SemaDeclCXX.cpp revision 198893
1219019Sgabor//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2219019Sgabor//
3219019Sgabor//                     The LLVM Compiler Infrastructure
4219019Sgabor//
5219019Sgabor// This file is distributed under the University of Illinois Open Source
6219019Sgabor// License. See LICENSE.TXT for details.
7219019Sgabor//
8219019Sgabor//===----------------------------------------------------------------------===//
9219019Sgabor//
10219019Sgabor//  This file implements semantic analysis for C++ declarations.
11219019Sgabor//
12219019Sgabor//===----------------------------------------------------------------------===//
13219019Sgabor
14219019Sgabor#include "Sema.h"
15219019Sgabor#include "clang/AST/ASTConsumer.h"
16219019Sgabor#include "clang/AST/ASTContext.h"
17219019Sgabor#include "clang/AST/CXXInheritance.h"
18219019Sgabor#include "clang/AST/DeclVisitor.h"
19219019Sgabor#include "clang/AST/TypeOrdering.h"
20219019Sgabor#include "clang/AST/StmtVisitor.h"
21219019Sgabor#include "clang/Basic/PartialDiagnostic.h"
22219019Sgabor#include "clang/Lex/Preprocessor.h"
23219019Sgabor#include "clang/Parse/DeclSpec.h"
24219019Sgabor#include "llvm/ADT/STLExtras.h"
25219019Sgabor#include "llvm/Support/Compiler.h"
26219019Sgabor#include <algorithm> // for std::equal
27219019Sgabor#include <map>
28219019Sgabor#include <set>
29219019Sgabor
30219019Sgaborusing namespace clang;
31219019Sgabor
32219019Sgabor//===----------------------------------------------------------------------===//
33219019Sgabor// CheckDefaultArgumentVisitor
34219019Sgabor//===----------------------------------------------------------------------===//
35219019Sgabor
36219019Sgabornamespace {
37219019Sgabor  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
38219019Sgabor  /// the default argument of a parameter to determine whether it
39219019Sgabor  /// contains any ill-formed subexpressions. For example, this will
40219019Sgabor  /// diagnose the use of local variables or parameters within the
41219019Sgabor  /// default argument expression.
42219019Sgabor  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
43219019Sgabor    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
44219019Sgabor    Expr *DefaultArg;
45219019Sgabor    Sema *S;
46219019Sgabor
47219019Sgabor  public:
48219019Sgabor    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
49219019Sgabor      : DefaultArg(defarg), S(s) {}
50219019Sgabor
51219019Sgabor    bool VisitExpr(Expr *Node);
52219019Sgabor    bool VisitDeclRefExpr(DeclRefExpr *DRE);
53219019Sgabor    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
54219019Sgabor  };
55219019Sgabor
56219019Sgabor  /// VisitExpr - Visit all of the children of this expression.
57219019Sgabor  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
58219019Sgabor    bool IsInvalid = false;
59219019Sgabor    for (Stmt::child_iterator I = Node->child_begin(),
60219019Sgabor         E = Node->child_end(); I != E; ++I)
61219019Sgabor      IsInvalid |= Visit(*I);
62219019Sgabor    return IsInvalid;
63219019Sgabor  }
64219019Sgabor
65219019Sgabor  /// VisitDeclRefExpr - Visit a reference to a declaration, to
66219019Sgabor  /// determine whether this declaration can be used in the default
67219019Sgabor  /// argument expression.
68219019Sgabor  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
69219019Sgabor    NamedDecl *Decl = DRE->getDecl();
70219019Sgabor    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
71219019Sgabor      // C++ [dcl.fct.default]p9
72219019Sgabor      //   Default arguments are evaluated each time the function is
73219019Sgabor      //   called. The order of evaluation of function arguments is
74219019Sgabor      //   unspecified. Consequently, parameters of a function shall not
75219019Sgabor      //   be used in default argument expressions, even if they are not
76219019Sgabor      //   evaluated. Parameters of a function declared before a default
77219019Sgabor      //   argument expression are in scope and can hide namespace and
78219019Sgabor      //   class member names.
79219019Sgabor      return S->Diag(DRE->getSourceRange().getBegin(),
80219019Sgabor                     diag::err_param_default_argument_references_param)
81219019Sgabor         << Param->getDeclName() << DefaultArg->getSourceRange();
82219019Sgabor    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
83219019Sgabor      // C++ [dcl.fct.default]p7
84219019Sgabor      //   Local variables shall not be used in default argument
85219019Sgabor      //   expressions.
86219019Sgabor      if (VDecl->isBlockVarDecl())
87219019Sgabor        return S->Diag(DRE->getSourceRange().getBegin(),
88219019Sgabor                       diag::err_param_default_argument_references_local)
89219019Sgabor          << VDecl->getDeclName() << DefaultArg->getSourceRange();
90219019Sgabor    }
91219019Sgabor
92219019Sgabor    return false;
93219019Sgabor  }
94219019Sgabor
95219019Sgabor  /// VisitCXXThisExpr - Visit a C++ "this" expression.
96  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
97    // C++ [dcl.fct.default]p8:
98    //   The keyword this shall not be used in a default argument of a
99    //   member function.
100    return S->Diag(ThisE->getSourceRange().getBegin(),
101                   diag::err_param_default_argument_references_this)
102               << ThisE->getSourceRange();
103  }
104}
105
106bool
107Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
108                              SourceLocation EqualLoc) {
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //   For non-template functions, default arguments can be added in
246  //   later declarations of a function in the same
247  //   scope. Declarations in different scopes have completely
248  //   distinct sets of default arguments. That is, declarations in
249  //   inner scopes do not acquire default arguments from
250  //   declarations in outer scopes, and vice versa. In a given
251  //   function declaration, all parameters subsequent to a
252  //   parameter with a default argument shall have default
253  //   arguments supplied in this or previous declarations. A
254  //   default argument shall not be redefined by a later
255  //   declaration (not even to the same value).
256  //
257  // C++ [dcl.fct.default]p6:
258  //   Except for member functions of class templates, the default arguments
259  //   in a member function definition that appears outside of the class
260  //   definition are added to the set of default arguments provided by the
261  //   member function declaration in the class definition.
262  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
263    ParmVarDecl *OldParam = Old->getParamDecl(p);
264    ParmVarDecl *NewParam = New->getParamDecl(p);
265
266    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
267      Diag(NewParam->getLocation(),
268           diag::err_param_default_argument_redefinition)
269        << NewParam->getDefaultArgRange();
270
271      // Look for the function declaration where the default argument was
272      // actually written, which may be a declaration prior to Old.
273      for (FunctionDecl *Older = Old->getPreviousDeclaration();
274           Older; Older = Older->getPreviousDeclaration()) {
275        if (!Older->getParamDecl(p)->hasDefaultArg())
276          break;
277
278        OldParam = Older->getParamDecl(p);
279      }
280
281      Diag(OldParam->getLocation(), diag::note_previous_definition)
282        << OldParam->getDefaultArgRange();
283      Invalid = true;
284    } else if (OldParam->hasDefaultArg()) {
285      // Merge the old default argument into the new parameter
286      if (OldParam->hasUninstantiatedDefaultArg())
287        NewParam->setUninstantiatedDefaultArg(
288                                      OldParam->getUninstantiatedDefaultArg());
289      else
290        NewParam->setDefaultArg(OldParam->getDefaultArg());
291    } else if (NewParam->hasDefaultArg()) {
292      if (New->getDescribedFunctionTemplate()) {
293        // Paragraph 4, quoted above, only applies to non-template functions.
294        Diag(NewParam->getLocation(),
295             diag::err_param_default_argument_template_redecl)
296          << NewParam->getDefaultArgRange();
297        Diag(Old->getLocation(), diag::note_template_prev_declaration)
298          << false;
299      } else if (New->getTemplateSpecializationKind()
300                   != TSK_ImplicitInstantiation &&
301                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
302        // C++ [temp.expr.spec]p21:
303        //   Default function arguments shall not be specified in a declaration
304        //   or a definition for one of the following explicit specializations:
305        //     - the explicit specialization of a function template;
306        //     - the explicit specialization of a member function template;
307        //     - the explicit specialization of a member function of a class
308        //       template where the class template specialization to which the
309        //       member function specialization belongs is implicitly
310        //       instantiated.
311        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
312          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
313          << New->getDeclName()
314          << NewParam->getDefaultArgRange();
315      } else if (New->getDeclContext()->isDependentContext()) {
316        // C++ [dcl.fct.default]p6 (DR217):
317        //   Default arguments for a member function of a class template shall
318        //   be specified on the initial declaration of the member function
319        //   within the class template.
320        //
321        // Reading the tea leaves a bit in DR217 and its reference to DR205
322        // leads me to the conclusion that one cannot add default function
323        // arguments for an out-of-line definition of a member function of a
324        // dependent type.
325        int WhichKind = 2;
326        if (CXXRecordDecl *Record
327              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
328          if (Record->getDescribedClassTemplate())
329            WhichKind = 0;
330          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
331            WhichKind = 1;
332          else
333            WhichKind = 2;
334        }
335
336        Diag(NewParam->getLocation(),
337             diag::err_param_default_argument_member_template_redecl)
338          << WhichKind
339          << NewParam->getDefaultArgRange();
340      }
341    }
342  }
343
344  if (CheckEquivalentExceptionSpec(
345          Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
346          New->getType()->getAs<FunctionProtoType>(), New->getLocation())) {
347    Invalid = true;
348  }
349
350  return Invalid;
351}
352
353/// CheckCXXDefaultArguments - Verify that the default arguments for a
354/// function declaration are well-formed according to C++
355/// [dcl.fct.default].
356void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
357  unsigned NumParams = FD->getNumParams();
358  unsigned p;
359
360  // Find first parameter with a default argument
361  for (p = 0; p < NumParams; ++p) {
362    ParmVarDecl *Param = FD->getParamDecl(p);
363    if (Param->hasDefaultArg())
364      break;
365  }
366
367  // C++ [dcl.fct.default]p4:
368  //   In a given function declaration, all parameters
369  //   subsequent to a parameter with a default argument shall
370  //   have default arguments supplied in this or previous
371  //   declarations. A default argument shall not be redefined
372  //   by a later declaration (not even to the same value).
373  unsigned LastMissingDefaultArg = 0;
374  for (; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (!Param->hasDefaultArg()) {
377      if (Param->isInvalidDecl())
378        /* We already complained about this parameter. */;
379      else if (Param->getIdentifier())
380        Diag(Param->getLocation(),
381             diag::err_param_default_argument_missing_name)
382          << Param->getIdentifier();
383      else
384        Diag(Param->getLocation(),
385             diag::err_param_default_argument_missing);
386
387      LastMissingDefaultArg = p;
388    }
389  }
390
391  if (LastMissingDefaultArg > 0) {
392    // Some default arguments were missing. Clear out all of the
393    // default arguments up to (and including) the last missing
394    // default argument, so that we leave the function parameters
395    // in a semantically valid state.
396    for (p = 0; p <= LastMissingDefaultArg; ++p) {
397      ParmVarDecl *Param = FD->getParamDecl(p);
398      if (Param->hasDefaultArg()) {
399        if (!Param->hasUnparsedDefaultArg())
400          Param->getDefaultArg()->Destroy(Context);
401        Param->setDefaultArg(0);
402      }
403    }
404  }
405}
406
407/// isCurrentClassName - Determine whether the identifier II is the
408/// name of the class type currently being defined. In the case of
409/// nested classes, this will only return true if II is the name of
410/// the innermost class.
411bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
412                              const CXXScopeSpec *SS) {
413  CXXRecordDecl *CurDecl;
414  if (SS && SS->isSet() && !SS->isInvalid()) {
415    DeclContext *DC = computeDeclContext(*SS, true);
416    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
417  } else
418    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
419
420  if (CurDecl)
421    return &II == CurDecl->getIdentifier();
422  else
423    return false;
424}
425
426/// \brief Check the validity of a C++ base class specifier.
427///
428/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
429/// and returns NULL otherwise.
430CXXBaseSpecifier *
431Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
432                         SourceRange SpecifierRange,
433                         bool Virtual, AccessSpecifier Access,
434                         QualType BaseType,
435                         SourceLocation BaseLoc) {
436  // C++ [class.union]p1:
437  //   A union shall not have base classes.
438  if (Class->isUnion()) {
439    Diag(Class->getLocation(), diag::err_base_clause_on_union)
440      << SpecifierRange;
441    return 0;
442  }
443
444  if (BaseType->isDependentType())
445    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
446                                Class->getTagKind() == RecordDecl::TK_class,
447                                Access, BaseType);
448
449  // Base specifiers must be record types.
450  if (!BaseType->isRecordType()) {
451    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
452    return 0;
453  }
454
455  // C++ [class.union]p1:
456  //   A union shall not be used as a base class.
457  if (BaseType->isUnionType()) {
458    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
459    return 0;
460  }
461
462  // C++ [class.derived]p2:
463  //   The class-name in a base-specifier shall not be an incompletely
464  //   defined class.
465  if (RequireCompleteType(BaseLoc, BaseType,
466                          PDiag(diag::err_incomplete_base_class)
467                            << SpecifierRange))
468    return 0;
469
470  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
471  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
472  assert(BaseDecl && "Record type has no declaration");
473  BaseDecl = BaseDecl->getDefinition(Context);
474  assert(BaseDecl && "Base type is not incomplete, but has no definition");
475  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
476  assert(CXXBaseDecl && "Base type is not a C++ type");
477  if (!CXXBaseDecl->isEmpty())
478    Class->setEmpty(false);
479  if (CXXBaseDecl->isPolymorphic())
480    Class->setPolymorphic(true);
481
482  // C++ [dcl.init.aggr]p1:
483  //   An aggregate is [...] a class with [...] no base classes [...].
484  Class->setAggregate(false);
485  Class->setPOD(false);
486
487  if (Virtual) {
488    // C++ [class.ctor]p5:
489    //   A constructor is trivial if its class has no virtual base classes.
490    Class->setHasTrivialConstructor(false);
491
492    // C++ [class.copy]p6:
493    //   A copy constructor is trivial if its class has no virtual base classes.
494    Class->setHasTrivialCopyConstructor(false);
495
496    // C++ [class.copy]p11:
497    //   A copy assignment operator is trivial if its class has no virtual
498    //   base classes.
499    Class->setHasTrivialCopyAssignment(false);
500
501    // C++0x [meta.unary.prop] is_empty:
502    //    T is a class type, but not a union type, with ... no virtual base
503    //    classes
504    Class->setEmpty(false);
505  } else {
506    // C++ [class.ctor]p5:
507    //   A constructor is trivial if all the direct base classes of its
508    //   class have trivial constructors.
509    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
510      Class->setHasTrivialConstructor(false);
511
512    // C++ [class.copy]p6:
513    //   A copy constructor is trivial if all the direct base classes of its
514    //   class have trivial copy constructors.
515    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
516      Class->setHasTrivialCopyConstructor(false);
517
518    // C++ [class.copy]p11:
519    //   A copy assignment operator is trivial if all the direct base classes
520    //   of its class have trivial copy assignment operators.
521    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
522      Class->setHasTrivialCopyAssignment(false);
523  }
524
525  // C++ [class.ctor]p3:
526  //   A destructor is trivial if all the direct base classes of its class
527  //   have trivial destructors.
528  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
529    Class->setHasTrivialDestructor(false);
530
531  // Create the base specifier.
532  // FIXME: Allocate via ASTContext?
533  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
534                              Class->getTagKind() == RecordDecl::TK_class,
535                              Access, BaseType);
536}
537
538/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
539/// one entry in the base class list of a class specifier, for
540/// example:
541///    class foo : public bar, virtual private baz {
542/// 'public bar' and 'virtual private baz' are each base-specifiers.
543Sema::BaseResult
544Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
545                         bool Virtual, AccessSpecifier Access,
546                         TypeTy *basetype, SourceLocation BaseLoc) {
547  if (!classdecl)
548    return true;
549
550  AdjustDeclIfTemplate(classdecl);
551  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
552  QualType BaseType = GetTypeFromParser(basetype);
553  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
554                                                      Virtual, Access,
555                                                      BaseType, BaseLoc))
556    return BaseSpec;
557
558  return true;
559}
560
561/// \brief Performs the actual work of attaching the given base class
562/// specifiers to a C++ class.
563bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
564                                unsigned NumBases) {
565 if (NumBases == 0)
566    return false;
567
568  // Used to keep track of which base types we have already seen, so
569  // that we can properly diagnose redundant direct base types. Note
570  // that the key is always the unqualified canonical type of the base
571  // class.
572  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
573
574  // Copy non-redundant base specifiers into permanent storage.
575  unsigned NumGoodBases = 0;
576  bool Invalid = false;
577  for (unsigned idx = 0; idx < NumBases; ++idx) {
578    QualType NewBaseType
579      = Context.getCanonicalType(Bases[idx]->getType());
580    NewBaseType = NewBaseType.getUnqualifiedType();
581
582    if (KnownBaseTypes[NewBaseType]) {
583      // C++ [class.mi]p3:
584      //   A class shall not be specified as a direct base class of a
585      //   derived class more than once.
586      Diag(Bases[idx]->getSourceRange().getBegin(),
587           diag::err_duplicate_base_class)
588        << KnownBaseTypes[NewBaseType]->getType()
589        << Bases[idx]->getSourceRange();
590
591      // Delete the duplicate base class specifier; we're going to
592      // overwrite its pointer later.
593      Context.Deallocate(Bases[idx]);
594
595      Invalid = true;
596    } else {
597      // Okay, add this new base class.
598      KnownBaseTypes[NewBaseType] = Bases[idx];
599      Bases[NumGoodBases++] = Bases[idx];
600    }
601  }
602
603  // Attach the remaining base class specifiers to the derived class.
604  Class->setBases(Context, Bases, NumGoodBases);
605
606  // Delete the remaining (good) base class specifiers, since their
607  // data has been copied into the CXXRecordDecl.
608  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
609    Context.Deallocate(Bases[idx]);
610
611  return Invalid;
612}
613
614/// ActOnBaseSpecifiers - Attach the given base specifiers to the
615/// class, after checking whether there are any duplicate base
616/// classes.
617void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
618                               unsigned NumBases) {
619  if (!ClassDecl || !Bases || !NumBases)
620    return;
621
622  AdjustDeclIfTemplate(ClassDecl);
623  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
624                       (CXXBaseSpecifier**)(Bases), NumBases);
625}
626
627/// \brief Determine whether the type \p Derived is a C++ class that is
628/// derived from the type \p Base.
629bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
630  if (!getLangOptions().CPlusPlus)
631    return false;
632
633  const RecordType *DerivedRT = Derived->getAs<RecordType>();
634  if (!DerivedRT)
635    return false;
636
637  const RecordType *BaseRT = Base->getAs<RecordType>();
638  if (!BaseRT)
639    return false;
640
641  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
642  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
643  return DerivedRD->isDerivedFrom(BaseRD);
644}
645
646/// \brief Determine whether the type \p Derived is a C++ class that is
647/// derived from the type \p Base.
648bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
649  if (!getLangOptions().CPlusPlus)
650    return false;
651
652  const RecordType *DerivedRT = Derived->getAs<RecordType>();
653  if (!DerivedRT)
654    return false;
655
656  const RecordType *BaseRT = Base->getAs<RecordType>();
657  if (!BaseRT)
658    return false;
659
660  CXXRecordDecl *DerivedRD = cast<CXXRecordDecl>(DerivedRT->getDecl());
661  CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
662  return DerivedRD->isDerivedFrom(BaseRD, Paths);
663}
664
665/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
666/// conversion (where Derived and Base are class types) is
667/// well-formed, meaning that the conversion is unambiguous (and
668/// that all of the base classes are accessible). Returns true
669/// and emits a diagnostic if the code is ill-formed, returns false
670/// otherwise. Loc is the location where this routine should point to
671/// if there is an error, and Range is the source range to highlight
672/// if there is an error.
673bool
674Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
675                                   unsigned InaccessibleBaseID,
676                                   unsigned AmbigiousBaseConvID,
677                                   SourceLocation Loc, SourceRange Range,
678                                   DeclarationName Name) {
679  // First, determine whether the path from Derived to Base is
680  // ambiguous. This is slightly more expensive than checking whether
681  // the Derived to Base conversion exists, because here we need to
682  // explore multiple paths to determine if there is an ambiguity.
683  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
684                     /*DetectVirtual=*/false);
685  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
686  assert(DerivationOkay &&
687         "Can only be used with a derived-to-base conversion");
688  (void)DerivationOkay;
689
690  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
691    // Check that the base class can be accessed.
692    return CheckBaseClassAccess(Derived, Base, InaccessibleBaseID, Paths, Loc,
693                                Name);
694  }
695
696  // We know that the derived-to-base conversion is ambiguous, and
697  // we're going to produce a diagnostic. Perform the derived-to-base
698  // search just one more time to compute all of the possible paths so
699  // that we can print them out. This is more expensive than any of
700  // the previous derived-to-base checks we've done, but at this point
701  // performance isn't as much of an issue.
702  Paths.clear();
703  Paths.setRecordingPaths(true);
704  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
705  assert(StillOkay && "Can only be used with a derived-to-base conversion");
706  (void)StillOkay;
707
708  // Build up a textual representation of the ambiguous paths, e.g.,
709  // D -> B -> A, that will be used to illustrate the ambiguous
710  // conversions in the diagnostic. We only print one of the paths
711  // to each base class subobject.
712  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
713
714  Diag(Loc, AmbigiousBaseConvID)
715  << Derived << Base << PathDisplayStr << Range << Name;
716  return true;
717}
718
719bool
720Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
721                                   SourceLocation Loc, SourceRange Range) {
722  return CheckDerivedToBaseConversion(Derived, Base,
723                                      diag::err_conv_to_inaccessible_base,
724                                      diag::err_ambiguous_derived_to_base_conv,
725                                      Loc, Range, DeclarationName());
726}
727
728
729/// @brief Builds a string representing ambiguous paths from a
730/// specific derived class to different subobjects of the same base
731/// class.
732///
733/// This function builds a string that can be used in error messages
734/// to show the different paths that one can take through the
735/// inheritance hierarchy to go from the derived class to different
736/// subobjects of a base class. The result looks something like this:
737/// @code
738/// struct D -> struct B -> struct A
739/// struct D -> struct C -> struct A
740/// @endcode
741std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
742  std::string PathDisplayStr;
743  std::set<unsigned> DisplayedPaths;
744  for (CXXBasePaths::paths_iterator Path = Paths.begin();
745       Path != Paths.end(); ++Path) {
746    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
747      // We haven't displayed a path to this particular base
748      // class subobject yet.
749      PathDisplayStr += "\n    ";
750      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
751      for (CXXBasePath::const_iterator Element = Path->begin();
752           Element != Path->end(); ++Element)
753        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
754    }
755  }
756
757  return PathDisplayStr;
758}
759
760//===----------------------------------------------------------------------===//
761// C++ class member Handling
762//===----------------------------------------------------------------------===//
763
764/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
765/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
766/// bitfield width if there is one and 'InitExpr' specifies the initializer if
767/// any.
768Sema::DeclPtrTy
769Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
770                               MultiTemplateParamsArg TemplateParameterLists,
771                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
772  const DeclSpec &DS = D.getDeclSpec();
773  DeclarationName Name = GetNameForDeclarator(D);
774  Expr *BitWidth = static_cast<Expr*>(BW);
775  Expr *Init = static_cast<Expr*>(InitExpr);
776  SourceLocation Loc = D.getIdentifierLoc();
777
778  bool isFunc = D.isFunctionDeclarator();
779
780  assert(!DS.isFriendSpecified());
781
782  // C++ 9.2p6: A member shall not be declared to have automatic storage
783  // duration (auto, register) or with the extern storage-class-specifier.
784  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
785  // data members and cannot be applied to names declared const or static,
786  // and cannot be applied to reference members.
787  switch (DS.getStorageClassSpec()) {
788    case DeclSpec::SCS_unspecified:
789    case DeclSpec::SCS_typedef:
790    case DeclSpec::SCS_static:
791      // FALL THROUGH.
792      break;
793    case DeclSpec::SCS_mutable:
794      if (isFunc) {
795        if (DS.getStorageClassSpecLoc().isValid())
796          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
797        else
798          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
799
800        // FIXME: It would be nicer if the keyword was ignored only for this
801        // declarator. Otherwise we could get follow-up errors.
802        D.getMutableDeclSpec().ClearStorageClassSpecs();
803      } else {
804        QualType T = GetTypeForDeclarator(D, S);
805        diag::kind err = static_cast<diag::kind>(0);
806        if (T->isReferenceType())
807          err = diag::err_mutable_reference;
808        else if (T.isConstQualified())
809          err = diag::err_mutable_const;
810        if (err != 0) {
811          if (DS.getStorageClassSpecLoc().isValid())
812            Diag(DS.getStorageClassSpecLoc(), err);
813          else
814            Diag(DS.getThreadSpecLoc(), err);
815          // FIXME: It would be nicer if the keyword was ignored only for this
816          // declarator. Otherwise we could get follow-up errors.
817          D.getMutableDeclSpec().ClearStorageClassSpecs();
818        }
819      }
820      break;
821    default:
822      if (DS.getStorageClassSpecLoc().isValid())
823        Diag(DS.getStorageClassSpecLoc(),
824             diag::err_storageclass_invalid_for_member);
825      else
826        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
827      D.getMutableDeclSpec().ClearStorageClassSpecs();
828  }
829
830  if (!isFunc &&
831      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
832      D.getNumTypeObjects() == 0) {
833    // Check also for this case:
834    //
835    // typedef int f();
836    // f a;
837    //
838    QualType TDType = GetTypeFromParser(DS.getTypeRep());
839    isFunc = TDType->isFunctionType();
840  }
841
842  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
843                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
844                      !isFunc);
845
846  Decl *Member;
847  if (isInstField) {
848    // FIXME: Check for template parameters!
849    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
850                         AS);
851    assert(Member && "HandleField never returns null");
852  } else {
853    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
854               .getAs<Decl>();
855    if (!Member) {
856      if (BitWidth) DeleteExpr(BitWidth);
857      return DeclPtrTy();
858    }
859
860    // Non-instance-fields can't have a bitfield.
861    if (BitWidth) {
862      if (Member->isInvalidDecl()) {
863        // don't emit another diagnostic.
864      } else if (isa<VarDecl>(Member)) {
865        // C++ 9.6p3: A bit-field shall not be a static member.
866        // "static member 'A' cannot be a bit-field"
867        Diag(Loc, diag::err_static_not_bitfield)
868          << Name << BitWidth->getSourceRange();
869      } else if (isa<TypedefDecl>(Member)) {
870        // "typedef member 'x' cannot be a bit-field"
871        Diag(Loc, diag::err_typedef_not_bitfield)
872          << Name << BitWidth->getSourceRange();
873      } else {
874        // A function typedef ("typedef int f(); f a;").
875        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
876        Diag(Loc, diag::err_not_integral_type_bitfield)
877          << Name << cast<ValueDecl>(Member)->getType()
878          << BitWidth->getSourceRange();
879      }
880
881      DeleteExpr(BitWidth);
882      BitWidth = 0;
883      Member->setInvalidDecl();
884    }
885
886    Member->setAccess(AS);
887
888    // If we have declared a member function template, set the access of the
889    // templated declaration as well.
890    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
891      FunTmpl->getTemplatedDecl()->setAccess(AS);
892  }
893
894  assert((Name || isInstField) && "No identifier for non-field ?");
895
896  if (Init)
897    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
898  if (Deleted) // FIXME: Source location is not very good.
899    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
900
901  if (isInstField) {
902    FieldCollector->Add(cast<FieldDecl>(Member));
903    return DeclPtrTy();
904  }
905  return DeclPtrTy::make(Member);
906}
907
908/// ActOnMemInitializer - Handle a C++ member initializer.
909Sema::MemInitResult
910Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
911                          Scope *S,
912                          const CXXScopeSpec &SS,
913                          IdentifierInfo *MemberOrBase,
914                          TypeTy *TemplateTypeTy,
915                          SourceLocation IdLoc,
916                          SourceLocation LParenLoc,
917                          ExprTy **Args, unsigned NumArgs,
918                          SourceLocation *CommaLocs,
919                          SourceLocation RParenLoc) {
920  if (!ConstructorD)
921    return true;
922
923  AdjustDeclIfTemplate(ConstructorD);
924
925  CXXConstructorDecl *Constructor
926    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
927  if (!Constructor) {
928    // The user wrote a constructor initializer on a function that is
929    // not a C++ constructor. Ignore the error for now, because we may
930    // have more member initializers coming; we'll diagnose it just
931    // once in ActOnMemInitializers.
932    return true;
933  }
934
935  CXXRecordDecl *ClassDecl = Constructor->getParent();
936
937  // C++ [class.base.init]p2:
938  //   Names in a mem-initializer-id are looked up in the scope of the
939  //   constructor���s class and, if not found in that scope, are looked
940  //   up in the scope containing the constructor���s
941  //   definition. [Note: if the constructor���s class contains a member
942  //   with the same name as a direct or virtual base class of the
943  //   class, a mem-initializer-id naming the member or base class and
944  //   composed of a single identifier refers to the class member. A
945  //   mem-initializer-id for the hidden base class may be specified
946  //   using a qualified name. ]
947  if (!SS.getScopeRep() && !TemplateTypeTy) {
948    // Look for a member, first.
949    FieldDecl *Member = 0;
950    DeclContext::lookup_result Result
951      = ClassDecl->lookup(MemberOrBase);
952    if (Result.first != Result.second)
953      Member = dyn_cast<FieldDecl>(*Result.first);
954
955    // FIXME: Handle members of an anonymous union.
956
957    if (Member)
958      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
959                                    RParenLoc);
960  }
961  // It didn't name a member, so see if it names a class.
962  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
963                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
964  if (!BaseTy)
965    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
966      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
967
968  QualType BaseType = GetTypeFromParser(BaseTy);
969
970  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
971                              RParenLoc, ClassDecl);
972}
973
974Sema::MemInitResult
975Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
976                             unsigned NumArgs, SourceLocation IdLoc,
977                             SourceLocation RParenLoc) {
978  bool HasDependentArg = false;
979  for (unsigned i = 0; i < NumArgs; i++)
980    HasDependentArg |= Args[i]->isTypeDependent();
981
982  CXXConstructorDecl *C = 0;
983  QualType FieldType = Member->getType();
984  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
985    FieldType = Array->getElementType();
986  if (FieldType->isDependentType()) {
987    // Can't check init for dependent type.
988  } else if (FieldType->getAs<RecordType>()) {
989    if (!HasDependentArg) {
990      ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
991
992      C = PerformInitializationByConstructor(FieldType,
993                                             MultiExprArg(*this,
994                                                          (void**)Args,
995                                                          NumArgs),
996                                             IdLoc,
997                                             SourceRange(IdLoc, RParenLoc),
998                                             Member->getDeclName(), IK_Direct,
999                                             ConstructorArgs);
1000
1001      if (C) {
1002        // Take over the constructor arguments as our own.
1003        NumArgs = ConstructorArgs.size();
1004        Args = (Expr **)ConstructorArgs.take();
1005      }
1006    }
1007  } else if (NumArgs != 1 && NumArgs != 0) {
1008    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
1009                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
1010  } else if (!HasDependentArg) {
1011    Expr *NewExp;
1012    if (NumArgs == 0) {
1013      if (FieldType->isReferenceType()) {
1014        Diag(IdLoc, diag::err_null_intialized_reference_member)
1015              << Member->getDeclName();
1016        return Diag(Member->getLocation(), diag::note_declared_at);
1017      }
1018      NewExp = new (Context) CXXZeroInitValueExpr(FieldType, IdLoc, RParenLoc);
1019      NumArgs = 1;
1020    }
1021    else
1022      NewExp = (Expr*)Args[0];
1023    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
1024      return true;
1025    Args[0] = NewExp;
1026  }
1027  // FIXME: Perform direct initialization of the member.
1028  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
1029                                                  NumArgs, C, IdLoc, RParenLoc);
1030}
1031
1032Sema::MemInitResult
1033Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
1034                           unsigned NumArgs, SourceLocation IdLoc,
1035                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
1036  bool HasDependentArg = false;
1037  for (unsigned i = 0; i < NumArgs; i++)
1038    HasDependentArg |= Args[i]->isTypeDependent();
1039
1040  if (!BaseType->isDependentType()) {
1041    if (!BaseType->isRecordType())
1042      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
1043        << BaseType << SourceRange(IdLoc, RParenLoc);
1044
1045    // C++ [class.base.init]p2:
1046    //   [...] Unless the mem-initializer-id names a nonstatic data
1047    //   member of the constructor���s class or a direct or virtual base
1048    //   of that class, the mem-initializer is ill-formed. A
1049    //   mem-initializer-list can initialize a base class using any
1050    //   name that denotes that base class type.
1051
1052    // First, check for a direct base class.
1053    const CXXBaseSpecifier *DirectBaseSpec = 0;
1054    for (CXXRecordDecl::base_class_const_iterator Base =
1055         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
1056      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
1057          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
1058        // We found a direct base of this type. That's what we're
1059        // initializing.
1060        DirectBaseSpec = &*Base;
1061        break;
1062      }
1063    }
1064
1065    // Check for a virtual base class.
1066    // FIXME: We might be able to short-circuit this if we know in advance that
1067    // there are no virtual bases.
1068    const CXXBaseSpecifier *VirtualBaseSpec = 0;
1069    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1070      // We haven't found a base yet; search the class hierarchy for a
1071      // virtual base class.
1072      CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1073                         /*DetectVirtual=*/false);
1074      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
1075        for (CXXBasePaths::paths_iterator Path = Paths.begin();
1076             Path != Paths.end(); ++Path) {
1077          if (Path->back().Base->isVirtual()) {
1078            VirtualBaseSpec = Path->back().Base;
1079            break;
1080          }
1081        }
1082      }
1083    }
1084
1085    // C++ [base.class.init]p2:
1086    //   If a mem-initializer-id is ambiguous because it designates both
1087    //   a direct non-virtual base class and an inherited virtual base
1088    //   class, the mem-initializer is ill-formed.
1089    if (DirectBaseSpec && VirtualBaseSpec)
1090      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
1091        << BaseType << SourceRange(IdLoc, RParenLoc);
1092    // C++ [base.class.init]p2:
1093    // Unless the mem-initializer-id names a nonstatic data membeer of the
1094    // constructor's class ot a direst or virtual base of that class, the
1095    // mem-initializer is ill-formed.
1096    if (!DirectBaseSpec && !VirtualBaseSpec)
1097      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
1098      << BaseType << ClassDecl->getNameAsCString()
1099      << SourceRange(IdLoc, RParenLoc);
1100  }
1101
1102  CXXConstructorDecl *C = 0;
1103  if (!BaseType->isDependentType() && !HasDependentArg) {
1104    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
1105                                            Context.getCanonicalType(BaseType));
1106    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1107
1108    C = PerformInitializationByConstructor(BaseType,
1109                                           MultiExprArg(*this,
1110                                                        (void**)Args, NumArgs),
1111                                           IdLoc, SourceRange(IdLoc, RParenLoc),
1112                                           Name, IK_Direct,
1113                                           ConstructorArgs);
1114    if (C) {
1115      // Take over the constructor arguments as our own.
1116      NumArgs = ConstructorArgs.size();
1117      Args = (Expr **)ConstructorArgs.take();
1118    }
1119  }
1120
1121  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
1122                                                  NumArgs, C, IdLoc, RParenLoc);
1123}
1124
1125void
1126Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1127                              CXXBaseOrMemberInitializer **Initializers,
1128                              unsigned NumInitializers,
1129                              llvm::SmallVectorImpl<CXXBaseSpecifier *>& Bases,
1130                              llvm::SmallVectorImpl<FieldDecl *>&Fields) {
1131  // We need to build the initializer AST according to order of construction
1132  // and not what user specified in the Initializers list.
1133  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1134  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1135  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1136  bool HasDependentBaseInit = false;
1137
1138  for (unsigned i = 0; i < NumInitializers; i++) {
1139    CXXBaseOrMemberInitializer *Member = Initializers[i];
1140    if (Member->isBaseInitializer()) {
1141      if (Member->getBaseClass()->isDependentType())
1142        HasDependentBaseInit = true;
1143      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1144    } else {
1145      AllBaseFields[Member->getMember()] = Member;
1146    }
1147  }
1148
1149  if (HasDependentBaseInit) {
1150    // FIXME. This does not preserve the ordering of the initializers.
1151    // Try (with -Wreorder)
1152    // template<class X> struct A {};
1153    // template<class X> struct B : A<X> {
1154    //   B() : x1(10), A<X>() {}
1155    //   int x1;
1156    // };
1157    // B<int> x;
1158    // On seeing one dependent type, we should essentially exit this routine
1159    // while preserving user-declared initializer list. When this routine is
1160    // called during instantiatiation process, this routine will rebuild the
1161    // oderdered initializer list correctly.
1162
1163    // If we have a dependent base initialization, we can't determine the
1164    // association between initializers and bases; just dump the known
1165    // initializers into the list, and don't try to deal with other bases.
1166    for (unsigned i = 0; i < NumInitializers; i++) {
1167      CXXBaseOrMemberInitializer *Member = Initializers[i];
1168      if (Member->isBaseInitializer())
1169        AllToInit.push_back(Member);
1170    }
1171  } else {
1172    // Push virtual bases before others.
1173    for (CXXRecordDecl::base_class_iterator VBase =
1174         ClassDecl->vbases_begin(),
1175         E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1176      if (VBase->getType()->isDependentType())
1177        continue;
1178      if (CXXBaseOrMemberInitializer *Value =
1179          AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1180        CXXRecordDecl *BaseDecl =
1181          cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1182        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1183        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1184          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1185        AllToInit.push_back(Value);
1186      }
1187      else {
1188        CXXRecordDecl *VBaseDecl =
1189        cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1190        assert(VBaseDecl && "SetBaseOrMemberInitializers - VBaseDecl null");
1191        CXXConstructorDecl *Ctor = VBaseDecl->getDefaultConstructor(Context);
1192        if (!Ctor) {
1193          Bases.push_back(VBase);
1194          continue;
1195        }
1196
1197        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1198        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1199                                    Constructor->getLocation(), CtorArgs))
1200          continue;
1201
1202        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1203
1204        CXXBaseOrMemberInitializer *Member =
1205          new (Context) CXXBaseOrMemberInitializer(VBase->getType(),
1206                                                   CtorArgs.takeAs<Expr>(),
1207                                                   CtorArgs.size(), Ctor,
1208                                                   SourceLocation(),
1209                                                   SourceLocation());
1210        AllToInit.push_back(Member);
1211      }
1212    }
1213
1214    for (CXXRecordDecl::base_class_iterator Base =
1215         ClassDecl->bases_begin(),
1216         E = ClassDecl->bases_end(); Base != E; ++Base) {
1217      // Virtuals are in the virtual base list and already constructed.
1218      if (Base->isVirtual())
1219        continue;
1220      // Skip dependent types.
1221      if (Base->getType()->isDependentType())
1222        continue;
1223      if (CXXBaseOrMemberInitializer *Value =
1224          AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1225        CXXRecordDecl *BaseDecl =
1226          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1227        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1228        if (CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context))
1229          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1230        AllToInit.push_back(Value);
1231      }
1232      else {
1233        CXXRecordDecl *BaseDecl =
1234          cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1235        assert(BaseDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1236         CXXConstructorDecl *Ctor = BaseDecl->getDefaultConstructor(Context);
1237        if (!Ctor) {
1238          Bases.push_back(Base);
1239          continue;
1240        }
1241
1242        ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1243        if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1244                                     Constructor->getLocation(), CtorArgs))
1245          continue;
1246
1247        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1248
1249        CXXBaseOrMemberInitializer *Member =
1250          new (Context) CXXBaseOrMemberInitializer(Base->getType(),
1251                                                   CtorArgs.takeAs<Expr>(),
1252                                                   CtorArgs.size(), Ctor,
1253                                                   SourceLocation(),
1254                                                   SourceLocation());
1255        AllToInit.push_back(Member);
1256      }
1257    }
1258  }
1259
1260  // non-static data members.
1261  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1262       E = ClassDecl->field_end(); Field != E; ++Field) {
1263    if ((*Field)->isAnonymousStructOrUnion()) {
1264      if (const RecordType *FieldClassType =
1265          Field->getType()->getAs<RecordType>()) {
1266        CXXRecordDecl *FieldClassDecl
1267        = cast<CXXRecordDecl>(FieldClassType->getDecl());
1268        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1269            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1270          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1271            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1272            // set to the anonymous union data member used in the initializer
1273            // list.
1274            Value->setMember(*Field);
1275            Value->setAnonUnionMember(*FA);
1276            AllToInit.push_back(Value);
1277            break;
1278          }
1279        }
1280      }
1281      continue;
1282    }
1283    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1284      QualType FT = (*Field)->getType();
1285      if (const RecordType* RT = FT->getAs<RecordType>()) {
1286        CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RT->getDecl());
1287        assert(FieldRecDecl && "SetBaseOrMemberInitializers - BaseDecl null");
1288        if (CXXConstructorDecl *Ctor =
1289              FieldRecDecl->getDefaultConstructor(Context))
1290          MarkDeclarationReferenced(Value->getSourceLocation(), Ctor);
1291      }
1292      AllToInit.push_back(Value);
1293      continue;
1294    }
1295
1296    QualType FT = Context.getBaseElementType((*Field)->getType());
1297    if (const RecordType* RT = FT->getAs<RecordType>()) {
1298      CXXConstructorDecl *Ctor =
1299        cast<CXXRecordDecl>(RT->getDecl())->getDefaultConstructor(Context);
1300      if (!Ctor && !FT->isDependentType()) {
1301        Fields.push_back(*Field);
1302        continue;
1303      }
1304
1305      ASTOwningVector<&ActionBase::DeleteExpr> CtorArgs(*this);
1306      if (CompleteConstructorCall(Ctor, MultiExprArg(*this, 0, 0),
1307                                  Constructor->getLocation(), CtorArgs))
1308        continue;
1309
1310      CXXBaseOrMemberInitializer *Member =
1311        new (Context) CXXBaseOrMemberInitializer(*Field,CtorArgs.takeAs<Expr>(),
1312                                                 CtorArgs.size(), Ctor,
1313                                                 SourceLocation(),
1314                                                 SourceLocation());
1315
1316      AllToInit.push_back(Member);
1317      if (Ctor)
1318        MarkDeclarationReferenced(Constructor->getLocation(), Ctor);
1319      if (FT.isConstQualified() && (!Ctor || Ctor->isTrivial())) {
1320        Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1321          << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1322        Diag((*Field)->getLocation(), diag::note_declared_at);
1323      }
1324    }
1325    else if (FT->isReferenceType()) {
1326      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1327        << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getDeclName();
1328      Diag((*Field)->getLocation(), diag::note_declared_at);
1329    }
1330    else if (FT.isConstQualified()) {
1331      Diag(Constructor->getLocation(), diag::err_unintialized_member_in_ctor)
1332        << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getDeclName();
1333      Diag((*Field)->getLocation(), diag::note_declared_at);
1334    }
1335  }
1336
1337  NumInitializers = AllToInit.size();
1338  if (NumInitializers > 0) {
1339    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1340    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1341      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1342
1343    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1344    for (unsigned Idx = 0; Idx < NumInitializers; ++Idx)
1345      baseOrMemberInitializers[Idx] = AllToInit[Idx];
1346  }
1347}
1348
1349void
1350Sema::BuildBaseOrMemberInitializers(ASTContext &C,
1351                                 CXXConstructorDecl *Constructor,
1352                                 CXXBaseOrMemberInitializer **Initializers,
1353                                 unsigned NumInitializers
1354                                 ) {
1355  llvm::SmallVector<CXXBaseSpecifier *, 4> Bases;
1356  llvm::SmallVector<FieldDecl *, 4> Members;
1357
1358  SetBaseOrMemberInitializers(Constructor,
1359                              Initializers, NumInitializers, Bases, Members);
1360  for (unsigned int i = 0; i < Bases.size(); i++)
1361    Diag(Bases[i]->getSourceRange().getBegin(),
1362         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
1363  for (unsigned int i = 0; i < Members.size(); i++)
1364    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
1365          << 1 << Members[i]->getType();
1366}
1367
1368static void *GetKeyForTopLevelField(FieldDecl *Field) {
1369  // For anonymous unions, use the class declaration as the key.
1370  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1371    if (RT->getDecl()->isAnonymousStructOrUnion())
1372      return static_cast<void *>(RT->getDecl());
1373  }
1374  return static_cast<void *>(Field);
1375}
1376
1377static void *GetKeyForBase(QualType BaseType) {
1378  if (const RecordType *RT = BaseType->getAs<RecordType>())
1379    return (void *)RT;
1380
1381  assert(0 && "Unexpected base type!");
1382  return 0;
1383}
1384
1385static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
1386                             bool MemberMaybeAnon = false) {
1387  // For fields injected into the class via declaration of an anonymous union,
1388  // use its anonymous union class declaration as the unique key.
1389  if (Member->isMemberInitializer()) {
1390    FieldDecl *Field = Member->getMember();
1391
1392    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
1393    // data member of the class. Data member used in the initializer list is
1394    // in AnonUnionMember field.
1395    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1396      Field = Member->getAnonUnionMember();
1397    if (Field->getDeclContext()->isRecord()) {
1398      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
1399      if (RD->isAnonymousStructOrUnion())
1400        return static_cast<void *>(RD);
1401    }
1402    return static_cast<void *>(Field);
1403  }
1404
1405  return GetKeyForBase(QualType(Member->getBaseClass(), 0));
1406}
1407
1408void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1409                                SourceLocation ColonLoc,
1410                                MemInitTy **MemInits, unsigned NumMemInits) {
1411  if (!ConstructorDecl)
1412    return;
1413
1414  AdjustDeclIfTemplate(ConstructorDecl);
1415
1416  CXXConstructorDecl *Constructor
1417    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1418
1419  if (!Constructor) {
1420    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1421    return;
1422  }
1423
1424  if (!Constructor->isDependentContext()) {
1425    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
1426    bool err = false;
1427    for (unsigned i = 0; i < NumMemInits; i++) {
1428      CXXBaseOrMemberInitializer *Member =
1429        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1430      void *KeyToMember = GetKeyForMember(Member);
1431      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
1432      if (!PrevMember) {
1433        PrevMember = Member;
1434        continue;
1435      }
1436      if (FieldDecl *Field = Member->getMember())
1437        Diag(Member->getSourceLocation(),
1438             diag::error_multiple_mem_initialization)
1439        << Field->getNameAsString();
1440      else {
1441        Type *BaseClass = Member->getBaseClass();
1442        assert(BaseClass && "ActOnMemInitializers - neither field or base");
1443        Diag(Member->getSourceLocation(),
1444             diag::error_multiple_base_initialization)
1445          << QualType(BaseClass, 0);
1446      }
1447      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
1448        << 0;
1449      err = true;
1450    }
1451
1452    if (err)
1453      return;
1454  }
1455
1456  BuildBaseOrMemberInitializers(Context, Constructor,
1457                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
1458                      NumMemInits);
1459
1460  if (Constructor->isDependentContext())
1461    return;
1462
1463  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
1464      Diagnostic::Ignored &&
1465      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
1466      Diagnostic::Ignored)
1467    return;
1468
1469  // Also issue warning if order of ctor-initializer list does not match order
1470  // of 1) base class declarations and 2) order of non-static data members.
1471  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
1472
1473  CXXRecordDecl *ClassDecl
1474    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1475  // Push virtual bases before others.
1476  for (CXXRecordDecl::base_class_iterator VBase =
1477       ClassDecl->vbases_begin(),
1478       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1479    AllBaseOrMembers.push_back(GetKeyForBase(VBase->getType()));
1480
1481  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1482       E = ClassDecl->bases_end(); Base != E; ++Base) {
1483    // Virtuals are alread in the virtual base list and are constructed
1484    // first.
1485    if (Base->isVirtual())
1486      continue;
1487    AllBaseOrMembers.push_back(GetKeyForBase(Base->getType()));
1488  }
1489
1490  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1491       E = ClassDecl->field_end(); Field != E; ++Field)
1492    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1493
1494  int Last = AllBaseOrMembers.size();
1495  int curIndex = 0;
1496  CXXBaseOrMemberInitializer *PrevMember = 0;
1497  for (unsigned i = 0; i < NumMemInits; i++) {
1498    CXXBaseOrMemberInitializer *Member =
1499      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1500    void *MemberInCtorList = GetKeyForMember(Member, true);
1501
1502    for (; curIndex < Last; curIndex++)
1503      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1504        break;
1505    if (curIndex == Last) {
1506      assert(PrevMember && "Member not in member list?!");
1507      // Initializer as specified in ctor-initializer list is out of order.
1508      // Issue a warning diagnostic.
1509      if (PrevMember->isBaseInitializer()) {
1510        // Diagnostics is for an initialized base class.
1511        Type *BaseClass = PrevMember->getBaseClass();
1512        Diag(PrevMember->getSourceLocation(),
1513             diag::warn_base_initialized)
1514          << QualType(BaseClass, 0);
1515      } else {
1516        FieldDecl *Field = PrevMember->getMember();
1517        Diag(PrevMember->getSourceLocation(),
1518             diag::warn_field_initialized)
1519          << Field->getNameAsString();
1520      }
1521      // Also the note!
1522      if (FieldDecl *Field = Member->getMember())
1523        Diag(Member->getSourceLocation(),
1524             diag::note_fieldorbase_initialized_here) << 0
1525          << Field->getNameAsString();
1526      else {
1527        Type *BaseClass = Member->getBaseClass();
1528        Diag(Member->getSourceLocation(),
1529             diag::note_fieldorbase_initialized_here) << 1
1530          << QualType(BaseClass, 0);
1531      }
1532      for (curIndex = 0; curIndex < Last; curIndex++)
1533        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1534          break;
1535    }
1536    PrevMember = Member;
1537  }
1538}
1539
1540void
1541Sema::computeBaseOrMembersToDestroy(CXXDestructorDecl *Destructor) {
1542  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Destructor->getDeclContext());
1543  llvm::SmallVector<uintptr_t, 32> AllToDestruct;
1544
1545  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1546       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1547    if (VBase->getType()->isDependentType())
1548      continue;
1549    // Skip over virtual bases which have trivial destructors.
1550    CXXRecordDecl *BaseClassDecl
1551      = cast<CXXRecordDecl>(VBase->getType()->getAs<RecordType>()->getDecl());
1552    if (BaseClassDecl->hasTrivialDestructor())
1553      continue;
1554    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1555      MarkDeclarationReferenced(Destructor->getLocation(),
1556                                const_cast<CXXDestructorDecl*>(Dtor));
1557
1558    uintptr_t Member =
1559    reinterpret_cast<uintptr_t>(VBase->getType().getTypePtr())
1560      | CXXDestructorDecl::VBASE;
1561    AllToDestruct.push_back(Member);
1562  }
1563  for (CXXRecordDecl::base_class_iterator Base =
1564       ClassDecl->bases_begin(),
1565       E = ClassDecl->bases_end(); Base != E; ++Base) {
1566    if (Base->isVirtual())
1567      continue;
1568    if (Base->getType()->isDependentType())
1569      continue;
1570    // Skip over virtual bases which have trivial destructors.
1571    CXXRecordDecl *BaseClassDecl
1572    = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1573    if (BaseClassDecl->hasTrivialDestructor())
1574      continue;
1575    if (const CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context))
1576      MarkDeclarationReferenced(Destructor->getLocation(),
1577                                const_cast<CXXDestructorDecl*>(Dtor));
1578    uintptr_t Member =
1579    reinterpret_cast<uintptr_t>(Base->getType().getTypePtr())
1580      | CXXDestructorDecl::DRCTNONVBASE;
1581    AllToDestruct.push_back(Member);
1582  }
1583
1584  // non-static data members.
1585  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1586       E = ClassDecl->field_end(); Field != E; ++Field) {
1587    QualType FieldType = Context.getBaseElementType((*Field)->getType());
1588
1589    if (const RecordType* RT = FieldType->getAs<RecordType>()) {
1590      // Skip over virtual bases which have trivial destructors.
1591      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1592      if (FieldClassDecl->hasTrivialDestructor())
1593        continue;
1594      if (const CXXDestructorDecl *Dtor =
1595            FieldClassDecl->getDestructor(Context))
1596        MarkDeclarationReferenced(Destructor->getLocation(),
1597                                  const_cast<CXXDestructorDecl*>(Dtor));
1598      uintptr_t Member = reinterpret_cast<uintptr_t>(*Field);
1599      AllToDestruct.push_back(Member);
1600    }
1601  }
1602
1603  unsigned NumDestructions = AllToDestruct.size();
1604  if (NumDestructions > 0) {
1605    Destructor->setNumBaseOrMemberDestructions(NumDestructions);
1606    uintptr_t *BaseOrMemberDestructions =
1607      new (Context) uintptr_t [NumDestructions];
1608    // Insert in reverse order.
1609    for (int Idx = NumDestructions-1, i=0 ; Idx >= 0; --Idx)
1610      BaseOrMemberDestructions[i++] = AllToDestruct[Idx];
1611    Destructor->setBaseOrMemberDestructions(BaseOrMemberDestructions);
1612  }
1613}
1614
1615void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1616  if (!CDtorDecl)
1617    return;
1618
1619  AdjustDeclIfTemplate(CDtorDecl);
1620
1621  if (CXXConstructorDecl *Constructor
1622      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1623    BuildBaseOrMemberInitializers(Context,
1624                                     Constructor,
1625                                     (CXXBaseOrMemberInitializer **)0, 0);
1626}
1627
1628namespace {
1629  /// PureVirtualMethodCollector - traverses a class and its superclasses
1630  /// and determines if it has any pure virtual methods.
1631  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1632    ASTContext &Context;
1633
1634  public:
1635    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1636
1637  private:
1638    MethodList Methods;
1639
1640    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1641
1642  public:
1643    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1644      : Context(Ctx) {
1645
1646      MethodList List;
1647      Collect(RD, List);
1648
1649      // Copy the temporary list to methods, and make sure to ignore any
1650      // null entries.
1651      for (size_t i = 0, e = List.size(); i != e; ++i) {
1652        if (List[i])
1653          Methods.push_back(List[i]);
1654      }
1655    }
1656
1657    bool empty() const { return Methods.empty(); }
1658
1659    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1660    MethodList::const_iterator methods_end() { return Methods.end(); }
1661  };
1662
1663  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1664                                           MethodList& Methods) {
1665    // First, collect the pure virtual methods for the base classes.
1666    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1667         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1668      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1669        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1670        if (BaseDecl && BaseDecl->isAbstract())
1671          Collect(BaseDecl, Methods);
1672      }
1673    }
1674
1675    // Next, zero out any pure virtual methods that this class overrides.
1676    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1677
1678    MethodSetTy OverriddenMethods;
1679    size_t MethodsSize = Methods.size();
1680
1681    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1682         i != e; ++i) {
1683      // Traverse the record, looking for methods.
1684      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1685        // If the method is pure virtual, add it to the methods vector.
1686        if (MD->isPure())
1687          Methods.push_back(MD);
1688
1689        // Record all the overridden methods in our set.
1690        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1691             E = MD->end_overridden_methods(); I != E; ++I) {
1692          // Keep track of the overridden methods.
1693          OverriddenMethods.insert(*I);
1694        }
1695      }
1696    }
1697
1698    // Now go through the methods and zero out all the ones we know are
1699    // overridden.
1700    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1701      if (OverriddenMethods.count(Methods[i]))
1702        Methods[i] = 0;
1703    }
1704
1705  }
1706}
1707
1708
1709bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1710                                  unsigned DiagID, AbstractDiagSelID SelID,
1711                                  const CXXRecordDecl *CurrentRD) {
1712  if (SelID == -1)
1713    return RequireNonAbstractType(Loc, T,
1714                                  PDiag(DiagID), CurrentRD);
1715  else
1716    return RequireNonAbstractType(Loc, T,
1717                                  PDiag(DiagID) << SelID, CurrentRD);
1718}
1719
1720bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1721                                  const PartialDiagnostic &PD,
1722                                  const CXXRecordDecl *CurrentRD) {
1723  if (!getLangOptions().CPlusPlus)
1724    return false;
1725
1726  if (const ArrayType *AT = Context.getAsArrayType(T))
1727    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1728                                  CurrentRD);
1729
1730  if (const PointerType *PT = T->getAs<PointerType>()) {
1731    // Find the innermost pointer type.
1732    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1733      PT = T;
1734
1735    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1736      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1737  }
1738
1739  const RecordType *RT = T->getAs<RecordType>();
1740  if (!RT)
1741    return false;
1742
1743  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1744  if (!RD)
1745    return false;
1746
1747  if (CurrentRD && CurrentRD != RD)
1748    return false;
1749
1750  if (!RD->isAbstract())
1751    return false;
1752
1753  Diag(Loc, PD) << RD->getDeclName();
1754
1755  // Check if we've already emitted the list of pure virtual functions for this
1756  // class.
1757  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1758    return true;
1759
1760  PureVirtualMethodCollector Collector(Context, RD);
1761
1762  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1763       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1764    const CXXMethodDecl *MD = *I;
1765
1766    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1767      MD->getDeclName();
1768  }
1769
1770  if (!PureVirtualClassDiagSet)
1771    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1772  PureVirtualClassDiagSet->insert(RD);
1773
1774  return true;
1775}
1776
1777namespace {
1778  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1779    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1780    Sema &SemaRef;
1781    CXXRecordDecl *AbstractClass;
1782
1783    bool VisitDeclContext(const DeclContext *DC) {
1784      bool Invalid = false;
1785
1786      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1787           E = DC->decls_end(); I != E; ++I)
1788        Invalid |= Visit(*I);
1789
1790      return Invalid;
1791    }
1792
1793  public:
1794    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1795      : SemaRef(SemaRef), AbstractClass(ac) {
1796        Visit(SemaRef.Context.getTranslationUnitDecl());
1797    }
1798
1799    bool VisitFunctionDecl(const FunctionDecl *FD) {
1800      if (FD->isThisDeclarationADefinition()) {
1801        // No need to do the check if we're in a definition, because it requires
1802        // that the return/param types are complete.
1803        // because that requires
1804        return VisitDeclContext(FD);
1805      }
1806
1807      // Check the return type.
1808      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
1809      bool Invalid =
1810        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1811                                       diag::err_abstract_type_in_decl,
1812                                       Sema::AbstractReturnType,
1813                                       AbstractClass);
1814
1815      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1816           E = FD->param_end(); I != E; ++I) {
1817        const ParmVarDecl *VD = *I;
1818        Invalid |=
1819          SemaRef.RequireNonAbstractType(VD->getLocation(),
1820                                         VD->getOriginalType(),
1821                                         diag::err_abstract_type_in_decl,
1822                                         Sema::AbstractParamType,
1823                                         AbstractClass);
1824      }
1825
1826      return Invalid;
1827    }
1828
1829    bool VisitDecl(const Decl* D) {
1830      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1831        return VisitDeclContext(DC);
1832
1833      return false;
1834    }
1835  };
1836}
1837
1838void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1839                                             DeclPtrTy TagDecl,
1840                                             SourceLocation LBrac,
1841                                             SourceLocation RBrac) {
1842  if (!TagDecl)
1843    return;
1844
1845  AdjustDeclIfTemplate(TagDecl);
1846  ActOnFields(S, RLoc, TagDecl,
1847              (DeclPtrTy*)FieldCollector->getCurFields(),
1848              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1849
1850  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1851  if (!RD->isAbstract()) {
1852    // Collect all the pure virtual methods and see if this is an abstract
1853    // class after all.
1854    PureVirtualMethodCollector Collector(Context, RD);
1855    if (!Collector.empty())
1856      RD->setAbstract(true);
1857  }
1858
1859  if (RD->isAbstract())
1860    AbstractClassUsageDiagnoser(*this, RD);
1861
1862  if (!RD->isDependentType() && !RD->isInvalidDecl())
1863    AddImplicitlyDeclaredMembersToClass(RD);
1864}
1865
1866/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1867/// special functions, such as the default constructor, copy
1868/// constructor, or destructor, to the given C++ class (C++
1869/// [special]p1).  This routine can only be executed just before the
1870/// definition of the class is complete.
1871void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1872  CanQualType ClassType
1873    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1874
1875  // FIXME: Implicit declarations have exception specifications, which are
1876  // the union of the specifications of the implicitly called functions.
1877
1878  if (!ClassDecl->hasUserDeclaredConstructor()) {
1879    // C++ [class.ctor]p5:
1880    //   A default constructor for a class X is a constructor of class X
1881    //   that can be called without an argument. If there is no
1882    //   user-declared constructor for class X, a default constructor is
1883    //   implicitly declared. An implicitly-declared default constructor
1884    //   is an inline public member of its class.
1885    DeclarationName Name
1886      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1887    CXXConstructorDecl *DefaultCon =
1888      CXXConstructorDecl::Create(Context, ClassDecl,
1889                                 ClassDecl->getLocation(), Name,
1890                                 Context.getFunctionType(Context.VoidTy,
1891                                                         0, 0, false, 0),
1892                                 /*DInfo=*/0,
1893                                 /*isExplicit=*/false,
1894                                 /*isInline=*/true,
1895                                 /*isImplicitlyDeclared=*/true);
1896    DefaultCon->setAccess(AS_public);
1897    DefaultCon->setImplicit();
1898    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1899    ClassDecl->addDecl(DefaultCon);
1900  }
1901
1902  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1903    // C++ [class.copy]p4:
1904    //   If the class definition does not explicitly declare a copy
1905    //   constructor, one is declared implicitly.
1906
1907    // C++ [class.copy]p5:
1908    //   The implicitly-declared copy constructor for a class X will
1909    //   have the form
1910    //
1911    //       X::X(const X&)
1912    //
1913    //   if
1914    bool HasConstCopyConstructor = true;
1915
1916    //     -- each direct or virtual base class B of X has a copy
1917    //        constructor whose first parameter is of type const B& or
1918    //        const volatile B&, and
1919    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1920         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1921      const CXXRecordDecl *BaseClassDecl
1922        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1923      HasConstCopyConstructor
1924        = BaseClassDecl->hasConstCopyConstructor(Context);
1925    }
1926
1927    //     -- for all the nonstatic data members of X that are of a
1928    //        class type M (or array thereof), each such class type
1929    //        has a copy constructor whose first parameter is of type
1930    //        const M& or const volatile M&.
1931    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1932         HasConstCopyConstructor && Field != ClassDecl->field_end();
1933         ++Field) {
1934      QualType FieldType = (*Field)->getType();
1935      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1936        FieldType = Array->getElementType();
1937      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1938        const CXXRecordDecl *FieldClassDecl
1939          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1940        HasConstCopyConstructor
1941          = FieldClassDecl->hasConstCopyConstructor(Context);
1942      }
1943    }
1944
1945    //   Otherwise, the implicitly declared copy constructor will have
1946    //   the form
1947    //
1948    //       X::X(X&)
1949    QualType ArgType = ClassType;
1950    if (HasConstCopyConstructor)
1951      ArgType = ArgType.withConst();
1952    ArgType = Context.getLValueReferenceType(ArgType);
1953
1954    //   An implicitly-declared copy constructor is an inline public
1955    //   member of its class.
1956    DeclarationName Name
1957      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1958    CXXConstructorDecl *CopyConstructor
1959      = CXXConstructorDecl::Create(Context, ClassDecl,
1960                                   ClassDecl->getLocation(), Name,
1961                                   Context.getFunctionType(Context.VoidTy,
1962                                                           &ArgType, 1,
1963                                                           false, 0),
1964                                   /*DInfo=*/0,
1965                                   /*isExplicit=*/false,
1966                                   /*isInline=*/true,
1967                                   /*isImplicitlyDeclared=*/true);
1968    CopyConstructor->setAccess(AS_public);
1969    CopyConstructor->setImplicit();
1970    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1971
1972    // Add the parameter to the constructor.
1973    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1974                                                 ClassDecl->getLocation(),
1975                                                 /*IdentifierInfo=*/0,
1976                                                 ArgType, /*DInfo=*/0,
1977                                                 VarDecl::None, 0);
1978    CopyConstructor->setParams(Context, &FromParam, 1);
1979    ClassDecl->addDecl(CopyConstructor);
1980  }
1981
1982  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1983    // Note: The following rules are largely analoguous to the copy
1984    // constructor rules. Note that virtual bases are not taken into account
1985    // for determining the argument type of the operator. Note also that
1986    // operators taking an object instead of a reference are allowed.
1987    //
1988    // C++ [class.copy]p10:
1989    //   If the class definition does not explicitly declare a copy
1990    //   assignment operator, one is declared implicitly.
1991    //   The implicitly-defined copy assignment operator for a class X
1992    //   will have the form
1993    //
1994    //       X& X::operator=(const X&)
1995    //
1996    //   if
1997    bool HasConstCopyAssignment = true;
1998
1999    //       -- each direct base class B of X has a copy assignment operator
2000    //          whose parameter is of type const B&, const volatile B& or B,
2001    //          and
2002    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2003         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2004      assert(!Base->getType()->isDependentType() &&
2005            "Cannot generate implicit members for class with dependent bases.");
2006      const CXXRecordDecl *BaseClassDecl
2007        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2008      const CXXMethodDecl *MD = 0;
2009      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2010                                                                     MD);
2011    }
2012
2013    //       -- for all the nonstatic data members of X that are of a class
2014    //          type M (or array thereof), each such class type has a copy
2015    //          assignment operator whose parameter is of type const M&,
2016    //          const volatile M& or M.
2017    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2018         HasConstCopyAssignment && Field != ClassDecl->field_end();
2019         ++Field) {
2020      QualType FieldType = (*Field)->getType();
2021      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2022        FieldType = Array->getElementType();
2023      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2024        const CXXRecordDecl *FieldClassDecl
2025          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2026        const CXXMethodDecl *MD = 0;
2027        HasConstCopyAssignment
2028          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2029      }
2030    }
2031
2032    //   Otherwise, the implicitly declared copy assignment operator will
2033    //   have the form
2034    //
2035    //       X& X::operator=(X&)
2036    QualType ArgType = ClassType;
2037    QualType RetType = Context.getLValueReferenceType(ArgType);
2038    if (HasConstCopyAssignment)
2039      ArgType = ArgType.withConst();
2040    ArgType = Context.getLValueReferenceType(ArgType);
2041
2042    //   An implicitly-declared copy assignment operator is an inline public
2043    //   member of its class.
2044    DeclarationName Name =
2045      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2046    CXXMethodDecl *CopyAssignment =
2047      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2048                            Context.getFunctionType(RetType, &ArgType, 1,
2049                                                    false, 0),
2050                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2051    CopyAssignment->setAccess(AS_public);
2052    CopyAssignment->setImplicit();
2053    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2054    CopyAssignment->setCopyAssignment(true);
2055
2056    // Add the parameter to the operator.
2057    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2058                                                 ClassDecl->getLocation(),
2059                                                 /*IdentifierInfo=*/0,
2060                                                 ArgType, /*DInfo=*/0,
2061                                                 VarDecl::None, 0);
2062    CopyAssignment->setParams(Context, &FromParam, 1);
2063
2064    // Don't call addedAssignmentOperator. There is no way to distinguish an
2065    // implicit from an explicit assignment operator.
2066    ClassDecl->addDecl(CopyAssignment);
2067  }
2068
2069  if (!ClassDecl->hasUserDeclaredDestructor()) {
2070    // C++ [class.dtor]p2:
2071    //   If a class has no user-declared destructor, a destructor is
2072    //   declared implicitly. An implicitly-declared destructor is an
2073    //   inline public member of its class.
2074    DeclarationName Name
2075      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2076    CXXDestructorDecl *Destructor
2077      = CXXDestructorDecl::Create(Context, ClassDecl,
2078                                  ClassDecl->getLocation(), Name,
2079                                  Context.getFunctionType(Context.VoidTy,
2080                                                          0, 0, false, 0),
2081                                  /*isInline=*/true,
2082                                  /*isImplicitlyDeclared=*/true);
2083    Destructor->setAccess(AS_public);
2084    Destructor->setImplicit();
2085    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2086    ClassDecl->addDecl(Destructor);
2087  }
2088}
2089
2090void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2091  Decl *D = TemplateD.getAs<Decl>();
2092  if (!D)
2093    return;
2094
2095  TemplateParameterList *Params = 0;
2096  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2097    Params = Template->getTemplateParameters();
2098  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2099           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2100    Params = PartialSpec->getTemplateParameters();
2101  else
2102    return;
2103
2104  for (TemplateParameterList::iterator Param = Params->begin(),
2105                                    ParamEnd = Params->end();
2106       Param != ParamEnd; ++Param) {
2107    NamedDecl *Named = cast<NamedDecl>(*Param);
2108    if (Named->getDeclName()) {
2109      S->AddDecl(DeclPtrTy::make(Named));
2110      IdResolver.AddDecl(Named);
2111    }
2112  }
2113}
2114
2115/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2116/// parsing a top-level (non-nested) C++ class, and we are now
2117/// parsing those parts of the given Method declaration that could
2118/// not be parsed earlier (C++ [class.mem]p2), such as default
2119/// arguments. This action should enter the scope of the given
2120/// Method declaration as if we had just parsed the qualified method
2121/// name. However, it should not bring the parameters into scope;
2122/// that will be performed by ActOnDelayedCXXMethodParameter.
2123void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2124  if (!MethodD)
2125    return;
2126
2127  AdjustDeclIfTemplate(MethodD);
2128
2129  CXXScopeSpec SS;
2130  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2131  QualType ClassTy
2132    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2133  SS.setScopeRep(
2134    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2135  ActOnCXXEnterDeclaratorScope(S, SS);
2136}
2137
2138/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2139/// C++ method declaration. We're (re-)introducing the given
2140/// function parameter into scope for use in parsing later parts of
2141/// the method declaration. For example, we could see an
2142/// ActOnParamDefaultArgument event for this parameter.
2143void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2144  if (!ParamD)
2145    return;
2146
2147  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2148
2149  // If this parameter has an unparsed default argument, clear it out
2150  // to make way for the parsed default argument.
2151  if (Param->hasUnparsedDefaultArg())
2152    Param->setDefaultArg(0);
2153
2154  S->AddDecl(DeclPtrTy::make(Param));
2155  if (Param->getDeclName())
2156    IdResolver.AddDecl(Param);
2157}
2158
2159/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2160/// processing the delayed method declaration for Method. The method
2161/// declaration is now considered finished. There may be a separate
2162/// ActOnStartOfFunctionDef action later (not necessarily
2163/// immediately!) for this method, if it was also defined inside the
2164/// class body.
2165void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2166  if (!MethodD)
2167    return;
2168
2169  AdjustDeclIfTemplate(MethodD);
2170
2171  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2172  CXXScopeSpec SS;
2173  QualType ClassTy
2174    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
2175  SS.setScopeRep(
2176    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
2177  ActOnCXXExitDeclaratorScope(S, SS);
2178
2179  // Now that we have our default arguments, check the constructor
2180  // again. It could produce additional diagnostics or affect whether
2181  // the class has implicitly-declared destructors, among other
2182  // things.
2183  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2184    CheckConstructor(Constructor);
2185
2186  // Check the default arguments, which we may have added.
2187  if (!Method->isInvalidDecl())
2188    CheckCXXDefaultArguments(Method);
2189}
2190
2191/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2192/// the well-formedness of the constructor declarator @p D with type @p
2193/// R. If there are any errors in the declarator, this routine will
2194/// emit diagnostics and set the invalid bit to true.  In any case, the type
2195/// will be updated to reflect a well-formed type for the constructor and
2196/// returned.
2197QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2198                                          FunctionDecl::StorageClass &SC) {
2199  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2200
2201  // C++ [class.ctor]p3:
2202  //   A constructor shall not be virtual (10.3) or static (9.4). A
2203  //   constructor can be invoked for a const, volatile or const
2204  //   volatile object. A constructor shall not be declared const,
2205  //   volatile, or const volatile (9.3.2).
2206  if (isVirtual) {
2207    if (!D.isInvalidType())
2208      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2209        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2210        << SourceRange(D.getIdentifierLoc());
2211    D.setInvalidType();
2212  }
2213  if (SC == FunctionDecl::Static) {
2214    if (!D.isInvalidType())
2215      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2216        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2217        << SourceRange(D.getIdentifierLoc());
2218    D.setInvalidType();
2219    SC = FunctionDecl::None;
2220  }
2221
2222  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2223  if (FTI.TypeQuals != 0) {
2224    if (FTI.TypeQuals & Qualifiers::Const)
2225      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2226        << "const" << SourceRange(D.getIdentifierLoc());
2227    if (FTI.TypeQuals & Qualifiers::Volatile)
2228      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2229        << "volatile" << SourceRange(D.getIdentifierLoc());
2230    if (FTI.TypeQuals & Qualifiers::Restrict)
2231      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2232        << "restrict" << SourceRange(D.getIdentifierLoc());
2233  }
2234
2235  // Rebuild the function type "R" without any type qualifiers (in
2236  // case any of the errors above fired) and with "void" as the
2237  // return type, since constructors don't have return types. We
2238  // *always* have to do this, because GetTypeForDeclarator will
2239  // put in a result type of "int" when none was specified.
2240  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2241  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2242                                 Proto->getNumArgs(),
2243                                 Proto->isVariadic(), 0);
2244}
2245
2246/// CheckConstructor - Checks a fully-formed constructor for
2247/// well-formedness, issuing any diagnostics required. Returns true if
2248/// the constructor declarator is invalid.
2249void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2250  CXXRecordDecl *ClassDecl
2251    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2252  if (!ClassDecl)
2253    return Constructor->setInvalidDecl();
2254
2255  // C++ [class.copy]p3:
2256  //   A declaration of a constructor for a class X is ill-formed if
2257  //   its first parameter is of type (optionally cv-qualified) X and
2258  //   either there are no other parameters or else all other
2259  //   parameters have default arguments.
2260  if (!Constructor->isInvalidDecl() &&
2261      ((Constructor->getNumParams() == 1) ||
2262       (Constructor->getNumParams() > 1 &&
2263        Constructor->getParamDecl(1)->hasDefaultArg()))) {
2264    QualType ParamType = Constructor->getParamDecl(0)->getType();
2265    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2266    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2267      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2268      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2269        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
2270      Constructor->setInvalidDecl();
2271    }
2272  }
2273
2274  // Notify the class that we've added a constructor.
2275  ClassDecl->addedConstructor(Context, Constructor);
2276}
2277
2278static inline bool
2279FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2280  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2281          FTI.ArgInfo[0].Param &&
2282          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2283}
2284
2285/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2286/// the well-formednes of the destructor declarator @p D with type @p
2287/// R. If there are any errors in the declarator, this routine will
2288/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2289/// will be updated to reflect a well-formed type for the destructor and
2290/// returned.
2291QualType Sema::CheckDestructorDeclarator(Declarator &D,
2292                                         FunctionDecl::StorageClass& SC) {
2293  // C++ [class.dtor]p1:
2294  //   [...] A typedef-name that names a class is a class-name
2295  //   (7.1.3); however, a typedef-name that names a class shall not
2296  //   be used as the identifier in the declarator for a destructor
2297  //   declaration.
2298  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2299  if (isa<TypedefType>(DeclaratorType)) {
2300    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2301      << DeclaratorType;
2302    D.setInvalidType();
2303  }
2304
2305  // C++ [class.dtor]p2:
2306  //   A destructor is used to destroy objects of its class type. A
2307  //   destructor takes no parameters, and no return type can be
2308  //   specified for it (not even void). The address of a destructor
2309  //   shall not be taken. A destructor shall not be static. A
2310  //   destructor can be invoked for a const, volatile or const
2311  //   volatile object. A destructor shall not be declared const,
2312  //   volatile or const volatile (9.3.2).
2313  if (SC == FunctionDecl::Static) {
2314    if (!D.isInvalidType())
2315      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2316        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2317        << SourceRange(D.getIdentifierLoc());
2318    SC = FunctionDecl::None;
2319    D.setInvalidType();
2320  }
2321  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2322    // Destructors don't have return types, but the parser will
2323    // happily parse something like:
2324    //
2325    //   class X {
2326    //     float ~X();
2327    //   };
2328    //
2329    // The return type will be eliminated later.
2330    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2331      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2332      << SourceRange(D.getIdentifierLoc());
2333  }
2334
2335  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2336  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2337    if (FTI.TypeQuals & Qualifiers::Const)
2338      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2339        << "const" << SourceRange(D.getIdentifierLoc());
2340    if (FTI.TypeQuals & Qualifiers::Volatile)
2341      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2342        << "volatile" << SourceRange(D.getIdentifierLoc());
2343    if (FTI.TypeQuals & Qualifiers::Restrict)
2344      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2345        << "restrict" << SourceRange(D.getIdentifierLoc());
2346    D.setInvalidType();
2347  }
2348
2349  // Make sure we don't have any parameters.
2350  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2351    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2352
2353    // Delete the parameters.
2354    FTI.freeArgs();
2355    D.setInvalidType();
2356  }
2357
2358  // Make sure the destructor isn't variadic.
2359  if (FTI.isVariadic) {
2360    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2361    D.setInvalidType();
2362  }
2363
2364  // Rebuild the function type "R" without any type qualifiers or
2365  // parameters (in case any of the errors above fired) and with
2366  // "void" as the return type, since destructors don't have return
2367  // types. We *always* have to do this, because GetTypeForDeclarator
2368  // will put in a result type of "int" when none was specified.
2369  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
2370}
2371
2372/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2373/// well-formednes of the conversion function declarator @p D with
2374/// type @p R. If there are any errors in the declarator, this routine
2375/// will emit diagnostics and return true. Otherwise, it will return
2376/// false. Either way, the type @p R will be updated to reflect a
2377/// well-formed type for the conversion operator.
2378void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2379                                     FunctionDecl::StorageClass& SC) {
2380  // C++ [class.conv.fct]p1:
2381  //   Neither parameter types nor return type can be specified. The
2382  //   type of a conversion function (8.3.5) is "function taking no
2383  //   parameter returning conversion-type-id."
2384  if (SC == FunctionDecl::Static) {
2385    if (!D.isInvalidType())
2386      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2387        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2388        << SourceRange(D.getIdentifierLoc());
2389    D.setInvalidType();
2390    SC = FunctionDecl::None;
2391  }
2392  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2393    // Conversion functions don't have return types, but the parser will
2394    // happily parse something like:
2395    //
2396    //   class X {
2397    //     float operator bool();
2398    //   };
2399    //
2400    // The return type will be changed later anyway.
2401    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2402      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2403      << SourceRange(D.getIdentifierLoc());
2404  }
2405
2406  // Make sure we don't have any parameters.
2407  if (R->getAs<FunctionProtoType>()->getNumArgs() > 0) {
2408    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2409
2410    // Delete the parameters.
2411    D.getTypeObject(0).Fun.freeArgs();
2412    D.setInvalidType();
2413  }
2414
2415  // Make sure the conversion function isn't variadic.
2416  if (R->getAs<FunctionProtoType>()->isVariadic() && !D.isInvalidType()) {
2417    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2418    D.setInvalidType();
2419  }
2420
2421  // C++ [class.conv.fct]p4:
2422  //   The conversion-type-id shall not represent a function type nor
2423  //   an array type.
2424  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2425  if (ConvType->isArrayType()) {
2426    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2427    ConvType = Context.getPointerType(ConvType);
2428    D.setInvalidType();
2429  } else if (ConvType->isFunctionType()) {
2430    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2431    ConvType = Context.getPointerType(ConvType);
2432    D.setInvalidType();
2433  }
2434
2435  // Rebuild the function type "R" without any parameters (in case any
2436  // of the errors above fired) and with the conversion type as the
2437  // return type.
2438  R = Context.getFunctionType(ConvType, 0, 0, false,
2439                              R->getAs<FunctionProtoType>()->getTypeQuals());
2440
2441  // C++0x explicit conversion operators.
2442  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2443    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2444         diag::warn_explicit_conversion_functions)
2445      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2446}
2447
2448/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2449/// the declaration of the given C++ conversion function. This routine
2450/// is responsible for recording the conversion function in the C++
2451/// class, if possible.
2452Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2453  assert(Conversion && "Expected to receive a conversion function declaration");
2454
2455  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2456
2457  // Make sure we aren't redeclaring the conversion function.
2458  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2459
2460  // C++ [class.conv.fct]p1:
2461  //   [...] A conversion function is never used to convert a
2462  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2463  //   same object type (or a reference to it), to a (possibly
2464  //   cv-qualified) base class of that type (or a reference to it),
2465  //   or to (possibly cv-qualified) void.
2466  // FIXME: Suppress this warning if the conversion function ends up being a
2467  // virtual function that overrides a virtual function in a base class.
2468  QualType ClassType
2469    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2470  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2471    ConvType = ConvTypeRef->getPointeeType();
2472  if (ConvType->isRecordType()) {
2473    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2474    if (ConvType == ClassType)
2475      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2476        << ClassType;
2477    else if (IsDerivedFrom(ClassType, ConvType))
2478      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2479        <<  ClassType << ConvType;
2480  } else if (ConvType->isVoidType()) {
2481    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2482      << ClassType << ConvType;
2483  }
2484
2485  if (Conversion->getPreviousDeclaration()) {
2486    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
2487    if (FunctionTemplateDecl *ConversionTemplate
2488          = Conversion->getDescribedFunctionTemplate())
2489      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
2490    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
2491    for (OverloadedFunctionDecl::function_iterator
2492           Conv = Conversions->function_begin(),
2493           ConvEnd = Conversions->function_end();
2494         Conv != ConvEnd; ++Conv) {
2495      if (*Conv == ExpectedPrevDecl) {
2496        *Conv = Conversion;
2497        return DeclPtrTy::make(Conversion);
2498      }
2499    }
2500    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2501  } else if (FunctionTemplateDecl *ConversionTemplate
2502               = Conversion->getDescribedFunctionTemplate())
2503    ClassDecl->addConversionFunction(ConversionTemplate);
2504  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
2505    ClassDecl->addConversionFunction(Conversion);
2506
2507  return DeclPtrTy::make(Conversion);
2508}
2509
2510//===----------------------------------------------------------------------===//
2511// Namespace Handling
2512//===----------------------------------------------------------------------===//
2513
2514/// ActOnStartNamespaceDef - This is called at the start of a namespace
2515/// definition.
2516Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
2517                                             SourceLocation IdentLoc,
2518                                             IdentifierInfo *II,
2519                                             SourceLocation LBrace) {
2520  NamespaceDecl *Namespc =
2521      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
2522  Namespc->setLBracLoc(LBrace);
2523
2524  Scope *DeclRegionScope = NamespcScope->getParent();
2525
2526  if (II) {
2527    // C++ [namespace.def]p2:
2528    // The identifier in an original-namespace-definition shall not have been
2529    // previously defined in the declarative region in which the
2530    // original-namespace-definition appears. The identifier in an
2531    // original-namespace-definition is the name of the namespace. Subsequently
2532    // in that declarative region, it is treated as an original-namespace-name.
2533
2534    NamedDecl *PrevDecl
2535      = LookupSingleName(DeclRegionScope, II, LookupOrdinaryName, true);
2536
2537    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
2538      // This is an extended namespace definition.
2539      // Attach this namespace decl to the chain of extended namespace
2540      // definitions.
2541      OrigNS->setNextNamespace(Namespc);
2542      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
2543
2544      // Remove the previous declaration from the scope.
2545      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
2546        IdResolver.RemoveDecl(OrigNS);
2547        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
2548      }
2549    } else if (PrevDecl) {
2550      // This is an invalid name redefinition.
2551      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
2552       << Namespc->getDeclName();
2553      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2554      Namespc->setInvalidDecl();
2555      // Continue on to push Namespc as current DeclContext and return it.
2556    } else if (II->isStr("std") &&
2557               CurContext->getLookupContext()->isTranslationUnit()) {
2558      // This is the first "real" definition of the namespace "std", so update
2559      // our cache of the "std" namespace to point at this definition.
2560      if (StdNamespace) {
2561        // We had already defined a dummy namespace "std". Link this new
2562        // namespace definition to the dummy namespace "std".
2563        StdNamespace->setNextNamespace(Namespc);
2564        StdNamespace->setLocation(IdentLoc);
2565        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
2566      }
2567
2568      // Make our StdNamespace cache point at the first real definition of the
2569      // "std" namespace.
2570      StdNamespace = Namespc;
2571    }
2572
2573    PushOnScopeChains(Namespc, DeclRegionScope);
2574  } else {
2575    // Anonymous namespaces.
2576
2577    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
2578    //   behaves as if it were replaced by
2579    //     namespace unique { /* empty body */ }
2580    //     using namespace unique;
2581    //     namespace unique { namespace-body }
2582    //   where all occurrences of 'unique' in a translation unit are
2583    //   replaced by the same identifier and this identifier differs
2584    //   from all other identifiers in the entire program.
2585
2586    // We just create the namespace with an empty name and then add an
2587    // implicit using declaration, just like the standard suggests.
2588    //
2589    // CodeGen enforces the "universally unique" aspect by giving all
2590    // declarations semantically contained within an anonymous
2591    // namespace internal linkage.
2592
2593    assert(Namespc->isAnonymousNamespace());
2594    CurContext->addDecl(Namespc);
2595
2596    UsingDirectiveDecl* UD
2597      = UsingDirectiveDecl::Create(Context, CurContext,
2598                                   /* 'using' */ LBrace,
2599                                   /* 'namespace' */ SourceLocation(),
2600                                   /* qualifier */ SourceRange(),
2601                                   /* NNS */ NULL,
2602                                   /* identifier */ SourceLocation(),
2603                                   Namespc,
2604                                   /* Ancestor */ CurContext);
2605    UD->setImplicit();
2606    CurContext->addDecl(UD);
2607  }
2608
2609  // Although we could have an invalid decl (i.e. the namespace name is a
2610  // redefinition), push it as current DeclContext and try to continue parsing.
2611  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2612  // for the namespace has the declarations that showed up in that particular
2613  // namespace definition.
2614  PushDeclContext(NamespcScope, Namespc);
2615  return DeclPtrTy::make(Namespc);
2616}
2617
2618/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2619/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2620void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2621  Decl *Dcl = D.getAs<Decl>();
2622  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2623  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2624  Namespc->setRBracLoc(RBrace);
2625  PopDeclContext();
2626}
2627
2628Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2629                                          SourceLocation UsingLoc,
2630                                          SourceLocation NamespcLoc,
2631                                          const CXXScopeSpec &SS,
2632                                          SourceLocation IdentLoc,
2633                                          IdentifierInfo *NamespcName,
2634                                          AttributeList *AttrList) {
2635  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2636  assert(NamespcName && "Invalid NamespcName.");
2637  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2638  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2639
2640  UsingDirectiveDecl *UDir = 0;
2641
2642  // Lookup namespace name.
2643  LookupResult R;
2644  LookupParsedName(R, S, &SS, NamespcName, LookupNamespaceName, false);
2645  if (R.isAmbiguous()) {
2646    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2647    return DeclPtrTy();
2648  }
2649  if (!R.empty()) {
2650    NamedDecl *NS = R.getFoundDecl();
2651    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2652    // C++ [namespace.udir]p1:
2653    //   A using-directive specifies that the names in the nominated
2654    //   namespace can be used in the scope in which the
2655    //   using-directive appears after the using-directive. During
2656    //   unqualified name lookup (3.4.1), the names appear as if they
2657    //   were declared in the nearest enclosing namespace which
2658    //   contains both the using-directive and the nominated
2659    //   namespace. [Note: in this context, "contains" means "contains
2660    //   directly or indirectly". ]
2661
2662    // Find enclosing context containing both using-directive and
2663    // nominated namespace.
2664    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2665    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2666      CommonAncestor = CommonAncestor->getParent();
2667
2668    UDir = UsingDirectiveDecl::Create(Context,
2669                                      CurContext, UsingLoc,
2670                                      NamespcLoc,
2671                                      SS.getRange(),
2672                                      (NestedNameSpecifier *)SS.getScopeRep(),
2673                                      IdentLoc,
2674                                      cast<NamespaceDecl>(NS),
2675                                      CommonAncestor);
2676    PushUsingDirective(S, UDir);
2677  } else {
2678    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2679  }
2680
2681  // FIXME: We ignore attributes for now.
2682  delete AttrList;
2683  return DeclPtrTy::make(UDir);
2684}
2685
2686void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2687  // If scope has associated entity, then using directive is at namespace
2688  // or translation unit scope. We add UsingDirectiveDecls, into
2689  // it's lookup structure.
2690  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2691    Ctx->addDecl(UDir);
2692  else
2693    // Otherwise it is block-sope. using-directives will affect lookup
2694    // only to the end of scope.
2695    S->PushUsingDirective(DeclPtrTy::make(UDir));
2696}
2697
2698
2699Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2700                                            AccessSpecifier AS,
2701                                            SourceLocation UsingLoc,
2702                                            const CXXScopeSpec &SS,
2703                                            SourceLocation IdentLoc,
2704                                            IdentifierInfo *TargetName,
2705                                            OverloadedOperatorKind Op,
2706                                            AttributeList *AttrList,
2707                                            bool IsTypeName) {
2708  assert((TargetName || Op) && "Invalid TargetName.");
2709  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2710
2711  DeclarationName Name;
2712  if (TargetName)
2713    Name = TargetName;
2714  else
2715    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2716
2717  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2718                                        Name, AttrList, IsTypeName);
2719  if (UD) {
2720    PushOnScopeChains(UD, S);
2721    UD->setAccess(AS);
2722  }
2723
2724  return DeclPtrTy::make(UD);
2725}
2726
2727NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2728                                       const CXXScopeSpec &SS,
2729                                       SourceLocation IdentLoc,
2730                                       DeclarationName Name,
2731                                       AttributeList *AttrList,
2732                                       bool IsTypeName) {
2733  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2734  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2735
2736  // FIXME: We ignore attributes for now.
2737  delete AttrList;
2738
2739  if (SS.isEmpty()) {
2740    Diag(IdentLoc, diag::err_using_requires_qualname);
2741    return 0;
2742  }
2743
2744  NestedNameSpecifier *NNS =
2745    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2746
2747  if (isUnknownSpecialization(SS)) {
2748    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2749                                       SS.getRange(), NNS,
2750                                       IdentLoc, Name, IsTypeName);
2751  }
2752
2753  DeclContext *LookupContext = 0;
2754
2755  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2756    // C++0x N2914 [namespace.udecl]p3:
2757    // A using-declaration used as a member-declaration shall refer to a member
2758    // of a base class of the class being defined, shall refer to a member of an
2759    // anonymous union that is a member of a base class of the class being
2760    // defined, or shall refer to an enumerator for an enumeration type that is
2761    // a member of a base class of the class being defined.
2762    const Type *Ty = NNS->getAsType();
2763    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2764      Diag(SS.getRange().getBegin(),
2765           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2766        << NNS << RD->getDeclName();
2767      return 0;
2768    }
2769
2770    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2771    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2772  } else {
2773    // C++0x N2914 [namespace.udecl]p8:
2774    // A using-declaration for a class member shall be a member-declaration.
2775    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2776      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2777        << SS.getRange();
2778      return 0;
2779    }
2780
2781    // C++0x N2914 [namespace.udecl]p9:
2782    // In a using-declaration, a prefix :: refers to the global namespace.
2783    if (NNS->getKind() == NestedNameSpecifier::Global)
2784      LookupContext = Context.getTranslationUnitDecl();
2785    else
2786      LookupContext = NNS->getAsNamespace();
2787  }
2788
2789
2790  // Lookup target name.
2791  LookupResult R;
2792  LookupQualifiedName(R, LookupContext, Name, LookupOrdinaryName);
2793
2794  if (R.empty()) {
2795    Diag(IdentLoc, diag::err_no_member)
2796      << Name << LookupContext << SS.getRange();
2797    return 0;
2798  }
2799
2800  // FIXME: handle ambiguity?
2801  NamedDecl *ND = R.getAsSingleDecl(Context);
2802
2803  if (IsTypeName && !isa<TypeDecl>(ND)) {
2804    Diag(IdentLoc, diag::err_using_typename_non_type);
2805    return 0;
2806  }
2807
2808  // C++0x N2914 [namespace.udecl]p6:
2809  // A using-declaration shall not name a namespace.
2810  if (isa<NamespaceDecl>(ND)) {
2811    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2812      << SS.getRange();
2813    return 0;
2814  }
2815
2816  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2817                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2818}
2819
2820/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2821/// is a namespace alias, returns the namespace it points to.
2822static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2823  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2824    return AD->getNamespace();
2825  return dyn_cast_or_null<NamespaceDecl>(D);
2826}
2827
2828Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2829                                             SourceLocation NamespaceLoc,
2830                                             SourceLocation AliasLoc,
2831                                             IdentifierInfo *Alias,
2832                                             const CXXScopeSpec &SS,
2833                                             SourceLocation IdentLoc,
2834                                             IdentifierInfo *Ident) {
2835
2836  // Lookup the namespace name.
2837  LookupResult R;
2838  LookupParsedName(R, S, &SS, Ident, LookupNamespaceName, false);
2839
2840  // Check if we have a previous declaration with the same name.
2841  if (NamedDecl *PrevDecl
2842        = LookupSingleName(S, Alias, LookupOrdinaryName, true)) {
2843    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2844      // We already have an alias with the same name that points to the same
2845      // namespace, so don't create a new one.
2846      if (!R.isAmbiguous() && !R.empty() &&
2847          AD->getNamespace() == getNamespaceDecl(R.getFoundDecl()))
2848        return DeclPtrTy();
2849    }
2850
2851    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2852      diag::err_redefinition_different_kind;
2853    Diag(AliasLoc, DiagID) << Alias;
2854    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2855    return DeclPtrTy();
2856  }
2857
2858  if (R.isAmbiguous()) {
2859    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2860    return DeclPtrTy();
2861  }
2862
2863  if (R.empty()) {
2864    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2865    return DeclPtrTy();
2866  }
2867
2868  NamespaceAliasDecl *AliasDecl =
2869    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2870                               Alias, SS.getRange(),
2871                               (NestedNameSpecifier *)SS.getScopeRep(),
2872                               IdentLoc, R.getFoundDecl());
2873
2874  CurContext->addDecl(AliasDecl);
2875  return DeclPtrTy::make(AliasDecl);
2876}
2877
2878void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2879                                            CXXConstructorDecl *Constructor) {
2880  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2881          !Constructor->isUsed()) &&
2882    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2883
2884  CXXRecordDecl *ClassDecl
2885    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2886  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2887  // Before the implicitly-declared default constructor for a class is
2888  // implicitly defined, all the implicitly-declared default constructors
2889  // for its base class and its non-static data members shall have been
2890  // implicitly defined.
2891  bool err = false;
2892  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2893       E = ClassDecl->bases_end(); Base != E; ++Base) {
2894    CXXRecordDecl *BaseClassDecl
2895      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2896    if (!BaseClassDecl->hasTrivialConstructor()) {
2897      if (CXXConstructorDecl *BaseCtor =
2898            BaseClassDecl->getDefaultConstructor(Context))
2899        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2900      else {
2901        Diag(CurrentLocation, diag::err_defining_default_ctor)
2902          << Context.getTagDeclType(ClassDecl) << 0
2903          << Context.getTagDeclType(BaseClassDecl);
2904        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2905              << Context.getTagDeclType(BaseClassDecl);
2906        err = true;
2907      }
2908    }
2909  }
2910  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2911       E = ClassDecl->field_end(); Field != E; ++Field) {
2912    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2913    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2914      FieldType = Array->getElementType();
2915    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2916      CXXRecordDecl *FieldClassDecl
2917        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2918      if (!FieldClassDecl->hasTrivialConstructor()) {
2919        if (CXXConstructorDecl *FieldCtor =
2920            FieldClassDecl->getDefaultConstructor(Context))
2921          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2922        else {
2923          Diag(CurrentLocation, diag::err_defining_default_ctor)
2924          << Context.getTagDeclType(ClassDecl) << 1 <<
2925              Context.getTagDeclType(FieldClassDecl);
2926          Diag((*Field)->getLocation(), diag::note_field_decl);
2927          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2928          << Context.getTagDeclType(FieldClassDecl);
2929          err = true;
2930        }
2931      }
2932    } else if (FieldType->isReferenceType()) {
2933      Diag(CurrentLocation, diag::err_unintialized_member)
2934        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2935      Diag((*Field)->getLocation(), diag::note_declared_at);
2936      err = true;
2937    } else if (FieldType.isConstQualified()) {
2938      Diag(CurrentLocation, diag::err_unintialized_member)
2939        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2940       Diag((*Field)->getLocation(), diag::note_declared_at);
2941      err = true;
2942    }
2943  }
2944  if (!err)
2945    Constructor->setUsed();
2946  else
2947    Constructor->setInvalidDecl();
2948}
2949
2950void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2951                                    CXXDestructorDecl *Destructor) {
2952  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2953         "DefineImplicitDestructor - call it for implicit default dtor");
2954
2955  CXXRecordDecl *ClassDecl
2956  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2957  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2958  // C++ [class.dtor] p5
2959  // Before the implicitly-declared default destructor for a class is
2960  // implicitly defined, all the implicitly-declared default destructors
2961  // for its base class and its non-static data members shall have been
2962  // implicitly defined.
2963  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2964       E = ClassDecl->bases_end(); Base != E; ++Base) {
2965    CXXRecordDecl *BaseClassDecl
2966      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2967    if (!BaseClassDecl->hasTrivialDestructor()) {
2968      if (CXXDestructorDecl *BaseDtor =
2969          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2970        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2971      else
2972        assert(false &&
2973               "DefineImplicitDestructor - missing dtor in a base class");
2974    }
2975  }
2976
2977  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2978       E = ClassDecl->field_end(); Field != E; ++Field) {
2979    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2980    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2981      FieldType = Array->getElementType();
2982    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2983      CXXRecordDecl *FieldClassDecl
2984        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2985      if (!FieldClassDecl->hasTrivialDestructor()) {
2986        if (CXXDestructorDecl *FieldDtor =
2987            const_cast<CXXDestructorDecl*>(
2988                                        FieldClassDecl->getDestructor(Context)))
2989          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2990        else
2991          assert(false &&
2992          "DefineImplicitDestructor - missing dtor in class of a data member");
2993      }
2994    }
2995  }
2996  Destructor->setUsed();
2997}
2998
2999void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3000                                          CXXMethodDecl *MethodDecl) {
3001  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3002          MethodDecl->getOverloadedOperator() == OO_Equal &&
3003          !MethodDecl->isUsed()) &&
3004         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3005
3006  CXXRecordDecl *ClassDecl
3007    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3008
3009  // C++[class.copy] p12
3010  // Before the implicitly-declared copy assignment operator for a class is
3011  // implicitly defined, all implicitly-declared copy assignment operators
3012  // for its direct base classes and its nonstatic data members shall have
3013  // been implicitly defined.
3014  bool err = false;
3015  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3016       E = ClassDecl->bases_end(); Base != E; ++Base) {
3017    CXXRecordDecl *BaseClassDecl
3018      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3019    if (CXXMethodDecl *BaseAssignOpMethod =
3020          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
3021      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3022  }
3023  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3024       E = ClassDecl->field_end(); Field != E; ++Field) {
3025    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3026    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3027      FieldType = Array->getElementType();
3028    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3029      CXXRecordDecl *FieldClassDecl
3030        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3031      if (CXXMethodDecl *FieldAssignOpMethod =
3032          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
3033        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3034    } else if (FieldType->isReferenceType()) {
3035      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3036      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3037      Diag(Field->getLocation(), diag::note_declared_at);
3038      Diag(CurrentLocation, diag::note_first_required_here);
3039      err = true;
3040    } else if (FieldType.isConstQualified()) {
3041      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3042      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3043      Diag(Field->getLocation(), diag::note_declared_at);
3044      Diag(CurrentLocation, diag::note_first_required_here);
3045      err = true;
3046    }
3047  }
3048  if (!err)
3049    MethodDecl->setUsed();
3050}
3051
3052CXXMethodDecl *
3053Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
3054                              CXXRecordDecl *ClassDecl) {
3055  QualType LHSType = Context.getTypeDeclType(ClassDecl);
3056  QualType RHSType(LHSType);
3057  // If class's assignment operator argument is const/volatile qualified,
3058  // look for operator = (const/volatile B&). Otherwise, look for
3059  // operator = (B&).
3060  RHSType = Context.getCVRQualifiedType(RHSType,
3061                                     ParmDecl->getType().getCVRQualifiers());
3062  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
3063                                                          LHSType,
3064                                                          SourceLocation()));
3065  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
3066                                                          RHSType,
3067                                                          SourceLocation()));
3068  Expr *Args[2] = { &*LHS, &*RHS };
3069  OverloadCandidateSet CandidateSet;
3070  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
3071                              CandidateSet);
3072  OverloadCandidateSet::iterator Best;
3073  if (BestViableFunction(CandidateSet,
3074                         ClassDecl->getLocation(), Best) == OR_Success)
3075    return cast<CXXMethodDecl>(Best->Function);
3076  assert(false &&
3077         "getAssignOperatorMethod - copy assignment operator method not found");
3078  return 0;
3079}
3080
3081void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
3082                                   CXXConstructorDecl *CopyConstructor,
3083                                   unsigned TypeQuals) {
3084  assert((CopyConstructor->isImplicit() &&
3085          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
3086          !CopyConstructor->isUsed()) &&
3087         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
3088
3089  CXXRecordDecl *ClassDecl
3090    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
3091  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
3092  // C++ [class.copy] p209
3093  // Before the implicitly-declared copy constructor for a class is
3094  // implicitly defined, all the implicitly-declared copy constructors
3095  // for its base class and its non-static data members shall have been
3096  // implicitly defined.
3097  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
3098       Base != ClassDecl->bases_end(); ++Base) {
3099    CXXRecordDecl *BaseClassDecl
3100      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3101    if (CXXConstructorDecl *BaseCopyCtor =
3102        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
3103      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
3104  }
3105  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3106                                  FieldEnd = ClassDecl->field_end();
3107       Field != FieldEnd; ++Field) {
3108    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3109    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3110      FieldType = Array->getElementType();
3111    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3112      CXXRecordDecl *FieldClassDecl
3113        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3114      if (CXXConstructorDecl *FieldCopyCtor =
3115          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
3116        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
3117    }
3118  }
3119  CopyConstructor->setUsed();
3120}
3121
3122Sema::OwningExprResult
3123Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3124                            CXXConstructorDecl *Constructor,
3125                            MultiExprArg ExprArgs) {
3126  bool Elidable = false;
3127
3128  // C++ [class.copy]p15:
3129  //   Whenever a temporary class object is copied using a copy constructor, and
3130  //   this object and the copy have the same cv-unqualified type, an
3131  //   implementation is permitted to treat the original and the copy as two
3132  //   different ways of referring to the same object and not perform a copy at
3133  //   all, even if the class copy constructor or destructor have side effects.
3134
3135  // FIXME: Is this enough?
3136  if (Constructor->isCopyConstructor(Context)) {
3137    Expr *E = ((Expr **)ExprArgs.get())[0];
3138    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
3139      E = BE->getSubExpr();
3140    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
3141      if (ICE->getCastKind() == CastExpr::CK_NoOp)
3142        E = ICE->getSubExpr();
3143
3144    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
3145      Elidable = true;
3146  }
3147
3148  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
3149                               Elidable, move(ExprArgs));
3150}
3151
3152/// BuildCXXConstructExpr - Creates a complete call to a constructor,
3153/// including handling of its default argument expressions.
3154Sema::OwningExprResult
3155Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
3156                            CXXConstructorDecl *Constructor, bool Elidable,
3157                            MultiExprArg ExprArgs) {
3158  unsigned NumExprs = ExprArgs.size();
3159  Expr **Exprs = (Expr **)ExprArgs.release();
3160
3161  return Owned(CXXConstructExpr::Create(Context, DeclInitType, Constructor,
3162                                        Elidable, Exprs, NumExprs));
3163}
3164
3165Sema::OwningExprResult
3166Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
3167                                  QualType Ty,
3168                                  SourceLocation TyBeginLoc,
3169                                  MultiExprArg Args,
3170                                  SourceLocation RParenLoc) {
3171  unsigned NumExprs = Args.size();
3172  Expr **Exprs = (Expr **)Args.release();
3173
3174  return Owned(new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty,
3175                                                    TyBeginLoc, Exprs,
3176                                                    NumExprs, RParenLoc));
3177}
3178
3179
3180bool Sema::InitializeVarWithConstructor(VarDecl *VD,
3181                                        CXXConstructorDecl *Constructor,
3182                                        MultiExprArg Exprs) {
3183  OwningExprResult TempResult =
3184    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
3185                          move(Exprs));
3186  if (TempResult.isInvalid())
3187    return true;
3188
3189  Expr *Temp = TempResult.takeAs<Expr>();
3190  MarkDeclarationReferenced(VD->getLocation(), Constructor);
3191  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
3192  VD->setInit(Context, Temp);
3193
3194  return false;
3195}
3196
3197void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType) {
3198  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
3199                                  DeclInitType->getAs<RecordType>()->getDecl());
3200  if (!ClassDecl->hasTrivialDestructor())
3201    if (CXXDestructorDecl *Destructor =
3202        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
3203      MarkDeclarationReferenced(VD->getLocation(), Destructor);
3204}
3205
3206/// AddCXXDirectInitializerToDecl - This action is called immediately after
3207/// ActOnDeclarator, when a C++ direct initializer is present.
3208/// e.g: "int x(1);"
3209void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
3210                                         SourceLocation LParenLoc,
3211                                         MultiExprArg Exprs,
3212                                         SourceLocation *CommaLocs,
3213                                         SourceLocation RParenLoc) {
3214  unsigned NumExprs = Exprs.size();
3215  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
3216  Decl *RealDecl = Dcl.getAs<Decl>();
3217
3218  // If there is no declaration, there was an error parsing it.  Just ignore
3219  // the initializer.
3220  if (RealDecl == 0)
3221    return;
3222
3223  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3224  if (!VDecl) {
3225    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3226    RealDecl->setInvalidDecl();
3227    return;
3228  }
3229
3230  // We will represent direct-initialization similarly to copy-initialization:
3231  //    int x(1);  -as-> int x = 1;
3232  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
3233  //
3234  // Clients that want to distinguish between the two forms, can check for
3235  // direct initializer using VarDecl::hasCXXDirectInitializer().
3236  // A major benefit is that clients that don't particularly care about which
3237  // exactly form was it (like the CodeGen) can handle both cases without
3238  // special case code.
3239
3240  // If either the declaration has a dependent type or if any of the expressions
3241  // is type-dependent, we represent the initialization via a ParenListExpr for
3242  // later use during template instantiation.
3243  if (VDecl->getType()->isDependentType() ||
3244      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
3245    // Let clients know that initialization was done with a direct initializer.
3246    VDecl->setCXXDirectInitializer(true);
3247
3248    // Store the initialization expressions as a ParenListExpr.
3249    unsigned NumExprs = Exprs.size();
3250    VDecl->setInit(Context,
3251                   new (Context) ParenListExpr(Context, LParenLoc,
3252                                               (Expr **)Exprs.release(),
3253                                               NumExprs, RParenLoc));
3254    return;
3255  }
3256
3257
3258  // C++ 8.5p11:
3259  // The form of initialization (using parentheses or '=') is generally
3260  // insignificant, but does matter when the entity being initialized has a
3261  // class type.
3262  QualType DeclInitType = VDecl->getType();
3263  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
3264    DeclInitType = Context.getBaseElementType(Array);
3265
3266  // FIXME: This isn't the right place to complete the type.
3267  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3268                          diag::err_typecheck_decl_incomplete_type)) {
3269    VDecl->setInvalidDecl();
3270    return;
3271  }
3272
3273  if (VDecl->getType()->isRecordType()) {
3274    ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3275
3276    CXXConstructorDecl *Constructor
3277      = PerformInitializationByConstructor(DeclInitType,
3278                                           move(Exprs),
3279                                           VDecl->getLocation(),
3280                                           SourceRange(VDecl->getLocation(),
3281                                                       RParenLoc),
3282                                           VDecl->getDeclName(),
3283                                           IK_Direct,
3284                                           ConstructorArgs);
3285    if (!Constructor)
3286      RealDecl->setInvalidDecl();
3287    else {
3288      VDecl->setCXXDirectInitializer(true);
3289      if (InitializeVarWithConstructor(VDecl, Constructor,
3290                                       move_arg(ConstructorArgs)))
3291        RealDecl->setInvalidDecl();
3292      FinalizeVarWithDestructor(VDecl, DeclInitType);
3293    }
3294    return;
3295  }
3296
3297  if (NumExprs > 1) {
3298    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
3299      << SourceRange(VDecl->getLocation(), RParenLoc);
3300    RealDecl->setInvalidDecl();
3301    return;
3302  }
3303
3304  // Let clients know that initialization was done with a direct initializer.
3305  VDecl->setCXXDirectInitializer(true);
3306
3307  assert(NumExprs == 1 && "Expected 1 expression");
3308  // Set the init expression, handles conversions.
3309  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
3310                       /*DirectInit=*/true);
3311}
3312
3313/// \brief Perform initialization by constructor (C++ [dcl.init]p14), which
3314/// may occur as part of direct-initialization or copy-initialization.
3315///
3316/// \param ClassType the type of the object being initialized, which must have
3317/// class type.
3318///
3319/// \param ArgsPtr the arguments provided to initialize the object
3320///
3321/// \param Loc the source location where the initialization occurs
3322///
3323/// \param Range the source range that covers the entire initialization
3324///
3325/// \param InitEntity the name of the entity being initialized, if known
3326///
3327/// \param Kind the type of initialization being performed
3328///
3329/// \param ConvertedArgs a vector that will be filled in with the
3330/// appropriately-converted arguments to the constructor (if initialization
3331/// succeeded).
3332///
3333/// \returns the constructor used to initialize the object, if successful.
3334/// Otherwise, emits a diagnostic and returns NULL.
3335CXXConstructorDecl *
3336Sema::PerformInitializationByConstructor(QualType ClassType,
3337                                         MultiExprArg ArgsPtr,
3338                                         SourceLocation Loc, SourceRange Range,
3339                                         DeclarationName InitEntity,
3340                                         InitializationKind Kind,
3341                      ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3342  const RecordType *ClassRec = ClassType->getAs<RecordType>();
3343  assert(ClassRec && "Can only initialize a class type here");
3344  Expr **Args = (Expr **)ArgsPtr.get();
3345  unsigned NumArgs = ArgsPtr.size();
3346
3347  // C++ [dcl.init]p14:
3348  //   If the initialization is direct-initialization, or if it is
3349  //   copy-initialization where the cv-unqualified version of the
3350  //   source type is the same class as, or a derived class of, the
3351  //   class of the destination, constructors are considered. The
3352  //   applicable constructors are enumerated (13.3.1.3), and the
3353  //   best one is chosen through overload resolution (13.3). The
3354  //   constructor so selected is called to initialize the object,
3355  //   with the initializer expression(s) as its argument(s). If no
3356  //   constructor applies, or the overload resolution is ambiguous,
3357  //   the initialization is ill-formed.
3358  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
3359  OverloadCandidateSet CandidateSet;
3360
3361  // Add constructors to the overload set.
3362  DeclarationName ConstructorName
3363    = Context.DeclarationNames.getCXXConstructorName(
3364                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
3365  DeclContext::lookup_const_iterator Con, ConEnd;
3366  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
3367       Con != ConEnd; ++Con) {
3368    // Find the constructor (which may be a template).
3369    CXXConstructorDecl *Constructor = 0;
3370    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
3371    if (ConstructorTmpl)
3372      Constructor
3373        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
3374    else
3375      Constructor = cast<CXXConstructorDecl>(*Con);
3376
3377    if ((Kind == IK_Direct) ||
3378        (Kind == IK_Copy &&
3379         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
3380        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
3381      if (ConstructorTmpl)
3382        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
3383                                     Args, NumArgs, CandidateSet);
3384      else
3385        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
3386    }
3387  }
3388
3389  // FIXME: When we decide not to synthesize the implicitly-declared
3390  // constructors, we'll need to make them appear here.
3391
3392  OverloadCandidateSet::iterator Best;
3393  switch (BestViableFunction(CandidateSet, Loc, Best)) {
3394  case OR_Success:
3395    // We found a constructor. Break out so that we can convert the arguments
3396    // appropriately.
3397    break;
3398
3399  case OR_No_Viable_Function:
3400    if (InitEntity)
3401      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3402        << InitEntity << Range;
3403    else
3404      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
3405        << ClassType << Range;
3406    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
3407    return 0;
3408
3409  case OR_Ambiguous:
3410    if (InitEntity)
3411      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
3412    else
3413      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
3414    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3415    return 0;
3416
3417  case OR_Deleted:
3418    if (InitEntity)
3419      Diag(Loc, diag::err_ovl_deleted_init)
3420        << Best->Function->isDeleted()
3421        << InitEntity << Range;
3422    else
3423      Diag(Loc, diag::err_ovl_deleted_init)
3424        << Best->Function->isDeleted()
3425        << InitEntity << Range;
3426    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3427    return 0;
3428  }
3429
3430  // Convert the arguments, fill in default arguments, etc.
3431  CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
3432  if (CompleteConstructorCall(Constructor, move(ArgsPtr), Loc, ConvertedArgs))
3433    return 0;
3434
3435  return Constructor;
3436}
3437
3438/// \brief Given a constructor and the set of arguments provided for the
3439/// constructor, convert the arguments and add any required default arguments
3440/// to form a proper call to this constructor.
3441///
3442/// \returns true if an error occurred, false otherwise.
3443bool
3444Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
3445                              MultiExprArg ArgsPtr,
3446                              SourceLocation Loc,
3447                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
3448  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
3449  unsigned NumArgs = ArgsPtr.size();
3450  Expr **Args = (Expr **)ArgsPtr.get();
3451
3452  const FunctionProtoType *Proto
3453    = Constructor->getType()->getAs<FunctionProtoType>();
3454  assert(Proto && "Constructor without a prototype?");
3455  unsigned NumArgsInProto = Proto->getNumArgs();
3456  unsigned NumArgsToCheck = NumArgs;
3457
3458  // If too few arguments are available, we'll fill in the rest with defaults.
3459  if (NumArgs < NumArgsInProto) {
3460    NumArgsToCheck = NumArgsInProto;
3461    ConvertedArgs.reserve(NumArgsInProto);
3462  } else {
3463    ConvertedArgs.reserve(NumArgs);
3464    if (NumArgs > NumArgsInProto)
3465      NumArgsToCheck = NumArgsInProto;
3466  }
3467
3468  // Convert arguments
3469  for (unsigned i = 0; i != NumArgsToCheck; i++) {
3470    QualType ProtoArgType = Proto->getArgType(i);
3471
3472    Expr *Arg;
3473    if (i < NumArgs) {
3474      Arg = Args[i];
3475
3476      // Pass the argument.
3477      if (PerformCopyInitialization(Arg, ProtoArgType, "passing"))
3478        return true;
3479
3480      Args[i] = 0;
3481    } else {
3482      ParmVarDecl *Param = Constructor->getParamDecl(i);
3483
3484      OwningExprResult DefArg = BuildCXXDefaultArgExpr(Loc, Constructor, Param);
3485      if (DefArg.isInvalid())
3486        return true;
3487
3488      Arg = DefArg.takeAs<Expr>();
3489    }
3490
3491    ConvertedArgs.push_back(Arg);
3492  }
3493
3494  // If this is a variadic call, handle args passed through "...".
3495  if (Proto->isVariadic()) {
3496    // Promote the arguments (C99 6.5.2.2p7).
3497    for (unsigned i = NumArgsInProto; i != NumArgs; i++) {
3498      Expr *Arg = Args[i];
3499      if (DefaultVariadicArgumentPromotion(Arg, VariadicConstructor))
3500        return true;
3501
3502      ConvertedArgs.push_back(Arg);
3503      Args[i] = 0;
3504    }
3505  }
3506
3507  return false;
3508}
3509
3510/// CompareReferenceRelationship - Compare the two types T1 and T2 to
3511/// determine whether they are reference-related,
3512/// reference-compatible, reference-compatible with added
3513/// qualification, or incompatible, for use in C++ initialization by
3514/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
3515/// type, and the first type (T1) is the pointee type of the reference
3516/// type being initialized.
3517Sema::ReferenceCompareResult
3518Sema::CompareReferenceRelationship(QualType T1, QualType T2,
3519                                   bool& DerivedToBase) {
3520  assert(!T1->isReferenceType() &&
3521    "T1 must be the pointee type of the reference type");
3522  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
3523
3524  T1 = Context.getCanonicalType(T1);
3525  T2 = Context.getCanonicalType(T2);
3526  QualType UnqualT1 = T1.getUnqualifiedType();
3527  QualType UnqualT2 = T2.getUnqualifiedType();
3528
3529  // C++ [dcl.init.ref]p4:
3530  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
3531  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
3532  //   T1 is a base class of T2.
3533  if (UnqualT1 == UnqualT2)
3534    DerivedToBase = false;
3535  else if (IsDerivedFrom(UnqualT2, UnqualT1))
3536    DerivedToBase = true;
3537  else
3538    return Ref_Incompatible;
3539
3540  // At this point, we know that T1 and T2 are reference-related (at
3541  // least).
3542
3543  // C++ [dcl.init.ref]p4:
3544  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
3545  //   reference-related to T2 and cv1 is the same cv-qualification
3546  //   as, or greater cv-qualification than, cv2. For purposes of
3547  //   overload resolution, cases for which cv1 is greater
3548  //   cv-qualification than cv2 are identified as
3549  //   reference-compatible with added qualification (see 13.3.3.2).
3550  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
3551    return Ref_Compatible;
3552  else if (T1.isMoreQualifiedThan(T2))
3553    return Ref_Compatible_With_Added_Qualification;
3554  else
3555    return Ref_Related;
3556}
3557
3558/// CheckReferenceInit - Check the initialization of a reference
3559/// variable with the given initializer (C++ [dcl.init.ref]). Init is
3560/// the initializer (either a simple initializer or an initializer
3561/// list), and DeclType is the type of the declaration. When ICS is
3562/// non-null, this routine will compute the implicit conversion
3563/// sequence according to C++ [over.ics.ref] and will not produce any
3564/// diagnostics; when ICS is null, it will emit diagnostics when any
3565/// errors are found. Either way, a return value of true indicates
3566/// that there was a failure, a return value of false indicates that
3567/// the reference initialization succeeded.
3568///
3569/// When @p SuppressUserConversions, user-defined conversions are
3570/// suppressed.
3571/// When @p AllowExplicit, we also permit explicit user-defined
3572/// conversion functions.
3573/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
3574bool
3575Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
3576                         SourceLocation DeclLoc,
3577                         bool SuppressUserConversions,
3578                         bool AllowExplicit, bool ForceRValue,
3579                         ImplicitConversionSequence *ICS) {
3580  assert(DeclType->isReferenceType() && "Reference init needs a reference");
3581
3582  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
3583  QualType T2 = Init->getType();
3584
3585  // If the initializer is the address of an overloaded function, try
3586  // to resolve the overloaded function. If all goes well, T2 is the
3587  // type of the resulting function.
3588  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
3589    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
3590                                                          ICS != 0);
3591    if (Fn) {
3592      // Since we're performing this reference-initialization for
3593      // real, update the initializer with the resulting function.
3594      if (!ICS) {
3595        if (DiagnoseUseOfDecl(Fn, DeclLoc))
3596          return true;
3597
3598        Init = FixOverloadedFunctionReference(Init, Fn);
3599      }
3600
3601      T2 = Fn->getType();
3602    }
3603  }
3604
3605  // Compute some basic properties of the types and the initializer.
3606  bool isRValRef = DeclType->isRValueReferenceType();
3607  bool DerivedToBase = false;
3608  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
3609                                                  Init->isLvalue(Context);
3610  ReferenceCompareResult RefRelationship
3611    = CompareReferenceRelationship(T1, T2, DerivedToBase);
3612
3613  // Most paths end in a failed conversion.
3614  if (ICS)
3615    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
3616
3617  // C++ [dcl.init.ref]p5:
3618  //   A reference to type "cv1 T1" is initialized by an expression
3619  //   of type "cv2 T2" as follows:
3620
3621  //     -- If the initializer expression
3622
3623  // Rvalue references cannot bind to lvalues (N2812).
3624  // There is absolutely no situation where they can. In particular, note that
3625  // this is ill-formed, even if B has a user-defined conversion to A&&:
3626  //   B b;
3627  //   A&& r = b;
3628  if (isRValRef && InitLvalue == Expr::LV_Valid) {
3629    if (!ICS)
3630      Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3631        << Init->getSourceRange();
3632    return true;
3633  }
3634
3635  bool BindsDirectly = false;
3636  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
3637  //          reference-compatible with "cv2 T2," or
3638  //
3639  // Note that the bit-field check is skipped if we are just computing
3640  // the implicit conversion sequence (C++ [over.best.ics]p2).
3641  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
3642      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3643    BindsDirectly = true;
3644
3645    if (ICS) {
3646      // C++ [over.ics.ref]p1:
3647      //   When a parameter of reference type binds directly (8.5.3)
3648      //   to an argument expression, the implicit conversion sequence
3649      //   is the identity conversion, unless the argument expression
3650      //   has a type that is a derived class of the parameter type,
3651      //   in which case the implicit conversion sequence is a
3652      //   derived-to-base Conversion (13.3.3.1).
3653      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3654      ICS->Standard.First = ICK_Identity;
3655      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3656      ICS->Standard.Third = ICK_Identity;
3657      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3658      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3659      ICS->Standard.ReferenceBinding = true;
3660      ICS->Standard.DirectBinding = true;
3661      ICS->Standard.RRefBinding = false;
3662      ICS->Standard.CopyConstructor = 0;
3663
3664      // Nothing more to do: the inaccessibility/ambiguity check for
3665      // derived-to-base conversions is suppressed when we're
3666      // computing the implicit conversion sequence (C++
3667      // [over.best.ics]p2).
3668      return false;
3669    } else {
3670      // Perform the conversion.
3671      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3672      if (DerivedToBase)
3673        CK = CastExpr::CK_DerivedToBase;
3674      else if(CheckExceptionSpecCompatibility(Init, T1))
3675        return true;
3676      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/true);
3677    }
3678  }
3679
3680  //       -- has a class type (i.e., T2 is a class type) and can be
3681  //          implicitly converted to an lvalue of type "cv3 T3,"
3682  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3683  //          92) (this conversion is selected by enumerating the
3684  //          applicable conversion functions (13.3.1.6) and choosing
3685  //          the best one through overload resolution (13.3)),
3686  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3687      !RequireCompleteType(DeclLoc, T2, 0)) {
3688    CXXRecordDecl *T2RecordDecl
3689      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3690
3691    OverloadCandidateSet CandidateSet;
3692    OverloadedFunctionDecl *Conversions
3693      = T2RecordDecl->getVisibleConversionFunctions();
3694    for (OverloadedFunctionDecl::function_iterator Func
3695           = Conversions->function_begin();
3696         Func != Conversions->function_end(); ++Func) {
3697      FunctionTemplateDecl *ConvTemplate
3698        = dyn_cast<FunctionTemplateDecl>(*Func);
3699      CXXConversionDecl *Conv;
3700      if (ConvTemplate)
3701        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3702      else
3703        Conv = cast<CXXConversionDecl>(*Func);
3704
3705      // If the conversion function doesn't return a reference type,
3706      // it can't be considered for this conversion.
3707      if (Conv->getConversionType()->isLValueReferenceType() &&
3708          (AllowExplicit || !Conv->isExplicit())) {
3709        if (ConvTemplate)
3710          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3711                                         CandidateSet);
3712        else
3713          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3714      }
3715    }
3716
3717    OverloadCandidateSet::iterator Best;
3718    switch (BestViableFunction(CandidateSet, DeclLoc, Best)) {
3719    case OR_Success:
3720      // This is a direct binding.
3721      BindsDirectly = true;
3722
3723      if (ICS) {
3724        // C++ [over.ics.ref]p1:
3725        //
3726        //   [...] If the parameter binds directly to the result of
3727        //   applying a conversion function to the argument
3728        //   expression, the implicit conversion sequence is a
3729        //   user-defined conversion sequence (13.3.3.1.2), with the
3730        //   second standard conversion sequence either an identity
3731        //   conversion or, if the conversion function returns an
3732        //   entity of a type that is a derived class of the parameter
3733        //   type, a derived-to-base Conversion.
3734        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3735        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3736        ICS->UserDefined.After = Best->FinalConversion;
3737        ICS->UserDefined.ConversionFunction = Best->Function;
3738        assert(ICS->UserDefined.After.ReferenceBinding &&
3739               ICS->UserDefined.After.DirectBinding &&
3740               "Expected a direct reference binding!");
3741        return false;
3742      } else {
3743        OwningExprResult InitConversion =
3744          BuildCXXCastArgument(DeclLoc, QualType(),
3745                               CastExpr::CK_UserDefinedConversion,
3746                               cast<CXXMethodDecl>(Best->Function),
3747                               Owned(Init));
3748        Init = InitConversion.takeAs<Expr>();
3749
3750        if (CheckExceptionSpecCompatibility(Init, T1))
3751          return true;
3752        ImpCastExprToType(Init, T1, CastExpr::CK_UserDefinedConversion,
3753                          /*isLvalue=*/true);
3754      }
3755      break;
3756
3757    case OR_Ambiguous:
3758      if (ICS) {
3759        for (OverloadCandidateSet::iterator Cand = CandidateSet.begin();
3760             Cand != CandidateSet.end(); ++Cand)
3761          if (Cand->Viable)
3762            ICS->ConversionFunctionSet.push_back(Cand->Function);
3763        break;
3764      }
3765      Diag(DeclLoc, diag::err_ref_init_ambiguous) << DeclType << Init->getType()
3766            << Init->getSourceRange();
3767      PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
3768      return true;
3769
3770    case OR_No_Viable_Function:
3771    case OR_Deleted:
3772      // There was no suitable conversion, or we found a deleted
3773      // conversion; continue with other checks.
3774      break;
3775    }
3776  }
3777
3778  if (BindsDirectly) {
3779    // C++ [dcl.init.ref]p4:
3780    //   [...] In all cases where the reference-related or
3781    //   reference-compatible relationship of two types is used to
3782    //   establish the validity of a reference binding, and T1 is a
3783    //   base class of T2, a program that necessitates such a binding
3784    //   is ill-formed if T1 is an inaccessible (clause 11) or
3785    //   ambiguous (10.2) base class of T2.
3786    //
3787    // Note that we only check this condition when we're allowed to
3788    // complain about errors, because we should not be checking for
3789    // ambiguity (or inaccessibility) unless the reference binding
3790    // actually happens.
3791    if (DerivedToBase)
3792      return CheckDerivedToBaseConversion(T2, T1, DeclLoc,
3793                                          Init->getSourceRange());
3794    else
3795      return false;
3796  }
3797
3798  //     -- Otherwise, the reference shall be to a non-volatile const
3799  //        type (i.e., cv1 shall be const), or the reference shall be an
3800  //        rvalue reference and the initializer expression shall be an rvalue.
3801  if (!isRValRef && T1.getCVRQualifiers() != Qualifiers::Const) {
3802    if (!ICS)
3803      Diag(DeclLoc, diag::err_not_reference_to_const_init)
3804        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3805        << T2 << Init->getSourceRange();
3806    return true;
3807  }
3808
3809  //       -- If the initializer expression is an rvalue, with T2 a
3810  //          class type, and "cv1 T1" is reference-compatible with
3811  //          "cv2 T2," the reference is bound in one of the
3812  //          following ways (the choice is implementation-defined):
3813  //
3814  //          -- The reference is bound to the object represented by
3815  //             the rvalue (see 3.10) or to a sub-object within that
3816  //             object.
3817  //
3818  //          -- A temporary of type "cv1 T2" [sic] is created, and
3819  //             a constructor is called to copy the entire rvalue
3820  //             object into the temporary. The reference is bound to
3821  //             the temporary or to a sub-object within the
3822  //             temporary.
3823  //
3824  //          The constructor that would be used to make the copy
3825  //          shall be callable whether or not the copy is actually
3826  //          done.
3827  //
3828  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3829  // freedom, so we will always take the first option and never build
3830  // a temporary in this case. FIXME: We will, however, have to check
3831  // for the presence of a copy constructor in C++98/03 mode.
3832  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3833      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3834    if (ICS) {
3835      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3836      ICS->Standard.First = ICK_Identity;
3837      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3838      ICS->Standard.Third = ICK_Identity;
3839      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3840      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3841      ICS->Standard.ReferenceBinding = true;
3842      ICS->Standard.DirectBinding = false;
3843      ICS->Standard.RRefBinding = isRValRef;
3844      ICS->Standard.CopyConstructor = 0;
3845    } else {
3846      CastExpr::CastKind CK = CastExpr::CK_NoOp;
3847      if (DerivedToBase)
3848        CK = CastExpr::CK_DerivedToBase;
3849      else if(CheckExceptionSpecCompatibility(Init, T1))
3850        return true;
3851      ImpCastExprToType(Init, T1, CK, /*isLvalue=*/false);
3852    }
3853    return false;
3854  }
3855
3856  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3857  //          initialized from the initializer expression using the
3858  //          rules for a non-reference copy initialization (8.5). The
3859  //          reference is then bound to the temporary. If T1 is
3860  //          reference-related to T2, cv1 must be the same
3861  //          cv-qualification as, or greater cv-qualification than,
3862  //          cv2; otherwise, the program is ill-formed.
3863  if (RefRelationship == Ref_Related) {
3864    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3865    // we would be reference-compatible or reference-compatible with
3866    // added qualification. But that wasn't the case, so the reference
3867    // initialization fails.
3868    if (!ICS)
3869      Diag(DeclLoc, diag::err_reference_init_drops_quals)
3870        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3871        << T2 << Init->getSourceRange();
3872    return true;
3873  }
3874
3875  // If at least one of the types is a class type, the types are not
3876  // related, and we aren't allowed any user conversions, the
3877  // reference binding fails. This case is important for breaking
3878  // recursion, since TryImplicitConversion below will attempt to
3879  // create a temporary through the use of a copy constructor.
3880  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3881      (T1->isRecordType() || T2->isRecordType())) {
3882    if (!ICS)
3883      Diag(DeclLoc, diag::err_typecheck_convert_incompatible)
3884        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3885    return true;
3886  }
3887
3888  // Actually try to convert the initializer to T1.
3889  if (ICS) {
3890    // C++ [over.ics.ref]p2:
3891    //
3892    //   When a parameter of reference type is not bound directly to
3893    //   an argument expression, the conversion sequence is the one
3894    //   required to convert the argument expression to the
3895    //   underlying type of the reference according to
3896    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3897    //   to copy-initializing a temporary of the underlying type with
3898    //   the argument expression. Any difference in top-level
3899    //   cv-qualification is subsumed by the initialization itself
3900    //   and does not constitute a conversion.
3901    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3902                                 /*AllowExplicit=*/false,
3903                                 /*ForceRValue=*/false,
3904                                 /*InOverloadResolution=*/false);
3905
3906    // Of course, that's still a reference binding.
3907    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3908      ICS->Standard.ReferenceBinding = true;
3909      ICS->Standard.RRefBinding = isRValRef;
3910    } else if (ICS->ConversionKind ==
3911              ImplicitConversionSequence::UserDefinedConversion) {
3912      ICS->UserDefined.After.ReferenceBinding = true;
3913      ICS->UserDefined.After.RRefBinding = isRValRef;
3914    }
3915    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3916  } else {
3917    ImplicitConversionSequence Conversions;
3918    bool badConversion = PerformImplicitConversion(Init, T1, "initializing",
3919                                                   false, false,
3920                                                   Conversions);
3921    if (badConversion) {
3922      if ((Conversions.ConversionKind  ==
3923            ImplicitConversionSequence::BadConversion)
3924          && !Conversions.ConversionFunctionSet.empty()) {
3925        Diag(DeclLoc,
3926             diag::err_lvalue_to_rvalue_ambig_ref) << Init->getSourceRange();
3927        for (int j = Conversions.ConversionFunctionSet.size()-1;
3928             j >= 0; j--) {
3929          FunctionDecl *Func = Conversions.ConversionFunctionSet[j];
3930          Diag(Func->getLocation(), diag::err_ovl_candidate);
3931        }
3932      }
3933      else {
3934        if (isRValRef)
3935          Diag(DeclLoc, diag::err_lvalue_to_rvalue_ref)
3936            << Init->getSourceRange();
3937        else
3938          Diag(DeclLoc, diag::err_invalid_initialization)
3939            << DeclType << Init->getType() << Init->getSourceRange();
3940      }
3941    }
3942    return badConversion;
3943  }
3944}
3945
3946/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3947/// of this overloaded operator is well-formed. If so, returns false;
3948/// otherwise, emits appropriate diagnostics and returns true.
3949bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3950  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3951         "Expected an overloaded operator declaration");
3952
3953  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3954
3955  // C++ [over.oper]p5:
3956  //   The allocation and deallocation functions, operator new,
3957  //   operator new[], operator delete and operator delete[], are
3958  //   described completely in 3.7.3. The attributes and restrictions
3959  //   found in the rest of this subclause do not apply to them unless
3960  //   explicitly stated in 3.7.3.
3961  // FIXME: Write a separate routine for checking this. For now, just allow it.
3962  if (Op == OO_New || Op == OO_Array_New ||
3963      Op == OO_Delete || Op == OO_Array_Delete)
3964    return false;
3965
3966  // C++ [over.oper]p6:
3967  //   An operator function shall either be a non-static member
3968  //   function or be a non-member function and have at least one
3969  //   parameter whose type is a class, a reference to a class, an
3970  //   enumeration, or a reference to an enumeration.
3971  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3972    if (MethodDecl->isStatic())
3973      return Diag(FnDecl->getLocation(),
3974                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3975  } else {
3976    bool ClassOrEnumParam = false;
3977    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3978                                   ParamEnd = FnDecl->param_end();
3979         Param != ParamEnd; ++Param) {
3980      QualType ParamType = (*Param)->getType().getNonReferenceType();
3981      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3982          ParamType->isEnumeralType()) {
3983        ClassOrEnumParam = true;
3984        break;
3985      }
3986    }
3987
3988    if (!ClassOrEnumParam)
3989      return Diag(FnDecl->getLocation(),
3990                  diag::err_operator_overload_needs_class_or_enum)
3991        << FnDecl->getDeclName();
3992  }
3993
3994  // C++ [over.oper]p8:
3995  //   An operator function cannot have default arguments (8.3.6),
3996  //   except where explicitly stated below.
3997  //
3998  // Only the function-call operator allows default arguments
3999  // (C++ [over.call]p1).
4000  if (Op != OO_Call) {
4001    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4002         Param != FnDecl->param_end(); ++Param) {
4003      if ((*Param)->hasUnparsedDefaultArg())
4004        return Diag((*Param)->getLocation(),
4005                    diag::err_operator_overload_default_arg)
4006          << FnDecl->getDeclName();
4007      else if (Expr *DefArg = (*Param)->getDefaultArg())
4008        return Diag((*Param)->getLocation(),
4009                    diag::err_operator_overload_default_arg)
4010          << FnDecl->getDeclName() << DefArg->getSourceRange();
4011    }
4012  }
4013
4014  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4015    { false, false, false }
4016#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4017    , { Unary, Binary, MemberOnly }
4018#include "clang/Basic/OperatorKinds.def"
4019  };
4020
4021  bool CanBeUnaryOperator = OperatorUses[Op][0];
4022  bool CanBeBinaryOperator = OperatorUses[Op][1];
4023  bool MustBeMemberOperator = OperatorUses[Op][2];
4024
4025  // C++ [over.oper]p8:
4026  //   [...] Operator functions cannot have more or fewer parameters
4027  //   than the number required for the corresponding operator, as
4028  //   described in the rest of this subclause.
4029  unsigned NumParams = FnDecl->getNumParams()
4030                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4031  if (Op != OO_Call &&
4032      ((NumParams == 1 && !CanBeUnaryOperator) ||
4033       (NumParams == 2 && !CanBeBinaryOperator) ||
4034       (NumParams < 1) || (NumParams > 2))) {
4035    // We have the wrong number of parameters.
4036    unsigned ErrorKind;
4037    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4038      ErrorKind = 2;  // 2 -> unary or binary.
4039    } else if (CanBeUnaryOperator) {
4040      ErrorKind = 0;  // 0 -> unary
4041    } else {
4042      assert(CanBeBinaryOperator &&
4043             "All non-call overloaded operators are unary or binary!");
4044      ErrorKind = 1;  // 1 -> binary
4045    }
4046
4047    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4048      << FnDecl->getDeclName() << NumParams << ErrorKind;
4049  }
4050
4051  // Overloaded operators other than operator() cannot be variadic.
4052  if (Op != OO_Call &&
4053      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4054    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4055      << FnDecl->getDeclName();
4056  }
4057
4058  // Some operators must be non-static member functions.
4059  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4060    return Diag(FnDecl->getLocation(),
4061                diag::err_operator_overload_must_be_member)
4062      << FnDecl->getDeclName();
4063  }
4064
4065  // C++ [over.inc]p1:
4066  //   The user-defined function called operator++ implements the
4067  //   prefix and postfix ++ operator. If this function is a member
4068  //   function with no parameters, or a non-member function with one
4069  //   parameter of class or enumeration type, it defines the prefix
4070  //   increment operator ++ for objects of that type. If the function
4071  //   is a member function with one parameter (which shall be of type
4072  //   int) or a non-member function with two parameters (the second
4073  //   of which shall be of type int), it defines the postfix
4074  //   increment operator ++ for objects of that type.
4075  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4076    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4077    bool ParamIsInt = false;
4078    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4079      ParamIsInt = BT->getKind() == BuiltinType::Int;
4080
4081    if (!ParamIsInt)
4082      return Diag(LastParam->getLocation(),
4083                  diag::err_operator_overload_post_incdec_must_be_int)
4084        << LastParam->getType() << (Op == OO_MinusMinus);
4085  }
4086
4087  // Notify the class if it got an assignment operator.
4088  if (Op == OO_Equal) {
4089    // Would have returned earlier otherwise.
4090    assert(isa<CXXMethodDecl>(FnDecl) &&
4091      "Overloaded = not member, but not filtered.");
4092    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4093    Method->setCopyAssignment(true);
4094    Method->getParent()->addedAssignmentOperator(Context, Method);
4095  }
4096
4097  return false;
4098}
4099
4100/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4101/// linkage specification, including the language and (if present)
4102/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4103/// the location of the language string literal, which is provided
4104/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4105/// the '{' brace. Otherwise, this linkage specification does not
4106/// have any braces.
4107Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4108                                                     SourceLocation ExternLoc,
4109                                                     SourceLocation LangLoc,
4110                                                     const char *Lang,
4111                                                     unsigned StrSize,
4112                                                     SourceLocation LBraceLoc) {
4113  LinkageSpecDecl::LanguageIDs Language;
4114  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4115    Language = LinkageSpecDecl::lang_c;
4116  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4117    Language = LinkageSpecDecl::lang_cxx;
4118  else {
4119    Diag(LangLoc, diag::err_bad_language);
4120    return DeclPtrTy();
4121  }
4122
4123  // FIXME: Add all the various semantics of linkage specifications
4124
4125  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4126                                               LangLoc, Language,
4127                                               LBraceLoc.isValid());
4128  CurContext->addDecl(D);
4129  PushDeclContext(S, D);
4130  return DeclPtrTy::make(D);
4131}
4132
4133/// ActOnFinishLinkageSpecification - Completely the definition of
4134/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4135/// valid, it's the position of the closing '}' brace in a linkage
4136/// specification that uses braces.
4137Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4138                                                      DeclPtrTy LinkageSpec,
4139                                                      SourceLocation RBraceLoc) {
4140  if (LinkageSpec)
4141    PopDeclContext();
4142  return LinkageSpec;
4143}
4144
4145/// \brief Perform semantic analysis for the variable declaration that
4146/// occurs within a C++ catch clause, returning the newly-created
4147/// variable.
4148VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4149                                         DeclaratorInfo *DInfo,
4150                                         IdentifierInfo *Name,
4151                                         SourceLocation Loc,
4152                                         SourceRange Range) {
4153  bool Invalid = false;
4154
4155  // Arrays and functions decay.
4156  if (ExDeclType->isArrayType())
4157    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4158  else if (ExDeclType->isFunctionType())
4159    ExDeclType = Context.getPointerType(ExDeclType);
4160
4161  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4162  // The exception-declaration shall not denote a pointer or reference to an
4163  // incomplete type, other than [cv] void*.
4164  // N2844 forbids rvalue references.
4165  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4166    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4167    Invalid = true;
4168  }
4169
4170  QualType BaseType = ExDeclType;
4171  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4172  unsigned DK = diag::err_catch_incomplete;
4173  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4174    BaseType = Ptr->getPointeeType();
4175    Mode = 1;
4176    DK = diag::err_catch_incomplete_ptr;
4177  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4178    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4179    BaseType = Ref->getPointeeType();
4180    Mode = 2;
4181    DK = diag::err_catch_incomplete_ref;
4182  }
4183  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4184      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
4185    Invalid = true;
4186
4187  if (!Invalid && !ExDeclType->isDependentType() &&
4188      RequireNonAbstractType(Loc, ExDeclType,
4189                             diag::err_abstract_type_in_decl,
4190                             AbstractVariableType))
4191    Invalid = true;
4192
4193  // FIXME: Need to test for ability to copy-construct and destroy the
4194  // exception variable.
4195
4196  // FIXME: Need to check for abstract classes.
4197
4198  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4199                                    Name, ExDeclType, DInfo, VarDecl::None);
4200
4201  if (Invalid)
4202    ExDecl->setInvalidDecl();
4203
4204  return ExDecl;
4205}
4206
4207/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4208/// handler.
4209Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4210  DeclaratorInfo *DInfo = 0;
4211  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
4212
4213  bool Invalid = D.isInvalidType();
4214  IdentifierInfo *II = D.getIdentifier();
4215  if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4216    // The scope should be freshly made just for us. There is just no way
4217    // it contains any previous declaration.
4218    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4219    if (PrevDecl->isTemplateParameter()) {
4220      // Maybe we will complain about the shadowed template parameter.
4221      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4222    }
4223  }
4224
4225  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4226    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4227      << D.getCXXScopeSpec().getRange();
4228    Invalid = true;
4229  }
4230
4231  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
4232                                              D.getIdentifier(),
4233                                              D.getIdentifierLoc(),
4234                                            D.getDeclSpec().getSourceRange());
4235
4236  if (Invalid)
4237    ExDecl->setInvalidDecl();
4238
4239  // Add the exception declaration into this scope.
4240  if (II)
4241    PushOnScopeChains(ExDecl, S);
4242  else
4243    CurContext->addDecl(ExDecl);
4244
4245  ProcessDeclAttributes(S, ExDecl, D);
4246  return DeclPtrTy::make(ExDecl);
4247}
4248
4249Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4250                                                   ExprArg assertexpr,
4251                                                   ExprArg assertmessageexpr) {
4252  Expr *AssertExpr = (Expr *)assertexpr.get();
4253  StringLiteral *AssertMessage =
4254    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4255
4256  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4257    llvm::APSInt Value(32);
4258    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4259      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4260        AssertExpr->getSourceRange();
4261      return DeclPtrTy();
4262    }
4263
4264    if (Value == 0) {
4265      std::string str(AssertMessage->getStrData(),
4266                      AssertMessage->getByteLength());
4267      Diag(AssertLoc, diag::err_static_assert_failed)
4268        << str << AssertExpr->getSourceRange();
4269    }
4270  }
4271
4272  assertexpr.release();
4273  assertmessageexpr.release();
4274  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4275                                        AssertExpr, AssertMessage);
4276
4277  CurContext->addDecl(Decl);
4278  return DeclPtrTy::make(Decl);
4279}
4280
4281/// Handle a friend type declaration.  This works in tandem with
4282/// ActOnTag.
4283///
4284/// Notes on friend class templates:
4285///
4286/// We generally treat friend class declarations as if they were
4287/// declaring a class.  So, for example, the elaborated type specifier
4288/// in a friend declaration is required to obey the restrictions of a
4289/// class-head (i.e. no typedefs in the scope chain), template
4290/// parameters are required to match up with simple template-ids, &c.
4291/// However, unlike when declaring a template specialization, it's
4292/// okay to refer to a template specialization without an empty
4293/// template parameter declaration, e.g.
4294///   friend class A<T>::B<unsigned>;
4295/// We permit this as a special case; if there are any template
4296/// parameters present at all, require proper matching, i.e.
4297///   template <> template <class T> friend class A<int>::B;
4298Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4299                                          MultiTemplateParamsArg TempParams) {
4300  SourceLocation Loc = DS.getSourceRange().getBegin();
4301
4302  assert(DS.isFriendSpecified());
4303  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4304
4305  // Try to convert the decl specifier to a type.  This works for
4306  // friend templates because ActOnTag never produces a ClassTemplateDecl
4307  // for a TUK_Friend.
4308  Declarator TheDeclarator(DS, Declarator::MemberContext);
4309  QualType T = GetTypeForDeclarator(TheDeclarator, S);
4310  if (TheDeclarator.isInvalidType())
4311    return DeclPtrTy();
4312
4313  // This is definitely an error in C++98.  It's probably meant to
4314  // be forbidden in C++0x, too, but the specification is just
4315  // poorly written.
4316  //
4317  // The problem is with declarations like the following:
4318  //   template <T> friend A<T>::foo;
4319  // where deciding whether a class C is a friend or not now hinges
4320  // on whether there exists an instantiation of A that causes
4321  // 'foo' to equal C.  There are restrictions on class-heads
4322  // (which we declare (by fiat) elaborated friend declarations to
4323  // be) that makes this tractable.
4324  //
4325  // FIXME: handle "template <> friend class A<T>;", which
4326  // is possibly well-formed?  Who even knows?
4327  if (TempParams.size() && !isa<ElaboratedType>(T)) {
4328    Diag(Loc, diag::err_tagless_friend_type_template)
4329      << DS.getSourceRange();
4330    return DeclPtrTy();
4331  }
4332
4333  // C++ [class.friend]p2:
4334  //   An elaborated-type-specifier shall be used in a friend declaration
4335  //   for a class.*
4336  //   * The class-key of the elaborated-type-specifier is required.
4337  // This is one of the rare places in Clang where it's legitimate to
4338  // ask about the "spelling" of the type.
4339  if (!getLangOptions().CPlusPlus0x && !isa<ElaboratedType>(T)) {
4340    // If we evaluated the type to a record type, suggest putting
4341    // a tag in front.
4342    if (const RecordType *RT = T->getAs<RecordType>()) {
4343      RecordDecl *RD = RT->getDecl();
4344
4345      std::string InsertionText = std::string(" ") + RD->getKindName();
4346
4347      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
4348        << (unsigned) RD->getTagKind()
4349        << T
4350        << SourceRange(DS.getFriendSpecLoc())
4351        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
4352                                                 InsertionText);
4353      return DeclPtrTy();
4354    }else {
4355      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
4356          << DS.getSourceRange();
4357      return DeclPtrTy();
4358    }
4359  }
4360
4361  // Enum types cannot be friends.
4362  if (T->getAs<EnumType>()) {
4363    Diag(DS.getTypeSpecTypeLoc(), diag::err_enum_friend)
4364      << SourceRange(DS.getFriendSpecLoc());
4365    return DeclPtrTy();
4366  }
4367
4368  // C++98 [class.friend]p1: A friend of a class is a function
4369  //   or class that is not a member of the class . . .
4370  // But that's a silly restriction which nobody implements for
4371  // inner classes, and C++0x removes it anyway, so we only report
4372  // this (as a warning) if we're being pedantic.
4373  if (!getLangOptions().CPlusPlus0x)
4374    if (const RecordType *RT = T->getAs<RecordType>())
4375      if (RT->getDecl()->getDeclContext() == CurContext)
4376        Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
4377
4378  Decl *D;
4379  if (TempParams.size())
4380    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
4381                                   TempParams.size(),
4382                                 (TemplateParameterList**) TempParams.release(),
4383                                   T.getTypePtr(),
4384                                   DS.getFriendSpecLoc());
4385  else
4386    D = FriendDecl::Create(Context, CurContext, Loc, T.getTypePtr(),
4387                           DS.getFriendSpecLoc());
4388  D->setAccess(AS_public);
4389  CurContext->addDecl(D);
4390
4391  return DeclPtrTy::make(D);
4392}
4393
4394Sema::DeclPtrTy
4395Sema::ActOnFriendFunctionDecl(Scope *S,
4396                              Declarator &D,
4397                              bool IsDefinition,
4398                              MultiTemplateParamsArg TemplateParams) {
4399  const DeclSpec &DS = D.getDeclSpec();
4400
4401  assert(DS.isFriendSpecified());
4402  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4403
4404  SourceLocation Loc = D.getIdentifierLoc();
4405  DeclaratorInfo *DInfo = 0;
4406  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4407
4408  // C++ [class.friend]p1
4409  //   A friend of a class is a function or class....
4410  // Note that this sees through typedefs, which is intended.
4411  // It *doesn't* see through dependent types, which is correct
4412  // according to [temp.arg.type]p3:
4413  //   If a declaration acquires a function type through a
4414  //   type dependent on a template-parameter and this causes
4415  //   a declaration that does not use the syntactic form of a
4416  //   function declarator to have a function type, the program
4417  //   is ill-formed.
4418  if (!T->isFunctionType()) {
4419    Diag(Loc, diag::err_unexpected_friend);
4420
4421    // It might be worthwhile to try to recover by creating an
4422    // appropriate declaration.
4423    return DeclPtrTy();
4424  }
4425
4426  // C++ [namespace.memdef]p3
4427  //  - If a friend declaration in a non-local class first declares a
4428  //    class or function, the friend class or function is a member
4429  //    of the innermost enclosing namespace.
4430  //  - The name of the friend is not found by simple name lookup
4431  //    until a matching declaration is provided in that namespace
4432  //    scope (either before or after the class declaration granting
4433  //    friendship).
4434  //  - If a friend function is called, its name may be found by the
4435  //    name lookup that considers functions from namespaces and
4436  //    classes associated with the types of the function arguments.
4437  //  - When looking for a prior declaration of a class or a function
4438  //    declared as a friend, scopes outside the innermost enclosing
4439  //    namespace scope are not considered.
4440
4441  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
4442  DeclarationName Name = GetNameForDeclarator(D);
4443  assert(Name);
4444
4445  // The context we found the declaration in, or in which we should
4446  // create the declaration.
4447  DeclContext *DC;
4448
4449  // FIXME: handle local classes
4450
4451  // Recover from invalid scope qualifiers as if they just weren't there.
4452  NamedDecl *PrevDecl = 0;
4453  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
4454    // FIXME: RequireCompleteDeclContext
4455    DC = computeDeclContext(ScopeQual);
4456
4457    // FIXME: handle dependent contexts
4458    if (!DC) return DeclPtrTy();
4459
4460    LookupResult R;
4461    LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4462    PrevDecl = R.getAsSingleDecl(Context);
4463
4464    // If searching in that context implicitly found a declaration in
4465    // a different context, treat it like it wasn't found at all.
4466    // TODO: better diagnostics for this case.  Suggesting the right
4467    // qualified scope would be nice...
4468    if (!PrevDecl || !PrevDecl->getDeclContext()->Equals(DC)) {
4469      D.setInvalidType();
4470      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
4471      return DeclPtrTy();
4472    }
4473
4474    // C++ [class.friend]p1: A friend of a class is a function or
4475    //   class that is not a member of the class . . .
4476    if (DC->Equals(CurContext))
4477      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4478
4479  // Otherwise walk out to the nearest namespace scope looking for matches.
4480  } else {
4481    // TODO: handle local class contexts.
4482
4483    DC = CurContext;
4484    while (true) {
4485      // Skip class contexts.  If someone can cite chapter and verse
4486      // for this behavior, that would be nice --- it's what GCC and
4487      // EDG do, and it seems like a reasonable intent, but the spec
4488      // really only says that checks for unqualified existing
4489      // declarations should stop at the nearest enclosing namespace,
4490      // not that they should only consider the nearest enclosing
4491      // namespace.
4492      while (DC->isRecord())
4493        DC = DC->getParent();
4494
4495      LookupResult R;
4496      LookupQualifiedName(R, DC, Name, LookupOrdinaryName, true);
4497      PrevDecl = R.getAsSingleDecl(Context);
4498
4499      // TODO: decide what we think about using declarations.
4500      if (PrevDecl)
4501        break;
4502
4503      if (DC->isFileContext()) break;
4504      DC = DC->getParent();
4505    }
4506
4507    // C++ [class.friend]p1: A friend of a class is a function or
4508    //   class that is not a member of the class . . .
4509    // C++0x changes this for both friend types and functions.
4510    // Most C++ 98 compilers do seem to give an error here, so
4511    // we do, too.
4512    if (PrevDecl && DC->Equals(CurContext) && !getLangOptions().CPlusPlus0x)
4513      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
4514  }
4515
4516  if (DC->isFileContext()) {
4517    // This implies that it has to be an operator or function.
4518    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
4519        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
4520        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
4521      Diag(Loc, diag::err_introducing_special_friend) <<
4522        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
4523         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
4524      return DeclPtrTy();
4525    }
4526  }
4527
4528  bool Redeclaration = false;
4529  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo, PrevDecl,
4530                                          move(TemplateParams),
4531                                          IsDefinition,
4532                                          Redeclaration);
4533  if (!ND) return DeclPtrTy();
4534
4535  assert(ND->getDeclContext() == DC);
4536  assert(ND->getLexicalDeclContext() == CurContext);
4537
4538  // Add the function declaration to the appropriate lookup tables,
4539  // adjusting the redeclarations list as necessary.  We don't
4540  // want to do this yet if the friending class is dependent.
4541  //
4542  // Also update the scope-based lookup if the target context's
4543  // lookup context is in lexical scope.
4544  if (!CurContext->isDependentContext()) {
4545    DC = DC->getLookupContext();
4546    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
4547    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4548      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
4549  }
4550
4551  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
4552                                       D.getIdentifierLoc(), ND,
4553                                       DS.getFriendSpecLoc());
4554  FrD->setAccess(AS_public);
4555  CurContext->addDecl(FrD);
4556
4557  return DeclPtrTy::make(ND);
4558}
4559
4560void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
4561  AdjustDeclIfTemplate(dcl);
4562
4563  Decl *Dcl = dcl.getAs<Decl>();
4564  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
4565  if (!Fn) {
4566    Diag(DelLoc, diag::err_deleted_non_function);
4567    return;
4568  }
4569  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
4570    Diag(DelLoc, diag::err_deleted_decl_not_first);
4571    Diag(Prev->getLocation(), diag::note_previous_declaration);
4572    // If the declaration wasn't the first, we delete the function anyway for
4573    // recovery.
4574  }
4575  Fn->setDeleted();
4576}
4577
4578static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
4579  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
4580       ++CI) {
4581    Stmt *SubStmt = *CI;
4582    if (!SubStmt)
4583      continue;
4584    if (isa<ReturnStmt>(SubStmt))
4585      Self.Diag(SubStmt->getSourceRange().getBegin(),
4586           diag::err_return_in_constructor_handler);
4587    if (!isa<Expr>(SubStmt))
4588      SearchForReturnInStmt(Self, SubStmt);
4589  }
4590}
4591
4592void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
4593  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
4594    CXXCatchStmt *Handler = TryBlock->getHandler(I);
4595    SearchForReturnInStmt(*this, Handler);
4596  }
4597}
4598
4599bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
4600                                             const CXXMethodDecl *Old) {
4601  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
4602  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
4603
4604  QualType CNewTy = Context.getCanonicalType(NewTy);
4605  QualType COldTy = Context.getCanonicalType(OldTy);
4606
4607  if (CNewTy == COldTy &&
4608      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
4609    return false;
4610
4611  // Check if the return types are covariant
4612  QualType NewClassTy, OldClassTy;
4613
4614  /// Both types must be pointers or references to classes.
4615  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
4616    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
4617      NewClassTy = NewPT->getPointeeType();
4618      OldClassTy = OldPT->getPointeeType();
4619    }
4620  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
4621    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
4622      NewClassTy = NewRT->getPointeeType();
4623      OldClassTy = OldRT->getPointeeType();
4624    }
4625  }
4626
4627  // The return types aren't either both pointers or references to a class type.
4628  if (NewClassTy.isNull()) {
4629    Diag(New->getLocation(),
4630         diag::err_different_return_type_for_overriding_virtual_function)
4631      << New->getDeclName() << NewTy << OldTy;
4632    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4633
4634    return true;
4635  }
4636
4637  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
4638    // Check if the new class derives from the old class.
4639    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
4640      Diag(New->getLocation(),
4641           diag::err_covariant_return_not_derived)
4642      << New->getDeclName() << NewTy << OldTy;
4643      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4644      return true;
4645    }
4646
4647    // Check if we the conversion from derived to base is valid.
4648    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
4649                      diag::err_covariant_return_inaccessible_base,
4650                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
4651                      // FIXME: Should this point to the return type?
4652                      New->getLocation(), SourceRange(), New->getDeclName())) {
4653      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4654      return true;
4655    }
4656  }
4657
4658  // The qualifiers of the return types must be the same.
4659  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
4660    Diag(New->getLocation(),
4661         diag::err_covariant_return_type_different_qualifications)
4662    << New->getDeclName() << NewTy << OldTy;
4663    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4664    return true;
4665  };
4666
4667
4668  // The new class type must have the same or less qualifiers as the old type.
4669  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
4670    Diag(New->getLocation(),
4671         diag::err_covariant_return_type_class_type_more_qualified)
4672    << New->getDeclName() << NewTy << OldTy;
4673    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
4674    return true;
4675  };
4676
4677  return false;
4678}
4679
4680/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
4681/// initializer for the declaration 'Dcl'.
4682/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
4683/// static data member of class X, names should be looked up in the scope of
4684/// class X.
4685void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4686  AdjustDeclIfTemplate(Dcl);
4687
4688  Decl *D = Dcl.getAs<Decl>();
4689  // If there is no declaration, there was an error parsing it.
4690  if (D == 0)
4691    return;
4692
4693  // Check whether it is a declaration with a nested name specifier like
4694  // int foo::bar;
4695  if (!D->isOutOfLine())
4696    return;
4697
4698  // C++ [basic.lookup.unqual]p13
4699  //
4700  // A name used in the definition of a static data member of class X
4701  // (after the qualified-id of the static member) is looked up as if the name
4702  // was used in a member function of X.
4703
4704  // Change current context into the context of the initializing declaration.
4705  EnterDeclaratorContext(S, D->getDeclContext());
4706}
4707
4708/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
4709/// initializer for the declaration 'Dcl'.
4710void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
4711  AdjustDeclIfTemplate(Dcl);
4712
4713  Decl *D = Dcl.getAs<Decl>();
4714  // If there is no declaration, there was an error parsing it.
4715  if (D == 0)
4716    return;
4717
4718  // Check whether it is a declaration with a nested name specifier like
4719  // int foo::bar;
4720  if (!D->isOutOfLine())
4721    return;
4722
4723  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4724  ExitDeclaratorContext(S);
4725}
4726