or a reference to it),
3446  //   or to (possibly cv-qualified) void.
3447  // FIXME: Suppress this warning if the conversion function ends up being a
3448  // virtual function that overrides a virtual function in a base class.
3449  QualType ClassType
3450    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3451  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3452    ConvType = ConvTypeRef->getPointeeType();
3453  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3454      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3455    /* Suppress diagnostics for instantiations. */;
3456  else if (ConvType->isRecordType()) {
3457    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3458    if (ConvType == ClassType)
3459      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3460        << ClassType;
3461    else if (IsDerivedFrom(ClassType, ConvType))
3462      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3463        <<  ClassType << ConvType;
3464  } else if (ConvType->isVoidType()) {
3465    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3466      << ClassType << ConvType;
3467  }
3468
3469  if (FunctionTemplateDecl *ConversionTemplate
3470                                = Conversion->getDescribedFunctionTemplate())
3471    return ConversionTemplate;
3472
3473  return Conversion;
3474}
3475
3476//===----------------------------------------------------------------------===//
3477// Namespace Handling
3478//===----------------------------------------------------------------------===//
3479
3480
3481
3482/// ActOnStartNamespaceDef - This is called at the start of a namespace
3483/// definition.
3484Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3485                                   SourceLocation InlineLoc,
3486                                   SourceLocation IdentLoc,
3487                                   IdentifierInfo *II,
3488                                   SourceLocation LBrace,
3489                                   AttributeList *AttrList) {
3490  // anonymous namespace starts at its left brace
3491  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3492    (II ? IdentLoc : LBrace) , II);
3493  Namespc->setLBracLoc(LBrace);
3494  Namespc->setInline(InlineLoc.isValid());
3495
3496  Scope *DeclRegionScope = NamespcScope->getParent();
3497
3498  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3499
3500  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3501    PushNamespaceVisibilityAttr(Attr);
3502
3503  if (II) {
3504    // C++ [namespace.def]p2:
3505    //   The identifier in an original-namespace-definition shall not
3506    //   have been previously defined in the declarative region in
3507    //   which the original-namespace-definition appears. The
3508    //   identifier in an original-namespace-definition is the name of
3509    //   the namespace. Subsequently in that declarative region, it is
3510    //   treated as an original-namespace-name.
3511    //
3512    // Since namespace names are unique in their scope, and we don't
3513    // look through using directives, just
3514    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3515    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3516
3517    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3518      // This is an extended namespace definition.
3519      if (Namespc->isInline() != OrigNS->isInline()) {
3520        // inline-ness must match
3521        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3522          << Namespc->isInline();
3523        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3524        Namespc->setInvalidDecl();
3525        // Recover by ignoring the new namespace's inline status.
3526        Namespc->setInline(OrigNS->isInline());
3527      }
3528
3529      // Attach this namespace decl to the chain of extended namespace
3530      // definitions.
3531      OrigNS->setNextNamespace(Namespc);
3532      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3533
3534      // Remove the previous declaration from the scope.
3535      if (DeclRegionScope->isDeclScope(OrigNS)) {
3536        IdResolver.RemoveDecl(OrigNS);
3537        DeclRegionScope->RemoveDecl(OrigNS);
3538      }
3539    } else if (PrevDecl) {
3540      // This is an invalid name redefinition.
3541      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3542       << Namespc->getDeclName();
3543      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3544      Namespc->setInvalidDecl();
3545      // Continue on to push Namespc as current DeclContext and return it.
3546    } else if (II->isStr("std") &&
3547               CurContext->getRedeclContext()->isTranslationUnit()) {
3548      // This is the first "real" definition of the namespace "std", so update
3549      // our cache of the "std" namespace to point at this definition.
3550      if (NamespaceDecl *StdNS = getStdNamespace()) {
3551        // We had already defined a dummy namespace "std". Link this new
3552        // namespace definition to the dummy namespace "std".
3553        StdNS->setNextNamespace(Namespc);
3554        StdNS->setLocation(IdentLoc);
3555        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3556      }
3557
3558      // Make our StdNamespace cache point at the first real definition of the
3559      // "std" namespace.
3560      StdNamespace = Namespc;
3561    }
3562
3563    PushOnScopeChains(Namespc, DeclRegionScope);
3564  } else {
3565    // Anonymous namespaces.
3566    assert(Namespc->isAnonymousNamespace());
3567
3568    // Link the anonymous namespace into its parent.
3569    NamespaceDecl *PrevDecl;
3570    DeclContext *Parent = CurContext->getRedeclContext();
3571    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3572      PrevDecl = TU->getAnonymousNamespace();
3573      TU->setAnonymousNamespace(Namespc);
3574    } else {
3575      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3576      PrevDecl = ND->getAnonymousNamespace();
3577      ND->setAnonymousNamespace(Namespc);
3578    }
3579
3580    // Link the anonymous namespace with its previous declaration.
3581    if (PrevDecl) {
3582      assert(PrevDecl->isAnonymousNamespace());
3583      assert(!PrevDecl->getNextNamespace());
3584      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3585      PrevDecl->setNextNamespace(Namespc);
3586
3587      if (Namespc->isInline() != PrevDecl->isInline()) {
3588        // inline-ness must match
3589        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3590          << Namespc->isInline();
3591        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3592        Namespc->setInvalidDecl();
3593        // Recover by ignoring the new namespace's inline status.
3594        Namespc->setInline(PrevDecl->isInline());
3595      }
3596    }
3597
3598    CurContext->addDecl(Namespc);
3599
3600    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3601    //   behaves as if it were replaced by
3602    //     namespace unique { /* empty body */ }
3603    //     using namespace unique;
3604    //     namespace unique { namespace-body }
3605    //   where all occurrences of 'unique' in a translation unit are
3606    //   replaced by the same identifier and this identifier differs
3607    //   from all other identifiers in the entire program.
3608
3609    // We just create the namespace with an empty name and then add an
3610    // implicit using declaration, just like the standard suggests.
3611    //
3612    // CodeGen enforces the "universally unique" aspect by giving all
3613    // declarations semantically contained within an anonymous
3614    // namespace internal linkage.
3615
3616    if (!PrevDecl) {
3617      UsingDirectiveDecl* UD
3618        = UsingDirectiveDecl::Create(Context, CurContext,
3619                                     /* 'using' */ LBrace,
3620                                     /* 'namespace' */ SourceLocation(),
3621                                     /* qualifier */ SourceRange(),
3622                                     /* NNS */ NULL,
3623                                     /* identifier */ SourceLocation(),
3624                                     Namespc,
3625                                     /* Ancestor */ CurContext);
3626      UD->setImplicit();
3627      CurContext->addDecl(UD);
3628    }
3629  }
3630
3631  // Although we could have an invalid decl (i.e. the namespace name is a
3632  // redefinition), push it as current DeclContext and try to continue parsing.
3633  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3634  // for the namespace has the declarations that showed up in that particular
3635  // namespace definition.
3636  PushDeclContext(NamespcScope, Namespc);
3637  return Namespc;
3638}
3639
3640/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3641/// is a namespace alias, returns the namespace it points to.
3642static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3643  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3644    return AD->getNamespace();
3645  return dyn_cast_or_null<NamespaceDecl>(D);
3646}
3647
3648/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3649/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3650void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3651  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3652  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3653  Namespc->setRBracLoc(RBrace);
3654  PopDeclContext();
3655  if (Namespc->hasAttr<VisibilityAttr>())
3656    PopPragmaVisibility();
3657}
3658
3659CXXRecordDecl *Sema::getStdBadAlloc() const {
3660  return cast_or_null<CXXRecordDecl>(
3661                                  StdBadAlloc.get(Context.getExternalSource()));
3662}
3663
3664NamespaceDecl *Sema::getStdNamespace() const {
3665  return cast_or_null<NamespaceDecl>(
3666                                 StdNamespace.get(Context.getExternalSource()));
3667}
3668
3669/// \brief Retrieve the special "std" namespace, which may require us to
3670/// implicitly define the namespace.
3671NamespaceDecl *Sema::getOrCreateStdNamespace() {
3672  if (!StdNamespace) {
3673    // The "std" namespace has not yet been defined, so build one implicitly.
3674    StdNamespace = NamespaceDecl::Create(Context,
3675                                         Context.getTranslationUnitDecl(),
3676                                         SourceLocation(),
3677                                         &PP.getIdentifierTable().get("std"));
3678    getStdNamespace()->setImplicit(true);
3679  }
3680
3681  return getStdNamespace();
3682}
3683
3684Decl *Sema::ActOnUsingDirective(Scope *S,
3685                                          SourceLocation UsingLoc,
3686                                          SourceLocation NamespcLoc,
3687                                          CXXScopeSpec &SS,
3688                                          SourceLocation IdentLoc,
3689                                          IdentifierInfo *NamespcName,
3690                                          AttributeList *AttrList) {
3691  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3692  assert(NamespcName && "Invalid NamespcName.");
3693  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3694
3695  // This can only happen along a recovery path.
3696  while (S->getFlags() & Scope::TemplateParamScope)
3697    S = S->getParent();
3698  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3699
3700  UsingDirectiveDecl *UDir = 0;
3701  NestedNameSpecifier *Qualifier = 0;
3702  if (SS.isSet())
3703    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3704
3705  // Lookup namespace name.
3706  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3707  LookupParsedName(R, S, &SS);
3708  if (R.isAmbiguous())
3709    return 0;
3710
3711  if (R.empty()) {
3712    // Allow "using namespace std;" or "using namespace ::std;" even if
3713    // "std" hasn't been defined yet, for GCC compatibility.
3714    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3715        NamespcName->isStr("std")) {
3716      Diag(IdentLoc, diag::ext_using_undefined_std);
3717      R.addDecl(getOrCreateStdNamespace());
3718      R.resolveKind();
3719    }
3720    // Otherwise, attempt typo correction.
3721    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3722                                                       CTC_NoKeywords, 0)) {
3723      if (R.getAsSingle<NamespaceDecl>() ||
3724          R.getAsSingle<NamespaceAliasDecl>()) {
3725        if (DeclContext *DC = computeDeclContext(SS, false))
3726          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3727            << NamespcName << DC << Corrected << SS.getRange()
3728            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3729        else
3730          Diag(IdentLoc, diag::err_using_directive_suggest)
3731            << NamespcName << Corrected
3732            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3733        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3734          << Corrected;
3735
3736        NamespcName = Corrected.getAsIdentifierInfo();
3737      } else {
3738        R.clear();
3739        R.setLookupName(NamespcName);
3740      }
3741    }
3742  }
3743
3744  if (!R.empty()) {
3745    NamedDecl *Named = R.getFoundDecl();
3746    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3747        && "expected namespace decl");
3748    // C++ [namespace.udir]p1:
3749    //   A using-directive specifies that the names in the nominated
3750    //   namespace can be used in the scope in which the
3751    //   using-directive appears after the using-directive. During
3752    //   unqualified name lookup (3.4.1), the names appear as if they
3753    //   were declared in the nearest enclosing namespace which
3754    //   contains both the using-directive and the nominated
3755    //   namespace. [Note: in this context, "contains" means "contains
3756    //   directly or indirectly". ]
3757
3758    // Find enclosing context containing both using-directive and
3759    // nominated namespace.
3760    NamespaceDecl *NS = getNamespaceDecl(Named);
3761    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3762    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3763      CommonAncestor = CommonAncestor->getParent();
3764
3765    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3766                                      SS.getRange(),
3767                                      (NestedNameSpecifier *)SS.getScopeRep(),
3768                                      IdentLoc, Named, CommonAncestor);
3769    PushUsingDirective(S, UDir);
3770  } else {
3771    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3772  }
3773
3774  // FIXME: We ignore attributes for now.
3775  return UDir;
3776}
3777
3778void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3779  // If scope has associated entity, then using directive is at namespace
3780  // or translation unit scope. We add UsingDirectiveDecls, into
3781  // it's lookup structure.
3782  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3783    Ctx->addDecl(UDir);
3784  else
3785    // Otherwise it is block-sope. using-directives will affect lookup
3786    // only to the end of scope.
3787    S->PushUsingDirective(UDir);
3788}
3789
3790
3791Decl *Sema::ActOnUsingDeclaration(Scope *S,
3792                                  AccessSpecifier AS,
3793                                  bool HasUsingKeyword,
3794                                  SourceLocation UsingLoc,
3795                                  CXXScopeSpec &SS,
3796                                  UnqualifiedId &Name,
3797                                  AttributeList *AttrList,
3798                                  bool IsTypeName,
3799                                  SourceLocation TypenameLoc) {
3800  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3801
3802  switch (Name.getKind()) {
3803  case UnqualifiedId::IK_Identifier:
3804  case UnqualifiedId::IK_OperatorFunctionId:
3805  case UnqualifiedId::IK_LiteralOperatorId:
3806  case UnqualifiedId::IK_ConversionFunctionId:
3807    break;
3808
3809  case UnqualifiedId::IK_ConstructorName:
3810  case UnqualifiedId::IK_ConstructorTemplateId:
3811    // C++0x inherited constructors.
3812    if (getLangOptions().CPlusPlus0x) break;
3813
3814    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3815      << SS.getRange();
3816    return 0;
3817
3818  case UnqualifiedId::IK_DestructorName:
3819    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3820      << SS.getRange();
3821    return 0;
3822
3823  case UnqualifiedId::IK_TemplateId:
3824    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3825      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3826    return 0;
3827  }
3828
3829  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3830  DeclarationName TargetName = TargetNameInfo.getName();
3831  if (!TargetName)
3832    return 0;
3833
3834  // Warn about using declarations.
3835  // TODO: store that the declaration was written without 'using' and
3836  // talk about access decls instead of using decls in the
3837  // diagnostics.
3838  if (!HasUsingKeyword) {
3839    UsingLoc = Name.getSourceRange().getBegin();
3840
3841    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3842      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3843  }
3844
3845  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3846      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3847    return 0;
3848
3849  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3850                                        TargetNameInfo, AttrList,
3851                                        /* IsInstantiation */ false,
3852                                        IsTypeName, TypenameLoc);
3853  if (UD)
3854    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3855
3856  return UD;
3857}
3858
3859/// \brief Determine whether a using declaration considers the given
3860/// declarations as "equivalent", e.g., if they are redeclarations of
3861/// the same entity or are both typedefs of the same type.
3862static bool
3863IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3864                         bool &SuppressRedeclaration) {
3865  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3866    SuppressRedeclaration = false;
3867    return true;
3868  }
3869
3870  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3871    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3872      SuppressRedeclaration = true;
3873      return Context.hasSameType(TD1->getUnderlyingType(),
3874                                 TD2->getUnderlyingType());
3875    }
3876
3877  return false;
3878}
3879
3880
3881/// Determines whether to create a using shadow decl for a particular
3882/// decl, given the set of decls existing prior to this using lookup.
3883bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3884                                const LookupResult &Previous) {
3885  // Diagnose finding a decl which is not from a base class of the
3886  // current class.  We do this now because there are cases where this
3887  // function will silently decide not to build a shadow decl, which
3888  // will pre-empt further diagnostics.
3889  //
3890  // We don't need to do this in C++0x because we do the check once on
3891  // the qualifier.
3892  //
3893  // FIXME: diagnose the following if we care enough:
3894  //   struct A { int foo; };
3895  //   struct B : A { using A::foo; };
3896  //   template <class T> struct C : A {};
3897  //   template <class T> struct D : C<T> { using B::foo; } // <---
3898  // This is invalid (during instantiation) in C++03 because B::foo
3899  // resolves to the using decl in B, which is not a base class of D<T>.
3900  // We can't diagnose it immediately because C<T> is an unknown
3901  // specialization.  The UsingShadowDecl in D<T> then points directly
3902  // to A::foo, which will look well-formed when we instantiate.
3903  // The right solution is to not collapse the shadow-decl chain.
3904  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3905    DeclContext *OrigDC = Orig->getDeclContext();
3906
3907    // Handle enums and anonymous structs.
3908    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3909    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3910    while (OrigRec->isAnonymousStructOrUnion())
3911      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3912
3913    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3914      if (OrigDC == CurContext) {
3915        Diag(Using->getLocation(),
3916             diag::err_using_decl_nested_name_specifier_is_current_class)
3917          << Using->getNestedNameRange();
3918        Diag(Orig->getLocation(), diag::note_using_decl_target);
3919        return true;
3920      }
3921
3922      Diag(Using->getNestedNameRange().getBegin(),
3923           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3924        << Using->getTargetNestedNameDecl()
3925        << cast<CXXRecordDecl>(CurContext)
3926        << Using->getNestedNameRange();
3927      Diag(Orig->getLocation(), diag::note_using_decl_target);
3928      return true;
3929    }
3930  }
3931
3932  if (Previous.empty()) return false;
3933
3934  NamedDecl *Target = Orig;
3935  if (isa<UsingShadowDecl>(Target))
3936    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3937
3938  // If the target happens to be one of the previous declarations, we
3939  // don't have a conflict.
3940  //
3941  // FIXME: but we might be increasing its access, in which case we
3942  // should redeclare it.
3943  NamedDecl *NonTag = 0, *Tag = 0;
3944  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3945         I != E; ++I) {
3946    NamedDecl *D = (*I)->getUnderlyingDecl();
3947    bool Result;
3948    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3949      return Result;
3950
3951    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3952  }
3953
3954  if (Target->isFunctionOrFunctionTemplate()) {
3955    FunctionDecl *FD;
3956    if (isa<FunctionTemplateDecl>(Target))
3957      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3958    else
3959      FD = cast<FunctionDecl>(Target);
3960
3961    NamedDecl *OldDecl = 0;
3962    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3963    case Ovl_Overload:
3964      return false;
3965
3966    case Ovl_NonFunction:
3967      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3968      break;
3969
3970    // We found a decl with the exact signature.
3971    case Ovl_Match:
3972      // If we're in a record, we want to hide the target, so we
3973      // return true (without a diagnostic) to tell the caller not to
3974      // build a shadow decl.
3975      if (CurContext->isRecord())
3976        return true;
3977
3978      // If we're not in a record, this is an error.
3979      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3980      break;
3981    }
3982
3983    Diag(Target->getLocation(), diag::note_using_decl_target);
3984    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3985    return true;
3986  }
3987
3988  // Target is not a function.
3989
3990  if (isa<TagDecl>(Target)) {
3991    // No conflict between a tag and a non-tag.
3992    if (!Tag) return false;
3993
3994    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3995    Diag(Target->getLocation(), diag::note_using_decl_target);
3996    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3997    return true;
3998  }
3999
4000  // No conflict between a tag and a non-tag.
4001  if (!NonTag) return false;
4002
4003  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4004  Diag(Target->getLocation(), diag::note_using_decl_target);
4005  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4006  return true;
4007}
4008
4009/// Builds a shadow declaration corresponding to a 'using' declaration.
4010UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4011                                            UsingDecl *UD,
4012                                            NamedDecl *Orig) {
4013
4014  // If we resolved to another shadow declaration, just coalesce them.
4015  NamedDecl *Target = Orig;
4016  if (isa<UsingShadowDecl>(Target)) {
4017    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4018    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4019  }
4020
4021  UsingShadowDecl *Shadow
4022    = UsingShadowDecl::Create(Context, CurContext,
4023                              UD->getLocation(), UD, Target);
4024  UD->addShadowDecl(Shadow);
4025
4026  Shadow->setAccess(UD->getAccess());
4027  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4028    Shadow->setInvalidDecl();
4029
4030  if (S)
4031    PushOnScopeChains(Shadow, S);
4032  else
4033    CurContext->addDecl(Shadow);
4034
4035
4036  return Shadow;
4037}
4038
4039/// Hides a using shadow declaration.  This is required by the current
4040/// using-decl implementation when a resolvable using declaration in a
4041/// class is followed by a declaration which would hide or override
4042/// one or more of the using decl's targets; for example:
4043///
4044///   struct Base { void foo(int); };
4045///   struct Derived : Base {
4046///     using Base::foo;
4047///     void foo(int);
4048///   };
4049///
4050/// The governing language is C++03 [namespace.udecl]p12:
4051///
4052///   When a using-declaration brings names from a base class into a
4053///   derived class scope, member functions in the derived class
4054///   override and/or hide member functions with the same name and
4055///   parameter types in a base class (rather than conflicting).
4056///
4057/// There are two ways to implement this:
4058///   (1) optimistically create shadow decls when they're not hidden
4059///       by existing declarations, or
4060///   (2) don't create any shadow decls (or at least don't make them
4061///       visible) until we've fully parsed/instantiated the class.
4062/// The problem with (1) is that we might have to retroactively remove
4063/// a shadow decl, which requires several O(n) operations because the
4064/// decl structures are (very reasonably) not designed for removal.
4065/// (2) avoids this but is very fiddly and phase-dependent.
4066void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4067  if (Shadow->getDeclName().getNameKind() ==
4068        DeclarationName::CXXConversionFunctionName)
4069    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4070
4071  // Remove it from the DeclContext...
4072  Shadow->getDeclContext()->removeDecl(Shadow);
4073
4074  // ...and the scope, if applicable...
4075  if (S) {
4076    S->RemoveDecl(Shadow);
4077    IdResolver.RemoveDecl(Shadow);
4078  }
4079
4080  // ...and the using decl.
4081  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4082
4083  // TODO: complain somehow if Shadow was used.  It shouldn't
4084  // be possible for this to happen, because...?
4085}
4086
4087/// Builds a using declaration.
4088///
4089/// \param IsInstantiation - Whether this call arises from an
4090///   instantiation of an unresolved using declaration.  We treat
4091///   the lookup differently for these declarations.
4092NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4093                                       SourceLocation UsingLoc,
4094                                       CXXScopeSpec &SS,
4095                                       const DeclarationNameInfo &NameInfo,
4096                                       AttributeList *AttrList,
4097                                       bool IsInstantiation,
4098                                       bool IsTypeName,
4099                                       SourceLocation TypenameLoc) {
4100  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4101  SourceLocation IdentLoc = NameInfo.getLoc();
4102  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4103
4104  // FIXME: We ignore attributes for now.
4105
4106  if (SS.isEmpty()) {
4107    Diag(IdentLoc, diag::err_using_requires_qualname);
4108    return 0;
4109  }
4110
4111  // Do the redeclaration lookup in the current scope.
4112  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4113                        ForRedeclaration);
4114  Previous.setHideTags(false);
4115  if (S) {
4116    LookupName(Previous, S);
4117
4118    // It is really dumb that we have to do this.
4119    LookupResult::Filter F = Previous.makeFilter();
4120    while (F.hasNext()) {
4121      NamedDecl *D = F.next();
4122      if (!isDeclInScope(D, CurContext, S))
4123        F.erase();
4124    }
4125    F.done();
4126  } else {
4127    assert(IsInstantiation && "no scope in non-instantiation");
4128    assert(CurContext->isRecord() && "scope not record in instantiation");
4129    LookupQualifiedName(Previous, CurContext);
4130  }
4131
4132  NestedNameSpecifier *NNS = SS.getScopeRep();
4133
4134  // Check for invalid redeclarations.
4135  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4136    return 0;
4137
4138  // Check for bad qualifiers.
4139  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4140    return 0;
4141
4142  DeclContext *LookupContext = computeDeclContext(SS);
4143  NamedDecl *D;
4144  if (!LookupContext) {
4145    if (IsTypeName) {
4146      // FIXME: not all declaration name kinds are legal here
4147      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4148                                              UsingLoc, TypenameLoc,
4149                                              SS.getRange(), NNS,
4150                                              IdentLoc, NameInfo.getName());
4151    } else {
4152      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4153                                           UsingLoc, SS.getRange(),
4154                                           NNS, NameInfo);
4155    }
4156  } else {
4157    D = UsingDecl::Create(Context, CurContext,
4158                          SS.getRange(), UsingLoc, NNS, NameInfo,
4159                          IsTypeName);
4160  }
4161  D->setAccess(AS);
4162  CurContext->addDecl(D);
4163
4164  if (!LookupContext) return D;
4165  UsingDecl *UD = cast<UsingDecl>(D);
4166
4167  if (RequireCompleteDeclContext(SS, LookupContext)) {
4168    UD->setInvalidDecl();
4169    return UD;
4170  }
4171
4172  // Constructor inheriting using decls get special treatment.
4173  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4174    if (CheckInheritedConstructorUsingDecl(UD))
4175      UD->setInvalidDecl();
4176    return UD;
4177  }
4178
4179  // Otherwise, look up the target name.
4180
4181  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4182
4183  // Unlike most lookups, we don't always want to hide tag
4184  // declarations: tag names are visible through the using declaration
4185  // even if hidden by ordinary names, *except* in a dependent context
4186  // where it's important for the sanity of two-phase lookup.
4187  if (!IsInstantiation)
4188    R.setHideTags(false);
4189
4190  LookupQualifiedName(R, LookupContext);
4191
4192  if (R.empty()) {
4193    Diag(IdentLoc, diag::err_no_member)
4194      << NameInfo.getName() << LookupContext << SS.getRange();
4195    UD->setInvalidDecl();
4196    return UD;
4197  }
4198
4199  if (R.isAmbiguous()) {
4200    UD->setInvalidDecl();
4201    return UD;
4202  }
4203
4204  if (IsTypeName) {
4205    // If we asked for a typename and got a non-type decl, error out.
4206    if (!R.getAsSingle<TypeDecl>()) {
4207      Diag(IdentLoc, diag::err_using_typename_non_type);
4208      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4209        Diag((*I)->getUnderlyingDecl()->getLocation(),
4210             diag::note_using_decl_target);
4211      UD->setInvalidDecl();
4212      return UD;
4213    }
4214  } else {
4215    // If we asked for a non-typename and we got a type, error out,
4216    // but only if this is an instantiation of an unresolved using
4217    // decl.  Otherwise just silently find the type name.
4218    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4219      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4220      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4221      UD->setInvalidDecl();
4222      return UD;
4223    }
4224  }
4225
4226  // C++0x N2914 [namespace.udecl]p6:
4227  // A using-declaration shall not name a namespace.
4228  if (R.getAsSingle<NamespaceDecl>()) {
4229    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4230      << SS.getRange();
4231    UD->setInvalidDecl();
4232    return UD;
4233  }
4234
4235  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4236    if (!CheckUsingShadowDecl(UD, *I, Previous))
4237      BuildUsingShadowDecl(S, UD, *I);
4238  }
4239
4240  return UD;
4241}
4242
4243/// Additional checks for a using declaration referring to a constructor name.
4244bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4245  if (UD->isTypeName()) {
4246    // FIXME: Cannot specify typename when specifying constructor
4247    return true;
4248  }
4249
4250  const Type *SourceType = UD->getTargetNestedNameDecl()->getAsType();
4251  assert(SourceType &&
4252         "Using decl naming constructor doesn't have type in scope spec.");
4253  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4254
4255  // Check whether the named type is a direct base class.
4256  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4257  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4258  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4259       BaseIt != BaseE; ++BaseIt) {
4260    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4261    if (CanonicalSourceType == BaseType)
4262      break;
4263  }
4264
4265  if (BaseIt == BaseE) {
4266    // Did not find SourceType in the bases.
4267    Diag(UD->getUsingLocation(),
4268         diag::err_using_decl_constructor_not_in_direct_base)
4269      << UD->getNameInfo().getSourceRange()
4270      << QualType(SourceType, 0) << TargetClass;
4271    return true;
4272  }
4273
4274  BaseIt->setInheritConstructors();
4275
4276  return false;
4277}
4278
4279/// Checks that the given using declaration is not an invalid
4280/// redeclaration.  Note that this is checking only for the using decl
4281/// itself, not for any ill-formedness among the UsingShadowDecls.
4282bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4283                                       bool isTypeName,
4284                                       const CXXScopeSpec &SS,
4285                                       SourceLocation NameLoc,
4286                                       const LookupResult &Prev) {
4287  // C++03 [namespace.udecl]p8:
4288  // C++0x [namespace.udecl]p10:
4289  //   A using-declaration is a declaration and can therefore be used
4290  //   repeatedly where (and only where) multiple declarations are
4291  //   allowed.
4292  //
4293  // That's in non-member contexts.
4294  if (!CurContext->getRedeclContext()->isRecord())
4295    return false;
4296
4297  NestedNameSpecifier *Qual
4298    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4299
4300  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4301    NamedDecl *D = *I;
4302
4303    bool DTypename;
4304    NestedNameSpecifier *DQual;
4305    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4306      DTypename = UD->isTypeName();
4307      DQual = UD->getTargetNestedNameDecl();
4308    } else if (UnresolvedUsingValueDecl *UD
4309                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4310      DTypename = false;
4311      DQual = UD->getTargetNestedNameSpecifier();
4312    } else if (UnresolvedUsingTypenameDecl *UD
4313                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4314      DTypename = true;
4315      DQual = UD->getTargetNestedNameSpecifier();
4316    } else continue;
4317
4318    // using decls differ if one says 'typename' and the other doesn't.
4319    // FIXME: non-dependent using decls?
4320    if (isTypeName != DTypename) continue;
4321
4322    // using decls differ if they name different scopes (but note that
4323    // template instantiation can cause this check to trigger when it
4324    // didn't before instantiation).
4325    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4326        Context.getCanonicalNestedNameSpecifier(DQual))
4327      continue;
4328
4329    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4330    Diag(D->getLocation(), diag::note_using_decl) << 1;
4331    return true;
4332  }
4333
4334  return false;
4335}
4336
4337
4338/// Checks that the given nested-name qualifier used in a using decl
4339/// in the current context is appropriately related to the current
4340/// scope.  If an error is found, diagnoses it and returns true.
4341bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4342                                   const CXXScopeSpec &SS,
4343                                   SourceLocation NameLoc) {
4344  DeclContext *NamedContext = computeDeclContext(SS);
4345
4346  if (!CurContext->isRecord()) {
4347    // C++03 [namespace.udecl]p3:
4348    // C++0x [namespace.udecl]p8:
4349    //   A using-declaration for a class member shall be a member-declaration.
4350
4351    // If we weren't able to compute a valid scope, it must be a
4352    // dependent class scope.
4353    if (!NamedContext || NamedContext->isRecord()) {
4354      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4355        << SS.getRange();
4356      return true;
4357    }
4358
4359    // Otherwise, everything is known to be fine.
4360    return false;
4361  }
4362
4363  // The current scope is a record.
4364
4365  // If the named context is dependent, we can't decide much.
4366  if (!NamedContext) {
4367    // FIXME: in C++0x, we can diagnose if we can prove that the
4368    // nested-name-specifier does not refer to a base class, which is
4369    // still possible in some cases.
4370
4371    // Otherwise we have to conservatively report that things might be
4372    // okay.
4373    return false;
4374  }
4375
4376  if (!NamedContext->isRecord()) {
4377    // Ideally this would point at the last name in the specifier,
4378    // but we don't have that level of source info.
4379    Diag(SS.getRange().getBegin(),
4380         diag::err_using_decl_nested_name_specifier_is_not_class)
4381      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4382    return true;
4383  }
4384
4385  if (!NamedContext->isDependentContext() &&
4386      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4387    return true;
4388
4389  if (getLangOptions().CPlusPlus0x) {
4390    // C++0x [namespace.udecl]p3:
4391    //   In a using-declaration used as a member-declaration, the
4392    //   nested-name-specifier shall name a base class of the class
4393    //   being defined.
4394
4395    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4396                                 cast<CXXRecordDecl>(NamedContext))) {
4397      if (CurContext == NamedContext) {
4398        Diag(NameLoc,
4399             diag::err_using_decl_nested_name_specifier_is_current_class)
4400          << SS.getRange();
4401        return true;
4402      }
4403
4404      Diag(SS.getRange().getBegin(),
4405           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4406        << (NestedNameSpecifier*) SS.getScopeRep()
4407        << cast<CXXRecordDecl>(CurContext)
4408        << SS.getRange();
4409      return true;
4410    }
4411
4412    return false;
4413  }
4414
4415  // C++03 [namespace.udecl]p4:
4416  //   A using-declaration used as a member-declaration shall refer
4417  //   to a member of a base class of the class being defined [etc.].
4418
4419  // Salient point: SS doesn't have to name a base class as long as
4420  // lookup only finds members from base classes.  Therefore we can
4421  // diagnose here only if we can prove that that can't happen,
4422  // i.e. if the class hierarchies provably don't intersect.
4423
4424  // TODO: it would be nice if "definitely valid" results were cached
4425  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4426  // need to be repeated.
4427
4428  struct UserData {
4429    llvm::DenseSet<const CXXRecordDecl*> Bases;
4430
4431    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4432      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4433      Data->Bases.insert(Base);
4434      return true;
4435    }
4436
4437    bool hasDependentBases(const CXXRecordDecl *Class) {
4438      return !Class->forallBases(collect, this);
4439    }
4440
4441    /// Returns true if the base is dependent or is one of the
4442    /// accumulated base classes.
4443    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4444      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4445      return !Data->Bases.count(Base);
4446    }
4447
4448    bool mightShareBases(const CXXRecordDecl *Class) {
4449      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4450    }
4451  };
4452
4453  UserData Data;
4454
4455  // Returns false if we find a dependent base.
4456  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4457    return false;
4458
4459  // Returns false if the class has a dependent base or if it or one
4460  // of its bases is present in the base set of the current context.
4461  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4462    return false;
4463
4464  Diag(SS.getRange().getBegin(),
4465       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4466    << (NestedNameSpecifier*) SS.getScopeRep()
4467    << cast<CXXRecordDecl>(CurContext)
4468    << SS.getRange();
4469
4470  return true;
4471}
4472
4473Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4474                                             SourceLocation NamespaceLoc,
4475                                             SourceLocation AliasLoc,
4476                                             IdentifierInfo *Alias,
4477                                             CXXScopeSpec &SS,
4478                                             SourceLocation IdentLoc,
4479                                             IdentifierInfo *Ident) {
4480
4481  // Lookup the namespace name.
4482  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4483  LookupParsedName(R, S, &SS);
4484
4485  // Check if we have a previous declaration with the same name.
4486  NamedDecl *PrevDecl
4487    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4488                       ForRedeclaration);
4489  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4490    PrevDecl = 0;
4491
4492  if (PrevDecl) {
4493    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4494      // We already have an alias with the same name that points to the same
4495      // namespace, so don't create a new one.
4496      // FIXME: At some point, we'll want to create the (redundant)
4497      // declaration to maintain better source information.
4498      if (!R.isAmbiguous() && !R.empty() &&
4499          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4500        return 0;
4501    }
4502
4503    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4504      diag::err_redefinition_different_kind;
4505    Diag(AliasLoc, DiagID) << Alias;
4506    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4507    return 0;
4508  }
4509
4510  if (R.isAmbiguous())
4511    return 0;
4512
4513  if (R.empty()) {
4514    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4515                                                CTC_NoKeywords, 0)) {
4516      if (R.getAsSingle<NamespaceDecl>() ||
4517          R.getAsSingle<NamespaceAliasDecl>()) {
4518        if (DeclContext *DC = computeDeclContext(SS, false))
4519          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4520            << Ident << DC << Corrected << SS.getRange()
4521            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4522        else
4523          Diag(IdentLoc, diag::err_using_directive_suggest)
4524            << Ident << Corrected
4525            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4526
4527        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4528          << Corrected;
4529
4530        Ident = Corrected.getAsIdentifierInfo();
4531      } else {
4532        R.clear();
4533        R.setLookupName(Ident);
4534      }
4535    }
4536
4537    if (R.empty()) {
4538      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4539      return 0;
4540    }
4541  }
4542
4543  NamespaceAliasDecl *AliasDecl =
4544    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4545                               Alias, SS.getRange(),
4546                               (NestedNameSpecifier *)SS.getScopeRep(),
4547                               IdentLoc, R.getFoundDecl());
4548
4549  PushOnScopeChains(AliasDecl, S);
4550  return AliasDecl;
4551}
4552
4553namespace {
4554  /// \brief Scoped object used to handle the state changes required in Sema
4555  /// to implicitly define the body of a C++ member function;
4556  class ImplicitlyDefinedFunctionScope {
4557    Sema &S;
4558    Sema::ContextRAII SavedContext;
4559
4560  public:
4561    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4562      : S(S), SavedContext(S, Method)
4563    {
4564      S.PushFunctionScope();
4565      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4566    }
4567
4568    ~ImplicitlyDefinedFunctionScope() {
4569      S.PopExpressionEvaluationContext();
4570      S.PopFunctionOrBlockScope();
4571    }
4572  };
4573}
4574
4575static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4576                                                       CXXRecordDecl *D) {
4577  ASTContext &Context = Self.Context;
4578  QualType ClassType = Context.getTypeDeclType(D);
4579  DeclarationName ConstructorName
4580    = Context.DeclarationNames.getCXXConstructorName(
4581                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4582
4583  DeclContext::lookup_const_iterator Con, ConEnd;
4584  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4585       Con != ConEnd; ++Con) {
4586    // FIXME: In C++0x, a constructor template can be a default constructor.
4587    if (isa<FunctionTemplateDecl>(*Con))
4588      continue;
4589
4590    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4591    if (Constructor->isDefaultConstructor())
4592      return Constructor;
4593  }
4594  return 0;
4595}
4596
4597CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4598                                                     CXXRecordDecl *ClassDecl) {
4599  // C++ [class.ctor]p5:
4600  //   A default constructor for a class X is a constructor of class X
4601  //   that can be called without an argument. If there is no
4602  //   user-declared constructor for class X, a default constructor is
4603  //   implicitly declared. An implicitly-declared default constructor
4604  //   is an inline public member of its class.
4605  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4606         "Should not build implicit default constructor!");
4607
4608  // C++ [except.spec]p14:
4609  //   An implicitly declared special member function (Clause 12) shall have an
4610  //   exception-specification. [...]
4611  ImplicitExceptionSpecification ExceptSpec(Context);
4612
4613  // Direct base-class destructors.
4614  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4615                                       BEnd = ClassDecl->bases_end();
4616       B != BEnd; ++B) {
4617    if (B->isVirtual()) // Handled below.
4618      continue;
4619
4620    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4621      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4622      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4623        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4624      else if (CXXConstructorDecl *Constructor
4625                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4626        ExceptSpec.CalledDecl(Constructor);
4627    }
4628  }
4629
4630  // Virtual base-class destructors.
4631  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4632                                       BEnd = ClassDecl->vbases_end();
4633       B != BEnd; ++B) {
4634    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4635      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4636      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4637        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4638      else if (CXXConstructorDecl *Constructor
4639                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4640        ExceptSpec.CalledDecl(Constructor);
4641    }
4642  }
4643
4644  // Field destructors.
4645  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4646                               FEnd = ClassDecl->field_end();
4647       F != FEnd; ++F) {
4648    if (const RecordType *RecordTy
4649              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4650      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4651      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4652        ExceptSpec.CalledDecl(
4653                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4654      else if (CXXConstructorDecl *Constructor
4655                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4656        ExceptSpec.CalledDecl(Constructor);
4657    }
4658  }
4659
4660  FunctionProtoType::ExtProtoInfo EPI;
4661  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4662  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4663  EPI.NumExceptions = ExceptSpec.size();
4664  EPI.Exceptions = ExceptSpec.data();
4665
4666  // Create the actual constructor declaration.
4667  CanQualType ClassType
4668    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4669  DeclarationName Name
4670    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4671  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4672  CXXConstructorDecl *DefaultCon
4673    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4674                                 Context.getFunctionType(Context.VoidTy,
4675                                                         0, 0, EPI),
4676                                 /*TInfo=*/0,
4677                                 /*isExplicit=*/false,
4678                                 /*isInline=*/true,
4679                                 /*isImplicitlyDeclared=*/true);
4680  DefaultCon->setAccess(AS_public);
4681  DefaultCon->setImplicit();
4682  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4683
4684  // Note that we have declared this constructor.
4685  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4686
4687  if (Scope *S = getScopeForContext(ClassDecl))
4688    PushOnScopeChains(DefaultCon, S, false);
4689  ClassDecl->addDecl(DefaultCon);
4690
4691  return DefaultCon;
4692}
4693
4694void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4695                                            CXXConstructorDecl *Constructor) {
4696  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4697          !Constructor->isUsed(false)) &&
4698    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4699
4700  CXXRecordDecl *ClassDecl = Constructor->getParent();
4701  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4702
4703  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4704  DiagnosticErrorTrap Trap(Diags);
4705  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4706      Trap.hasErrorOccurred()) {
4707    Diag(CurrentLocation, diag::note_member_synthesized_at)
4708      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4709    Constructor->setInvalidDecl();
4710    return;
4711  }
4712
4713  SourceLocation Loc = Constructor->getLocation();
4714  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4715
4716  Constructor->setUsed();
4717  MarkVTableUsed(CurrentLocation, ClassDecl);
4718}
4719
4720void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4721  // We start with an initial pass over the base classes to collect those that
4722  // inherit constructors from. If there are none, we can forgo all further
4723  // processing.
4724  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4725  BasesVector BasesToInheritFrom;
4726  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4727                                          BaseE = ClassDecl->bases_end();
4728         BaseIt != BaseE; ++BaseIt) {
4729    if (BaseIt->getInheritConstructors()) {
4730      QualType Base = BaseIt->getType();
4731      if (Base->isDependentType()) {
4732        // If we inherit constructors from anything that is dependent, just
4733        // abort processing altogether. We'll get another chance for the
4734        // instantiations.
4735        return;
4736      }
4737      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4738    }
4739  }
4740  if (BasesToInheritFrom.empty())
4741    return;
4742
4743  // Now collect the constructors that we already have in the current class.
4744  // Those take precedence over inherited constructors.
4745  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4746  //   unless there is a user-declared constructor with the same signature in
4747  //   the class where the using-declaration appears.
4748  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4749  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4750                                    CtorE = ClassDecl->ctor_end();
4751       CtorIt != CtorE; ++CtorIt) {
4752    ExistingConstructors.insert(
4753        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4754  }
4755
4756  Scope *S = getScopeForContext(ClassDecl);
4757  DeclarationName CreatedCtorName =
4758      Context.DeclarationNames.getCXXConstructorName(
4759          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4760
4761  // Now comes the true work.
4762  // First, we keep a map from constructor types to the base that introduced
4763  // them. Needed for finding conflicting constructors. We also keep the
4764  // actually inserted declarations in there, for pretty diagnostics.
4765  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4766  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4767  ConstructorToSourceMap InheritedConstructors;
4768  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4769                             BaseE = BasesToInheritFrom.end();
4770       BaseIt != BaseE; ++BaseIt) {
4771    const RecordType *Base = *BaseIt;
4772    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4773    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4774    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4775                                      CtorE = BaseDecl->ctor_end();
4776         CtorIt != CtorE; ++CtorIt) {
4777      // Find the using declaration for inheriting this base's constructors.
4778      DeclarationName Name =
4779          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4780      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4781          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4782      SourceLocation UsingLoc = UD ? UD->getLocation() :
4783                                     ClassDecl->getLocation();
4784
4785      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4786      //   from the class X named in the using-declaration consists of actual
4787      //   constructors and notional constructors that result from the
4788      //   transformation of defaulted parameters as follows:
4789      //   - all non-template default constructors of X, and
4790      //   - for each non-template constructor of X that has at least one
4791      //     parameter with a default argument, the set of constructors that
4792      //     results from omitting any ellipsis parameter specification and
4793      //     successively omitting parameters with a default argument from the
4794      //     end of the parameter-type-list.
4795      CXXConstructorDecl *BaseCtor = *CtorIt;
4796      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4797      const FunctionProtoType *BaseCtorType =
4798          BaseCtor->getType()->getAs<FunctionProtoType>();
4799
4800      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4801                    maxParams = BaseCtor->getNumParams();
4802           params <= maxParams; ++params) {
4803        // Skip default constructors. They're never inherited.
4804        if (params == 0)
4805          continue;
4806        // Skip copy and move constructors for the same reason.
4807        if (CanBeCopyOrMove && params == 1)
4808          continue;
4809
4810        // Build up a function type for this particular constructor.
4811        // FIXME: The working paper does not consider that the exception spec
4812        // for the inheriting constructor might be larger than that of the
4813        // source. This code doesn't yet, either.
4814        const Type *NewCtorType;
4815        if (params == maxParams)
4816          NewCtorType = BaseCtorType;
4817        else {
4818          llvm::SmallVector<QualType, 16> Args;
4819          for (unsigned i = 0; i < params; ++i) {
4820            Args.push_back(BaseCtorType->getArgType(i));
4821          }
4822          FunctionProtoType::ExtProtoInfo ExtInfo =
4823              BaseCtorType->getExtProtoInfo();
4824          ExtInfo.Variadic = false;
4825          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4826                                                Args.data(), params, ExtInfo)
4827                       .getTypePtr();
4828        }
4829        const Type *CanonicalNewCtorType =
4830            Context.getCanonicalType(NewCtorType);
4831
4832        // Now that we have the type, first check if the class already has a
4833        // constructor with this signature.
4834        if (ExistingConstructors.count(CanonicalNewCtorType))
4835          continue;
4836
4837        // Then we check if we have already declared an inherited constructor
4838        // with this signature.
4839        std::pair<ConstructorToSourceMap::iterator, bool> result =
4840            InheritedConstructors.insert(std::make_pair(
4841                CanonicalNewCtorType,
4842                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4843        if (!result.second) {
4844          // Already in the map. If it came from a different class, that's an
4845          // error. Not if it's from the same.
4846          CanQualType PreviousBase = result.first->second.first;
4847          if (CanonicalBase != PreviousBase) {
4848            const CXXConstructorDecl *PrevCtor = result.first->second.second;
4849            const CXXConstructorDecl *PrevBaseCtor =
4850                PrevCtor->getInheritedConstructor();
4851            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
4852
4853            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
4854            Diag(BaseCtor->getLocation(),
4855                 diag::note_using_decl_constructor_conflict_current_ctor);
4856            Diag(PrevBaseCtor->getLocation(),
4857                 diag::note_using_decl_constructor_conflict_previous_ctor);
4858            Diag(PrevCtor->getLocation(),
4859                 diag::note_using_decl_constructor_conflict_previous_using);
4860          }
4861          continue;
4862        }
4863
4864        // OK, we're there, now add the constructor.
4865        // C++0x [class.inhctor]p8: [...] that would be performed by a
4866        //   user-writtern inline constructor [...]
4867        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
4868        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
4869            Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0,
4870            BaseCtor->isExplicit(), /*Inline=*/true,
4871            /*ImplicitlyDeclared=*/true);
4872        NewCtor->setAccess(BaseCtor->getAccess());
4873
4874        // Build up the parameter decls and add them.
4875        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
4876        for (unsigned i = 0; i < params; ++i) {
4877          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc,
4878                                                   /*IdentifierInfo=*/0,
4879                                                   BaseCtorType->getArgType(i),
4880                                                   /*TInfo=*/0, SC_None,
4881                                                   SC_None, /*DefaultArg=*/0));
4882        }
4883        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
4884        NewCtor->setInheritedConstructor(BaseCtor);
4885
4886        PushOnScopeChains(NewCtor, S, false);
4887        ClassDecl->addDecl(NewCtor);
4888        result.first->second.second = NewCtor;
4889      }
4890    }
4891  }
4892}
4893
4894CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4895  // C++ [class.dtor]p2:
4896  //   If a class has no user-declared destructor, a destructor is
4897  //   declared implicitly. An implicitly-declared destructor is an
4898  //   inline public member of its class.
4899
4900  // C++ [except.spec]p14:
4901  //   An implicitly declared special member function (Clause 12) shall have
4902  //   an exception-specification.
4903  ImplicitExceptionSpecification ExceptSpec(Context);
4904
4905  // Direct base-class destructors.
4906  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4907                                       BEnd = ClassDecl->bases_end();
4908       B != BEnd; ++B) {
4909    if (B->isVirtual()) // Handled below.
4910      continue;
4911
4912    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4913      ExceptSpec.CalledDecl(
4914                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4915  }
4916
4917  // Virtual base-class destructors.
4918  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4919                                       BEnd = ClassDecl->vbases_end();
4920       B != BEnd; ++B) {
4921    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4922      ExceptSpec.CalledDecl(
4923                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4924  }
4925
4926  // Field destructors.
4927  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4928                               FEnd = ClassDecl->field_end();
4929       F != FEnd; ++F) {
4930    if (const RecordType *RecordTy
4931        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4932      ExceptSpec.CalledDecl(
4933                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4934  }
4935
4936  // Create the actual destructor declaration.
4937  FunctionProtoType::ExtProtoInfo EPI;
4938  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4939  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4940  EPI.NumExceptions = ExceptSpec.size();
4941  EPI.Exceptions = ExceptSpec.data();
4942  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4943
4944  CanQualType ClassType
4945    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4946  DeclarationName Name
4947    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4948  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4949  CXXDestructorDecl *Destructor
4950      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4951                                /*isInline=*/true,
4952                                /*isImplicitlyDeclared=*/true);
4953  Destructor->setAccess(AS_public);
4954  Destructor->setImplicit();
4955  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4956
4957  // Note that we have declared this destructor.
4958  ++ASTContext::NumImplicitDestructorsDeclared;
4959
4960  // Introduce this destructor into its scope.
4961  if (Scope *S = getScopeForContext(ClassDecl))
4962    PushOnScopeChains(Destructor, S, false);
4963  ClassDecl->addDecl(Destructor);
4964
4965  // This could be uniqued if it ever proves significant.
4966  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4967
4968  AddOverriddenMethods(ClassDecl, Destructor);
4969
4970  return Destructor;
4971}
4972
4973void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4974                                    CXXDestructorDecl *Destructor) {
4975  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4976         "DefineImplicitDestructor - call it for implicit default dtor");
4977  CXXRecordDecl *ClassDecl = Destructor->getParent();
4978  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4979
4980  if (Destructor->isInvalidDecl())
4981    return;
4982
4983  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4984
4985  DiagnosticErrorTrap Trap(Diags);
4986  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4987                                         Destructor->getParent());
4988
4989  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4990    Diag(CurrentLocation, diag::note_member_synthesized_at)
4991      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4992
4993    Destructor->setInvalidDecl();
4994    return;
4995  }
4996
4997  SourceLocation Loc = Destructor->getLocation();
4998  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4999
5000  Destructor->setUsed();
5001  MarkVTableUsed(CurrentLocation, ClassDecl);
5002}
5003
5004/// \brief Builds a statement that copies the given entity from \p From to
5005/// \c To.
5006///
5007/// This routine is used to copy the members of a class with an
5008/// implicitly-declared copy assignment operator. When the entities being
5009/// copied are arrays, this routine builds for loops to copy them.
5010///
5011/// \param S The Sema object used for type-checking.
5012///
5013/// \param Loc The location where the implicit copy is being generated.
5014///
5015/// \param T The type of the expressions being copied. Both expressions must
5016/// have this type.
5017///
5018/// \param To The expression we are copying to.
5019///
5020/// \param From The expression we are copying from.
5021///
5022/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5023/// Otherwise, it's a non-static member subobject.
5024///
5025/// \param Depth Internal parameter recording the depth of the recursion.
5026///
5027/// \returns A statement or a loop that copies the expressions.
5028static StmtResult
5029BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5030                      Expr *To, Expr *From,
5031                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5032  // C++0x [class.copy]p30:
5033  //   Each subobject is assigned in the manner appropriate to its type:
5034  //
5035  //     - if the subobject is of class type, the copy assignment operator
5036  //       for the class is used (as if by explicit qualification; that is,
5037  //       ignoring any possible virtual overriding functions in more derived
5038  //       classes);
5039  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5040    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5041
5042    // Look for operator=.
5043    DeclarationName Name
5044      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5045    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5046    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5047
5048    // Filter out any result that isn't a copy-assignment operator.
5049    LookupResult::Filter F = OpLookup.makeFilter();
5050    while (F.hasNext()) {
5051      NamedDecl *D = F.next();
5052      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5053        if (Method->isCopyAssignmentOperator())
5054          continue;
5055
5056      F.erase();
5057    }
5058    F.done();
5059
5060    // Suppress the protected check (C++ [class.protected]) for each of the
5061    // assignment operators we found. This strange dance is required when
5062    // we're assigning via a base classes's copy-assignment operator. To
5063    // ensure that we're getting the right base class subobject (without
5064    // ambiguities), we need to cast "this" to that subobject type; to
5065    // ensure that we don't go through the virtual call mechanism, we need
5066    // to qualify the operator= name with the base class (see below). However,
5067    // this means that if the base class has a protected copy assignment
5068    // operator, the protected member access check will fail. So, we
5069    // rewrite "protected" access to "public" access in this case, since we
5070    // know by construction that we're calling from a derived class.
5071    if (CopyingBaseSubobject) {
5072      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5073           L != LEnd; ++L) {
5074        if (L.getAccess() == AS_protected)
5075          L.setAccess(AS_public);
5076      }
5077    }
5078
5079    // Create the nested-name-specifier that will be used to qualify the
5080    // reference to operator=; this is required to suppress the virtual
5081    // call mechanism.
5082    CXXScopeSpec SS;
5083    SS.setRange(Loc);
5084    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
5085                                               T.getTypePtr()));
5086
5087    // Create the reference to operator=.
5088    ExprResult OpEqualRef
5089      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5090                                   /*FirstQualifierInScope=*/0, OpLookup,
5091                                   /*TemplateArgs=*/0,
5092                                   /*SuppressQualifierCheck=*/true);
5093    if (OpEqualRef.isInvalid())
5094      return StmtError();
5095
5096    // Build the call to the assignment operator.
5097
5098    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5099                                                  OpEqualRef.takeAs<Expr>(),
5100                                                  Loc, &From, 1, Loc);
5101    if (Call.isInvalid())
5102      return StmtError();
5103
5104    return S.Owned(Call.takeAs<Stmt>());
5105  }
5106
5107  //     - if the subobject is of scalar type, the built-in assignment
5108  //       operator is used.
5109  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5110  if (!ArrayTy) {
5111    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5112    if (Assignment.isInvalid())
5113      return StmtError();
5114
5115    return S.Owned(Assignment.takeAs<Stmt>());
5116  }
5117
5118  //     - if the subobject is an array, each element is assigned, in the
5119  //       manner appropriate to the element type;
5120
5121  // Construct a loop over the array bounds, e.g.,
5122  //
5123  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5124  //
5125  // that will copy each of the array elements.
5126  QualType SizeType = S.Context.getSizeType();
5127
5128  // Create the iteration variable.
5129  IdentifierInfo *IterationVarName = 0;
5130  {
5131    llvm::SmallString<8> Str;
5132    llvm::raw_svector_ostream OS(Str);
5133    OS << "__i" << Depth;
5134    IterationVarName = &S.Context.Idents.get(OS.str());
5135  }
5136  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
5137                                          IterationVarName, SizeType,
5138                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5139                                          SC_None, SC_None);
5140
5141  // Initialize the iteration variable to zero.
5142  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5143  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5144
5145  // Create a reference to the iteration variable; we'll use this several
5146  // times throughout.
5147  Expr *IterationVarRef
5148    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5149  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5150
5151  // Create the DeclStmt that holds the iteration variable.
5152  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5153
5154  // Create the comparison against the array bound.
5155  llvm::APInt Upper
5156    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5157  Expr *Comparison
5158    = new (S.Context) BinaryOperator(IterationVarRef,
5159                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5160                                     BO_NE, S.Context.BoolTy,
5161                                     VK_RValue, OK_Ordinary, Loc);
5162
5163  // Create the pre-increment of the iteration variable.
5164  Expr *Increment
5165    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5166                                    VK_LValue, OK_Ordinary, Loc);
5167
5168  // Subscript the "from" and "to" expressions with the iteration variable.
5169  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5170                                                         IterationVarRef, Loc));
5171  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5172                                                       IterationVarRef, Loc));
5173
5174  // Build the copy for an individual element of the array.
5175  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5176                                          To, From, CopyingBaseSubobject,
5177                                          Depth + 1);
5178  if (Copy.isInvalid())
5179    return StmtError();
5180
5181  // Construct the loop that copies all elements of this array.
5182  return S.ActOnForStmt(Loc, Loc, InitStmt,
5183                        S.MakeFullExpr(Comparison),
5184                        0, S.MakeFullExpr(Increment),
5185                        Loc, Copy.take());
5186}
5187
5188/// \brief Determine whether the given class has a copy assignment operator
5189/// that accepts a const-qualified argument.
5190static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5191  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5192
5193  if (!Class->hasDeclaredCopyAssignment())
5194    S.DeclareImplicitCopyAssignment(Class);
5195
5196  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5197  DeclarationName OpName
5198    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5199
5200  DeclContext::lookup_const_iterator Op, OpEnd;
5201  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5202    // C++ [class.copy]p9:
5203    //   A user-declared copy assignment operator is a non-static non-template
5204    //   member function of class X with exactly one parameter of type X, X&,
5205    //   const X&, volatile X& or const volatile X&.
5206    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5207    if (!Method)
5208      continue;
5209
5210    if (Method->isStatic())
5211      continue;
5212    if (Method->getPrimaryTemplate())
5213      continue;
5214    const FunctionProtoType *FnType =
5215    Method->getType()->getAs<FunctionProtoType>();
5216    assert(FnType && "Overloaded operator has no prototype.");
5217    // Don't assert on this; an invalid decl might have been left in the AST.
5218    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5219      continue;
5220    bool AcceptsConst = true;
5221    QualType ArgType = FnType->getArgType(0);
5222    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5223      ArgType = Ref->getPointeeType();
5224      // Is it a non-const lvalue reference?
5225      if (!ArgType.isConstQualified())
5226        AcceptsConst = false;
5227    }
5228    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5229      continue;
5230
5231    // We have a single argument of type cv X or cv X&, i.e. we've found the
5232    // copy assignment operator. Return whether it accepts const arguments.
5233    return AcceptsConst;
5234  }
5235  assert(Class->isInvalidDecl() &&
5236         "No copy assignment operator declared in valid code.");
5237  return false;
5238}
5239
5240CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5241  // Note: The following rules are largely analoguous to the copy
5242  // constructor rules. Note that virtual bases are not taken into account
5243  // for determining the argument type of the operator. Note also that
5244  // operators taking an object instead of a reference are allowed.
5245
5246
5247  // C++ [class.copy]p10:
5248  //   If the class definition does not explicitly declare a copy
5249  //   assignment operator, one is declared implicitly.
5250  //   The implicitly-defined copy assignment operator for a class X
5251  //   will have the form
5252  //
5253  //       X& X::operator=(const X&)
5254  //
5255  //   if
5256  bool HasConstCopyAssignment = true;
5257
5258  //       -- each direct base class B of X has a copy assignment operator
5259  //          whose parameter is of type const B&, const volatile B& or B,
5260  //          and
5261  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5262                                       BaseEnd = ClassDecl->bases_end();
5263       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5264    assert(!Base->getType()->isDependentType() &&
5265           "Cannot generate implicit members for class with dependent bases.");
5266    const CXXRecordDecl *BaseClassDecl
5267      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5268    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5269  }
5270
5271  //       -- for all the nonstatic data members of X that are of a class
5272  //          type M (or array thereof), each such class type has a copy
5273  //          assignment operator whose parameter is of type const M&,
5274  //          const volatile M& or M.
5275  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5276                                  FieldEnd = ClassDecl->field_end();
5277       HasConstCopyAssignment && Field != FieldEnd;
5278       ++Field) {
5279    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5280    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5281      const CXXRecordDecl *FieldClassDecl
5282        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5283      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5284    }
5285  }
5286
5287  //   Otherwise, the implicitly declared copy assignment operator will
5288  //   have the form
5289  //
5290  //       X& X::operator=(X&)
5291  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5292  QualType RetType = Context.getLValueReferenceType(ArgType);
5293  if (HasConstCopyAssignment)
5294    ArgType = ArgType.withConst();
5295  ArgType = Context.getLValueReferenceType(ArgType);
5296
5297  // C++ [except.spec]p14:
5298  //   An implicitly declared special member function (Clause 12) shall have an
5299  //   exception-specification. [...]
5300  ImplicitExceptionSpecification ExceptSpec(Context);
5301  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5302                                       BaseEnd = ClassDecl->bases_end();
5303       Base != BaseEnd; ++Base) {
5304    CXXRecordDecl *BaseClassDecl
5305      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5306
5307    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5308      DeclareImplicitCopyAssignment(BaseClassDecl);
5309
5310    if (CXXMethodDecl *CopyAssign
5311           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5312      ExceptSpec.CalledDecl(CopyAssign);
5313  }
5314  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5315                                  FieldEnd = ClassDecl->field_end();
5316       Field != FieldEnd;
5317       ++Field) {
5318    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5319    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5320      CXXRecordDecl *FieldClassDecl
5321        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5322
5323      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5324        DeclareImplicitCopyAssignment(FieldClassDecl);
5325
5326      if (CXXMethodDecl *CopyAssign
5327            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5328        ExceptSpec.CalledDecl(CopyAssign);
5329    }
5330  }
5331
5332  //   An implicitly-declared copy assignment operator is an inline public
5333  //   member of its class.
5334  FunctionProtoType::ExtProtoInfo EPI;
5335  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5336  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5337  EPI.NumExceptions = ExceptSpec.size();
5338  EPI.Exceptions = ExceptSpec.data();
5339  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5340  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5341  CXXMethodDecl *CopyAssignment
5342    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5343                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5344                            /*TInfo=*/0, /*isStatic=*/false,
5345                            /*StorageClassAsWritten=*/SC_None,
5346                            /*isInline=*/true);
5347  CopyAssignment->setAccess(AS_public);
5348  CopyAssignment->setImplicit();
5349  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5350
5351  // Add the parameter to the operator.
5352  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5353                                               ClassDecl->getLocation(),
5354                                               /*Id=*/0,
5355                                               ArgType, /*TInfo=*/0,
5356                                               SC_None,
5357                                               SC_None, 0);
5358  CopyAssignment->setParams(&FromParam, 1);
5359
5360  // Note that we have added this copy-assignment operator.
5361  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5362
5363  if (Scope *S = getScopeForContext(ClassDecl))
5364    PushOnScopeChains(CopyAssignment, S, false);
5365  ClassDecl->addDecl(CopyAssignment);
5366
5367  AddOverriddenMethods(ClassDecl, CopyAssignment);
5368  return CopyAssignment;
5369}
5370
5371void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5372                                        CXXMethodDecl *CopyAssignOperator) {
5373  assert((CopyAssignOperator->isImplicit() &&
5374          CopyAssignOperator->isOverloadedOperator() &&
5375          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5376          !CopyAssignOperator->isUsed(false)) &&
5377         "DefineImplicitCopyAssignment called for wrong function");
5378
5379  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5380
5381  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5382    CopyAssignOperator->setInvalidDecl();
5383    return;
5384  }
5385
5386  CopyAssignOperator->setUsed();
5387
5388  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5389  DiagnosticErrorTrap Trap(Diags);
5390
5391  // C++0x [class.copy]p30:
5392  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5393  //   for a non-union class X performs memberwise copy assignment of its
5394  //   subobjects. The direct base classes of X are assigned first, in the
5395  //   order of their declaration in the base-specifier-list, and then the
5396  //   immediate non-static data members of X are assigned, in the order in
5397  //   which they were declared in the class definition.
5398
5399  // The statements that form the synthesized function body.
5400  ASTOwningVector<Stmt*> Statements(*this);
5401
5402  // The parameter for the "other" object, which we are copying from.
5403  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5404  Qualifiers OtherQuals = Other->getType().getQualifiers();
5405  QualType OtherRefType = Other->getType();
5406  if (const LValueReferenceType *OtherRef
5407                                = OtherRefType->getAs<LValueReferenceType>()) {
5408    OtherRefType = OtherRef->getPointeeType();
5409    OtherQuals = OtherRefType.getQualifiers();
5410  }
5411
5412  // Our location for everything implicitly-generated.
5413  SourceLocation Loc = CopyAssignOperator->getLocation();
5414
5415  // Construct a reference to the "other" object. We'll be using this
5416  // throughout the generated ASTs.
5417  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5418  assert(OtherRef && "Reference to parameter cannot fail!");
5419
5420  // Construct the "this" pointer. We'll be using this throughout the generated
5421  // ASTs.
5422  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5423  assert(This && "Reference to this cannot fail!");
5424
5425  // Assign base classes.
5426  bool Invalid = false;
5427  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5428       E = ClassDecl->bases_end(); Base != E; ++Base) {
5429    // Form the assignment:
5430    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5431    QualType BaseType = Base->getType().getUnqualifiedType();
5432    if (!BaseType->isRecordType()) {
5433      Invalid = true;
5434      continue;
5435    }
5436
5437    CXXCastPath BasePath;
5438    BasePath.push_back(Base);
5439
5440    // Construct the "from" expression, which is an implicit cast to the
5441    // appropriately-qualified base type.
5442    Expr *From = OtherRef;
5443    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5444                      CK_UncheckedDerivedToBase,
5445                      VK_LValue, &BasePath);
5446
5447    // Dereference "this".
5448    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5449
5450    // Implicitly cast "this" to the appropriately-qualified base type.
5451    Expr *ToE = To.takeAs<Expr>();
5452    ImpCastExprToType(ToE,
5453                      Context.getCVRQualifiedType(BaseType,
5454                                      CopyAssignOperator->getTypeQualifiers()),
5455                      CK_UncheckedDerivedToBase,
5456                      VK_LValue, &BasePath);
5457    To = Owned(ToE);
5458
5459    // Build the copy.
5460    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5461                                            To.get(), From,
5462                                            /*CopyingBaseSubobject=*/true);
5463    if (Copy.isInvalid()) {
5464      Diag(CurrentLocation, diag::note_member_synthesized_at)
5465        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5466      CopyAssignOperator->setInvalidDecl();
5467      return;
5468    }
5469
5470    // Success! Record the copy.
5471    Statements.push_back(Copy.takeAs<Expr>());
5472  }
5473
5474  // \brief Reference to the __builtin_memcpy function.
5475  Expr *BuiltinMemCpyRef = 0;
5476  // \brief Reference to the __builtin_objc_memmove_collectable function.
5477  Expr *CollectableMemCpyRef = 0;
5478
5479  // Assign non-static members.
5480  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5481                                  FieldEnd = ClassDecl->field_end();
5482       Field != FieldEnd; ++Field) {
5483    // Check for members of reference type; we can't copy those.
5484    if (Field->getType()->isReferenceType()) {
5485      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5486        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5487      Diag(Field->getLocation(), diag::note_declared_at);
5488      Diag(CurrentLocation, diag::note_member_synthesized_at)
5489        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5490      Invalid = true;
5491      continue;
5492    }
5493
5494    // Check for members of const-qualified, non-class type.
5495    QualType BaseType = Context.getBaseElementType(Field->getType());
5496    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5497      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5498        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5499      Diag(Field->getLocation(), diag::note_declared_at);
5500      Diag(CurrentLocation, diag::note_member_synthesized_at)
5501        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5502      Invalid = true;
5503      continue;
5504    }
5505
5506    QualType FieldType = Field->getType().getNonReferenceType();
5507    if (FieldType->isIncompleteArrayType()) {
5508      assert(ClassDecl->hasFlexibleArrayMember() &&
5509             "Incomplete array type is not valid");
5510      continue;
5511    }
5512
5513    // Build references to the field in the object we're copying from and to.
5514    CXXScopeSpec SS; // Intentionally empty
5515    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5516                              LookupMemberName);
5517    MemberLookup.addDecl(*Field);
5518    MemberLookup.resolveKind();
5519    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5520                                               Loc, /*IsArrow=*/false,
5521                                               SS, 0, MemberLookup, 0);
5522    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5523                                             Loc, /*IsArrow=*/true,
5524                                             SS, 0, MemberLookup, 0);
5525    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5526    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5527
5528    // If the field should be copied with __builtin_memcpy rather than via
5529    // explicit assignments, do so. This optimization only applies for arrays
5530    // of scalars and arrays of class type with trivial copy-assignment
5531    // operators.
5532    if (FieldType->isArrayType() &&
5533        (!BaseType->isRecordType() ||
5534         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5535           ->hasTrivialCopyAssignment())) {
5536      // Compute the size of the memory buffer to be copied.
5537      QualType SizeType = Context.getSizeType();
5538      llvm::APInt Size(Context.getTypeSize(SizeType),
5539                       Context.getTypeSizeInChars(BaseType).getQuantity());
5540      for (const ConstantArrayType *Array
5541              = Context.getAsConstantArrayType(FieldType);
5542           Array;
5543           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5544        llvm::APInt ArraySize
5545          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5546        Size *= ArraySize;
5547      }
5548
5549      // Take the address of the field references for "from" and "to".
5550      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5551      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5552
5553      bool NeedsCollectableMemCpy =
5554          (BaseType->isRecordType() &&
5555           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5556
5557      if (NeedsCollectableMemCpy) {
5558        if (!CollectableMemCpyRef) {
5559          // Create a reference to the __builtin_objc_memmove_collectable function.
5560          LookupResult R(*this,
5561                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5562                         Loc, LookupOrdinaryName);
5563          LookupName(R, TUScope, true);
5564
5565          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5566          if (!CollectableMemCpy) {
5567            // Something went horribly wrong earlier, and we will have
5568            // complained about it.
5569            Invalid = true;
5570            continue;
5571          }
5572
5573          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5574                                                  CollectableMemCpy->getType(),
5575                                                  VK_LValue, Loc, 0).take();
5576          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5577        }
5578      }
5579      // Create a reference to the __builtin_memcpy builtin function.
5580      else if (!BuiltinMemCpyRef) {
5581        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5582                       LookupOrdinaryName);
5583        LookupName(R, TUScope, true);
5584
5585        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5586        if (!BuiltinMemCpy) {
5587          // Something went horribly wrong earlier, and we will have complained
5588          // about it.
5589          Invalid = true;
5590          continue;
5591        }
5592
5593        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5594                                            BuiltinMemCpy->getType(),
5595                                            VK_LValue, Loc, 0).take();
5596        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5597      }
5598
5599      ASTOwningVector<Expr*> CallArgs(*this);
5600      CallArgs.push_back(To.takeAs<Expr>());
5601      CallArgs.push_back(From.takeAs<Expr>());
5602      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5603      ExprResult Call = ExprError();
5604      if (NeedsCollectableMemCpy)
5605        Call = ActOnCallExpr(/*Scope=*/0,
5606                             CollectableMemCpyRef,
5607                             Loc, move_arg(CallArgs),
5608                             Loc);
5609      else
5610        Call = ActOnCallExpr(/*Scope=*/0,
5611                             BuiltinMemCpyRef,
5612                             Loc, move_arg(CallArgs),
5613                             Loc);
5614
5615      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5616      Statements.push_back(Call.takeAs<Expr>());
5617      continue;
5618    }
5619
5620    // Build the copy of this field.
5621    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5622                                                  To.get(), From.get(),
5623                                              /*CopyingBaseSubobject=*/false);
5624    if (Copy.isInvalid()) {
5625      Diag(CurrentLocation, diag::note_member_synthesized_at)
5626        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5627      CopyAssignOperator->setInvalidDecl();
5628      return;
5629    }
5630
5631    // Success! Record the copy.
5632    Statements.push_back(Copy.takeAs<Stmt>());
5633  }
5634
5635  if (!Invalid) {
5636    // Add a "return *this;"
5637    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5638
5639    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5640    if (Return.isInvalid())
5641      Invalid = true;
5642    else {
5643      Statements.push_back(Return.takeAs<Stmt>());
5644
5645      if (Trap.hasErrorOccurred()) {
5646        Diag(CurrentLocation, diag::note_member_synthesized_at)
5647          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5648        Invalid = true;
5649      }
5650    }
5651  }
5652
5653  if (Invalid) {
5654    CopyAssignOperator->setInvalidDecl();
5655    return;
5656  }
5657
5658  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5659                                            /*isStmtExpr=*/false);
5660  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5661  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5662}
5663
5664CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5665                                                    CXXRecordDecl *ClassDecl) {
5666  // C++ [class.copy]p4:
5667  //   If the class definition does not explicitly declare a copy
5668  //   constructor, one is declared implicitly.
5669
5670  // C++ [class.copy]p5:
5671  //   The implicitly-declared copy constructor for a class X will
5672  //   have the form
5673  //
5674  //       X::X(const X&)
5675  //
5676  //   if
5677  bool HasConstCopyConstructor = true;
5678
5679  //     -- each direct or virtual base class B of X has a copy
5680  //        constructor whose first parameter is of type const B& or
5681  //        const volatile B&, and
5682  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5683                                       BaseEnd = ClassDecl->bases_end();
5684       HasConstCopyConstructor && Base != BaseEnd;
5685       ++Base) {
5686    // Virtual bases are handled below.
5687    if (Base->isVirtual())
5688      continue;
5689
5690    CXXRecordDecl *BaseClassDecl
5691      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5692    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5693      DeclareImplicitCopyConstructor(BaseClassDecl);
5694
5695    HasConstCopyConstructor
5696      = BaseClassDecl->hasConstCopyConstructor(Context);
5697  }
5698
5699  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5700                                       BaseEnd = ClassDecl->vbases_end();
5701       HasConstCopyConstructor && Base != BaseEnd;
5702       ++Base) {
5703    CXXRecordDecl *BaseClassDecl
5704      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5705    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5706      DeclareImplicitCopyConstructor(BaseClassDecl);
5707
5708    HasConstCopyConstructor
5709      = BaseClassDecl->hasConstCopyConstructor(Context);
5710  }
5711
5712  //     -- for all the nonstatic data members of X that are of a
5713  //        class type M (or array thereof), each such class type
5714  //        has a copy constructor whose first parameter is of type
5715  //        const M& or const volatile M&.
5716  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5717                                  FieldEnd = ClassDecl->field_end();
5718       HasConstCopyConstructor && Field != FieldEnd;
5719       ++Field) {
5720    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5721    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5722      CXXRecordDecl *FieldClassDecl
5723        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5724      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5725        DeclareImplicitCopyConstructor(FieldClassDecl);
5726
5727      HasConstCopyConstructor
5728        = FieldClassDecl->hasConstCopyConstructor(Context);
5729    }
5730  }
5731
5732  //   Otherwise, the implicitly declared copy constructor will have
5733  //   the form
5734  //
5735  //       X::X(X&)
5736  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5737  QualType ArgType = ClassType;
5738  if (HasConstCopyConstructor)
5739    ArgType = ArgType.withConst();
5740  ArgType = Context.getLValueReferenceType(ArgType);
5741
5742  // C++ [except.spec]p14:
5743  //   An implicitly declared special member function (Clause 12) shall have an
5744  //   exception-specification. [...]
5745  ImplicitExceptionSpecification ExceptSpec(Context);
5746  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5747  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5748                                       BaseEnd = ClassDecl->bases_end();
5749       Base != BaseEnd;
5750       ++Base) {
5751    // Virtual bases are handled below.
5752    if (Base->isVirtual())
5753      continue;
5754
5755    CXXRecordDecl *BaseClassDecl
5756      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5757    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5758      DeclareImplicitCopyConstructor(BaseClassDecl);
5759
5760    if (CXXConstructorDecl *CopyConstructor
5761                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5762      ExceptSpec.CalledDecl(CopyConstructor);
5763  }
5764  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5765                                       BaseEnd = ClassDecl->vbases_end();
5766       Base != BaseEnd;
5767       ++Base) {
5768    CXXRecordDecl *BaseClassDecl
5769      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5770    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5771      DeclareImplicitCopyConstructor(BaseClassDecl);
5772
5773    if (CXXConstructorDecl *CopyConstructor
5774                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5775      ExceptSpec.CalledDecl(CopyConstructor);
5776  }
5777  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5778                                  FieldEnd = ClassDecl->field_end();
5779       Field != FieldEnd;
5780       ++Field) {
5781    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5782    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5783      CXXRecordDecl *FieldClassDecl
5784        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5785      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5786        DeclareImplicitCopyConstructor(FieldClassDecl);
5787
5788      if (CXXConstructorDecl *CopyConstructor
5789                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5790        ExceptSpec.CalledDecl(CopyConstructor);
5791    }
5792  }
5793
5794  //   An implicitly-declared copy constructor is an inline public
5795  //   member of its class.
5796  FunctionProtoType::ExtProtoInfo EPI;
5797  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5798  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5799  EPI.NumExceptions = ExceptSpec.size();
5800  EPI.Exceptions = ExceptSpec.data();
5801  DeclarationName Name
5802    = Context.DeclarationNames.getCXXConstructorName(
5803                                           Context.getCanonicalType(ClassType));
5804  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5805  CXXConstructorDecl *CopyConstructor
5806    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5807                                 Context.getFunctionType(Context.VoidTy,
5808                                                         &ArgType, 1, EPI),
5809                                 /*TInfo=*/0,
5810                                 /*isExplicit=*/false,
5811                                 /*isInline=*/true,
5812                                 /*isImplicitlyDeclared=*/true);
5813  CopyConstructor->setAccess(AS_public);
5814  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5815
5816  // Note that we have declared this constructor.
5817  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5818
5819  // Add the parameter to the constructor.
5820  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5821                                               ClassDecl->getLocation(),
5822                                               /*IdentifierInfo=*/0,
5823                                               ArgType, /*TInfo=*/0,
5824                                               SC_None,
5825                                               SC_None, 0);
5826  CopyConstructor->setParams(&FromParam, 1);
5827  if (Scope *S = getScopeForContext(ClassDecl))
5828    PushOnScopeChains(CopyConstructor, S, false);
5829  ClassDecl->addDecl(CopyConstructor);
5830
5831  return CopyConstructor;
5832}
5833
5834void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5835                                   CXXConstructorDecl *CopyConstructor,
5836                                   unsigned TypeQuals) {
5837  assert((CopyConstructor->isImplicit() &&
5838          CopyConstructor->isCopyConstructor(TypeQuals) &&
5839          !CopyConstructor->isUsed(false)) &&
5840         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5841
5842  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5843  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5844
5845  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5846  DiagnosticErrorTrap Trap(Diags);
5847
5848  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5849      Trap.hasErrorOccurred()) {
5850    Diag(CurrentLocation, diag::note_member_synthesized_at)
5851      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5852    CopyConstructor->setInvalidDecl();
5853  }  else {
5854    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5855                                               CopyConstructor->getLocation(),
5856                                               MultiStmtArg(*this, 0, 0),
5857                                               /*isStmtExpr=*/false)
5858                                                              .takeAs<Stmt>());
5859  }
5860
5861  CopyConstructor->setUsed();
5862}
5863
5864ExprResult
5865Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5866                            CXXConstructorDecl *Constructor,
5867                            MultiExprArg ExprArgs,
5868                            bool RequiresZeroInit,
5869                            unsigned ConstructKind,
5870                            SourceRange ParenRange) {
5871  bool Elidable = false;
5872
5873  // C++0x [class.copy]p34:
5874  //   When certain criteria are met, an implementation is allowed to
5875  //   omit the copy/move construction of a class object, even if the
5876  //   copy/move constructor and/or destructor for the object have
5877  //   side effects. [...]
5878  //     - when a temporary class object that has not been bound to a
5879  //       reference (12.2) would be copied/moved to a class object
5880  //       with the same cv-unqualified type, the copy/move operation
5881  //       can be omitted by constructing the temporary object
5882  //       directly into the target of the omitted copy/move
5883  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5884      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5885    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5886    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5887  }
5888
5889  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5890                               Elidable, move(ExprArgs), RequiresZeroInit,
5891                               ConstructKind, ParenRange);
5892}
5893
5894/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5895/// including handling of its default argument expressions.
5896ExprResult
5897Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5898                            CXXConstructorDecl *Constructor, bool Elidable,
5899                            MultiExprArg ExprArgs,
5900                            bool RequiresZeroInit,
5901                            unsigned ConstructKind,
5902                            SourceRange ParenRange) {
5903  unsigned NumExprs = ExprArgs.size();
5904  Expr **Exprs = (Expr **)ExprArgs.release();
5905
5906  MarkDeclarationReferenced(ConstructLoc, Constructor);
5907  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5908                                        Constructor, Elidable, Exprs, NumExprs,
5909                                        RequiresZeroInit,
5910              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5911                                        ParenRange));
5912}
5913
5914bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5915                                        CXXConstructorDecl *Constructor,
5916                                        MultiExprArg Exprs) {
5917  // FIXME: Provide the correct paren SourceRange when available.
5918  ExprResult TempResult =
5919    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5920                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5921                          SourceRange());
5922  if (TempResult.isInvalid())
5923    return true;
5924
5925  Expr *Temp = TempResult.takeAs<Expr>();
5926  CheckImplicitConversions(Temp, VD->getLocation());
5927  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5928  Temp = MaybeCreateExprWithCleanups(Temp);
5929  VD->setInit(Temp);
5930
5931  return false;
5932}
5933
5934void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5935  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5936  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5937      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5938    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5939    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5940    CheckDestructorAccess(VD->getLocation(), Destructor,
5941                          PDiag(diag::err_access_dtor_var)
5942                            << VD->getDeclName()
5943                            << VD->getType());
5944
5945    // TODO: this should be re-enabled for static locals by !CXAAtExit
5946    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5947      Diag(VD->getLocation(), diag::warn_global_destructor);
5948  }
5949}
5950
5951/// AddCXXDirectInitializerToDecl - This action is called immediately after
5952/// ActOnDeclarator, when a C++ direct initializer is present.
5953/// e.g: "int x(1);"
5954void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5955                                         SourceLocation LParenLoc,
5956                                         MultiExprArg Exprs,
5957                                         SourceLocation RParenLoc,
5958                                         bool TypeMayContainAuto) {
5959  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5960
5961  // If there is no declaration, there was an error parsing it.  Just ignore
5962  // the initializer.
5963  if (RealDecl == 0)
5964    return;
5965
5966  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5967  if (!VDecl) {
5968    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5969    RealDecl->setInvalidDecl();
5970    return;
5971  }
5972
5973  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5974  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5975    VDecl->setParsingAutoInit(false);
5976
5977    // FIXME: n3225 doesn't actually seem to indicate this is ill-formed
5978    if (Exprs.size() > 1) {
5979      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
5980           diag::err_auto_var_init_multiple_expressions)
5981        << VDecl->getDeclName() << VDecl->getType()
5982        << VDecl->getSourceRange();
5983      RealDecl->setInvalidDecl();
5984      return;
5985    }
5986
5987    Expr *Init = Exprs.get()[0];
5988    QualType DeducedType;
5989    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
5990      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5991        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5992        << Init->getSourceRange();
5993      RealDecl->setInvalidDecl();
5994      return;
5995    }
5996    VDecl->setType(DeducedType);
5997
5998    // If this is a redeclaration, check that the type we just deduced matches
5999    // the previously declared type.
6000    if (VarDecl *Old = VDecl->getPreviousDeclaration())
6001      MergeVarDeclTypes(VDecl, Old);
6002  }
6003
6004  // We will represent direct-initialization similarly to copy-initialization:
6005  //    int x(1);  -as-> int x = 1;
6006  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6007  //
6008  // Clients that want to distinguish between the two forms, can check for
6009  // direct initializer using VarDecl::hasCXXDirectInitializer().
6010  // A major benefit is that clients that don't particularly care about which
6011  // exactly form was it (like the CodeGen) can handle both cases without
6012  // special case code.
6013
6014  // C++ 8.5p11:
6015  // The form of initialization (using parentheses or '=') is generally
6016  // insignificant, but does matter when the entity being initialized has a
6017  // class type.
6018
6019  if (!VDecl->getType()->isDependentType() &&
6020      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
6021                          diag::err_typecheck_decl_incomplete_type)) {
6022    VDecl->setInvalidDecl();
6023    return;
6024  }
6025
6026  // The variable can not have an abstract class type.
6027  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6028                             diag::err_abstract_type_in_decl,
6029                             AbstractVariableType))
6030    VDecl->setInvalidDecl();
6031
6032  const VarDecl *Def;
6033  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6034    Diag(VDecl->getLocation(), diag::err_redefinition)
6035    << VDecl->getDeclName();
6036    Diag(Def->getLocation(), diag::note_previous_definition);
6037    VDecl->setInvalidDecl();
6038    return;
6039  }
6040
6041  // C++ [class.static.data]p4
6042  //   If a static data member is of const integral or const
6043  //   enumeration type, its declaration in the class definition can
6044  //   specify a constant-initializer which shall be an integral
6045  //   constant expression (5.19). In that case, the member can appear
6046  //   in integral constant expressions. The member shall still be
6047  //   defined in a namespace scope if it is used in the program and the
6048  //   namespace scope definition shall not contain an initializer.
6049  //
6050  // We already performed a redefinition check above, but for static
6051  // data members we also need to check whether there was an in-class
6052  // declaration with an initializer.
6053  const VarDecl* PrevInit = 0;
6054  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6055    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6056    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6057    return;
6058  }
6059
6060  bool IsDependent = false;
6061  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6062    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6063      VDecl->setInvalidDecl();
6064      return;
6065    }
6066
6067    if (Exprs.get()[I]->isTypeDependent())
6068      IsDependent = true;
6069  }
6070
6071  // If either the declaration has a dependent type or if any of the
6072  // expressions is type-dependent, we represent the initialization
6073  // via a ParenListExpr for later use during template instantiation.
6074  if (VDecl->getType()->isDependentType() || IsDependent) {
6075    // Let clients know that initialization was done with a direct initializer.
6076    VDecl->setCXXDirectInitializer(true);
6077
6078    // Store the initialization expressions as a ParenListExpr.
6079    unsigned NumExprs = Exprs.size();
6080    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6081                                               (Expr **)Exprs.release(),
6082                                               NumExprs, RParenLoc));
6083    return;
6084  }
6085
6086  // Capture the variable that is being initialized and the style of
6087  // initialization.
6088  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6089
6090  // FIXME: Poor source location information.
6091  InitializationKind Kind
6092    = InitializationKind::CreateDirect(VDecl->getLocation(),
6093                                       LParenLoc, RParenLoc);
6094
6095  InitializationSequence InitSeq(*this, Entity, Kind,
6096                                 Exprs.get(), Exprs.size());
6097  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6098  if (Result.isInvalid()) {
6099    VDecl->setInvalidDecl();
6100    return;
6101  }
6102
6103  CheckImplicitConversions(Result.get(), LParenLoc);
6104
6105  Result = MaybeCreateExprWithCleanups(Result);
6106  VDecl->setInit(Result.takeAs<Expr>());
6107  VDecl->setCXXDirectInitializer(true);
6108
6109  CheckCompleteVariableDeclaration(VDecl);
6110}
6111
6112/// \brief Given a constructor and the set of arguments provided for the
6113/// constructor, convert the arguments and add any required default arguments
6114/// to form a proper call to this constructor.
6115///
6116/// \returns true if an error occurred, false otherwise.
6117bool
6118Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6119                              MultiExprArg ArgsPtr,
6120                              SourceLocation Loc,
6121                              ASTOwningVector<Expr*> &ConvertedArgs) {
6122  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6123  unsigned NumArgs = ArgsPtr.size();
6124  Expr **Args = (Expr **)ArgsPtr.get();
6125
6126  const FunctionProtoType *Proto
6127    = Constructor->getType()->getAs<FunctionProtoType>();
6128  assert(Proto && "Constructor without a prototype?");
6129  unsigned NumArgsInProto = Proto->getNumArgs();
6130
6131  // If too few arguments are available, we'll fill in the rest with defaults.
6132  if (NumArgs < NumArgsInProto)
6133    ConvertedArgs.reserve(NumArgsInProto);
6134  else
6135    ConvertedArgs.reserve(NumArgs);
6136
6137  VariadicCallType CallType =
6138    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6139  llvm::SmallVector<Expr *, 8> AllArgs;
6140  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6141                                        Proto, 0, Args, NumArgs, AllArgs,
6142                                        CallType);
6143  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6144    ConvertedArgs.push_back(AllArgs[i]);
6145  return Invalid;
6146}
6147
6148static inline bool
6149CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6150                                       const FunctionDecl *FnDecl) {
6151  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6152  if (isa<NamespaceDecl>(DC)) {
6153    return SemaRef.Diag(FnDecl->getLocation(),
6154                        diag::err_operator_new_delete_declared_in_namespace)
6155      << FnDecl->getDeclName();
6156  }
6157
6158  if (isa<TranslationUnitDecl>(DC) &&
6159      FnDecl->getStorageClass() == SC_Static) {
6160    return SemaRef.Diag(FnDecl->getLocation(),
6161                        diag::err_operator_new_delete_declared_static)
6162      << FnDecl->getDeclName();
6163  }
6164
6165  return false;
6166}
6167
6168static inline bool
6169CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6170                            CanQualType ExpectedResultType,
6171                            CanQualType ExpectedFirstParamType,
6172                            unsigned DependentParamTypeDiag,
6173                            unsigned InvalidParamTypeDiag) {
6174  QualType ResultType =
6175    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6176
6177  // Check that the result type is not dependent.
6178  if (ResultType->isDependentType())
6179    return SemaRef.Diag(FnDecl->getLocation(),
6180                        diag::err_operator_new_delete_dependent_result_type)
6181    << FnDecl->getDeclName() << ExpectedResultType;
6182
6183  // Check that the result type is what we expect.
6184  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6185    return SemaRef.Diag(FnDecl->getLocation(),
6186                        diag::err_operator_new_delete_invalid_result_type)
6187    << FnDecl->getDeclName() << ExpectedResultType;
6188
6189  // A function template must have at least 2 parameters.
6190  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6191    return SemaRef.Diag(FnDecl->getLocation(),
6192                      diag::err_operator_new_delete_template_too_few_parameters)
6193        << FnDecl->getDeclName();
6194
6195  // The function decl must have at least 1 parameter.
6196  if (FnDecl->getNumParams() == 0)
6197    return SemaRef.Diag(FnDecl->getLocation(),
6198                        diag::err_operator_new_delete_too_few_parameters)
6199      << FnDecl->getDeclName();
6200
6201  // Check the the first parameter type is not dependent.
6202  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6203  if (FirstParamType->isDependentType())
6204    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6205      << FnDecl->getDeclName() << ExpectedFirstParamType;
6206
6207  // Check that the first parameter type is what we expect.
6208  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6209      ExpectedFirstParamType)
6210    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6211    << FnDecl->getDeclName() << ExpectedFirstParamType;
6212
6213  return false;
6214}
6215
6216static bool
6217CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6218  // C++ [basic.stc.dynamic.allocation]p1:
6219  //   A program is ill-formed if an allocation function is declared in a
6220  //   namespace scope other than global scope or declared static in global
6221  //   scope.
6222  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6223    return true;
6224
6225  CanQualType SizeTy =
6226    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6227
6228  // C++ [basic.stc.dynamic.allocation]p1:
6229  //  The return type shall be void*. The first parameter shall have type
6230  //  std::size_t.
6231  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6232                                  SizeTy,
6233                                  diag::err_operator_new_dependent_param_type,
6234                                  diag::err_operator_new_param_type))
6235    return true;
6236
6237  // C++ [basic.stc.dynamic.allocation]p1:
6238  //  The first parameter shall not have an associated default argument.
6239  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6240    return SemaRef.Diag(FnDecl->getLocation(),
6241                        diag::err_operator_new_default_arg)
6242      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6243
6244  return false;
6245}
6246
6247static bool
6248CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6249  // C++ [basic.stc.dynamic.deallocation]p1:
6250  //   A program is ill-formed if deallocation functions are declared in a
6251  //   namespace scope other than global scope or declared static in global
6252  //   scope.
6253  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6254    return true;
6255
6256  // C++ [basic.stc.dynamic.deallocation]p2:
6257  //   Each deallocation function shall return void and its first parameter
6258  //   shall be void*.
6259  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6260                                  SemaRef.Context.VoidPtrTy,
6261                                 diag::err_operator_delete_dependent_param_type,
6262                                 diag::err_operator_delete_param_type))
6263    return true;
6264
6265  return false;
6266}
6267
6268/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6269/// of this overloaded operator is well-formed. If so, returns false;
6270/// otherwise, emits appropriate diagnostics and returns true.
6271bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6272  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6273         "Expected an overloaded operator declaration");
6274
6275  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6276
6277  // C++ [over.oper]p5:
6278  //   The allocation and deallocation functions, operator new,
6279  //   operator new[], operator delete and operator delete[], are
6280  //   described completely in 3.7.3. The attributes and restrictions
6281  //   found in the rest of this subclause do not apply to them unless
6282  //   explicitly stated in 3.7.3.
6283  if (Op == OO_Delete || Op == OO_Array_Delete)
6284    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6285
6286  if (Op == OO_New || Op == OO_Array_New)
6287    return CheckOperatorNewDeclaration(*this, FnDecl);
6288
6289  // C++ [over.oper]p6:
6290  //   An operator function shall either be a non-static member
6291  //   function or be a non-member function and have at least one
6292  //   parameter whose type is a class, a reference to a class, an
6293  //   enumeration, or a reference to an enumeration.
6294  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6295    if (MethodDecl->isStatic())
6296      return Diag(FnDecl->getLocation(),
6297                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6298  } else {
6299    bool ClassOrEnumParam = false;
6300    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6301                                   ParamEnd = FnDecl->param_end();
6302         Param != ParamEnd; ++Param) {
6303      QualType ParamType = (*Param)->getType().getNonReferenceType();
6304      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6305          ParamType->isEnumeralType()) {
6306        ClassOrEnumParam = true;
6307        break;
6308      }
6309    }
6310
6311    if (!ClassOrEnumParam)
6312      return Diag(FnDecl->getLocation(),
6313                  diag::err_operator_overload_needs_class_or_enum)
6314        << FnDecl->getDeclName();
6315  }
6316
6317  // C++ [over.oper]p8:
6318  //   An operator function cannot have default arguments (8.3.6),
6319  //   except where explicitly stated below.
6320  //
6321  // Only the function-call operator allows default arguments
6322  // (C++ [over.call]p1).
6323  if (Op != OO_Call) {
6324    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6325         Param != FnDecl->param_end(); ++Param) {
6326      if ((*Param)->hasDefaultArg())
6327        return Diag((*Param)->getLocation(),
6328                    diag::err_operator_overload_default_arg)
6329          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6330    }
6331  }
6332
6333  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6334    { false, false, false }
6335#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6336    , { Unary, Binary, MemberOnly }
6337#include "clang/Basic/OperatorKinds.def"
6338  };
6339
6340  bool CanBeUnaryOperator = OperatorUses[Op][0];
6341  bool CanBeBinaryOperator = OperatorUses[Op][1];
6342  bool MustBeMemberOperator = OperatorUses[Op][2];
6343
6344  // C++ [over.oper]p8:
6345  //   [...] Operator functions cannot have more or fewer parameters
6346  //   than the number required for the corresponding operator, as
6347  //   described in the rest of this subclause.
6348  unsigned NumParams = FnDecl->getNumParams()
6349                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6350  if (Op != OO_Call &&
6351      ((NumParams == 1 && !CanBeUnaryOperator) ||
6352       (NumParams == 2 && !CanBeBinaryOperator) ||
6353       (NumParams < 1) || (NumParams > 2))) {
6354    // We have the wrong number of parameters.
6355    unsigned ErrorKind;
6356    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6357      ErrorKind = 2;  // 2 -> unary or binary.
6358    } else if (CanBeUnaryOperator) {
6359      ErrorKind = 0;  // 0 -> unary
6360    } else {
6361      assert(CanBeBinaryOperator &&
6362             "All non-call overloaded operators are unary or binary!");
6363      ErrorKind = 1;  // 1 -> binary
6364    }
6365
6366    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6367      << FnDecl->getDeclName() << NumParams << ErrorKind;
6368  }
6369
6370  // Overloaded operators other than operator() cannot be variadic.
6371  if (Op != OO_Call &&
6372      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6373    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6374      << FnDecl->getDeclName();
6375  }
6376
6377  // Some operators must be non-static member functions.
6378  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6379    return Diag(FnDecl->getLocation(),
6380                diag::err_operator_overload_must_be_member)
6381      << FnDecl->getDeclName();
6382  }
6383
6384  // C++ [over.inc]p1:
6385  //   The user-defined function called operator++ implements the
6386  //   prefix and postfix ++ operator. If this function is a member
6387  //   function with no parameters, or a non-member function with one
6388  //   parameter of class or enumeration type, it defines the prefix
6389  //   increment operator ++ for objects of that type. If the function
6390  //   is a member function with one parameter (which shall be of type
6391  //   int) or a non-member function with two parameters (the second
6392  //   of which shall be of type int), it defines the postfix
6393  //   increment operator ++ for objects of that type.
6394  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6395    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6396    bool ParamIsInt = false;
6397    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6398      ParamIsInt = BT->getKind() == BuiltinType::Int;
6399
6400    if (!ParamIsInt)
6401      return Diag(LastParam->getLocation(),
6402                  diag::err_operator_overload_post_incdec_must_be_int)
6403        << LastParam->getType() << (Op == OO_MinusMinus);
6404  }
6405
6406  return false;
6407}
6408
6409/// CheckLiteralOperatorDeclaration - Check whether the declaration
6410/// of this literal operator function is well-formed. If so, returns
6411/// false; otherwise, emits appropriate diagnostics and returns true.
6412bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6413  DeclContext *DC = FnDecl->getDeclContext();
6414  Decl::Kind Kind = DC->getDeclKind();
6415  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6416      Kind != Decl::LinkageSpec) {
6417    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6418      << FnDecl->getDeclName();
6419    return true;
6420  }
6421
6422  bool Valid = false;
6423
6424  // template <char...> type operator "" name() is the only valid template
6425  // signature, and the only valid signature with no parameters.
6426  if (FnDecl->param_size() == 0) {
6427    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6428      // Must have only one template parameter
6429      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6430      if (Params->size() == 1) {
6431        NonTypeTemplateParmDecl *PmDecl =
6432          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6433
6434        // The template parameter must be a char parameter pack.
6435        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6436            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6437          Valid = true;
6438      }
6439    }
6440  } else {
6441    // Check the first parameter
6442    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6443
6444    QualType T = (*Param)->getType();
6445
6446    // unsigned long long int, long double, and any character type are allowed
6447    // as the only parameters.
6448    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6449        Context.hasSameType(T, Context.LongDoubleTy) ||
6450        Context.hasSameType(T, Context.CharTy) ||
6451        Context.hasSameType(T, Context.WCharTy) ||
6452        Context.hasSameType(T, Context.Char16Ty) ||
6453        Context.hasSameType(T, Context.Char32Ty)) {
6454      if (++Param == FnDecl->param_end())
6455        Valid = true;
6456      goto FinishedParams;
6457    }
6458
6459    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6460    const PointerType *PT = T->getAs<PointerType>();
6461    if (!PT)
6462      goto FinishedParams;
6463    T = PT->getPointeeType();
6464    if (!T.isConstQualified())
6465      goto FinishedParams;
6466    T = T.getUnqualifiedType();
6467
6468    // Move on to the second parameter;
6469    ++Param;
6470
6471    // If there is no second parameter, the first must be a const char *
6472    if (Param == FnDecl->param_end()) {
6473      if (Context.hasSameType(T, Context.CharTy))
6474        Valid = true;
6475      goto FinishedParams;
6476    }
6477
6478    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6479    // are allowed as the first parameter to a two-parameter function
6480    if (!(Context.hasSameType(T, Context.CharTy) ||
6481          Context.hasSameType(T, Context.WCharTy) ||
6482          Context.hasSameType(T, Context.Char16Ty) ||
6483          Context.hasSameType(T, Context.Char32Ty)))
6484      goto FinishedParams;
6485
6486    // The second and final parameter must be an std::size_t
6487    T = (*Param)->getType().getUnqualifiedType();
6488    if (Context.hasSameType(T, Context.getSizeType()) &&
6489        ++Param == FnDecl->param_end())
6490      Valid = true;
6491  }
6492
6493  // FIXME: This diagnostic is absolutely terrible.
6494FinishedParams:
6495  if (!Valid) {
6496    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6497      << FnDecl->getDeclName();
6498    return true;
6499  }
6500
6501  return false;
6502}
6503
6504/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6505/// linkage specification, including the language and (if present)
6506/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6507/// the location of the language string literal, which is provided
6508/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6509/// the '{' brace. Otherwise, this linkage specification does not
6510/// have any braces.
6511Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6512                                           SourceLocation LangLoc,
6513                                           llvm::StringRef Lang,
6514                                           SourceLocation LBraceLoc) {
6515  LinkageSpecDecl::LanguageIDs Language;
6516  if (Lang == "\"C\"")
6517    Language = LinkageSpecDecl::lang_c;
6518  else if (Lang == "\"C++\"")
6519    Language = LinkageSpecDecl::lang_cxx;
6520  else {
6521    Diag(LangLoc, diag::err_bad_language);
6522    return 0;
6523  }
6524
6525  // FIXME: Add all the various semantics of linkage specifications
6526
6527  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6528                                               LangLoc, Language,
6529                                               LBraceLoc.isValid());
6530  CurContext->addDecl(D);
6531  PushDeclContext(S, D);
6532  return D;
6533}
6534
6535/// ActOnFinishLinkageSpecification - Complete the definition of
6536/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6537/// valid, it's the position of the closing '}' brace in a linkage
6538/// specification that uses braces.
6539Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6540                                                      Decl *LinkageSpec,
6541                                                      SourceLocation RBraceLoc) {
6542  if (LinkageSpec)
6543    PopDeclContext();
6544  return LinkageSpec;
6545}
6546
6547/// \brief Perform semantic analysis for the variable declaration that
6548/// occurs within a C++ catch clause, returning the newly-created
6549/// variable.
6550VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6551                                         TypeSourceInfo *TInfo,
6552                                         IdentifierInfo *Name,
6553                                         SourceLocation Loc) {
6554  bool Invalid = false;
6555  QualType ExDeclType = TInfo->getType();
6556
6557  // Arrays and functions decay.
6558  if (ExDeclType->isArrayType())
6559    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6560  else if (ExDeclType->isFunctionType())
6561    ExDeclType = Context.getPointerType(ExDeclType);
6562
6563  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6564  // The exception-declaration shall not denote a pointer or reference to an
6565  // incomplete type, other than [cv] void*.
6566  // N2844 forbids rvalue references.
6567  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6568    Diag(Loc, diag::err_catch_rvalue_ref);
6569    Invalid = true;
6570  }
6571
6572  // GCC allows catching pointers and references to incomplete types
6573  // as an extension; so do we, but we warn by default.
6574
6575  QualType BaseType = ExDeclType;
6576  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6577  unsigned DK = diag::err_catch_incomplete;
6578  bool IncompleteCatchIsInvalid = true;
6579  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6580    BaseType = Ptr->getPointeeType();
6581    Mode = 1;
6582    DK = diag::ext_catch_incomplete_ptr;
6583    IncompleteCatchIsInvalid = false;
6584  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6585    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6586    BaseType = Ref->getPointeeType();
6587    Mode = 2;
6588    DK = diag::ext_catch_incomplete_ref;
6589    IncompleteCatchIsInvalid = false;
6590  }
6591  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6592      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6593      IncompleteCatchIsInvalid)
6594    Invalid = true;
6595
6596  if (!Invalid && !ExDeclType->isDependentType() &&
6597      RequireNonAbstractType(Loc, ExDeclType,
6598                             diag::err_abstract_type_in_decl,
6599                             AbstractVariableType))
6600    Invalid = true;
6601
6602  // Only the non-fragile NeXT runtime currently supports C++ catches
6603  // of ObjC types, and no runtime supports catching ObjC types by value.
6604  if (!Invalid && getLangOptions().ObjC1) {
6605    QualType T = ExDeclType;
6606    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6607      T = RT->getPointeeType();
6608
6609    if (T->isObjCObjectType()) {
6610      Diag(Loc, diag::err_objc_object_catch);
6611      Invalid = true;
6612    } else if (T->isObjCObjectPointerType()) {
6613      if (!getLangOptions().NeXTRuntime) {
6614        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6615        Invalid = true;
6616      } else if (!getLangOptions().ObjCNonFragileABI) {
6617        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6618        Invalid = true;
6619      }
6620    }
6621  }
6622
6623  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6624                                    Name, ExDeclType, TInfo, SC_None,
6625                                    SC_None);
6626  ExDecl->setExceptionVariable(true);
6627
6628  if (!Invalid) {
6629    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
6630      // C++ [except.handle]p16:
6631      //   The object declared in an exception-declaration or, if the
6632      //   exception-declaration does not specify a name, a temporary (12.2) is
6633      //   copy-initialized (8.5) from the exception object. [...]
6634      //   The object is destroyed when the handler exits, after the destruction
6635      //   of any automatic objects initialized within the handler.
6636      //
6637      // We just pretend to initialize the object with itself, then make sure
6638      // it can be destroyed later.
6639      QualType initType = ExDeclType;
6640
6641      InitializedEntity entity =
6642        InitializedEntity::InitializeVariable(ExDecl);
6643      InitializationKind initKind =
6644        InitializationKind::CreateCopy(Loc, SourceLocation());
6645
6646      Expr *opaqueValue =
6647        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
6648      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
6649      ExprResult result = sequence.Perform(*this, entity, initKind,
6650                                           MultiExprArg(&opaqueValue, 1));
6651      if (result.isInvalid())
6652        Invalid = true;
6653      else {
6654        // If the constructor used was non-trivial, set this as the
6655        // "initializer".
6656        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
6657        if (!construct->getConstructor()->isTrivial()) {
6658          Expr *init = MaybeCreateExprWithCleanups(construct);
6659          ExDecl->setInit(init);
6660        }
6661
6662        // And make sure it's destructable.
6663        FinalizeVarWithDestructor(ExDecl, recordType);
6664      }
6665    }
6666  }
6667
6668  if (Invalid)
6669    ExDecl->setInvalidDecl();
6670
6671  return ExDecl;
6672}
6673
6674/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6675/// handler.
6676Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6677  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6678  bool Invalid = D.isInvalidType();
6679
6680  // Check for unexpanded parameter packs.
6681  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6682                                               UPPC_ExceptionType)) {
6683    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6684                                             D.getIdentifierLoc());
6685    Invalid = true;
6686  }
6687
6688  IdentifierInfo *II = D.getIdentifier();
6689  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6690                                             LookupOrdinaryName,
6691                                             ForRedeclaration)) {
6692    // The scope should be freshly made just for us. There is just no way
6693    // it contains any previous declaration.
6694    assert(!S->isDeclScope(PrevDecl));
6695    if (PrevDecl->isTemplateParameter()) {
6696      // Maybe we will complain about the shadowed template parameter.
6697      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6698    }
6699  }
6700
6701  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6702    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6703      << D.getCXXScopeSpec().getRange();
6704    Invalid = true;
6705  }
6706
6707  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6708                                              D.getIdentifier(),
6709                                              D.getIdentifierLoc());
6710
6711  if (Invalid)
6712    ExDecl->setInvalidDecl();
6713
6714  // Add the exception declaration into this scope.
6715  if (II)
6716    PushOnScopeChains(ExDecl, S);
6717  else
6718    CurContext->addDecl(ExDecl);
6719
6720  ProcessDeclAttributes(S, ExDecl, D);
6721  return ExDecl;
6722}
6723
6724Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6725                                         Expr *AssertExpr,
6726                                         Expr *AssertMessageExpr_) {
6727  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6728
6729  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6730    llvm::APSInt Value(32);
6731    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6732      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6733        AssertExpr->getSourceRange();
6734      return 0;
6735    }
6736
6737    if (Value == 0) {
6738      Diag(AssertLoc, diag::err_static_assert_failed)
6739        << AssertMessage->getString() << AssertExpr->getSourceRange();
6740    }
6741  }
6742
6743  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6744    return 0;
6745
6746  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6747                                        AssertExpr, AssertMessage);
6748
6749  CurContext->addDecl(Decl);
6750  return Decl;
6751}
6752
6753/// \brief Perform semantic analysis of the given friend type declaration.
6754///
6755/// \returns A friend declaration that.
6756FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6757                                      TypeSourceInfo *TSInfo) {
6758  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6759
6760  QualType T = TSInfo->getType();
6761  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6762
6763  if (!getLangOptions().CPlusPlus0x) {
6764    // C++03 [class.friend]p2:
6765    //   An elaborated-type-specifier shall be used in a friend declaration
6766    //   for a class.*
6767    //
6768    //   * The class-key of the elaborated-type-specifier is required.
6769    if (!ActiveTemplateInstantiations.empty()) {
6770      // Do not complain about the form of friend template types during
6771      // template instantiation; we will already have complained when the
6772      // template was declared.
6773    } else if (!T->isElaboratedTypeSpecifier()) {
6774      // If we evaluated the type to a record type, suggest putting
6775      // a tag in front.
6776      if (const RecordType *RT = T->getAs<RecordType>()) {
6777        RecordDecl *RD = RT->getDecl();
6778
6779        std::string InsertionText = std::string(" ") + RD->getKindName();
6780
6781        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6782          << (unsigned) RD->getTagKind()
6783          << T
6784          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6785                                        InsertionText);
6786      } else {
6787        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6788          << T
6789          << SourceRange(FriendLoc, TypeRange.getEnd());
6790      }
6791    } else if (T->getAs<EnumType>()) {
6792      Diag(FriendLoc, diag::ext_enum_friend)
6793        << T
6794        << SourceRange(FriendLoc, TypeRange.getEnd());
6795    }
6796  }
6797
6798  // C++0x [class.friend]p3:
6799  //   If the type specifier in a friend declaration designates a (possibly
6800  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6801  //   the friend declaration is ignored.
6802
6803  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6804  // in [class.friend]p3 that we do not implement.
6805
6806  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6807}
6808
6809/// Handle a friend tag declaration where the scope specifier was
6810/// templated.
6811Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6812                                    unsigned TagSpec, SourceLocation TagLoc,
6813                                    CXXScopeSpec &SS,
6814                                    IdentifierInfo *Name, SourceLocation NameLoc,
6815                                    AttributeList *Attr,
6816                                    MultiTemplateParamsArg TempParamLists) {
6817  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6818
6819  bool isExplicitSpecialization = false;
6820  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6821  bool Invalid = false;
6822
6823  if (TemplateParameterList *TemplateParams
6824        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6825                                                  TempParamLists.get(),
6826                                                  TempParamLists.size(),
6827                                                  /*friend*/ true,
6828                                                  isExplicitSpecialization,
6829                                                  Invalid)) {
6830    --NumMatchedTemplateParamLists;
6831
6832    if (TemplateParams->size() > 0) {
6833      // This is a declaration of a class template.
6834      if (Invalid)
6835        return 0;
6836
6837      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6838                                SS, Name, NameLoc, Attr,
6839                                TemplateParams, AS_public).take();
6840    } else {
6841      // The "template<>" header is extraneous.
6842      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6843        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6844      isExplicitSpecialization = true;
6845    }
6846  }
6847
6848  if (Invalid) return 0;
6849
6850  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6851
6852  bool isAllExplicitSpecializations = true;
6853  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6854    if (TempParamLists.get()[I]->size()) {
6855      isAllExplicitSpecializations = false;
6856      break;
6857    }
6858  }
6859
6860  // FIXME: don't ignore attributes.
6861
6862  // If it's explicit specializations all the way down, just forget
6863  // about the template header and build an appropriate non-templated
6864  // friend.  TODO: for source fidelity, remember the headers.
6865  if (isAllExplicitSpecializations) {
6866    ElaboratedTypeKeyword Keyword
6867      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6868    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6869                                   TagLoc, SS.getRange(), NameLoc);
6870    if (T.isNull())
6871      return 0;
6872
6873    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6874    if (isa<DependentNameType>(T)) {
6875      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6876      TL.setKeywordLoc(TagLoc);
6877      TL.setQualifierRange(SS.getRange());
6878      TL.setNameLoc(NameLoc);
6879    } else {
6880      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6881      TL.setKeywordLoc(TagLoc);
6882      TL.setQualifierRange(SS.getRange());
6883      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6884    }
6885
6886    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6887                                            TSI, FriendLoc);
6888    Friend->setAccess(AS_public);
6889    CurContext->addDecl(Friend);
6890    return Friend;
6891  }
6892
6893  // Handle the case of a templated-scope friend class.  e.g.
6894  //   template <class T> class A<T>::B;
6895  // FIXME: we don't support these right now.
6896  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6897  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6898  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6899  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6900  TL.setKeywordLoc(TagLoc);
6901  TL.setQualifierRange(SS.getRange());
6902  TL.setNameLoc(NameLoc);
6903
6904  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6905                                          TSI, FriendLoc);
6906  Friend->setAccess(AS_public);
6907  Friend->setUnsupportedFriend(true);
6908  CurContext->addDecl(Friend);
6909  return Friend;
6910}
6911
6912
6913/// Handle a friend type declaration.  This works in tandem with
6914/// ActOnTag.
6915///
6916/// Notes on friend class templates:
6917///
6918/// We generally treat friend class declarations as if they were
6919/// declaring a class.  So, for example, the elaborated type specifier
6920/// in a friend declaration is required to obey the restrictions of a
6921/// class-head (i.e. no typedefs in the scope chain), template
6922/// parameters are required to match up with simple template-ids, &c.
6923/// However, unlike when declaring a template specialization, it's
6924/// okay to refer to a template specialization without an empty
6925/// template parameter declaration, e.g.
6926///   friend class A<T>::B<unsigned>;
6927/// We permit this as a special case; if there are any template
6928/// parameters present at all, require proper matching, i.e.
6929///   template <> template <class T> friend class A<int>::B;
6930Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6931                                MultiTemplateParamsArg TempParams) {
6932  SourceLocation Loc = DS.getSourceRange().getBegin();
6933
6934  assert(DS.isFriendSpecified());
6935  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6936
6937  // Try to convert the decl specifier to a type.  This works for
6938  // friend templates because ActOnTag never produces a ClassTemplateDecl
6939  // for a TUK_Friend.
6940  Declarator TheDeclarator(DS, Declarator::MemberContext);
6941  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6942  QualType T = TSI->getType();
6943  if (TheDeclarator.isInvalidType())
6944    return 0;
6945
6946  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6947    return 0;
6948
6949  // This is definitely an error in C++98.  It's probably meant to
6950  // be forbidden in C++0x, too, but the specification is just
6951  // poorly written.
6952  //
6953  // The problem is with declarations like the following:
6954  //   template <T> friend A<T>::foo;
6955  // where deciding whether a class C is a friend or not now hinges
6956  // on whether there exists an instantiation of A that causes
6957  // 'foo' to equal C.  There are restrictions on class-heads
6958  // (which we declare (by fiat) elaborated friend declarations to
6959  // be) that makes this tractable.
6960  //
6961  // FIXME: handle "template <> friend class A<T>;", which
6962  // is possibly well-formed?  Who even knows?
6963  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6964    Diag(Loc, diag::err_tagless_friend_type_template)
6965      << DS.getSourceRange();
6966    return 0;
6967  }
6968
6969  // C++98 [class.friend]p1: A friend of a class is a function
6970  //   or class that is not a member of the class . . .
6971  // This is fixed in DR77, which just barely didn't make the C++03
6972  // deadline.  It's also a very silly restriction that seriously
6973  // affects inner classes and which nobody else seems to implement;
6974  // thus we never diagnose it, not even in -pedantic.
6975  //
6976  // But note that we could warn about it: it's always useless to
6977  // friend one of your own members (it's not, however, worthless to
6978  // friend a member of an arbitrary specialization of your template).
6979
6980  Decl *D;
6981  if (unsigned NumTempParamLists = TempParams.size())
6982    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6983                                   NumTempParamLists,
6984                                   TempParams.release(),
6985                                   TSI,
6986                                   DS.getFriendSpecLoc());
6987  else
6988    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6989
6990  if (!D)
6991    return 0;
6992
6993  D->setAccess(AS_public);
6994  CurContext->addDecl(D);
6995
6996  return D;
6997}
6998
6999Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
7000                                    MultiTemplateParamsArg TemplateParams) {
7001  const DeclSpec &DS = D.getDeclSpec();
7002
7003  assert(DS.isFriendSpecified());
7004  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
7005
7006  SourceLocation Loc = D.getIdentifierLoc();
7007  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7008  QualType T = TInfo->getType();
7009
7010  // C++ [class.friend]p1
7011  //   A friend of a class is a function or class....
7012  // Note that this sees through typedefs, which is intended.
7013  // It *doesn't* see through dependent types, which is correct
7014  // according to [temp.arg.type]p3:
7015  //   If a declaration acquires a function type through a
7016  //   type dependent on a template-parameter and this causes
7017  //   a declaration that does not use the syntactic form of a
7018  //   function declarator to have a function type, the program
7019  //   is ill-formed.
7020  if (!T->isFunctionType()) {
7021    Diag(Loc, diag::err_unexpected_friend);
7022
7023    // It might be worthwhile to try to recover by creating an
7024    // appropriate declaration.
7025    return 0;
7026  }
7027
7028  // C++ [namespace.memdef]p3
7029  //  - If a friend declaration in a non-local class first declares a
7030  //    class or function, the friend class or function is a member
7031  //    of the innermost enclosing namespace.
7032  //  - The name of the friend is not found by simple name lookup
7033  //    until a matching declaration is provided in that namespace
7034  //    scope (either before or after the class declaration granting
7035  //    friendship).
7036  //  - If a friend function is called, its name may be found by the
7037  //    name lookup that considers functions from namespaces and
7038  //    classes associated with the types of the function arguments.
7039  //  - When looking for a prior declaration of a class or a function
7040  //    declared as a friend, scopes outside the innermost enclosing
7041  //    namespace scope are not considered.
7042
7043  CXXScopeSpec &SS = D.getCXXScopeSpec();
7044  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7045  DeclarationName Name = NameInfo.getName();
7046  assert(Name);
7047
7048  // Check for unexpanded parameter packs.
7049  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7050      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7051      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7052    return 0;
7053
7054  // The context we found the declaration in, or in which we should
7055  // create the declaration.
7056  DeclContext *DC;
7057  Scope *DCScope = S;
7058  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7059                        ForRedeclaration);
7060
7061  // FIXME: there are different rules in local classes
7062
7063  // There are four cases here.
7064  //   - There's no scope specifier, in which case we just go to the
7065  //     appropriate scope and look for a function or function template
7066  //     there as appropriate.
7067  // Recover from invalid scope qualifiers as if they just weren't there.
7068  if (SS.isInvalid() || !SS.isSet()) {
7069    // C++0x [namespace.memdef]p3:
7070    //   If the name in a friend declaration is neither qualified nor
7071    //   a template-id and the declaration is a function or an
7072    //   elaborated-type-specifier, the lookup to determine whether
7073    //   the entity has been previously declared shall not consider
7074    //   any scopes outside the innermost enclosing namespace.
7075    // C++0x [class.friend]p11:
7076    //   If a friend declaration appears in a local class and the name
7077    //   specified is an unqualified name, a prior declaration is
7078    //   looked up without considering scopes that are outside the
7079    //   innermost enclosing non-class scope. For a friend function
7080    //   declaration, if there is no prior declaration, the program is
7081    //   ill-formed.
7082    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7083    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7084
7085    // Find the appropriate context according to the above.
7086    DC = CurContext;
7087    while (true) {
7088      // Skip class contexts.  If someone can cite chapter and verse
7089      // for this behavior, that would be nice --- it's what GCC and
7090      // EDG do, and it seems like a reasonable intent, but the spec
7091      // really only says that checks for unqualified existing
7092      // declarations should stop at the nearest enclosing namespace,
7093      // not that they should only consider the nearest enclosing
7094      // namespace.
7095      while (DC->isRecord())
7096        DC = DC->getParent();
7097
7098      LookupQualifiedName(Previous, DC);
7099
7100      // TODO: decide what we think about using declarations.
7101      if (isLocal || !Previous.empty())
7102        break;
7103
7104      if (isTemplateId) {
7105        if (isa<TranslationUnitDecl>(DC)) break;
7106      } else {
7107        if (DC->isFileContext()) break;
7108      }
7109      DC = DC->getParent();
7110    }
7111
7112    // C++ [class.friend]p1: A friend of a class is a function or
7113    //   class that is not a member of the class . . .
7114    // C++0x changes this for both friend types and functions.
7115    // Most C++ 98 compilers do seem to give an error here, so
7116    // we do, too.
7117    if (!Previous.empty() && DC->Equals(CurContext)
7118        && !getLangOptions().CPlusPlus0x)
7119      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7120
7121    DCScope = getScopeForDeclContext(S, DC);
7122
7123  //   - There's a non-dependent scope specifier, in which case we
7124  //     compute it and do a previous lookup there for a function
7125  //     or function template.
7126  } else if (!SS.getScopeRep()->isDependent()) {
7127    DC = computeDeclContext(SS);
7128    if (!DC) return 0;
7129
7130    if (RequireCompleteDeclContext(SS, DC)) return 0;
7131
7132    LookupQualifiedName(Previous, DC);
7133
7134    // Ignore things found implicitly in the wrong scope.
7135    // TODO: better diagnostics for this case.  Suggesting the right
7136    // qualified scope would be nice...
7137    LookupResult::Filter F = Previous.makeFilter();
7138    while (F.hasNext()) {
7139      NamedDecl *D = F.next();
7140      if (!DC->InEnclosingNamespaceSetOf(
7141              D->getDeclContext()->getRedeclContext()))
7142        F.erase();
7143    }
7144    F.done();
7145
7146    if (Previous.empty()) {
7147      D.setInvalidType();
7148      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7149      return 0;
7150    }
7151
7152    // C++ [class.friend]p1: A friend of a class is a function or
7153    //   class that is not a member of the class . . .
7154    if (DC->Equals(CurContext))
7155      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7156
7157  //   - There's a scope specifier that does not match any template
7158  //     parameter lists, in which case we use some arbitrary context,
7159  //     create a method or method template, and wait for instantiation.
7160  //   - There's a scope specifier that does match some template
7161  //     parameter lists, which we don't handle right now.
7162  } else {
7163    DC = CurContext;
7164    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7165  }
7166
7167  if (!DC->isRecord()) {
7168    // This implies that it has to be an operator or function.
7169    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7170        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7171        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7172      Diag(Loc, diag::err_introducing_special_friend) <<
7173        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7174         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7175      return 0;
7176    }
7177  }
7178
7179  bool Redeclaration = false;
7180  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7181                                          move(TemplateParams),
7182                                          IsDefinition,
7183                                          Redeclaration);
7184  if (!ND) return 0;
7185
7186  assert(ND->getDeclContext() == DC);
7187  assert(ND->getLexicalDeclContext() == CurContext);
7188
7189  // Add the function declaration to the appropriate lookup tables,
7190  // adjusting the redeclarations list as necessary.  We don't
7191  // want to do this yet if the friending class is dependent.
7192  //
7193  // Also update the scope-based lookup if the target context's
7194  // lookup context is in lexical scope.
7195  if (!CurContext->isDependentContext()) {
7196    DC = DC->getRedeclContext();
7197    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7198    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7199      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7200  }
7201
7202  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7203                                       D.getIdentifierLoc(), ND,
7204                                       DS.getFriendSpecLoc());
7205  FrD->setAccess(AS_public);
7206  CurContext->addDecl(FrD);
7207
7208  if (ND->isInvalidDecl())
7209    FrD->setInvalidDecl();
7210  else {
7211    FunctionDecl *FD;
7212    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7213      FD = FTD->getTemplatedDecl();
7214    else
7215      FD = cast<FunctionDecl>(ND);
7216
7217    // Mark templated-scope function declarations as unsupported.
7218    if (FD->getNumTemplateParameterLists())
7219      FrD->setUnsupportedFriend(true);
7220  }
7221
7222  return ND;
7223}
7224
7225void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7226  AdjustDeclIfTemplate(Dcl);
7227
7228  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7229  if (!Fn) {
7230    Diag(DelLoc, diag::err_deleted_non_function);
7231    return;
7232  }
7233  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7234    Diag(DelLoc, diag::err_deleted_decl_not_first);
7235    Diag(Prev->getLocation(), diag::note_previous_declaration);
7236    // If the declaration wasn't the first, we delete the function anyway for
7237    // recovery.
7238  }
7239  Fn->setDeleted();
7240}
7241
7242static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7243  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7244    Stmt *SubStmt = *CI;
7245    if (!SubStmt)
7246      continue;
7247    if (isa<ReturnStmt>(SubStmt))
7248      Self.Diag(SubStmt->getSourceRange().getBegin(),
7249           diag::err_return_in_constructor_handler);
7250    if (!isa<Expr>(SubStmt))
7251      SearchForReturnInStmt(Self, SubStmt);
7252  }
7253}
7254
7255void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7256  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7257    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7258    SearchForReturnInStmt(*this, Handler);
7259  }
7260}
7261
7262bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7263                                             const CXXMethodDecl *Old) {
7264  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7265  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7266
7267  if (Context.hasSameType(NewTy, OldTy) ||
7268      NewTy->isDependentType() || OldTy->isDependentType())
7269    return false;
7270
7271  // Check if the return types are covariant
7272  QualType NewClassTy, OldClassTy;
7273
7274  /// Both types must be pointers or references to classes.
7275  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7276    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7277      NewClassTy = NewPT->getPointeeType();
7278      OldClassTy = OldPT->getPointeeType();
7279    }
7280  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7281    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7282      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7283        NewClassTy = NewRT->getPointeeType();
7284        OldClassTy = OldRT->getPointeeType();
7285      }
7286    }
7287  }
7288
7289  // The return types aren't either both pointers or references to a class type.
7290  if (NewClassTy.isNull()) {
7291    Diag(New->getLocation(),
7292         diag::err_different_return_type_for_overriding_virtual_function)
7293      << New->getDeclName() << NewTy << OldTy;
7294    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7295
7296    return true;
7297  }
7298
7299  // C++ [class.virtual]p6:
7300  //   If the return type of D::f differs from the return type of B::f, the
7301  //   class type in the return type of D::f shall be complete at the point of
7302  //   declaration of D::f or shall be the class type D.
7303  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7304    if (!RT->isBeingDefined() &&
7305        RequireCompleteType(New->getLocation(), NewClassTy,
7306                            PDiag(diag::err_covariant_return_incomplete)
7307                              << New->getDeclName()))
7308    return true;
7309  }
7310
7311  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7312    // Check if the new class derives from the old class.
7313    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7314      Diag(New->getLocation(),
7315           diag::err_covariant_return_not_derived)
7316      << New->getDeclName() << NewTy << OldTy;
7317      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7318      return true;
7319    }
7320
7321    // Check if we the conversion from derived to base is valid.
7322    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7323                    diag::err_covariant_return_inaccessible_base,
7324                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7325                    // FIXME: Should this point to the return type?
7326                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7327      // FIXME: this note won't trigger for delayed access control
7328      // diagnostics, and it's impossible to get an undelayed error
7329      // here from access control during the original parse because
7330      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7331      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7332      return true;
7333    }
7334  }
7335
7336  // The qualifiers of the return types must be the same.
7337  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7338    Diag(New->getLocation(),
7339         diag::err_covariant_return_type_different_qualifications)
7340    << New->getDeclName() << NewTy << OldTy;
7341    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7342    return true;
7343  };
7344
7345
7346  // The new class type must have the same or less qualifiers as the old type.
7347  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7348    Diag(New->getLocation(),
7349         diag::err_covariant_return_type_class_type_more_qualified)
7350    << New->getDeclName() << NewTy << OldTy;
7351    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7352    return true;
7353  };
7354
7355  return false;
7356}
7357
7358/// \brief Mark the given method pure.
7359///
7360/// \param Method the method to be marked pure.
7361///
7362/// \param InitRange the source range that covers the "0" initializer.
7363bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7364  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7365    Method->setPure();
7366    return false;
7367  }
7368
7369  if (!Method->isInvalidDecl())
7370    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7371      << Method->getDeclName() << InitRange;
7372  return true;
7373}
7374
7375/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7376/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7377/// is a fresh scope pushed for just this purpose.
7378///
7379/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7380/// static data member of class X, names should be looked up in the scope of
7381/// class X.
7382void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7383  // If there is no declaration, there was an error parsing it.
7384  if (D == 0) return;
7385
7386  // We should only get called for declarations with scope specifiers, like:
7387  //   int foo::bar;
7388  assert(D->isOutOfLine());
7389  EnterDeclaratorContext(S, D->getDeclContext());
7390}
7391
7392/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7393/// initializer for the out-of-line declaration 'D'.
7394void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7395  // If there is no declaration, there was an error parsing it.
7396  if (D == 0) return;
7397
7398  assert(D->isOutOfLine());
7399  ExitDeclaratorContext(S);
7400}
7401
7402/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7403/// C++ if/switch/while/for statement.
7404/// e.g: "if (int x = f()) {...}"
7405DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7406  // C++ 6.4p2:
7407  // The declarator shall not specify a function or an array.
7408  // The type-specifier-seq shall not contain typedef and shall not declare a
7409  // new class or enumeration.
7410  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7411         "Parser allowed 'typedef' as storage class of condition decl.");
7412
7413  TagDecl *OwnedTag = 0;
7414  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7415  QualType Ty = TInfo->getType();
7416
7417  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7418                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7419                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7420    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7421      << D.getSourceRange();
7422    return DeclResult();
7423  } else if (OwnedTag && OwnedTag->isDefinition()) {
7424    // The type-specifier-seq shall not declare a new class or enumeration.
7425    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7426  }
7427
7428  Decl *Dcl = ActOnDeclarator(S, D);
7429  if (!Dcl)
7430    return DeclResult();
7431
7432  return Dcl;
7433}
7434
7435void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7436                          bool DefinitionRequired) {
7437  // Ignore any vtable uses in unevaluated operands or for classes that do
7438  // not have a vtable.
7439  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7440      CurContext->isDependentContext() ||
7441      ExprEvalContexts.back().Context == Unevaluated)
7442    return;
7443
7444  // Try to insert this class into the map.
7445  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7446  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7447    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7448  if (!Pos.second) {
7449    // If we already had an entry, check to see if we are promoting this vtable
7450    // to required a definition. If so, we need to reappend to the VTableUses
7451    // list, since we may have already processed the first entry.
7452    if (DefinitionRequired && !Pos.first->second) {
7453      Pos.first->second = true;
7454    } else {
7455      // Otherwise, we can early exit.
7456      return;
7457    }
7458  }
7459
7460  // Local classes need to have their virtual members marked
7461  // immediately. For all other classes, we mark their virtual members
7462  // at the end of the translation unit.
7463  if (Class->isLocalClass())
7464    MarkVirtualMembersReferenced(Loc, Class);
7465  else
7466    VTableUses.push_back(std::make_pair(Class, Loc));
7467}
7468
7469bool Sema::DefineUsedVTables() {
7470  if (VTableUses.empty())
7471    return false;
7472
7473  // Note: The VTableUses vector could grow as a result of marking
7474  // the members of a class as "used", so we check the size each
7475  // time through the loop and prefer indices (with are stable) to
7476  // iterators (which are not).
7477  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7478    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7479    if (!Class)
7480      continue;
7481
7482    SourceLocation Loc = VTableUses[I].second;
7483
7484    // If this class has a key function, but that key function is
7485    // defined in another translation unit, we don't need to emit the
7486    // vtable even though we're using it.
7487    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7488    if (KeyFunction && !KeyFunction->hasBody()) {
7489      switch (KeyFunction->getTemplateSpecializationKind()) {
7490      case TSK_Undeclared:
7491      case TSK_ExplicitSpecialization:
7492      case TSK_ExplicitInstantiationDeclaration:
7493        // The key function is in another translation unit.
7494        continue;
7495
7496      case TSK_ExplicitInstantiationDefinition:
7497      case TSK_ImplicitInstantiation:
7498        // We will be instantiating the key function.
7499        break;
7500      }
7501    } else if (!KeyFunction) {
7502      // If we have a class with no key function that is the subject
7503      // of an explicit instantiation declaration, suppress the
7504      // vtable; it will live with the explicit instantiation
7505      // definition.
7506      bool IsExplicitInstantiationDeclaration
7507        = Class->getTemplateSpecializationKind()
7508                                      == TSK_ExplicitInstantiationDeclaration;
7509      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7510                                 REnd = Class->redecls_end();
7511           R != REnd; ++R) {
7512        TemplateSpecializationKind TSK
7513          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7514        if (TSK == TSK_ExplicitInstantiationDeclaration)
7515          IsExplicitInstantiationDeclaration = true;
7516        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7517          IsExplicitInstantiationDeclaration = false;
7518          break;
7519        }
7520      }
7521
7522      if (IsExplicitInstantiationDeclaration)
7523        continue;
7524    }
7525
7526    // Mark all of the virtual members of this class as referenced, so
7527    // that we can build a vtable. Then, tell the AST consumer that a
7528    // vtable for this class is required.
7529    MarkVirtualMembersReferenced(Loc, Class);
7530    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7531    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7532
7533    // Optionally warn if we're emitting a weak vtable.
7534    if (Class->getLinkage() == ExternalLinkage &&
7535        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7536      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7537        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7538    }
7539  }
7540  VTableUses.clear();
7541
7542  return true;
7543}
7544
7545void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7546                                        const CXXRecordDecl *RD) {
7547  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7548       e = RD->method_end(); i != e; ++i) {
7549    CXXMethodDecl *MD = *i;
7550
7551    // C++ [basic.def.odr]p2:
7552    //   [...] A virtual member function is used if it is not pure. [...]
7553    if (MD->isVirtual() && !MD->isPure())
7554      MarkDeclarationReferenced(Loc, MD);
7555  }
7556
7557  // Only classes that have virtual bases need a VTT.
7558  if (RD->getNumVBases() == 0)
7559    return;
7560
7561  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7562           e = RD->bases_end(); i != e; ++i) {
7563    const CXXRecordDecl *Base =
7564        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7565    if (Base->getNumVBases() == 0)
7566      continue;
7567    MarkVirtualMembersReferenced(Loc, Base);
7568  }
7569}
7570
7571/// SetIvarInitializers - This routine builds initialization ASTs for the
7572/// Objective-C implementation whose ivars need be initialized.
7573void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7574  if (!getLangOptions().CPlusPlus)
7575    return;
7576  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7577    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7578    CollectIvarsToConstructOrDestruct(OID, ivars);
7579    if (ivars.empty())
7580      return;
7581    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7582    for (unsigned i = 0; i < ivars.size(); i++) {
7583      FieldDecl *Field = ivars[i];
7584      if (Field->isInvalidDecl())
7585        continue;
7586
7587      CXXCtorInitializer *Member;
7588      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7589      InitializationKind InitKind =
7590        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7591
7592      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7593      ExprResult MemberInit =
7594        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7595      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7596      // Note, MemberInit could actually come back empty if no initialization
7597      // is required (e.g., because it would call a trivial default constructor)
7598      if (!MemberInit.get() || MemberInit.isInvalid())
7599        continue;
7600
7601      Member =
7602        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7603                                         SourceLocation(),
7604                                         MemberInit.takeAs<Expr>(),
7605                                         SourceLocation());
7606      AllToInit.push_back(Member);
7607
7608      // Be sure that the destructor is accessible and is marked as referenced.
7609      if (const RecordType *RecordTy
7610                  = Context.getBaseElementType(Field->getType())
7611                                                        ->getAs<RecordType>()) {
7612                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7613        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7614          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7615          CheckDestructorAccess(Field->getLocation(), Destructor,
7616                            PDiag(diag::err_access_dtor_ivar)
7617                              << Context.getBaseElementType(Field->getType()));
7618        }
7619      }
7620    }
7621    ObjCImplementation->setIvarInitializers(Context,
7622                                            AllToInit.data(), AllToInit.size());
7623  }
7624}
7625